89 research outputs found

    Augmenting IP blocks for verification and optimization

    Get PDF
    The verification of digital intellectual property (IP) blocks has always been a challenge. Simple IP blocks with straightforward test inputs, can be quite thoroughly verified with software simulators such as Modelsim. But the verification of a complex System-on-Chip (SoC) on a software simulator can last days or even weeks, and that assumes that every IP on the SoC has a working simulation model. Although modern programmable chips can be monitored in real time with tools like Altera’s Signaltap II, they still only offer monitoring capabilities for a limited amount of signals and for a limited amount of time. To overcome this deficiency, IP information registers (IIR) were developed for this thesis. These registers are used to store information pertaining to the IPs and the SoC as a whole. The information can be static or dynamic, ie. generated before or during run-time . The information itself can be used for many different purposes along with the verification of single IPs or whole SoCs. The case study in this thesis has three parts where three of those purposes are examined with Terasic’s second generation development and education (DE2) board. This physical platform was fitted with two systems, a 2D graphics system embedded with information registers and a system to monitor the first one using these registers. The first part examined the identification aspects with static information whereas the second and third part examined the dynamic aspects of the information registers with their verification and optimization capabilities. Each of these aspects was deemed to offer a good service for developers designing digital circuits

    A Secure Reconfigurable System-On-Programmable-Chip Computer System

    Get PDF
    A System-on-Programmable-Chip (SoPC) architecture is designed to meet two goals: to provide a role-based secure computing environment and to allow for user reconfiguration. To accomplish this, a secure root of trust is derived from a fixed architectural subsystem, known as the Security Controller. It additionally provides a dynamically configurable single point of access between applications developed by users and the objects those applications use. The platform provides a model for secrecy such that physical recovery of any one component in isolation does not compromise the system. Dual-factor authentication is used to verify users. A model is also provided for tamper reaction. Secure boot, encrypted instruction, data, and Field Programmable Gate Array (FPGA) configuration are also explored. The system hardware is realized using Altera Avalon SoPC with a NIOS II processor and custom hardware acting as the Security Controller and a second NIOS II acting as the subject application configuration. A DE2 development kit from Altera hosting a Cyclone II FPGA is used along with a Secure Digital (SD) card and a custom printed circuit board (PCB) containing a second Cyclone II to demonstrate the system. User applications were successfully run on the system which demonstrated the secure boot process, system tamper reaction, dynamic role-based access to the security objects, dual-factor authentication, and the execution of encrypted code by the subject processor. Simulations provided detailed examinations of the system execution. Actual tests were conducted on the physical hardware successfully

    A novel parallel algorithm for surface editing and its FPGA implementation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophySurface modelling and editing is one of important subjects in computer graphics. Decades of research in computer graphics has been carried out on both low-level, hardware-related algorithms and high-level, abstract software. Success of computer graphics has been seen in many application areas, such as multimedia, visualisation, virtual reality and the Internet. However, the hardware realisation of OpenGL architecture based on FPGA (field programmable gate array) is beyond the scope of most of computer graphics researches. It is an uncultivated research area where the OpenGL pipeline, from hardware through the whole embedded system (ES) up to applications, is implemented in an FPGA chip. This research proposes a hybrid approach to investigating both software and hardware methods. It aims at bridging the gap between methods of software and hardware, and enhancing the overall performance for computer graphics. It consists of four parts, the construction of an FPGA-based ES, Mesa-OpenGL implementation for FPGA-based ESs, parallel processing, and a novel algorithm for surface modelling and editing. The FPGA-based ES is built up. In addition to the Nios II soft processor and DDR SDRAM memory, it consists of the LCD display device, frame buffers, video pipeline, and algorithm-specified module to support the graphics processing. Since there is no implementation of OpenGL ES available for FPGA-based ESs, a specific OpenGL implementation based on Mesa is carried out. Because of the limited FPGA resources, the implementation adopts the fixed-point arithmetic, which can offer faster computing and lower storage than the floating point arithmetic, and the accuracy satisfying the needs of 3D rendering. Moreover, the implementation includes Bézier-spline curve and surface algorithms to support surface modelling and editing. The pipelined parallelism and co-processors are used to accelerate graphics processing in this research. These two parallelism methods extend the traditional computation parallelism in fine-grained parallel tasks in the FPGA-base ESs. The novel algorithm for surface modelling and editing, called Progressive and Mixing Algorithm (PAMA), is proposed and implemented on FPGA-based ES’s. Compared with two main surface editing methods, subdivision and deformation, the PAMA can eliminate the large storage requirement and computing cost of intermediated processes. With four independent shape parameters, the PAMA can be used to model and edit freely the shape of an open or closed surface that keeps globally the zero-order geometric continuity. The PAMA can be applied independently not only FPGA-based ESs but also other platforms. With the parallel processing, small size, and low costs of computing, storage and power, the FPGA-based ES provides an effective hybrid solution to surface modelling and editing

    MARTE based design flow for Partially Reconfigurable Systems-on-Chips

    Get PDF
    International audienceSystems-on-Chip (SoCs) are considered an integral solution for designing embedded systems, for targeting complex intensive parallel computation applications. As advances in SoC technology permit integration of increasing number of hardware resources on a single chip, the targeted application domains such as software-defined radio are become increasingly sophisticated. The fallout of this complexity is that the system design, particularly software design, does not evolve at the same pace as that of hardware leading to a significant productivity gap. Adaptivity and reconfigurability are also critical issues for SoCs which must be able to cope with end user environment and requirements

    Sparse matrix product implementation on field programmable gate arrays (EPGAS)

    Get PDF
    If dense matrix multiplication algorithms are used with sparse matrices, they can result in a large number of redundant calculations, as numerous elements in sparse matrices are zero valued, thus available resources and time may be wasted. The algorithm discussed here aims to take advantage of the sparseness of the matrices by multiplying only nonzero elements. The NIOS development board from Altera is used for implementing the above algorithm. First a sequential program in the C programming language is downloaded onto the FPGA and run by the NIOS soft-processor. Then the same board is also used for a parallel implementation of the above algorithm using three NIOS soft-processors within the same FPGA. Such an approach is very critical because current FPGAs do not contain enough resources to solve large problems. For example, we cannot build large memory systems within FPGAs so we need to employ algorithms that have rather limited memory requirements. Our proposed matrix multiplication algorithm for sparse matrices uses the available memory space very cautiously and also results in good execution times. Performance results testify to this fact

    Design and resource management of reconfigurable multiprocessors for data-parallel applications

    Get PDF
    FPGA (Field-Programmable Gate Array)-based custom reconfigurable computing machines have established themselves as low-cost and low-risk alternatives to ASIC (Application-Specific Integrated Circuit) implementations and general-purpose microprocessors in accelerating a wide range of computation-intensive applications. Most often they are Application Specific Programmable Circuiits (ASPCs), which are developer programmable instead of user programmable. The major disadvantages of ASPCs are minimal programmability, and significant time and energy overheads caused by required hardware reconfiguration when the problem size outnumbers the available reconfigurable resources; these problems are expected to become more serious with increases in the FPGA chip size. On the other hand, dominant high-performance computing systems, such as PC clusters and SMPs (Symmetric Multiprocessors), suffer from high communication latencies and/or scalability problems. This research introduces low-cost, user-programmable and reconfigurable MultiProcessor-on-a-Programmable-Chip (MPoPC) systems for high-performance, low-cost computing. It also proposes a relevant resource management framework that deals with performance, power consumption and energy issues. These semi-customized systems reduce significantly runtime device reconfiguration by employing userprogrammable processing elements that are reusable for different tasks in large, complex applications. For the sake of illustration, two different types of MPoPCs with hardware FPUs (floating-point units) are designed and implemented for credible performance evaluation and modeling: the coarse-grain MIMD (Multiple-Instruction, Multiple-Data) CG-MPoPC machine based on a processor IP (Intellectual Property) core and the mixed-mode (MIMD, SIMD or M-SIMD) variant-grain HERA (HEterogeneous Reconfigurable Architecture) machine. In addition to alleviating the above difficulties, MPoPCs can offer several performance and energy advantages to our data-parallel applications when compared to ASPCs; they are simpler and more scalable, and have less verification time and cost. Various common computation-intensive benchmark algorithms, such as matrix-matrix multiplication (MMM) and LU factorization, are studied and their parallel solutions are shown for the two MPoPCs. The performance is evaluated with large sparse real-world matrices primarily from power engineering. We expect even further performance gains on MPoPCs in the near future by employing ever improving FPGAs. The innovative nature of this work has the potential to guide research in this arising field of high-performance, low-cost reconfigurable computing. The largest advantage of reconfigurable logic lies in its large degree of hardware customization and reconfiguration which allows reusing the resources to match the computation and communication needs of applications. Therefore, a major effort in the presented design methodology for mixed-mode MPoPCs, like HERA, is devoted to effective resource management. A two-phase approach is applied. A mixed-mode weighted Task Flow Graph (w-TFG) is first constructed for any given application, where tasks are classified according to their most appropriate computing mode (e.g., SIMD or MIMD). At compile time, an architecture is customized and synthesized for the TFG using an Integer Linear Programming (ILP) formulation and a parameterized hardware component library. Various run-time scheduling schemes with different performanceenergy objectives are proposed. A system-level energy model for HERA, which is based on low-level implementation data and run-time statistics, is proposed to guide performance-energy trade-off decisions. A parallel power flow analysis technique based on Newton\u27s method is proposed and employed to verify the methodology

    New Hardware Architecture for Low-Cost Functional Test Systems Applications to HDMI generation

    Get PDF
    English: Development of a new test hardware architecture for functional test systems. Development of a proof-of-concept prototype for HDMI generation.Castellano: Desarrollo de una nueva arquitectura para equipos de test destinados a máquinas de test funcional de PCBs. Desarrollo de un prototipo de demostración destinado a la generación de HDMI.Català: Desenvolupament d'una nova arquitectura per equips de test destinats a màquines de test funcional de PCB. Desenvolupament d'un prototip de demostració destinat a generació d'HDM
    • …
    corecore