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Abstract: Transport of soils and sediment by runoff diminish the surface water qual-
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treatment stimulate the growth of cyanobacteria in surface water bodies.Excessive
nutrient loading or eutrophication with favorable hydrodynamics result in excessive
growth of cyanobacteria called Harmful Algal Blooms (HABs). These cyanobacte-
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CHAPTER I

Introduction

1.1 Background and Problem Statement

The current world population is around 8 billion and is expected to reach close to 10

billion in 2050 and 11 billion in 2100 (Publications, 2019). This population growth

is not uniform throughout the world, where the projected increase is expected in

high-fertile lands of the globe. Excessive fertilizers usage shall maintain food security

for the growing population, eventually bringing nutrients into lakes and reservoirs.

Nutrient runoff from land management practices such as agriculture, animal feeding

operations, water temperature, wastewater treatment plants promotes the growth of

algae and cyanobacteria (Joyce, 2000). Excessive growth of algae in water causing

water impairment issues are called Harmful Algal Blooms (HABs). HABs are majorly

influenced by the availability of carbon, nitrogen, phosphorous, sunlight, water tem-

perature and other trace nutrients (Tseng et al., 2014). Global warming and climate

change result in extreme weather events, including a rise in the occurrence of summer

storms which bring large amounts of sediment, nutrients, and other contaminants into

freshwater bodies causing eutrophic conditions (excessive nutrient loadings) in lakes

and reservoirs (Pielke Jr et al., 2005). In addition to eutrophication with increased

temperature and sediment re-suspension, favors the growth of algae in aquatic ecosys-

tems. Excess growth of algae concentrations can cause ecological dead zones due to

depletion of dissolved oxygen and produce toxins that are harmful to aquatic species

and humans when consumed (Rabalais et al., 2002; Chislock et al., 2013).

Algal toxins such as microcystins are organic molecules produced during the
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growth of cyanobacteria, negatively affecting the local economy and causing water

impairment issues. In addition to toxins, HABs cause taste and odor problems in

drinking water systems due to release of Geosmin (Antoniou et al., 2005). It has

been suggested that HABs are the greatest inland water quality threat to ecosystem

well being and human health (Brooks et al., 2016a). Land management practices

affect the sediment, nutrient, and heat fluxes to surface water bodies causing HABs.

Since there are several interrelated factors responsible in the formation of HABs, wa-

ter quality models are required to understand HAB precursors and growth. Therefore

monitoring HABs in the surface water is important to ensure drinking water quality,

protect public health, and provide safe ecosystem provision services.

1.2 Current State of HAB Monitoring

Several alternatives are available in monitoring HABs and surface water quality of

inland water bodies and reservoirs. Some of these alternatives include physical grab

sampling, satellite remote sensing, in-situ sensing using sensors. Grab samples for

HABs should be taken carefully since they are toxic. However, processing grab sam-

ples is often slow and the sampling process does not cover the entire spatial extent of

the water body. The traditional sample grab and lab analysis are useful in analyzing

the water quality at the expense of time (Amejecor, 2021). Therefore studying the

dynamic nature of the cyanobacteria creates the need to use remote sensing methods

using satellites and unmanned systems in measuring the algae concentrations. Satel-

lite remote sensing has proven to be an effective way to remotely sense and measure

the algal pigments, including Chlorophyll-a and phycocyanin in oceans (Stumpf, 2001;

Stumpf et al., 2003; Shen et al., 2012; Tang et al., 2004; Ahn and Shanmugam, 2006).

Existing satellite technologies of Landsat-8 and Sentinel-2 provide image data of the

earth with a spatial resolution of 30 m and (10 to 60 m) respectively. The temporal

resolution of Landsat-8 and Sentinel-2 is sixteen days and ten days, respectively. In
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the case of Sentinel-2, there are two satellites with revisit frequency of single satel-

lite in ten days, and the combined constellation revisit in five days. However HAB

formations are very dynamic and the concentration of algae can vary spatially and

temporally. The current HAB monitoring methods have limitations in collecting data

in terms of spatial and temporal scale. Therefore monitoring HABs require systems

that can sample water providing large amount of water quality information for further

processing in building water quality models. These water quality models will provide

important information regarding HABs, enabling the policymakers and other water

stakeholders to make important decisions regarding land management practices and

water quality management.

1.3 Approach

A major step in the development of using unmanned systems for water quality mon-

itoring and modeling is evaluation on the field. Recently unmanned systems are be-

coming popular in scientific applications including environmental monitoring, space

exploration, search and rescue. Also using unmanned systems in surface water quality

monitoring is economical and efficient. Recently development of Unmanned Surface

Vehicles (USVs) has gained momentum because they are more robust and work in

extreme environments which are not accessible by humans. To improve accessibility

in lakes and create robust monitoring system, an Unmanned Surface Vehicle (USV)

is tested in Grand Lake, Oklahoma and Marion Reservoir, Kansas for rapid water

quality data collection. In addition to using unmanned systems, a remote sensing

tool has been developed which can be used to develop in-lake water quality models

with the in-situ data obtained from unmanned systems. As far as the remote sens-

ing tool is concerned, empirical relationships are developed between pixel values of

multi-spectral bands and in-situ water quality data. The current state of the open

source remote sensing tool developed compares the utility of image data obtained
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by multi-spectral imagery of Landsat-8 and Sentinel-2. The capability of this open-

source remote sensing tool can be extended to the aerial image data obtained from

Unmanned Aerial Vehicles (UAVs) to forecast HABs. In environmental monitoring

applications, UAVs are extensively used in remote sensing applications. The remote

sensing methods require high resolution spatial and temporal data sets to produce

better statistical models predicting water quality parameters. The high-resolution

image data sets attains better gridded estimates and forecasting scenarios to evaluate

the currently developed remote sensing tool. Therefore it is very important to collect

more in-situ data to provide ground truth to enhance and test the efficacy of the

remote sensing methods. In addition to unmanned vehicles, unmanned systems are

used for stream monitoring. The data collected from monitoring streams can be used

to build watershed models to understand nutrient and sediment transport within the

watershed. In this dissertation, the rich temporal and spatial data collected from

unmanned systems are used in building statistical and watershed models. In Okla-

homa State University, USVs developed for water quality monitoring have potential

to perform fully autonomous missions in lakes and reservoirs. Monitoring of Grand

Lake O’ the Cherokees and Marion reservoir using USVs and other unmanned systems

provides important insights in exploring rapid data collection for model building and

freshwater monitoring. Both statistical water quality and watershed models will give

important insights into nutrient and sediment influxes into the surface water bodies

and how they influence the formation of HABs.

1.4 Dissertation Structure

The models built from in-situ data of reservoirs and rapid data collection of water

quality using unmanned systems helps to assess the water quality conditions and

causes of impairment. This dissertation is divided into seven chapters:

1. An Introduction to the environmental problems associated with HABs and why
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is it important to monitor them. Also the introduction provides the importance

of using unmanned systems in developing water quality models to understand

the precursors to HAB formations.

2. A literature review of previous studies on remote sensing, water quality moni-

toring using unmanned systems, and water quality modeling.

3. the development of an open-source satellite remote sensing tool which can be

integrated into providing HAB advisories.

4. the development of HSPF model to simulate a watershed of Grand Lake O’ the

Cherokees to understand the influx of sediment and nutrients into the watershed.

5. A demonstration of an USV to collect rapid water quality data for water quality

monitoring.

6. A description of results from building a life cycle assessment of switchgrass

to jet fuel using a novel co-fermentation process developed in Oklahoma State

University, Stillwater, USA.

7. A summary of findings, conclusions and recommendations for future research.
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CHAPTER II

Literature Review

HABs pose a risk to mammals and the environment because they are toxic and can

negatively impact the aquatic ecosystems by depleting dissolved oxygen. In this chap-

ter,a background on remote sensing and machine learning is presented followed by

background on unmanned systems used for water quality monitoring, followed by

background on watershed modeling. The remote sensing tool, water quality moni-

toring, and water quality modeling provides important insights to understand HAB

formations. The application of unmanned systems in water quality monitoring and

water quality modeling provides readers information associated with importance of

rapid data that is necessary to develop models for understanding the formation of

HABs.

2.1 Literature on Remote Sensing

The application of remote sensing is based on the interaction (absorption and reflec-

tion) of the earth’s land, natural resources, and objects with solar radiation. It is

observed each earthly object has its own spectral signature (Bell, 1995). In remote

sensing applications each earthly object that can be detected by finding a relation

between the prediction variable and the multi-spectral input features based on unique

spectral signatures. Therefore electromagnetic spectrum and understating the spec-

tral characteristics of remotely sensed object is important in spatio-temporal studies.
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Figure 2.1: Spectral reflectance of soil, vegetation, and water

2.1.1 Electromagnetic Spectrum

The electromagnetic spectrum ranges from shorter to larger wavelengths i.e. from

gamma rays to radio waves. In remote sensing applications several regions of electro-

magnetic spectrum is useful for earth observation. Especially ultra-violet region (1

nm to 400 nm) of the electromagnetic spectrum is useful in remote sensing of earth

surface materials such as rocks, and minerals (Aggarwal, 2004). The light which our

eyes detect is in the visible spectrum and there is a lot of radiation in and outside the

visible spectrum that is absorbed or reflected around different objects of the earth’s

surface which can be detected using remote sensing instruments. The visible spec-

trum ranges from 400 nm to 700 nm. This portion of the electromagnetic spectrum

can be associated with the detection of several colors by human eyes. Next spectrum

of interest after visible spectrum is the infrared region where the radiation (IR) can

be divided into two categories including reflected IR and emitted/thermal IR region

respectively. The reflected IR and thermal IR wavelengths are in the range of 700

nm to 3,000 nm and 3,000 nm to 100,000 nm respectively. Finally the micro wave

wavelengths ranging from 1 nm to 1 m is a region of interest in the remote sensing

applications. Some of the important spectral signatures of the earth is as shown in

Figure 2.1.
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Algae are aquatic species that have the capability to perform photosynthesis.

These photosynthetic algae has light absorbing molecules called pigments that can

absorb the electromagnetic radiation. There is a certain range of electromagnetic

spectrum the pigment can absorb which is called as the absorption spectrum and the

rest of the radiation is reflected. In case of algae, chlorophyll-a is a pigment that

absorbs red, green wavelengths and reflects the green and near infrared radiation

(NIR) wavelengths (Datt, 1998; Murphy et al., 2005). Therefore the visible and NIR

spectrum’s can be used to remotely sense the chlorophyll-a pigment.

2.1.2 Remote Sensing of Water Quality/Clarity

Water quality in surface water bodies is dependent on natural and anthropogenic ac-

tivities in a watershed, hydrodynamics and climate change. Accessing and frequency

of monitoring water bodies frequently is challenging sometimes and this negatively

impacts monitoring water quality. Satellite remote sensing is a solution to this chal-

lenge which has been identified as a potential alternative to traditional water quality

monitoring methods. There was a case study of Ozark/Ouchita-Appalachian ecore-

gion in eastern Oklahoma where satellite remote sensing sensing has been performed

and developed predictive statistical models to predict chlorophyll-a and turbidity

(Barrett and Frazier, 2016). However the resultant tool seems to perform well during

winter months of a year rather than in summer. In addition, water quality models

in inland water bodies can be developed using satellite remote sensing. These arti-

cles document the use of satellite imagery in efficiently monitoring water quality and

limitations that researchers need to overcome (Ritchie et al., 2003; Flores-Anderson

et al., 2020). However Landsat-8 bands are efficient in detecting chlorophyll-a, tur-

bidity concentrations in lakes and reservoirs (Barrett and Frazier, 2016; Ma et al.,

2021). Similarly multi-spectral instruments on Sentinel-2 provide reflectance bands

which help in detecting phycocyanin pigment of HABs (Sòria-Perpinyà et al., 2020).
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2.1.3 Challenges in Remote Sensing

Advantages of remote sensing have improved the understanding of HABs and help in

identifying the HAB dynamics in surface water bodies. However certain limitations

and challenges in remote sensing of HABs include unsystematic understanding of

HABs, insufficient utilization of remote sensing. HABs are usually complex dynamic

mechanisms that involves nutrient inputs, favorable climatic conditions, and hydro-

dynamics. Previously Chen et al. (2003) reported that HAB formations are based on

physical, chemical, and biological processes with the associated contributors. More-

over, linking both influx of nutrients and HAB formation is difficult unless significant

in-situ data is available (Paerl et al., 2016). Therefore comprehensive understanding

of relationship between nutrient inputs and HAB formations is important. However,

there have been few studies which focused on comprehensive understanding of HAB

formations in the area of remote sensing. In this thesis, a comprehensive understand-

ing of HAB formations will be explored based on the amount of sediment and nutrient

transport into the freshwater bodies. In addition to understanding the complex HAB

formation dynamics, most satellites have medium spatial and temporal resolution

images when compared to imagery collected by Unmanned Aerial Vehicles (UAVs)

equipped with multi-spectral cameras. Also UAVs are flexible for remote sensing ap-

plications because the users can choose their own flight path, revisit times, which are

critical in monitoring algal blooms which are very dynamically formed.

2.1.4 Image Errors in Remote Sensing

Water quality monitoring using remote sensing should include methods that incor-

porate methodological and analytical protocols to reduce image error significantly.

Sources of error in remote sensing includes geometric and radiometric distortions

from earth’s system and remote sensing sensors. Errors with sensors are systematic

and correction protocols help in improving quality of the image. In case of Landsat,
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the sensors have either whisk broom or push broom scanners. In case of Sentinel

satellites, the sensors have push broom scanners. The whisk broom scanner used in

the earth observing satellite scans the image across the satellite path which collects

data one pixel at a time. As the scanner moves to capture the pixel information

the back and forth motion at different angles of incidence and reflections can cause

image distortions which needs to be corrected. Before the launch of Landsat-8, all

Landsat satellites were launched with sensors equipped with only whisk broom scan-

ners. While whisk broom scanners move constantly to capture pixel information, push

broom scanners move few times comparatively and collect pixel information perpen-

dicular to the flight path. Therefore push broom sensors have fewer image corrections

as far as edges are concerned. The Earth Resources and Observation Science (EROS)

located in South Dakota performs correction of all the images before making them

available for public access.

The sources of error while getting image data by satellite scanners is either shot

noise or line stripping. Shot noise indicates bad pixel and line stripping means drop-

ping lines while scanning an image object. Bad pixels occur when scanner skips

certain points in the image and records wrong pixel readings. Traditionally interpo-

lation methods are used to correct bad pixel readings. However if the land cover is

heterogeneous and dense then using interpolation is not a proper approach. Moreover

change in seasons can also impact the spectral characteristics of land cover providing

incorrect information while image correction. Apart from satellite sensors, the po-

sition of the sun can also result in error in images. To avoid these errors, selecting

spectral bands that are not majorly affected by solar radiation is preferable in build-

ing the remote sensing algorithms or tools. In addition to solar radiation and satellite

sensors, distortion in synchronization between satellite and earth orbits can result in

image errors. Earth is not a perfect sphere which cannot make the angle of incidence

90o at the nadir resulting in spatial error. Moreover, circular error of probability is
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another possibility to be aware and corrected if the error is too large. The circular

error can be estimated as the average distance between the missed and intended tar-

get pixels of the remote sensing object (Claverie et al., 2018). Correction of these

displaced pixels is performed using indirect Geo-referencing such as using Ground

Control Points (GCPs) and other mathematical models. Again the EROS center in

South Dakota and European Space Agency (ESA) perform all these corrections for

Landsat and Sentinel before making the image data accessible to public. Moreover

heterogeneous land cover in a small region can also result in pixel errors. Further-

more, low spatial resolution of satellite imagery makes it difficult to remotely sense

objects or concentrations based on a spectral signature. To address these issues of

assigning a spectral signature, researchers use methods for testing to find the correct

pixel value (Nagol et al., 2018; Vaesen et al., 2001; Witharana and Civco, 2014).

2.1.5 Remote Sensing Algorithms and Tool Development

The main objective of developing remote sensing tools in water quality monitoring

involves developing a relationship between target variable and independent variables

using statistical modeling. In statistical model development, selection of models that

perform better and serve the purpose of monitoring is of critical importance. As we

know there are several statistical machine learning models including supervised, un-

supervised, and object based methods. Out of all the statistical methods, regression

which is a sub-field of supervised machine learning is useful in building remote sensing

algorithms and tools. Regression methods are useful in estimating a target variable

by using several independent variables. However, dropping certain independent vari-

ables needs to be clearly investigated if there is any multi-collinearity between them

(Daoud, 2017). Since the environmental processes like formation of HABs are com-

plex and dynamic, it is very important to check the sensitive aspects of statistical

modeling including data distribution, multi-collinearity, and chances of over-fitting.
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Previous literature including (González-Márquez et al., 2018; Xu et al., 2021) reported

that statistical models are useful in remote sensing application of measuring the con-

centrations of surface water quality parameters. There are three types of approaches

in remote sensing that can be used including: Empirical approach, Semi-empirical

approach, and analytical approach.

1. Empirical Approach: Typical empirical methods include linear and multi-

ple regression, single band method, multiple band-combination methods, artifi-

cial neural networks, principal component analysis, and other machine learning

methods. The data used in the empirical methods include in-situ data (de-

pendent or target variable), and satellite data (independent variables). The

approach is based on creating empirical relationship between input and output

variables.

2. Semi-empirical Approach: Semi-empirical methods require both measured

spectral analysis and statistical analysis. Most of these methods have inher-

ent assumptions such that they help in providing information to improve the

accuracy of the model.

3. Analytical Approach: In this approach, parameters (independent variables)

are used to find the inherent optical properties. These optical properties can

help in quantifying the pixel information to measure the concentrations of dif-

ferent water quality parameters.

2.1.6 Regression Models

Regression models are most widely used empirical methods to associate algal biomass

with spectral signatures of the satellite sensors or UAV imagery. Regression models

attempt to minimize the deviation between measured concentrations and predicted

values of the water quality. The difference between the predicted and observed values
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is called error. Minimizing the error and improving the prediction performance is the

main objective of the statistical regression models. Remote sensing methods utilizes

the coefficient of determination, mean square error, and Nash-Sutcliffe efficiency to

evaluate the performance of the regression model. with values ranging from 0 to 1

such that the model close to 1 has less error with good fit.

1. Multiple regression: Multiple regression is a statistical machine learning tech-

nique that can be used to analyze the relationship between several independent

variables and one dependent variable. The main objective of the multiple re-

gression is to use the values of independent variables to predict the value of

dependent variable. The weights denote the relative contribution to the whole

prediction such that the multiple regression is mathematically represented as

follows:

Y = a+ b1X1 + b2X2 + .....+ bnXn (2.1)

The variables in the Equation 2.1 here includes Y as dependent variable and

X1, X2,.....,and Xn are independent variables. Although multiple regression

is a preferable method of remote sensing in measuring the concentration of

water quality parameters, the error is significantly large. Therefore there is a

need to explore other machine learning algorithms to understand the non-linear

dynamics of Algal blooms.

2. Support vector regression: Algal blooms are dynamic and therefore it is very

important to explore machine learning algorithms that can handle non-linear

data. Although Support Vector Machines (SVMs) are developed to solve classi-

fication problems, the domain has been extended to solve regression problems.

With the training data (xi, yi)
N
(i=1) such that xi ∈ Rn, and yi ∈ R, the SVM

maps x into a higher dimensional space using non-linear mapping. If z = φ(x)

13



such that a non linear model y = f(x,w) can be constructed in this feature

space. The cost function y = wz + b can be written as follows as shown in

Equation 2.2:

f(x,w) =< w.φ(x) > +b (2.2)

where w is the weight which decides how much influence the input will have

on the output parameter. φ(x) is the vector data in the feature space used for

prediction or training. b is the bias which is a constant. < w.φ(x) > denotes

the dot product between the weight and the feature vector. The main objective

of the regression equation is to minimize the loss function using the training

data. However, one of the main criteria of the SVM is that it attempts to

minimize the generalization error instead of the training error. This behavior of

the support vectors prevents the phenomenon of the over-fitting and results in

high generalization performance. This generalization error is the combination

of training error and regularization term which controls the complexity of the

statistical model. The ε-insensitive loss function given by Vapnik et al. (1995)

as L = |y − f(x,w)|ε such that:

|y − f(x,w)|ε =


0, if |y − f(x,w)| ≤ ε

|y − f(x,w)| − ε, otherwise

(2.3)

In the Equation 2.3, ε is the tolerance to the error such that if the predicted

value is less than the tolerance then the loss is zero. If the predicted value

is greater than the tolerance then the loss is the magnitude of the difference

between the predicted value and the radius of the ε. Therefore Support Vector

Regression (SVR) is robust to small errors in the training dataset to the least

square errors used for Multi-Layer Perceptrons (MLPs). The ε insensitive loss
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function as described by the Vapnik et al. (1995) introduces non-negative slack

variables such as ξi, ξ
∗
i i = 1,....,N, which measures the deviation of training

data outside the tolerance zone. The SVR is ultimately posed as a convex

optimization problem as shown below:

min
1

2
||w||2 + C

N∑
i=1

(ξi, ξ
∗
i i)

subject to


yi− < w.φ(x) > −b ≤ ε+ ξ∗i i

< w.φ(x) > −b− yi ≤ ε+ ξ∗i i

ξi, ξ
∗
i i ≥ 0, i = 1, ..., n

(2.4)

In Equation 2.4, C is a fixed regularization constant which determines the trade-

off between training error and model complexity. The convex optimization

problem can be solved using Lagrange multipliers, and the regression function

is as shown in Equation 2.5:

f(x) =
N∑
i=1

(αi − α∗
i )K(xi, x) + b (2.5)

where αi − α∗
i are the Lagrange multipliers which are obtained by solving the

Quadratic Programming (QP) problem. K(xi, x) =< φ(xi), φ(x) > is a kernel

function that can satisfy the Mercer’s condition. The QP problem can be solved

as illustrated in Equation 2.6:

min
α,α∗

−1

2

N∑
i=1

N∑
j=1

(α∗
i − αi)K(xi, xj)(α

∗
j − αj) + ε

N∑
i=1

(αi + α∗
i ) +

N∑
i=1

yi(αi − α∗
i )

subject to
N∑
i=1

(α∗
i − αi) = 0, αi, α

∗
i ∈ [0, C]

(2.6)
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Moreover, the value of bias b can be obtained by the Karun-Kush-Tucker con-

ditions as discussed in previous literature (Vapnik, 1999).

b = yi− < w,φ(xi) > −ε, for αi ∈ (0, C)

b = yi− < w,φ(xi) > +ε, for αi ∈ (0, C)

(2.7)

We know that K is a positive definite and Equation 2.7 represents a convex prob-

lem that has a unique global minimum avoiding several local minima. Equation

2.5 the difference in Lagrange multipliers differs from zero and the support vec-

tors. These data points typically are with in the tolerance of ε. If the data

points are outside the ε-tube border or outside then they are not useful and do

not contribute to the regression function. Therefore larger the tolerance fewer

are the support vectors with sparser representation of the solution. However,

larger tolerance can decrease the accuracy of the SVM. Therefore the tradeoff

between closeness of data and sparseness is important and needed to be main-

tained. As far as the kernel functions are concerned for generalization there are

generally three types including:

K(xi, x) = exp (−∥x− xi∥2

2σ2
) (2.8)

K(xi, x) = (xTxi + 1)p (2.9)

K(xi, x) = tanh(β0x
Txi + β1) (2.10)

The kernel functions shown in Equation 2.8 are the Radial Basis Function (RBF)

where σ is the width parameter. Equation 2.9 shows the polynomial regression

of degree p that will convert to linear function when p=1. Finally Equation 2.10

is the two layer sigmoid perceptron kernel function. Both the polynomial and

RBF kernel functions satisfy mercer’s condition. In case of two-layer perceptron
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mercer’s condition is satisfied only for some values of β0 and β1. Although the

concept of SVMs is very similar to that of the multi-layer perceptrons, the

number of hidden nodes in SVMs are based on number of SVs and their values.

In case of MLPs the number of hidden layers are based on trial and error.

3. Random forest: Random forest is an ensemble machine learning algorithm

which is a collection of tree predictors. These algorithms generate large number

of decision trees which acts as regression functions on their own. The collec-

tion of predictors or trees are in the form of function h(x; θk) such that k =

1,2,3,.....,K. The x in the hypothesis function represents the observed input

vector which is of the length p. The associated random vector X and θk are

independent and identically distributed. In the regression scenario, the focus

is on the numerical outcome as a scalar Sn such that the observed in-situ or

training data is assumed to be independently drawn from the joint distribution

of (X,y). The training set contains n number of observations which can be

expressed as shown in equation:

Sn = (X1, Y1), (X2, Y2), ...., (Xn, Yn), X ∈ Rn, Y ∈ R (2.11)

Random forests can be built by random sampling which is called as a bootstrap

sample. The prominence of using bagging is to avoid the correlation between

the decision trees which is a problem especially in multi-spectral satellite remote

sensing. When it comes to random forests there is flexibility of using the training

data with bagging where some data is used and some not at all. This flexibility

makes the random forest to prevent overfitting the training dataset. Random

forest can perform both classification and regression. In case of regression, the

random forest is the unweighted average of the collection of decision trees such

that:
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h(x) =
1

K

K∑
k=1

h(x; θk) (2.12)

As K increases and tends to infinity then the law of large numbers ensures such

that:

EX,Y (Y − h(X))2 → EX,Y (Y − Eθh(X; θ))2 (2.13)

The quantity on the left of Equation 2.13 is the prediction error such that it

tends to be the generalization error for the random forest. The convergence in

Equation 2.13 shows that random forests do not tend to over-fit the training

data. The generalization/prediction error for random forest is designated as

PEf . The prediction error for individual tree is important and random forests

have only two parameters to tune including number of trees and number of

random features for each split. The average prediction error for an individual

tree can be mathematically represented as shown in Equation 2.14:

PEt = EθEX,Y (Y − h(X; θ))2 (2.14)

For all values of θ, if the tree is unbiased which means that EY = EXh(X; θ)

then the prediction error of random forest is as follows:

PEf ≤ ρ̄PEt (2.15)

For independent values of θ and θ′ the weighted correlation (ρ̄) between resid-

uals is Y − h(X; θ) and Y − h(X; θ′). Equation 2.15 shows the requirement for

accurate random forest regression. There is a need for low correlation between

different individual tree members of the random forest to avoid over-fitting.

Also, the prediction error is supposed to be low for the individual decision

trees. Furthermore, the random forest will decrease the tree error by the (ρ̄)
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factor as shown in 2.15. Some of the strategies involved to achieve better perfor-

mance of random forests include: growing the trees to maximum depth to avoid

individual error, and keeping the residual correlation error low. The correlation

of the residuals can be kept low by growing each tree on bootstrap samples

and specifying the number of covariates and splitting the node based on the

covariates.

In case of remote sensing, the diversity of input data is important to get better

regression outputs without sacrificing model accuracy. Previously (Yajima and

Derot, 2018) studied to forecast algal blooms using random forest models .

Chlorophyll-a in-situ data with monthly time resolution was used to calibrate

the random forest model. The result of the random forest model has shown

that the chlorophyll-a concentrations could be predicted. However, Ahn et al.

(2007) reported that Phycocyanin concentrations are important for developing

HAB advisories. Therefore it is important to include both Chlorophyll-a and

phycocyanin concentration to develop HAB alert systems.

2.2 Literature on Water Quality Monitoring

Periodic sampling of water is necessary to identify the changes in water quantity and

quality over time. Monitoring water quality helps in developing land use and water-

shed management plans to ensure safe drinking water, control pollution, and protect

human health. Important water quality indicators of the health of surface water

includes temperature, Electrical Conductivity (EC), turbidity, pH, algal pigments in-

cluding chlorophyll-a concentration, and phycocyanin concentration, Dissolved Oxy-

gen (DO). Among these parameters pH influences the solubility of chemical con-

stituents such as nutrients (nitrogen, phosphorous, and carbon) and heavy metals

(lead,arsenic, and chromium) in surface water. Also, aquatic organisms require pH in

the ranges between 6.5 and 9.0 for survival. Temperature governs the types of aquatic
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life and influences the chemical and biological reactions in water. EC is a measure of

water’s ability to flow electrical current and is directly related into presence of ions

in water. These ions indicate the presence of dissolved salts and inorganic materials

including chlorides, sulfides, and carbonates. A sudden change in Electrical conduc-

tivity indicates that there is a sediment input into the water bodies. Turbidity is

the measure of cloudiness of water and it indicates the presence of suspended solids

in surface water bodies. Algal pigments including chlorophyll-a and phycocyanin in-

dicate the presence of algae in water. DO is an indicator of non-compound oxygen

in water and helps in assessing the water quality. Decrease in DO in surface water

bodies results in decomposition of organic material by microbial species negatively

affecting the aquatic life and water quality.

Based on previous literature, lots of polluted water and untreated municipal

wastewater ends up in surface water bodies negatively affecting the health of aquatic

ecosystems. In addition, excessive use of fertilizers in agriculture can result in leach-

ing of nutrients causing eutrophic conditions in surface water bodies and negatively

impacting surface water quality and human health. Therefore it is very important

to perform water quality monitoring. Traditional water quality monitoring involving

manned field sampling poses limitations in terms of spatial and temporal variability of

water quality data. Monitoring water quality close to mining zones, water bodies sur-

rounded by steep terrain are difficult to access for getting samples. Therefore there is

a critical need to assess alternative methods including remote sensing and unmanned

systems to monitor surface water bodies. Unmanned systems are becoming popular

in the field of water quality monitoring due to their ability to collect high temporal

and spatial resolution datasets. Unmanned Surface Vehicles (USVs) and UAVs have

been used in monitoring water quality. USVs with on-board water quality sensors

can collect high quality spatial and temporal data in in-accessible areas and operate

in toxic aquatic environments.
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Figure 2.2: Design of ASV by Wang et al. (2009a)

Previously Wang et al. (2009a) designed an Autonomous Surface Vehicle (ASV)

using the body of a high speed boat for monitoring oceans. The ASV was designed

to use power efficiently and have a long endurance. The maximum wireless commu-

nication distance of the ASV designed by Wang et al. (2009a) was 10 nautical miles.

The design of the USV developed by Wang et al. (2009a) is shown in Figure 2.2.

Recently ASVs have the capability to sample ocean water for long duration (days

to weeks) by solar power integration (Higinbotham et al., 2008). The ASV developed

Figure 2.3: OASIS (ASV3) Oceanographic research platform Higinbotham et al.
(2008)

by (Higinbotham et al., 2008) provides a low-cost, reusable, long duration ocean

21



observing unmanned system for understanding carbon-dioxide air-sea flux and phy-

toplankton productivity. Apart from water quality monitoring an ASV was developed

by (Dunbabin and Grinham, 2010; Dunbabin et al., 2009) for greenhouse gas emis-

sion monitoring. The ASV is powered with solar panels which has unique capabilities

to profile water vertically during motion. The ASV was tested on Lake Wivenhoe

located west of Brisbane, Queensland, Australia is shown in Figure 2.4.

Figure 2.4: ASV system design by Dunbabin et al. (2009)

In the field of aerosol modeling a USV was developed by Powers et al. (2018) to

understand precipitation and other bio-geological processes. The sensors on board

the USV are shown in Figure 2.5.

Figure 2.5: USV system design by Powers et al. (2018) integrated with A) Airmax
200 WX sensor to capture meteorological data, B) Impingers and particle counter at
1.1 m and C) 0.1 m , D) Turbidity sensor, and E) extender for vertical profiling
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The motivation to develop the USV was to understand the distribution of biolog-

ical aerosols in aquatic environments and how they influence in formation of clouds

and precipitation processes. The geographic locations where water meets land such

as wetlands are essential for aquatic life. To sample and analyze shallow water bodies

an ASV was developed and tested by Odetti et al. (2020) researchers from Europe.

The ASV shown in Figure 2.6 is completely autonomous with on-board WiFi for

communication.

Figure 2.6: USV system design by Odetti et al. (2020)

Also (Banerjee et al., 2020; Koparan et al., 2018) developed a UAV system shown

in Figure 2.6 that can collect physical water samples from contaminated aquatic

environment. The water samples collected by the UAV system reduces the risk of

humans coming in contact with toxic water while sampling. Figure 2.6 shows the

UAV equipped with water sampling design.

Figure 2.7: UAV system design by (a) Banerjee et al. (2020)
and (b) Koparan et al. (2018) for water sampling

In addition to UAVs, a robotic boat was designed to work as a USV with an
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unmanned water sampler with 12 bottles and storage capacity of 1 liter each bottle

to collect water samples as shown in Figure 2.8.

Figure 2.8: ASV system design by Prempraneerach and Kulvanit (2010) for water
sampling

Unmanned systems are explored in water sampling of aquatic environments by re-

searchers and academic scholars. The Unmanned Systems Research Institute (USRI)

at Oklahoma State University (OSU) developed two autonomous USVs for monitor-

ing lakes in Oklahoma. The two USVs include Aquarius-1 and Mobile Autonomously

Navigable USV for Evaluation of Lakes (MANUEL). Aquarius-1 shown in Figure 2.9

is the first prototype used by the research team at OSU to monitor lakes in Oklahoma

and Kansas.

Figure 2.9: USV prototype system design by USRI

Aquarius-1 is capable in performing autonomous missions and has on-board sen-

sors that can collect water quality parameters such as temperature and depth. How-
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ever there are certain challenges that are associated with range, mobility, and maneu-

verability using Aquarius-1 which are successfully dealt with by building MANUEL.

MANUEL shown in Figure 2.10 is built by using an existing kayak designed to carry

a maximum weight of 130 pounds. The kayak is 6 feet long and 2 feet wide with

differential thrust for better steering and maneuvering.

Figure 2.10: MANUEL sampling water in Grand Lake

The avionics on-board MANUEL shown in Figure 2.11 include Orange Cube Pix-

hawk, GPS, Electronic Speed Controller (ESC), Receiver, Transmitter, and Teleme-

try. The navigation and path planning of MANUEL is similar to that of an Unmanned

Aerial Vehicle (UAV) using Mission Planner software. Mission Planner provides the

GPS way points for the MANUEL to operate in AUTO and smart RTL modes. All

the specification of MANUEL is provided in Table 2.1.

The sensors on-board MANUEL include a ping sonar to measure depth and YSI

EXO-3 sonde. The ping sonar is a single beam echo-sounder that measures depth up

to 100 feet and the theory of operation is shown in Figure 2.12. The sonar produces

a beam width of 30 degrees to measure depth and operates in water temperature
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Figure 2.11: Avionics on-board MANUEL

Table 2.1: Specifications of MANUEL

Vehicle structure Single Hull kayak, 6 feet by 2 feet
Steering type Thrust differential

Propulsion System Dual T200 Thrusters
Powered 4 6S LiPo 14,000 mAh

Endurance 3.5 hours at cruising speed
Cruise speed 4.5 ft/s

Maximum Speed 9 ft/s
Maximum weight 130 lbs
Maximum thrust 24 lbs

Autopilot Orange Cube Pixhawk 2.0
Modes of operation Auto, Manual and SmartRTL

Maximum range of operation <1 mile

ranging from 0 to 30 (oC). The ping sonar is connected to a EnviroDIY mayfly

micro-controller which is programmed as an Arduino board to log depth data.

The EXO-3 sonde shown in Figure 2.13 is a bundled sensors with water quality

probes. It can measure parameters including pH, turbidity, temperature, chlorophyll-

a concentration, phycocyanin concentration, conductivity, and dissolved oxygen. The
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Figure 2.12: Ping sonar theory of operation

EXO-3 sonde is capable of Bluetooth connection and SDI-12 communication with

titanium sensors. All the sensors on-board MANUEL are calibrated before performing

an auto-mission to monitor lakes.

Figure 2.13: Bundled sensors of EXO-3 sonde

Previously the utilization of USVs and UAVs have been explored to understand the

climatic conditions, bio-aerosol, and Green house gas emissions. However, integrating
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water quality sensors on a USV can provide rapid data collection of surface water

quality data possible. This high resolution datasets can provide ground truth while

integrated with UAV imagery using remote sensing tools can help in developing in-

lake water quality models. These models helps to assess the strategies for in-situ

HAB treatment approaches by removing precursors or the algal biomass.

2.3 Literature on Watershed Modeling

Controlling water pollution in a watershed is important because nutrients like nitro-

gen and phosphorous are precursors in formation of HABs in lakes and reservoirs.

Understanding pollutant sources from point and non-point sources is important to

understand how the land management practices are impacting watershed health. Wa-

tershed modeling has been increasingly used to assist in managing the pollution from

non-point sources (Srinivas et al., 2020; Benaman et al., 2001; Moges et al., 2018).Un-

derstanding the importance of non-point sources that contribute nutrients into surface

water bodies, U.S EPA developed the Hydrologic Simulation Program in FORTRAN

(HSPF) (Bicknell et al., 1997).

2.3.1 HSPF

Development of a HSPF model requires data related to land-use, catchment areas,

stream networks, climate time series, and flow time series for calibration purposes.

Using HSPF is flexible and helps in applying the model to different climatic conditions

around the world. HSPF has modules that can simulate hydrology, temperature, sed-

iment transport, nutrient transport, and snow. Due to its universal applicability and

reliability, the HSPF model has remained relevant even today to simulate watersheds

and understand sediment, and nutrient transport (Singh and Frevert, 2010).

HSPF has been maintained by Environmental Protection Agency (EPA) and

United States Geological Survey (USGS) jointly with the Better Assessment Science
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Integrating Point and Non-Point Sources (BASINS) version 4.5. BASINS is useful in

providing integrated Geographic information system (GIS) data for data extraction,

pre-processing, calibration, and visualization. However there are certain limitation

of using BASINS including software crashes and incompatibility with Windows Vi-

sual.Net and open source Unix operating systems. Also, the GUI based tool reduces

the flexibility of using some modules of HSPF. Therefore alternative methods are

needed for pre-processing, simulating, calibrating, and post-processing HSPF. PyH-

SPF using Python provides the flexibility of using HSPF modules and is supported

by both windows and UNIX operating systems.

The Python programming contains useful tools for data analysis and is relevant

for hydrology and water quality modeling. The PyHSPF uses both the hydrology

and water quality capabilities of HSPF which integrates with the data analysis tools

in Python creating a flexible framework in performing modeling tasks to develop

watershed models. A HSPF simulation requires minimum of two input files including

a User Control Input (UCI) file and Watershed Data Management (WDM) file. The

UCI file is a plain text file with instructions for a simulation. The WDM file is

an unformatted file with input timeseries data. The HPSF version 12.2 can handle

multiple WDM files with large amounts of timeseries input data.

2.3.2 PyHSPF Software

Building a HSPF model requires input hydrography data on catchments and stream

reaches, land use category, climate data, and hydrology process parameters to model

land segments. All these data can be translated as input data to HSPF by creating

UCI and WDM input files. A series of Python classes in PyHSPF can be used to

build input and output files, run simulations, calibrate hydrology process parameters,

and postprocess simulation results. PyHSPF uses several third party software pack-

ages to gather data from world wide web for data processing and postprocess HSPF
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simulations. In this dissertation, a new class has been added to the extract climate

data from Oklahoma Mesonet which are used to simulate Horse Creek Watershed of

Grand Lake.

The simulated Horse Creek Watershed provides important information to under-

stand the behavior of non-point sources of nutrients and sediment into the Grand

Lake. The information can improve the decisions related to best management prac-

tices (BMPs) of land in the Horse Creek watershed. These BMPs reduce the non-point

source runoff and provides important insights about the nutrient precursors that ini-

tiates HAB formation in the Grand Lake. The remote sensing tool integrated with

the watershed model using HSPF provide forecasting models for HABs and provide

early warnings of swim advisories due to HABs in freshwater bodies.
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CHAPTER III

A Remote Sensing Tool for Real-Time Monitoring of Harmful Algal

Blooms and Turbidity in Reservoirs

3.1 Abstract

Harmful Algal Blooms (HABs) diminish the utility of reservoirs for drinking water

supply, irrigation, recreation, and ecosystem service provision. HABs decrease water

quality and are a significant health concern in surface water bodies. Real-time mon-

itoring of HABs in reservoirs and small water bodies is essential to understand the

dynamics of sedimentation and HAB formation. This study uses satellite imagery

to remotely sense Chlorophyll-a concentrations (CHLa), Phycocyanin concentrations

(BGA), and turbidity in two reservoirs, the Grand Lake O’ the Cherokees and Hudson

Reservoir, OK, USA, to develop a tool for real-time monitoring of HABs. Landsat 8

and Sentinel-2 imagery from 2013 to 2017 and from 2015 to 2020 were used to train

and test three different machine learning models that include multiple regression, Sup-

port Vector (SVR) Regression, and Random Forest Regression (RFR). Performance

was assessed by comparing the three machine learning models to estimate CHLa,

BGA, and turbidity. The results showed that RFR achieved the best performance,

with R2 values of 0.75, 0.82, and 0.79 for CHLa, turbidity, and BGA, while multiple

regression had R2 values of 0.29, 0.51, and 0.46, and SVR had R2 values of 0.58, 0.62,

and 0.61 on the testing datasets, respectively. The current study enhances the scope

to utilize publicly available satellite imagery to estimate the real-time water quality

of reservoirs in Oklahoma using the developed open-source remote sensing tool.
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3.2 Introduction

Nutrient runoff from agriculture, animal feeding operations, and wastewater treat-

ment plants promote the growth of algae and cyanobacteria. Extreme rainfall events

can transport large amounts of sediment into surface water bodies that bring nutri-

ents and other pollutants into reservoirs, which adversely affects the ecosystem health

of surface water bodies and causes Harmful Algal Blooms (HABs). Sedimentation,

sediment resuspension, and eutrophication diminish the utility of reservoirs and neg-

atively impact human health (Zhang et al., 2020).Increasing agricultural activity and

excessive use of fertilizers exacerbates HAB events, resulting in water impairment

issues. HABs cause taste and odor problems in drinking water due to the release of

Geosmin (Deng et al., 2017; Wurtsbaugh et al., 2019; Antoniou et al., 2005). The

decay of HABs creates ecological dead zones due to the depletion of dissolved oxygen

in surface water creating unfavorable conditions for the sustenance of flora and fauna

in water bodies (Bennett, 2017; Chislock et al., 2013; Zohdi and Abbaspour, 2019).

Besides, HABs produce toxins in water which pose health risks to mammals when

consumed (Anderson, 2009; Park et al., 2017). High toxic risk upon exposure and

increasing occurrences of HAB events creates a critical need for regular water quality

monitoring. Successful monitoring of water bodies requires observations of spatial

and temporal trends to understand sedimentation and HAB formation.

Existing satellite technologies provide spatial and temporal observations that can

be used to study water quality in inland water bodies. For instance, Landsat-8 and

Landsat-9 orbits the earth in sun-synchronous near-polar orbit with a 16-day repeat

cycle, where it collects multi-spectral imagery of the earth’s surface (Carpenter and

Carpenter, 1983; Blackwell, 1979; Masek et al., 2020). Landsat 8 has two instru-
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ments, including the Operational Land Imager (OLI) and Thermal Infrared Sensor

(TIRS). Landsat-8 imagery has been widely used to monitor water quality, includ-

ing Chlorophyll-a (CHLa), turbidity, Mineral Suspended Solids (MSS), and surface

temperature (Watanabe et al., 2015; Silva et al., 2016; Olmanson et al., 2016; Trinh

et al., 2017; Harrington Jr et al., 1992; Fraser, 1998; Potes et al., 2012). Similarly, the

Sentinel-2 mission uses two satellites, S2A and S2B, in sun-synchronous orbit which

are phased at 180º to each other to collect multispectral data of the earth’s surface.

Sentinel-2 satellites have thirteen spectral bands with variable spatial resolutions from

10 to 60 m.

Multispectral data from these platforms provide the reflectance of water surface

at spectral regions beyond the visible range enhancing our ability to monitor water

quality trend in space and time. For instance, algal pigments including CHLa and

Phycocyanin (BGA) which are fluorescent to light reflect electromagnetic radiation

that can be estimated using remote sensing. Previously, remote sensing methods have

been used to estimate the concentrations of CHLa, turbidity, and BGA using satellite

data in the oceans and reservoirs (Chen et al., 2013; Porcar-Castell et al., 2014; Babin

et al., 1996; Crosta and MOORE, 1989; Brezonik et al., 2005; Chipman et al., 2004;

Kutser et al., 2006). However, most of the previous work in remote sensing of water

quality has been focused on oceans and large lakes. In addition to large water bodies,

monitoring reservoirs and inland water bodies are important because they provide

water to several households (Afroz et al., 2014). Besides acting as potential water

source, inland water also bodies provide recreation and ecosystem provision services

which helps in developing local economy (Ward et al., 1996; Cowx et al., 2010).

In the U.S., there are around 90,000 dams that have inland water bodies that can

be monitored remotely using satellite sensors for water quality (Song et al., 2021).

The Grand Lake O’ the Cherokees (Grand Lake) and Hudson Reservoirs are located

in northeastern Oklahoma, where they are monitored and operated by the Grand
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River Dam Authority (GRDA). Recently, Grand Lake has experienced an increase in

HAB outbreaks, including a shutdown on the fourth of July weekend in 2011, that

significantly affected the local economy (Mason and Triplett, 2016). These increased

occurrences of HAB events in Oklahoma and consistent monitoring from GRDA cre-

ates an opportunity for developing an operational near real-time HAB detection tool

based on remote sensing.

The main objective of this study is to develop a remote sensing tool to monitor

HABs for inland water bodies. To achieve this objective, empirical relationships were

built using the surface reflectance values from both the Landsat-8 and Sentinel-2

satellites and in-situ data collected at Grand Lake and Hudson Reservoir. For active

HAB monitoring, we developed an open-source software tool in Python that acquires

satellite images from the web, extracts values of pixels within each reservoir, and

estimates in-situ water quality data, including CHLa, turbidity, and BGA concentra-

tions. The tool is then used to visualize a HAB in Oklahoma reservoirs and compare

the utility of the Landsat-8 and Sentinel-2 satellites for remote sensing. This tool can

help guide HAB advisories and provide observations for research into HAB dynamics.

3.3 Materials and Methods

3.3.1 Description of the Study Area

The study area includes Grand Lake and Hudson Reservoir located in northeastern

Oklahoma. Detailed information of Grand Lake and Hudson Reservoir involving

storage capacity and area are provided in Table 3.1. Grand Lake has a total area of

188.2 square kilometers, a mean depth of 11.0 m, a maximum depth of 40.5 m (Hunter

et al., 2020). Three significant rivers, including Neosho, Spring, and Elk, drain into

Grand Lake. The lake spans across parts of Craig, Delaware, Mayes, and Ottawa

counties in Oklahoma, making it the third largest lake in terms of both surface area

and water holding capacity in the state (Hunter et al., 2020). The watershed of Grand
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Table 3.1: Characteristics of Lakes under study

Lake Surface
area (km2)

Shoreline
length (km)

Mean
Depth (m)

water
volume (m3)

References

Grand
Lake

188.2 2,092 11.0 2,062,378,560 (Authority, 2009)

Hudson
Reservoir

49 322 5.5 247,066,044 (Board, 2008)

Lake contains cultivated agriculture, livestock, and wastewater treatment plants that

act as sources of HAB nutrient precursors. Nutrient loadings into Grand Lake vary

due to differences in land management practices across its many sub-watersheds. In

Grand Lake, Horse Creek Cove is a point of interest in testing remote sensing methods,

because most of the HAB events start in this area during the summer months when

nutrient-rich runoff from agricultural sources and other land use in the Horse Creek

Watershed flows into the lake. Overall land use in the watershed consists of 57%

grassland (including planted pasture and natural grassland), 20% agricultural land,

6% developed land, and 3% surface water and wetlands. The Hudson Reservoir is

located in Mayes County in the Arkansas River Basin on Neosho River. It is the

fourteenth largest reservoir in Oklahoma and supplies water to public and private

stakeholders authority (Authority, 2009). Hudson Reservoir receives water mainly

from releases of Grand Lake, and it is fed by other tributaries originating in Oklahoma

and Arkansas. The study areas of both Grand Lake and Hudson Reservoirs are shown

in Figure 3.1

3.3.2 Water Quality

Grand Lake and Hudson Reservoir were sampled for water quality parameters by

GRDA using EXO-1 and EXO-2 multiparameter sondes regularly since 2011, in-situ

water quality throughout the duration of the Landsat-8 and Sentinel-2 missions. The

in-situ data collected by GRDA were used to develop remote sensing algorithms for
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Figure 3.1: Study area of Grand Lake and Hudson Reservoir

estimating CHLa, turbidity, and BGA at Grand Lake and Hudson Reservoir using

the spectral imagery from Landsat-8 since 2013 and Sentinel-2 since 2015 as described

in Section 3.3.3. Observations of in-situ water quality from Grand Lake and Hud-

son Reservoir were collected by the GRDA water quality monitoring program. (YSI)

multi-parameter water quality probes were used to measure CHLa, turbidity, and

BGA. An EXO-1 and EXO-2 sondes with water quality probes were assembled, pre-

pared, and calibrated according to procedures detailed in the instrument’s operation

manual (YSI, 2017). All the sampling sites used to collect in-situ water quality data

for both Grand Lake and Hudson reservoirs are shown in Figure 3.2. Parameters used

to build the remote sensing tool include the CHLa concentration in µg/L, turbidity

in NTU, and phycocyanin concentration in cells/mL. For model building, the water
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quality data selected corresponds to within ± 3 days of sampling for CHLa, turbid-

ity, and ± 5 days of sampling for BGA. The in-situ data represent the water quality

conditions close to the water surface where all the sensor data were collected within

3 feet of the surface.

Figure 3.2: Sampling sites of reservoirs under study
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3.3.3 Satellite Data

Satellite imagery was obtained from both Landsat-8 and Sentinel-2 and co-located

with in-situ observations for development of remote sensing algorithms for CHLa,

turbidity, and BGA. The OLI is suitable to assess water quality in surface water

bodies such as lakes, rivers, and coastal marine zones. The OLI measures the reflec-

tivity of earth’s surface across nine spectral bands including Panchromatic band at

15 meters, Ultra-Blue Coastal Aerosol, Blue, Green, Red. Near Infrared (NIR), Short

Wave Infrared (SWIR) 1, SWIR2, and Cirrus bands at 30 meters resolutions on the

ground. The TIRS has two thermal spectral bands including Thermal Infrared 1,

and Thermal Infrared 2 with spatial resolution of 100 meters. Sentinel-2 is an earth

observation mission from the Copernicus program to acquire satellite imagery with

spatial resolution ranging from 10 meters to 60 meters on the ground. Currently,

the two Sentinel satellites S2A and S2B collects imagery with twelve spectral bands

including Blue, Green, Red, NIR, at 10 meters, Vegetation Red edge, Narrow NIR,

SWIR bands at 20 meters, Water Vapor, and Cirrus bands at 60 meters resolutions.

The detailed information about the Landsat-8 and Sentinel-2 bands used in this study

are shown in Table 2. Also, the information related to the bands available for both

Landsat-8 and Sentinel-2 are provided in the supplemental document in Table A.1,

Table A.2 and Table A.3.

3.4 Software Tool

3.4.1 Empirical Basis of the Tool

Statistical models including multiple regression, SVR and RFR were used to develop

algorithms for estimating CHLa concentrations, turbidity, and BGA concentrations

from the co-located observations of reflectance and in-situ water quality. The CHLa,

turbidity, and BGA data were not normally distributed; therefore, we log-transformed
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Table 3.2: Spectral bands with band wavelength used to remotely sense CHLa, tur-
bidity, and BGA

Remote sensing
parameter

Spectral band notations and
band ratios used

Wavelength (nm)

CHLa with Landsat-8
sensors

SR B2 (blue)
SR B3 (Green)
SR B4 (Red)
SR B5 (Near Infrared)
SR B6 (Shortwave infrared 1)
ST B10 (Surface temperature
from level-1 Band 10)

432-512
533-590
636-673
851-879
1566-1651
10600-11190

Turbidity with Landsat-8
sensors

SR B2 (blue)
SR B3 (Green)
SR B4 (Red)
SR B5 (Near Infrared)
SR B7 (Shortwave infrared 2)

432-512
533-590
636-673
851-879
2107-2294

BGA with Sentinel-2
sensors

B2 (Blue)
B3 (Green)
B4 (Red)
B5 (Red Edge 1)
B6 (Red Edge 2)
B12 (Short Wave Infrared 2)
B8A (Red Edge 4)

496.6 (S2A) / 492.1 (S2B)
560 (S2A) / 559 (S2B)
664.5 (S2A) / 665 (S2B)
703.9 (S2A) / 703.8 (S2B)
740.2 (S2A) / 739.1 (S2B)
2202.4 (S2A) / 2185.7 (S2B)
864.8 (S2A) / 864(S2B)

the data (Figure 3.5) to make the distribution closer to normal. Regression models

are widely used to associate algal pigments and other water quality parameters with

spectral signatures of satellites. Regression minimizes the sum of the squared errors

using a cost function given by Equation 3.1

C =
1

l

n∑
i=1

((yi − f(xi, v))
2 (3.1)

Given a training data set containing dependent variables yi and independent vari-

ables xi denoted xi, yi ∈ Rk, f(xi, v) is the function used in the regression for predic-

tion, n is the sample size and v is the vector that defines the function f with same

dimension i.e., the number of parameters in both vector v that defines the function

f are same. If the noise generated in the predicted data does not follow a Gaussian
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distribution, then a new loss function is needed to quantify and minimize the error

between predicted and expected concentrations of CHLa, turbidity, and BGA. In case

of multiple regression, the dependent variables include CHLa and turbidity while the

independent variables include the spectral bands from Landsat 8 Operational Land

Imager (OLI) and Thermal Infrared Sensor (TIRS). A model was developed using

multiple regression to find a relationship between each dependent variable and the

independent variables. Algal dynamics in surface water are non-linear, and there-

fore machine learning models including SVR, and RFR were also analyzed to develop

remote-sensing algorithms for water quality parameters. SVR is an extension concept

of Support Vector Machines, which are applied to regression statistical analysis. SVR

has been successfully applied to develop machine learning algorithms for non-linear,

chaotic systems including alternating current cycles, urban traffic flows, medical ap-

plications, and stock markets (Xu et al., 2014; Alipour et al., 2022; Hong et al., 2011;

Weng et al., 2013; Liang et al., 2010; Khan and Zubek, 2008; Agarwal et al., 2011; Das

and Padhy, 2012; Yu et al., 2008). In SVR, a linear ∈ loss function given by Vapnik

(Drucker et al., 1996; Vapnik et al., 1995) and the function is shown in equation 3.2:

L =| y − f(x, v) | ∈ (3.2)

Where L is the loss function in SVR, y is the expected value and f(x, v) is the

predicted regression function. The loss function takes a value 0 when L ≤ ∈, otherwise

the L can be |y − f(x, v)| - ∈ i.e. when L > ∈. In this study, as the predicted

CHLa,turbidity, and BGA were tested with non-linear machine learning models, a

kernel function is needed for SVR. Typically, a kernel function used to transform

features from original to higher dimensions to improve group separation of expected

data around hyper-plane. An optimal prediction was found by iterating through the

available kernel functions including linear, polynomial, Gaussian, Sigmoid, spectral

angle, and Radial Basis Function. In this study, a Radial Basis Function (RBF)
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kernel was selected after testing all the available kernel functions to give an optimum

prediction for both CHLa and turbidity. The RBF kernel was used to predict water

quality and has been widely used in regression problems (Chitralekha and Shah, 2010;

Nadadoor et al., 2012).

A Random Forest (RF) is an ensemble machine learning algorithm that contains a

large number of decision trees such that the algorithm obtains a prediction based on

a consensus of responses in all the trees. The sample data were partitioned to random

subsets for predicting both CHLa, turbidity, and BGA. RF can handle large datasets

and can predict co-related water quality data without decreasing prediction accuracy.

In multispectral imagery there is strong correlation between bands. The RF algorithm

uses numerous de-correlated decision trees randomly and assigns weighting based on

the performance of each tree, using Gini impurity. The Gini importance can be

computed as the sum of the node impurity decrease over the number of splits (across

all the decision trees). Although RF seems to be a promising model it is important to

check if the model is overfitting the training dataset. To check whether a statistical

model is not overfitting the trained dataset, both k-fold cross-validation and hyper

parameter tuning was performed on different training and validation datasets to check

how the model is performing.

3.4.2 Structure and Workflow of Python Tool

The software developed in this study is written in Python 3.7. Python is free,

open source, and extensively utilized for scientific applications because of its object-

oriented, interpretive, and interactive programming features (Lutz, 2013; Millman

and Aivazis, 2011). Python possesses a wide range of extension libraries that were

utilized to ensure smooth operation of the procedure to extract imagery and analyze

the data. The Google Earth Engine Python Application Program Interface (API) was

used to acquire level-2 Landsat-8 imagery of the study area. Similarly, the United
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States Geological Survey (USGS) Application Programming Interface (API) was used

to obtain Sentinel-2 level-1 images from Google Cloud Services. Landsat-8 level-2 im-

ages were obtained using spatial bounds for the lakes in scenarios where the cloud

cover was less than 10% of the image. Geographical coordinates (latitude and lon-

gitude) are provided as a Comma Separated Value (CSV) file such that the python

software can find the satellite images within the bound spatial coordinates. In case of

Sentinel-2, after acquiring the level-1 images, Sen2Cor was used to process the single

date Level-1 top of atmosphere images to level-2 bottom of atmosphere or surface

reflection products (Main-Knorn et al., 2017). Based on the geographic coordinates

and in-situ sampling dates, the Python tool selects raster images from the available

data for each mission, then prints the appropriate candidates that are within the

spatial bounds of the study area while having a cloud cover of less than 10%. The

level-2 data obtained from Earth engine API has atmospherically corrected level-2

images containing five visible bands, two short-wave bands, and one thermal infrared

band. The bands were orthorectified to surface reflectance and surface temperatures.

In total there are 19 bands available from the level-2 images which are shown in Table

A.1 and A.2. Sentinel-2 has two satellites which are operated by the European Space

Agency (ESA). Both the satellites S2A, and S2B carries multispectral instruments

that images the earth both in visible and infrared band spectrum. Sen2Cor was used

to resample the level-1 images to level-2, which contain bands with spatial resolutions

of 10, 20, 60 meters. The 20-meter spatial resolution is considered in building the

remote sensing tool to measure the concentration of BGA because the band 8A which

is obtained by level-2 processing has more precise spatial spectral information. The

detailed description of the bands after processing to level-2 with surface reflectance

using sentinel-2 are shown in Table A.3.

After acquiring and processing the satellite images for both the Landsat-8 and

Sentinel-2 satellites, the pixel values were extracted at the in-situ sampling location
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that most closely matched the sampling time (within a week). All the pixel values

of the reservoirs were parsed based on the availability of in-situ water quality data.

The pixel data obtained was split to train the machine learning algorithms, then test

the performance of the models using cost functions. The statistical training process

involves improving the model performance based on using the error metrics, including

Root Mean Square Error (RMSE) and coefficient of determination (R2). In addition

to error metrics, feature selection, and hyper-parameter tuning were used to improve

the performance of the remote sensing tool. The detailed information regarding the

feature selection and hyper-parameter tuning are discussed in sections 3.5.2. Based

on the model performance, the RF model was selected for subsequent testing using

k-fold cross-validation to estimate model accuracy. After gaining confidence that the

RFR did not overfit the training dataset, it was selected as the final model to be used

in the remote sensing tool. As discussed in section 3.4, a remote sensing algorithm

was developed between the multispectral band data, CHLa concentrations, and BGA

concentrations. Similarly, another algorithm was developed between the multispectral

data and turbidity. The steps involved in developing the remote sensing software are

shown in Figure 3.3.

Table 3.3: Recreational action levels for CHLa, BGA, and Microcystin levels

Probability of acute
health effects

CHLa (µg/L) Cyanobacteria
(cells/mL)

Estimated
corresponding
Microcystin
concentrations

Low ≤10 ≤20,000 < 10
Moderate 10 to 50 > 20,000 to 100,000 2 to 20

High ≥50 > 100,0000 > 20

The information required to use the remote sensing tool requires the user to reg-

ister on Google cloud and Earth Resources Observation and Sciences (EROS). In

addition to login information to the publicly available satellite imagery, users must

provide the desired cloud cover (in percentage), geographical coordinates, and tempo-
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Figure 3.3: Flow diagram showing the operational structure of the python tool
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ral information (start date and end date) of the imagery to select the desired satellite

images within the region of interest. In addition, a boundary shapefile of the water-

body must be provided by the user to clip the region of interest and remove unwanted

regions in the raster. Using all the input information provided by the user, the tool

searches publicly available datasets from Landsat-8 and Sentinel-2 imagery in Google

cloud and downloads them to the local computer. The spectral reflectance values in

the region of interest are then extracted by the remote sensing tool. The RF algorithm

is applied to the clipped region of interest to produce gridded estimates, and the un-

wanted pixels of land are masked by the tool. Using the surface reflectance values of

water, the tool estimates the concentrations of CHLa, turbidity, and BGA to produce

gridded images of water quality. The gridded estimates on the satellite raster can be

used to provide HAB advisories for further analysis based on the concentrations of

CHLa and BGA as shown in Figure 3.4.

The criteria to establish a HAB alert are based on World Health Organization

(WHO) alert levels of CHLa and BGA concentrations more than 50 µg/L and 100,000

cells/mL, respectively (Izydorczyk et al., 2009; USEPA, 2019; Ahn et al., 2007). The

detailed information on alert concentration of algal pigments are shown in Table 3.

3.5 Results and Discussions

The distribution of CHLa, turbidity, and BGA from the in-situ observations in the

study area are shown in Figure 3.5. CHLa concentrations used in this study ranged

from 0 to 60 µg/L, turbidity ranged from 0 to 150 NTU, and BGA ranged from 0 to

20000 cells/mL. The resolution of BGA sensor indicates that 0.1 RFU corresponds

to estimated cyanobacteria concentration of 1 cell/mL (Lorenzen, 1966). Based on

the WHO guidelines for recreational water, CHLa concentrations more than 50 µg/L

and BGA of 200,000 cells/mL indicate a HAB event and requires further testing of

water samples in the laboratory for microcystins. Both CHLa and turbidity can be

45



Figure 3.4: The process flow diagram showing the steps to use the remote sensing
tool
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remotely-sensed using Landsat-8 satellite imagery. Landsat-8 satellite data since the

mission launched in 2013 were compiled to match 1709 in-situ observations for CHLa

and turbidity in the study area. Sentinel-2 data were compiled to remotely sense

BGA that were matched to 1095 data points from 2015 to 2020. The in-situ water

quality data were positively skewed for CHLa, turbidity, and BGA as shown in Figure

3.5. Each of the three water quality parameters was log-transformed such that the

fit is close to a Gaussian or normal distribution. However, non-parametric machine

learning models like SVR and RFR do not need data to fit a normal distribution.

Figure 3.5: Whisker and distribution plots of in-situ water quality parameters

After fitting the in-situ data to a Gaussian distribution, algorithms that translate

observations from single bands and band combinations into water quality parameters

were generated using co-located pixels based on coordinates. The bands used in build-

ing and testing regression algorithms are shown in Table 3.2 for each water quality

parameter and satellite mission. For remote sensing of both CHLa, turbidity, and

BGA, features were extracted using individual bands from Landsat-8 and Sentinel-2
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respectively.

3.5.1 Multicollinearity of Multi-spectral Bands

Some of the multispectral bands of both Landsat-8 and Sentinel-2 images are strongly

correlated, which causes data redundancy. Therefore, we dropped highly-correlated

bands with coefficient of determination (R2) of greater than 0.9. Figure 3.6 shows

the correlation matrix between all the observations from the Landsat-8 and Sentinel-

2 imagery. The bands that were dropped included Ultra-Blue, Coastal Aerosol

(SR B1) and Shortwave Infrared 2 (SR B7) while estimating CHLa concentrations

using Landsat-8. Similarly, surface reflectance bands including Ultra-Blue, Coastal

aerosol (SR B1), and Shortwave Infrared 1 (SR B6) bands were dropped while esti-

mating turbidity concentrations using Landsat-8. In case of BGA estimation, surface

reflectance bands including Red Edge 3 (B7) and Short-Wave Infrared 1 (B11) were

dropped while using Sentinel-2 imagery for remote sensing. In addition to surface

reflectance bands, few surface temperature bands were retained because surface tem-

perature is very important in detecting CHLa and turbidity concentrations which are

discussed in section 3.5.2 (Harod et al., 2021). The bands used in machine learn-

ing algorithms for model calibration were selected based on feature importance as

discussed in section 3.5.2.

3.5.2 Feature Selection for Regression

Feature selection for regression was done based on the feature importance scores

determined by a RF (Esteban et al., 2019; Lee et al., 2020; Belgiu and Drăguţ, 2016).

All the three regression algorithms are further investigated (multiple regression, SVR,

and RFR) and RF seems to estimate the water quality parameters better which is

explained in section 3.5.3. Feature importance data provides important insights into

the significance of the various spectral bands to remotely sense the water quality
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Figure 3.6: Correlation matrices between water quality parameters, Landsat-8 and
sentinel-2 bands
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parameters. The RF algorithm has built-in feature importance method that can be

computed using Gini importance. Importance of computed bands including surface

temperature bands of Landsat-8 play an important role in predicting CHLa and

turbidity, as shown in Figure 3.7.

Besides high correlation, the surface reflectance band Ultra-Blue Coastal Aerosol

(SR B1) was dropped because of low feature importance with Gini impurity close to

zero. The Surface Temperature (ST B10) was retained for algorithm development be-

cause it has been previously been used to remotely sense the concentrations of CHLa

in water (Tanaka et al., 2004; Allan et al., 2011). For remotely-sensing BGA, the

Aerosol Optical Thickness (AOT) band of Sentinel-2 was dropped because aerosols

in air do not aid in detecting phycocyanin pigments. The Red Edge 3 (B7) band

was dropped because of low feature importance and high correlations between Red

Edge 2 (B6) and Red Edge (B7). Also, between bands Short Wave Infrared 1 (B11)

and Short Wave Infrared 2 (B12), Short Wave Infrared 1 (B11) was dropped because

of low feature importance and high correlation. However retaining one of the short

wave infrared bands (B12) is important because they help in detecting cyanobacterial

blooms (Yan et al., 2018). Most of the remote sensing methods predicted BGA in

the spectral range from 600 to 754 nm (Ogashawara et al., 2013; O’Shea et al., 2021;

Yacobi et al., 2015). However, SWIR bands have been less susceptible to turbidity in

detecting algal pigments and distinguish surface cyanobacterial blooms and macro-

phytes (Mansaray et al., 2021; Oyama et al., 2015). Therefore, the B12 band was

retained in building the remote sensing tool to estimate the BGA pigment.

3.5.3 Machine Learning Algorithms for Remote Sensing of HABs and

Turbidity

Using data from the two reservoirs (Grand Lake and Hudson Reservoir), three ma-

chine learning algorithms were developed and tested. Since the in-situ data of CHLa,
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Figure 3.7: Feature importance using random forest regression, Landsat-8 and
sentinel-2 bands

turbidity, and BGA were close to a normal distribution, standardization of all the

features was performed using a standard scaler (Ferreira et al., 2019; Garreta and

Moncecchi, 2013). After scaling, the data were split by 70% to train and by 30%

to test the machine learning models. As different models were tested using differ-

ent band combinations, the most efficient regression models were selected for CHLa,

turbidity, and BGA based on R2 values and kernel density plots as shown in Figure

3.8. The kernel density plots in Figure 3.8 show that the multiple regression model

explains roughly half of the relative variability in the concentrations of BGA, CHLa,

and turbidity.

Also, the SVR model overestimates the water quality parameters and does not

have definitive peaks at high concentrations of CHLa. Out of the three machine

learning algorithms tested, RFR estimates the water quality parameters close to the

measured testing dataset. The RFR algorithm is further tested on testing datasets to

observe the model performance based on RMSE and R2. Based on previous literature
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Figure 3.8: Kernel density plots for measured and predicted water quality data using
multiple regression (top), SVR (middle), and RFR (bottom)

Xie et al. (2012); Xu et al. (2015) and trials, the RBF kernel was used in SVR for

remote sensing of water quality parameters. The performance of the statistical models

was assessed using RMSE andR2. In both the testing and training cases, theR2 values

for CHLa, turbidity, and BGA using the SVR and RFR algorithms improved model

performance compared to multiple regression, as shown in Table 3.4. The RFR model

explained observations of CHLa, and BGA better for training than testing. A k-fold

cross validation using random search CV was used to validate the model for different

potential hyper-parameters, including maximum depth, maximum features, samples

split, and sample leaf (Krstajic et al., 2014; Bates et al., 2021). The results of the k-
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fold cross validation for the RFR model after validation are reported in Table 3.4. To

visualize the relationship between measured and modeled water quality parameters,

a scatter plot is shown in Figure 3.9.

Table 3.4: Statistics metrics for best fit regression models

Regression
model used

Water
quality
parameter

RMSE (training
dataset)

RMSE (test
dataset)

R2 (training
dataset)

R2 (test
dataset)

Multiple
regression

CHLa
Turbidity
BGA

0.71
0.90
1.11

0.68
0.89
1.21

0.29
0.47
0.41

0.29
0.51
0.46

Support vector
regression

CHLa
Turbidity
BGA

0.54
0.79
0.88

0.52
0.78
1.03

0.59
0.59
0.63

0.58
0.62
0.61

Random forest
regression

CHLa
Turbidity
BGA

0.36
0.44
0.47

0.40
0.54
0.75

0.81
0.87
0.89

0.75
0.82
0.79

The best regression fit for all the water quality parameters provided visualization

of outliers which were carefully examined and removed if necessary. The R2 values are

displayed at the top of each subplot to illustrate the ability of the model to explain the

data. The k-fold cross validation, scatter plots, and statistical metrics demonstrate

that RFR is the best machine learning method of the three approaches to remotely

sense HABs using imagery from Landsat-8 and Sentinel-2.

Overfitting is always a problem while using non-parametric models like RF while

building remote sensing tools. To avoid overfitting of the RF regressors to the training

datasets, hyperparameter tuning was performed manually using different tree depths,

maximum features, and minimum samples split using manual search and Random

Search CV (Schratz et al., 2019). The number of estimators used in building the

RFR algorithms were 300. The estimators used in building the RFR algorithms have

a maximum tree depth of 15, 16, and 18 for remote sensing of CHLa, turbidity, and

BGA respectively. The maximum tree depth used in the estimator trees is based on

hyperparameter tuning, because excessive tree depth can result in overfitting of the
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Figure 3.9: Scatter plots showing the relationship between remotely-sensed in-situ
observations of water quality parameters using multiple regression (top), SVR (mid-
dle), and RFR (bottom)

trained dataset. The maximum number of features used are 10, 7, and 7 in training the

RFR algorithm. The decision to include the features in building the RFR was based

on multi-collinearity of different bands, feature selection, and hyperparameter tuning.

Also, the minimum number of data points inside a node before the split was two, and

the minimum sample split was determined using hyperparameter tuning. The first

estimator of RFR algorithms developed in remote sensing of CHLa, turbidity, and

BGA are shown in Figure 3.10.

3.5.4 Remotely Sensed Water Quality during HAB Events

In Grand Lake, there were temporally coincident satellite flyovers during four days

in 2021 including February 03, March 07, April 08, and July 13. There was a HAB
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Figure 3.10: Random forest estimators

event ending in July 2021 when the satellite data were used to remotely sense CHLa,

and BGA. The concentrations of CHLa are higher on the edges of Horse Creek in

the month of July which is confirmed by the field sampling personnel of GRDA. In

addition to algal pigments, turbidity was also remotely sensed in Grand Lake using

RFR. Figure 3.11 shows that the Landsat-8 remotely sensed turbidity was not affected

by the surface CHLa and BGA pigment concentrations.

Finally, since the temporal and spatial data obtained from satellite data is coarse,

increasing number of satellite flyover and high resolution in-situ datasets can further

improve the developed in-lake water quality model. Besides, there was a significant

HAB event during June 2021 but due to significant cloud cover the imagery was

not obtained by the remote sensing tool for remote sensing. The remote sensing
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Figure 3.11: Remotely sensed CHLa (µg/L) (top), Turbidity (NTU) (middle), BGA
(cells/mL) (bottom) using RFR algorithm developed in building the remote sensing
tool

tool developed here has the capability to remotely sense both HABs and turbidity.

In addition to remote sensing application the current tool could be used to develop

surface water quality models. These water quality models can be integrated with

the Environmental Fluid Dynamics Code (EFDC) to understand how sediment and

nutrient influxes into lakes and reservoirs can cause HAB events in surface water

bodies (Gao and Li, 2015; Xie, 2012).
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3.6 Conclusions

The goals of this study were to (1) develop remote sensing algorithms for water qual-

ity using Landsat and Sentinel imagery and (2) build a real-time monitoring tool to

characterize HABs in inland water bodies in the Southern Great Plains. The auto-

mated Landsat and Sentinel-based tools for detection of HABs in the surface water

bodies using open-source Python facilitate image acquisition and display of the spatial

extent of remotely sensed algae and turbidity. The tool provides satisfactory results

for monitoring water quality. This remote sensing approach can be extended to new

water resources when large datasets of in-situ data water quality data is available to

estimate algae concentration on the surface. However, there are certain limitations

to the application of this tool. Landsat-8 and Sentinel-2 have moderate spatial and

temporal resolutions. A Landsat pixel, which is 900 m2, is susceptible to land-water

mixed pixel problems, interference from other objects, and low intensity reflectance

from low-concentrations of CHLa and BGA. Additionally, Landsat-8 has temporal

resolution of 16 days during which time, several events could occur that are not

observed. Moreover, satellites are not helpful for species identification and detect-

ing toxic algal scum formation within hours. Integrating unmanned aerial vehicles

(UAVs) and unmanned surface vehicles (USVs) to collect remote sensing and in-situ

data would help address these issues. The tools we developed here could be expanded

to use the raster datasets collected by USVs and other satellites to remotely sense

water quality data. Integration of these datasets and applying machine learning and

artificial intelligence could potentially produce more reliable daily HABs advisories.
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CHAPTER IV

Watershed Modeling

4.1 Abstract

Watershed models are useful to analyze water quantity and quality issues. Hydrologic

Simulation Program in Fortran (HSPF) is a mathematical model that can be used

to analyze sediment and nutrient transport within a watershed. PyHSPF automates

the data extraction, model calibration, post-processing of HSPF files. This chapter

provides information about building a HSPF model that can be used to simulate Horse

Creek Watershed after successful calibration and simulation of flows. In addition to

building a watershed model, the capability of PyHSPF to extract data from web

has been improved by adding climate data from Oklahoma Mesonet. In addition to

watershed modeling this chapter provides information about water quality monitoring

of streams using unmanned systems.

Keywords: Watershed modeling, water quality monitoring, unmanned systems,

water quantity and quality

4.2 Introduction

Nutrient and sediment runoff into water bodies create eutrophic conditions in lakes

and reservoirs causing harmful algal blooms. Frequent monitoring of streams and

reservoirs provide water quality information that can translate into new and enhanced

simulation tools (Bencala, 1983). The influence of climate and nutrient sources in

streams can be understood using watershed models and simulations. Quantifying

land-use and climate effects on watershed is possible using mathematical models like

58



Hydrologic Simulation Program in Fortran (HSPF). Large amount of data is needed to

construct HSPF models with information including stream reaches, catchment areas,

land use percentages, observed stream flows, meteorological and climate timeseries

(Singh, 1995).

Graphical User Interface (GUI) tools like BASINS help in extracting and prepro-

cess data, create input files, calibrate, postprocess and visualize the results. However

there are limitations in GUI based tools because they lack flexibility to preprocess data

and are rigid in nature. Therefore it is necessary to use flexible tools that provides an

environment to produce results which are reproducible and transparent. PyHSPF is

one of the tools that provides a flexible environment for users to develop a watershed

model (Lampert et al., 2015). A watershed model for Horse Creek has been developed

to understand nutrient and sediment transport which might be causing HAB events

in Grand Lake, Oklahoma.

The Horse Creek Watershed within Grand Lake has two gauging stations installed

by United States Geological Survey with stage and discharge records from August

2020. The Horse Creek Watershed majorly contains agricultural land, grasslands,

and a wastewater treatment plant. To enhance the data acquisition capabilities of

PyHSPF, a Mesonet tool is developed that can extract climate data of all the Mesonet

stations within Oklahoma. Currently a baseline watershed model with simulation pe-

riod from 2019 to 2021 is developed which is further calibrated to simulate Horse

Creek Watershed. The HSPEXP hydrology calibration is used to understand and

compare the flow statistics between observed and simulated flows. HSPEXP provides

the errors in the simulated flow results and helps to improve the watershed simula-

tion. By matching both the observed and simulated flow results, it is expected that

the model is performing well. Finally the working watershed model will be used to

simulate nutrient and sediment fluxes that might be initiating the HAB formations

in Horse Creek and Horse of Grand Lake.
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4.2.1 Background

Grand Lake has a large watershed with 10,000 square miles of natural grasslands

and agricultural lands extending into Oklahoma, Kansas, Arkansas, and Missouri

as shown in Figure 4.1. Grand Lake is a primary source of water to several cities,

farms, and power plants in northeastern Oklahoma. Also, the location where the

Grand Lake is located is a popular tourist destination which provides significant

revenue to the local economy. The reservoir experiences regular outbreaks of HABs

during summer months that affect the ecosystem provision services locally. Grand

Lake is managed by Grand River Dam Authority (GRDA) and monitors the reservoir

for HABs regularly using in-situ sensors and field sampling. Unmanned systems

including MANUEL, refrigerated auto-sampler, and in-stream monitoring sensors in

conjunction with monitoring efforts of GRDA helps in studying HAB formations.

Figure 4.1: Grand Lake watershed

Also the watershed model that is being developed can help the local economy

that is negatively affected due to frequent HAB formations in the reservoir due to
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summer storms, climatological, and anthropogenic factors. Also, the climate data for

the Miami station is available for twenty years combined with in-situ monitoring from

GRDA and unmanned systems can provide significant insights in understanding the

HAB formations in Grand Lake.

The construction of Pensacola Dam on the Neosho River formed Grand Lake.

The primary contributors of water to Grand Lake are Spring and Elk rivers. However

there are several small tributaries that feed water to Grand Lake. In the areas around

Grand Lake, different land management practices result in varying trophic status. The

Horse Creek Watershed has large amount of croplands in the region including corn,

soybeans, and wheat as shown in Figure 4.2. The Honey Creek, Sycamore Creek,

and Downing Creek watersheds have grasslands. Apart from natural and agricultural

lands, wastewater treatment plant in Afton, animal feeding operations, and septic

systems are additional sources of nutrients into the surface water systems.

The lack of control in nutrient runoff due to different land management practices

resulted in diminished surface water quality in Grand Lake. Based on the previous

reports and frequent monitoring from Grand River Dam Authority (GRDA) and Ok-

lahoma Conservation Commission (OCC) both Sycamore Creek and Downing Creek

Watersheds are relatively undisturbed and has streams with better water quality

compared to streams in Horse Creek Watershed. GRDA has partnered with other

state agencies and stakeholders to implement nutrient reduction practices for Honey

Creek (Mittelstet et al., 2011). The watershed model in this chapter is simulating the

flow that helps to understand sediment, and nutrient dynamics in the Horse Creek

Watershed using PyHSPF. The simulated watershed model of Horse Creek can help

understand the precursors responsible for HAB formations in Grand Lake.
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Figure 4.2: Tributaries of Grand Lake

4.3 Materials and Methods

4.3.1 Water Quality Monitoring in Horse Creek Watershed

The monitoring system in Horse Creek Watershed involves using MeterGroup CTD

sensor with turbidity sensors to measure water depth (stage), Temperature, Conduc-

tivity, and Temperature. An Arduino based Mayfly board is used to capture the

sensor data at a regular intervals of 15 min during the simulation period. The al-

gorithm to program the Mayfly board is made available in appendix. In addition to

sensors, a solar powered Teledyne ISCO auto-sampler was used to collect refrigerated

samples from Horse creek to measure nutrients including nitrates, dissolved and total

phosphorous. The influence of land use and climatology in the Horse Creek Water-

shed shown in Figure 4.3 can be better understood with a model that simulates runoff
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and land management practices.

Figure 4.3: Horse Creek Watershed

4.3.2 PyHSPF Description and Dependencies

Python is an open-source, interpretative, and high level language for data driven

models. PyHSPF use numeric python (NumPy) that builds FORTRAN to python

connection as explained in the previous literature. The pre-processor class extracts

climate and hydrology information from public datasets. Two input files including

User Control Input (UCI) file and Watershed Data Management (WDM) file estab-
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lishes communication between the modeler and program. The WDM files contain

timeseries information and the UCI files have instructions for the modeler to perform

simulations. The watershed information including hydrography information and land

use data and a HSPF class which are used to generate input and output UCI and

WDM files. The postprocessor and WDMUtil classes take results from watershed

simulations and perform statistical analysis. Also the postprocessor plots can gen-

erate plots using matplotlib dependency. The process flow diagram of performing a

watershed simulation to build a baseline model and calibrate the model is shown in

Figure 4.4

Figure 4.4: Information flow from online sources to calibrated model using PyHSPF
(data tools are shown as boxes)

4.3.3 Hydrology, Hydrography and Land Use Data Extraction and Pro-

cessing

Hourly discharge and gauge stage data has been extracted from the USGS National

Water Information System (NWIS) website. There are two USGS gauge stations in

Horse Creek Watershed such that data from both stations are obtained and processed.

The raw data are downloaded and processed as data-frames that can be used to be

provided as inputs. The Hydrography and elevation data are obtained from National
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Hydrography Dataset Plus (NHDPlus) version 2. The land-use data for Horse Creek

watershed is obtained from Cropland Data Layer (CDL). The Flowline and Catchment

data in NHDPlus are used to describe the stream connectivity which are explained

in detail in Appendix. The land-use categories can be aggregated into several groups

based on user preference. For creating a baseline model, three groups (Agriculture,

Forest, and Developed) are used initially for the Horse Creek Watershed. The model

simulation estimates all the relevant hydrologic parameters based on the input data

provided to the HSPF model including slope, reach length, area, latitude, longitude.

The CDL data for the year 2021 is used to simulate Horse CreekWatershed. Figure 4.5

gives the information about the land use percentages in the Horse Creek Watershed.

Figure 4.5: Land use in Horse Creek Watershed

4.3.4 Climate Data Extraction and Processing

The PyHSPF has classes already that can extract climate information from vari-

ous sources including National Climate Data Center (NCDC) and National Solar
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Radiation Database (NSRDB). New PyHSPF class Mesonet extractor downloads cli-

mate data including Hourly Solar Radiation, Hourly Temperature, Hourly Dewpoint,

Hourly Windspeed, and Hourly Precipitation from Oklahoma Mesonet. The raw cli-

mate data is downloaded from Mesonet site and customized into data structures for

further analysis and processing. For Horse Creek Watershed the MIAMI station of

Mesonet was selected to obtain the climate timeseries data. The missing climate

data from MIAMI station are replaced by the spatially nearest Mesonet station using

Mesonet extractor. In HSPF models, precipitation and Potential Evapotranspiration

(PET) data are required within the watershed. The climate data was used to estimate

the hourly reference Evapotranspiration (ET0) timeseries. The timeseries of ET0 and

the other climate parameters are shown in Figure 4.6.

ET0 is the potential evaporation from small grass and is computed using Penman-

Monteith equation. Ideally estimates of the ET0 combined with daily crop coefficients

generates PET timeseries for each land-use categories within the watershed. The

estimates ET0 highly correlates with the observed pan evaporation data (with r2 =

0.91) as shown in Figure 4.7. Daily reference evapotranspiration data for Horse Creek

Watershed is estimated from January 2000 to December 2021 where estimation from

2020 and 2021 are shown in Figure 4.6

4.3.5 Model Performance and Calibration

The model performance of the watershed model is analyzed using the simulated and

observed flows using the root mean square error (RMSE). The RMSE across the n-day

period is mathematically represented as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Si −Oi)2 (4.1)

where Si is the simulated flow and Oi is the observed flow. The cumulative

observed flow ( 1
n

∑n
i=1Oi) can can be used to represent the variance in the daily
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Figure 4.6: Estimates of reference evapotranspiration using hourly Penman-Monteith
equation

observed flows. The variance in the daily observed flows is as follows:
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Figure 4.7: Linear fit for the estimated vs observed reference evapotranspiration in
Horse Creek Watershed

σ2 =
1

n

n∑
i=1

(Oi −
1

n

n∑
i=1

Oi) (4.2)

The efficiency of the model is assessed using the Nash and Sutcliffe (NSE) model

efficient coefficient. The NSE can be written in terms of RMSE and σ2 as follows:

NSE = 1−
∑n

i=1∑n
i=1

(4.3)
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As σ2 does not depend on the simulation results, a watershed model which mini-

mizes RMSE will maximize the NSE.

4.4 Results and Discussions

The pre-processing steps shown in Figure 4.3 shows the NHDPlus, USGS NWIS, and

CDL data to build a watershed model for Horse Creek Watershed. The cross-sectional

width of the streams are based on EROM model estimates in NHDPlus. Figure 4.8

shows the non-calibrated fit between the observed flow and simulated flow in Horse

Creek Watershed. The storm events captured by the model includes both summer

and non-summer storms in the years 2020 and 2021.

Figure 4.8: Linear fit for the simulated vs observed flows in Horse Creek Watershed
(non-calibrated model)

The storms recorded in year 2020 are from August 15, 2020 through September

4,2020 and from October 26, 2020 through November 07, 2020. In the year 2021,
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the storms recorded are from May 15, 2021 through June 17, 2021 and June 25,

2021 through July 10, 2021. Several low flow periods during winter months are

overestimated due to an absence of snow and ice simulation as shown in Figure 4.9.

Figure 4.9: Horse Creek Watershed HSPF model non-calibrated Hydrograph

Also to understand the statistics of the simulation a mass balance of water was

observed using the postprocessor class of PyHSPF. It was observed that the observed

outflow is more than the simulated flow at the Gage station as shown in Table 4.1

To understand how the flow volume is during summer and winter more statistics

were estimated using the postprocessor. In both summer and winter simulation,

the observed flow is more than the simulated flow as shown in Table 4.2. While

the simulated flow is over predicted compared to the observed flow that one of the

reason might be that the estimated evaporation data used might be higher than the

actual potential evapotranspiration. The potential evpotranspiration of agricultural

land-use in Horse Creek Watershed is shown in Figure 4.10
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Table 4.1: Mass balance on Horse Creek Watershed during the simulation period

Parameter Volume (Mm3)
Initial watershed volume 68
Final watershed volume 66

Total precipitation volume 681
Total simulated evapotranspiration 432

Total simulated outflow 252
Total groundwater recharge 0

Total potential evapotranspiration 554
Total observed outflow 422

Figure 4.10: Potential evapotranspiration of agricultural crops in Horse Creek Wa-
tershed

Table 4.2: HSPF calibration statistics

Parameter Observed Simulated
Total Precipitation (mm/yr)) 1200.5 1200.5

Total runoff (mm/yr)) 743.3 444.8
Total of highest 10 % flows 588.7 204.5
Total of lowest 50 % flows 4.5 57.6
Total storm volume (mm) 514.3 210.1

Average of storm peaks (m3/s 307.3 57.6
Baseflow recession rate 0.923 0.951

Summer flow volume (mm/yr) 233.9 114.5
Winter flow volume (mm/yr) 133.5 83.3

In addition to evapotranspiration, the clay sediment of Grand Lake might not

infiltrate as much water as other soil sediments. Therefore reducing the infiltration

rates will bring the simulated flows close to the observed flows.
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4.5 Conclusions

The simulated watershed model of Horse Creek helps in estimating sediment and nu-

trient fluxes into the Horse Creek cove from upstream in the watershed. Historical

climate data, land-use data with calibrated simulated flows can capture long-term

impacts of land-use and climate change affecting sediment and nutrient dynamics

within the watershed. The flexible and automated approach of PyHSPF can inform

the impact of land use changes associated and climate change on hydrology and water

quality within the watershed. Understanding both the nutrient and sediment dynam-

ics within the Horse Creek Watershed provides significant insights on the reasons for

HAB formation in Grand Lake.
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CHAPTER V

Water Quality Monitoring using Unmanned Systems

5.1 Abstract

Land use changes, climate change are causing rapid changes to both water quantity

and quality. The water quality and ecological status of surface water systems are

judged based on physical sampling or single point in-situ measurements using sen-

sors. Due to rapid changes in surface water quality especially due to formation of

HABs in freshwater ecosystems, dynamic monitoring technologies are of a critical

need. This chapter provides the outcomes of using an unmanned surface vehicle that

is used for collect water quality data in Grand Lake, Oklahoma. From the water

quality data collected, it is possible to map shallow areas of lake to measure algal

pigments including Chlorophyll-a, Phycocyanin and other water quality parameters.

This chapter identifies the opportunities of using unmanned vehicles for applications

to map water quality in inaccessible areas where humans cannot get in contact with

surface water bodies due to the toxic environment especially during Harmful Algal

Blooms.

Keywords: Water quality monitoring, Unmanned surface vehicles, Water quality

mapping, Water quantity

5.2 Introduction

Monitoring HABs is a global concern because of the increase in occurrences of HAB

events due to anthropogenic sources of nutrients and climate change. Nutrient pollu-

tion has raised the growth of algal biomass by 60% compared to previous conditions

73



(Schoumans et al., 2014). The limiting nutrients of HAB formations are often ei-

ther nitrogen or phosphorous. Based on literature and recent research indicates that

phosphorous limits HAB growth during summer and nitrogen limits growth during

spring. A study conducted at Grand Lake reported that phosphorous released from

sediment created nitrogen limiting conditions after thermocline erosion. Therefore

to better understand the HAB formations in Grand Lake a monitoring system was

used to better understand the HAB formations and control strategies at Grand Lake.

It is anticipated that these control strategies can be transferred to other locations.

In addition to nutrient influxes, sediment re-suspension is another important phe-

nomenon that can release resting cysts which causes HABs as shown in Figure 5.1.

Therefore it is important to understand the nutrient sources and sediment dynamics

in coves which are hydrologically isolated during growing season. Apart from HAB

proliferation, increasing concentration of suspended solids in surface water have neg-

ative impacts on navigation and reduce reservoir capacity. Excessive sedimentation

reduces the navigational capacity of surface water bodies and require dredging for

restoring navigable channel depths. Also the presence of suspended solids will in-

crease the cost of drinking water due to excessive energy and material used by water

treatment plants. Aquatic ecosystems and fish habitats are negatively affected by

high concentration of suspended solids in fresh water systems.

Besides suspended solids, heavy metals transported by sediment can increase the

levels of bio-accumulation in aquatic species causing detrimental health effects. Be-

sides toxic hydrophobic organic compounds are released into surface water bodies

which pose an environmental risk. Therefore it is very important to monitor the sur-

face water quality. Finally increase in human interaction with surface water bodies in

conjunction with climate change creates the need to acquire large amounts of data to

understand the highly dynamic aquatic environment paving the way for unmanned

system to collect high resolution datasets.

74



Figure 5.1: Schematic diagram showing the interaction between sediment and water
column

5.3 Materials and Methods

The sensors on board MANUEL include a ping sonar to collect bathymetry data and

a bundled sensor module of YSI EXO-3 sonde. The sensors of EXO-3 sonde have the

capability to collect water quality data at a rate of 1 HZ. All of the sensors on board

MANUEL requires frequent calibration which is explained in detail further:

5.3.1 Ping Sonar Calibration

An open-source GUI, Ping-viewer was used to calibrate the ping sonar. It was

known the speed of sound in fresh and salt water is 1435, and 1500 m/s respec-
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tively (O’Donnell et al., 1981). The ping sonar is calibrated in freshwater and the

speed is set at 1435 m/s because the lakes monitored in Oklahoma are freshwater

lakes. When it comes to error, ping sonar has an error percentage of 0.5.

5.3.2 EXO-3 Sonde Calibration

The sensor bundle in EXO-3 sonde are calibrated separately using the calibration cup.

Before calibration, all the sensors are rinsed with de-ionized water three times and air

dried. The clean, dry sensor probes are placed in the calibration cup for calibration.

The detailed calibration process of each sensor in EXO-3 sonde is as follows:

1. pH Calibration

The pH sensor was 3-point calibrated using three calibration standards. The

calibration standards include pH buffers with pH at 4, 7, and 10. The 3 point

calibration ensures maximum accuracy when the pH of the monitoring media

cannot be anticipated.

2. Conductivity Calibration The conductivity sensor can measure conductivity,

specific conductance, salinity, non-linear function conductivity, Total Dissolved

Solids (TDS), resistivity, and density. Calibration of the conductivity sensor is

available only for specific conductance, conductivity, and salinity. Calibration

of one of the specific conductance or conductivity will calibrate the other pa-

rameters. YSI recommends calibrating specific conductance because of the ease

of use and accuracy. For calibration, a pre-rinsed EXO calibration cup was filled

with a conductivity standard of 1000 µS/cm up to the second marked line. The

air dried probes are inserted into the calibration cup and a calibration standard

of 1000 is entered. After calibration the QC score is checked to make sure that

the calibration is within the factory limits.

3. Temperature Calibration The temperature sensor cannot be calibrated by
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the user based on the information provided by the user manual of YSI. However,

it was mentioned that calibrating conductivity sensor using specific conductance

will calibrate the temperature and conductivity parameters. For testing pur-

poses, the temperature sensor was tested with a thermometer periodically before

deployment in the field. This periodical check is suggested by the YSI as a best

management practice

4. Turbidity Calibration The air dried turbidity sensor is rinsed with 0 FNU

standard 2 to 3 times before calibration. The calibration cup was filled with

0 FNU standard and the sensors are immersed into the calibration cup. The

KOR software is used to enter 0 and calibrate the turbidity sensor. Similarly

using two more calibration standards including 124 FNU and 1010 FNU a three

point calibration is performed. After performing the 3-point calibration, the

turbidity sensor was checked using the QC score to ensure that the sensor is

measuring within the factory limits.

5. Dissolved Oxygen Calibration Based on the YSI recommendation there are

two ways to calibrate the dissolved oxygen sensor. The two ways involve using

either water-saturated air or air-saturated water for calibration. For monitoring

lakes, the DO sensor was calibrated using water-saturated air where the air dried

sensor is placed into the calibration cup about 1/8 inch of water. The calibration

cup to the sonde is not sealed during calibration and there is a wait time of 10 to

15 minutes for temperature and oxygen pressure to reach an equilibrium before

calibration. In the calibration menu, the current barometric pressure in mm

of Hg is entered for DO sensor calibration. Finally the QC score is checked to

ensure that the DO readings are within the factory limits.

6. Total Algae Calibration YSI provides flexibility for users to prepare their

own calibration standards. However, Rhodamine WT is a secondary standard
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that can be used to calibrate the total algae sensors that measures Chlorophyll-

a and Phycocyanin. The concentration of the Rhodamine dye used is 625 µg/L.

As far as the calibration is concerned, a 2-point calibration is performed with

de-ionized water where the the value is set to zero and then with the Rhodamine

dye with know fluorescence value of 66. After calibration the QC score is checked

to ensure that the algal pigment concentrations are within the factory limits.

5.3.3 Data Collection and Processing

An Unmanned surface vehicle (USV) named MANUEL is developed for monitoring

lakes and freshwater bodies. The automation system used in MANUEL is an or-

ange cube Pixhwak flight controller with GPS telemetry feedback. The prototype

is designed to be compact and water resistant which is explained in detail in litera-

ture review section 2.2. The logging system hardware consists of a Teensy 3.6 USB

development board with integrated SD card reader, a Venus GPS module with an

ANT-555 GPS antenna, and a waterproof DS18B20 temperature sensor. MANUEL

is outfitted with a YSI EXO3 Sonde to continuously gather water quality data and

a ping sonar to estimate depth. All the data collected from ping sonar and EXO

sonde are merged using a MATLAB algorithm developed by the Unmanned Systems

Research Institute (USRI). The depth data and water quality data collected by the

sonar and EXO-3 sonde is geo-tagged using the GPS coordinates from Pixhawk. The

depth data is collected with a frequency of 2 HZ and the water quality data is col-

lected with a frequency of 1 HZ. The merged depth and water quality data is read

using open source python extension libraries that can read the way points and plot

them as shown in Figure 5.2
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5.4 Results and Discussions

5.4.1 Bathymetry Mapping

A hydrographic survey of Grand Lake was performed in the year 2009 by Oklahoma

Water Resources Board (OWRB). Using MANUEL, another hydrographic survey was

performed during summer 2020 in Horse Creek Cove to test the capability of the USV

in gaining important insights into sediment accumulation. Following Hydrographic

survey the observed bathymetry at the individual points are linearly interpolated to

create a Digital Elevation Model (DEM) of the bottom of the reservoir as shown in

Figure 5.2.

The linear interpolation between the individual observations of depth is performed

using the scientific python module which is free and open source.

The DEM can be used to find the accumulation of sediment since 2009 until

summer 2020. The lake level used is 226.5 and the LIDAR-based DEM is combined

with the survey results to fill the elevations in the inundated areas as shown in Figure

5.2. Sedimentation is assessed pixel by pixel basis such that the raster grid of LIDAR

is 2 x 2 m. The data from the hydrographic survey are combined with results shown

in Figure 5.2 to estimate the changes in hydrography of the reservoir associated with

sedimentation over the period of 2009 to 2020. The difference in DEM resulted in

estimating sediment deposition of 42,569 m3. This indicates that there is 42,569 m3

loss of storage capacity in Horse Creek Cove due to sediment deposition. The DEM

difference can be observed in Figure 5.3 which shows the excess sediment deposition

and dredging close to the dock areas in the cove.

5.4.2 Water Quality Mapping

In summer 2020, collecting water quality data in Horse creek cove was successful with

MANUEL but no significant HAB development happened. However, there are certain
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Figure 5.2: Hydrographic survey of Horse Creek Cove by USV (top) compared with
previous manual survey from 2009 (bottom)

hot-spots of Chlorophyll-a and Phycocyanin pigments as shown in Figure 5.4

The presence of an algal blooms happening in the Horse Creek Cove can be inter-

preted by using other water quality parameters such as increasing levels of dissolved

oxygen and pH. As the green algal biomass performs photosynthesis in the presence of

sunlight, there is increase in dissolve oxygen concentration. Similarly increase levels

of algal biomass create basic pH during a bloom event. The sampling process was

performed in the afternoon and therefore the temperature was significantly higher
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Figure 5.3: Bottom elevation difference of Horse Creek Cove since the manned hy-
drographic survey of 2009 until summer 2020

than 30 oC. The movement of MANUEL and placement of EXO-3 sonde was placed

strategically such that the water quality data is not affected during rapid data col-

lection. This reliability of data collection was previously explored in Oklahoma State

University (Jdiobe, 2020).

5.4.3 Artifacts in Data

In summer 2021, the focus is to capture a Harmful Algal Bloom (HAB) in Grand Lake.

We were able to monitor the study areas shown in Figure 5.5. To avoid the EXO-3

sonde being dragged on the lake bottom and effectively monitor shallow regions, the
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Figure 5.4: Water quality observations mapped as gridded estimates from summer
sampling of 2020 in Horse Creek Cove

position of the EXO-3 sonde was moved up by 1 feet. This change in sonde position

has created artifacts in the water quality data collection. By revisiting the collected

water quality and plotting, it was found that the choppy water during sampling might

have made the probes lose contact with water surface causing noise in data collection.

Therefore it is very important to keep the position of the sonde at least a foot below

the surface of water for smooth interpolation estimates of water quality especially

algal pigments including Chlorophyll-a and Phycocyanin. Based on further testing of

EXO-3 sonde and data analysis, it was found that the artifacts in the gridded plots

are due to the position of the EXO-3 sonde on-board MANUEL which was supposed
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Figure 5.5: Artifacts in gridded estimates corrected using Scientific python digital
filter

to be deeper and the USV needs to be programmed to collect more data points near

the shores. After diving deeper into data cleaning, the noise in the data has been

reduced using scientific python digital filter. However the resultant interpolation

cannot be considered as the ground truth of algal pigment concentrations during a

HAB outbreak in Grand Lake.

5.4.4 Other Water Quality Parameters

The water quality data collection using the EXO-3 sonde probes barely affected the

interpolation plots of other water quality parameters. Although several artifacts can

be seen in case of mapping algal pigments, water quality parameters including dis-

solved oxygen, temperature, pH, and turbidity are not affected by the sonde position.
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Figure 5.6: Gridded plots of other water quality parameters

This indicates that the dynamic concentrations of algae pigment concentrations that

is needed to be captured with excessive data points which can be mapped and con-

sidered as ground truth. The high resolution in-situ data collected can help in testing

the developed remote sensing tools for model calibration and produce efficient water

quality models.

5.5 Conclusions

The data collected from USV provides the ground truth of water quality in Grand

Lake. The gridded water quality estimates show the capability of USV for rapid data

collection without affecting the reliability of data collection process. The bathymetry

data collected by the USV provides important insights into the sediment accumulation
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from 2009 to 2020 and loss of reservoir capacity. In addition to the water quantity, the

coincident satellite flyovers in conjunction with in-situ data and multispectral aerial

imagery can help in building in-lake water quality models.
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CHAPTER VI

Additional work: Well-to-wake Analysis of Switchgrass to Jet Fuel Via a

Novel Co-fermentation of Sugars and CO2

6.1 Abstract

Lignocellulosic biomass such as switchgrass can be converted to n-butanol using fer-

mentation, which can be further processed into jet fuel. Traditional acetone-butanol-

ethanol (ABE) fermentation only converts sugars derived from switchgrass to ABE.

Novel co-fermentation processes convert sugars and gas (CO2/H2) produced during

fermentation into butanol, thus increasing ABE yields by 15.5% compared to tra-

ditional ABE fermentation. Herein, the environmental impact of a Switchgrass to

Jet Fuel (STJ) pathway was assessed using life cycle assessment (LCA) from well-

to-wake. LCAs were performed for greenhouse gas (GHG) emissions from jet fuel

production via co-fermentation of sugars and gas for ideal and practical cases of ABE

fermentation and seven other jet fuel pathways. The ideal case assumes 100% sugar

recovery and 95% ABE yield. The practical case assumes 90% sugar recovery and an

80% ABE yield. Results are presented based on 100-year global warming potential

(GWP) per MJ of jet fuel. Co-products were allocated using various methods. The

increase in butanol yield via the co-fermentation technology reduced GWP-100 for

the STJ pathway by 6.5% compared to traditional ABE fermentation. Similarly, the

STJ pathway for the practical case with co-fermentation had 14.2%, 47.5%, 73.8%,

44.4% less GWP-100 compared to HRJ, Fischer-Tropsch jet fuel from switchgrass,

Fischer-Tropsch jet fuel from coal, and conventional petroleum jet fuel. The results

demonstrate that the STJ pathway via co-fermentation has the potential to increase
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product yield while reducing GHG emissions compared to other jet fuel production

pathways.

Keywords: Life cycle assessment, Global warming potential, Co-fermentation of sug-

ars and gas, Switchgrass, Jet fuel, Greenhouse gas emissions.

6.2 Introduction

Jet fuel consumption in the USA was 3 trillion MJ in 2015 and is projected to in-

crease by 40% in 2040 (Conti et al., 2016). Fossil-based jet fuel consumption releases

greenhouse gases (GHGs) that contribute to climate change (Barbir et al., 1990).

In 2005, aviation fuel usage contributed 1.6% of the total anthropogenic radiative

forcing in the atmosphere (Scheelhaase et al., 2018). Aviation accounted for 12% of

US transportation energy in 2019, and renewable feedstocks such as lignocellulosic

biomass (LB) are expected to make up an increased share of jet fuels in the future

(Administration, 2019). Soybeans currently provide most of the feedstock for bio-

based jet fuels, but soy production is unlikely to meet future demands for liquid fuels

(Scaldaferri and Pasa, 2019; Staples et al., 2014; Zarchin et al., 2015). To meet grow-

ing demands and increase sustainability, alternative jet fuel production pathways are

needed.

LB like switchgrass provides a potentially more renewable source of carbon and

energy to produce jet fuel (Budsberg et al., 2016). Switchgrass is a perennial warm-

season crop that has the potential to produce biofuels at a commercial scale with en-

hanced environmental benefits while potentially avoiding land use change (McLaugh-

lin and Kszos, 2005; Sanderson et al., 2006; Sokhansanj et al., 2009). Switchgrass can

be grown on marginal land in the US using dryland farming techniques, where it is

expected to have limited effects on food supplies (Arima et al., 2011; Fischer et al.,

2010; Graham-Rowe, 2011; Moriarty et al., 2018; Tang et al., 2010; Valentine et al.,

2012; Varvel et al., 2008). LB can be used to generate butanol, which can then be
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readily converted into jet fuel. Butanol can be produced using traditional acetone-

butanol-ethanol (ABE) fermentation of LB including switchgrass, crop stubble, and

wood/forest residue, but the conversion efficiencies from these feedstocks are limited

(Ezeji et al., 2007; Liu et al., 2015a; Ni and Sun, 2009; Sauer, 2016). A new process

has been developed that uses co-fermentation of sugars and off-gases (CO2/H2) to

increase ABE yields from LB, which improves commercial process viability and pro-

vides potential environmental benefits (Atiyeh, 2021)). To assess the environmental

benefits of this novel switchgrass to jet fuel (STJ) pathway, a life cycle assessment

(LCA) of the GHG emissions is required.

Conventional and emerging pathways to produce jet fuel include corn to jet (CTJ),

Fischer-Tropsch jet fuel (FTJ) from LB and coal, hydro processed renewable jet fuel

(HRJ) from oils of algae, palm, jatropha, soybean, rapeseed, camelina and conven-

tional petroleum jet fuel (CPJ) (Enright, 2011; Liu et al., 2015a,b). Many of these

alternative pathways have been investigated using LCA (Bailis and Baka, 2010; Cox

et al., 2014; Elgowainy et al., 2012; Han et al., 2013a; Shonnard et al., 2010; Staples

et al., 2014; Stratton et al., 2011). However, there are no previous LCA studies for

the proposed switchgrass to jet fuel (STJ) pathway.

The goal of this study was to estimate the life cycle GHG emissions from the STJ

pathway using the material and energy inputs and compare it with other alternative

pathways. Data used to assess the jet fuel pathways were obtained from recent lab-

oratory studies, literature and Greenhouse gases, Regulated Emissions, and Energy

Use in Transportation (GREET) model. The novel STJ pathway via co-fermentation

was compared with STJ via traditional ABE and other well-characterized pathways,

including CTJ via ABE fermentation, HRJ from soybean oil, FTJ from coal, FTJ

from LB, and CPJ from crude oil. A sensitivity analysis was performed to examine

the effects of ABE yield, conversion technologies, and other key assumptions for the

STJ pathway via the co-fermentation route.
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6.3 Methods

6.3.1 Goal, Scope, and Assumptions

LCA analysis was conducted as per ISO 14044 guidelines. The life cycle emissions and

associated global warming potential (GWP) for the new STJ pathway were compared

with other conventional and emerging alternatives. For the STJ pathway, both a

“practical” and an “ideal” case were considered. The practical case assumes 90%

sugar yield from hydrolysis and 80% yield from ABE fermentation (Gao et al., 2014;

Liu et al., 2015a,b; Sun et al., 2020). The ideal case assumes 100% sugar and 95% ABE

of theoretical yields based on stoichiometry. The functional unit used for the analysis

was 1 MJ of jet fuel, since the combustion efficiency was assumed to be similar for

all the target fuels. All results were presented and compared using 100-year Global

Warming Potential (GWP-100) expressed as CO2 equivalent (CO2e) based on the

data obtained from the 5th Assessment Report of the Intergovernmental Panel on

Climate Change (IPCC) (IPCC, 2014).

6.3.2 System Boundary

The LCA encompasses processes from well-to-wake (WTWa), including feedstock

production, conversion, and fuel combustion. Jet fuel production pathways evaluated

include STJ (via co-fermentation and traditional ABE fermentation), CTJ (biochem-

ical pathway), FTJ (coal and switchgrass gasification) pathway, hydro-processed re-

newable jet HRJ (soybean bio-oil) pathway, and CPJ from crude oil. The system

boundary of biofuel pathways (STJ, CTJ, and HRJ) includes farming, conversion,

and combustion (Figure 6.1). These pathways generate many co-products such as

electricity, acetone, ethanol, distiller’s dried grains with solubles (DDGS), gasoline,

diesel, soybean meal, propane, and naphtha that require allocation. The alternative

jet fuel pathways have been analyzed previously, including the effects of different co-
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product allocation methods except for the new STJ pathway (Alves et al., 2017; Han

et al., 2013b; Pierobon et al., 2018; Wang et al., 2011).

Major inputs and emissions from the STJ pathway were analyzed in detail as

shown in Figure 6.2. The life cycle for STJ pathway begins with the manufacturing

of fertilizers. Fertilizer production requires energy, which was assumed to come from

natural gas (NG). Switchgrass farming generates N2O emissions due to the nitrogen

fertilizer application. Although it is not shown in the system boundary, CO2 emissions

from farm equipment and other indirect emissions for these processes were accounted

for based on data from the GREET model. The switchgrass pretreatment-hydrolysis

step to generate sugars requires NG, electricity, sulfuric acid, ammonia, and cellulase,

which generates CO2 emissions. In the pretreatment-hydrolysis step, lignin, being a

valuable co-product, was assumed to be combusted to produce electricity. Lignin

separated from the cellulose during pretreatment was assumed to be combusted to

generate stream used in the distillation step, which displaces energy and reduces GHG

emissions. Sugars from switchgrass and H2 and CO2 generated during fermentation

were co-fermented to an ABE mixture using microorganisms. CO2 emissions from

co-fermentation are generated from excess gases not used in the process. Additional

emissions from energy inputs for the fermentation process are generated from the

usage of natural gas for heating and electricity mixing. Distillation was assumed to

separate butanol from the ABE mixture, which consumes NG and produces CO2.

Finally, butanol was considered to be converted to jet fuel using a chemical catalytic

process. Finally, the produced jet fuel is assumed to be combusted in a Boeing-

747-400 aircraft. Estimates of the material and energy requirements for the steps in

the full-scale conversion process were based on an Aspen Plus simulation of a corn

ABE refinery (Wu et al., 2007). The “well-to-product” GHG emissions for resources

available in GREET were then used to estimate emissions from production of most

inputs used in each of the pathways as described below. Emissions from preparation
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and handling of microbes used in the ABE fermentation were assumed to be small

compared to other units in the system boundary and were excluded from the analysis

(Dunn et al., 2015).

Figure 6.1: System boundary of jet fuel production pathways.

Emissions from the construction of infrastructure were assumed to be similar for

each pathway and relatively small compared to emissions from the fuel cycle (Lucas

et al., 2012), so they were excluded from the analysis. LB was assumed to come

from marginal lands that do not directly affect food supplies (Gopalakrishnan et al.,

2011; Tang et al., 2010). The effects of temporary sequestration and releases of car-

bon associated with growing biomass feedstocks were assumed to be in a steady-state

condition, and were not considered; i.e., CO2 pulled from the atmosphere during

feedstock production was assumed to be instantaneously released during fuel com-

bustion despite the actual time lag between these two events. A brief assessment

91



of the importance of direct land use change on life cycle emissions was performed

for the STJ pathway, since direct land use changes can have an important effect of

increased bioenergy production. The impacts of indirect land use change were con-

sidered beyond the scope of this analysis. The estimation of carbon sequestration

is difficult for bio-energy crops because of variability of many factors such as soil

types, land management practices (Post and Kwon, 2000; McLaughlin and Walsh,

1998). In addition, the application of nitrogen fertilizers to improve crop yields im-

pact the carbon sequestered in soil, which varies with farming locations (Schuman

et al., 2002). Information on the time the bio-energy crops take to establish and

attain equilibrium or how much carbon can be sequestered is debatable and hypo-

thetical (Vaughan et al., 2018). Therefore, carbon sequestration in bio-energy crops

used was beyond the scope of this analysis. Further research is required to thoroughly

investigate carbon sequestration in lignocellulosic biomass.

6.4 Data Collection and Inventory Analysis

6.4.1 Agricultural Inputs

Data used to estimate the emissions from fertilizer production, herbicide, and diesel

used during switchgrass farming are shown in Table 6.1. Fertilizers used in switchgrass

farming include nitrogen (N), phosphorus (P2O5), and potassium (K2O). N inputs

and life cycle emissions were assumed to be the US average nitrogen mix in GREET

(Plevin, 2009). P2O5 was assumed to come from mono-ammonium and diammonium

phosphate mix derived from phosphorous mining (Johnson et al., 2013). K2O was

assumed to be produced from potassium mining operations (Wang et al., 1999). Apart

from fertilizers, other agricultural inputs such as lime, herbicides, and high-density

polyethylene were included in the estimation of emissions, consistent with the GREET

model (Cai et al., 2016).
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6.4.2 Switchgrass Farming

Switchgrass can be grown in various geographical, climatic conditions as different

varieties adapt to changing weather conditions in different seasons (Guretzky et al.,

2011). Most of the southern lowland ecotypes of switchgrass include Alamo, Kanlow,

Blackwell, and Caddo (Lemus et al., 2002). Alamo switchgrass was assumed to be the

feedstock for the STJ pathway from various locations in the USA. Alamo switchgrass

has a one- or two-year establishment period after planting where no fertilizer is added

after seeding due to the potential growth of weeds (Parrish and Fike, 2005). After

the establishment year or first cutting, the stand life of switchgrass is at least ten

years (Fike et al., 2006). Based on these assumptions, the yield of switchgrass was

assumed to be 4.9 dry tons/acre based on the 10-year life cycle (Dunn et al., 2012).

Irrigation of switchgrass is needed in dry months when precipitation is much lower

than evapotranspiration (Giannoulis et al., 2016). In the current LCA, emissions from

energy use in irrigation were not accounted because switchgrass was assumed to come

from rain-fed Conservation Reserve Program (CRP) lands of southern, southeast, and

Midwestern USA (Elgowainy et al., 2014).

The co-fermentation of sugars and gases requires 348 g and 247 g of switchgrass

in practical and ideal cases, respectively, to produce 1 MJ of jet fuel. Similarly, the

switchgrass requirement was 402 g and 288 g of from the traditional ABE fermentation

process to produce 1 MJ of jet fuel. The feedstock requirement for both traditional

and co-fermentation technology routes to produce 1 MJ of jet fuel was estimated

based on the stoichiometry of ABE produced from sugars (including both glucose

and xylose). Usage of fertilizers and diesel generates N2O and CO2 emissions in the

farming process (Cai et al., 2016).
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Figure 6.2: Major process inputs and emissions for the switchgrass to jet fuel pathway

N2O emissions were estimated from nitrogen input, assuming 1.2% of the applied

N was converted to N2O (Wang et al., 2012). The nitrogen fertilizer and diesel fuel

requirements to produce 1 MJ of jet fuel under various STJ assumptions are shown in

Table 6.1. Co-fermentation decreases fertilizer and diesel requirement per unit output

by improving ABE yields.

6.4.3 Dilute Acid Pretreatment and Hydrolysis

After switchgrass is harvested, it is assumed to be pretreated with sulfuric acid fol-

lowed by hydrolysis with enzymes to break down the feedstock into sugars, including

glucose and some xylose. A metric ton of switchgrass can produce 690 kg and 620 kg

of sugars for the ideal case (Dunn et al., 2015).
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Table 6.1: Resources requirements and associated GWP-100 to produce 1 MJ of jet
fuel via the STJ pathway with co-fermentation
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For traditional ABE fermentation and co-fermentation processes in the ideal case,

it was assumed that 95% of the sugars (glucose and xylose) produced from switch-

grass were converted to ABE. In the practical case, the assumption of a 10% sugar

loss was based on previous literature (Liu et al., 2015a,b; Sun et al., 2020). Sugars

are lost during pretreatment and hydrolysis when enzymatic process slows near equi-

librium. Generating 1 MJ of jet fuel using the co-fermentation process in the STJ

pathway requires 216 g and 170 g of sugars in the practical and ideal cases, respec-

tively. The fermented sugars generate H2 and CO2 that are converted to butanol by

gas fermenting microorganisms (Atiyeh, 2021). However, 250 g and 200 g of sugars

are needed in the practical and ideal cases with the traditional ABE fermentation

route for 1 MJ of jet fuel, which are estimated based on the data from literature and

proposed stoichiometry in Section 2.3.4 (Dunn et al., 2015). The inputs for switch-

grass pretreatment and hydrolysis include NG, electricity, ammonia, cellulase, and

sulfuric acid, as shown in Table 6.1. Emissions from NG and electricity production

were based on US averages from GREET (Cai et al., 2012; Clark et al., 2012). Elec-

tricity is consumed for pumping and mixing and produced from lignin combustion

in the pretreatment process. Since the electricity production from lignin combustion

substantially exceeds the process requirements, the excess was assumed to displace

emissions from U.S average electricity. Apart from energy inputs, ammonia was added

to the pretreated slurry to raise the pH from 1 to 6 for enzymatic hydrolysis (Humbird

et al., 2011). Emissions from ammonia production are important from the life cycle

perspective because it contributes to most of the emissions in the pretreatment and

hydrolysis. Emissions from ammonia production, in the pretreatment and hydrolysis

are based on the average nitrogen fertilizer produced in the United States (Johnson

et al., 2013). Cellulase is an enzyme used to break the cellulose into sugars. The

emissions from cellulase production were estimated from previous studies (Schneider

et al., 2018; Wang et al., 2012). Sulfuric acid is required for dilute acid pretreatment
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(DAP). Emissions for sulfuric acid production, which is a co-product of petroleum

refining, were taken from GREET (Dunn et al., 2015; Lampert et al., 2015).

6.4.4 Co-fermentation of Sugars and Gas

Sugars released during pretreatment and hydrolysis are converted to ABE through

evaporation, fermentation and gas stripping. In the fermentation step, both sugars

and gas (H2, CO2) are co-fermented to produce the ABE mixture. The efficiency of

the ABE fermentation process was assumed to be at 80% and 95% in the practical

and ideal cases, respectively, based on previous literature (Sun et al., 2020). Yields

of 0.321 g ABE/g sugar in the practical case and 0.374 g ABE/g sugar in the ideal

case were estimated for the co-fermentation process based on the stoichiometry in

Equations 6.1 and 6.2. However, traditional ABE fermentation yields only 0.278

g ABE/g sugar and 0.321 g ABE/g sugar for both the practical and ideal cases,

respectively, based on Equation 6.1. This result is close to previous estimates for

ABE fermentation yields (Kumar et al., 2012; Qureshi et al., 2010). The molar ratio

of acetone: butanol: ethanol is 3:6:1, as reported by many researchers (Baral et al.,

2016; De Jong and Kersten, 2013). However, the molar ratio of acetone: butanol:

ethanol for the co-fermentation process increases to 3:7.3:1 by utilizing the off gases

as shown in Equation 6.2.

69C6H12O6 → 36C4H10O + 18C3H6O + 6C2H4O2 + 12C2H4O2+

6C4H8O2 +H2O + 156CO2 + 108H2

(6.1)

108H2 + 36CO2 → 9C4H10O + 36H2O (6.2)

The co-fermentation process requires additional energy for heating and mixing,

which leads to additional indirect emissions. The fuel requirements and emissions for
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the fermentation steps were assumed to be similar to those for a corn ABE biorefinery,

which has previously been analyzed using an ASPEN Plus model (Wu et al., 2007).

Data for these requirements were taken from the corn ABE analysis and GREET as

shown in Table 6.1 (Atiyeh, 2021; Wu et al., 2007).

6.4.5 Distillation, Jet Fuel Conversion, and Combustion

The ABE mixture produced from fermentation is separated using distillation. The

main product, butanol, can be subsequently converted to jet fuel (Figure 6.2). The

acetone and ethanol are valuable co-products requiring allocation. Butanol is con-

verted to jet fuel by a series of steps that involve dehydration using silane-modified-

γ-alumina catalyst, oligomerization with Ziegler-Natta catalyst, and hydrogenation

(Wang and Tao, 2016). GHG emissions for the fuels used in distillation are shown

in Table 6.1, based on a previous study that included heat recovery (Baral et al.,

2016). The butanol to jet fuel conversion step requires external H2 gas, a ZSM-5 cat-

alyst, and electricity (Harvey and Meylemans, 2011). Conversion requires external

H2, electricity, and ZSM-5 zeolite, leading to indirect GHG emissions as shown in

Table 6.1. Finally, the emissions from the combustion of 1 MJ of jet fuel are based on

a consumption rate of 11.7 L/km (5 gal/mile) in a Boeing 747-400 (Park and O’Kelly,

2014). The Boeing 747-400 was selected because it has been used with traditional

petroleum jet fuel and with several emerging biofuels (Marsh, 2008; Mazlan et al.,

2015; Rahmes et al., 2009). Virgin Atlantic has been running their firm flights with

one engine on low carbon jet fuel manufactured from industrial wastes (Brooks et al.,

2016b). Also, Air New Zealand has been flying Boeing 747-400 on a jatropha-derived

HRJ with (50%) on one engine and kerosene-type fuel on the other (50%). KLM has

also been flying with a blend of 50% FTJ and 50% conventional jet fuel in Boeing

747-400 (Johansson et al., 2012).
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6.4.6 Life Cycle GHG Emissions from Other Jet Fuel Pathways

The GWP-100 of conventional and other emerging jet fuel pathways including CPJ,

CTJ, HRJ, and FTJ were compiled to assess the potential impact of the new STJ

pathway. Results from previous analyses compiled within GREET were used in each

case, but with slight modifications for consistency with the assumptions and system

boundaries used for the STJ pathway in this study. The estimates of GHG emissions

for CPJ were based on energy consumption in jet fuel refined from crude oil using

data from 43 refineries representing 70% of the U.S. refining sources Elgowainy et al.

(2014), For the CTJ pathway, the GHG emissions were estimated from a previous

study on ABE fermentationWu et al. (2007) with an assumption that the corn butanol

to jet fuel conversion and combustion steps were similar to STJ pathway. For the HRJ

pathway, estimated GWP-100 were based on a previous analysis of various alternative

aviation fuels, including various bio-based oil feedstocks (Elgowainy et al., 2012). For

FTJ, both coal and switchgrass, were considered as feedstocks using results from

previous analysis (Xie et al., 2011). A detailed description of the assumptions used

to estimate the life cycle emissions from the CPJ, CTJ, HRJ, and FTJ pathways is

provided in the supplemental data file.

6.4.7 Co-product Allocation

Co-product handling and assumptions about biogenic carbon are important factors

when estimating GHG emissions from bioenergy pathways. The biogenic jet fuel

pathways (STJ, CTJ, and HRJ) generate many co-products in the conversion step,

such as alcohols and fuel products (Figure 6.1) that require allocation of the GHG

emission burden. Co-product allocation methods used include displacement, energy

allocation, mass allocation, and market value allocation. In the STJ pathway, there

are five co-products (electricity, acetone, ethanol, gasoline, and diesel), as shown in

Figure 6.1. The CTJ pathway has ethanol, acetone, and DDGS as co-products in
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the distillation and gasoline blendstock and low-sulfur diesel in the final butanol to

jet fuel conversion step. Co-products in the HRJ pathway include soy meal, which

displaces soybeans as an animal feed (Knudsen, 1997), and propane and naphtha

produced during conversion.

6.4.8 Inventory Analysis and Impact Assessment

Data from laboratory studies, GREET, and other literature described above were

compiled into a Microsoft Excel spreadsheet that was used to estimate life cycle GWP-

100 for the various pathways. CO2e emissions were summed for all unit processes,

excluding biogenic CO2, and co-products were allocated using a variety of methods

to estimate GWP-100 for the entire pathway. For HRJ, the estimated GWP-100 from

a previous report were used (Elgowainy et al., 2012). Emissions estimates for FTJ

pathways were taken from previous research (Elgowainy et al., 2012; Xie et al., 2011).

GWP-100 for CPJ were taken from previous studies (Elgowainy et al., 2012; Xie et al.,

2011). For each pathway, biogenic carbon, co-product allocation, and emissions from

fuel combustion were handled consistently with the approach used for the goal and

scope of the STJ pathway.

6.5 Results and Discussion

6.5.1 Emissions in STJ Pathway

The various jet fuel production pathways were quantitatively assessed and compared

based on the GWP-100 from well-to-wake (WTWa) as summarized in Table 6.2 and

Table 6.3. The STJ pathway includes farming, hydrolysis, evaporation, fermentation,

gas stripping, separation, distillation, and combustion. This pathway was analyzed

for four different alternative assumptions: with and without co-fermentation of the

off-gases for both the theoretical and practical cases.GWP-100 from WTWa is often

divided from well to pump (WTP) and pump to wake (PTW) (Bicer and Dincer,
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2017). For biogenic sources of carbon, the PTW emissions were neglected as per

standard LCA practices, and because no credit was provided for removal of CO2 from

the atmosphere during feedstock production (Finkbeiner, 2014; de Normalización,

2006; Wu et al., 2015). The GWP-100 of different unit processes for the STJ pathway

via the co-fermentation route for the practical and ideal cases are illustrated in Figure

6.3 and Figure B.8 in the supplementary data, respectively. The STJ pathway begins

with switchgrass farming, which requires agricultural chemicals that contribute to

9.3% of the WTP GWP-100 as illustrated in Figure 6.3. Fertilizer production and

usage were the third-largest contributors to the total GWP-100 in the STJ pathway.

Most of these emissions come from nitrogen fertilizer usage while farming. GWP-100

contributions from switchgrass farming were 3.5% for WTP, primarily from diesel and

electricity usage. Agricultural chemicals contribute to 5.8% of GWP-100, significantly

more than the farm equipment, which illustrates the importance of improved nitrogen

fertilizer management for biofuel sustainability

Table 6.2: Pre-allocated GWP-100 (g CO2e/MJ) in bio-jet fuel production pathways
from WTP

Processes STJ (co-
fermentation)
practical case)a

STJ(co-
fermentation)
ideal case) b

CTJ
(practical
case)c

CTJ
(ideal case)d

HRJ

Farming 23.6 16.8 30.1 25.1 51.4
Feedstock to
jet fuel
conversion

138.8 115.5 67.0 65.8 67.3

Combustion 74.3 74.3 74.3 74.3 74.3

Pretreatment and hydrolysis are the largest contributors to GWP- 100 in the STJ

pathway as shown in Figure 6.3. The majority of emissions in pretreatment and

hydrolysis result from the combustion of natural gas and ammonia input. Additional

significant sources of emissions include natural gas for evaporation, co-fermentation

and gas stripping. The emissions from co-fermentation step represents the excess CO2

not used to produce ABE with the H2 gas. The co-fermentation process contributes
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only 1.0% of the total GWP-100 from WTP, which is the lowest CO2 contributor

in the STJ pathway. Traditional ABE fermentation contributes to 16.8% more CO2

emissions than co-fermentation. More importantly, the new process improves yields,

which saves emissions from upstream processes in the supply chain.

Figure 6.3: WTP and WTWa emissions from processes in the STJ pathway with
co-fermentation

The ABE separation is energy-intensive and represents the second largest contri-

bution to GWP-100 at 12.4% from as shown in Figure 6.3. The butanol to jet fuel

conversion step contributes 7.4% of WTP GWP-100, since a significant amount of

external H2 fuel is required to reduce the butanol to hydrocarbons. The WTP GWP-

100 breakdown for the STJ pathway shown in Figure 6.3 illustrates that most of the

emissions result from fuel usage for switchgrass hydrolysis pretreatment, distillation,

and fertilizer production. Therefore, future research should investigate approaches to

reduce the energy intensity of these processes. Moreover, estimations of the emissions

for all the notable alternative jet fuel production pathways compared in the current

study are provided in Sections 6.5.7, 6.5.8 and and Table B.14 in the supplementary

document.

102



Table 6.3: GWP-100 (g CO2e/MJ) or STJ, CTJ, and HRJ pathways with energy
allocation method
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6.5.2 Sensitivity of Results to Switchgrass Yield and Nitrogen Fertilizer

Application

Soil properties, weather patterns, nutrient availability in different geographical loca-

tions affect switchgrass yields, which have important impacts on the STJ life cycle

(Bradford et al., 2006; Wullschleger et al., 2010). Spatial variability in switchgrass

yield and nitrogen fertilizer application was used to assess the impacts of farming on

the STJ pathway life cycle emissions for the practical case as shown in Figure 6.4. A

similar comparison plot affecting GWP-100 of STJ pathway (ideal case) by different

farming techniques across these regions were shown in Figure B.11 in the supple-

mentary data. Quantities of applied nitrogen fertilizer and switchgrass yields were

obtained from previous studies (De et al., 2003; Epplin, 1996; Hallam et al., 2001;

Khanna et al., 2008; Turhollow, 2000). These data were used to assess GWP-100

variability across various regions of the United States, including Oklahoma, the Corn

Belt, Maryland, Iowa, and Illinois. Data representing the Corn Belt include an aver-

age of switchgrass yields across Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan,

Minnesota, Missouri, Nebraska, North Dakota, South Dakota, Ohio, and Wisconsin.

Life cycle emissions were estimated during the establishment year and after the

first cut which were compared on the weight (kg) basis of switchgrass harvested.

Even without the application of nitrogen fertilizer, there was significant variation

in the biomass yield in the establishment year, as illustrated in Figure 6.4. Native

nitrogen available in the soil can affect the biomass yield in the establishment year

(Owens et al., 2013). From Figure 6.4, Oklahoma has the highest switchgrass yield at

2.3 metric ton/acre, while Iowa has a comparatively low yield of 1.1 metric ton/acre in

establishment year. After the first year of establishment, nitrogen fertilizer is applied

to improve the yield of switchgrass. Illinois and Iowa have relatively high annual

nitrogen fertilizer requirements of 17.8 and 13.6 g/kg of switchgrass, respectively,

and comparatively low yields of 2.6 and 4.2 metric ton/acre (Khanna et al., 2008;
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Figure 6.4: WTP and WTWa emissions from processes in the STJ pathway with
co-fermentation

Hallam et al., 2001) as shown in Figure 6.4. Illinois and Iowa switchgrass have high

GWP-100 emissions from fertilizer application after establishment, while the Corn

Belt has comparatively low GWP-100 emissions, as illustrated in Figure 6.4. These

results demonstrate the importance of controlling nitrogen fertilizer applications to

reduce GHG emissions in STJ pathways. As shown in Figure 6.4, cofermentation

reduces the life cycle emissions by 19.5% in Illinois and 19.7% in Iowa, respectively,

which demonstrates the significance of the co-fermentation technology on the life cycle

emissions.

6.5.3 Effects of Process Technology Selection on STJ Pathway

There are multiple alternatives for some of these processes in the STJ pathway, as

explained in Section 6.3.2. Figure 6.3 shows that pretreatmenthydrolysis and dis-
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tillation technologies contributed the most to the GWP-100 for this pathway. The

effects of alternative assumptions for some of the most significant unit processes on

the GWP-100 were assessed. CO2e emissions were estimated for the STJ pathway

prior to co-product allocation for both the ideal and practical cases. As shown in Fig-

ure 6.5, the STJ pathway via the co-fermentation route has unit processes including

farming, DAP, co-fermentation, distillation (heat recovery), butanol to jet fuel con-

version, and jet combustion. DAP is a leading pretreatment technology to produce

fermentable sugars (Chandra et al., 2007; Wyman et al., 2009; Yang and Wyman,

2008). As an alternative, ammonia fiber expansion (AFEX) can also be used to pre-

treat switchgrass, enabling cellulase to break the biomass into sugars. AFEX can

reduce the CO2e from WTWa in both the practical and ideal cases by 12.9% and

5.2% compared to DAP in STJ pathways via co-fermentation (Dunn et al., 2015).

Distillation is used to separate ABE, and it can be performed with or without heat

recovery. Distillation with heat recovery was used to estimate GWP-100 for the STJ

pathway. Recovering heat in distillation reduces the GWP-100 by 7.5% and 7.8% in

the practical and ideal cases, respectively. In addition, the CO2e emissions for both

the practical and ideal cases of the STJ pathway with co-fermentation are reduced

by 12.3% and 6.2%, respectively, versus traditional ABE fermentation due to its low

ABE yield

6.5.4 Impacts of Co-product Handling

The biofuel pathways of STJ, CTJ, and HRJ generate multiple coproducts, including

acetone, ethanol, DDGS, soybean meal, gasoline blendstock, and low-sulfur diesel.

Allocation of GHG emissions to these co-products plays a significant role in the es-

timation of GWP-100. Four co-product allocation methods (energy, mass, market

value allocation, and displacement) were used in the biofuel production pathways of

STJ, CTJ, and HRJ. Displacement or system boundary expansion was chosen to allo-
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Figure 6.5: CO2e emissions variability based on different unit processes in STJ path-
ways (practical and ideal cases); STJ (traditional ABE) unit processes include DAP,
traditional ABE fermentation, distillation (heat recovery); STJ (co-fermentation) unit
processes include DAP, co-fermentation, distillation (heat recovery); STJ (AFEX pre-
treated) unit processes include AFEX, co-fermentation, distillation (heat recovery);
STJ (traditional distillation) unit processes include DAP, co-fermentation, distillation
(without heat recovery)
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cate emission burdens to co-produced electricity in each case, since it is the preferred

method when possible (Iso, 2006). Electricity produced during lignin combustion

was assumed to displace U.S. average emissions in four allocation methods in the

STJ pathway. Allocation of all co-products in the STJ (practical case), CTJ (80%

ABE),and HRJ pathways with various approaches are illustrated in Figure 6.6. Sim-

ilarly, co-product allocation of ideal cases for the STJ and CTJ pathways are shown

in Figure B.12 in the supplementary data. The non-electricity co-products receive

only a small allocation compared to electricity (< 20%), but they are significant on

the STJ life cycle. The most notable co-product allocations are given to ethanol

and acetone, as shown in Figure 6.6. The carbon in the switchgrass LB is biogenic

(taken from the atmosphere), so a credit of 74.3 g/CO2e/MJ is provided to life cycle

emissions to get the final GWP-100 value for the STJ pathway, as shown in Table

6.3. There are at least 24 potential ways of allocating emissions to the co-products

in the STJ pathways that were considered (mass, energy, and market basis for each

co-product). The GPW-100 for the STJ, CTJ, and HRJ pathways with energy, mass,

and market allocations are shown in Figure 6.6. Out of all the allocation scenarios,

market value allocation has the least contribution to GWP-100 at 43.1% and 31.9%

less than the energy and mass allocations. Since jet fuel and the co-products are all

combustible and potential energy sources, the energy allocation approach was selected

for final GWP-100 comparison with other jet fuel pathways. Similarly, the co-product

allocation for both the ideal and practical cases of CTJ pathways are shown in Fig-

ure 6.6 and Figure B.12. In the CTJ pathways, the energy, mass, and market basis

were used to allocate emissions between five co-products including ethanol, acetone,

DDGS, gasoline blendstock, and low-sulfur diesel. System boundary expansion was

not possible for these co-products, since there is no substitute product with life cycle

emissions data readily available. As in the STJ pathway, the market allocation pro-

vides the least burden to the jet fuel (22.1%) for the CTJ pathways, since the price of
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both acetone and DDGS are relatively high compared to other co-products. For the

CTJ pathways, corn grain does not co-produce electricity, whereas corn stover does

(Wang et al., 2009b). The allocation of emissions to different co-products is shown

in Table 6.3

Figure 6.6: Co-product allocation methods in biofuel pathways
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In the case of HRJ, the jet fuel conversion step from soy oil generates multiple

co-products including propane and naphtha. The GREET default method (energy

allocation) was used to estimate the GWP-100 of the HRJ pathway. All allocation

scenarios shown in Figure 6.6 and Figure B.12 for HRJ pathway were assessed using

GREET. During allocation, soymeal displaces most of the life cycle emissions, making

it an essential co-product in the HRJ pathway. The allocation method therefore

has a significant effect for this pathway. Energy allocation was used to compare

the STJ pathway with other potential jet fuel production pathways, since most of

the products can be used as fuels. Since market prices are not stable, the market

allocation approach is subject to changes in the future, unlike the energy basis. Figure

6.6 shows that co-product allocation plays an important role in assessing the GWP-

100 when alternative jet fuel production pathways are compared

6.5.5 Sensitivity Analysis of GWP-100 in STJ Pathway

A sensitivity analysis was conducted to examine the importance of the ABE yield on

GWP-100 from both the traditional ABE and the ABE with co-fermentation for the

STJ pathway practical case. Assumptions that significantly affect the GWP-100 by

changing ABE yields are shown in Figure 6.7. The co-fermentation ABE yield was

changed from the base values of 0.321 g ABE/g sugars by ±20% to assess effects of

yield on the life cycle. Other assumptions affecting the life cycle emissions by more

than 1% for the traditional ABE process with a base yield of 0.278 g ABE/g sugars

are illustrated in Figure 6.7. Changes in input assumptions that modified the life

cycle GWP-100 by more than 3% from the baseline of 48.3 g CO2e/MJ of jet fuel for

the co-fermentation pathway and 51.7 g CO2e/MJ of jet fuel for traditional ABE were

determined. For pretreatment and hydrolysis, the sensitivity of results to the NG,

electricity, ammonia, and enzyme requirements were analyzed. As shown in Figure

6.7, the NG requirement for hydrolysis for sugar is the most significant contributor to

110



the life cycle GWP-100. NG combustion during distillation is the second most energy-

intensive process in the STJ pathway via both co-fermentation and traditional ABE

routes.

Figure 6.7: GWP-100 sensitivity to ±20% changes in ABE yield for the STJ practical
case with both co-fermentation and traditional ABE routes. The GWP-100 for a base
yield of 0.321 g ABE/g sugars for STJ with co-fermentation was 48.3 g CO2e/MJ of
jet fuel, while the emissions from a base yield of 0.278 g ABE/g sugars for STJ via
traditional ABE was 51.7 g CO2e/MJ of jet fuel

After the NG requirements, the ammonia requirement for sugars hydrolysis is the

most significant contributor of GWP-100. The ammonia requirements for farming

also contribute significantly to the GWP-100 of the STJ pathway, as shown in Table

6.1. In addition to emissions from production of ammonia, N2O emissions generated

during farming contribute significantly to life cycle GHG emissions for the STJ path-

way via both cofermentation and traditional ABE routes. Based on the results from
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the sensitivity analysis, NG and ammonia inputs alter the life cycle GWP-100 most

significantly, and therefore strategies to reduce emissions from these aspects of the

process should be explored in more detail. The NG requirements for sugar produc-

tion and distillation steps are the most sensitive variables in the production life cycle.

Therefore, the 20% increase in ABE yield using co-fermentation significantly reduces

the energy requirement and associated GHG emissions. Similar effects are apparent

for upstream inputs like ammonia requirements for farming and pretreatment hydrol-

ysis. Figure 6.7 and Figure B.13 in the supplementary data clearly show that the

use of co-fermentation technology to produce 1 MJ of jet fuel reduces resource con-

sumption and GHG emissions due to higher ABE yields relative to traditional ABE

fermentation

6.5.6 Effects of Direct Land Use Change on the STJ Pathway

Large-scale land use changes to farm switchgrass commercially could affect food sup-

plies and deforestation both directly and indirectly. When switchgrass farming was

assumed to take place on existing farmland, this direct land use change can affect the

life cycle GWP-100 from −3.9 to 13 g CO2e/MJ for both the ideal and practical cases

(Dunn et al., 2013). The life cycle GWP-100 for the STJ pathway for the practical

case can range from 44.4 g CO2e/MJ to 61.3 g CO2e/MJ of jet fuel, depending on land

use change effects. The direct land use change worst case land use change scenario

increases GWP-100 by 26.9% for the STJ practical case. Even in this scenario, the

life cycle GWP-100 is 33.4%, 66.7%, and 29.4% less than the FTJ (switchgrass), FTJ

(coal), and CPJ pathways. These results indicate that the STJ pathway can reduce

GWP-100 impact for producing jet fuel when compared with fossil-based pathways

like FTJ and CPJ. The increase in ABE yield using the novel cofermentation of sug-

ars and gas (CO2, H2) has the potential to produce sustainable aviation fuels with

further reduction in emissions. Future efforts should focus on strategies to improve
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performance of energy intensive unit processes like pretreatment, hydrolysis, and dis-

tillation. Additional research should focus on different pretreatment technologies and

separation methods to produce butanol from ABE

6.5.7 Net Energy Ratio and Economic Feasibility of STJ Pathway

The net energy ratio in an important sustainability metric for alternative fuel supplies

(King et al., 2015; Yang and Chen, 2012; Zhang and Colosi, 2013). The net energy

cost for the STJ pathway was estimated by adding all the non-renewable energy inputs

required to produce 1 MJ of jet fuel via the co-fermentation route. The nonrenewable

energy requirements were estimated using data available in GREET. Co-products

were allocated a share of the energy requirements as shown in Table B.13. The

net energy ratio was then estimated using the energy output relative to the energy

requirements. The primary inputs into the system shown in Table 6.1 were used to

estimate the non-renewable energy requirements.

Figure 6.8: Comparison of GWP-100 in alternative jet fuel production pathways

After estimating energy cost for all the inputs, co-products including ethanol, and
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acetone were allocated using the energy basis. Based on the estimations, the net

energy ratio of the STJ pathway (practical case) is 1.213 MJ of non-renewable energy

expended per MJ of jet fuel produced. The net energy ratio for CTJ pathway is

0.994 MJ per MJ of jet fuel, which is slightly better than STJ as in the case of life

cycle GWP-100. Therefore, more research is needed to determine strategies to reduce

the non-renewable energy costs for aviation biofuels. Estimates of net energy cost

for all the jet fuel production pathways used in the current LCA are reported in the

supplemental document.

6.5.8 Comparison of GWP-100 of Alternative Jet Fuel Pathways

The life cycle GWP-100 for the STJ pathway for each of the four scenarios (traditional

ABE, practical case with 90% efficient hydrolysis and 80% ABE conversion), STJ (tra-

ditional ABE, ideal case with 95% ABE conversion), STJ (co-fermentation, practical

case with 90% efficient hydrolysis and 80% ABE conversion), STJ (co-fermentation,

ideal case with 95% ABE conversion) are shown in Figure 6.8. The results are com-

pared with the other jet fuel pathways, CTJ (80% ABE), CTJ, HRJ, FTJ (switch-

grass), FTJ (coal), and CPJ. Results are shown using the energy allocation method

for co-products for the biofuel pathways. Jet fuel produced from switchgrass via co-

fermentation in both the ideal and practical cases has a 6.5% and 6% reduction in

GWP-100 compared to STJ via traditional ABE fermentation for both the practical

and ideal cases. The GWP-100 for the STJ pathway with co-fermentation in the

ideal case was 2.6% lower than for the CTJ pathway (0.465 g ABE/g sugar, 100%

ABE) primarily due to the high energy requirements for pretreatment and higher

ABE yield for corn grain relative to LB. The 15.8% and 24% increases in ABE yields

for both CTJ (assuming 80% ABE conversion) and CTJ (assuming 100% ABE con-

version) compared to STJ with co-fermentation for both the practical and ideal cases

indicate that corn-based feedstock performs slightly better than LB with respect to
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GWP-100. The STJ pathway outperforms the HRJ, FTJ, and CPJ pathways for

all cases. These results show that the biochemical conversion of switchgrass to jet

fuel is potentially more environmentally friendly than thermochemical conversion.In

addition, the STJ pathway via co-fermentation route results in lower GWP-100 when

compared to traditional ABE pathway.

6.5.9 Recommendations for Further Research

Lignocellulosic biomass has lower energy density when compared to fossil fuel sources.

Therefore, technologies that improve the energy density such as pelletization, torrefac-

tion, and pyrolysis need to be investigated further. In addition, water requirements

in biofuel pathways justify the need for further research because water usage in the

fermentation step can increase the energy required for distillation causing more emis-

sions. In addition, Commercial switchgrass farming might need irrigated water, and

the energy required for pumping paves the way for future studies. Although the

ABE co-fermentation process is a promising technology, the economic feasibility of

the STJ pathway should be assessed by a detailed techno-economic analysis in the

further studies.

6.6 Conclusions

The novel co-fermentation process for switchgrass presents potential environmental

benefits when compared with conventional and emerging bio-jet fuel production path-

ways. The estimated GWP-100 for switchgrass to jet fuel STJ pathway for the practi-

cal case (90% hydrolysis and 80% ABE conversion) with co-fermentation and an ABE

yield of 0.321 g ABE/g of sugars was estimated to be 6.5%, 14.2%, 47.5%, 73.8%,

and 44.4% lower than STJ with traditional ABE fermentation, HRJ, FTJ (switch-

grass), FTJ (coal) and CPJ pathways. An increase in ABE yield by 15.5% with

co-fermentation reduced the GWP-100 in the fermentation step by 14.4%. Pathways
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that involve biomass as feedstocks including STJ pathway for the ideal case (100%

hydrolysis and 95% ABE conversion) with co-fermentation and the STJ pathway ideal

case (100% hydrolysis and 95% ABE conversion) using traditional ABE fermentation

have 53.8% and 50.8% less GWP-100 than CPJ. Therefore, irrespective of the fermen-

tation route, the STJ pathway results in less GWP-100 impact than CPJ, although

the net energy ratio indicates that more research is needed. The FTJ pathway for

switchgrass has 5.9% more GWP-100 than CPJ. The co-fermentation process using

lignocellulosic feedstock is less energy intensive for production of jet fuel with lower

GWP-100 compared to other alternative jet fuel pathways. The incorporation of di-

rect land use change in the current LCA results in lower GWP-100 from STJ pathway

compared to FTJ (switchgrass), FTJ (coal), and CPJ pathways. The most sensitive

input parameters to the life cycle emissions of STJ pathway include natural gas for

distillation and pretreatment and ammonia requirements for farming and conversion.

Future research should focus on reducing the energy intensity of these processes.
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CHAPTER VII

Summary, Conclusions and Future Work

7.1 Research Objectives

The present work has developed tools for water quality monitoring and modeling using

publicly available satellite datasets, in-situ sensing, and field sampling. In addition

to tools developed, in-situ sensing methods by unmanned vehicles demonstrated their

capability to collect water quality data for water quality mapping. Both statistical

and watershed models are used to analyze surface water quality. This dissertation

had the following purposes regarding the current state of water quality monitoring

and modeling:

1. Implement unmanned surface vehicles for in-situ monitoring of bathymetry,

algal pigments, and other water quality parameters

2. Implement satellite remote sensing of algal levels, turbidity, in freshwater bodies

3. Utilize the data collected using unmanned systems including unmanned sur-

face vehicles, refrigerated auto-sampler, and in-stream sensors to measure the

formation of HABs, sedimentation, and nutrients

4. Interpret observed nutrient and sediment loadings using a watershed model

To achieve the research objectives laboratory, field, and computational/modeling

exercises were performed including field assessment of Horse Creek Cove and Horse

Creek Watershed of Grand Lake in Oklahoma.

117



7.2 Research Accomplishments

The key conclusion of this dissertation is that in-situ data collection in conjunction

with multi-spectral imagery produce in-lake water quality models for real time moni-

toring of lakes and reservoirs. Rapid data collection using unmanned surface vehicles

in conjunction with satellite remote sensing and other unmanned systems helps in

understanding sedimentation and HAB formations in freshwater bodies. A summary

of individual conclusions that can be drawn from each chapter of this dissertation are

as follows:

1. Chapter 3: Satellite remote sensing provides multispectral imagery to produce

remote sensing tools for near real-time monitoring of Harmful Algal blooms and

sediment. Random forest models with multi-spectral satellite imagery can esti-

mate Chlorophyll-a concentrations, Phycocyanin concentrations, and turbidity

in reservoirs that has coefficient of determination (R2) of 0.75, 79, 0.82 respec-

tively, with validation data. During tool calibration and data validation it was

found that random forest models provide superior performance in estimating

in-lake water quality parameters compared to other machine learning models

used including multiple regression, and support vector regression.

2. Chapter 4: HSPF integrated with python provided a baseline watershed model

for Horse Creek Watershed that explains that observed total runoff is 40% more

than the simulated runoff. During the simulation time-frame i.e., from late

August 2020 to the end of 2021, all the peak flows during summer and winter

are 50% and 37% more than the simulated flows. Incorporation of potential

evapotranspiration using crop coefficients and calibrating the watershed model

can help understand sediment dynamics and nutrient fluxes responsible for HAB

formations in Grand Lake.

3. Chapter 5: Demonstrates the capability of an unmanned surface vehicle to

118



collect water quality data in Grand Lake Oklahoma. The reliable data collected

at the frequency of 1 HZ are used to produce water quality maps on a LIDAR

raster with 1m spatial grid. These spatial estimates is ground truth when

integrated with satellite images and multi-spectral imagery can produce high-

resolution real-time gridded estimates of algal pigments and other water quality

parameters.

4. Chapter 6: Additional work that estimates the life cycle global warming poten-

tial of a novel switchgrass to jet fuel (STJ) pathway via a novel-cofermentation

of sugars and CO2. The estimated GWP-100 for switchgrass to jet fuel STJ

pathway for the practical case (90% hydrolysis and 80% ABE conversion) with

co-fermentation and an ABE yield of 0.321 g ABE/g of sugars was estimated

to be 6.5%, 14.2%, 47.5%, 73.8%, and 44.4% lower than STJ with traditional

ABE fermentation, HRJ, FTJ (switchgrass), FTJ (coal) and CPJ pathways.STJ

pathway outperforms all the other jet fuel pathways including HRJ, FTJ, and

CPJ. Therefore bio-chemical conversion of STJ is potentially environmental

friendly than conventional jet fuel production pathways.

7.3 Outstanding Research Needs and Future Work

The data obtained from unmanned systems provide reliable water quality data for

modeling HABs. However it is important to connect unmanned monitoring systems

with microbial molecular analysis to determine the early signs associated with HAB

formations. Exploring both unmanned systems for modeling and molecular methods

(DNA/RNA extraction) help identify the connection between existing monitoring

methods and early molecular signatures for HAB formations. Integrating molecular

methods with data intensive water quality monitoring is critical in the longer-term de-

velopment of mass-deployable monitoring and prediction of HAB formation. Also the

multi-pronged approach of monitoring HABs is expected to provide a new technology
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for predicting likelihood of HAB outbreaks, and enhanced assessment of the inter-

connections between nutrients, HAB biomarkers, and HAB formations in freshwater

ecosystems.
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(2012). Global energy assessment: toward a sustainable future. Cambridge Univer-

sity Press.

Johnson, M. C., Palou-Rivera, I., and Frank, E. D. (2013). Energy consumption

during the manufacture of nutrients for algae cultivation. Algal Research, 2(4):426–

436.

Joyce, S. (2000). The dead zones: oxygen-starved coastal waters. Environmental

health perspectives, 108(3):A120–A125.

Kalnes, T. N., McCall, M. M., and Shonnard, D. R. (2010). Renewable diesel and

jet-fuel production from fats and oils. Thermochemical conversion of biomass to

liquid fuels and chemicals, pages 468–495.

Khan, F. M. and Zubek, V. B. (2008). Support vector regression for censored data

(svrc): a novel tool for survival analysis. In 2008 Eighth IEEE International Con-

ference on Data Mining, pages 863–868. IEEE.

Khanna, M., Dhungana, B., and Clifton-Brown, J. (2008). Costs of producing mis-

canthus and switchgrass for bioenergy in illinois. Biomass and bioenergy, 32(6):482–

493.

King, C. W., Maxwell, J. P., and Donovan, A. (2015). Comparing world economic

and net energy metrics, part 2: total economy expenditure perspective. Energies,

8(11):12975–12996.

Knudsen, K. E. B. (1997). Carbohydrate and lignin contents of plant materials used

in animal feeding. Animal feed science and technology, 67(4):319–338.

134



Koparan, C., Koc, A. B., Privette, C. V., Sawyer, C. B., and Sharp, J. L. (2018).

Evaluation of a uav-assisted autonomous water sampling. Water, 10(5):655.

Krstajic, D., Buturovic, L. J., Leahy, D. E., and Thomas, S. (2014). Cross-validation

pitfalls when selecting and assessing regression and classification models. Journal

of cheminformatics, 6(1):1–15.

Kumabe, K., Sato, T., Matsumoto, K., Ishida, Y., and Hasegawa, T. (2010). Produc-

tion of hydrocarbons in fischer–tropsch synthesis with fe-based catalyst: Investiga-

tions of primary kerosene yield and carbon mass balance. Fuel, 89(8):2088–2095.

Kumar, M., Goyal, Y., Sarkar, A., and Gayen, K. (2012). Comparative economic

assessment of abe fermentation based on cellulosic and non-cellulosic feedstocks.

Applied Energy, 93:193–204.

Kutser, T., Metsamaa, L., Strömbeck, N., and Vahtmäe, E. (2006). Monitoring
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APPENDIX A

Supplemental Information for ”A Remote Sensing Tool for Near
Real-Time Monitoring of Harmful Algal Blooms and Turbidity in

Reservoirs

Table A.1: Level-2 spectral reflectance band properties of Landsat-8

Band Information Data range Properties
SR B1 (Ultra-Blue, Coastal):
Aerosol 0.435-0.512 µm

1-65455 Mostly used for imaging
shallow water; previously
used to monitor CHLa
concentrations and suspended
solids

SR B2 (Blue): 0.452-0.512 µm 1-65455 Used for bathymetry
mapping; spectrum at which
light penetrates water
the deepest

SR B3 (Green): 0.533-0.590 µm 1-65455 Used for estimating
vegetation density; previously
used to estimate mangrove
chlorophyll concentration

SR B4 (Red): 0.636-0.673 µm 1-65455 Used to distinguish between
the anthropogenic and natural
environments; absorbed by
chlorophyll, which enables
quantification of vegetation

SR B5 (Near Infrared): 0.851-
0.879 µm

1-65455 Exhibits the high contrast
between water and non-water
objects

SR B6 (Short Wave Infrared 1):
1.566-1.651 µm

1-65455 Discriminates moisture content
of soil and vegetation

SR B7 (Short Wave Infrared 2):
2.107-2.294 µm

1-65455 Detects increased moisture
content of soil and vegetation
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Table A.2: Level-2 spectral computed band properties of Landsat-8

Band Information Data range Properties
ST B10 (Surface Temperature):
Aerosol 10.60-11.19 µm

0-65535 Used for thermal mapping
of the surface and estimating
soil moisture content

SR QA AEROSOL (Aerosol
Attributes)

NA Documents cloud and surface
state flags

ST ATRAN (Atmospheric
Transmittance)

0-10000 Indicates the ratio of the
radiation transmitted to the
total radiation incident upon
the atmosphere

ST CDIST (Pixel Distance
to Cloud)

0-24000 Indicates the distance
between a pixel and the
nearest cloud pixel in
kilometers; can be used
with emissivity standard
deviation to estimate
surface temperature

ST DRAD (Downwelled
Radiance)

0-28000 Indicates the thermal
energy emitted by
the atmosphere which
reaches the earth’s
surface and reflects
back to the sensor

ST EMIS (Emissivity
of band 10)

0-10000 Indicates the ratio
of the energy
radiated from the
surface of a material
to the energy radiated
from a blackbody

ST TRAD (Thermal Surface
Radiance)

0-22000 Indicates thermal
surface radiance, used
to detect changes in
surface temperature

ST URAD (Upwelled
Radiance)

0-28000 Indicates the amount
of electromagnetic radiation
reflected from the earth’s
surface to the atmosphere

QA PIXEL NA Bit combinations that
define certain quality
conditions of the pixels

QA RADSAT NA Indicates which sensor
bands are saturated
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Table A.3: Level-2 spectral band properties of Sentinel-2

Band Information Wavelength (nm) Band properties
Aerosol Optical Thickness
(AOT)

NA Provides the visual
transparency of the
atmosphere

B2 (Green) 496.6 (S2A) / 492.1 (S2B) Remotely-senses the
vegetation and CHLa
concentration in surface
water bodies

B3 (Blue) 560 (S2A) / 559 (S2B) Used to detect the
presence of water
bodies; affected by
atmospheric scattering

B4 (Red) 664.5 (S2A) / 665 (S2B) Used for remotely
sensing turbidity of
lakes and reservoirs

B5, B6, B7, B8A
(Red Edge 1, Red Edge 2,
Red Edge 3, Red Edge 4)

703.9 (S2A) / 703.8 (S2B)
740.2 (S2A) / 739.1 (S2B)
782.5 (S2A) / 779.7 (S2B)

Used for detecting both
CHLa and phycocyanin
in surface water bodies

B11 (Short Wave Infrared 1)
B12 (Short Wave Infrared 2)

1613.7 (S2A) / 1610.4 (S2B)
2202.4 (S2A) / 2185.7 (S2B)

Differentiates cyanobacterial
blooms in water compared
to aquatic plants; not
affected by scattering
in turbid waters

SCL (Scene Classification
Map)

NA Detects clouds and
their shadows, snow
to generate a
classification map

TCI (True Color Image) NA Used to detect vegetation,
algal blooms but the band
relies heavily on solar
reflectance which makes
it not usable if the image
is taken during night

WVP (Water Vapor Pressure) NA Used to track lower-level
moisture, identify regions
with turbulence, highlight
volcanic plumes
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APPENDIX B

Supplementary Data: Well-to-wake Analysis of Switchgrass to Jet Fuel
Via a Novel Co-fermentation of Sugars and CO2

2.1 Introduction

As air traffic grows steadily, the aviation industry needs alternative jet fuel produc-
tion technologies which can provide lower life cycle emissions compared to petroleum-
based fuels. This study presents a life cycle assessment (LCA) for switchgrass to jet
fuel (STJ) production pathway and compares its environmental impact with other
emerging jet fuel production pathways including corn to jet fuel (CTJ), hydropro-
cessed renewable jet fuel (HRJ), Fischer Tropsch jet fuel using both lignocellulosic
biomass and coal (FTJ), and conventional petroleum jet fuel (CPJ) using 100-year
global warming potential (GWP-100). This supplemental data file provides a more
detailed description of the assumptions used for both the STJ pathway and other
alternative fuel supplies described in the manuscript.

2.2 Overview of the co-fermentation process of sugars/off-gas

Butanol is produced by traditional acetone-butanol-ethanol (ABE) fermentation.
However, butanol can also be produced via co-fermentation of sugars and gas (CO2/H2)
produced during fermentation as explained in Figure B.1. (Atiyeh, 2021). The novel
co-fermentation can be performed in two stages, one for sugar fermentation and one
for gas fermentation or in one stage with a co-culture. The use of Clostridium bei-
jerinckii (Cb) and Clostridium carboxidivorans (Cc) has shown to increase butanol
yield from sugars and off-gas (Atiyeh, 2021). A detailed LCA has been performed
to account for the energy and life cycle emissions of lignocellulosic biomass to jet
fuel pathway using data from laboratory studies, GREET, and literature. Energy
and emissions required in the major unit processes of switchgrass to jet fuel (STJ)
has been assessed using GREET. While preliminary data of ABE yield is obtained
from laboratory results, energy requirements of cofermentation are estimated based
on reasonable assumptions from the literature

2.3 Data used in process level inputs/outputs

2.3.1 Data used in fertilizer production

Process level data used in fertilizer production for switchgrass include the input quan-
tities of nitrogen (N), phosphorus pentoxide (P2O5) and potassium oxide (K2O). Ni-
trogen data were taken from nitrogen average mix in GREET which represents US
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Figure B.1: Routes for butanol production using co-fermentation
of sugars/off-gas (Atiyeh, 2021)

average data. Similarly, P2O5 data was from mono-ammonium phosphate and di-
ammonium phosphate mix in GREET. K2O was from Potassium oxide production
pathway in GREET. The output type and output needed as a fertilizer in switchgrass
farming is shown in Table B.1. In fertilizer production, CO2 equivalent for inputs in
switchgrass farming are taken as GWP-100 in the fertilizer production process

Table B.1: Fertilizer output needed for 1 US ton of switchgrass farming

Input type Output type Output (g)
Natural gas Nitrogen (N) *4877.35
Natural gas phosphorus pentoxide (P2O5) *2307.81
Natural gas Potassium Oxide (K2O) *3200.42

*Data taken from (Cai et al., 2016)

2.3.2 Data used in switchgrass farming and hydrolysis

In switchgrass farming all N2O emissions are assumed to be coming from nitrogen
input and N conversion i.e. %kg N2O of N was obtained from GREET excel. To
estimate N2O emissions from nitrogen input law of conservation of mass is used.
After harvesting switchgrass, it was pretreated with sulfuric acid. The pretreated
switchgrass is hydrolyzed using cellulase as the enzyme to produce sugars. Main
sugars produced from hydrolysis were glucose and xylose. Data used in hydrolysis
to produce 1 US ton of sugar from switchgrass is shown in Table B.2, where CO2e
equivalent for all inputs in the production process were taken from GREET.Net 2018.
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Table B.2: Data used in switchgrass hydrolysis (per 1 US ton of sugars) *

Input type Input Energy inputs (MJ) GWP-100 (kg)
Switchgrass, kg 1306 kg *21949 -
Natural gas 105.5 kg *5302 298.47

Electricity, kWh 70.34 kWh *525 33.44
Ammonia, kg 18.14 kg *754 42.41
Cellulase, kg 9.071 kg *721 15.54

Sulfuric acid, kg 27.22 kg *17 1.16

*Data taken from (Dunn et al., 2015)

2.3.3 Data and Equations used in co-fermentation of sugars and H2/CO2
gas

Sugars are fermented using solvent producing strains such as Clostridium aceto-
butylicum and produced H2/CO2 is co-fermented by gas fermenting strains such
as Clostridium carboxidivorans. The co-fermentation yields acetone, butanol and
ethanol in a molar ratio of 3:7.3:1. Therefore, butanol was produced both from sugars
and from H2, CO2. Due to more CO2 production than H2 during sugar fermentation,
7.7 moles of CO2 are wasted from each 10 moles of CO2 produced from sugars based
on the stoichiometry in Equations 6.1 and 6.2.

2.3.4 Data used in distillation

Distillation is required to separate the ABE (acetone-butanol-ethanol) mixture pro-
duced from the ABE fermentation. To estimate butanol production from 1 US ton
of switchgrass input, the law of conservation of mass was used and the required
data needed is the energy required for distillation and density of the products and
co-products produced as shown in Table B.3.

Table B.3: Data used in distillation with and without heat recovery

Input type Energy Input Reference
Natural Gas 9.4 MJ/kg of ABE produced

(without heat recovery)
(Baral et al., 2016)

Natural Gas 4.8 MJ/kg of ABE produced
(with heat recovery)

(Baral et al., 2016)

Density of Butanol 0.81 kg/L (Wu et al., 2007)
Density of Acetone 0.791 kg/L (Wu et al., 2007)
Density of Ethanol 0.789 kg/L (Wu et al., 2007)
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2.3.5 Data variability

• In switchgrass hydrolysis data variability with co-product (electricity) and with-
out coproduct displacement is used to estimate CO2 equivalent emissions.

• In the ABE fermentation process, both cases based on butanol produced by
cofermentation using H2 and CO2 and with traditional ABE fermentation with-
out use of H2, CO2 are used to estimate CO2 emissions.

• In the distillation process, the energy required to separate acetone, butanol and
ethanol is used to estimate CO2 emissions with and without heat recovery as
shown in Figure B.6.

2.4 Other jet fuel production pathways

2.4.1 Other jet fuel production pathways

The corn to jet fuel (CTJ) pathway includes corn farming, conversion of the corn
grain to butanol, conversion of butanol to jet fuel, and fuel consumption. Butanol
was produced using ABE fermentation and converted to jet fuel using dehydration,
isomerization, oligomerization, and hydrogenation steps (Wu et al., 2019). Emissions
from corn farming were generated from energy inputs, including diesel for farming
operations, electricity, and agricultural chemicals (Han et al., 2017; Wang et al.,
2007). Transportation of harvested corn grain to the bio-refinery was neglected for
consistency with the other pathways, and because it is likely to be small compared
to other emissions (De Souza et al., 2018; Ellingsen et al., 2016; Lucas et al., 2012).
Energy for corn processing (dry milling) to generate butanol was assumed to come
from NG boilers, and the electricity comes from the US grid. Data for corn farming
and processing to produce sugars was taken from an Aspen Plus simulation model
for a corn dry mill (Kwiatkowski et al., 2006). Similarly, data for processing sugars
to butanol, with an ABE yield of 0.465 g ABE/g sugars, were obtained from the
Aspen simulation model to analyze life cycle emissions from well to pump (Wu et al.,
2007). Similarly, a practical case of CTJ where the ABE yield was assumed to be
0.374 g ABE/g sugars was assessed in the final comparison of GWP100 based on
the yield data from previous literature (Liu et al., 2009). Most of the emissions
from processing corn to butanol come from the consumption of NG. GWP-100 from
farming to butanol and jet fuel production were estimated from GREET. GWP-100
in jet fuel combustion steps were calculated based on the fuel consumption rate of
Boeing 747-400.

2.4.2 Hydro-processed renewable (HRJ) jet fuel

Bio-oils, including soy, canola, camelina, jatropha, palm, algae, rapeseed, waste cook-
ing oil, and tallow, can be converted into jet fuels via hydro-processing (Han et al.,
2013b). In the present study, only the soybean feedstock was considered for HRJ
because it is the primary source for biodiesel and jet fuel production in the US (Haas
et al., 2006). The steps in the HRJ pathway include farming, soybean oil extraction,
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conversion to jet fuel, and fuel consumption (i.e., from WTWa). Soybean farming
requires chemical inputs that generate emissions that were estimated from GREET.
GREET was also used to estimate emissions from NG, coal, and electricity consump-
tion for extracting soy oil (Chen et al., 2018; Huo et al., 2009). Soy oil to jet fuel
conversion involves hydrodeoxygenation, hydro-isomerization, and hydrocracking to
meet jet fuel specifications (Kalnes et al., 2010). Emissions were accounted for from
soy oil to jet fuel conversion using GREET. GWP-100 data from soybean farming to
jet fuel production steps were obtained from GREET, and in the final step, combus-
tion emissions were estimated similarly to STJ pathway.

2.4.3 Fischer-Tropsch jet (FTJ) fuel from coal and lignocellulosic biomass

Fischer-Tropsch technology converts synthetic gas (syngas) generated from feedstocks
such as coal and lignocellulosic biomass to liquid transportation fuels (Liu et al., 2013).
In FTJ from coal, the feedstock was assumed to be a mixture of bituminous, sub-
bituminous, lignite, and anthracite. The lignocellulosic biomass used in the current
LCA is switchgrass that can produce jet fuel via the FTJ pathway. Both feedstocks,
including coal and switchgrass, were considered individually in the current LCA with
the data used to assess and estimate emissions in the FTJ pathway were obtained
from the literature (Xie et al., 2011). Jet fuel production via the FTJ pathway
involves the production of syngas, removal of impurities from syngas streams, and
fuel refining to produce jet fuel (Casci et al., 2009). These feedstocks can be fed
to a gasifier to produce syngas (a mixture of CO, H2, and CO2). The syngas was
assumed to be converted to jet fuel using Co, Fe, and γ alumina-based catalysts (Cao
et al., 2009; Casci et al., 2009; Kumabe et al., 2010). FTJ fuels do not produce
sulfur dioxide and emit less particulate matter than conventional or petroleum jet
(CPJ), which make them attractive as an alternative fuel source (Lobo et al., 2011).
Due to coal usage as a feedstock and fuel processing, FTJ fuel from coal involves
energy inputs in mining, such as diesel, electricity, NG, that contribute to significant
GHG emissions. Similarly, emissions from LB gasification to FTJ fuel results from
farming, diesel, electricity, and NG usage. In the FTJ from the coal pathway, CO2

produced from gasification can be released to the atmosphere or sequestered. In the
present study, the case where CO2 was released to the atmosphere during the FTJ fuel
processing from syngas was considered because none of the other pathways analyzed
potential carbon sequestration strategies. Biogenic CO2 is credited in FTJ from the
switchgrass pathway in the current LCA as done in previous studies (Elgowainy et al.,
2012; Xie et al., 2011). Emission data for FTJ from coal and switchgrass pathways
were obtained from GREET. However, emissions from the final combustion step were
estimated, similar to STJ pathway.

2.4.4 Conventional petroleum Jet (CPJ) fuel pathway

Conventional or petroleum jet (CPJ) fuel involves crude oil recovery, fuel processing,
and fuel consumption. Emissions from the conventional crude oil jet fuel pathway
were generated during recovery and refining processes (Palou-Rivera andWang, 2010).
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Crude oil for traditional jet fuel was assumed to be recovered from domestic sources
in the US and international sources such as Latin America, Canada, and the Middle
East. Among the foreign sources, the production of crude oil from Canadian oil
sands contributes substantially to emissions compared to conventional crude recovery
because of the GHG emissions involved in the production technologies that include oil
sand recovery and refining (Cai et al., 2016). The estimates of GHG emissions were
based on energy consumption in jet fuel refined from crude oil using data from 43
refineries representing 70% of the US refining sources (Elgowainy et al., 2014). The
authors estimated emissions from the material, energy inputs, and outputs of CPJ
pathway using GREET.

2.5 Results

2.5.1 CO2 emissions in fertilizer production

Based on the system boundary in Figure 6.2 of the main manuscript, CO2 emissions in
STJ pathway via co-fermentation from each unit processes are calculated. In fertilizer
production based on the output required from 1 US ton of switchgrass farming, CO2

equivalent emissions are taken from GREET and shown in the Table B.4. Comparison
of CO2 emissions due to fertilizer inputs in switchgrass farming are shown in Figure
B.2.

Table B.4: CO2 emissions from fertilizer production

Input type Output type Output (g) GWP-100 (kg)
Natural Gas Nitrogen (N) 4877.35 18.5
Natural Gas Phosphorus

(pentoxide (P2O5))
2307.81 1.89

Density of Butanol Potassium
(Oxide (K2O)

(K2O) 1.84

Total CO2 emissions from all the fertilizers = 18.5+1.89+1.84 = 22.23 kg CO2/US
ton of switchgrass

2.5.2 N2O emissions in switchgrass farming

In switchgrass farming N2O emissions (kg)= Fertilizerinput(kg)× (14gN)
(17g(NH3)

× Nconversion × (44gN2O)
(28gN2)

. Where percentage N conversion to N2O is 1.2% (Wang

et al., 2012). N2O emissions = 0.077 kg = 77 g

2.5.3 CO2 emissions in switchgrass hydrolysis

Data taken from GREET.Net and Dunn et al. (2015) are for 1 US ton of sugar
production from switchgrass. In this study 1 US ton of switchgrass produces 0.69 US
ton of total sugar, which is assumed to be all glucose. Based on the glucose yield,
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Figure B.2: Comparison of CO2 from different inputs in fertilizer production of STJ
pathway via co-fermentation

CO2 emissions are estimated as shown in Figure B.3. Major inputs that contribute
to CO2 emissions in switchgrass hydrolysis are shown in Table B.6.

Table B.5: CO2 emissions from switchgrass hydrolysis

Input type Input Energy for inputs (MJ) GWP-100 (kg)
Switchgrass 1 US Ton - -
Natural Gas 72.8 kg 3774.15 289.57
Electricity 174.71 MJ 525 23.07
Ammonia 12.52 kg 754 29.26
Cellulase 6.26 kg 721 10.72

Sulfuric acid 18.78 kg 17 0.8

Total CO2 emissions from switchgrass hydrolysis without co-product (electricity)
displacement = 269.8 kg

Based on previous study, 1 US ton of sugar production displace 2 MMBtu of
electricity (Dunn et al., 2015). Based on the calculations, electricity displaced in
production of 0.69 US ton of sugar is 1.38 MMBtu. As electricity is considered as a
displaced resource, CO2 emissions associated with the electricity displaced are 191.37
kg. If the electricity is not considered as a displaced resource, then CO2 emissions
would be more as shown in Figure B.4. In this study, emissions with co-product
displacement are considered. Emissions with co-product displacement in switchgrass
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Figure B.3: Comparison of CO2 from different inputs in switchgrass hydrolysis of
STJ via co-fermentation

hydrolysis = 269.8-191.37= 78.43 kg.

Figure B.4: Comparison of CO2 from switchgrass hydrolysis with and without co-
product (electricity) displacement in STJ pathway via co-fermentation

2.5.4 CO2 emissions in both traditional ABE and co-fermentation of sug-
ars, H2/CO2

From stoichiometry in equations 6.1 and 6.2 used for the co-fermentation and tradi-
tional ABE fermentation, the ABE yield with and without H2 and CO2 conversion
are estimated. The use of H2 and CO2 for butanol production generates less emissions
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as seen in Table B.7. and Figure B.5. In this study, the CO2 emissions resulting from
a yield of 0.374 g ABE per g of sugar are considered.

69C6H12O6 → 36C4H10O + 18C3H6O + 6C2H4O2 + 12C2H4O2+

6C4H8O2 +H2O + 156CO2 + 108H2

(2.1)

108H2 + 36CO2 → 9C4H10O + 36H2O (2.2)

Table B.6: CO2 process level emissions from ABE fermentation with and without H2

and CO2 conversion.

ABE yield
(g ABE/g sugar)

ABE produced
(from 0.69 US ton of sugar)

GWP-100 (kg)

0.374 (with H2 and CO2 use) 222.8 kg 5.28
0.321 (without H2 and CO2 use) 191.3 kg 6.52

Figure B.5: Comparison of CO2 with and without H2 and CO2 conversion to butanol
in STJ pathway

2.5.5 CO2 emissions in distillation process

In the distillation process to separate ABE mixture, the CO2 generated is estimated
based on the natural gas usage. CO2 emissions without heat recovery are 115.22 kg
and with heat recovery are around 58.9 kg as shown in Figure B.6. In this study,
CO2 emissions both with and without heat recovery are considered.
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Figure B.6: Comparison of CO2 emissions in distillation with and without heat re-
covery in STJ pathway via co-fermentation

Figure B.7: CO2 emissions in butanol to jet fuel conversion in STJ pathway via co-
fermentation
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Figure B.8: Emissions in different unit processes of STJ pathway (ideal case) for both
WTP and WTWa scenarios

2.5.6 Emissions in CTJ pathway

The pre-allocated GWP-100 in corn farming and feedstock to jet fuel conversion
from WTP of CTJ pathway were 25.1 g CO2e/MJ and 65.8 g CO2e/MJ of jet fuel,
respectively, as shown in Table 6.2. Similarly, in CTJ with 80% ABE of the simulated
yield of 0.465, the WTP emissions were 30.1 g CO2e/MJ and 67 g CO2e/MJ of
jet fuel. Therefore, 72.3% and 69% of GWP-100 from WTP in the CTJ and CTJ
(80% ABE, practical case) pathways come from corn to jet fuel conversion. Most
of the fossil emissions in the corn to jet fuel conversion step were from the NG.
Jet fuel was assumed to be produced from butanol with 1 MJ of jet fuel requiring
1.49 MJ of butanol. Energy inputs needed to produce 1.49 MJ of butanol in the
processing of jet fuel from butanol were NG and electricity. Energy contribution in
the form of NG was 95.5% and 4.5% in the form of electricity to produce butanol from
corn (Wu et al., 2007). For STJ and CTJ pathways, CO2 emissions from nitrogen
fertilizer production and N2O emissions in farming play a significant role in the GWP-
100. Corn farming contributes to 15.1% in CTJ and 17.5% in CTJ (80% ABE,
practical case) of the total life cycle GHG emissions from WTWa primarily due to
the production and application of nitrogen fertilizer. The preallocated GWP-100
from switchgrass farming practical case was 21.5% and 54% lower than for corn in
CTJ and soybean farming, respectively (Table 6.2). The main reason for less emission
contribution was due to less nitrogen fertilizer application in STJ. Therefore, improved
fertilizer application efficiency is a crucial strategy for reducing the environmental
impact of bioenergy pathways. However, the pre-allocated GWP-100 for feedstock to
jet fuel conversion in the STJ pathway was over 110.9%, 106.2% higher than in CTJ
and HRJ, respectively, due to the large GWP-100 due to pretreatment and hydrolysis
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process that contributes to almost 57.4% of total emissions in the STJ pathway as
shown in Figure B.3.

Figure B.9: Emissions in different unit processes of CTJ pathway for both WTP and
WTWa scenarios

2.5.7 Emissions in HRJ pathway

Emissions in the HRJ pathway result from farming, oil extraction, fuel processing,
and combustion steps from WTWa. The WTP pre-allocated GWP-100 in the HRJ
pathway includes farming and soybean to jet fuel conversion steps, as shown in Table
6.2. As previously discussed, GWP-100 from farming was mainly from nitrogen fer-
tilizer production and usage, similar to STJ and CTJ pathways. The pre-allocated
GWP-100 from soybean farming was 51.4 g CO2e/MJ of jet fuel, which contributed
43.3% of total emission from WTP, as shown in Table 6.2. Emissions from oil extrac-
tion mainly depend on the process efficiency and oil content available in the seeds.
Emissions in the oil extraction process were 15.8 g CO2e/MJ, while energy-based
allocation was used for the soy meal co-product. CO2 released in fuel processing or
soy oil to jet fuel conversion were 67.3 g CO2e/MJ. Emissions from the oil extraction
were from energy consumption, including coal or NG.

2.5.8 Biogenic CO2 credit in biofuel pathways

We accounted for the biogenic CO2, which is identical to the amount of CO2 com-
busted in the jet,which cancels each other. The biogenic CO2 credit is shown in
Figure B.14. Based on the literature,the estimation of carbon sequestration in bioen-
ergy crops is difficult due to large variability of soil types and land management
practices Post and Kwon (2000) and the application of variable amount of nitrogen
fertilizers at different farming locations (Schuman et al., 2002). Further research is
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Figure B.10: Emissions in different unit processes of HRJ pathway for both WTP
and WTWa scenarios

Figure B.11: Impact of different farming techniques on GWP-100 across different
locations
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Figure B.12: Co-product allocation scenarios of biofuel pathways (STJ (ideal case),
CTJ, and HRJ)
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Figure B.13: Tornado chart of STJ (ideal case) sensitivity with changes in ABE yield
by ±30% via co-fermentation. GWP-100 for base yield of 0.372 g ABE/g glucose is
43.7 g CO2e/MJ of jet fuel

required to understand carbon sequestration in lignocellulosic biomass, because the
duration until bioenergy crops reach equilibrium is debatable (Vaughan et al., 2018).

Table B.7: Energy, mass and market values used in co-product allocations of STJ
pathway via co-fermentation

STJ Energy
content
(MJ/kg)

Mass
(kg)

Density
(kg/L)

Market
value
($/gal)

Market value
($/kg)

Butanol 36.05 0.0413 0.810 3.750 0.0506
Ethanol 26.80 0.0093 0.810 1.446 0.0045
Acetone 28.55 0.0172 0.810 4.990 0.0286

Gasoline blendstock 44.00 0.0048 2.210 2.210 0.0037
Low-sulfur diesel 42.00 0.0029 0.810 1.930 0.0018

Jet fuel 43.15 0.0232 0.810 1.910 0.0146
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Table B.8: Energy, mass and market values used in co-product allocations of CTJ
pathway

CTJ Energy
content
(MJ/kg)

Mass
(kg)

Market
value
($/gal)

Market value
($/kg)

Butanol 36.049 0.0413 3.750 0.0506
Ethanol 27.000 0.000006 1.408 0.000003
Acetone 28.550 0.0098 4.990 0.0163
DDGS 20.250 0.0294 0.780 0.0230

Gasoline blendstock 44.000 0.0048 2.210 0.0037
Low-sulfur diesel 42.000 0.0029 1.930 0.0018

Jet fuel 43.150 0.0232 1.910 0.0146

Table B.9: Market values used in co-product allocations of HRJ pathway

HRJ Market value Mass
(kg)

Density
(kg/L)

Market value
($/MJ)

Jet fuel ($/gal) 1.910 0.0232 0.80 0.0146
Propane ($/gal) 1.918 0.0199 0.51 0.0197
Naphtha ($/gal) 0.480 0.0225 0.74 0.0039
Soy meal ($/kg) 0.319 0.1148 NA 0.0366

Table B.10: Co-product allocations (g CO2e/MJ) in STJ pathway (practical case)
via cofermentation

Co-products
allocated

Energy allocation
(maximum case)

Energy
allocation

Mass
allocation

Market
allocation

Jet fuel 48.3 48.3 40.4 27.4
Ethanol 16.2 12.0 16.2 8.4
Acetone 53.7 23.6 29.9 53.7
Displaced
electricity

62.6 62.6 62.6 62.6

Gasoline 10.1 10.1 8.3 6.9
Diesel 5.8 5.8 4.9 3.3
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Table B.11: Co-product allocations (g CO2e/MJ) in CTJ pathway (80% ABE)

Co-products
allocated

Energy allocation
(maximum case)

Energy
allocation

Mass
allocation

Market
allocation

Jet fuel 44.050 44.050 32.15058 23.913
Ethanol 0.0078 0.007 0.0078 0.004
Acetone 26.739 12.334 13.606 26.739
DDGS 40.831 26.254 40.831 37.566
Gasoline 9.250 9.250 6.621 6.094
Diesel 5.286 5.286 3.964 2.864

Figure B.14: Comparison of GWP-100 in alternative jet fuel production pathways

Table B.12: Co-product allocations (g CO2e/MJ) in HRJ pathway

Co-products
allocated

GREET:default Energy
allocation

Mass
allocation

Market
allocation

Jet fuel 34.8 56.2 40.8 23.913
Propane 16.5 13.0 13.06 0.004
Naphtha 12.0 9.5 9.5 26.739
Soymeal 55.4 40.0 55.4 58.1
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Table B.13: Net energy values for STJ pathway practical case via co-fermentation

Inputs Quantity Unit Energy intensity
coefficients
(KJ/Unit)

Total NE cost
KJ/MJ of jet
fuel

Nitrogen 1.87 g 60.52 104.09
Phosphoric acid 0.88 g 8.19 6.63
Potassium oxide 1.23 g 7.86 8.88

CaCO3 2.24 g 0.12 0.24
Herbicides 2.24 g 0.12 0.24
High-density
polyethylene

0.13 g 79.74 9.57

Diesel in farm
equipment

0.69 mL 42.96 30.07

Natural Gas in
pretreatment
and hydrolysis

25 g 51.93 1194.39

Electricity in
pretreatment
and hydrolysis

16.66 Wh 6.81 103.98

Ammonia 4.32 g 41.45 164.55
Cellulase 2.16 g 93.60 186.26

Sulfuric acid 6.48 g 0.59 3.51
Natural gas
in evaporator,
cofermentation
and gas stripper

15.71 g 51.93 815.82

Electricity
in evaporator,
cofermentation
and gas stripper

7.42 Wh 6.81 50.53

Natural gas
in distillation
and hydrolysis

6.66 g 51.93 345.85

Electricity
in butanol
to jet fuel
conversion

9.29 Wh 6.81 63.26

Hydrogen 1.23 g 7.86 8.88
ZSM-5 catalyst 1.23 g 7.86 8.88

Electricity displaced
in hydrolysis

139.5 Wh 6.81 -949.95

Ethanol NA NA NA -248
Acetone NA NA NA -497

Gasoline blendstock NA NA NA -210
Low-sulfur diesel NA NA NA -120
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Table B.14: Life cycle GHG emissions from well to wake in different jet fuel production
pathways

Jet fuel
pathways

Co-products Co-product
handling

GWP-100

Switchgrass to jet
(via co-fermentation
(ABE route) yield
0.374 g ABE/g
sugars)

Electricity,
Ethanol,
Acetone

Displacement,
Energy-
allocation

42.7

Switchgrass to jet
(via traditional ABE
(ABE route) yield
0.321 g ABE/g
sugars)

Electricity,
Ethanol,
Acetone

Displacement,
Energy-
allocation

51.7

Corn to jet Gasoline
blendstock, Low
sulfur diesel

Energy
allocation

41.2

Hydro-processed
renewable jet

Soymeal,
Propane fuel mix,
Naphtha

Displacement,
Energy-
allocation

56.2

Fischer-Tropsch jet
fuel from switchgrass

NA NA 92.1

Fischer-Tropsch jet
from coal

NA NA 184.4

Conventional jet from
crude oil

NA NA 86.9

173



• NE for STJ is 1213 KJ/MJ of jet fuel

• NE for CTJ is 994 KJ/MJ of jet fuel

• NE for HRJ 427.96 KJ/MJ of jet fuel

• NE for FTJ (Switchgrass) 130 KJ/MJ of jet fuel

• NE for FTJ (Coal) is 2048.64 KJ/MJ of jet fuel
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