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ABSTRACT

A System-on-Programmable-Chip (SoPC) architecture is designed to meet two
goals: to provide a role-based secure computing environment and to allow for
user reconfiguration. To accomplish this, a secure root of trust is derived from a
fixed architectural subsystem, known as the Security Controller. It additionally
provides a dynamically configurable single point of access between applications
developed by users and the objects those applications use. The platform
provides a model for secrecy such that physical recovery of any one component
in isolation does not compromise the system. Dual-factor authentication is used
to verify users. A model is also provided for tamper reaction. Secure boot,
encrypted instruction, data, and Field Programmable Gate Array (FPGA)
configuration are also explored.

The system hardware is realized using Altera Avalon SoPC with a NIOS Il
processor and custom hardware acting as the Security Controller and a second
NIOS Il acting as the subject application configuration. A DE2 development kit
from Altera hosting a Cyclone Il FPGA is used along with a Secure Digital (SD)
card and a custom printed circuit board (PCB) containing a second Cyclone Il to
demonstrate the system.

User applications were successfully run on the system which demonstrated the
secure boot process, system tamper reaction, dynamic role-based access to the
security objects, dual-factor authentication, and the execution of encrypted code
by the subject processor. Simulations provided detailed examinations of the
system execution. Actual tests were conducted on the physical hardware
successfully.
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CHAPTER 1
PURPOSE AND ORGANIZATION

1.1 Motivation

Computer systems rely on correct execution of applications to provide data and
services that are used in every aspect of life. Financial transactions, health
records, mapping services using the Global Positioning System, entertainment
systems, and real-time interpretation of data for control systems are a few of the
many pervasive digital services that are relied upon in daily life. However, correct
execution of code to provide correct answers is not adequate in any scenario in
which a person or group wishes to intercept, alter, or use that data in ways not
intended or desired by the creator.

Many systems to obscure, or encipher, plaintext data exist as well as their
complementary systems to decipher that information. About such methods,
Auguste Kerckhoffs wrote:

“The cipher method must not be required to be secret, and it must be able to fall
into the hands of the adversary without inconvenience” [1].

The purpose of this thesis is to extend Kerckhoffs’s principle to hardware. Is it
possible to create a deployable embedded hardware system such that loss of
parts of the system does not compromise the secrets therein? Is it possible to
have the architecture of the system be public but to still maintain security?

The first application of such a system that readily comes to mind is a military
application. Loss of mobile, embedded hardware to the enemy can mean loss of
secret mission data and algorithms, provided the adversaries have resources to
recover the data. Additionally, these resources must be protected from internal
misuse due to unauthorized access, be it malicious or not.

As a second avenue of exploration, the ability of hardware to be securely
reconfigured is explored. In embedded systems, such as in the military example,
it may be needed to reconfigure the hardware as the mission progress. It may not
be feasible in terms of power or cost to use separate hardware for each aspect of
the mission. Can this ability to reconfigure be controlled securely in the same
manner as the data and processes?

The goal of this thesis is to explore these topics with modern cryptographic
principles as a backdrop.



1.2 Scope of the Thesis

This thesis examines a secure, reconfigurable computing system whose
individual physical components may be intercepted by an adversary after it is
configured and deployed. This computing system is qualitatively examined in
terms of modern cryptographic principles. This computing system serves as a
model or prototype in that simplifications are made to make the system more
general and manageable in terms of complexity. Cryptographic algorithms are
reduced to template functions, as there are many methods to achieve the
cryptographic goals. Physical embodiment of tamper detection and response are
simplified to a simple user input instead of an actual armoring of the system. The
goal of the thesis is to explore cryptographic, reconfigurable, and trust concepts
in breadth. The complexity of this goal precludes further exploration into specific
cryptographic methods and physically tamper-proof hardware.

The proposed system is realized in hardware and software and tests are
performed. Results from those tests are presented along with system simulations
that allow for detailed inspection of the system.

1.3 Organization of the Thesis

Chapter 2 provides the reader with a survey of principles needed to achieve the
goals of this thesis. Modern cryptographic principles are reviewed, which factor
into later design concepts. Reconfiguration of hardware is reviewed. The current
state of security concerns is explored along with solutions. The solutions
proposed by this thesis are compared to those.

Chapter 3 describes the goals of the hardware system, both cryptographically,
and in terms of hardware. The adversary is defined.

Chapter 4 describes the design of a hardware system that will meet the goals
outlined.

Chapter 5 describes the design of software systems running on the hardware
shown in Chapter 4.

Chapter 6 shows the results of testing the proposed system.

Chapter 7 provides a summary of the findings and explores how to further the
work presented in this thesis.



CHAPTER 2
SYSTEM PRINCIPLES AND CURRENT WORK

2.1 Principles of Cryptology

In order to later design a basic cryptosystem for use in this thesis, it is necessary
to first define basic cryptographic concepts. These concepts will be used wholly
or in part to create a conceptual cryptographic framework for the proposed
system.

Cryptology is the “scientific study of techniques for securing digital information,
transactions, and distributed computing” [1]. It is comprised of cryptography,
which is the study of enciphering messages to protect their content from
adversaries [2], and cryptanalysis, which is the study of deciphering ciphertexts
without having knowledge of the key used to make them [3].

Claude Shannon developed a model for this interaction between cryptology and
cryptanalysis. Shannon’s Model describes a message sender, a message
receiver, and an adversary [4]. A plaintext is the original message. The ciphertext
is the result of transforming the plaintext by some encryption method [5]. The
sender enciphers the desired message using a key and the message. The
receiver deciphers the message using the enciphered message and the key [6].
In this model, the adversary is assumed to be able to intercept the message and
to have knowledge of the method of enciphering it, but not have the key [6]. In
this model, Shannon stipulated two assumptions: (1) the key must be chosen
randomly from among all possible keys and all keys are equally likely, and (2) the
adversary understands the cryptosystem but does not have the key [6]. This is
Kerckhoffs’s principle restated: “The cipher method must not be required to be
secret, and it must be able to fall into the hands of the enemy without
inconvenience” [1].

Shannon proposed that the encryption method be based on some known
problem that is difficult and that the system should be made secure against all
known attacks [4].

Such an arrangement is known as a cryptosystem and it encompasses the
encryption method, decryption method, plaintexts, ciphertexts and key texts. The
following sections examine some important details of cryptosystems [7].

In addition to enciphering and deciphering for secrecy, several other concepts
are integral to cryptography and extend the basic model just presented.
Authentication, identity, and access control are integral to system security but are



often not first considered in association with cryptology. These concepts, along
with the dual of cryptography—cryptanalysis, are explored.

2.1.1 Privacy / Secrecy

The concept that first comes to mind concerning cryptology is the concept of
privacy, or secrecy. Suppose two people, Alice and Bob, wish to communicate
secretly. In Shannon’s model, suppose Alice is sending a message to Bob and
Eve is listening. Alice and Bob wish to keep the message private, or secret, so
they employ a method to encipher the message under some shared key. The
principles behind this scheme are examined in this section.

First, what does it mean for the message to be secret? An encryption scheme is
“secure” if “no adversary can compute any function of the plaintext from the
ciphertext” [1].

Such perfect security is achievable given some very specific conditions. Perfectly
secret encryption is achieved in a system such as the Vernam One-Time Pad
(OTP) [4]. In this system, each bit of the plaintext message is added to a random
key string that is shared between Alice and Bob. This system meets the definition
of secure defined above. It suffers from the problem of the key needing to be as
long as the message, or longer [8].

To create a more practical system, algorithms are used with a shorter key such

that Alice and Bob both know the algorithm and the key and are able to encrypt

the plaintext message with the key to create a ciphertext message that attempts
to meet the definition of security.

To formalize the Shannon Model, Alice and Bob share a key generated by a
random function Gen( ) which selects a key randomly from the set of all possible
keys [1]. Alice performs a transformation on the plaintext using a function

MenczEnC(M, k)

where M., is the ciphertext, kis the key, Mis the plaintext message, and Encis
the algorithm. She then sends M., to Bob, who finds

M:DeC(Menc, k)

where Mis again the plaintext message, Decis the decryption algorithm, and kis
the same shared key. This key must be agreed upon in secret between Alice and
Bob prior to this communication. Eve has access to the message Men, and Enc()
and Dec( ) but not the key, k. This scheme is known as symmetric key encryption
because both Alice and Bob use the same shared secret key.
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Eve intercepts message Men. It is desired that the algorithm Enc() alters Min
such a way that the definition of secure is met. Because the keys are secret, this
is known as private key encryption. In military settings, having to meet in person
to share a key is not considered a burden as this takes place naturally in staging
areas [1].

In many useful cases, it is important for the key kto be able to be made public to
simplify key sharing. In this case, £nc() and Dec( ) use different keys [9]. Each
entity has a public key, which is not secret, and a private key, which only the
entity knows. To send a message to an entity, message Menc

Menc:EnC(M, pk)

is calculated with pk being the known public key of the receiver. This message is
sent to the entity who computes the plaintext M using his or her private key:

M:DeC(Men(;, Sk}

Knowledge of the public key gives no information about the private key [9]. In this
manner, a secret message can be sent to an entity without the entities having to
establish a secure channel to share the same secret key. This system is known
as an asymmetric cryptosystem.

How is the data partitioned to be processed by the algorithm Enc() or Dec()?
There are two schemes: the block cipher and the stream cipher.

In the block cipher, the plaintext message M is divided into sections, known as
blocks, whose length is defined by the algorithm used [8]. Each of these blocks
then undergoes a transformation based on the key and algorithm [8]. The goals
of the algorithm are “confusion” and “diffusion” as proposed by Shannon [4]. The
property of confusion means “the ciphertext statistics should depend on the
plaintext statistics in a manner too complicated to be exploited by the
cryptoanalyst” [4]. The property of diffusion means “each digit of the plaintext and
each digit of the secret key should influence many digits of the ciphertext” [4].
These concepts are central to cryptography. This process is repeated for each
block in the message. A reverse process is used to convert the ciphertext back to
the original plaintext.

This process of each block being processed independently is known as the
electronic code book mode of operation of the algorithm £nc() [10]. However,
this suffers from the fact that any repeating part of the plaintext will appear as a
repeating segment of the ciphertext and is not desirable [10]. To prevent this,
Enc() can be computed in a different mode known as cipher block chaining
(CBC) [10]. In this mode, previous outputs of Enc() factor into the key & used for
that block: each plaintext block has the previous ciphertext block added to it
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(modulo 2) before the block cipher is done [10]. To get started, the first block
must have an agreed upon, random value added to it and this is known as the
initialization vector [10]. This method has been shown to be chosen-plaintext
secure but not chosen ciphertext secure. An example of a block cipher is the
popular Rijndael cryptosystem [11]. It allows for block lengths between 128-bits
and 256-bits in multiples of 32-bits [11].

What happens if £nc()is applied to the same data twice, but with different keys,
k1, k2? For a symmetric cipher, it turns out that this system is not as secure as
expected, which would be as secure as a key of twice the length. This is due to a
cryptanalysis method known as meet-in-the-middle. To increase security, it is
necessary to use Enc( ) three times with k7, k2, and k3 to avoid the meet-in-the-
middle attack. Triple DES is DES applied three times [12].

A second type of algorithm is the stream cipher. This is a symmetric
cryptosystem that works with individual bits such that the output of any ciphertext
bit is dependent only upon the key and the previous plaintext bit [13]. To
accomplish this, the key provides an input to a pseudo-random bit stream
generator whose output forms a running key [13]. This running key is used along
with the previous plaintext bit to get the current ciphertext output bit [13]. This
system has the advantages of being simple to implement in hardware and fast
[13]. A5/1, which is used in GSM telephone transmissions, is an example of a
stream cipher [14]. Interestingly, a block cipher can be turned into a stream
cipher by operating it in the output feedback mode [10]. In this manner, outputs
from the cipher are fed back as inputs to the cipher [10].

2.1.2 Authentication

The second pillar of cryptology is authentication. How does Bob know that the
message that he received was the one intended by Alice—that it has not be
tampered with or altered? Perhaps an adversary pretending to be Alice sent it
(impersonation attack), or perhaps Alice did send the message but the adversary
Eve intercepted it and changed it (substitution attack) or sent it again later (replay
attack) [15]. Given a read-only memory, how can one ensure that it has not been
tampered with?

The answer to this is authenticated encryption (AE). To understand, the concept
of cryptographic hash functions must first be defined. A hash function takes
inputs of arbitrary length and transforms (hashes, digests) them to create an
output of fixed length [16]. A keyed hash function improves upon this by adding a
cryptographic aspect such that the output hash depends upon the input message
and a secret key. A message authentication code, MAC, algorithm is an example
of this concept. It consists of three parts: a random key generation algorithm, a
MAC generation algorithm that takes the message and the key and computes the

6



MAC value, and a MAC verification algorithm that takes the message in question
and the key and performs the MAC generation function again and compares the

result with the MAC value provided [17]. To work, it must be hard to forge a MAC
value on a new text [17].

Authenticated encryption can now be explained. Bob can ensure that the
message that he received was from Alice and has not been tampered with by the
following method [18]:

Alice and Bob share secret keys k7 and k.

Alice makes a message M.

Alice encrypts M under key k; using some cryptosystem to produce Meyc.
Alice computes the MAC generation .S of Meyc using Me,c and k.

Alice sends the pair ( Mene, S) to Bob.

Bob computes the MAC generation of M., using kz and checks that it
matches S.

7. Bob decrypts M., with k7.

ok wnpE

Now Bob is assured of the integrity of the message, of the identity of the sender,
and of the secrecy of the transmission in as much as can be guaranteed by the
cryptosystem.

Now, if Eve intercepts the message for Bob and replaces it, when Bob computes
the MAC verification for the message using the shared secret key with Alice, the
value will not match the MAC value presented on the message, as Eve does not
have the key required to generate the correct MAC value. Although useful, this
method has several problems:

e The MAC has problems in multi-user settings. The MAC is not publically
verifiable and transferable—each verifier must have the secret key, so just
because Bob verifies his received MAC value, he is not assured that all
other receivers will also come to that answer [1].

e The MAC does not allow for the condition of non-repudiation [1]. The
sender and the receiver could later disagree about k> without any way of
proving that they shared the k- key for that message [1].

This process is adapted for public-key cryptography [1]. It works as follows:

=

Alice generates an asymmetric key-pair and publishes the public key.

2. Alice “signs” the message by a signing algorithm that takes the message
and Alice’s private key and produces a single value known as the
signature.

3. Alice appends the signature to the message and sends it to Bob.



4. Bob verifies the signature by using a verification algorithm that takes the
message, Alice’s public key, and the signature and outputs a true if the
signature is valid for that message and false if it is not.

Notice that the message in this case is not encrypted, so this scheme forms only
a signature. How can this be added to an encryption scheme to achieve a system
similar to encrypt-then-MAC?

A first guess would be to encrypt-then-sign. This has a problem in multi-user
settings as described by [19]. Suppose that Alice wants to send a message to
Bob. Alice encrypts the message with Bob’s public key, and then makes a
cryptographic hash of the encrypted portion using her private key. Now she
appends this to the message and sends it to Bob. Now suppose that Charlie,
who is also a user of the system, intercepts the message. He strips the signature
off, runs the encrypted part through his signing algorithm, and then forwards it to
Bob claiming the message was from him, even though he does not even know
what is in the message. Bob cannot confirm that this did not occur. One solution
is for the encrypted part to contain text that enumerates the sender and the
receiver. However, if there is only one sender and one receiver, then encrypt-
then-sign is secure [19]. Multiusers should, when encrypting data, include the
identification of the sender. When signing data, they should include the identity of
the receiver with the signed message. Message receivers should check the
identity of the sender and the receiver and if it does not match what is expected,
reject the message [19]. This thesis uses encrypt-then-sign with only one
potential sender, so it is secure under the two-person model.

2.1.3 Identity

In the cryptographic model presented, how can Bob ensure that he is in
communication with Alice? Alice is referred to as the claimant as she is alleging
to be Alice and Bob is the verifier as he engages Alice in a protocol to ensure her
identity [20].

An identity verification protocol is a scheme used to provide entity authentication
between parties [21]. It can be unilateral or mutual [21]. Entity authentication is a
process by which the claimant proves her identity to the verifier [22]. This can be
based on something the claimant knows, something the claimant possesses, or
something inherent in the claimant [22]. Passwords are an example of something
known, a smart card is an example of something possessed, and biometrics are
an example of something inherent [22]. This proof is known as credentials [22].

One straightforward protocol that Bob can employ is the challenge-response
identification protocol. In this protocol, Bob presents Alice with a question that
changes over time, and she answers the question to prove her identity [20]. This
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relies on Alice and Bob having a shared secret prior to this protocol. One simple
way to do this is for Bob to send Alice a number encrypted under their shared
key, and Alice finds this number by decrypting the message. She then
increments the number by one and sends it back to Bob after encrypting it again
with the key. Bob decrypts the second message and confirms that the number he
originally sent was correctly incremented. In this manner, if Eve attempts to
record a message in transient and replay it later, Bob immediately detects it. Bob
can also send a sequence number expecting the next value, or even the current
time [20].

Perhaps Alice gave her key to a fourth entity. How can Bob ensure that he is in
communication with Alice given this possibility? Without a physical tie to Alice, it
is impossible to establish this fact. Biometrics address this problem by making
credentials based on physical traits or behaviors [23].

2.1.4 Access Control

The fourth aspect of security is the concept of access control. In a system with
shared resources, it is important to specify which entities have access to which
resources and to further specify the nature of that access. This allows the system
to meet security goals such as confidentiality, system integrity, and to prevent
certain attacks, such as denial of service [24]. Access control can be defined as a
“security function that protects shared resources against unauthorized access”
[24]. In the language of security, those resources are called objects and the
entities accessing, or attempting to access them, are called subjects [24].

For any system that is to employ access control, it is necessary to have a method
to describe how subjects are allowed access to objects. This is known as the
access control policy and it can take several forms depending on the goals of the
system [24]. The form of the description is known as the access control model
[24]. The way in which this policy is expressed determines how flexible the
system is to future changes and how easy it is for one subject to delegate rights
to another subject [24]. Additionally, the type of model used may make proving
security concepts easier as well as making the inspection of the policies more
expedient [24].

One type of model is known as the matrix model [24]. In this model, the policy is
described by a matrix. Subjects are listed in the rows and objects are listed in
columns [24]. Each entry represents the permission that subject has with that
object [24]. When using models, one key goal is to “prove safety” which means to
determine if access rights are granted to unauthorized subjects [24].

An object-centric listing can be obtained by use of an access control List which is
a list of pairs for each security object: (s, (r1, ... r») ) which lists each subject
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and the rights of that subject on the object for which the pair refers [24]. This can
awkward for systems where subjects can delegate rights to other subjects [24].

A subject-centric listing can be obtained in a similar manner by use of the
concept of a capability [24]. A capability is a pair (o, (r:... ra) ) which lists each
object in a system and the rights that the subject to whom the pair refers has
[24]. This is also a type of credential [24].

More specifically, a credential is “a token issued by an authority that expresses a
certain privilege of its bearer” [24]. One advantage is that some credentials can
be verified off-line [24].

Besides the matrix model, another way to express the access control policy is the
role-based access model [24]. In this representation, all subjects are assigned to
roles and then the roles have rights to objects assigned to them [24]. By this
indirection, easier policy management is possible as it is possible to see by
inspection what rights a subject has. In addition, this reduces entry errors [24].
For example, in military settings, there might be the roles of unclassified,
confidential, secret, and top secret. Subjects could be assigned to these roles,
and inspection of the role label applied assures that the correct rights are
established for the user, if the roles and their objects are associated correctly.

Finally, the access control policy can be expressed in terms of the information
flow model [24]. Under this system, information is tagged with security labels.
Subjects can read from lower levels, read and write to their own level, and only
write to higher levels [24]. In this manner, information can only flow to equal or
more privileged subjects. This is used in need-to-know scenarios such as military
applications.

Having an access control policy that can be represented in a detailed,
understandable, and mathematically representable way is only the first
precondition for having access control. The second is an enforcement
mechanism [24]. This entity is located between the subjects and the security
objects and has the ability to allow or disallow access [24]. To do this, it is
comprised of a part that can inhibit access and a part that determines if the
requested access complies with the access control policy [24]. This second part
is known as the decision function [24]. In order to prevent a compromise of
security, this part must provide complete mediation—it must intercept all
accesses to the objects [24]. This is easier to accomplish in centralized systems
[24]. Together, these components form an authorization architecture [25].

The concept of access control is central to the hardware design of the system
described in this thesis and is revisited frequently.
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2.1.5 Cryptanalysis

Cryptanalysis is the process of deciphering an encrypted message without
having the key [3]. One must consider the strength of the adversary attempting to
do this in order to form a threat model [26]. Who are the adversaries, what
access do they have to the different parts of the system and what are their
resources? [26]. This will determine the success of the attempted cryptanalysis
for a given system.

2.1.6 Methods of Attack

The following is a brief description of attacks that are used to gain information
about a plaintext that has been encrypted to form a ciphertext and it is assumed
that the key is not known.

Exhaustive key search: the attacker tries every possible key for Dec( Mene, k) 10
find an expected plaintext value [27]. To resist, the cryptographer should use
long keys, change keys often, eliminate known plaintexts, and use cipher block
chaining [27].

Dictionary attack: the adversary enciphers an expected plaintext with every
possible key and stores this exhaustive list as a look up table [28].

Denial of service: the adversary makes repeated requests to a system such that
it does not have time to respond to legitimate access [29].

Code book attack: The adversary collects plaintext-ciphertext pairs for analysis of
future messages. This can be avoided with cipher block chaining [30].

Replay attack: The adversary records a communication and plays it back later
[15]. Authentication and challenge-response protocols can be used to against
this.

Man-in-the-middle: A person intercepts a message and then can alter it, replay it,
or learn its contents [31]. Authenticated encryption can be used against this
method.

Impersonation attack: an adversary attempts to assume the identity of a
legitimate entity in a system [32]. Authenticated encryption and identity
verification protocols are used to prevent this.

Chosen ciphertext, or adaptively chosen ciphertext attack: the attacker has the
ability to choose a ciphertext and perform the decryption algorithm on it using the
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secret key. He does not know the key. In the adaptive version, his choice of new
ciphertexts can come from previous trials [33].

Chosen plaintext, or adaptively chosen plaintext attack: the attacker can choose
a plaintext to be encrypted using the secret key, but does not have the key [34].
In the adaptive version, new choices for the plaintext are based on previous
trials.

Adaptively chosen plaintext and ciphertext: the attacker can do both chosen
ciphertext and chosen plaintext at the same time and use the results for future
trials [35].

Linear cryptanalysis: the attacker “studies probabilistic linear relations between
parity bits of the plaintext, the ciphertext, and the secret key” [36].

Differential cryptanalysis: a general technique for studying symmetric
cryptographic systems and focuses on the differences as they evolve through a
cipher system [37].

Actual physical attacks can be characterized by who attempts them and what
access they have. One classification is clever outsiders, knowledgeable insiders,
and funded organizations [26]. The number of systems available for destructive
testing is also important along with cost of tools and time necessary [26]. Here is
a list of physical attacks:

Environmental attack: cooling the system, heating the system, applying
unexpected inputs to the system, or altering the system'’s time functions are used
to attempt to learn secrets from the system [26].

Electromagnetic / power attack: observation of electromagnetic radiation or the
power used by the system can help the attacker infer information about the
system [38].

Fault injection: an electrical fault can be injected into the system to get it to a
state not intended by the designer [39].

Data remanence: some computer memories retain state if cooled, even if power
is removed [40].

Software attacks: these attempt to exploit the system security by software
means: buffer overflow, unexpected inputs, misinterpretations of inputs, using
data at a time much after it was checked, abusing privileges, and accessing
undocumented functions [26].
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The cryptosystem presented in this thesis will be referenced against this list of
attacks to enumerate which ones are considered and modeled and which are

not, in order to define the bounds of what can be expected from the proposed

system.

2.2 Reconfigurable Hardware

Another goal of this thesis is to explore reconfiguration as part of a secure
embedded system. To accomplish this, an FPGA that is under control of the end
user is part of the system.

FPGAs accomplish custom functions via use of reconfigurable interconnect to a
set array of fixed hardware elements. Take, for example, the Altera Cyclone II. It
has a large array of Logic Elements (LEs) that are small combinatorial logic
blocks that are optimized to perform synthesized logic functions [41]. These
consist of a Look-Up-Table (LUT) that is a function generator of four inputs, a
programmable register, inputs and outputs to row and column interconnects, and
various ancillary logic [41].

LEs are connected to each other and other on chip devices via a programmable
interconnect to realize the system as synthesized, placed, and routed by the
Quartus [42] tool. This interconnect, as with all programmable aspects of the
Cyclone I, is configured based on SRAM memory cells [41]. These cells are
loaded with the desired function during FPGA programming. Programming is
accomplished by serial input to predefined pins and must be done on each power
cycle.

The Cyclone Il also has configurable embedded memory blocks, PLL blocks,
multipliers, and Input-Output Elements (IOES).

The Cyclone Il LS provides advanced security features relevant to this thesis. It
allows a 256-bit volatile key to be stored internally [43]. This key is used to
decrypt the configuration file for the device. The configuration file is encrypted
with AES-256. Tamper detection zeros the key. The key is maintained between
power cycles by a battery, similar to the concepts in the IBM 4758.

2.3 The Security Problem and Current Solutions

Having reviewed a basic cryptographic model that includes secrecy,
authentication, and access control and having reviewed principles of
reconfigurable hardware, it is possible to define the current state of security
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problems and to show examples of systems that are designed to solve those
problems. Then, the design in this thesis can be compared to that work.

2.3.1 The Security Problem

Computer systems process information that is valuable to the user and must be
protected. In addition, this information may come to the user from a second party,
or may go to a second party; in either case, it is necessary to be able to ensure
the source of the information and to ensure that it has not been tampered with.
Further, a system may need to attest to another system that it is in a known-good
state and to convince itself of that fact before operating fully. Computer viruses,
including malware, can infect systems and compromise these goals. In addition,
an entity may physically attack a system to acquire the system’s valuable
information or to change it to operate in an abnormal manner. The same
problems apply to smaller embedded computer systems. For example, consider
the case of downloadable content for mobile phones. How can the user know
that the application cannot access data that the user wishes to keep private?
How can a content provider know that a user platform is not duplicating data that
was trusted to not be duplicated? Conversely, how can a user know that
transactions he or she wishes to perform on a remote machine are occurring
correctly and that the machine is in an untampered state? As embedded systems
continue to increase in power and run applications that only a full computer could
run a few years ago, the need to extend security developed for full platforms to
embedded systems will be needed. Consider finally the case of military hardware
that could fall to an adversary. It should not provide secrets even it is physically
compromised and should not be electronically repurposed for unauthorized use.

To solve these problems, multiple hardware and software solutions are
employed. This section covers ones of specific interest to this thesis.

2.3.2 The Security Problem: Access Control

Section 2.1.4 covers the basic principles of access control. Of interest to this
thesis is role-based access control (RBAC). The concept of a role-based access
control dates to the 1970s in multi-user, multi-application systems [44]. A
general-purpose RBAC was generalized by [45]. They note three guiding rules:
first, a subject can only execute a transaction if the subject has been assigned a
role (or selected one) [45]. Secondly, a subject’s active role must be authorized
for the subject [45]. Thirdly, a transaction may only be done by a subject if
authorized by the subject’s role [45]. Note that roles are different from groups in
that a group is a collection of users where a role is a collection of permissions.
[46]. Role-based access control can also have advanced descriptions that allow
for mutual exclusion so that entities cannot have overlapping roles [44].
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Additionally, roles can inherit from parent roles [44]. RBAC can be applied to
applications to control their access to application data instead of embedding
specific code in specific locations to control that access [45]. This can be done in
two ways: (1) roles are assigned with permissions to execute entire programs, or
(2), roles are assigned with permissions to execute specific functions [47]. RBAC
has been studied extensively since the 1990s and was standardized in a 2004
NIST standard based on [46].

Beyond the abstract concept of RBAC, general access control is commonly used
to prevent execution in one context from accessing memory regions allocated to
another context [48]. Hypervisors are designed to support memory separation
between guest operating systems and between the hypervisor and the guests
[48]. The Hypervisor Xen is an example of this [48]. The actual mechanism of
separation with Xen is very complex, with multi-level page tables where each
table can have 1024 entries [48].

Memory can be monitored for unusual operation in the scheme of intrusion
detection, then the system could react, and this forms a type of access control.
Proposed in [49] is a scheme whereby the code compiler identifies what areas of
memory could be changed by the code and under what conditions, and then
conveys that to the hardware for enforcement. This is called dynamic access
control [49].

General access control is a necessary precondition for establishing a trusted
path [50]. Suppose that a user is to enter a password and to interact with a
screen that shows banking information. It is necessary to be able to isolate
systems to ensure that a trusted path can be made between the program and the
peripheral—in this case a keyboard and a screen. Additionally, take the case of a
modern motherboard. A CPU connects to memory through a north bridge and to
slower I/O through a south bridge. Peripherals can access memory directly
through direct-memory-access (DMA). For example, [51] describes the case of a
network card accessing memory intended only for the graphics processor. A
compromised driver can change the memory mapped 1/0 (MMIO) region of a
device to overlap another device so that it can intercept data [50]. For example, a
display could be sent to a network card [50]. Hypervisor design is suggested that
provides isolation and prevents these attacks [50].

An ARM processor with TrustZone technology is designed for integrated access
control throughout its processor, bus system, and peripherals [52]. The design
goal is to provide total separation between a trusted execution context and an
untrusted execution context [52]. Objects in the unsecured context cannot access
objects in the secured context [52]. Two extra bits are added to read and write
signals on the system bus to indicate which context the system is operating in
and memory has an extra bit added to it to indicate which context is in use [52].
In addition, some processors have extensions that allow one core to serve in
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both contexts in a time-sliced manner [52]. Careful attention is paid to objects
that are used for debugging in order to control their access [52].

2.3.3 The Security Problem: Secrecy

Both data and code may be made secret. A platform may execute code stored in
a secure area [26]. The encrypted code may be stored in a public location and
decrypted prior to execution by the processor [26]. Alternatively, only key parts of
the code may be encrypted [26]. The problem of code encryption is difficult [26].
This is because the code should be enciphered with a stream cipher or block
cipher operating in cipher block chaining mode as the message space for
processor code is small and patterns would easily appear in the ciphertext.
However, branches in the code and re-execution of segments of the code make
synchronizing the blocks of the running key difficult. Data can be stored as
encrypted using standard encryption methods.

2.3.4 The Security Problem: Authentication

The terms “secure boot” [53], “trusted computing,” and “trusted platform module”
occur often in computer security literature. These all relate to the concept of trust.
“Why should Alice trust computation on Bob’s machine?” [26]. This question is an
extension of the cryptographic concepts of secrecy and authentication as it
applies to computation. In addition, how can a computer system detect changes
to itself?

The answer to this is to create trust. Trust is defined by the Trusted Computer
Group as “An entity can be trusted if it always behaves in the expected manner
for the intended purpose.” Computers could earn our trust by being able to
“strongly identify themselves” and to “strongly identify their configuration” [54].
The first part comes from using asymmetric cryptography with the secret key
“strongly tied” to the platform and the second part comes from making
cryptographic hashes of the state of the machine [54].

To accomplish those two goals, a Trusted Platform Module (TPM) can be added
to the system. This module, with specifications defined by the Trusted Computer
Group, and the system, provide three roots-of trust and a method to keep track of
the state of the system:

1. Root of Trust for Measurement (RTM) is a computation engine that makes
reliable integrity measurements [55]. This is usually done by the system’s
normal computation engine [55].

2. Root of Trust for Storage (RTS) is a computation engine that maintains
digests of the state of the system [55]. This is stored in the TPM [55].
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3. Root of Trust for Reporting (RTR) is a computation engine that can report
the contents of the RTS reliably [55]. This is integrated into the TPM [55].

4. Platform Configuration Registers (PCR) are a set of registers that are
cleared on reset. When written to, they take the current value and
combine it with the new value [54].

How can these elements be used to establish trust in a computer? The process
of a secure boot provides a solution. In this process, a “chain-of-trust” is built with
its roots in the hardware TPM [54]. The chain-of-trust describes the integrity of
the boot process and program loading.

What does a TPM measure to keep track of the state of the system so that it can
attest to it? Although code execution changes the state of a platform, and
attempting to record these dynamic changes could be a goal, the best means of
proving the system state is to do a cryptographic hash of code before it executes
and to do this for every piece of code that loads during the boot process and to
track these through a secure boot process [56]. This process was first described
by [53]. This works by always checking code before it is executed. This could be
done using the TPM in the following manner: on reset of a system, the PCR is
cleared. A measurement is made of the first code segment using RTM. This
value is checked against a list that has been signed by an authority (the
authority’s public key must reside in the system to do this) [56]. If it is acceptable,
then that code segment is loaded and executed [56]. It then makes a hash of the
next piece of code that is to be loaded and adds this to the PCR, which takes it
and combines it with the previous hash [56]. If an attempt is made to load
unauthorized code, then the system halts [56]. The current value of the PCR can
then attest to a chain of certified software loads. By making it through the boot
process, the system has demonstrated that it is running in a trusted manner [56].

TPMs can also “seal” data by a process of withholding the decryption keys for a
memory block or similar until the PCRs are in a specific state. In that manner, the
data cannot be read until the system is in an exact state as required by the
designers [54]. Microsoft’s BitLocker seals the keys used to encrypt the hard
drive and to authenticate it. They are sealed to the state of the PCR.

To accomplish all of these goals, a TPM has key generation ability based on a
true random number generator [54]. It also has a non-volatile monotonic counter
that helps to prevent against replay attacks [54]. The TPM must be able to
demonstrate its identity and to maintain secrecy of keys and this is accomplished
with the RTS and the RTR.

How does this concept of secure boot and state measurement apply to
reconfigurable FPGA hardware? In [55] a system is proposed that consists of an
FPGA that has three sections: a static section that interfaces to passive TPM
functions and checks reconfiguration streams, a fixed section that is user-defined
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to interface with external hardware, and a dynamically reconfigurable section of
the FPGA that is located in the fixed section [55]. Outside the FPGA is a trusted
area called the Trust Block that has an initialization ROM configuration of the
FPGA along with passive TPM style registers. The ROM initializes the FPGA to
describe the static sections and to clear the fixed area [55]. The static area
evaluates and checks the user’s configuration data for compliance before
allowing it to load [55]. Also, PCR registers are used to track the state of the
FPGA with special consideration given to reconfiguration [55]. Unlike normal
PCRs, these PCRs reset when the system loads a new configuration as no trace
of the previous is left on the system [55]. They also propose a system that
integrates the TPM functionality completely into the FPGA and assumes an
FPGA that can be partially reconfigured [57]. They assume a user application on
the FPGA such as a microprocessor and cite the benefits of not having the TPM
be a separate entity. Trust is likewise derived from examination of the FPGA
bitstream. Special consideration is given to how to maintain secrecy of the TPM
information.

2.3.5 The Security Problem: The IBM 4758 Solution

The IBM 4758 secure co-processor is one example solution to the security
problems outlined and provides an excellent example of a complete system
designed with security inherently.

The goals of the IBM 4758 encompass those defined previously and expand on
them:

1. To provide physical armor to prevent tampering by an adversary [26].

2. To protect designated data from the adversary given the fact that he has
access to part of the system. Protection of data means ensuring that the data
is secret and authentic [26].

3. To prove code is executing in a correct environment [26]. In this manner,

multiple parties who have differing motivations can participate in a

computation securely [26].

To possibly provide secrecy of the code executing on the system [26].

To be general purpose [26].

To support multiple operating systems [26].

To support multiple vendors [26].

To allow for security in the presence of mutually untrusted parties [26].

To be reconfigurable [26].

10 To be easy to update [26].

11.To allow for updates to the cryptographic engine [26].

12.To ensure secrets go away when under attack [26].

13.To ensure secrets start out secret [26]. This means careful consideration of
the deployment of the system from factory initialization to end use.

©xNOoO O
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14.To ensure secrets remain secret even in the presence of a software attack
[26]. This is a result of number (8) as code running on the system may have
been designed with different motivations.

It uses the concept of secure boot to defend against software attacks [26]. As
with the general system that is improved with the addition of a TPM, the IBM
4758, upon reset, executes code from an initial, trusted space that cannot be
altered [26]. This code then certifies the next segment of code that is to be
executed and passes control to it [26]. The first section of code cannot be
reached again without resetting the device. The second segment of code
executes, checks the integrity of the third layer of code, and passes execution to
it. Likewise, this second segment of code cannot be reached again without a
system reset, which causes the entire process to start over [26]. The access
control policy of the platform uses the boot stage to decide what accesses are
allowed [26]. To ensure that the system cannot be tricked by software into
operating as if it were in a lower, more privileged stage, a hardware counter,
called the trust ratchet, is incremented at each step and cannot be rolled back
without a system reset [26].

Concerning physical attacks, tamper response refers to how a system responds
to a detected tamper event. The IBM 4758 system employs tamper reaction in
the form of sensor circuits that could detect a tamper event and a system that
zero secrets and that takes the system off-line [26]. These tamper events include
physical penetration, alteration of expected electrical inputs, and changes in
temperature [26].

Beyond the mechanics of the device itself, the deployment model of a system is
a key factor to the system’s design and overall security as well as complexity.
How is the device initialized at the factory [26]? How is it transported to the user
[26]? How is code maintenance done [26]? Is it possible to reuse the device for
another purpose [26]? Can the system be audited [26]? How is software
developed for it [26]? Can the device be exported [26]? Is the device secure
enough for the environment [26]? Is it feasible and robust [26]? What levels of
compromise should be assumed [26]? Will it need updates [26]? These factors
were carefully considered in the design and deployment of the IBM 4758.

Many of these design parameters can be qualified by proving that the system
meets the FIPS 140-2 standard. FIPS 140-2 [58] is a standard that defines what
it means for a security device to be secure. The IBM 4758 is a level four system
and has the following characteristics: it resists the highest level of physical
attacks, all cryptographic functions are performed in a protected envelope, and it
is intended to be used in physically unprotected areas [58].

The IBM 4764 represents a later entry into the market. The IBM 4764 is a PCI-X
based secure co-processor that performs high-speed cryptographic functions and
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is also certified at FIPS 140-2 Level 4 [59]. It has an IBM PowerPC
microprocessor [59]. It also has hardware for DES, Triple DES, AES, hashing,
and public-private key algorithms [59]. A secure clock and a hardware random
number generator are also provided [59]. Like the IBM 4758, it clears its secrets
on detection of a tamper event [59]. Typical applications are anywhere high-
speed data encryption and signing are needed that may be traced to trustworthy
hardware [59].

2.3.6 The Security Problem: A Role-Based SoPC Reconfigurable Solution

The purpose of this thesis is to design a system that could be used as a template
for a secure, reconfigurable computing platform. At a high level, such a system is
comprised of two parts: one part that controls all security aspects of the system
and is not user alterable, and a second part that is a user area, which can run
user applications, both hardware and software. Additionally, this user area could
be reconfigured in hardware while in use. This system uses cryptographic
principles to make the system secure. The system employs a role-based access
model that would make it well suited for military applications. The system divides
secrets between hardware components such that loss of part of the system
would not provide information about the data stored on that part. It offers a dual-
authentication system to authenticate the user.

This thesis proposes a system that draws on the principles and previous
solutions described and adds to them. A system is proposed that has the
following features:

e Hardware-enforced RBAC: the system will determine access control
based on the precepts of RBAC. The access control is flattened so that it
can be described in a simple matrix of subjects vs. objects. Inheritance
and mutual exclusion can be allowed for by direct description in this
simple matrix; in other words, this will not automatically occur. This access
control ensures that security objects (peripherals) are adequately isolated
from each other and trusted paths. The hardware enforcement will be
address-based so that it can control access to a device but does not
perform semantic inspection of data that being transacted. General access
control to the entire platform is provided by a dual-authentication system
of a password and a key-card.

e Reconfiguration: The system will support reconfigurable hardware.
Descriptions of the hardware will be on a key-card and will be encrypted.
The platform will authenticate and decrypt the configurations before
loading them. A reconfigurable area of an FPGA is assumed while
maintaining an immutable area.
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e Context switching: As part of reconfiguration, the system will allow
commands to be received that will instruct it to reconfigure in a secure
manner using data from the key card.

e Computation: The system will use a soft-core processor as an example of
a user-defined computer system.

e Secrecy: The system will be designed with consideration of physical
recovery by an adversary of different parts. Data will be encrypted so that
recovery of individual parts does not provide useful information. The
processor can directly encrypt and decrypt instructions in a simplified ECB
model, and can do the same with data.

e Trust: The system will provide a simple model to attest its trustworthiness
to the user application.

e System on Programmable Chip (SoPC): The system will be designed
using SoPC technology.

e Tamper reaction: the system will model a tamper event with a push-button
and will clear its secrets.

e Authentication: configuration data signatures are checked before loaded.
The user will enter a password and a key card to use the system.

e User-initiated data secrecy: A unique system whereby each user has the
ability to selectively encrypt and decrypt data with keys that are not related
to the board itself is added.

e Deployment: A detailed deployment model and threat model will be
presented.

Chapter 3 defines these goals specifically.
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CHAPTER 3
DESIGN

This section defines the threat model that the proposed system, when fully
implemented, is designed to resist. Specifications of the system are also given.

3.1 Threat Model

To understand the system, it is necessary to understand the threats that it is
designed to resist. The thesis system h