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ABSTRACT 

 
A System-on-Programmable-Chip (SoPC) architecture is designed to meet two 
goals: to provide a role-based secure computing environment and to allow for 
user reconfiguration. To accomplish this, a secure root of trust is derived from a 
fixed architectural subsystem, known as the Security Controller. It additionally 
provides a dynamically configurable single point of access between applications 
developed by users and the objects those applications use. The platform 
provides a model for secrecy such that physical recovery of any one component 
in isolation does not compromise the system. Dual-factor authentication is used 
to verify users. A model is also provided for tamper reaction. Secure boot, 
encrypted instruction, data, and Field Programmable Gate Array (FPGA) 
configuration are also explored.   
 
The system hardware is realized using Altera Avalon SoPC with a NIOS II 
processor and custom hardware acting as the Security Controller and a second 
NIOS II acting as the subject application configuration. A DE2 development kit 
from Altera hosting a Cyclone II FPGA is used along with a Secure Digital (SD) 
card and a custom printed circuit board (PCB) containing a second Cyclone II to 
demonstrate the system. 
 
User applications were successfully run on the system which demonstrated the 
secure boot process, system tamper reaction, dynamic role-based access to the 
security objects, dual-factor authentication, and the execution of encrypted code 
by the subject processor. Simulations provided detailed examinations of the 
system execution. Actual tests were conducted on the physical hardware 
successfully.   

 



 

vi 

TABLE OF CONTENTS 

 
CHAPTER 1  PURPOSE AND ORGANIZATION .................................................. 1 

1.1 Motivation .................................................................................................... 1 
1.2 Scope of the Thesis ..................................................................................... 2 

1.3 Organization of the Thesis........................................................................... 2 
CHAPTER 2  SYSTEM PRINCIPLES AND CURRENT WORK ............................ 3 

2.1 Principles of Cryptology ............................................................................... 3 
2.1.1 Privacy / Secrecy .................................................................................. 4 
2.1.2 Authentication ....................................................................................... 6 

2.1.3 Identity .................................................................................................. 8 
2.1.4 Access Control ...................................................................................... 9 
2.1.5 Cryptanalysis ...................................................................................... 11 

2.1.6 Methods of Attack ............................................................................... 11 
2.2 Reconfigurable Hardware .......................................................................... 13 
2.3 The Security Problem and Current Solutions ............................................ 13 

2.3.1 The Security Problem ......................................................................... 14 
2.3.2 The Security Problem: Access Control ............................................... 14 
2.3.3 The Security Problem: Secrecy .......................................................... 16 

2.3.4 The Security Problem: Authentication ................................................. 16 
2.3.5 The Security Problem: The IBM 4758 Solution ................................... 18 

2.3.6 The Security Problem: A Role-Based SoPC Reconfigurable Solution 20 
CHAPTER 3  DESIGN ........................................................................................ 22 

3.1 Threat Model ............................................................................................. 22 

3.2 Design Specifications ................................................................................ 23 
CHAPTER 4 HARDWARE DESIGN ................................................................... 27 

4.1 System Architecture Design ...................................................................... 27 
4.1.1 Hardware Design ................................................................................ 27 

4.1.2 FPGA Design ...................................................................................... 29 
4.1.3 Secrecy ............................................................................................... 32 

4.1.4 Authentication ..................................................................................... 39 
4.1.5 Access Control .................................................................................... 39 

4.2 System Component Design ....................................................................... 40 
4.2.1 SoPC Design ...................................................................................... 40 
4.2.2 Avalon SoPC Components ................................................................. 41 

4.2.3 Designed SoPC Components ............................................................. 43 
4.2.4 Development Platform ........................................................................ 48 
4.2.5 DE2 Sub-Board Platform .................................................................... 50 

4.2.6 User FPGA Configurations ................................................................. 50 
4.2.7 SD Card .............................................................................................. 50 

CHAPTER 5 SOFTWARE DESIGN .................................................................... 52 
5.1 Security Controller Application .................................................................. 52 

5.1.1 Board Support Package ...................................................................... 52 
5.1.2 Software Overview .............................................................................. 54 
5.1.3 Important Functions ............................................................................ 60 



 

vii 

5.2 User Applications ...................................................................................... 62 

5.2.1 Board Support Package ...................................................................... 62 
5.2.2 Software .............................................................................................. 64 

5.3 Encryption Software .................................................................................. 64 
5.4 Ancillary Software ...................................................................................... 66 

CHAPTER 6 RESULTS ...................................................................................... 67 
6.1 Full System Operation ............................................................................... 67 
6.2 Component Operation ............................................................................... 77 

6.2.1 User Bridge ......................................................................................... 77 
6.2.2 Security Bridge ................................................................................... 81 
6.2.3 Secure RAM ....................................................................................... 87 

6.3 Secrecy ..................................................................................................... 87 
6.4 Authentication ............................................................................................ 91 

CHAPTER 7 REVIEW AND IMPROVEMENTS .................................................. 93 
LIST OF REFERENCES ..................................................................................... 97 

VITA .................................................................................................................. 102 



 

viii 

LIST OF TABLES 

 
Table               Page 
 
Table 1. Security Design Goals........................................................................... 24 

Table 2. Hardware Design Goals ........................................................................ 26 
Table 3. System Compromise when an Adversary Recovers Components ........ 36 
Table 4. System Compromise Summary by Case .............................................. 37 
Table 5. Access Control Template ...................................................................... 40 
 



 

ix 

LIST OF FIGURES 

 
Figure               Page 
 
Figure 1. System Hardware, Case 1 ................................................................... 28 

Figure 2. System Hardware, Case 2 ................................................................... 30 
Figure 3. DE2 Main Board FPGA Internals--SoPC ............................................. 31 
Figure 4. Address Map ........................................................................................ 32 
Figure 5. Security Design .................................................................................... 33 
Figure 6. Slave to Reset Source State Machine ................................................. 44 

Figure 7. User Bridge Primary State Machine ..................................................... 46 
Figure 8. User Bridge Secondary State Machine ................................................ 46 
Figure 9. Security Bridge Primary State Machine ............................................... 47 

Figure 10. Security Bridge Secondary State Machine ......................................... 47 
Figure 11. DE2 Main Board ................................................................................ 49 
Figure 12. DE2 Sub-Board .................................................................................. 49 

Figure 13. Security Controller BSP ..................................................................... 53 
Figure 14a. Security Controller Software Flow .................................................... 55 
Figure 14b. Security Controller Software Flow .................................................... 56 

Figure 14c. Security Controller Software Flow .................................................... 57 
Figure 15. User Application BSP......................................................................... 63 

Figure 16. User Application ................................................................................. 65 
Figure 17. The Full System ................................................................................. 69 
Figure 18. Configuration 1 .................................................................................. 72 

Figure 19. Configuration 2 .................................................................................. 72 
Figure 20. Security Fault State ........................................................................... 74 

Figure 21a. Full System Simulation with ModelSim ............................................ 75 
Figure 21b. Full System Simulation with ModelSim ............................................ 76 

Figure 22. User Nios II Instruction Read without Encryption ............................... 78 
Figure 23. User Nios II Data Bus Write without Encryption ................................. 78 

Figure 24. User Nios II Encrypted Instruction Read ............................................ 80 
Figure 25. User Nios II Encrypted Data Write ..................................................... 80 
Figure 26: Configuring the User Bridge ............................................................... 82 
Figure 27: Configuring the Security Bridge ......................................................... 82 
Figure 28: Access Control Test 1 Write .............................................................. 84 

Figure 29: Access Control Test 1 Read .............................................................. 84 
Figure 30: Access Control Test 2 Write .............................................................. 85 
Figure 31: Access Control Test 2 Read .............................................................. 85 

Figure 32. Access Control Test 3 Write .............................................................. 86 
Figure 33. Access Control Test 3 Read .............................................................. 86 
Figure 34. Access Control Test 1, Level 2 .......................................................... 88 
Figure 35. Access Control Test 2, Level 2 .......................................................... 88 

Figure 36. Access Control Test 3, Level 2 .......................................................... 89 
Figure 37. Security RAM Operation .................................................................... 89 
Figure 38. Clearing of Secrets on a Tamper Event ............................................. 90 



 

1 

CHAPTER 1  
PURPOSE AND ORGANIZATION 

 

1.1 Motivation 

 
Computer systems rely on correct execution of applications to provide data and 
services that are used in every aspect of life. Financial transactions, health 
records, mapping services using the Global Positioning System, entertainment 
systems, and real-time interpretation of data for control systems are a few of the 
many pervasive digital services that are relied upon in daily life. However, correct 
execution of code to provide correct answers is not adequate in any scenario in 
which a person or group wishes to intercept, alter, or use that data in ways not 
intended or desired by the creator. 
 
Many systems to obscure, or encipher, plaintext data exist as well as their 
complementary systems to decipher that information. About such methods, 
Auguste Kerckhoffs wrote: 
  
“The cipher method must not be required to be secret, and it must be able to fall 
into the hands of the adversary without inconvenience” [1]. 
 
The purpose of this thesis is to extend Kerckhoffs’s principle to hardware. Is it 
possible to create a deployable embedded hardware system such that loss of 
parts of the system does not compromise the secrets therein? Is it possible to 
have the architecture of the system be public but to still maintain security? 
 
The first application of such a system that readily comes to mind is a military 
application. Loss of mobile, embedded hardware to the enemy can mean loss of 
secret mission data and algorithms, provided the adversaries have resources to 
recover the data. Additionally, these resources must be protected from internal 
misuse due to unauthorized access, be it malicious or not.  
 
As a second avenue of exploration, the ability of hardware to be securely 
reconfigured is explored. In embedded systems, such as in the military example, 
it may be needed to reconfigure the hardware as the mission progress. It may not 
be feasible in terms of power or cost to use separate hardware for each aspect of 
the mission. Can this ability to reconfigure be controlled securely in the same 
manner as the data and processes? 
 
The goal of this thesis is to explore these topics with modern cryptographic 
principles as a backdrop.
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1.2 Scope of the Thesis 

    
This thesis examines a secure, reconfigurable computing system whose 
individual physical components may be intercepted by an adversary after it is 
configured and deployed. This computing system is qualitatively examined in 
terms of modern cryptographic principles. This computing system serves as a 
model or prototype in that simplifications are made to make the system more 
general and manageable in terms of complexity. Cryptographic algorithms are 
reduced to template functions, as there are many methods to achieve the 
cryptographic goals. Physical embodiment of tamper detection and response are 
simplified to a simple user input instead of an actual armoring of the system. The 
goal of the thesis is to explore cryptographic, reconfigurable, and trust concepts 
in breadth. The complexity of this goal precludes further exploration into specific 
cryptographic methods and physically tamper-proof hardware. 
 
The proposed system is realized in hardware and software and tests are 
performed. Results from those tests are presented along with system simulations 
that allow for detailed inspection of the system. 
 

1.3 Organization of the Thesis 

 
Chapter 2 provides the reader with a survey of principles needed to achieve the 
goals of this thesis. Modern cryptographic principles are reviewed, which factor 
into later design concepts. Reconfiguration of hardware is reviewed. The current 
state of security concerns is explored along with solutions. The solutions 
proposed by this thesis are compared to those. 
 
Chapter 3 describes the goals of the hardware system, both cryptographically, 
and in terms of hardware. The adversary is defined. 
 
Chapter 4 describes the design of a hardware system that will meet the goals 
outlined. 
 
Chapter 5 describes the design of software systems running on the hardware 
shown in Chapter 4. 
 
Chapter 6 shows the results of testing the proposed system. 
 
Chapter 7 provides a summary of the findings and explores how to further the 
work presented in this thesis. 
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CHAPTER 2  
SYSTEM PRINCIPLES AND CURRENT WORK 

 

2.1 Principles of Cryptology 

 
In order to later design a basic cryptosystem for use in this thesis, it is necessary 
to first define basic cryptographic concepts. These concepts will be used wholly 
or in part to create a conceptual cryptographic framework for the proposed 
system.  
 
Cryptology is the “scientific study of techniques for securing digital information, 
transactions, and distributed computing” [1]. It is comprised of cryptography, 
which is the study of enciphering messages to protect their content from 
adversaries [2], and cryptanalysis, which is the study of deciphering ciphertexts 
without having knowledge of the key used to make them [3]. 
 
Claude Shannon developed a model for this interaction between cryptology and 
cryptanalysis. Shannon’s Model describes a message sender, a message 
receiver, and an adversary [4]. A plaintext is the original message. The ciphertext 
is the result of transforming the plaintext by some encryption method [5]. The 
sender enciphers the desired message using a key and the message. The 
receiver deciphers the message using the enciphered message and the key [6]. 
In this model, the adversary is assumed to be able to intercept the message and 
to have knowledge of the method of enciphering it, but not have the key [6]. In 
this model, Shannon stipulated two assumptions: (1) the key must be chosen 
randomly from among all possible keys and all keys are equally likely, and (2) the 
adversary understands the cryptosystem but does not have the key [6]. This is 
Kerckhoffs’s principle restated: “The cipher method must not be required to be 
secret, and it must be able to fall into the hands of the enemy without 
inconvenience” [1]. 
 
Shannon proposed that the encryption method be based on some known 
problem that is difficult and that the system should be made secure against all 
known attacks [4]. 
 
Such an arrangement is known as a cryptosystem and it encompasses the 
encryption method, decryption method, plaintexts, ciphertexts and key texts. The 
following sections examine some important details of cryptosystems [7]. 
 
In addition to enciphering and deciphering for secrecy, several other concepts 
are integral to cryptography and extend the basic model just presented. 
Authentication, identity, and access control are integral to system security but are 
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often not first considered in association with cryptology. These concepts, along 
with the dual of cryptography—cryptanalysis, are explored. 
 

2.1.1 Privacy / Secrecy 

 
The concept that first comes to mind concerning cryptology is the concept of 
privacy, or secrecy. Suppose two people, Alice and Bob, wish to communicate 
secretly. In Shannon’s model, suppose Alice is sending a message to Bob and 
Eve is listening. Alice and Bob wish to keep the message private, or secret, so 
they employ a method to encipher the message under some shared key. The 
principles behind this scheme are examined in this section. 
 
First, what does it mean for the message to be secret? An encryption scheme is 
“secure” if “no adversary can compute any function of the plaintext from the 
ciphertext” [1]. 
 
Such perfect security is achievable given some very specific conditions. Perfectly 
secret encryption is achieved in a system such as the Vernam One-Time Pad 
(OTP) [4]. In this system, each bit of the plaintext message is added to a random 
key string that is shared between Alice and Bob. This system meets the definition 
of secure defined above. It suffers from the problem of the key needing to be as 
long as the message, or longer [8]. 
 
To create a more practical system, algorithms are used with a shorter key such 
that Alice and Bob both know the algorithm and the key and are able to encrypt 
the plaintext message with the key to create a ciphertext message that attempts 
to meet the definition of security. 
 
To formalize the Shannon Model, Alice and Bob share a key generated by a 
random function Gen( ) which selects a key randomly from the set of all possible 
keys [1]. Alice performs a transformation on the plaintext using a function 
 

Menc = Enc( M , k )  
 

where Menc is the ciphertext, k is the key, M is the plaintext message, and Enc is 
the algorithm. She then sends Menc to Bob, who finds  
 

M = Dec( Menc , k )  
 

where M is again the plaintext message, Dec is the decryption algorithm, and k is 
the same shared key. This key must be agreed upon in secret between Alice and 

Bob prior to this communication. Eve has access to the message Menc, and Enc( ) 
and Dec( ) but not the key, k. This scheme is known as symmetric key encryption 
because both Alice and Bob use the same shared secret key. 
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Eve intercepts message Menc. It is desired that the algorithm Enc( ) alters M in 
such a way that the definition of secure is met. Because the keys are secret, this 
is known as private key encryption. In military settings, having to meet in person 
to share a key is not considered a burden as this takes place naturally in staging 
areas [1].  
 

In many useful cases, it is important for the key k to be able to be made public to 
simplify key sharing. In this case, Enc( ) and Dec( ) use different keys [9]. Each 
entity has a public key, which is not secret, and a private key, which only the 

entity knows. To send a message to an entity, message Menc 
 

Menc = Enc( M , pk)  
 

is calculated with pk being the known public key of the receiver. This message is 
sent to the entity who computes the plaintext M using his or her private key: 
 

M = Dec( Menc , sk) 
 
Knowledge of the public key gives no information about the private key [9]. In this 
manner, a secret message can be sent to an entity without the entities having to 
establish a secure channel to share the same secret key. This system is known 
as an asymmetric cryptosystem.  
 

How is the data partitioned to be processed by the algorithm Enc( ) or Dec( )? 
There are two schemes: the block cipher and the stream cipher. 
 

In the block cipher, the plaintext message M is divided into sections, known as 
blocks, whose length is defined by the algorithm used [8]. Each of these blocks 
then undergoes a transformation based on the key and algorithm [8]. The goals 
of the algorithm are “confusion” and “diffusion” as proposed by Shannon [4]. The 
property of confusion means “the ciphertext statistics should depend on the 
plaintext statistics in a manner too complicated to be exploited by the 
cryptoanalyst” [4]. The property of diffusion means “each digit of the plaintext and 
each digit of the secret key should influence many digits of the ciphertext” [4]. 
These concepts are central to cryptography. This process is repeated for each 
block in the message. A reverse process is used to convert the ciphertext back to 
the original plaintext. 
 
This process of each block being processed independently is known as the 

electronic code book mode of operation of the algorithm Enc( ) [10]. However, 
this suffers from the fact that any repeating part of the plaintext will appear as a 
repeating segment of the ciphertext and is not desirable [10]. To prevent this, 

Enc() can be computed in a different mode known as cipher block chaining 

(CBC) [10]. In this mode, previous outputs of Enc( ) factor into the key k used for 
that block: each plaintext block has the previous ciphertext block added to it 
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(modulo 2) before the block cipher is done [10]. To get started, the first block 
must have an agreed upon, random value added to it and this is known as the 
initialization vector [10]. This method has been shown to be chosen-plaintext 
secure but not chosen ciphertext secure. An example of a block cipher is the 
popular Rijndael cryptosystem [11]. It allows for block lengths between 128-bits 
and 256-bits in multiples of 32-bits [11]. 
 

What happens if Enc( ) is applied to the same data twice, but with different keys, 
k1, k2? For a symmetric cipher, it turns out that this system is not as secure as 
expected, which would be as secure as a key of twice the length. This is due to a 
cryptanalysis method known as meet-in-the-middle. To increase security, it is 

necessary to use Enc( ) three times with k1, k2, and k3 to avoid the meet-in-the-
middle attack. Triple DES is DES applied three times [12]. 
 
A second type of algorithm is the stream cipher. This is a symmetric 
cryptosystem that works with individual bits such that the output of any ciphertext 
bit is dependent only upon the key and the previous plaintext bit [13]. To 
accomplish this, the key provides an input to a pseudo-random bit stream 
generator whose output forms a running key [13]. This running key is used along 
with the previous plaintext bit to get the current ciphertext output bit [13]. This 
system has the advantages of being simple to implement in hardware and fast 
[13]. A5/1, which is used in GSM telephone transmissions, is an example of a 
stream cipher [14]. Interestingly, a block cipher can be turned into a stream 
cipher by operating it in the output feedback mode [10]. In this manner, outputs 
from the cipher are fed back as inputs to the cipher [10]. 
 

2.1.2 Authentication 

 
The second pillar of cryptology is authentication. How does Bob know that the 
message that he received was the one intended by Alice—that it has not be 
tampered with or altered? Perhaps an adversary pretending to be Alice sent it 
(impersonation attack), or perhaps Alice did send the message but the adversary 
Eve intercepted it and changed it (substitution attack) or sent it again later (replay 
attack) [15]. Given a read-only memory, how can one ensure that it has not been 
tampered with? 
 
The answer to this is authenticated encryption (AE). To understand, the concept 
of cryptographic hash functions must first be defined. A hash function takes 
inputs of arbitrary length and transforms (hashes, digests) them to create an 
output of fixed length [16]. A keyed hash function improves upon this by adding a 
cryptographic aspect such that the output hash depends upon the input message 
and a secret key. A message authentication code, MAC, algorithm is an example 
of this concept. It consists of three parts: a random key generation algorithm, a 
MAC generation algorithm that takes the message and the key and computes the 
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MAC value, and a MAC verification algorithm that takes the message in question 
and the key and performs the MAC generation function again and compares the 
result with the MAC value provided [17]. To work, it must be hard to forge a MAC 
value on a new text [17]. 
 
Authenticated encryption can now be explained. Bob can ensure that the 
message that he received was from Alice and has not been tampered with by the 
following method [18]: 
 

1. Alice and Bob share secret keys k1 and k2. 
2. Alice makes a message M. 
3. Alice encrypts M under key k1 using some cryptosystem to produce Menc. 

4. Alice computes the MAC generation S of Menc using Menc and k2. 

5. Alice sends the pair ( Menc , S ) to Bob. 
6. Bob computes the MAC generation of Menc using k2 and checks that it 

matches S. 

7. Bob decrypts Menc with k1. 
 
Now Bob is assured of the integrity of the message, of the identity of the sender, 
and of the secrecy of the transmission in as much as can be guaranteed by the 
cryptosystem. 
 
Now, if Eve intercepts the message for Bob and replaces it, when Bob computes 
the MAC verification for the message using the shared secret key with Alice, the 
value will not match the MAC value presented on the message, as Eve does not 
have the key required to generate the correct MAC value. Although useful, this 
method has several problems: 
 

 The MAC has problems in multi-user settings. The MAC is not publically 
verifiable and transferable—each verifier must have the secret key, so just 
because Bob verifies his received MAC value, he is not assured that all 
other receivers will also come to that answer [1]. 

 The MAC does not allow for the condition of non-repudiation [1]. The 

sender and the receiver could later disagree about k2 without any way of 
proving that they shared the k2 key for that message [1]. 

 
This process is adapted for public-key cryptography [1]. It works as follows: 
 

1. Alice generates an asymmetric key-pair and publishes the public key. 
2. Alice “signs” the message by a signing algorithm that takes the message 

and Alice’s private key and produces a single value known as the 
signature.  

3. Alice appends the signature to the message and sends it to Bob. 
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4. Bob verifies the signature by using a verification algorithm that takes the 
message, Alice’s public key, and the signature and outputs a true if the 
signature is valid for that message and false if it is not. 

 
Notice that the message in this case is not encrypted, so this scheme forms only 
a signature. How can this be added to an encryption scheme to achieve a system 
similar to encrypt-then-MAC? 
 
A first guess would be to encrypt-then-sign. This has a problem in multi-user 
settings as described by [19]. Suppose that Alice wants to send a message to 
Bob. Alice encrypts the message with Bob’s public key, and then makes a 
cryptographic hash of the encrypted portion using her private key. Now she 
appends this to the message and sends it to Bob. Now suppose that Charlie, 
who is also a user of the system, intercepts the message. He strips the signature 
off, runs the encrypted part through his signing algorithm, and then forwards it to 
Bob claiming the message was from him, even though he does not even know 
what is in the message. Bob cannot confirm that this did not occur. One solution 
is for the encrypted part to contain text that enumerates the sender and the 
receiver. However, if there is only one sender and one receiver, then encrypt-
then-sign is secure [19]. Multiusers should, when encrypting data, include the 
identification of the sender. When signing data, they should include the identity of 
the receiver with the signed message. Message receivers should check the 
identity of the sender and the receiver and if it does not match what is expected, 
reject the message [19]. This thesis uses encrypt-then-sign with only one 
potential sender, so it is secure under the two-person model. 
 

2.1.3 Identity 

 
In the cryptographic model presented, how can Bob ensure that he is in 
communication with Alice? Alice is referred to as the claimant as she is alleging 
to be Alice and Bob is the verifier as he engages Alice in a protocol to ensure her 
identity [20].  
 
An identity verification protocol is a scheme used to provide entity authentication 
between parties [21]. It can be unilateral or mutual [21]. Entity authentication is a 
process by which the claimant proves her identity to the verifier [22]. This can be 
based on something the claimant knows, something the claimant possesses, or 
something inherent in the claimant [22]. Passwords are an example of something 
known, a smart card is an example of something possessed, and biometrics are 
an example of something inherent [22]. This proof is known as credentials [22].  
 
One straightforward protocol that Bob can employ is the challenge-response 
identification protocol. In this protocol, Bob presents Alice with a question that 
changes over time, and she answers the question to prove her identity [20]. This 
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relies on Alice and Bob having a shared secret prior to this protocol. One simple 
way to do this is for Bob to send Alice a number encrypted under their shared 
key, and Alice finds this number by decrypting the message. She then 
increments the number by one and sends it back to Bob after encrypting it again 
with the key. Bob decrypts the second message and confirms that the number he 
originally sent was correctly incremented. In this manner, if Eve attempts to 
record a message in transient and replay it later, Bob immediately detects it. Bob 
can also send a sequence number expecting the next value, or even the current 
time [20].  
 
Perhaps Alice gave her key to a fourth entity. How can Bob ensure that he is in 
communication with Alice given this possibility? Without a physical tie to Alice, it 
is impossible to establish this fact. Biometrics address this problem by making 
credentials based on physical traits or behaviors [23]. 
 

2.1.4 Access Control 

 
The fourth aspect of security is the concept of access control. In a system with 
shared resources, it is important to specify which entities have access to which 
resources and to further specify the nature of that access. This allows the system 
to meet security goals such as confidentiality, system integrity, and to prevent 
certain attacks, such as denial of service [24]. Access control can be defined as a 
“security function that protects shared resources against unauthorized access” 
[24]. In the language of security, those resources are called objects and the 
entities accessing, or attempting to access them, are called subjects [24].  
 
For any system that is to employ access control, it is necessary to have a method 
to describe how subjects are allowed access to objects. This is known as the 
access control policy and it can take several forms depending on the goals of the 
system [24]. The form of the description is known as the access control model 
[24]. The way in which this policy is expressed determines how flexible the 
system is to future changes and how easy it is for one subject to delegate rights 
to another subject [24]. Additionally, the type of model used may make proving 
security concepts easier as well as making the inspection of the policies more 
expedient [24]. 
 
One type of model is known as the matrix model [24]. In this model, the policy is 
described by a matrix. Subjects are listed in the rows and objects are listed in 
columns [24]. Each entry represents the permission that subject has with that 
object [24]. When using models, one key goal is to “prove safety” which means to 
determine if access rights are granted to unauthorized subjects [24]. 
 
An object-centric listing can be obtained by use of an access control List which is 

a list of pairs for each security object: ( s , ( r1 , … rn ) ) which lists each subject 
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and the rights of that subject on the object for which the pair refers [24]. This can 
awkward for systems where subjects can delegate rights to other subjects [24]. 
 
A subject-centric listing can be obtained in a similar manner by use of the 

concept of a capability [24]. A capability is a pair ( o , ( r1 … rn ) ) which lists each 
object in a system and the rights that the subject to whom the pair refers has 
[24]. This is also a type of credential [24].  
 
More specifically, a credential is “a token issued by an authority that expresses a 
certain privilege of its bearer” [24]. One advantage is that some credentials can 
be verified off-line [24]. 
 
Besides the matrix model, another way to express the access control policy is the 
role-based access model [24]. In this representation, all subjects are assigned to 
roles and then the roles have rights to objects assigned to them [24]. By this 
indirection, easier policy management is possible as it is possible to see by 
inspection what rights a subject has. In addition, this reduces entry errors [24]. 
For example, in military settings, there might be the roles of unclassified, 
confidential, secret, and top secret. Subjects could be assigned to these roles, 
and inspection of the role label applied assures that the correct rights are 
established for the user, if the roles and their objects are associated correctly. 
 
Finally, the access control policy can be expressed in terms of the information 
flow model [24]. Under this system, information is tagged with security labels. 
Subjects can read from lower levels, read and write to their own level, and only 
write to higher levels [24]. In this manner, information can only flow to equal or 
more privileged subjects. This is used in need-to-know scenarios such as military 
applications.  
 
Having an access control policy that can be represented in a detailed, 
understandable, and mathematically representable way is only the first 
precondition for having access control. The second is an enforcement 
mechanism [24]. This entity is located between the subjects and the security 
objects and has the ability to allow or disallow access [24]. To do this, it is 
comprised of a part that can inhibit access and a part that determines if the 
requested access complies with the access control policy [24]. This second part 
is known as the decision function [24]. In order to prevent a compromise of 
security, this part must provide complete mediation—it must intercept all 
accesses to the objects [24]. This is easier to accomplish in centralized systems 
[24]. Together, these components form an authorization architecture [25]. 
 
The concept of access control is central to the hardware design of the system 
described in this thesis and is revisited frequently. 
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2.1.5 Cryptanalysis 

 
Cryptanalysis is the process of deciphering an encrypted message without 
having the key [3]. One must consider the strength of the adversary attempting to 
do this in order to form a threat model [26]. Who are the adversaries, what 
access do they have to the different parts of the system and what are their 
resources? [26]. This will determine the success of the attempted cryptanalysis 
for a given system. 
 

2.1.6 Methods of Attack 

 
The following is a brief description of attacks that are used to gain information 
about a plaintext that has been encrypted to form a ciphertext and it is assumed 
that the key is not known.  
 

Exhaustive key search: the attacker tries every possible key for Dec( Menc , k ) to 
find an expected plaintext value [27]. To resist, the cryptographer should use 
long keys, change keys often, eliminate known plaintexts, and use cipher block 
chaining [27]. 
 
Dictionary attack: the adversary enciphers an expected plaintext with every 
possible key and stores this exhaustive list as a look up table [28]. 
 
Denial of service: the adversary makes repeated requests to a system such that 
it does not have time to respond to legitimate access [29]. 
 
Code book attack: The adversary collects plaintext-ciphertext pairs for analysis of 
future messages. This can be avoided with cipher block chaining [30]. 
 
Replay attack: The adversary records a communication and plays it back later 
[15]. Authentication and challenge-response protocols can be used to against 
this. 
 
Man-in-the-middle: A person intercepts a message and then can alter it, replay it, 
or learn its contents [31]. Authenticated encryption can be used against this 
method. 
 
Impersonation attack: an adversary attempts to assume the identity of a 
legitimate entity in a system [32]. Authenticated encryption and identity 
verification protocols are used to prevent this. 
 
Chosen ciphertext, or adaptively chosen ciphertext attack: the attacker has the 
ability to choose a ciphertext and perform the decryption algorithm on it using the 
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secret key. He does not know the key. In the adaptive version, his choice of new 
ciphertexts can come from previous trials [33]. 
 
Chosen plaintext, or adaptively chosen plaintext attack: the attacker can choose 
a plaintext to be encrypted using the secret key, but does not have the key [34]. 
In the adaptive version, new choices for the plaintext are based on previous 
trials. 
 
Adaptively chosen plaintext and ciphertext: the attacker can do both chosen 
ciphertext and chosen plaintext at the same time and use the results for future 
trials [35]. 
 
Linear cryptanalysis: the attacker “studies probabilistic linear relations between 
parity bits of the plaintext, the ciphertext, and the secret key” [36]. 
 
Differential cryptanalysis: a general technique for studying symmetric 
cryptographic systems and focuses on the differences as they evolve through a 
cipher system [37].  
 
Actual physical attacks can be characterized by who attempts them and what 
access they have. One classification is clever outsiders, knowledgeable insiders, 
and funded organizations [26]. The number of systems available for destructive 
testing is also important along with cost of tools and time necessary [26]. Here is 
a list of physical attacks: 
 
Environmental attack: cooling the system, heating the system, applying 
unexpected inputs to the system, or altering the system’s time functions are used 
to attempt to learn secrets from the system [26]. 
 
Electromagnetic / power attack: observation of electromagnetic radiation or the 
power used by the system can help the attacker infer information about the 
system [38]. 
 
Fault injection: an electrical fault can be injected into the system to get it to a 
state not intended by the designer [39]. 
 
Data remanence: some computer memories retain state if cooled, even if power 
is removed [40]. 
 
Software attacks: these attempt to exploit the system security by software 
means: buffer overflow, unexpected inputs, misinterpretations of inputs, using 
data at a time much after it was checked, abusing privileges, and accessing 
undocumented functions [26]. 
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The cryptosystem presented in this thesis will be referenced against this list of 
attacks to enumerate which ones are considered and modeled and which are 
not, in order to define the bounds of what can be expected from the proposed 
system. 
 

2.2 Reconfigurable Hardware 

 
Another goal of this thesis is to explore reconfiguration as part of a secure 
embedded system. To accomplish this, an FPGA that is under control of the end 
user is part of the system.  
 
FPGAs accomplish custom functions via use of reconfigurable interconnect to a 
set array of fixed hardware elements. Take, for example, the Altera Cyclone II. It 
has a large array of Logic Elements (LEs) that are small combinatorial logic 
blocks that are optimized to perform synthesized logic functions [41]. These 
consist of a Look-Up-Table (LUT) that is a function generator of four inputs, a 
programmable register, inputs and outputs to row and column interconnects, and 
various ancillary logic [41].  
 
LEs are connected to each other and other on chip devices via a programmable 
interconnect to realize the system as synthesized, placed, and routed by the 
Quartus [42] tool. This interconnect, as with all programmable aspects of the 
Cyclone II, is configured based on SRAM memory cells [41]. These cells are 
loaded with the desired function during FPGA programming. Programming is 
accomplished by serial input to predefined pins and must be done on each power 
cycle.  
 
The Cyclone II also has configurable embedded memory blocks, PLL blocks, 
multipliers, and Input-Output Elements (IOEs).  
 
The Cyclone III LS provides advanced security features relevant to this thesis. It 
allows a 256-bit volatile key to be stored internally [43]. This key is used to 
decrypt the configuration file for the device. The configuration file is encrypted 
with AES-256. Tamper detection zeros the key. The key is maintained between 
power cycles by a battery, similar to the concepts in the IBM 4758. 
 

2.3 The Security Problem and Current Solutions 

 
Having reviewed a basic cryptographic model that includes secrecy, 
authentication, and access control and having reviewed principles of 
reconfigurable hardware, it is possible to define the current state of security 
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problems and to show examples of systems that are designed to solve those 
problems. Then, the design in this thesis can be compared to that work.  
 

2.3.1 The Security Problem 

 
Computer systems process information that is valuable to the user and must be 
protected. In addition, this information may come to the user from a second party, 
or may go to a second party; in either case, it is necessary to be able to ensure 
the source of the information and to ensure that it has not been tampered with. 
Further, a system may need to attest to another system that it is in a known-good 
state and to convince itself of that fact before operating fully. Computer viruses, 
including malware, can infect systems and compromise these goals. In addition, 
an entity may physically attack a system to acquire the system’s valuable 
information or to change it to operate in an abnormal manner. The same 
problems apply to smaller embedded computer systems. For example, consider 
the case of downloadable content for mobile phones. How can the user know 
that the application cannot access data that the user wishes to keep private? 
How can a content provider know that a user platform is not duplicating data that 
was trusted to not be duplicated? Conversely, how can a user know that 
transactions he or she wishes to perform on a remote machine are occurring 
correctly and that the machine is in an untampered state? As embedded systems 
continue to increase in power and run applications that only a full computer could 
run a few years ago, the need to extend security developed for full platforms to 
embedded systems will be needed. Consider finally the case of military hardware 
that could fall to an adversary. It should not provide secrets even it is physically 
compromised and should not be electronically repurposed for unauthorized use. 
 
To solve these problems, multiple hardware and software solutions are 
employed. This section covers ones of specific interest to this thesis. 
 

2.3.2 The Security Problem: Access Control 

 
Section 2.1.4 covers the basic principles of access control. Of interest to this 
thesis is role-based access control (RBAC). The concept of a role-based access 
control dates to the 1970s in multi-user, multi-application systems [44]. A 
general-purpose RBAC was generalized by [45]. They note three guiding rules: 
first, a subject can only execute a transaction if the subject has been assigned a 
role (or selected one) [45]. Secondly, a subject’s active role must be authorized 
for the subject [45]. Thirdly, a transaction may only be done by a subject if 
authorized by the subject’s role [45]. Note that roles are different from groups in 
that a group is a collection of users where a role is a collection of permissions. 
[46]. Role-based access control can also have advanced descriptions that allow 
for mutual exclusion so that entities cannot have overlapping roles [44]. 
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Additionally, roles can inherit from parent roles [44]. RBAC can be applied to 
applications to control their access to application data instead of embedding 
specific code in specific locations to control that access [45]. This can be done in 
two ways: (1) roles are assigned with permissions to execute entire programs, or 
(2), roles are assigned with permissions to execute specific functions [47]. RBAC 
has been studied extensively since the 1990s and was standardized in a 2004 
NIST standard based on [46]. 
 
Beyond the abstract concept of RBAC, general access control is commonly used 
to prevent execution in one context from accessing memory regions allocated to 
another context [48]. Hypervisors are designed to support memory separation 
between guest operating systems and between the hypervisor and the guests 
[48]. The Hypervisor Xen is an example of this [48]. The actual mechanism of 
separation with Xen is very complex, with multi-level page tables where each 
table can have 1024 entries [48].  
 
Memory can be monitored for unusual operation in the scheme of intrusion 
detection, then the system could react, and this forms a type of access control. 
Proposed in [49] is a scheme whereby the code compiler identifies what areas of 
memory could be changed by the code and under what conditions, and then 
conveys that to the hardware for enforcement. This is called dynamic access 
control [49]. 
 
General access control is a necessary precondition for establishing a trusted 
path [50]. Suppose that a user is to enter a password and to interact with a 
screen that shows banking information. It is necessary to be able to isolate 
systems to ensure that a trusted path can be made between the program and the 
peripheral—in this case a keyboard and a screen. Additionally, take the case of a 
modern motherboard. A CPU connects to memory through a north bridge and to 
slower I/O through a south bridge. Peripherals can access memory directly 
through direct-memory-access (DMA). For example, [51] describes the case of a 
network card accessing memory intended only for the graphics processor. A 
compromised driver can change the memory mapped I/O (MMIO) region of a 
device to overlap another device so that it can intercept data [50]. For example, a 
display could be sent to a network card [50]. Hypervisor design is suggested that 
provides isolation and prevents these attacks [50]. 
 
An ARM processor with TrustZone technology is designed for integrated access 
control throughout its processor, bus system, and peripherals [52]. The design 
goal is to provide total separation between a trusted execution context and an 
untrusted execution context [52]. Objects in the unsecured context cannot access 
objects in the secured context [52]. Two extra bits are added to read and write 
signals on the system bus to indicate which context the system is operating in 
and memory has an extra bit added to it to indicate which context is in use [52]. 
In addition, some processors have extensions that allow one core to serve in 
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both contexts in a time-sliced manner [52]. Careful attention is paid to objects 
that are used for debugging in order to control their access [52]. 
 

2.3.3 The Security Problem: Secrecy 

 
Both data and code may be made secret. A platform may execute code stored in 
a secure area [26]. The encrypted code may be stored in a public location and 
decrypted prior to execution by the processor [26]. Alternatively, only key parts of 
the code may be encrypted [26]. The problem of code encryption is difficult [26]. 
This is because the code should be enciphered with a stream cipher or block 
cipher operating in cipher block chaining mode as the message space for 
processor code is small and patterns would easily appear in the ciphertext. 
However, branches in the code and re-execution of segments of the code make 
synchronizing the blocks of the running key difficult. Data can be stored as 
encrypted using standard encryption methods. 
 

2.3.4 The Security Problem: Authentication 

 
The terms “secure boot” [53], “trusted computing,” and “trusted platform module” 
occur often in computer security literature. These all relate to the concept of trust. 
“Why should Alice trust computation on Bob’s machine?” [26]. This question is an 
extension of the cryptographic concepts of secrecy and authentication as it 
applies to computation. In addition, how can a computer system detect changes 
to itself? 
 
The answer to this is to create trust. Trust is defined by the Trusted Computer 
Group as “An entity can be trusted if it always behaves in the expected manner 
for the intended purpose.” Computers could earn our trust by being able to 
“strongly identify themselves” and to “strongly identify their configuration” [54]. 
The first part comes from using asymmetric cryptography with the secret key 
“strongly tied” to the platform and the second part comes from making 
cryptographic hashes of the state of the machine [54]. 
 
To accomplish those two goals, a Trusted Platform Module (TPM) can be added 
to the system. This module, with specifications defined by the Trusted Computer 
Group, and the system, provide three roots-of trust and a method to keep track of 
the state of the system: 
 

1. Root of Trust for Measurement (RTM) is a computation engine that makes 
reliable integrity measurements [55]. This is usually done by the system’s 
normal computation engine [55]. 

2. Root of Trust for Storage (RTS) is a computation engine that maintains  
digests of the state of the system [55]. This is stored in the TPM [55]. 
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3. Root of Trust for Reporting (RTR) is a computation engine that can report 
the contents of the RTS reliably [55]. This is integrated into the TPM [55]. 

4. Platform Configuration Registers (PCR) are a set of registers that are 
cleared on reset. When written to, they take the current value and 
combine it with the new value [54].  

 
How can these elements be used to establish trust in a computer? The process 
of a secure boot provides a solution. In this process, a “chain-of-trust” is built with 
its roots in the hardware TPM [54]. The chain-of-trust describes the integrity of 
the boot process and program loading.  
 
What does a TPM measure to keep track of the state of the system so that it can 
attest to it? Although code execution changes the state of a platform, and 
attempting to record these dynamic changes could be a goal, the best means of 
proving the system state is to do a cryptographic hash of code before it executes 
and to do this for every piece of code that loads during the boot process and to 
track these through a secure boot process [56]. This process was first described 
by [53]. This works by always checking code before it is executed. This could be 
done using the TPM in the following manner: on reset of a system, the PCR is 
cleared. A measurement is made of the first code segment using RTM. This 
value is checked against a list that has been signed by an authority (the 
authority’s public key must reside in the system to do this) [56]. If it is acceptable, 
then that code segment is loaded and executed [56]. It then makes a hash of the 
next piece of code that is to be loaded and adds this to the PCR, which takes it 
and combines it with the previous hash [56]. If an attempt is made to load 
unauthorized code, then the system halts [56]. The current value of the PCR can 
then attest to a chain of certified software loads. By making it through the boot 
process, the system has demonstrated that it is running in a trusted manner [56].   
 
TPMs can also “seal” data by a process of withholding the decryption keys for a 
memory block or similar until the PCRs are in a specific state. In that manner, the 
data cannot be read until the system is in an exact state as required by the 
designers [54]. Microsoft’s BitLocker seals the keys used to encrypt the hard 
drive and to authenticate it. They are sealed to the state of the PCR. 
 
To accomplish all of these goals, a TPM has key generation ability based on a 
true random number generator [54]. It also has a non-volatile monotonic counter 
that helps to prevent against replay attacks [54]. The TPM must be able to 
demonstrate its identity and to maintain secrecy of keys and this is accomplished 
with the RTS and the RTR. 
 
How does this concept of secure boot and state measurement apply to 
reconfigurable FPGA hardware? In [55] a system is proposed that consists of an 
FPGA that has three sections: a static section that interfaces to passive TPM 
functions and checks reconfiguration streams, a fixed section that is user-defined 
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to interface with external hardware, and a dynamically reconfigurable section of 
the FPGA that is located in the fixed section [55]. Outside the FPGA is a trusted 
area called the Trust Block that has an initialization ROM configuration of the 
FPGA along with passive TPM style registers. The ROM initializes the FPGA to 
describe the static sections and to clear the fixed area [55]. The static area 
evaluates and checks the user’s configuration data for compliance before 
allowing it to load [55]. Also, PCR registers are used to track the state of the 
FPGA with special consideration given to reconfiguration [55]. Unlike normal 
PCRs, these PCRs reset when the system loads a new configuration as no trace 
of the previous is left on the system [55]. They also propose a system that 
integrates the TPM functionality completely into the FPGA and assumes an 
FPGA that can be partially reconfigured [57]. They assume a user application on 
the FPGA such as a microprocessor and cite the benefits of not having the TPM 
be a separate entity. Trust is likewise derived from examination of the FPGA 
bitstream. Special consideration is given to how to maintain secrecy of the TPM 
information.   
 

2.3.5 The Security Problem: The IBM 4758 Solution 

 
The IBM 4758 secure co-processor is one example solution to the security 
problems outlined and provides an excellent example of a complete system 
designed with security inherently.  
 
The goals of the IBM 4758 encompass those defined previously and expand on 
them:  
 
1. To provide physical armor to prevent tampering by an adversary [26]. 
2. To protect designated data from the adversary given the fact that he has 

access to part of the system. Protection of data means ensuring that the data 
is secret and authentic [26]. 

3. To prove code is executing in a correct environment [26]. In this manner, 
multiple parties who have differing motivations can participate in a 
computation securely [26].  

4. To possibly provide secrecy of the code executing on the system [26]. 
5. To be general purpose [26]. 
6. To support multiple operating systems [26]. 
7. To support multiple vendors [26]. 
8. To allow for security in the presence of mutually untrusted parties [26]. 
9. To be reconfigurable [26]. 
10. To be easy to update [26]. 
11. To allow for updates to the cryptographic engine [26]. 
12. To ensure secrets go away when under attack [26]. 
13. To ensure secrets start out secret [26]. This means careful consideration of 

the deployment of the system from factory initialization to end use. 
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14. To ensure secrets remain secret even in the presence of a software attack 
[26]. This is a result of number (8) as code running on the system may have 
been designed with different motivations. 

 
It uses the concept of secure boot to defend against software attacks [26]. As 
with the general system that is improved with the addition of a TPM, the IBM 
4758, upon reset, executes code from an initial, trusted space that cannot be 
altered [26]. This code then certifies the next segment of code that is to be 
executed and passes control to it [26]. The first section of code cannot be 
reached again without resetting the device. The second segment of code 
executes, checks the integrity of the third layer of code, and passes execution to 
it. Likewise, this second segment of code cannot be reached again without a 
system reset, which causes the entire process to start over [26]. The access 
control policy of the platform uses the boot stage to decide what accesses are 
allowed [26]. To ensure that the system cannot be tricked by software into 
operating as if it were in a lower, more privileged stage, a hardware counter, 
called the trust ratchet, is incremented at each step and cannot be rolled back 
without a system reset [26].  
 
Concerning physical attacks, tamper response refers to how a system responds 
to a detected tamper event. The IBM 4758 system employs tamper reaction in 
the form of sensor circuits that could detect a tamper event and a system that 
zero secrets and that takes the system off-line [26]. These tamper events include 
physical penetration, alteration of expected electrical inputs, and changes in 
temperature [26]. 
 
Beyond the mechanics of the device itself, the deployment model of a system is 
a key factor to the system’s design and overall security as well as complexity. 
How is the device initialized at the factory [26]? How is it transported to the user 
[26]? How is code maintenance done [26]? Is it possible to reuse the device for 
another purpose [26]? Can the system be audited [26]? How is software 
developed for it [26]? Can the device be exported [26]? Is the device secure 
enough for the environment [26]? Is it feasible and robust [26]? What levels of 
compromise should be assumed [26]? Will it need updates [26]? These factors 
were carefully considered in the design and deployment of the IBM 4758. 
 
Many of these design parameters can be qualified by proving that the system 
meets the FIPS 140-2 standard. FIPS 140-2 [58] is a standard that defines what 
it means for a security device to be secure. The IBM 4758 is a level four system 
and has the following characteristics: it resists the highest level of physical 
attacks, all cryptographic functions are performed in a protected envelope, and it 
is intended to be used in physically unprotected areas [58]. 
 
The IBM 4764 represents a later entry into the market. The IBM 4764 is a PCI-X 
based secure co-processor that performs high-speed cryptographic functions and 
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is also certified at FIPS 140-2 Level 4 [59]. It has an IBM PowerPC 
microprocessor [59]. It also has hardware for DES, Triple DES, AES, hashing, 
and public-private key algorithms [59]. A secure clock and a hardware random 
number generator are also provided [59]. Like the IBM 4758, it clears its secrets 
on detection of a tamper event [59]. Typical applications are anywhere high-
speed data encryption and signing are needed that may be traced to trustworthy 
hardware [59]. 
 

2.3.6 The Security Problem: A Role-Based SoPC Reconfigurable Solution 

 
The purpose of this thesis is to design a system that could be used as a template 
for a secure, reconfigurable computing platform. At a high level, such a system is 
comprised of two parts: one part that controls all security aspects of the system 
and is not user alterable, and a second part that is a user area, which can run 
user applications, both hardware and software. Additionally, this user area could 
be reconfigured in hardware while in use. This system uses cryptographic 
principles to make the system secure. The system employs a role-based access 
model that would make it well suited for military applications. The system divides 
secrets between hardware components such that loss of part of the system 
would not provide information about the data stored on that part. It offers a dual-
authentication system to authenticate the user. 
 
This thesis proposes a system that draws on the principles and previous 
solutions described and adds to them. A system is proposed that has the 
following features: 
 

 Hardware-enforced RBAC: the system will determine access control 
based on the precepts of RBAC. The access control is flattened so that it 
can be described in a simple matrix of subjects vs. objects. Inheritance 
and mutual exclusion can be allowed for by direct description in this 
simple matrix; in other words, this will not automatically occur. This access 
control ensures that security objects (peripherals) are adequately isolated 
from each other and trusted paths. The hardware enforcement will be 
address-based so that it can control access to a device but does not 
perform semantic inspection of data that being transacted. General access 
control to the entire platform is provided by a dual-authentication system 
of a password and a key-card. 

 Reconfiguration: The system will support reconfigurable hardware. 
Descriptions of the hardware will be on a key-card and will be encrypted. 
The platform will authenticate and decrypt the configurations before 
loading them. A reconfigurable area of an FPGA is assumed while 
maintaining an immutable area. 
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 Context switching: As part of reconfiguration, the system will allow 
commands to be received that will instruct it to reconfigure in a secure 
manner using data from the key card. 

 Computation: The system will use a soft-core processor as an example of 
a user-defined computer system. 

 Secrecy: The system will be designed with consideration of physical 
recovery by an adversary of different parts. Data will be encrypted so that 
recovery of individual parts does not provide useful information. The 
processor can directly encrypt and decrypt instructions in a simplified ECB 
model, and can do the same with data. 

 Trust: The system will provide a simple model to attest its trustworthiness 
to the user application. 

 System on Programmable Chip (SoPC): The system will be designed 
using SoPC technology. 

 Tamper reaction: the system will model a tamper event with a push-button 
and will clear its secrets. 

 Authentication: configuration data signatures are checked before loaded. 
The user will enter a password and a key card to use the system. 

 User-initiated data secrecy: A unique system whereby each user has the 
ability to selectively encrypt and decrypt data with keys that are not related 
to the board itself is added. 

 Deployment: A detailed deployment model and threat model will be 
presented. 

 
Chapter 3 defines these goals specifically. 
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CHAPTER 3  
DESIGN 

 
This section defines the threat model that the proposed system, when fully 
implemented, is designed to resist. Specifications of the system are also given. 
 

3.1 Threat Model 

 
To understand the system, it is necessary to understand the threats that it is 
designed to resist. The thesis system has simplifications to make implementation 
more manageable. The threat model assumes that a full embodiment of the 
system is being attacked.  
 
The proposed system is designed around the following types of attackers:  
 

 Funded organizations who can uncover any secrets hard-coded in the 
silicon. They cannot overcome the tamper-detection and zeroing system. 

 Knowledgeable insiders who develop user software applications. Although 
this system allows the user to develop hardware and software, the system 
is only designed to resist user software attacks. User hardware attacks are 
not considered and present an interesting area of study. 

 
The proposed system assumes the following time-line: 
 

1. The hardware is in a safe place when the user accesses it and inserts the 
key card. The hardware remains in the safe place during the check of the 
key card and the loading of the user application. 

2. The key card is removed and the system is deployed to the field. In this 
scenario, run-time user reconfiguration is not allowed. Run-time user 
reconfiguration is only allowed while operating in the safe area as it 
requires the key card, which is no longer with the system. 

3. The system operates in the field and is captured. 
4. The system is attacked and tamper-detecting circuits zero the secrets. 

This could be easily extended to zeroing the entire FPGA, in which no 
information about the purpose of the FPGA could be found, but that is not 
implemented in this thesis. 

5. All information that remains after a tamper reaction event is available to 
the attacker. 

 
Two other cases are also considered. First, the key card becomes available to 
the attacker for whatever reason, and secondly, the key card and the running 
system are captured at separate times. The estimated system responses to 
these cases are examined in Table 3. 



 

 23 

3.2 Design Specifications 

 
The following two tables enumerate the thesis specifications. Table 1 lists all of 
the cryptographic concepts reviewed in Chapter 1 in one column, and then lists 
the specification for that concept. The specification may appear in one of two 
columns. The first column lists the specification without qualification. The second 
column lists a “Simplified Design Goal” which is a simplification to make the 
thesis scope manageable. If a specification is not listed next to a concept, this 
indicates that it is not in the scope of this project. Table 2 is in the same format 
and lists the goals of the hardware system as first envisioned along with 
simplifications as needed.  
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Table 1. Security Design Goals 

Cryptographic or Security 
Design Concern 

Design Goal  Simplified Design Goal 

Cryptosystems Use standard cryptographic functions Provide template functions 
for standard cryptographic 
functions 

Compromise model Any secret stored on a piece of hardware is 
encrypted with a key held by the remaining 
parts of the system. 

 

Symmetric key system 128-bit block cipher Provide template functions 

Asymmetric key system Full system that uses symmetric keys with 
public-private keys to speed decryption 

Provide template function, 
only use public-private keys 

Stream cipher   

Electronic code book mode Avoid ECB Note where used 

Cipher block chaining mode Use CBC Note where it should be 
used 

Multiple encryption on data Allowed as needed  

Authenticated encryption Encrypt-then-sign Provide template functions 
for encrypt-then-sign ( valid 
for a two-party system) 

Identification protocol: passwords Use as part of identification protocol  

Identification protocol: challenge-
response 

Use challenge-response for any key-fob 
tokens 

Use passive token 

Identification protocol: biometrics   

Access control policy: access 
matrix 

Develop an access control policy 
expressible in a matrix 

 

Access control policy: role based Allow for four roles: unclassified, 
confidential, secret, top secret 

Use three roles: level 1, level 
2, level 3 

Access control policy: information 
flow 

  

Complete Mediation The access mechanism should intercept 
and control all accesses 

 

Data is secret Data stored on system is encrypted User application can choose 
what is stored encrypted and 
to have it encrypted 
automatically 

Code is secret Code stored on system is encrypted Select code segments can 
be encrypted and executed 
directly given special 
constraints (ECB mode) 

Data is authenticated Data is cryptographically signed Provide template functions 
for Sign() and Verify() 

Code is authenticated Code is cryptographically signed Provide template functions 
for Sign() and Verify() 

Secrets go away when under 
attack 

Keys are cleared on reset; FPGA is de-
configured 

Keys are cleared; FPGA 
configuration is maintained. 
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Table 1. Continued. 
Cryptographic or Security Design 

Concern 
Design Goal Simplified Design Goal 

Secrets start secret Suggest deployment model  

Secrets remain secret with software 
attack 

User software must not be able to 
violate the access policy 

 

Secure Boot First booted code segment is 
unalterable, it checks and loads higher 
level code segments, which do the 
same 

Boot code is unalterable and performs 
system checks before allowing user 
access 

Trust Ratchet Use a hardware counter as a Trust 
Ratchet 

 

Exhaustive key search   

Dictionary attack   

Denial of service attack   

Code book attack   

Replay attack   

Man-in-the-middle attack   

Impersonation attack   

Chosen-text attacks   

Linear / Differential cryptanalysis   

Environmental attack  Simulate with a hardware input 

Electromagnetic attack / electrical 
attack 

  

Physical armor   

Fault injection attack   

Data remanence attack   

Software attack System resists user software attacks  

System is general purpose   

System supports multiple operating 
systems 

  

System supports multiple vendors   

Mutually suspicious software 
components 

System resists user software attacks  

Reconfigurable User system is reconfigurable  

Easy to update   

Deployment model Describe the build process for the 
system, including encryption 

 

FIPS-140-2 Level  Similar to Level 4 in concept 

Random, uniform keys Select keys randomly from a uniform 
key space 

Keys manually selected 
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Table 2. Hardware Design Goals 

Hardware Concept Design Goal  Simplified Design Goal 

Platform Microprocessor Commonly used microprocessor  NIOS II soft-core processor 
without interrupt support 

Microprocessor Clock 200 MHz 50 MHz 

User token Active Passive SD card 

System peripherals UART, SDRAM, PIO, Terminal PIO, Terminal, Internal 
RAM 

Two component solution: dual 
FPGAs 

One FPGA provides security functions, the 
second FPGA provides reconfigurable 
USER functions 

One FPGA demonstrates 
security and user functions, 
Second FPGA 
demonstrates secure 
reconfiguration only 
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CHAPTER 4 
HARDWARE DESIGN 

 

4.1 System Architecture Design 

 
This chapter describes the hardware design of a system that meets the goals 
presented in Chapter 3. Explored in this section are the high-level hardware 
design, the high level FPGA design, and the security design. Built upon this is the 
software system that is presented in the next chapter. 
 

4.1.1 Hardware Design 

 
Figure 1 depicts the hardware system as originally designed. This will be referred 
to as Case 1. Two printed circuit boards (PCBs) and a Secure Digital (SD) card 
contain all of the necessary hardware. The primary one is the DE2 development 
kit from Altera. This board will be referred to as the DE2 Main Board. 
It has an Altera Cyclone II in addition to many peripherals. The second PCB was 
designed and fabricated for this thesis and has a Cyclone II and support circuitry 
along with two seven-segment displays connected to the Cyclone II. This board 
is designed to plug into the expansion header of the DE2 board. This board will 
be referred to as the DE2 Sub-Board. 
 
The system consists of two parts: a user part and a security part. The user part is 
contained on the User FPGA, is designed by the security subject, and is 
reconfigurable during run-time.  
 
The security part is designed by entities who define the access control policy, 
referred to as the system owners. Its function cannot be altered by the user 
during runtime. It provides the sole point of contact between any hardware 
designed by the user and the system peripherals. In that manner, it meets the 
definition of complete mediation.  
 
The system deployment model is as follows. The user develops hardware and 
software to run on the system. This hardware is defined by binary files describing 
the User FPGA configuration and the applications that may run on the user-
defined hardware, such as programs for a NIOS II. These binary files are 
encrypted and placed on an SD card. The user application design, in order to 
communicate with the host peripherals, is required to include a component 
known as the User Bridge. This component provides any encryption services that 
the user may wish to employ and it performs a serialization of the data bus to 
reduce the I/O count needed in hardware. The user’s only interface to the rest of 
the system is by connecting to the Security Bridge on the  
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Figure 1. System Hardware, Case 1 
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DE2 Main Board and it is suggested that this be done with the specified User 
Bridge. 
 
When the user wishes to use the system, he or she inserts the SD card and 
enters a password. The User FPGA is configured as designed by the user, and if 
a NIOS II is present, its code is copied to user RAM for execution. 
 
The security components on the security FPGA handle many services to ensure 
correct and secure operation of the system. They are commanded by a NIOS II 
running the security system code. The security components are called the 
Security Controller. 
 
This system, Case 1, most clearly demarks the secure, fixed parts of the system 
from the unsecure, user-designed parts. This was the original design. This 
proved to complicate development too much, although the DE2 Sub-Board is 
designed to accommodate that approach.  
 
To meet the system design goals and to simply the system, Case 2 is designed 
and implemented in hardware. It is presented now, as it is a simplification of 
Case 1. Figure 2 shows how the system is simplified. The user NIOS II is moved 
to the DE2 Main Board along with its User Bridge and associated components. 
The DE2 Sub-Board FPGA (User FPGA) is now not connected to the Security 
Bridge, but its configuration is still under control from the DE2 Main Board. In this 
manner, the secure control of an FPGA configuration can still be demonstrated. 
The same deployment model is assumed, but with the realization that this system 
is an example model as it would not be desirable for the user to use the same 
development platform that is used for the security control components.  
  

4.1.2 FPGA Design 

 
The FPGA high-level design for this thesis is done using Altera Qsys. This is a 
system-on-programmable-chip design (SoPC) tool. Figure 3 shows the SoPC 
system architecture including addresses that the firmware uses to access those 
components. This is a more detailed view of the internals of the FPGA on the 
DE2 Main Board for Case 2. Important to note at this level is that the Security 
Controller NIOS II is the Qsys component nios2_qsys0 and the user Nios II is the 
Qsys component nios2_qsys1. It can now be seen that all connections from 
nios2_qsys1, the user NIOS II, are mediated through the 
avalon_bridge_master_side component, which is the User Bridge, and it 
connects to the avalon_bridge_slave_side, which is the Security Bridge. 
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Figure 2. System Hardware, Case 2 
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Figure 3. DE2 Main Board FPGA Internals--SoPC 
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Figure 4. Address Map 

 
 
 
Also, notice that the Security Controller Nios II connects to many components as 
it has complete control of the system. Figure 4 shows an address map of the 
system. Each device that is a bus master is listed along with the addresses at 
which it reaches its peripherals. This is an introduction to the FPGA internals. A 
more detailed examination of important components is provided in Section 4.2 
 

4.1.3 Secrecy 

 
Secrecy is integral to the hardware design, so the security model used to achieve 
the design goals is explored in this section and is depicted in Figure 5. The 
system uses three main keys, known as the board key, the pass key, and the 

card key, which are referred to as sksc, kpass, and kcard respectively. These are 
shown in color in Figure 1 and Figure 2 as well. 
 

The pass key, kpass, comes from the user when prompted to enter a password. It 
is comprised of sixteen hex characters for a total of sixty-four bits. Entry of this 
password is strictly controlled by the Security Controller. It is critical that a system 
using this model ensure that the password entry is via a trusted route such that 
software attacks on it are not possible. Ideally, this would even be a separate key 
entry area with a dedicated display apart from any keyboard used by the end 

user. This is a part of a symmetric key pair. The card key, kcard comes from the 
user token--the SD card. It is a sixty-four bit value. Ideally, this would be held in a 
secure place on the user token, and the token could be verified with a command-
response protocol by the Security Controller. For this thesis, the concept is 
simplified and it is stored on the SD card encrypted. 
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Figure 5. Security Design  
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Kcard is concatenated (denoted as ||) with kpass  to form a 128-bit key. This key is 
part of a symmetric pair used by the user for his or her encryption system in the 
user application. Exclusive-or would normally be preferred as one key does not 
imply information about the other and the system maintains the same number of 
bits in the security parameter if part is lost. In this thesis, two 64-bit keys 
concatenate to 128-bits for demonstration. Ideally, this could be two 128-bit keys 

or higher mixed by exclusive-or (|| replaced by ⊕ everywhere). 
 

The board key, sksc, is a special key that resides in the FPGA hardware of the 
Security Controller and is part of the system design and deployment model. It is 
the private key of a public-private key-pair that enables configuration information 
to be written securely to the Security Controller. 
 

In the diagram, and hereafter, “Enc(…)” refers to an encryption function where the 
first parameter is the value being encrypted and the second is the key. If listed 
with a public or private key, then it is assumed to be an encryption taking place in 
a private-public cryptosystem, otherwise it is assumed to be a symmetric cipher. 
In this manner, the system may be described generically. The same holds for 

“Dec( )” as a decryption function. H(…) is a general collision-resistant hash 
function that takes an input and digests it to a hash value. Sign(…) is a 
cryptographic public-private key signing algorithm that takes data to sign as the 
first parameter and a private key as the second parameter and returns a 

signature value that is the output of a cryptographic hash. Verify(…) is the 
verification function for Sign(…). The first parameter is the claimed message to 

verify, the second parameter is the signature value generated by Sign(…), and 
the third parameter is the public key associated with Sign(…). It returns true or 
false to indicate the validity of the signature. These cryptographic functions are 
simplified and are described in Chapter 5.  
 
The key system can now be explained as follows: all secrets on the SD card are 
encrypted with the public board key and signed by the private key of the system 
owners who are acting as the certificate authority CA. As such, if the SD card is 
physically acquired by an adversary, the secrets on it are held as strongly as the 
encryption that stores it. One could encrypt a symmetric key in the SD card using 
the Security Controller’s public key, and then encipher the data on the SD card 
with the symmetric key to improve speed when the Security Controller unpacks it. 
The model here is simplified to indicate that data is passed to the Security 
Controller using a public-private key system. 
 

The password key, kpass, is held by the operator who must ensure its secrecy. 
 
The DE2 Main Board and the attached sub-board have two secret areas. One, 
the user RAM, is implemented as a RAM component in this thesis design, but 
conceptually it could be a flash memory where the user wishes to store 
permanent applications or data. This data can be encrypted by the user under 
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the pass key and card key by the User Bridge or deployed as encrypted. In this 
way, should the adversary acquire the main board setup, and additionally find the 
board key on the security FPGA, the data saved on the system RAM / flash again 
is as secure as the encryption system used to store it, as there is not a trace of 
the pass key or the card key on that part.  
 
The second secret stored on the DE2 Main Board, as alluded to, is the board 
key. Finding this key only gives the adversary the board key as the data on the 
DE2 Main Board is stored under the pass and card keys. 
 
Refer to Table 3 and Table 4 for a full listing of scenarios where entities have 
portions of the system and the resulting compromises. Note, this system is 
designed with a 128-bit composite key in mind, but it could be extended to 256-
bit to increase security. 
 
The user Nios II has a plaintext area in the tightly coupled RAM adjacent to it. 
This RAM is part of the user-defined configuration, does not persist between 
system uses, and allows for the user Nios II to execute faster. 
 
Operationally, the system works as follows:  
 

1. The system owners decide on a role-based access matrix for the system 
address map. All system peripherals are accessed through a memory map 
based model. All users are assigned to roles. 

2. The system owners generate public-private key pair pkca, skca for signing. 
3. The system owners generate a board public-private key pair pksc, sksc. 
4. The system owners generate a symmetric key kpass for each user. 
5. The system owners generate a symmetric key kcard for each user. 

6. The system owners develop the system hardware and embed sksc and 
pkca into the Security Controller. 

7. The system owners place the access control policy in the Security 
Controller firmware.  

8. The system owners secure the Security Controller FPGA. Secure 
configuration is available on certain devices from FPGA manufactures 
such as Altera. 

9. The system owners give the security subjects a template for the User 
Bridge for incorporation into their designs and an address map for the 
system so that the subjects can access the hardware. They are also given 

kpass and kcard. 
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Table 3. System Compromise when an Adversary Recovers Components 

Case DE2  
Main Board 
System 
Recovered 

User Token 
Recovered 

Password 
Recovered 

Adversary  
has these Keys:  

Adversary has this Data  Strength 
 Bits 

1   X kpass  n  † 
2  X  Enc( kcard , pksc) 

 
  Enc( SDdata , pksc) l  ‡ 

3  X X kpass 
Enc( kcard , pksc) 

 

Enc( SDdata , pksc ) l 

4 X   sksc 
 

Enc(userdata , kpass || 
kcard ) 

n 

5 X  X sksc 
kpass 

Enc(userdata , kcard ) n/2 
†† 

6 X X  sksc 
kcard  

 

SDdata 
Enc(userdata , kpass ) 

n/2  
†† 

7 X X X All keys All data 0 

† Security parameter for symmetric keys (n-bit system) 
‡ Security parameter for asymmetric keys (l-bit) 

†† Exclusive-or keys instead of concatenating to make this n. 
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Table 4. System Compromise Summary by Case  

Case Summary 

1 The adversary only has the password kpass. 

2 He has the user’s configuration encrypted with the board key pksc. 
He has physical access to the User Token. 

3 He has the user’s configuration encrypted with the board key pksc. 
He has physical access to the User Token. 

4 The adversary has broken the DE2 Main Board. 
He has unencrypted parts of application flash memory and 
unencrypted user data (if any—this is user determined) . 
He has physical access to the DE2 Main Board. 

5 The adversary has broken the DE2 Main Board and has the 
password. 
He has unencrypted parts of application flash memory and 
unencrypted user data (if any—this is user determined). 
He has degraded the encryption of user data and applications for 
designs using key-concatenation instead of XOR mixing.    
He has physical access to the DE2 Main Board. 

6 The adversary has broken the SD card and has FPGA1 and FPGA2 
and the unencrypted parts of application flash memory (if any—user 
determined) . 
He has degraded the encryption of user data and applications for 
designs using key-concatenation instead of XOR mixing.    
He has physical access to the DE2 Main Board. 
He has physical access to the User Token.  

7 The adversary has the same privileges as the user. 
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10. The security subjects, hereafter referred to as the users, design and 
develop system hardware and firmware to meet the goals. 

11. The users send the FPGA configuration files and application .hex files to 
the system owners via some application.  

12. The system owners append n, the user’s security level, to the data. 
13. The system owners append H(kpass) to the data. 
14. The system owners append kcard to the data. 

15. The system owners encrypt the data with the public board key pksc and 
then sign the data with their private key skca. This application could 
automatically load and format the SD card or active token. 

16. The user wishes to use the secure platform to accomplish her goals and 
therefore is in proximity of the system as this is not a distributed secure 
system. 

17. The user applies power or resets the secure platform. 
18. The system resets and secrets that compromise encrypted data on the 

system are cleared. 
19. The system performs security checks. 
20. The user enters the SD card when requested. 

21. The Security Controller reads the SDdata and the SDsignature. 
22. The Security Controller runs Verify( SDdata , SDsignature , pkca ) on the SD 

card data. It halts if false. 

23. The user enters pass key kpass’ when requested. 
24. The Security Controller checks  

H( kpass’ ) = Dec( Enc( H( kpass ) , pksc ) , sksc ). It halts if false. 
25. The Security Controller sets the access policy based on the level  

Dec( Enc( n , pksc ) , sksc). 
26. The Security Controller sets kcard = Dec( Enc( kcard , pksc ) , sksc ). 
27. The Security Controller loads the user FPGA1 configuration. It terminates 

if there is a problem. 
28. The Security Controller clears user RAM and loads the user APP1 

program. User-selected secure parts of this are already encrypted by the 

user and now decrypt to Enc(App1 secure segment, kpass || kcard). 
29. The Security Controller now enables communication on the Security 

Bridge. 
30. The Security Controller starts the user Nios II. 

31. The user Nios II, if the user wishes to use encryption, must copy kpass and 
kcard from the shared security RAM to the User Bridge. 

32. The user Nios II executes and uses the services available to it.  
33. The user Nios II may request the current hardware configuration of the 

system which is H(Security Controller ROM) + H(hardware) where 
hardware represents any component whose configuration is under control. 
This is simulated by the switches on the DE2 board.  

34. The user Nios II may request the value of the security ratchet. 

35. The user application may elect to run Enc(bus, kpass || kcard) or Dec(bus, kpass 
|| kcard) where bus is the combined instruction/data bus which originates at 
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the User Bridge and ends at the Security Bridge. This can occur at any 
time and is controlled by the user.  

36. The user application may request a context change wherein FPGA2 and 
APP2 are loaded and checked in a similar process as steps 26-35. If it is 
running in the second configuration, it can request a switch back to the 
first, again, in a process consisting of steps 26-35. 

37. Any system reset clears kcard and kpass from the User Bridge and from the 
Security RAM. 

  

4.1.4 Authentication 

 
The system authenticates, to itself, the user by checking a hash of the user’s 
password against the decrypted hash provided on the SD card that was signed 
by the system owners.  
 
The system authenticates, to itself, the configuration data by checking its 
signature from the system owners before decrypting it. 
 
The user application authenticates, to itself, the hardware system that it is 
running on by requesting a hash of the current board state and by checking the 
security ratchet. The board state hash is a simplification of a PCR. It is a hash of 
the Security Controller Nios II RAM and switches on the board. 
 

4.1.5 Access Control 

 
The Security Controller enforces a role-based access policy based on its reading 
of the signed user’s access level. There are three access levels, level 1 through 
level 3. The system owner predetermines what security objects can be accessed 
for which levels. The Security Controller is designed to allow this matrix to be 
changed in real time by the Security Controller Nios II microprocessor. In this 
manner, the system is more flexible. 
 
The access policy is expressed as a matrix in Table 5. Each subject can be 
dynamically allowed to access three different memory-mapped regions, plus 
peripherals. The Security Controller performs real time cycle level inspection of 
data to and from the user Nios II. 
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Table 5. Access Control Template 

User Level Address 
Range 1 

Address 
Range 2 

Address 
Range 3 

LEDs Switches UART 

1 Low:high Low:high Low:high Yes / No Yes / No Yes / No 

2 Low:high Low:high Low:high Yes / No Yes / No Yes / No 

3 Low:high Low:high Low:high Yes / No Yes / No Yes / No 

 
 
 

4.2 System Component Design 

 
This section details key design aspects of the components of the system 
described the in previous sections. 
  

4.2.1 SoPC Design 

 
System on Programmable Chip (SoPC) design refers to the use of reconfigurable 
hardware (FPGAs) to build System On Chip (SoC) designs [60]. These have a 
microprocessor, peripherals, memory, and custom hardware designed on a 
single chip [60]. The configurable FPGA hardware for this thesis is designed at a 
high level using Qsys, which is an Altera tool that expedites SoPC design by 
providing a graphical interface to instantiate intellectual property cores and to 
generate their interconnections [42]. At a lower level, custom hardware modules 
are developed in Verilog, which is C-like hardware description language that 
allows various abstraction levels [61].   
 
The complete SoPC system is shown in Figure 3. The system is designed by 
instantiating and customizing Qsys-provided components and the custom 
designed components and connecting them. Then the system is compiled and 
the Qsys tool generates a large amount of quite complex interconnect logic to 
connect the system. This interconnect is comprised of Altera-designed Avalon 
components. The Avalon interconnect fabric is an open, high-speed interconnect 
fabric that is designed for streaming data between hardware cores and for 
reading and writing to registers and for controlling off-chip devices [62]. These 
components perform a host of complex functions such as serialization, de-
serialization, arbitration, routing, multiplexing, and demultiplexing. The 
interconnect structures are compliant with the Avalon bus specification and so 
are the custom hardware modules that are designed. The Avalon interconnect is 
best described as a small internet-like serial interconnect that achieves high 
speed by using very wide bus widths such that much data is transacted on each 
cycle. Data is encoded, routed, arbitrated, and decoded when it moves from point 
to point. The output of the Qsys tool is a set of Verilog files and a set of test 
bench files that are imported to Quartus for synthesis, mapping, placing, and 
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routing. The test bench is imported into ModelSim for system simulation. 
ModelSim is a widely used graphical simulator for hardware description 
languages such as Verilog and is made by Mentor Graphics [63]. The Qsys 
output is placed into a larger Verilog container, which tells the SoPC design how 
to connect to the physical board. The system in Figure 3 is comprised of the 
parts detailed in this section. 
 

4.2.2 Avalon SoPC Components 

 
This section is a brief overview of the standard Avalon components used in the 
system and focus is on the more interesting high-level components. Note: lower 
case names are system components. 
 
The NIOS II Processor:  this is a 32-bit Harvard-architecture RISC processor that 
can address 2 Gbytes of space [64]. It can be instantiated in three versions. The 
version used for this thesis is the NIOS II/e with a minimum feature set. 
 
The user sets the reset vector and exception vector. The processor also comes 
with a joint test action group (JTAG) debug port [65]. The full version of the NIOS 
II incorporates more advanced features such as a hardware multiplication unit, 
configurable instruction and data caches, configurable interrupt controller, and 
configurable memory management support. 
 
There are three total NIOS II/e processors in the system. The Security Controller 
uses a NIOS II for command and control (nios2_qsys_0). Its data bus is 
connected to the local RAM, Security Bridge, Security RAM, the user RAM, the 
SD card via a Parallel Input/Output (PIO) interface [42], a Universal 
Asynchronous Receiver/Transmitter (UART) [42] for user interaction, a reset 
controller that controls the user Nios II reset, LEDs, switches, the user UART, 
and finally, PIO used to program the User FPGA. Its instruction bus is connected 
to the same local RAM. 
 
The second is the user Nios II (nios2_qsys_1). Its data bus is connected to a 
local RAM for fast, unencumbered access to data and is also connected to the 
User Bridge so that it can access the full system. The instruction bus is 
connected to the local RAM and also to the User Bridge so that it can execute 
code from user RAM. It has a second connection to the User Bridge that allows it 
to configure the bridge. 
 
The third Nios II appears on the User FPGA as an example configuration. Refer 
to Figure 1. 
 
Clock Source (clk_0): this SoPC component takes an actual clock input and 
redistributes it along with a reset to every component in the system. 
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Altpll (alt_pll_0): this component is a configurable PLL used to condition the 
system clock such that it is advanced by 10 ns for use with the SDRAM. 
 
JTAG UART: this is a UART to JTAG interface that allows the system to 
communicate with a terminal window. There are multiple ones in the system. 
Jtag_uart_0 is connected to the data bus of the Security Controller NIOS II and is 
used to communicate with the user and to get the pass key password. 
Jtag_uart_1 is connected directly to the user NIOS II, is inserted for development 
only, and would not be used in a full system. Uart is a JTAG UART connected to 
the Security Controller data bus and can be accessed by the user Nios II 
according to the security policy. Ghost_uart is a JTAG UART connected to the 
data bus of the user Nios II and is in place as a software construct. For a system 
developed as Case 1 in Figure 1, it is necessary for the Eclipse complier board 
support package to recognize and understand that a UART is present on the 
data bus. The User Bridge prevents the tool from seeing the UART attached to 
the Security Controller, so it does not allow for its use. For development 
purposes, the ghost_uart could be addressed at the same location so that the 
Eclipse tool can compile for it. 
 
RAM: there are multiple RAMs in the system design. Ram_0 is the Security 
Controller Nios II RAM and is initialized with the Security Controller program 
when the Security Controller FPGA is initialized. It is located on the data and 
instruction buses of the Security Controller Nios II. Ram_1 is the local RAM for 
the user Nios II. It is located on the instruction and data buses of the user Nios II. 
It can be initialized according to the user application needs. It can be configured 
to contain all of the user code, obviating the need for the user RAM that is 
mediated through the Security Controller. For this thesis, the user application is 
specified to run in the user RAM through the Security Controller. Ram is located 
on the Security Controller data bus and is accessible by the user Nios II as 
allowed by the access policy.  
 
Parallel Input/Output (PIO): The Avalon PIO component allows for general-
purpose input and output. The following is a list of PIO controllers that are 
connected to the Security Controller Nios II data bus: sd_data, sd_command, 
and sd_clock drive the SD card. Being PIO, the SD interface is in software. 
Additionally, ps_dclk, ps_d0, ps_nconfig, and ps_nstatus are command and 
status lines to the User FPGA to configure it and confirm that it is configured. The 
configuration protocol is designed in software to follow the passive-serial 
programming option for the User FPGA. Other PIO connections to the Security 
Controller data bus are switches and LEDs. These interface to the switches and 
green LEDs on the DE2 board and make them software addressable. 
  
SDRAM: The Avalon component labeled sdram is an Avalon-based SDRAM 
controller and connects to the SDRAM on the DE2 Board. The SDRAM is not 
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used in this thesis. Although the hardware functioned, the Avalon intellectual 
property SDRAM module would not properly process the data for converting its 
16-bit contents to a 32-bit word in this system. 
 

4.2.3 Designed SoPC Components 

 
Several system components are designed without building on existing 
components. Their designs are detailed in this section. They are built upon the 
Avalon interface specifications by Altera [62].  
 
The Avalon architecture supports several interface types based on the system 
goals. The “Memory Mapped” interface type is used for custom modules in this 
thesis as it best serves to connect the custom components to the Nios II bus 
systems. Components designed as memory-mapped can be either a “memory-
mapped slave” or a “memory-mapped master.” An Avalon bus can have multiple 
masters and multiple slaves. The Qsys tool inserts proper interconnect logic to 
perform arbitration and routing decisions. The bus structure is flexible in that it 
has features that are optional when designing components for it.  
 
The Avalon bus masters designed in this thesis connect to the Avalon fabric with 
a data bus (separate inbound read data and outbound write data), an address 
bus, a read signal, a write signal, and a wait request. For a master to write data 
to a location on a slave, the data is placed on the data bus and the address to 
which it is to be written is placed on the address bus. Next, the write signal is 
asserted which tells the Avalon fabric to receive data from the master and to 
route it to the destination address at the slave. The master then waits for the wait 
request signal to clear, indicating that the data was received. The read process is 
complementary. The Avalon master places the requested address on the 
address bus and asserts the read signal. It then waits for the wait request to 
clear. Then it reads the data from the data bus and uses it as needed. 
 
This thesis also makes use of custom Avalon slave interfaces. These operate in 
a manner that complements the master. When their read or write signals are 
asserted, they respond by accepting or posting data to the data bus. While busy, 
they post a wait request signal. Of particular interest are the User Bridge and 
Security Bridge, which have both a master and two slaves.  
 
The following paragraphs describe the design of the custom components used in 
Figure 3: 
 
Slave_to_reset source: this is a custom-designed peripheral that is on the 
Security Controller Nios II’s data bus. It allows the reset of the User Nios II to be 
controlled by the Security Controller software. It has one Avalon slave input and it 
has an output that controls the reset of the User Nios II.  



 

 44 

 

Figure 6. Slave to Reset Source State Machine 

 
 
 
The logic used to implement the Avalon slave is a Moore state machine. In state 
Run, it holds the user Nios II reset as not asserted. In state Reset, it asserts the 
reset on the user Nios II. The decision to change states is based on the slave 
port. When it receives a write, if the data is 1, then state Reset is selected. If the 
data received from the master is 0, then state Run is selected. The state machine 
states are shown in Figure 6. 
 
The User Bridge: this more complex custom component is shown as 
avalon_bridge_master_side in Figure 3.  
 
This component performs three functions for the user Nios II. First, it serializes 
and de-serializes the user Nios II Avalon bus to the Security Bridge, which 
reduces the number of pins needed for Case 1 in Figure 1 from ninety-five to 
twenty-five, at the cost of running more cycles. Secondly, it stores a copy of the 
pass key and the card key on the user side of the system. These locations are 
cleared on reset. Finally, it provides encryption and decryption services for the 
connection between the user Nios II and the Security Bridge.  
 
This component is designed to be as transparent to the upstream master as 
possible. The incoming data is 64-bits wide, (it has separate inbound and 
outbound data lines that are 32-wide) but are serialized down to two 8-bit buses. 
The 24-bit address bus passes through without change. 
 
This component has a slave port that is connected to the instruction bus of the 
user Nios II and the data bus of the user Nios II. It also has a second slave port 
that connects to the data bus of the user Nios II. It has an Avalon master output 
that connects to the Security Bridge slave port. The second slave port connection 
to the user Nios II data bus master is so that the user Nios II can directly 
configure parts of the User Bridge. The code can reference the card key and the 
pass key directly from this hardware and the code can enable and disable 
encryption on the bus. 
 
It functions as follows. Two state machines operate this component. The primary 
state machine is the main state machine that performs serialization, de-
serialization, and encryption on the bus. It is depicted along with state names 
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in Figure 7. There are two main paths through this machine. The first path 
through the machine is a write cycle in which the machine takes the incoming 
write data from the upstream master, which is received on this component’s 
slave port, and serializes it and writes it out on this component’s master port, 
encrypted if needed. The secondary machine (Figure 8) stores the pass key, the 
card key, and an enable for encryption. There are two flows through this state 
machine, a read path and a write path, similar to before. In the write path, the 
user writes the pass key, the card key, or the encryption enable value. In the 
read path, these values are repeated back to the bus. 
 
The encryption function, as with all encryption functions in this thesis, is a 
template function. It is implemented as: 
 

Enc( bus , kpass[47:44] || kcard[47:44] || kpass [43:40] || kcard [43:40] || kpass [7:4] ||  
kcard [7:4] || kpass [3:0] || kcard [3:0] ) 

 
Where Enc( ) mixes the bus with the pass key and the card key using an 
exclusive-or function. The decryption function takes the same form. Since this 
encryption does not depend on prior encryptions, it works in electronic code book 
mode. This mode, as opposed to cipher block chaining, is used to simply the 
function.  
 
The Security Bridge: this component is labeled as avalon_bridge_slave_side in 
Figure 3. This component performs the majority of the security-based functions of 
this system. Refer to Figure 9 and Figure 10. Its slave connects to the User 
Bridge bus master on the upstream side, and its master connects to slave ports 
on all security objects on the downstream side. It has a second slave port that 
connects to the Security Controller Nios II data bus so that the Security Controller 
Nios II can configure this component from software. It provides the following 
functions: 
 
Serialization / de-serialization: this component serializes and de-serializes the 
bus from the User Bridge and converts it to a normal 32-bit bus for connecting to 
the security objects.  
 
Access control: this component inspects every address access from the user 
Nios II on a cycle-by-cycle basis and compares it to the security policy stored in it 
by the Security Controller Nios II. If the access is not valid, it is ignored and any 
requested data is zero. It also has a master control that causes all 
communication to be ignored. 
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Figure 7. User Bridge Primary State Machine 

 
 
 

 

Figure 8. User Bridge Secondary State Machine  
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Figure 9. Security Bridge Primary State Machine 

 
 
 

 

Figure 10. Security Bridge Secondary State Machine
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Board Key Storage: the board private key is stored here. 
 
Security ratchet: a security ratchet, based on the IBM 4758, is implemented in 
hardware. It is a counter that goes from zero to eight. Writing any value to it 
increments it. Reading it returns its current value. It can only be set back to a 
lower number through a reset. The two state machines for this component are 
very similar to the User Bridge and are only summarized. In Figure 9, two flows 
through the state machine can be seen. One is the read, in which the component 
gets a read request from User Bridge and it processes it by communicating with 
the downstream peripherals. The other path through is a write cycle, in which this 
component receives data from the upstream User Bridge and writes it to the 
downstream devices. 
 
As with the User Bridge, there is a second slave port on this device that allows it 
to be configured and the state machine that controls this function is depicted in 
Figure 10. The slave port provides access to the parameters that set the access 
policy shown in Table 5. It also provides access to the security ratchet, the board 

key sksc, and as access to a global control that inhibits the user Nios II from any 
communication. 
 
The Security Bridge inspects the incoming address by a large combinatorial logic 
function that is the core of the access control mechanism. It references a set of 
registers that define the low and high address ranges and devices that are 
allowed, as seen in Table 5. 
 
Sec_ram (security RAM) is a 32-byte RAM shared between the user Nios II and 
the security Nios II and allows them to communicate apart from the Security 
Bridge. This allows the user Nios II to get the pass key and the card key from the 
Security Controller, to request a checksum of the current configuration of the 
board, and to request a context change. The sec_ram component has only one 
state and takes write data from the bus and stores it, or provides read data to the 
bus when commanded. It has a custom Verilog implementation that ensures that 
it clears on reset. This is not true of regular Altera SoPC RAM components. 
 
This section reviews the hardware that runs on the DE2 Main Board security 
FPGA. This hardware must physically connect from the security FPGA to devices 
on the DE2 board. The next section briefly details how this is accomplished. 
 

4.2.4 Development Platform 

 
Refer to Figure 11 and Figure 12. The SoPC system just presented is configured 
in the Security Controller FPGA. For it to connect to hardware on the DE2 board, 
it is instantiated in a high-level Verilog file that specifies the pin-out so that it can 
connect to the DE2 board. This file specifies that the SoPC system connects to 
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Figure 11. DE2 Main Board 

 
 
 

 

Figure 12. DE2 Sub-Board  
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the system 50 MHz clock, that push button 0 connects to the system reset, that 
the switches and LEDs are connected to their respective PIO components, that 
the SD card connects to the SD card PIO components, that the User FPGA 
configuration lines connect to their PIO components, and that the SDRAM 
connects to the SoPC SDRAM controller. Also, at this level, a clock is provided to 
the DE2 Sub-Board along with a set of red LEDs that show the status of the 
programming lines to the DE2 Sub-Board. A 50 MHz clock provides timing for the 
system. The DE2 is programmed through the USB byte blaster.  
 

4.2.5 DE2 Sub-Board Platform 

 
The DE2 Sub-Board plugs into the DE2 Main Board expansion headers. The 
DE2 manufacturing drawing is depicted in Figure 12.  
 
This board is a custom-designed PCB with a Cyclone II FPGA, 3.3 V regulator, 
and two seven-segment LED displays. The Cyclone II connects directly to the 
headers through carefully laid LVDS pairs. It also connects directly to the seven-
segment displays. Its clock, configuration, and configuration status pins also go 
to the header as they connect to the Security Controller FPGA for programming 
and verification. The PCB is a six-layer board that is designed with good return 
path and decoupling. The layout was imported to HyperLynx and the extracted 
layout was analyzed for rise and fall times and termination using a field solver. 
The FPGA is programmed in passive-serial mode using custom software running 
in the Security Controller Nios II.  
 

4.2.6 User FPGA Configurations 

 
Two FPGA configurations are designed that demonstrate the user’s ability to 
configure an FPGA from a secure source. The configurations are depicted in 
Figure 2 as a Nios II in the User FPGA. Both configurations have a basic Nios II 
processor, JTAG UART, as well as PIO that interfaces to the seven-segment 
display. For simplicity, the only difference between the two configurations is what 
is displayed on the seven-segment LEDs. In this manner, it is possible to tell 
what state the FPGA is configured in.   
 

4.2.7 SD Card 

 
The Secure Digital (SD) card is a 2 Gbyte SanDisk memory card [66]. The FPGA 
configuration files, the Nios II application files, the card key file, the key hash file, 
the security level file, and the security header file are stored on it using HxD Hex 
editor [67]. The Security Controller accesses the files using low level reads and 
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writes using libraries based on work by [68]. This reduces the code requirements 
for the Security Controller.  
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CHAPTER 5 
SOFTWARE DESIGN 

 
The software for the Security Controller and the user applications is designed in 
the C language using the Eclipse tool set with Nios II extensions. The Eclipse 
toolset provides a full, integrated development environment [69]. The C 
language, being function-oriented, is ideal for highlighting the hardware as 
described in Chapter 4. The extra cost of using a more object-centric language 
such as C++ is avoided, although the toolset allows for this. 
 
The software is designed in C and compiled for the Nios II processor. The 
Eclipse toolset takes a description of the SoPC platform as described in Chapter 
4 and builds a user-customizable board support package (BSP) for it. This 
includes many convenient input and output functions, user customizable linker 
tables, and many other options to specifically tailor the BSP for the application 
needs. 
 
Two complete systems are designed in software. The first is the Security 
Controller software. This executes on the Nios II in the Security Controller. This 
processor has complete control of every device in the system. The second are 
the two user applications. They have their own complete BSP and application 
files.  
 

5.1 Security Controller Application 

 
The purpose of the Security Controller software is to initialize the system, check 
the system integrity, enforce the access control policy, and perform the user 
services of loading and verifying FPGA configurations and application files for the 
user Nios II.  
 

5.1.1 Board Support Package 

 
In order to build a Nios II based Security Controller, it is necessary to ensure that 
the entire system can easily be accessed in software and that basic functions for 
any needed peripherals are present. Figure 13 shows the BSP for the Security 
Controller.  
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Figure 13. Security Controller BSP 
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All unnecessary functions are omitted, such as support for C++. Altera offers a 
set of drivers with reduced capability that have a smaller code size, and these 
are selected. No special exit from the code is needed as this application runs in a 
continuous loop. Inputs and outputs are directed to jtag_uart_0 such that they 
can be viewed from the PC. Code optimization is disabled; in this multiprocessor 
situation, the complier may incorrectly assume a code block has no effect, when 
actually the second processor is accessing the same memory locations for 
information. A small interrupt stack and a small exception stack are included. 
Interrupts are not used in this design to simply the implementation. 
 
Figure 13 also shows the linker settings. This specifies where the actual hex 
code for the Nios II resides. Ram_0 is the Security Controller RAM and the entire 
application is located in this region. Note the eight linker sections: .bss, .entry, 
.heap, .rodata, .rwdata, .stack, and .text. Each of these can be individually placed 
in any memory accessible to the Nios II, with the exception of .entry and 
.exceptions, which are defined when instantiating the Nios II in Qsys. The size 
and address range of each of the sections is shown as well. Note that sec_ram is 
a 32-byte shared RAM that both the user Nios II and the Security Controller Nios 
II access. 
 
Once defined, the BSP is compiled and the main software application references 
it.  
 

5.1.2 Software Overview 

 
The Security Controller software design is shown in flow-chart form in Figure 14a 
through Figure 14c. Upon reset, the Nios II starts at its .entry address as defined 
in the SoPC design. From there it jumps to .text and begins execution of the BSP 
functions, which finally allow the program to enter main( ) where it performs the 
process shown in Figure 14a through Figure 14c. 
 
The first task is to ensure that the user application’s communication is inhibited. 
This is a double check as no user application should be allowed at this point as 
the user FPGA is not configured. Next, the security ratchet is checked to be zero. 
Upon a tamper event, the code will reenter as before, but the security ratchet will 
be higher than zero, which will cause the process to terminate. This termination 
is simply an infinite loop.  
 
The ratchet is set to one, confirming that the Security Bridge is disabled and the 
user processor is halted. This progression of boot steps with incrementing ratchet 
values is an implementation of the trust ratchet as developed by the IBM 4758 
team. 
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Figure 14a. Security Controller Software Flow 
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Figure 14b. Security Controller Software Flow 

 



 

 57 

 

 

Figure 14c. Security Controller Software Flow 
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Next, the DE2 Main-Board hardware is checked. The user RAM area is cleared 
and checked and the 32-byte security RAM area is written to and read from to 
confirm its operation. The Security Bridge is checked by a similar process of 
write-read-verify.  
 
If these operations succeed, then the security ratchet is set to two and the 
processor waits for the SD card to be inserted. 
 
The SD card communication is accomplished by manipulating PIO lines directly 
from the processor. An SD library from [68] is incorporated, in part, to initialize 
and read the SD card. Additional functions are designed on top of this library to 
read and cache an entire 512-byte block from the file system, as well as various 
functions to convert ASCII to hex.  
 

Next, the user enters kpass at the terminal window. Then a security index file is 
read (this is depicted in Figure 5). This file contains file pointers to the FPGA 

configurations, the user applications, the allowed security level file, the kcard  file, 
and the hashed password file. It also has the signature of the system owners 

attesting to the validity of those encrypted files, which are encrypted with pksc.  
 

securityheaderexample 
SLVL 53d5cf41 
SGK1 53d5cf00 
SGK2 53D5CF81 
CAFS 53d5cfc2 
CAFE 53d73f87 
CATS 53d8aba5 
CATE 53d8d10a 
CBFS 53d73fc2 
CBFE 53d8ab59 
CBTS 53d8d1c5 
CBTE 53d8f72a 
SID1 01cf1d9b 
SID2 00000000 
SID3 00000000 
SID4 00000000 
SID5 00000000 
SID6 00000000 
SID7 00000000 
SID8 00000000 
endofexample 

 
Text at the start and end are comments and are ignored. Each entry has a four-

letter mnemonic followed by eight hex values. SLVL is the security level file 

pointer. SGK1 is a pointer to the file containing kcard. SGK2 is a pointer to the file 
containing H(kpass). CAFS  and CAFE  are pointers to the FPGA1 file endpoints. 
CATS  and CATE  are pointers to the APP1hex file endpoints. CBFS, CBFE, CBTS, 
CBTE serve the same roles but for FPGA2 and APP2. SID1 is the CA’s signature 
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over the concatenation of all of the encrypted files. The index file is not encrypted 
as it contains the signature for the encrypt-then-sign protocol that is used for the 
data on the SD card, so this value must be separate from the encrypted data. 
The file pointers could be encrypted in their own file, but they are only indexes to 
files that are encrypted and signed. To change the pointer, one would have to 

forge the SD card signature and place that value in SID1, which is assumed hard.  
 

Using these file pointers, Verify( SDdata  , SID1 , pkca ) is checked. The system 
halts if this fails. This is a two-party encrypt-then-sign scheme [19]. 
 
Then the user password is received, hashed, and checked against the decryption 
of the hash stored in the password hash file. This system halts if this fails. 
 
Next, the security level is determined by decrypting the security level file and 
using that number. The access control policy is set. The usefulness of the 
custom hardware designed in Chapter 3 is now apparent as the access policy 
can easily be changed in real-time. It takes the form of a set of registers whose 
names are explanatory. 
 

#define SEC_CONTROL_COM_ENABLE (unsigned int *) 0x10010000 
#define SEC_CONTROL_RAMSEG1_LOW (unsigned int *) 0x10010004 
#define SEC_CONTROL_RAMSEG1_HIGH (unsigned int *) 0x10010008 
#define SEC_CONTROL_RAMSEG2_LOW (unsigned int *) 0x1001000C 
#define SEC_CONTROL_RAMSEG2_HIGH (unsigned int *) 0x10010010 
#define SEC_CONTROL_RAMSEG3_LOW (unsigned int *) 0x10010014 
#define SEC_CONTROL_RAMSEG3_HIGH (unsigned int *) 0x10010018 
#define SEC_CONTROL_ALLOW_UART (unsigned int *)  0x1001001C 
#define SEC_CONTROL_ALLOW_SW (unsigned int *) 0x10010020 
#define SEC_CONTROL_ALLOW_LEDS (unsigned int *) 0x10010024 

 
These registers are filled with the access policy: 
 

// Level 1 
#define SEC_CONTROL_RAMSEG1_LOW1 0x200000 
#define SEC_CONTROL_RAMSEG1_HIGH1 0x20025F 
#define SEC_CONTROL_RAMSEG2_LOW1 0x204000 
#define SEC_CONTROL_RAMSEG2_HIGH1 0x204007 
#define SEC_CONTROL_RAMSEG3_LOW1 0x200263 
#define SEC_CONTROL_RAMSEG3_HIGH1 0x200263 
 
//Level 2 
#define SEC_CONTROL_RAMSEG1_LOW2 0x200000 
#define SEC_CONTROL_RAMSEG1_HIGH2 0x20025F 
#define SEC_CONTROL_RAMSEG2_LOW2 0x204000 
#define SEC_CONTROL_RAMSEG2_HIGH2 0x204007 
#define SEC_CONTROL_RAMSEG3_LOW2 0x200264 
#define SEC_CONTROL_RAMSEG3_HIGH2 0x200264 
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//Level 3 
#define SEC_CONTROL_RAMSEG1_LOW3 0x200000 
#define SEC_CONTROL_RAMSEG1_HIGH3 0x20025F 
#define SEC_CONTROL_RAMSEG2_LOW3 0x204000 
#define SEC_CONTROL_RAMSEG2_HIGH3 0x204007 
#define SEC_CONTROL_RAMSEG3_LOW3 0x200265 
#define SEC_CONTROL_RAMSEG3_HIGH3 0x200265 

 
*SEC_CONTROL_ALLOW_UART =  0;  
*SEC_CONTROL_ALLOW_SW  =  1; 
*SEC_CONTROL_ALLOW_LEDS  =  1; 

 
 

Next, the card key, kcard, is decrypted and saved into secure RAM. Then the 
security ratchet is incremented and the first FPGA configuration is decrypted and 
loaded. Should the user FPGA indicate a fault with the .rbf file load process, the 
Security Controller program will halt. The load function is designed to implement 
the Altera passive serial protocol [41].  
 
Next, the application .hex file for the user Nios II is decrypted and loaded into a 
cleared user RAM. Then the Security Bridge is enabled, shared request and 
status registers are cleared and the user Nios II is allowed to start execution. 
 
From this point forward, the Security Controller monitors the shared RAM for 
requests from the user Nios II. It can respond with a checksum of the board 
hardware to assure the application running on the user Nios II of the correctness 
of the run environment. It can also report the security ratchet to the User Nios II. 
It also responds to context change requests from the user.  
 
When these are requested, the previous steps are mostly repeated, with a 
different FPGA .rbf file and application .hex file loaded, however. Figure 14a 
through Figure 14c show how this is handled.  
 

5.1.3 Important Functions 

 
This section briefly details the more important software functions: 
 
Decryptsp: This function simulates a public-private key system decryption. It 
takes three parameters, all 32-bit unsigned represented. The first is the value to 
decrypt. The second combined with the third are the private key.  
 

M = Decryptsp( Menc , sk1 , sk2 ) , where sk = sk1 || sk2 
 

The cryptosystem is represented by a major simplification: 
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K1 = sk ∙  pk  
Where K1 is a fixed value for the thesis 

< sk , pk > is a public-private key pair and are integers 
 
The decryption process finds:  
 

M = Menc ⊕ ( sk ) 
 
This data is encrypted previously by the function: 

 

Menc = M ⊕ (   
  

  
  ) 

 
In this manner, public-private key cryptography can be represented as a template 
function with unique public and private keys and the exclusive-or function. 

 
 

GetCardKey : This function decrypts the card key from the SD card using the 
board public key: 
 

kcard[31:0] = Decryptsp( Enc( kcard[31:0] , pksc ) , sksc ) 
kcard[63:32] = Decryptsp( Enc( kcard[63:32] , pksc ) , sksc ) 

 
DetermineSecurityLevel: This function gets the security level by decrypting the 
security level file: 
 

n = Decryptsp( Enc( n , pksc ) , sksc ) 
 
LoadApp: This function takes start and stop file pointers to the SD card and 
downloads and decrypts the user application file using the board key: 
 

instruction[31:0] = Decryptsp( Enc( instruction[31 : 0] , pksc ) , sksc ) 
 
Config: This function takes a file start and a file stop pointer to the SD card and 
decrypts the FPGA configuration file and loads it to the user FPGA and checks 
for problems. The file is decrypted using the board key exactly as in LoadApp, 
with an exception being that it is done byte-wise instead of word-wise. 
 
CRC_SD and checksum: These functions simply add up data into a 32-bit 
unsigned register; this is a simplification of a cryptographic hash. 
 
VerifySD: This function takes a message, a signature, and a public key and 
performs signature checking: 
 

valid = VerifySD( signature , pk ) 
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The simplification behind this is verifying: 
 

signature ≟ checksum( SDdata ) ⊕ (   
  

  
  ) 

 
Creating the signature take form: 
 

signature = checksum( message ) ⊕ ( sk )  
 

Where K2 is a fixed value for the thesis 
K2 = sk ∙ pk  

< sk , pk > is a public-private key pair and are integers 
 
In this manner, signing and verifying a signing operation are simulated.  
 

5.2 User Applications 

 
The user software is designed to display the features of the entire platform. The 
Qsys SoPC system, when used with the Eclipse IDE allows the actual code to be 
fully simulated in ModelSim once the environment is carefully set up. The user 
applications are designed to both run the hardware and to run in the simulator, 
and the selection is made by compiler directives. 
 

5.2.1 Board Support Package 

 
As seen in Section 5.1.1, it is necessary for the design of the user application to 
be built upon a BSP designed for the goals in mind. Figure 15 shows the BSP for 
the user applications. It varies from the Security Controller BSP as its code 
segments are divided across two devices: ram_1, which is the tightly coupled 
RAM attached directly to the user Nios II, and userram, which is an alias for the 
user RAM whose access is mediated by the Security Bridge access control 
policy. 
 
The standard input / output device is set to jtag_uart1. This communication port 
is directly attached to the user Nios II for debug purposes and would not be 
desired in a full implementation of this system due to security concerns.  
 
All linker regions except .text, which is the main user application, are located in 
ram_1 that is attached to the Nios II directly. The user application .text segment  
is located in the user RAM area and is loaded by the Security Controller. Ram_1 
is loaded during FPGA configuration.  
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Figure 15. User Application BSP
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5.2.2 Software 

 
Refer to Figure 16. Upon reset, code executes from ram_1 then jumps to user 
RAM through the Security Controller. The Nios II then requests the current value 
of the security ratchet and checks that it is correct. It then requests a checksum 
of the DE2 Main Board and checks that value before continuing. Then it copies 
the pass key and the card key to the User Bridge. Next, it reads and writes to 
three test locations. The first is allowed and the remaining two are disallowed. 
Also, the actual code to perform the first test is encrypted, so the User Bridge 
decrypts and executes it. Next, the LEDs are set based on the user application—
for application 1 they are set to one value and a different value for application 2. 
 
Finally, the application requests that the Security Controller load the next 
configuration. The application then halts. Application 2 is identical except for the 
value of the LEDs displayed. 
 

5.3 Encryption Software 

 
The Quartus II toolset output files and the Eclipse output files must be post-
processed for use with this system design. Custom programs are designed in 
Scilab to accomplish this. This post-processing approximates the processing 
needed as described in Section 5.1.3.  
 
Code processing: This program asks the user which code segment has 
secondary encryption. Then it takes the user application object file and strips out 
all except the addresses and the instruction codes. 
 
Next, it parses the file. If a particular segment is inside the secondary encryption 
segment, then it is encrypted as 
 

instenc[31:0] = Inst[31:0] ⊕ ( kpass[47:44] ||  kcard[47:44] || kpass[43:40] || 
kcard[43:40] || kpass[7:4] || kcard[7:4] || kpass[3:0] || kcard[3:0] ) 

 
Next, all code is encrypted as: 
 

instenc‘ = inst[31:0] ⊕ (   
  

    
  ) 

 
FPGA configuration processing: this program takes a user FPGA.rbf file and 
encrypts it: 
 

FPGAbyteenc[7:0] = FPGAbyte ⊕ (   
  

    
  ) 
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Figure 16. User Application
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Data Signing: to model the CA signature of the encrypted data, SID1 on the SD 
card is set to: 
 

SID1 = checksum( SDdata) ⊕ ( skca ) 
where SDdata is FPGA1 || FPGA2 || APP1 || APP2 || security level assigned || 

checksum(kpass) || kcard 
 

5.4 Ancillary Software 

 
Multiple small applications are designed to run the entire development platform to 
automate the tasks of FPGA synthesis, placement, routing, loading, rbf file 
generation, hex file generation, application of the encryption programs, SD card 
loading, and correct placement of files for ModelSim.
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CHAPTER 6 
RESULTS 

 
The complete system as described is run successfully on hardware and in 
ModelSim. This chapter details the results from the tests with the hardware 
system as well as simulation results that show the internal operation clearly. 
 
The simulation results are used show the totality of the system operation as well 
as interesting portions of important modules as they interact with the system. 
Some aspects of the simulation are not modeled to reduce the model complexity, 
such as modeling of the SD card. Other aspects cannot be modeled, such as 
FPGA reconfiguration. In cases where simulation simplifications are made, 
testing relies on actual hardware to show the results. Simulation provides results 
that are not seen by observation of the hardware, such as zeroing of secrets. 
Taken together, they show the full system operation. 
 

6.1 Full System Operation 

 
First, the full system is generated. The tasks to coordinate a system built are 
numerous and use multiple tools.  
 

1. A full set of keys are generated by manual selection of hex digits.  
2. The user FPGA1 configuration is generated in a special, separate project 

environment. 
3. The user FPGA1 file is run through Scilab to encrypt it with the board key. 
4. The user FPGA1 file is altered to output a different set of LEDs on the 

DE2 Sub-Board and is saved as FPGA2. 
5. The user FPGA2 file is run through Scilab to encrypt it with the board key. 
6. The FPGA files have markers added to them so that they can be located 

on the SD card. 
7. A checksum of the password key is made and placed in a file. The file is 

encrypted with the board key. A marker is added to the file to locate it. 
8. The user’s security level is looked up and placed in a file. The file is 

encrypted with the board key. A marker is added to the file to locate it. 
9. The user’s key card key is placed in a file. The file is encrypted using the 

board key. A marker is added to the file to locate it. 
10. The FPGA1 file, FPG2 file, key card file, password hash file, and security 

level file are placed on the SD card and located manually using the 
markers. These locations are noted for placement in the security index file. 

11. The Security Controller Nios II application is compiled and the hex code is 
generated. 

12. The full Security Controller FPGA is compiled in Quartus using a custom 
script to synthesize, map, place, and fit the SoPC. It also takes the hex 
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code from step 11 and inserts it into the FPGA configuration so the 
Security Controller Nios II starts correctly when the FPGA is programmed. 

13. A checksum of the Security Controller ROM is calculated. 
14. The checksum is inserted in the user APP1 and APP2 program as the 

expected board checksum value. 
15. The user APP1 program is selected by a pre-compiler directive. It is 

compiled, and the hex code generated. 
16. A Scilab program is executed that that takes APP1 and asks the user 

which code addresses to apply secondary encryption to, such that when 
the application decrypted and loaded by the Security Controller, that 
segment is still encrypted. That program then encrypts that code segment 
with the pass key and the card key. 

17. Next, the Scilab program encrypts the entire program with the board key. 
18. Steps 14-17 are repeated for the user APP2 program. 
19. The Scilab program adds markers to APP1 and APP2 to locate them on 

the SD card and it loads them onto the SD card. 
20. A security index file is generated. To do this, the files loaded on the SD 

card have to be located. This is accomplished with a very useful program 
called HxD that allows direct access to drive data. Pointers to the files are 
added to the security header file. 

21. A signature of the encrypted files is made using the private key of the CA 
skca. This is added to the security index file. 

22. The security index file is inserted in a specific place on the SD card using 
HxD. 

23. The system is powered off and on and the SD card is inserted. 
24. The system is programmed from Quartus. This programs the Security 

Controller FPGA. 
25. A terminal window is opened in the Eclipse IDE. A connection is made to 

jtag_uart0. 
26. System operation begins and is recorded as follows. 

 
Figure 17 shows the complete system prior to start up. A laptop is connected via 
USB to the device port on the DE2 Sub-Board. The system is booted and the 

password, kpass, is entered; “x” demarks the start of the password:  
 

x000f000f000f000f 

 
Then the system runs the described system checks. No further user intervention 
is needed to demonstrate the system.  
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Figure 17. The Full System 

 
 

 

Figure 17. Continued.
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The terminal informs the user of the status: 
 
SC Starting.. 
..SC HASH 9bc6b732 
Testing RAM, Sec Ram, Bridge.. 
Waiting for SD card.. 
Checking  SD card.. 
..SD signature 1cf1d9b 
..SD calculated signature 1cf1d9b 
Enter Password: x000f000f000f000f 
Setting sec policy.. 
Loading FPGA A.. 
Loading APP A.. 
Starting Processor A 
Sec Ratchet 3 sent to USER 
Board Hash 9bc6b732 sent to USER 
User Requested Context Change 
Stopping User Processor.. 
Loading FPGA B.. 
Loading APP B.. 
Starting User Processor.. 
Sec Ratchet 3 sent to USER 
Board Hash 9bc6b732 sent to USER 
User Requested Context Change 
Stopping User Processor.. 
Loading FPGA A.. 
Loading APP A.. 
Starting User Processor.. 
Sec Ratchet 3 sent to USER 
Board Hash 9bc6b732 sent to USER 
User Requested Context Change 
Stopping User Processor.. 
Loading FPGA B.. 
Loading APP B.. 
Starting User Processor.. 
Sec Ratchet 3 sent to USER 
Board Hash 9bc6b732 sent to USER 
User Requested Context Change 
Stopping User Processor.. 
Loading FPGA A.. 
Loading APP A.. 
Starting User Processor.. 
Sec Ratchet 3 sent to USER 
Board Hash 9bc6b732 sent to USER 
User Requested Context Change 
Stopping User Processor.. 
Loading FPGA B.. 
Loading APP B.. 
Starting User Processor.. 
Sec Ratchet 3 sent to USER 
Board Hash 9bc6b732 sent to USER 
User Requested Context Change 
Stopping User Processor.. 
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“SC Starting” indicates the reset of the Security Controller Nios II. It then 
performs a checksum on its program area and outputs the value. This value is 
later checked by the user software. Next, the Security Controller performs system 
checks. It clears the user RAM area and checks that it is clear. It checks that the 
security RAM can be written to and read. It checks that the Security Bridge 
registers work. It then requests an initialization from the SD card. After that, it 
calculates the signature of the SD card data based on the system owner’s public 
key. It checks this value against the one published on the SD card and halts if 
there is a mismatch. It then waits for the user to enter the password. Following 
that, it determines the user’s authorization level (1, 2, or 3) and sets the access 
policy accordingly. Then it loads the first FPGA configuration. It loads the user 
application 1 and allows the user processor to start. The user processor starts 
and immediately requests the value of the security ratchet and checks it. It then 
requests a checksum of the state of the board and checks this against the 
expected value in its code. It then attempts three writes (not shown) to three 
different addresses, which are at each security level (1, 2, and 3), and verifies 
that it can write only to its level. It then requests FPGA configuration 2 and 
application 2. The security controller loads them and restarts the processor. This 
process repeats continuously to demonstrate the system. 
 
The complete flow from Figure 14a through Figure 14c and Figure 16 can be 
followed from this output.  
 
Figure 18 shows the state of the board after the FPGA has been configured for 
configuration 1 and application 1 is running. A green LED on the DE2 Sub-Board 
is illuminated by the user FPGA as it has been configured and is operational. The 

green LEDs on the bottom indicate 55h, which is commanded by the user 
application 1.  
 
Figure 19 shows the state of the board again, except after it has been configured 
with the second FPGA configuration and the second user application. Now the 
seven-segment LED on the DE2 Sub-Board is fully illuminated as this is the 
output from FPGA configuration 2, and the LEDs on the bottom of the board 

display A0h as commanded by the user Nios II second application. 
 
Pushbutton 0 on the DE2 Sub-Board is pressed at various times to verify the 
operation of the system under simulated tamper events. Repeated restarts still 
cause the system to halt. It takes a reprogramming to clear the security ratchet:  
 

Checking SD card.. 
SC Starting.. 

 
..SECURITY FAILURE: halting.. 
SC Starting.. 
 
..SECURITY FAILURE: halting.. 
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Figure 18. Configuration 1 

 
 
 

 

Figure 19. Configuration 2
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Figure 20 shows the state of the DE2 Main Board after the simulated tamper 

event. The green LEDs indicate 77h and this is a code from the Security 
Controller when it is in a halt state.  
 
The full system operation is simulated in ModelSim with minor changes. The SD 
card is not simulated. Instead, information that it provides to the Security 
Controller is inserted into the code directly by direct variable assignments. This 
occurs when the simulation pre-compiler directive is defined. The user password 
entry is forced to make the system simulate faster. Additionally, the switches are 
forced to zero. The display of messages from the UART is inhibited to reduce the 
number of cycles needed to simulate. The FPGA configuration is not simulated, 
and as an extension of that, only one user application is simulated, but it provides 
adequate opportunity to observe the operation of the system internals. 
 
Figures 21a through 21c show the full operation of the system through a user 
Nios II reconfigure command and a forced security fault. The organization is from 
top to bottom: the Security Controller Nios II and its components start the figure, 
then below is the User Nios II and its required components, and below that is the 
User Bridge. Then the Security Bridges follows and connects to the user Ram 
and Security RAM. 
 
Starting at the top, the Security Controller Nios II instruction bus is accessed from 
power up until the security fault occurs, at which point it resets. It is getting 
instructions from ram_0, its nearby RAM. The Security Controller Nios II data bus 
is accessing that RAM as well to access the stack and variables. Also, the data 
bus is accessed to communicate with all of the security objects to initialize them. 
 
Skipping past the local RAM, the User Nios II Reset Control is seen to command 
resets as directed by the Security Controller. The brief logic 1 times are when the 
User Nios II is commanded to reset. This occurs several times as the simulation 
is allowed to run through several configuration cycles. 
 
By looking at the user Nios II instruction bus, it can be seen where the user Nios 
II comes out of reset and starts execution as commanded by the Security 
Controller. Its instructions are coming from the user RAM through the User 
Bridge and the Security Bridge. The user Nios II data bus also communicates 
with the User Bridge to interact with the security objects through the Security 
Bridge. 
 
The User Bridge together with the Security Bridge serialize, transport, and 
deserialize the user Nios II’s instruction and data bus and decide if the access is 
allowed. The user RAM provides the application code to the user Nios II. 
 
 
 



 

 74 

 

Figure 20. Security Fault State 
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Figure 21a. Full System Simulation with ModelSim 
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Figure 21b. Full System Simulation with ModelSim 
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Finally the security RAM, the User Bridge, and the Security Bridge secrets clear 
on the reset. This can be seen at in Figure 21b where the stored data changes to 
zeros and stay at zero. 
 

6.2 Component Operation 

 
This section details the cycle-level operation of the unique, key components of 
the system. 
 

6.2.1 User Bridge 

 
The User Bridge simulations show the configuration of the bridge, the 
serialization of the data crossing the bridge, and the encryption and decryption of 
the data to and from the user Nios II.  
 
Consider the execution of this segment of code that copies the pass key (alias: 
blue key) from the security RAM to the User Bridge: 
 

*SEC_BLUE_KEY1 = *USER_BLUE_KEY1; 
  800120: 00c40074  movhi r3,4097 
  800124: 18e42804  addi r3,r3,-28512 
  800128: 00802074  movhi r2,129 
  80012c: 10800017  ldw r2,0(r2) 
  800130: 18800015  stw r2,0(r3) 

 
Pointers are used extensively so that the keys are only referenced from the 
designated locations that are cleared on reset. For the user Nios II to read the 

first instruction at 800120h, it places this address on the instruction bus address 
and asserts a read. Figure 22 shows this operation with all extraneous detail 
removed. The Avalon fabric converts the global address, which is in bytes, to a 

word address for the User Bridge slave, so the address is converted to 200048h. 
The User Bridge serializes this and outputs it on its own master port, which 
connects to the Security Bridge slave port (not shown.) The Security Bridge 
accesses the instruction from user RAM, serializes it, and places it back on the 
User Bridge’s master bus, on the readdata bus. The User Bridge de-serializes 
the data and places it on its slave port readdata bus so the Avalon fabric can 
take it. The User Bridges takes waitrequest low to indicate the data is ready. The 
Avalon fabric transports the result to the Nios II instruction bus, where it appears 
under readdata. The Avalon fabric takes the wait request for this transaction low 
to tell the Nios II instruction that the data is ready. The cursor is placed at this 

point, indicating that a read of 00C40074h is received by the Nios II, which is the 
first instruction in this sequence. Figure 23 shows a write operation across the 
User Bridge. 
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Figure 22. User Nios II Instruction Read without Encryption 

 
 
 

 

Figure 23. User Nios II Data Bus Write without Encryption 
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In this case, the LEDs are written to: 
 

*LEDs = 0x2; 
  800110: 00c02034  movhi r3,128 
  800114: 18d02c04  addi r3,r3,16560 
  800118: 00800084  movi r2,2 
  80011c: 18800015  stw r2,0(r3) 

 

The write takes place at instruction 80011ch and the data value to be written is 

2h. This write originates from the user Nios II data bus instead of the instruction 
bus, and this 2h is seen on the data bus with the address bus indicating 
8040b0h, which is where the LEDs are located. A similar process to the read 
operation occurs. The request is serialized and sent to the Security Bridge 
master port and the system does not continue until the wait request propagates 
from the Security Bridge, through the User Bridge, back to the user Nios II. 
 
Figure 24 and Figure 25 show how data crossing the User Bridge is encrypted 
and decrypted according to Figure 5. The data is encrypted with a composite 
pass and card key. The difference between this operation and the operations in 
Figure 22 and Figure 23 is that the User Bridge has been commanded to encrypt 
the data. This allows the user application to selectively run encrypted code 
segments and to selectively encrypt data that is stored in RAM, without any 
additional processor interaction. During compilation, the following code segment 
is marked as encrypted and is encrypted by Scilab with the pass key and the 
card key:  
 

 *RAMt0 = 0xace0ace0; 
  80018c: 00c02034  movhi r3,128 
  800190: 18c26304  addi r3,r3,2444 
  800194: 00ab3874  movhi r2,44257 
  800198: 10ab3804  addi r2,r2,-21280 
  80019c: 18800015  stw r2,0(r3) 
 a = *RAMt0; 
  8001a0: 00802034  movhi r2,128 
  8001a4: 10826304  addi r2,r2,2444 
  8001a8: 10800017  ldw r2,0(r2) 
  8001ac: e0bfff15  stw r2,-4(fp) 
 *SEC_CRYPTO_ENABLE = 0; 
  8001b0: 00840074  movhi r2,4097 
  8001b4: 10a42c04  addi r2,r2,-28496 
  8001b8: 10000015  stw zero,0(r2) 

 

RAMt0  is a location in user RAM that is allowed by the access policy. This code 
segment simply writes and reads a test word to RAMt0 then disables the User 
Bridge Encryption. The code to enable the encryption is not shown, as it is not 
encrypted.  
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Figure 24. User Nios II Encrypted Instruction Read 

 
 
 

 

Figure 25. User Nios II Encrypted Data Write 
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The first encrypted instruction retrieved is 80018c: 00c02034 movhi r3,128. Figure 
24 shows 00c0234h being received by the User Nios II instruction bus. The 
cursor is located on the reception of the wait request clear so that the returned 

value is displayed in the table. However, the user RAM value at 80018ch is 

0dec277ch. The User Bridge has performed this transformation on the data as it 
crossed:  
 

Dec( Inst , kpass[47:44] , kcard[47:44] , kpass[43:40] , kcard[43:40] , kpass[7:4] , kcard[7:4] , 
kpass[3:0] , kcard[3:0] ), where Inst is 00c02034h,  

kpass is 000f000f000f000fh, and kcard is 0ABCDEF012345678h. 
 

An encrypted write is shown in Figure 25. Here 80019c: 18800015 stwr2,0 (r3) is 
executed. The write is to 80098ch with data ace0ace0h. This is encrypted to 

a1eeab18h as can be seen at the bottom of Figure 25. The User Bridge is 
configured by the user Nios II. Figure 26 shows the configuration in process. The 
pass key, upper and lower, has been filled in (shown as blue_key). The card key 
upper half is also filled in (shown as green_key). The current operation is writing 

the lower half of the card key, 0abcedf0h. 
 

6.2.2 Security Bridge 

 
As with the User Bridge, the Security Bridge also has a slave port that allows its 
internals to be configured during run-time. In this case, the configuration is under 
control of the Security Controller Nios II instead of the user Nios II. Refer to 
Figure 27. The board keys are constants and can only be read. The next ten 
registers set what addresses are allowed to be accessed and their names are 
explanatory. Note the correlation with Table 5. The security ratchet can be seen 
incrementing from zero to three. Note that the registers in the Security Bridge are 
written to twice, with the final value being the correct configuration. The first set 
of write and reads is due to a software check on initialization that confirms that 
the registers are operational. 
 
Next, consider this segment of code that illustrates the operation of the Security 
Bridge serialization, de-serialization, and access control functions.  
 

*RAMt0 = 0xace0ace0; 
  80018c: 00c02034  movhi r3,128 
  800190: 18c26304  addi r3,r3,2444 
  800194: 00ab3874  movhi r2,44257 
  800198: 10ab3804  addi r2,r2,-21280 
  80019c: 18800015  stw r2,0(r3)   
 A = *RAMt0; 
  8001a0: 00802034  movhi r2,128 
  8001a4: 10826304  addi r2,r2,2444   
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Figure 26: Configuring the User Bridge 

 
 
 

 

Figure 27: Configuring the Security Bridge
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  8001a8: 10800017  ldw r2,0(r2)  See Figure 29. 
  8001ac: e0bfff15  stw r2,-4(fp) 
 *SEC_CRYPTO_ENABLE = 0; 
  8001b0: 00840074  movhi r2,4097 
  8001b4: 10a42c04  addi r2,r2,-28496 
  8001b8: 10000015  stw zero,0(r2) 
 if (a != 0xace0ace0) 
  8001bc: e0ffff17   ldw r3,-4(fp) 
  8001c0: 00ab3874  movhi r2,44257 
  8001c4: 10ab3804  addi r2,r2,-21280 
  8001c8: 18800126  beq r3,r2,8001d0 <main+0x114> 
  halt(); 
  8001cc: 080003c0  call 80003c <halt> 
 *RAMt1 = 0xace1ace1; 
  8001e0: 00c02034  movhi r3,128 
  8001e4: 18c26404  addi r3,r3,2448 
  8001e8: 00ab38b4  movhi r2,44258 
  8001ec: 10ab3844  addi r2,r2,-21279 
  8001f0: 18800015  stw r2,0(r3)  See Figure 30. 
 a = *RAMt1; 
  8001f4: 00802034  movhi r2,128 
  8001f8: 10826404  addi r2,r2,2448 
  8001fc: 10800017  ldw r2,0(r2)  See Figure 31. 

  800200: e0bfff15  stw r2,-4(fp) 
 if (a != 0x0) 
  800204: e0bfff17  ldw r2,-4(fp) 
  800208: 1005003a  cmpeq r2,r2,zero 
  80020c: 1000011e  bne r2,zero,800214 <main+0x158> 
  halt(); 
  800210: 080003c0  call 80003c <halt> 
 *RAMt2 = 0xace2ace2; 
  800224: 00c02034  movhi r3,128 
  800228: 18c26504  addi r3,r3,2452 
  80022c: 00ab38f4  movhi r2,44259 
  800230: 10ab3884  addi r2,r2,-21278 
  800234: 18800015  stw r2,0(r3)  See Figure 32. 

 a = *RAMt2; 
  800238: 00802034  movhi r2,128 
  80023c: 10826504  addi r2,r2,2452 
  800240: 10800017  ldw r2,0(r2)  See Figure 33. 
  800244: e0bfff15  stw r2,-4(fp) 
 if (a != 0x0) 
  800248: e0bfff17  ldw r2,-4(fp) 
  80024c: 1005003a  cmpeq r2,r2,zero 
  800250: 1000011e  bne r2,zero,800258 <main+0x19c> 
  halt(); 

 
This user code attempts to write three different test words to three different 
addresses and it also attempts to read them back (Figure 28-33). The first 
address is allowed by the access control policy and the last two are not.  
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Figure 28: Access Control Test 1 Write 

 
 
 

 

Figure 29: Access Control Test 1 Read 
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Figure 30: Access Control Test 2 Write 

 
 
 

 

Figure 31: Access Control Test 2 Read 
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Figure 32. Access Control Test 3 Write 

 
 
 

 

Figure 33. Access Control Test 3 Read 
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Since this is a demonstration test program, the user Nios II checks that it 
succeeded with the first operation and that it failed with the next two. The 
Security Controller ignores invalid access requests and returns zeros for any 
read data. 
 
In addition, serialization and de-serialization of the data crossing the Security 
Bridge can be observed in Figures 28-33. Of particular interest is the signal 
address_allowed. It is the output of a complex logic function in the Security 
Bridge that evaluates the address requested on each cycle and determines if it is 
allowed or not. This evaluation is a continuous-class Verilog statement and does 
not require registering to wait for the next cycle. 
 
Next, operation of the Security Bridge is tested when the security level is 

increased to level 2. Instructions   80019c,  8001f0, and 800234  are attempted 
again. This time, as expected with the access control policy, only the second 
write/read attempt is allowed. Figures 34-36 show the write operations. 
It can be see that test 1 and test 3 have their access attempts rejected. 
 
This process is repeated for level 3. It is verified that only the third test word is 
allowed to be accessed.  
 

6.2.3 Secure RAM 

 
The Secure RAM is shared between the Security Controller and the User Bridge 
and allows them to communicate directly. Execution of the custom Verilog to 
implement this memory is shown in Figure 37. The pass key and the card key are 
filled in. The user application has requested a checksum of the DE2 Main Board 
and this is filled in. The user has also requested a reconfiguration operation. 
 

6.3 Secrecy 

 
Figure 38 shows zeroing of the secrets contained on the DE2 Main Board when a 
tamper event is detected. All keys except the hard-coded board keys are cleared. 
The security ratchet remains at three as required.  
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Figure 34. Access Control Test 1, Level 2 

 
 
 

 

Figure 35. Access Control Test 2, Level 2 
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Figure 36. Access Control Test 3, Level 2 

 
 
 

 

Figure 37. Security RAM Operation  
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Figure 38. Clearing of Secrets on a Tamper Event 
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6.4 Authentication 

 
Authentication of the user to the DE2 Main Board is described in section 5.1. The 
DE2 Main Board accepts the user’s pass key from the input terminal and then 
performs a checksum on it. This checksum is compared to the decrypted 
checksum from the key card. The system is tested with a bad password and 
shown to halt: 
 

SC Starting.. 
..SC HASH 9bc6b732 
Testing RAM, Sec Ram, Bridge.. 
Waiting for SD card.. 
Checking  SD card.. 
..SD signature 1cf1d9b 
..SD calculated signature 1cf1d9b 
Enter Password: ght6yj 

 
The second authentication that takes place is the checking that the SD card is 
signed correctly: 
 

SC Starting.. 
..SC HASH 9bc6b732 
Testing RAM, Sec Ram, Bridge.. 
Waiting for SD card.. 
Checking  SD card.. 
..SD signature 1cf1d9b 
..SD calculated signature 1cf1daa 
..SECURITY FAILURE: halting.. 

 
In this case, the security level file is altered: 
 

correct: (startofseclevel)AAA8AAA8AAA8AAA9(endofseclevel) 
altered:(startofseclevel)0AA8AAA8AAA8AAA9(endofseclevel) 

 
Note that the signature from the SD card does not match the calculated signature 
value. 
 
The third authentication is the DE2 Board to the user. This takes place by a 
checksum of the board that is represented by a checksum of the Security 
Controller RAM and the state of the DE2 Switches. It is tested by turning on a 
switch and verifying that that user application halts. This test is completed 
successfully: 
 

Board Hash 9bc6b733 sent to USER 
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This value is one more that the correct hash as switch 1 is in the on position. The 
system halts in an error state according to the user application, which is to 

indicate 7h on the LEDs. 
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CHAPTER 7 
REVIEW AND IMPROVEMENTS 

 
The system described in this thesis meets the design goals in chapter 3. Loss of 
one part of the cryptosystem, be it the key card, the password, or the DE2 Main 
Board does not provide an adversary with any information about the key used to 
encrypt the data in his possession. For the cryptosystem, template functions 
model ciphers to first order; it is necessary to use cipher-block-chaining. 
Encrypted code execution is modeled to first order as it is in the electronic code 
book mode only. Encrypt-then-sign is approximated with the template function. 
The role based access system is shown clearly through many examples and 
allows real-time changes to the cycle-level access of the user processor. The 
secure boot process is demonstrated by the immutable security ratchet counter 
and attestation of the board state to the user processor. Encrypted data storage 
and retrieval is shown to be transparent to the user processor once the user 
processor indicates that the data should be encrypted. The system secrets are 
shown to clear on a detected tamper event. A first order description of a 
deployment model is made, in that a system of tools and programs using Scilab 
are created to act as the toolset that the system owners would use to generate 
the user files and load them on a key card. Reconfiguration of hardware is 
demonstrated by two user FPGA configurations, which are initiated as requested 
by the user application. More specific results in attempting the goals listed in 
Chapter 2 follow: 
 

 Hardware-enforced RBAC: the user software is shown to have its access 
to the system limited by the Security Controller based on the 
predetermined security level. The access control is shown to occur on a 
cycle-by-cycle basis and can be changed by the Security Controller at any 
time. This suggests that the system could be extended in an interesting 
way to work with a compiler system to enforce proper flow control [48]. 
The user is shown to have to have the key card and the password and this 
forms a two-part authentication for access. The access policy is shown to 
be a simple matrix that allows for both overlapping permissions and 
exclusive permission as it allows entry for every subject versus every 
object. Software attacks by knowledge insiders would require some type 
of access violation (this is presupposed by this thesis in that users are 
granted access to objects or denied access; no checking of the meaning 
of the communication between the user and the object is checked). The 
enforcement mechanism is shown to reject the attempted invalid address 
attempts, so there is no known access control violation. 

 Reconfiguration: simple FPGA reconfiguration from a signed, encrypted 
configuration file residing on the key card is shown. This is interesting in 
that the key card can be removed before deployment to the field, as long 
as the user code does not request a context change. This is because the 
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key card is only used for configuration and can be removed once that is 
completed. In that mode, a tamper event could clear the entire FPGA and 
the adversary would have no information about the FPGA. This can be 
considered in this thesis by assuming a tamper event turns off FPGA 
power. This concept suggests many useful applications, especially 
concerning mobile platforms that start in a secure place then leave that 
place to perform some function. 

 Context switching: The system is shown to be able to verify, decrypt, load, 
and execute two different contexts, with the user code being able to 
request a context change while running. 

 Computation: The system is shown to employ a basic 32-bit 
microprocessor. 

 Secrecy: Consider the threat model in Chapter 3 and Table 3. 
o If the adversary gets the DE2 board while it is running, a tamper 

event clears the pass key and the card key. All keys could be 
cleared if the system is implemented with a battery-backed RAM as 
with the IBM 4758 and IBM 4764. The data on the DE2 is stored (at 
the user’s discretion) with the pass key and the card key. In that 
manner, it is encrypted as strongly as the cryptosystem allows.  

o If the key card is recovered, the adversary reads it but it is signed 
and encrypted with the public key for the board, so that data is 
encrypted as strongly as the cryptosystem allows. Changing the 
card requires forging the CA signature, which is designed by the 
cryptosystem to be hard.  

o Recovering the key card and the DE2 board gives the adversary all 
of the information on the key card as the board secret key is 
compromised. This is the FPGA files, the application files, the 
security level file, the card key file, and the password hash file. 
However, data that the user wishes to have secondary encryption 
applied to is encrypted still with the pass key half. It is reviewed that 
changing the system from concatenating the card key with the pass 
key to performing the exclusive-or mixing of them would leave the 
data fully encrypted, but with the concatenation scheme, the 
number of bits is halved.  

o Recovering the password and the DE2 board gives the adversary 
the board secret key. However, the user data is encrypted with the 
key card key and the pass key. Again, possessing the pass key 
reduces the security parameter bits by half for the concatenated 
key system used in this thesis, but an exclusive-or implementation 
would leave the data fully encrypted. 

 Trust: The system models a secure boot in that it performs system tests at 
start up and halts on a problem and it performs a measurement of the 
system and can provide that to the user application on demand. It employs 
a monotonic counter than can only be reset by a full system power-off and 
reprogramming. 
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 SoPC: The system is designed on a highly configurable system-on-
programmable-chip fabric. 

 Tamper reaction: Tamper reaction is shown to clear the secrets on the 
DE2 board. The SD card does not employ tamper reaction, but certainly 
could in an active token design. In addition, by inspection it can be said 
that the FPGA power switch is the tamper switch, in which case all 
information about the FPGA and user applications is cleared. The only 
remaining data would be data stored by the user in a flash memory (not 
implemented, but modeled). This data would be fully encrypted with the 
card key and the pass key. 

 Authentication: To use the system, the user is demonstrated to have to 
use the key card and the password. The Security Controller is shown to 
attest its configuration to the user software, which can decide if it is 
acceptable or not. The system is shown to be assured of the identity of the 
key card in as much as the signature cryptosystem is secure. 

 User-initiated data secrecy: The system is shown to allow the user to 
apply secondary encryption to instruction and data using the pass key and 
the card key. In this manner, the encryption of the user data is separate 
from the board key, whose purpose is to receive configuration information 
from the key card. The system is shown to allow the user software to 
enable or disable this encryption function at any time. 

 Deployment: A simple model for system deployment is provided including 
how encrypted data gets to the system and its source. In addition, the 
expectation of the system is noted in the threat model presented. 

 
To best use the concepts presented in this thesis, the following 
recommendations are made: 

 
1. Change the system to a single-chip solution to increase speed. 
2. In the single-chip solution, use wide serial buses to connect the User 

Bridge to the Security Bridge and remove the SERDES. 
3. Redesign the User Bridge so that the toolset can understand that it is a 

bridge to secondary peripherals, or use an SoPC system that recognizes 
this. 

4. Create custom applications to automatically generate and encrypt the files 
and to load them to the key card. 

5. Make the key card active and have its secrets zero on tamper. Also, make 
it respond to command-response tests for identification. 

6. Possibly use biometrics for identification. 
7. Enable the use of interrupts and other full-processor features. 
8. Use a development platform that has up-to-date IP already made for the 

peripherals instead of one that does not. 
9. Expand the number and types of peripherals available to the user. 
10. Use a stream cipher for instruction encryption. 
11. Provide a tamper-detecting enclosure. 
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12. Use as many bits as possible for the encryption system.  
13. Allow for system updates. 
14. Allow for a full operating system. 
15. Tag information with level numbers and control the information flow. 
16. Create a compiler system that can take advantage of hardware that allows 

dynamic access control to increase security. 
17. Allow programs to be stored in flash. 
18. Increase the number of levels to four: unclassified, classified, secret, top 

secret. 
19. Use a more powerful processor. 
20. Increase the signature length. 
21. Clear the FPGA configuration on a tamper event. 
22. Change the checksum to a cryptographic hash. 
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