
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2003

Sparse matrix product implementation on field programmable Sparse matrix product implementation on field programmable

gate arrays (EPGAS) gate arrays (EPGAS)

Amit Mahendra Sheth
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Sheth, Amit Mahendra, "Sparse matrix product implementation on field programmable gate arrays
(EPGAS)" (2003). Theses. 637.
https://digitalcommons.njit.edu/theses/637

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/637?utm_source=digitalcommons.njit.edu%2Ftheses%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

SPARSE MATRIX PRODUCT IMPLEMENTATION ON
FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

by
Amit Mahendra Sheth

If dense matrix multiplication algorithms are used with sparse matrices, they can result in

a large number of redundant calculations, as numerous elements in sparse matrices are

zero valued, thus available resources and time may be wasted. The algorithm discussed

here aims to take advantage of the sparseness of the matrices by multiplying only non-

zero elements.

The NIOS development board from Altera is used for implementing the above

algorithm. First a sequential program in the C programming language is downloaded onto

the FPGA and run by the NIOS soft-processor. Then the same board is also used for a

parallel implementation of the above algorithm using three NIOS soft-processors within

the same FPGA.

Such an approach is very critical because current FPGAs do not contain enough

resources to solve large problems. For example, we cannot build large memory systems

within FPGAs so we need to employ algorithms that have rather limited memory

requirements. Our proposed matrix multiplication algorithm for sparse matrices uses the

available memory space very cautiously and also results in good execution times.

Performance results testify to this fact.

SPARSE MATRIX PRODUCT IMPLEMENTATION ON
FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

by
Amit Mahendra Sheth

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 2003

APPROVAL PAGE

SPARSE MATRIX PRODUCT IMPLEMENTATION ON

FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

Amit Mahendra Sheth

Dr. Sotirios Ziavras, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, and
Computer and Information Science, Associate Chair for Graduate Studies, NJIT

Dr. Vishwani D. Agrawal, Thesis Co-advisor 	 Date
Visiting Professor of Electrical and Computer Engineering, and
Center for Advanced Information Processing, Rutgers University

Dr. John D. Carpinelli, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, and
Computer and Information Science, NJIT

Dr. Roberto Rojas-Cessa, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Amit Mahendra Sheth

Degree:	 Master of Science

Date:	 May 2003

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2003

• Bachelor of Engineering in Electronics,
Father Conceicao Rodrigues College of Engineering, Mumbai, India, 2001

• Diploma in Digital Electronics
Bombay Institute of Technology, Mumbai, India, 1998

Major:	 Electrical Engineering

Presentations and Publications:

Amit M. Sheth and Jacob Savir
"Single Clock, Single Latch, Scan Design,"
The IEEE Instrumentation and Measurement Technology Conference (IMTC/02),
Anchorage, Alaska, USA, May 2002.

Scholarships and awards:

• Research assistantship for 3 semesters under Dr. Sotirios G. Ziavras, Department
of Electrical and Computer Engineering, N.J.I.T. (Newark), USA, for the Power
Grid Project.

• Research Assistantship under Dr. S. S. S. P. Rao, Department of Computer
Science and Engineering, I.T.T. (Bombay), India, for Vikram Sarabhai Space
Center project

• Travel Grant for presenting a research paper titled "Single Clock Single Latch
Scan Design", IEEE-IMTC-02, Anchorage, AK, USA, May 2002

iv

To my beloved family, friends and teachers

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to my advisor, Dr. Sotirios G.

Ziavras for his valuable guidance and support throughout the research work. Without his

timely and valuable suggestions, it would not have been possible to accomplish the work

that I have done which to me has been a very satisfactory experience.

My deepest gratitude to Prof. Jacob Savir who was the catalyst for me to work on

this project and provided me with a wonderful opportunity to become involved with this

highly prestigious project.

I also would like to express my sincere thanks to my co-advisor, Dr. Vishwani D.

Agrawal, who despite his busy schedule took time out to provide me with valuable

guidance and suggestions which proved very helpful.

I also appreciate the efforts and suggestions of the committee members, Dr. John

Carpinelli and Dr. Roberto Rojas-Cessa. I would like to thank them too.

I thank the distinguished faculty of the ECE department who have been excellent

guides throughout my graduate study and have provided me with the skills and expertise

to be a successful professional in my field of study in future.

And last but not the least, I take this opportunity to thank my Family and also my

dear friends for their unflinching support and encouragement throughout my Graduate

study and who have been a great source of inspiration for me at every step of my

academic career. I shall remain indebted to them for this and my success would not have

been possible without their ceaseless efforts.

vi

TABLE OF CONTENTS

Chapter	 Page

1	 INTRODUCTION 	 1

1.1 Matrix Multiplication 	 1

1.2 Why FPGAs over Traditional Computers 	 2

1.3 Motivation and Objectives 	 3

2	 MATRIX MULTIPLICATION ON FPGAs 	 5

2.1 SOPC Board 	 5

2.2 Algorithm 	 8

2.3 Parallel Implementation 	 12

2.4 System Development 	 15

3	 PERFORMANCE RESULTS 	 27

3.1 Sequential Implementation Results 	 27

3.2 Parallel Implementation Results 	 30

4	 CONCLUSIONS 	 34

APPENDIX A Source Code For Sequential Implementation 	 35

APPENDIX B Source Code For Parallel Implementation 	 41

REFERENCES 	 54

vii

LIST OF TABLES

Table	 Page

3.1	 Performance Results for Sequential Implementation (8 X 8 matrices) 	 27

3.2	 Performance Results for Parallel Implementation 	 30

LIST OF FIGURES

Figures Page

1.1 Inner product of row and column vectors 	 1

1.2 Matrix multiplication example 	 2

1.3 Sparse matrix 	 3

1.4 Sparse matrix 	 3

2.1 SOPC Board 	 6

2.2 Flowchart of our matrix multiplication algorithm 	 10

2.3 Flowchart (continued) 	 11

2.4 Parallel architecture 	 12

2.5 Parallel architecture interconnections 	 15

2.6 NIOS processor CPU architecture 	 16

2.7 NIOS processor hardware configuration 	 17

2.8 NIOS processor software configuration 	 18

2.9 NIOS processor local RAM 	 19

2.10 Global RAM	 20

2.11 Boot ROM configuration 	 21

2.12 GERMS monitor 	 21

2.13 UART configuration 	 22

2.14 Hardware timer configuration 	 23

2.15 Priorities 	 24

2.16 Programmer 	 25

ix

Figures	 Page

3.1	 Graph of CPU clock cycles versus matrix density 	 28

3.2	 Graph of speed up versus matrix density compared to the conventional matrix

multiplication algorithm 	 29

3.3	 Graph of CPU clock cycles versus matrix density for parallel implementation 	 31

3.4	 Graph of speed up versus matrix density for parallel implementation 	 32

x

CHAPTER 1

INTRODUCTION

1.1	 Matrix Multiplication

Matrix multiplication is a very useful operation in mathematics. It involves inner-

vector product implementations. Let us now see how we multiply a row vector with a

column vector of the same length - that is, with the same number of entries. The result is

a number (which can be viewed as a lxi vector if one insists that the product of two

vectors must be a vector).

Step 1: Row vector times column vector

Figure 1.1 Inner product of row and column vectors

In this example, the row and the column both have length 4, but the same pattern

obviously works whenever they are of the same length; just multiply the corresponding

entries and sum up the products.

Step 2: The General Case

Assume now two general matrices, say A and B. The matrix product C=A*B is formed

by multiplying every row of A with every column of B, in the way described in Step 1

above. Assume n*n matrices, for the sake of simplicity. The elements C ij of matrix C is

calculated as

1

Figure 1.2 Matrix multiplication example

1.2 Why FPGAs Over Traditional Computers?

Large matrices (e.g. of the order of 1000 X 1000 and higher) are traditionally

solved by large super-computers such as CRAY. Workstations have also been used to

solve the above problem by, first improving the algorithm, such as for Strassen's

algorithm [6] that has a time complexity of 0 (n 2376).

FPGAs are primarily used in application development because:

1) They can be configured as and when required by the application.

2) They are reprogrammable and can be conditioned to give hardware acceleration

by offering the best of both software and hardware.

3) They are also becoming relatively inexpensive, at less than $20 per million gates.

2

1.3 Motivation and Objectives

To multiply two 3000 X 3000 matrices using the conventional method requires on

floating-point multiplications and additions.

Figures 1.3 and 1.4 show examples of sparse matrices. As we can see, most of the

elements in the above matrices are zero-valued. In other words, the above matrices are

sparse in nature. This implies that most of the multiplications would result in zeroes and

hence are redundant. These redundant calculations can be avoided by using an algorithm

in which only the required elements are multiplied.

If sparse matrices are stored as regular matrices in two dimensional arrays, they

will consume a lot of space in memory. Various formats are used to store sparse matrices;

among them, which a popular one is the matrix market file format [4] which only stores

the non-zero elements along with their row and column indices.

3

The first line specifies the maximum number of rows, columns and the total

number of non-zero elements, respectively. From the next line onwards, the first column

specifies the row index, the second column specifies the column index and the third

column specifies the corresponding value of the matrix element.

4

CHAPTER 2

MATRIX MULTIPLICATION ON FPGAs

2.1 SOPC Board 151

We have used an Altera board which serves as a development and prototyping platform

that provides system designers with an economical solution for hardware verification.

The system-on-a-programmable chipboard supports a variety of microprocessor-based

designs incorporating memory, debugging, and interface resources. The development

board is primarily designed for implementing microprocessor functions and other

standard IPA (Intellectual Property) functions in the on-board APEX FPGA device. The

board includes physical interfaces for widely used standard interconnects. Control logic

for the interconnects can be implemented in the device. Some of the available IP

solutions include:

• Processor cores (MIPS, RISC, and Harvard architectures).

• Peripheral and I/O cores (PCI, SDRAM controllers, DART, USB, Ethernet,

• Other cores developed by Altera and other Altera Mega function Partners.

The board also supports EJTAG for development and debugging of MIPS-like

microprocessor functions, as well as JTAG for system testing. For additional analysis, the

JTAG port can be used with the Signal Tap embedded logic analyzer available with the

Quartus0® II development software. Figure 2.1 shows a layout diagram of the

development board.

5

The on-board APEX EP20K1500E device features 1,500,000 ASIC-equivalent gates in a

652-pin BGA package. The device has 51,840 logic elements (LEs) and 442,368 RAM

bits.

Clocks

The board supports up to six unique clocks that can be selected by the designer. The

board has two BNC connectors to support communications systems designs. The APEX

global clock input is driven by a 66-MHz oscillator or by an external clock via a BNC

connector. The second global clock signal is connected to an oscillator that can drive a

PCI function at either 33 or 66 MHz.

Memory

To support processor functions implemented in the APEX device, the board includes a

memory system consisting of the following:

• Volatile memory: 64 Mbytes of synchronous DRAM, organized as 8 Mbytes X 64

Mbytes.

• Non-volatile memory: 4 Mbytes of Flash memory and a 256-Kbyte EPROM

memory.

• Pipelined cache memory with burst SRAM organized as 256 Kbytes X 32 Kbytes.

Programming the APEX Device

The EP20K1500E board cannot store configuration data for the APEX device; you must

configure the device directly via the JTAG interface. You can program the APEX device

directly using the Quartus software version 2000.02 and higher, any version of the

Quartus II software[9], or the MAX+PLUSS® II software version 9.5[9] and higher using

either the MasterBlasterTM or ByteBlasterMV TM cable.

7

2.2 Matrix Multiplication Algorithm

The algorithm comprises three main parts:

1) Pre-conditioning

2) Main program

3) Post conditioning

Assume that matrix A has m rows and n columns, and matrix B has prows and q

columns. [Note that n must equal p.]

Then each of the above parts is as explained below:

1) Pre-conditioning:

a) This involves sorting matrix A in column order and matrix B in row order.

b) Matrices in the matrix market format for sparse matrices are already sorted

in the column order. So matrix A need not be sorted.

c) Matrix B, however, needs to be sorted in row order.

d) The Quick sort algorithm is used to sort matrix B in column order..

2) Main program:

a) The inputs are two matrices in the matrix market format for sparse

matrices.

b) The resultant matrix is obtained as a two dimensional array with m rows

and q columns.

The idea is as explained in brief:

a) For a particular element in the A matrix in column Ai', all the elements of

the B matrix in row 'i' are multiplied and stored in the result matrix C.

8

b) The above step is repeated for all the non-zero elements in matrix A.

However, in subsequent iterations the result of the multiplication is added

to the previous result for the corresponding element in the C matrix.

3) Post processing:

The resultant matrix C is represented as a two dimensional array. It may

be required to have the resultant matrix in the matrix market format, in which case

some post processing will be required.

Figure 2.2 shows a flowchart for this algorithm.

9

Figure 2.2 Flowchart of our matrix multiplication algorithm

10

11

2.3 Parallel Implementation

A parallel architecture] [8] has been designed for the implementation of

the matrix multiplication algorithm described earlier. A block diagram is shown in

figure 2.4.

More details of the architecture follow:

1) The above architecture contains three DIOS soft processors. The restriction on a

maximum of three processors is mainly due to the size of the FPGA on the current

development board.

2) The DIOS 1 processor contains the Boot ROM and is also connected to the UART

for communication with the host PC. It is used to download programs as well as

data from the host PC into its own internal memory as well as that of the of the

other two processors. It also takes part in the matrix multiplication process.

12

3) The DIOS 2 and DIOS 3 processors only take part in the matrix multiplication

process. These processors have their own local memory (on chip) and they also

share a common global on-chip memory (which is the referred to as the Global

RAM).

4) These processors get information from DIOS 1 processor regarding the location

of the program to be run and data to be operated on. This information is passed

using semaphores.

5) In the current implementation, the matrix multiplication program along with the

data is first downloaded in to the DIOS 2 and DIOS 3 processor's internal

memories.

6) Using the external reset switch both the processors (DIOS 2 and DIOS 3) are reset

to their starting address from which they start running the downloaded program.

This program waits in an infinite loop until the main controlling program is

downloaded into internal memory of DIOS 1 processor.

7) Once the program is downloaded, the DIOS 1 processor starts running the

program. This program initializes the hardware timer and sets a flag which brings

DIOS 2 and DIOS 3 out of their wait loops; then they both start operating on their

respective elements of the matrix.

8) The DIOS 1 processor also starts multiplying matrix elements assigned to it. The

assignment of elements to be multiplied by each DIOS processor is done on the

host PC.

9) Each sub-program generates its own output matrix in a separate area in its own

local memory, so there are no write conflicts.

13

10)Each DIOS processor sets a flag when they have finished generating their output.

The DIOS 1 processor checks for these flags after it has completed generating its

own output.

11)Once all the output sub-matrices are generated, the main program combines them

all to obtain the final resultant matrix. The main program also uses the hardware

timer to time the entire operation.

12) The above architecture has been successfully implemented and tested for small

matrices. We are still in the process of running matrix multiplication on large

matrices.

2.4 System Development

The Quartus II° version 2.0 software from Altera ® [9] was used for hardware

design. An already existing minimal configuration file provided by Altera among a set of

sample files was used as the starting point for our project; the remaining modules were

added to it.

Figure 2.5 shows the interconnections for the 3-CPU configuration. It also shows

the various modules included in the above system. Each of the modules is described

Delow in more detail:

1)	 CPU: The above system contains three identical CPUs. Each one of the three

CPUs comprises a DIOS soft-processor core whose architecture, hardware as well

15

as software can be customized. Snapshots of the processor configuration are

shown below:

Figure 2.6 NIOS processor CPU architecture

As seen above we have selected the 32-bit DIOS configuration. This includes a

32-bit Arithmetic and Logic Unit (ALU), registers and data bus. The addressing scheme

used is also 32 bits.

The next snapshot in Figure 2.7 shows the hardware configuration setup of the

above CPU. A discussion of the various parameters selected is as given below:

1. 	 128 registers in the register file are selected, which is the lowest available option.

Other options available are 256 and 512. The lowest option is selected to save

ESBs (Embedded System Blocks) which can then be used for the on-chip

memory implementation.

16

2. A hardware multiplier is used primarily speed up operations compared to software

solutions. This option consumes many LEs (Logic Elements); however, as the

primary goal is to obtain good performance and multiplications constitute the

major portion in our algorithm, some on-chip logic resources are sacrificed for

better performance.

3. To compensate for the extra LEs used by the hardware multiplier, the "More stalls

/ Fewer LEs" option is selected in the Pipeline Optimizations category.

17

Figure 2.8 NIOS processor software configuration

The snapshot in Figure 2.8 shows the software configuration selected. Hardware

breakpoint support is not used to save LEs. Other options are left to their default values.

The DIOS processor also provides the option to add custom logic in the form of

VHDL source code which gets compiled with the rest of the processor core. This custom

logic can be used in the form of custom instructions. For the above design, no custom

logic is required.

2) Local RAM: Each of the three DIOS processors has its own local RAM which is

used to download code from the host PC. The snapshot in Figure 2.9 shows the

configuration of the local RAM. The data-width is 32 bits and the total memory

size is 10 Kbytes. This is true for each of the three DIOS processors.

18

Figure 2.9 NIOS processor local RAM

The starting address of the local RAMs is given below:

1. Local RAM 1: 0x0 (for DIOS 1)

2. Local RAM 2: 0x4000 (for DIOS 2)

3. Local RAM 3: 0x8000 (for DIOS 3)

3) 	 Global RAM: Besides the local RAM of each CPU, a global RAM is also

provided which is used to store the output matrix generated by the three

processors. Figure 2.10 shows a snapshot of the global RAM configuration. Note

that the size of the global RAM is 13 Kbytes.

19

4) Boot ROM: This is used to store the Boot program for DIOS 1 which is connected

to the QUART. A snapshot of the Boot ROM configuration is shown in Figure

2.11. The Boot program here is called the GERMS monitor program. This mainly

supports the communication provided by the QUART between the DIOS 1

processor and the host computer. The DIOS-1 CPU's reset location is set to the

starting address of the Boot ROM. Figure 2.12 shows that the GERMS monitor is

built inside the Boot ROM during compilation.

20

21

5)QUART: The QUART (Universal Asynchronous Receiver / Transmitter) is used for

communication between the DIOS 1 processor and the host computer. The host

computer sends code and data to the DIOS processor, which then operates on this

data and then sends the results back to the host processor. The configuration

options for the QUART are shown above in figure 2.13 and are kept at their default

values.

6) Clock Timer: A hardware timer is used to count the clock cycles required by the

program to run. Figure 2.14 shows a snapshot of the hardware timer. This timer is

22

connected to DIOS 1 (which is connected to the DART) as this processor is used

to download code into the other two processors and also runs the main program.

23

Figure 2.15 show the priorities each processor has for using the local or global

RAM, and other resources connected to the bus.

24

Figure 2.16 shows the programmer which is used to bum the compiled and

synthesized design into the FPGA. The design programmer uses the USB port through

the MasterBlasterTM interface provided by Altera® to burn our three-DIOS-processor

configuration discussed above into the Altera FPGA. An indication is given once the

design has been successfully burned into the chip. Dow the code to be run on the chip is

downloaded using the DIOS SDK (Software Development Kit) shell, which is a UDIX-

like shell. The "nb" command is used to build (compile) the source code of the matrix

multiplication program written in the C programming language. If the compilation is

successful, then an out file with an extension of ".srec" is generated which can then be

25

downloaded into a local or the global memory. It can then be executed using the "nr"

command.

The "nb" command, when used with the —b option builds the program from a

specific memory location. Similarly, the "nr" command, when used with the —x option,

just downloads the program into the processor but does not execute it. This feature is

particularly useful to us as we use the DIOS 1 processor to download the code first into

the local memory of DIOS 2 and DIOS 3 CPUs before we press the reset switch. This

causes the DIOS 2 and DIOS 3 CPUs to start running the code from their starting

memory location, which now makes them wait in a loop until a particular memory

location is set to 1. This happens when DIOS 1 downloads the main controlling program

into its own local memory and then starts running the code. When all the processors have

finished running their programs, they set another flag. The DIOS 1 processor checks this

flag after it has finished running its own code. It then prints out the timing results for the

entire process.

26

CHAPTER 3

PERFORMANCE RESULTS

3.1 Sequential Implementation Results:

Performance results for sequential implementation of the above code are as shown

in Table 3.1 for 8 X 8 matrices having various density levels. These matrices were

produced by hand. The single DIOS processor used employs a hardware multiplier which

requires 16 clock cycles for each multiplication.

Table 3.1 Performance results for sequential implementation

27

The speed-up shown is for a comparison with the conventional algorithm. It

becomes obvious that the performance deteriorates for very dense matrices because of the

required comparisons.

Figure 3.1 Graph of CPU clock cycles versus matrix density (8 X 8 matrices)

Figure 3.1 shows a graph of the CPU clock cycles required versus the matrix

density. Note here that in spite of the increase in density the curve remains almost as a

straight line with the slope only increasing negligibly at certain points. In the case of the

conventional algorithm, the required clock cycles would increase exponentially.

28

matrix multiplication algorithm

The graph in Figure 3.2 shows the speed up obtained by using the above

algorithm, when compared to the conventional algorithm. Here, we observe that as the

density (number of non-zero elements in the matrix) reduces, the speed up increases

exponentially. Typically at 30% density the speed up is around 7.8. The speed up equals

1 at around 88% density and reduces for higher densities as the overhead of comparisons

becomes significant.

Dote that the clock cycles mentioned above include the overhead for post-

processing. However, it does not include the overhead for pre-processing which is done

on the host PC. It also does not include the overhead for initializations required before the

timer starts counting. However, these overheads are not significant. Also the overhead for

29

pre-processing which involves sorting matrix B in row order is not much. The quick sort

algorithm is used to sort Matrix B. Matrix A which is in the matrix market format is

already sorted in the column order as required by the our algorithm

Speed up A: Speed up (with post processing overhead) compared to conventional

algorithm for sequential implementation.

Speed up B: Speed up (without post processing overhead) compared to our algorithm for

sequential implementation.

Speed up C: Speed up (with post processing overhead) compared to our algorithm for

sequential implementation

Table 3.2 Performance results for parallel implementation

The speed up in Table 3.2 is obtained by comparing the clock cycles in the above

table with the clock cycles required by a regular unblocked algorithm used for

30

multiplying dense matrices on a single DIOS processor. The clock cycles required by the

latter dense matrix multiplication algorithm were 89,539.

implementation

From Figure 3.3 shown above we can see that just like the graph in figure 3.1, the

curve of CPU clocks versus the matrix density is almost as a straight line, except that the

slope of the curve in Figure 3.3 is less than that shown in Figure 3.1. This demonstrates

further improvement in performance. This is expected for the parallel implementation.

Similarly, Figure 3.2 shows an exponentially decreasing curve similar to that in

Figure 3.2; however the new curve is steeper than the previous one, which should be

expected.

31

Figure 3.4 Graph of speed up versus matrix density for parallel implementation

Apart from the overheads mentioned for the sequential implementation, the

parallel implementation has several more overheads:

1. The matrix is divided into three equal parts during pre-processing. Elements of

matrix A whose column indices match with the row indices of matrix B are

grouped together and assigned to the same processor. This suffices as a simple

load balancing technique. More advanced techniques, however, can be used to do

a better job at runtime and save on the time required for preprocessing.

2. During the main execution time of the program, the generated elements of the

output matrix are placed in the global RAM. Since each of the three processors is

generating outputs, bus arbitration adds to the overhead. Some overhead is saved

as each processor has the input elements of the matrices in its own local memory.

32

Some overhead could be saved here if each processor could generate its output

matrix in its local memory and then the main processor could sum up all the

results to obtain the final resultant matrix in the global RAM. However, this

scheme could not be implemented due to the lack of on-chip memory resources.

33

CHAPTER 4

CONCLUSIONS

We have presented an algorithm here for matrix multiplication of sparse

matrices. Our algorithm is suitable for FPGAs that have limited resources. The proposed

algorithm has limited memory space requirements and also results in very good

performance. More specifically, the following can be concluded from our results for

matrix multiplication:

1) The effectiveness of the algorithm depends on the sparseness of the matrix, i.e. as

the number of non-zero elements decreases, the number of calculations also

decreases.

2) The algorithm uses extra comparisons that incur an additional overhead that

increases with the number of non-zero elements. However, this overhead is

negligible, as comparisons typically require a single clock cycle as opposed to

floating-point multiplication or addition operations that require several clock

cycles depending on the floating-point unit used.

3) Both the input matrices are stored in the matrix market format and, thus, less

amount of memory is required. The output matrix, however, is generated as a two-

dimensional array. This may consume some space depending on the number of

rows and columns in the output matrix. In the case of the parallel architecture,

multiple output matrices are generated (one for each processor) which are finally

combined to obtain the resultant matrix. Thus, if there are m processors then m+1

output matrices will be generated.

34

4) In the case of the parallel architecture, the bus arbitration also adds an additional

overhead because all three DIOS processors use a shared data memory.

35

APPENDIX A

Source code for Sequential Implementation

This is a 30% dense matrix, i.e. only 30% of the total elements in the matrix are

non-zero valued.

Sequential_30.c

/1**

// Included all this extra declaration for timer -- ALTERA

//**

#define TIMER_ LOAD VAL 0xFFFFFFFF

#define take float as int32(x) (*((int *)(&(x))))

#define take_int32_as_float(i) (*((float *)(&(i))))

np_timer *timer = na_timer1 ;

typedef unsigned long DWORD;

typedef struct

//global variable

int interrupt_count;

36

void MyTimerISR(int context)

{

TimerlSRContext *c;

c = (TimerlSRContext *)context;

c->interruptCount++;

printf("\n(timer #%d!)",c->interruptCount);

interrupt_count = c->interruptCount;

c->timer->np_timerstatus = 0; 	 // write anything to clear the IRQ

}

long GetTickCount()

{

volatile long timerVal;

volatile long timerPeriod;

timer->np_timersnapl = 0; // snapshot

timerVal = (timer->np_timersnapl & Ox0ffff)

+ ((long)timer->np_timersnaph << 16);

return timerVal;

}

void InitTimer()

{

long timerPeriod = TIMER_LOAD_VAL;

//Initialize timer

timer->np_timerperiodh = timerPeriod >> 16;

37

timer->np_timerperiodl = timerPeriod & Oxffff;

//Set timer to continuous

timer->np_timercontrol = timer->np_timercontrol

I np_timercontrol_cont_mask;

+ np_timercontrol_start_mask;

}

int main(void)

{

volatile float a,b;

volatile float res_a;

volatile int a as int b as int res a as into .

volatile DWORD timer_overhead;

volatile DWORD dwStartTick;

volatile DWORD 1TicksUsed,

volatile DWORD our_dwStartTick;

volatile DWORD our 1TicksUsed;

38

39

40

41

42

int *mat 1=(int *)0x10200;

int aBegin,aEnd,bBegin,bEnd;

int *flagl_start=0 *)0x10000;

int *flagl_end=(int *)0x10010;

*flagl_start=0;

for(i=1;i<=maxRowA;i++)

for(j=1 ;j <=maxColB ;j++)

matC_1[(i*(maxCo1B+1))+j]=0;

while(indexA<nonZeroA && indexB<nonZeroB)

{

if(colA[indexA]==-rowB[indexB])

{

aBegin=indexA;

bBegin=indexB;

for(;colA[aBegin] == colA[indexA];indexA++)

{}

aEnd=indexA;

for(;rowB[bBegin] = rowB[indexB];indexB++)

{}

bEnd=indexB;

for(indexA=aBegin;indexA<aEnd;indexA-H-)

for(indexB=bBegin;indexB<bEnd;indexB++)

44

45

46

47

Program on Processor-3

mm3.c — Main program

#include "nios.h"

H**

// Included all this extra declaration for timer -- ALTERA

H**

#define TIMER_LOAD_VAL OxFFFFFFFF

#define take_float_as_int32(x) (*((int *)(&(x))))

#define take_int32_as_float(i) (*((float *)(&(i))))

np_timer *timer = na_elk_timer;

typedef unsigned long DWORD;

typedef struct

{

long interruptCount; // increment with each interrupt

np_timer *timer;

} TimerlSRContext;

static TimerlSRContext gC = {0,0};

//global variable

int interrupt_count;

void MyTimerISR(int context)

{

TimerlSRContext *c;

c = (TimerlSRContext *)context;

c->intemiptCount++;

printf("\n(timer #%d!)",c->interruptCount ;

intemipt_count = c->intemiptCount;

c->timer->np_timerstatus = 0; 	 // write anything to clear the IRQ

}

long GetTickCount()

{

volatile long timerVal;

volatile long timerPeriod;

timer->np_timersnapl = 0; // snapshot

timerVal = (timer->np_timersnapl & 0x0ffff)

+ ((long)timer->np_timersnaph << 16);

return timerVal;

}

void InitTimer()

{

long timerPeriod = TIMER_LOAD_VAL;

//Initialize timer

timer->np_timerperiodh = timerPeriod >> 16;

timer->np_timerperiodl = timerPeriod & 0xffff;

//Set timer to continuous

timer->np_timercontrol = timer->np_timercontrol

I np_timercontrol_cont_mask;

50

51

printf("Hello, from Dios!\n");

//Initialize the timer

InitTimer();

//timber_ overhead, assume no intemipts

dwStartTick=GetTickCount(); /* record start time*/

1TicksUsed=GetTickCount(); /* record end time */

timer_overhead = dwStartTick - 1TicksUsed;

for(i=1;i<=maxRowA;i++)

for(j=l ;j<=-maxColB;j++)

matC[(i*(maxCo1B+1))+j]=0;

for(i=1;i<=maxRowA;i++)

for(j=1 ;j<=maxColB;j++)

matC3 Ri*(maxCo1B+ 1))+j]=0;

//	 InitTimerO;

aStart=GetTickCountO; /* record start time*/

*flag l_start=1;

*flag2_start=l;

while(indexA<nonZeroA && indexB<nonZeroB)

{

if(colA[indexA]==rowB[indexB])

{

aBegin=indexA;

bBegin=indexB;

53

54

REFERENCES

1. A. Amira and F. Bensaali, An FPGA based parameterisable system for matrix
product implementation, IEEE Workshop on Signal Processing Systems
(SIPS'02), San Diego, California, USA, October 16-18, 2002.

2. Anonymous, Numerical Linear Algebra, Computational Science Education
Project, 1995.

3. http://gams.nist.gov/MatrixMarket/ Matrix market sample files.

4. http://phase.hpcc.jp/mirrors/MatrixMarket/fomiats.litml
Matrix market file format explanations.

5. Anonymous, NIOS Hardware/Software programmers reference manual —
Assembly language instruction set, 2001.

6. V. Strassen, Gaussian Elimination is not optimal, Dumer. Math., 13:354-356,
1969.

7. Hossam ElGindy and Yen-Liang Shue, On Sparse Matrix-vector Multiplication
with FPGA-based System, Proceedings of the 10 th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines. (FCCM'02.)

8. C.P. Kruskal, L. Rudolph and M. Snir, Techniques for Parallel-Implementation of
Sparse Matrices, Theoretical Computer Science 64 (1989)

9. http://www.altera.com 	Altera website

55

	Sparse matrix product implementation on field programmable gate arrays (EPGAS)
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Matrix Multiplication on FPGAs
	Chapter 3: Performance Results
	Chapter 4: Conclusions
	Appendix A: Source Code for Sequential Implementation
	Appendix B: Source Code for Parrallel Implementation
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

