6 research outputs found

    Visualization for the Physical Sciences

    Get PDF

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Multivariate relationship specification and visualization

    Get PDF
    In this dissertation, we present a novel method for multivariate visualization that focuses on multivariate relationshipswithin scientific datasets. Specifically, we explore the considerations of such a problem, i.e. we develop an appropriate visualization approach, provide a framework for the specification of multivariate relationships and analyze the space of such relationships for the purpose of guiding the user toward desired visualizations. The visualization approach is derived from a point classification algorithm that summarizes many variables of a dataset into a single image via the creation of attribute subspaces. Then, we extend the notion of attribute subspaces to encompass multivariate relationships. In addition, we provide an unconstrained framework for the user to define such relationships. Althoughwe intend this approach to be generally applicable, the specification of complicated relationships is a daunting task due to the increasing difficulty for a user to understand and apply these relationships. For this reason, we explore this relationship space with a common information visualization technique well suited for this purpose, parallel coordinates. In manipulating this space, a user is able to discover and select both complex and logically informative relationship specifications

    Fast Visualization by Shear-Warp using Spline Models for Data Reconstruction

    Full text link
    This work concerns oneself with the rendering of huge three-dimensional data sets. The target thereby is the development of fast algorithms by also applying recent and accurate volume reconstruction models to obtain at most artifact-free data visualizations. In part I a comprehensive overview on the state of the art in volume rendering is given. Part II is devoted to the recently developed trivariate (linear,) quadratic and cubic spline models defined on symmetric tetrahedral partitions directly obtained by slicing volumetric partitions of a three-dimensional domain. This spline models define piecewise polynomials of total degree (one,) two and three with respect to a tetrahedron, i.e. the local splines have the lowest possible total degree and are adequate for efficient and accurate volume visualization. The following part III depicts in a step by step manner a fast software-based rendering algorithm, called shear-warp. This algorithm is prominent for its ability to generate projections of volume data at real time. It attains the high rendering speed by using elaborate data structures and extensive pre-computation, but at the expense of data redundancy and visual quality of the finally obtained rendering results. However, to circumvent these disadvantages a further development is specified, where new techniques and sophisticated data structures allow combining the fast shear-warp with the accurate ray-casting approach. This strategy and the new data structures not only grant a unification of the benefits of both methods, they even easily admit for adjustments to trade-off between rendering speed and precision. With this further development also the 3-fold data redundancy known from the original shear-warp approach is removed, allowing the rendering of even larger three-dimensional data sets more quickly. Additionally, real trivariate data reconstruction models, as discussed in part II, are applied together with the new ideas to onward the precision of the new volume rendering method, which also lead to a one order of magnitude faster algorithm compared to traditional approaches using similar reconstruction models. In part IV, a hierarchy-based rendering method is developed which utilizes a wavelet decomposition of the volume data, an octree structure to represent the sparse data set, the splines from part II and a new shear-warp visualization algorithm similar to that presented in part III. This thesis is concluded by the results centralized in part V

    Real-Time Path Planning for Automating Optical Tweezers based Particle Transport Operations

    Get PDF
    Optical tweezers (OT) have been developed to successfully trap, orient, and transport micro and nano scale components of many different sizes and shapes in a fluid medium. They can be viewed as robots made out of light. Components can be simply released from optical traps by switching off laser beams. By utilizing the principle of time sharing or holograms, multiple optical traps can perform several operations in parallel. These characteristics make optical tweezers a very promising technology for creating directed micro and nano scale assemblies. In the infra-red regime, they are useful in a large number of biological applications as well. This dissertation explores the problem of real-time path planning for autonomous OT based transport operations. Such operations pose interesting challenges as the environment is uncertain and dynamic due to the random Brownian motion of the particles and noise in the imaging based measurements. Silica microspheres having diameters between (1-20) µm are selected as model components. Offline simulations are performed to gather trapping probability data that serves as a measure of trap strength and reliability as a function of relative position of the particle under consideration with respect to the trap focus, and trap velocity. Simplified models are generated using Gaussian Radial Basis Functions to represent the data in a compact form. These metamodels can be queried at run-time to obtain estimated probability values accurately and efficiently. Simple trapping probability models are then utilized in a stochastic dynamic programming framework to compute optimum trap locations and velocities that minimizes the total, expected transport time by incorporating collision avoidance and recovery steps. A discrete version of an approximate partially observable Markov decision process algorithm, called the QMDP_NLTDV algorithm, is developed. Real-time performance is ensured by pruning the search space and enhancing convergence rates by introducing a non-linear value function. The algorithm is validated both using a simulator as well as a physical holographic tweezer set-up. Successful runs show that the automated planner is flexible, works well in reasonably crowded scenes, and is capable of transporting a specific particle to a given goal location by avoiding collisions either by circumventing or by trapping other freely diffusing particles. This technique for transporting individual particles is utilized within a decoupled and prioritized approach to move multiple particles simultaneously. An iterative version of a bipartite graph matching algorithm is also used to assign goal locations to target objects optimally. As in the case of single particle transport, simulation and some physical experiments are performed to validate the multi-particle planning approach
    corecore