
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2013

A Secure Reconfigurable System-On-
Programmable-Chip Computer System
William Herbert Collins
University of Tennessee - Knoxville, wcollin4@utk.edu

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Collins, William Herbert, "A Secure Reconfigurable System-On-Programmable-Chip Computer System. " Master's Thesis, University
of Tennessee, 2013.
https://trace.tennessee.edu/utk_gradthes/2404

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by William Herbert Collins entitled "A Secure Reconfigurable
System-On-Programmable-Chip Computer System." I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Syed Islam, Nathanael Paul

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

A Secure Reconfigurable
System-On-Programmable-Chip

Computer System

A Thesis Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

William Herbert Collins
August 2013

ii

Copyright © 2013 by William Collins.
All rights reserved.

iii

DEDICATION

This work is in dedication to Leon and James Collins, who first explained the
difference between parallel and series circuits to me when I was a child and
always fostered my exploration of electricity by many discussions and
demonstrations, in which we always took pleasure.

iv

ACKNOWLEDGEMENTS

I would like to thank the following people for their contributions: Dr. Gregory
Peterson for his advice and insights for this project, without which this project
would not have been possible, Dr. Nathanael Paul for improving the
cryptographic system, and layout artist Todd Schwarzkopf for the printed circuit
board artwork.

v

ABSTRACT

A System-on-Programmable-Chip (SoPC) architecture is designed to meet two
goals: to provide a role-based secure computing environment and to allow for
user reconfiguration. To accomplish this, a secure root of trust is derived from a
fixed architectural subsystem, known as the Security Controller. It additionally
provides a dynamically configurable single point of access between applications
developed by users and the objects those applications use. The platform
provides a model for secrecy such that physical recovery of any one component
in isolation does not compromise the system. Dual-factor authentication is used
to verify users. A model is also provided for tamper reaction. Secure boot,
encrypted instruction, data, and Field Programmable Gate Array (FPGA)
configuration are also explored.

The system hardware is realized using Altera Avalon SoPC with a NIOS II
processor and custom hardware acting as the Security Controller and a second
NIOS II acting as the subject application configuration. A DE2 development kit
from Altera hosting a Cyclone II FPGA is used along with a Secure Digital (SD)
card and a custom printed circuit board (PCB) containing a second Cyclone II to
demonstrate the system.

User applications were successfully run on the system which demonstrated the
secure boot process, system tamper reaction, dynamic role-based access to the
security objects, dual-factor authentication, and the execution of encrypted code
by the subject processor. Simulations provided detailed examinations of the
system execution. Actual tests were conducted on the physical hardware
successfully.

vi

TABLE OF CONTENTS

CHAPTER 1 PURPOSE AND ORGANIZATION .. 1

1.1 Motivation .. 1
1.2 Scope of the Thesis ... 2

1.3 Organization of the Thesis... 2
CHAPTER 2 SYSTEM PRINCIPLES AND CURRENT WORK 3

2.1 Principles of Cryptology ... 3
2.1.1 Privacy / Secrecy .. 4
2.1.2 Authentication ... 6

2.1.3 Identity .. 8
2.1.4 Access Control .. 9
2.1.5 Cryptanalysis .. 11

2.1.6 Methods of Attack ... 11
2.2 Reconfigurable Hardware .. 13
2.3 The Security Problem and Current Solutions .. 13

2.3.1 The Security Problem ... 14
2.3.2 The Security Problem: Access Control ... 14
2.3.3 The Security Problem: Secrecy .. 16

2.3.4 The Security Problem: Authentication ... 16
2.3.5 The Security Problem: The IBM 4758 Solution 18

2.3.6 The Security Problem: A Role-Based SoPC Reconfigurable Solution 20
CHAPTER 3 DESIGN .. 22

3.1 Threat Model ... 22

3.2 Design Specifications .. 23
CHAPTER 4 HARDWARE DESIGN ... 27

4.1 System Architecture Design .. 27
4.1.1 Hardware Design .. 27

4.1.2 FPGA Design .. 29
4.1.3 Secrecy ... 32

4.1.4 Authentication ... 39
4.1.5 Access Control .. 39

4.2 System Component Design ... 40
4.2.1 SoPC Design .. 40
4.2.2 Avalon SoPC Components ... 41

4.2.3 Designed SoPC Components ... 43
4.2.4 Development Platform .. 48
4.2.5 DE2 Sub-Board Platform .. 50

4.2.6 User FPGA Configurations ... 50
4.2.7 SD Card .. 50

CHAPTER 5 SOFTWARE DESIGN .. 52
5.1 Security Controller Application .. 52

5.1.1 Board Support Package .. 52
5.1.2 Software Overview .. 54
5.1.3 Important Functions .. 60

vii

5.2 User Applications .. 62

5.2.1 Board Support Package .. 62
5.2.2 Software .. 64

5.3 Encryption Software .. 64
5.4 Ancillary Software .. 66

CHAPTER 6 RESULTS .. 67
6.1 Full System Operation ... 67
6.2 Component Operation ... 77

6.2.1 User Bridge ... 77
6.2.2 Security Bridge ... 81
6.2.3 Secure RAM ... 87

6.3 Secrecy ... 87
6.4 Authentication .. 91

CHAPTER 7 REVIEW AND IMPROVEMENTS .. 93
LIST OF REFERENCES ... 97

VITA .. 102

viii

LIST OF TABLES

Table Page

Table 1. Security Design Goals... 24

Table 2. Hardware Design Goals .. 26
Table 3. System Compromise when an Adversary Recovers Components 36
Table 4. System Compromise Summary by Case .. 37
Table 5. Access Control Template .. 40

ix

LIST OF FIGURES

Figure Page

Figure 1. System Hardware, Case 1 ... 28

Figure 2. System Hardware, Case 2 ... 30
Figure 3. DE2 Main Board FPGA Internals--SoPC ... 31
Figure 4. Address Map .. 32
Figure 5. Security Design .. 33
Figure 6. Slave to Reset Source State Machine ... 44

Figure 7. User Bridge Primary State Machine ... 46
Figure 8. User Bridge Secondary State Machine .. 46
Figure 9. Security Bridge Primary State Machine ... 47

Figure 10. Security Bridge Secondary State Machine ... 47
Figure 11. DE2 Main Board .. 49
Figure 12. DE2 Sub-Board .. 49

Figure 13. Security Controller BSP ... 53
Figure 14a. Security Controller Software Flow .. 55
Figure 14b. Security Controller Software Flow .. 56

Figure 14c. Security Controller Software Flow .. 57
Figure 15. User Application BSP... 63

Figure 16. User Application ... 65
Figure 17. The Full System ... 69
Figure 18. Configuration 1 .. 72

Figure 19. Configuration 2 .. 72
Figure 20. Security Fault State ... 74

Figure 21a. Full System Simulation with ModelSim .. 75
Figure 21b. Full System Simulation with ModelSim .. 76

Figure 22. User Nios II Instruction Read without Encryption 78
Figure 23. User Nios II Data Bus Write without Encryption 78

Figure 24. User Nios II Encrypted Instruction Read .. 80
Figure 25. User Nios II Encrypted Data Write ... 80
Figure 26: Configuring the User Bridge ... 82
Figure 27: Configuring the Security Bridge ... 82
Figure 28: Access Control Test 1 Write .. 84

Figure 29: Access Control Test 1 Read .. 84
Figure 30: Access Control Test 2 Write .. 85
Figure 31: Access Control Test 2 Read .. 85

Figure 32. Access Control Test 3 Write .. 86
Figure 33. Access Control Test 3 Read .. 86
Figure 34. Access Control Test 1, Level 2 .. 88
Figure 35. Access Control Test 2, Level 2 .. 88

Figure 36. Access Control Test 3, Level 2 .. 89
Figure 37. Security RAM Operation .. 89
Figure 38. Clearing of Secrets on a Tamper Event ... 90

1

CHAPTER 1
PURPOSE AND ORGANIZATION

1.1 Motivation

Computer systems rely on correct execution of applications to provide data and
services that are used in every aspect of life. Financial transactions, health
records, mapping services using the Global Positioning System, entertainment
systems, and real-time interpretation of data for control systems are a few of the
many pervasive digital services that are relied upon in daily life. However, correct
execution of code to provide correct answers is not adequate in any scenario in
which a person or group wishes to intercept, alter, or use that data in ways not
intended or desired by the creator.

Many systems to obscure, or encipher, plaintext data exist as well as their
complementary systems to decipher that information. About such methods,
Auguste Kerckhoffs wrote:

“The cipher method must not be required to be secret, and it must be able to fall
into the hands of the adversary without inconvenience” [1].

The purpose of this thesis is to extend Kerckhoffs’s principle to hardware. Is it
possible to create a deployable embedded hardware system such that loss of
parts of the system does not compromise the secrets therein? Is it possible to
have the architecture of the system be public but to still maintain security?

The first application of such a system that readily comes to mind is a military
application. Loss of mobile, embedded hardware to the enemy can mean loss of
secret mission data and algorithms, provided the adversaries have resources to
recover the data. Additionally, these resources must be protected from internal
misuse due to unauthorized access, be it malicious or not.

As a second avenue of exploration, the ability of hardware to be securely
reconfigured is explored. In embedded systems, such as in the military example,
it may be needed to reconfigure the hardware as the mission progress. It may not
be feasible in terms of power or cost to use separate hardware for each aspect of
the mission. Can this ability to reconfigure be controlled securely in the same
manner as the data and processes?

The goal of this thesis is to explore these topics with modern cryptographic
principles as a backdrop.

 2

1.2 Scope of the Thesis

This thesis examines a secure, reconfigurable computing system whose
individual physical components may be intercepted by an adversary after it is
configured and deployed. This computing system is qualitatively examined in
terms of modern cryptographic principles. This computing system serves as a
model or prototype in that simplifications are made to make the system more
general and manageable in terms of complexity. Cryptographic algorithms are
reduced to template functions, as there are many methods to achieve the
cryptographic goals. Physical embodiment of tamper detection and response are
simplified to a simple user input instead of an actual armoring of the system. The
goal of the thesis is to explore cryptographic, reconfigurable, and trust concepts
in breadth. The complexity of this goal precludes further exploration into specific
cryptographic methods and physically tamper-proof hardware.

The proposed system is realized in hardware and software and tests are
performed. Results from those tests are presented along with system simulations
that allow for detailed inspection of the system.

1.3 Organization of the Thesis

Chapter 2 provides the reader with a survey of principles needed to achieve the
goals of this thesis. Modern cryptographic principles are reviewed, which factor
into later design concepts. Reconfiguration of hardware is reviewed. The current
state of security concerns is explored along with solutions. The solutions
proposed by this thesis are compared to those.

Chapter 3 describes the goals of the hardware system, both cryptographically,
and in terms of hardware. The adversary is defined.

Chapter 4 describes the design of a hardware system that will meet the goals
outlined.

Chapter 5 describes the design of software systems running on the hardware
shown in Chapter 4.

Chapter 6 shows the results of testing the proposed system.

Chapter 7 provides a summary of the findings and explores how to further the
work presented in this thesis.

 3

CHAPTER 2
SYSTEM PRINCIPLES AND CURRENT WORK

2.1 Principles of Cryptology

In order to later design a basic cryptosystem for use in this thesis, it is necessary
to first define basic cryptographic concepts. These concepts will be used wholly
or in part to create a conceptual cryptographic framework for the proposed
system.

Cryptology is the “scientific study of techniques for securing digital information,
transactions, and distributed computing” [1]. It is comprised of cryptography,
which is the study of enciphering messages to protect their content from
adversaries [2], and cryptanalysis, which is the study of deciphering ciphertexts
without having knowledge of the key used to make them [3].

Claude Shannon developed a model for this interaction between cryptology and
cryptanalysis. Shannon’s Model describes a message sender, a message
receiver, and an adversary [4]. A plaintext is the original message. The ciphertext
is the result of transforming the plaintext by some encryption method [5]. The
sender enciphers the desired message using a key and the message. The
receiver deciphers the message using the enciphered message and the key [6].
In this model, the adversary is assumed to be able to intercept the message and
to have knowledge of the method of enciphering it, but not have the key [6]. In
this model, Shannon stipulated two assumptions: (1) the key must be chosen
randomly from among all possible keys and all keys are equally likely, and (2) the
adversary understands the cryptosystem but does not have the key [6]. This is
Kerckhoffs’s principle restated: “The cipher method must not be required to be
secret, and it must be able to fall into the hands of the enemy without
inconvenience” [1].

Shannon proposed that the encryption method be based on some known
problem that is difficult and that the system should be made secure against all
known attacks [4].

Such an arrangement is known as a cryptosystem and it encompasses the
encryption method, decryption method, plaintexts, ciphertexts and key texts. The
following sections examine some important details of cryptosystems [7].

In addition to enciphering and deciphering for secrecy, several other concepts
are integral to cryptography and extend the basic model just presented.
Authentication, identity, and access control are integral to system security but are

 4

often not first considered in association with cryptology. These concepts, along
with the dual of cryptography—cryptanalysis, are explored.

2.1.1 Privacy / Secrecy

The concept that first comes to mind concerning cryptology is the concept of
privacy, or secrecy. Suppose two people, Alice and Bob, wish to communicate
secretly. In Shannon’s model, suppose Alice is sending a message to Bob and
Eve is listening. Alice and Bob wish to keep the message private, or secret, so
they employ a method to encipher the message under some shared key. The
principles behind this scheme are examined in this section.

First, what does it mean for the message to be secret? An encryption scheme is
“secure” if “no adversary can compute any function of the plaintext from the
ciphertext” [1].

Such perfect security is achievable given some very specific conditions. Perfectly
secret encryption is achieved in a system such as the Vernam One-Time Pad
(OTP) [4]. In this system, each bit of the plaintext message is added to a random
key string that is shared between Alice and Bob. This system meets the definition
of secure defined above. It suffers from the problem of the key needing to be as
long as the message, or longer [8].

To create a more practical system, algorithms are used with a shorter key such
that Alice and Bob both know the algorithm and the key and are able to encrypt
the plaintext message with the key to create a ciphertext message that attempts
to meet the definition of security.

To formalize the Shannon Model, Alice and Bob share a key generated by a
random function Gen() which selects a key randomly from the set of all possible
keys [1]. Alice performs a transformation on the plaintext using a function

Menc = Enc(M , k)

where Menc is the ciphertext, k is the key, M is the plaintext message, and Enc is
the algorithm. She then sends Menc to Bob, who finds

M = Dec(Menc , k)

where M is again the plaintext message, Dec is the decryption algorithm, and k is
the same shared key. This key must be agreed upon in secret between Alice and

Bob prior to this communication. Eve has access to the message Menc, and Enc()
and Dec() but not the key, k. This scheme is known as symmetric key encryption
because both Alice and Bob use the same shared secret key.

 5

Eve intercepts message Menc. It is desired that the algorithm Enc() alters M in
such a way that the definition of secure is met. Because the keys are secret, this
is known as private key encryption. In military settings, having to meet in person
to share a key is not considered a burden as this takes place naturally in staging
areas [1].

In many useful cases, it is important for the key k to be able to be made public to
simplify key sharing. In this case, Enc() and Dec() use different keys [9]. Each
entity has a public key, which is not secret, and a private key, which only the

entity knows. To send a message to an entity, message Menc

Menc = Enc(M , pk)

is calculated with pk being the known public key of the receiver. This message is
sent to the entity who computes the plaintext M using his or her private key:

M = Dec(Menc , sk)

Knowledge of the public key gives no information about the private key [9]. In this
manner, a secret message can be sent to an entity without the entities having to
establish a secure channel to share the same secret key. This system is known
as an asymmetric cryptosystem.

How is the data partitioned to be processed by the algorithm Enc() or Dec()?
There are two schemes: the block cipher and the stream cipher.

In the block cipher, the plaintext message M is divided into sections, known as
blocks, whose length is defined by the algorithm used [8]. Each of these blocks
then undergoes a transformation based on the key and algorithm [8]. The goals
of the algorithm are “confusion” and “diffusion” as proposed by Shannon [4]. The
property of confusion means “the ciphertext statistics should depend on the
plaintext statistics in a manner too complicated to be exploited by the
cryptoanalyst” [4]. The property of diffusion means “each digit of the plaintext and
each digit of the secret key should influence many digits of the ciphertext” [4].
These concepts are central to cryptography. This process is repeated for each
block in the message. A reverse process is used to convert the ciphertext back to
the original plaintext.

This process of each block being processed independently is known as the

electronic code book mode of operation of the algorithm Enc() [10]. However,
this suffers from the fact that any repeating part of the plaintext will appear as a
repeating segment of the ciphertext and is not desirable [10]. To prevent this,

Enc() can be computed in a different mode known as cipher block chaining

(CBC) [10]. In this mode, previous outputs of Enc() factor into the key k used for
that block: each plaintext block has the previous ciphertext block added to it

 6

(modulo 2) before the block cipher is done [10]. To get started, the first block
must have an agreed upon, random value added to it and this is known as the
initialization vector [10]. This method has been shown to be chosen-plaintext
secure but not chosen ciphertext secure. An example of a block cipher is the
popular Rijndael cryptosystem [11]. It allows for block lengths between 128-bits
and 256-bits in multiples of 32-bits [11].

What happens if Enc() is applied to the same data twice, but with different keys,
k1, k2? For a symmetric cipher, it turns out that this system is not as secure as
expected, which would be as secure as a key of twice the length. This is due to a
cryptanalysis method known as meet-in-the-middle. To increase security, it is

necessary to use Enc() three times with k1, k2, and k3 to avoid the meet-in-the-
middle attack. Triple DES is DES applied three times [12].

A second type of algorithm is the stream cipher. This is a symmetric
cryptosystem that works with individual bits such that the output of any ciphertext
bit is dependent only upon the key and the previous plaintext bit [13]. To
accomplish this, the key provides an input to a pseudo-random bit stream
generator whose output forms a running key [13]. This running key is used along
with the previous plaintext bit to get the current ciphertext output bit [13]. This
system has the advantages of being simple to implement in hardware and fast
[13]. A5/1, which is used in GSM telephone transmissions, is an example of a
stream cipher [14]. Interestingly, a block cipher can be turned into a stream
cipher by operating it in the output feedback mode [10]. In this manner, outputs
from the cipher are fed back as inputs to the cipher [10].

2.1.2 Authentication

The second pillar of cryptology is authentication. How does Bob know that the
message that he received was the one intended by Alice—that it has not be
tampered with or altered? Perhaps an adversary pretending to be Alice sent it
(impersonation attack), or perhaps Alice did send the message but the adversary
Eve intercepted it and changed it (substitution attack) or sent it again later (replay
attack) [15]. Given a read-only memory, how can one ensure that it has not been
tampered with?

The answer to this is authenticated encryption (AE). To understand, the concept
of cryptographic hash functions must first be defined. A hash function takes
inputs of arbitrary length and transforms (hashes, digests) them to create an
output of fixed length [16]. A keyed hash function improves upon this by adding a
cryptographic aspect such that the output hash depends upon the input message
and a secret key. A message authentication code, MAC, algorithm is an example
of this concept. It consists of three parts: a random key generation algorithm, a
MAC generation algorithm that takes the message and the key and computes the

 7

MAC value, and a MAC verification algorithm that takes the message in question
and the key and performs the MAC generation function again and compares the
result with the MAC value provided [17]. To work, it must be hard to forge a MAC
value on a new text [17].

Authenticated encryption can now be explained. Bob can ensure that the
message that he received was from Alice and has not been tampered with by the
following method [18]:

1. Alice and Bob share secret keys k1 and k2.
2. Alice makes a message M.
3. Alice encrypts M under key k1 using some cryptosystem to produce Menc.

4. Alice computes the MAC generation S of Menc using Menc and k2.

5. Alice sends the pair (Menc , S) to Bob.
6. Bob computes the MAC generation of Menc using k2 and checks that it

matches S.

7. Bob decrypts Menc with k1.

Now Bob is assured of the integrity of the message, of the identity of the sender,
and of the secrecy of the transmission in as much as can be guaranteed by the
cryptosystem.

Now, if Eve intercepts the message for Bob and replaces it, when Bob computes
the MAC verification for the message using the shared secret key with Alice, the
value will not match the MAC value presented on the message, as Eve does not
have the key required to generate the correct MAC value. Although useful, this
method has several problems:

 The MAC has problems in multi-user settings. The MAC is not publically
verifiable and transferable—each verifier must have the secret key, so just
because Bob verifies his received MAC value, he is not assured that all
other receivers will also come to that answer [1].

 The MAC does not allow for the condition of non-repudiation [1]. The

sender and the receiver could later disagree about k2 without any way of
proving that they shared the k2 key for that message [1].

This process is adapted for public-key cryptography [1]. It works as follows:

1. Alice generates an asymmetric key-pair and publishes the public key.
2. Alice “signs” the message by a signing algorithm that takes the message

and Alice’s private key and produces a single value known as the
signature.

3. Alice appends the signature to the message and sends it to Bob.

 8

4. Bob verifies the signature by using a verification algorithm that takes the
message, Alice’s public key, and the signature and outputs a true if the
signature is valid for that message and false if it is not.

Notice that the message in this case is not encrypted, so this scheme forms only
a signature. How can this be added to an encryption scheme to achieve a system
similar to encrypt-then-MAC?

A first guess would be to encrypt-then-sign. This has a problem in multi-user
settings as described by [19]. Suppose that Alice wants to send a message to
Bob. Alice encrypts the message with Bob’s public key, and then makes a
cryptographic hash of the encrypted portion using her private key. Now she
appends this to the message and sends it to Bob. Now suppose that Charlie,
who is also a user of the system, intercepts the message. He strips the signature
off, runs the encrypted part through his signing algorithm, and then forwards it to
Bob claiming the message was from him, even though he does not even know
what is in the message. Bob cannot confirm that this did not occur. One solution
is for the encrypted part to contain text that enumerates the sender and the
receiver. However, if there is only one sender and one receiver, then encrypt-
then-sign is secure [19]. Multiusers should, when encrypting data, include the
identification of the sender. When signing data, they should include the identity of
the receiver with the signed message. Message receivers should check the
identity of the sender and the receiver and if it does not match what is expected,
reject the message [19]. This thesis uses encrypt-then-sign with only one
potential sender, so it is secure under the two-person model.

2.1.3 Identity

In the cryptographic model presented, how can Bob ensure that he is in
communication with Alice? Alice is referred to as the claimant as she is alleging
to be Alice and Bob is the verifier as he engages Alice in a protocol to ensure her
identity [20].

An identity verification protocol is a scheme used to provide entity authentication
between parties [21]. It can be unilateral or mutual [21]. Entity authentication is a
process by which the claimant proves her identity to the verifier [22]. This can be
based on something the claimant knows, something the claimant possesses, or
something inherent in the claimant [22]. Passwords are an example of something
known, a smart card is an example of something possessed, and biometrics are
an example of something inherent [22]. This proof is known as credentials [22].

One straightforward protocol that Bob can employ is the challenge-response
identification protocol. In this protocol, Bob presents Alice with a question that
changes over time, and she answers the question to prove her identity [20]. This

 9

relies on Alice and Bob having a shared secret prior to this protocol. One simple
way to do this is for Bob to send Alice a number encrypted under their shared
key, and Alice finds this number by decrypting the message. She then
increments the number by one and sends it back to Bob after encrypting it again
with the key. Bob decrypts the second message and confirms that the number he
originally sent was correctly incremented. In this manner, if Eve attempts to
record a message in transient and replay it later, Bob immediately detects it. Bob
can also send a sequence number expecting the next value, or even the current
time [20].

Perhaps Alice gave her key to a fourth entity. How can Bob ensure that he is in
communication with Alice given this possibility? Without a physical tie to Alice, it
is impossible to establish this fact. Biometrics address this problem by making
credentials based on physical traits or behaviors [23].

2.1.4 Access Control

The fourth aspect of security is the concept of access control. In a system with
shared resources, it is important to specify which entities have access to which
resources and to further specify the nature of that access. This allows the system
to meet security goals such as confidentiality, system integrity, and to prevent
certain attacks, such as denial of service [24]. Access control can be defined as a
“security function that protects shared resources against unauthorized access”
[24]. In the language of security, those resources are called objects and the
entities accessing, or attempting to access them, are called subjects [24].

For any system that is to employ access control, it is necessary to have a method
to describe how subjects are allowed access to objects. This is known as the
access control policy and it can take several forms depending on the goals of the
system [24]. The form of the description is known as the access control model
[24]. The way in which this policy is expressed determines how flexible the
system is to future changes and how easy it is for one subject to delegate rights
to another subject [24]. Additionally, the type of model used may make proving
security concepts easier as well as making the inspection of the policies more
expedient [24].

One type of model is known as the matrix model [24]. In this model, the policy is
described by a matrix. Subjects are listed in the rows and objects are listed in
columns [24]. Each entry represents the permission that subject has with that
object [24]. When using models, one key goal is to “prove safety” which means to
determine if access rights are granted to unauthorized subjects [24].

An object-centric listing can be obtained by use of an access control List which is

a list of pairs for each security object: (s , (r1 , … rn)) which lists each subject

 10

and the rights of that subject on the object for which the pair refers [24]. This can
awkward for systems where subjects can delegate rights to other subjects [24].

A subject-centric listing can be obtained in a similar manner by use of the

concept of a capability [24]. A capability is a pair (o , (r1 … rn)) which lists each
object in a system and the rights that the subject to whom the pair refers has
[24]. This is also a type of credential [24].

More specifically, a credential is “a token issued by an authority that expresses a
certain privilege of its bearer” [24]. One advantage is that some credentials can
be verified off-line [24].

Besides the matrix model, another way to express the access control policy is the
role-based access model [24]. In this representation, all subjects are assigned to
roles and then the roles have rights to objects assigned to them [24]. By this
indirection, easier policy management is possible as it is possible to see by
inspection what rights a subject has. In addition, this reduces entry errors [24].
For example, in military settings, there might be the roles of unclassified,
confidential, secret, and top secret. Subjects could be assigned to these roles,
and inspection of the role label applied assures that the correct rights are
established for the user, if the roles and their objects are associated correctly.

Finally, the access control policy can be expressed in terms of the information
flow model [24]. Under this system, information is tagged with security labels.
Subjects can read from lower levels, read and write to their own level, and only
write to higher levels [24]. In this manner, information can only flow to equal or
more privileged subjects. This is used in need-to-know scenarios such as military
applications.

Having an access control policy that can be represented in a detailed,
understandable, and mathematically representable way is only the first
precondition for having access control. The second is an enforcement
mechanism [24]. This entity is located between the subjects and the security
objects and has the ability to allow or disallow access [24]. To do this, it is
comprised of a part that can inhibit access and a part that determines if the
requested access complies with the access control policy [24]. This second part
is known as the decision function [24]. In order to prevent a compromise of
security, this part must provide complete mediation—it must intercept all
accesses to the objects [24]. This is easier to accomplish in centralized systems
[24]. Together, these components form an authorization architecture [25].

The concept of access control is central to the hardware design of the system
described in this thesis and is revisited frequently.

 11

2.1.5 Cryptanalysis

Cryptanalysis is the process of deciphering an encrypted message without
having the key [3]. One must consider the strength of the adversary attempting to
do this in order to form a threat model [26]. Who are the adversaries, what
access do they have to the different parts of the system and what are their
resources? [26]. This will determine the success of the attempted cryptanalysis
for a given system.

2.1.6 Methods of Attack

The following is a brief description of attacks that are used to gain information
about a plaintext that has been encrypted to form a ciphertext and it is assumed
that the key is not known.

Exhaustive key search: the attacker tries every possible key for Dec(Menc , k) to
find an expected plaintext value [27]. To resist, the cryptographer should use
long keys, change keys often, eliminate known plaintexts, and use cipher block
chaining [27].

Dictionary attack: the adversary enciphers an expected plaintext with every
possible key and stores this exhaustive list as a look up table [28].

Denial of service: the adversary makes repeated requests to a system such that
it does not have time to respond to legitimate access [29].

Code book attack: The adversary collects plaintext-ciphertext pairs for analysis of
future messages. This can be avoided with cipher block chaining [30].

Replay attack: The adversary records a communication and plays it back later
[15]. Authentication and challenge-response protocols can be used to against
this.

Man-in-the-middle: A person intercepts a message and then can alter it, replay it,
or learn its contents [31]. Authenticated encryption can be used against this
method.

Impersonation attack: an adversary attempts to assume the identity of a
legitimate entity in a system [32]. Authenticated encryption and identity
verification protocols are used to prevent this.

Chosen ciphertext, or adaptively chosen ciphertext attack: the attacker has the
ability to choose a ciphertext and perform the decryption algorithm on it using the

 12

secret key. He does not know the key. In the adaptive version, his choice of new
ciphertexts can come from previous trials [33].

Chosen plaintext, or adaptively chosen plaintext attack: the attacker can choose
a plaintext to be encrypted using the secret key, but does not have the key [34].
In the adaptive version, new choices for the plaintext are based on previous
trials.

Adaptively chosen plaintext and ciphertext: the attacker can do both chosen
ciphertext and chosen plaintext at the same time and use the results for future
trials [35].

Linear cryptanalysis: the attacker “studies probabilistic linear relations between
parity bits of the plaintext, the ciphertext, and the secret key” [36].

Differential cryptanalysis: a general technique for studying symmetric
cryptographic systems and focuses on the differences as they evolve through a
cipher system [37].

Actual physical attacks can be characterized by who attempts them and what
access they have. One classification is clever outsiders, knowledgeable insiders,
and funded organizations [26]. The number of systems available for destructive
testing is also important along with cost of tools and time necessary [26]. Here is
a list of physical attacks:

Environmental attack: cooling the system, heating the system, applying
unexpected inputs to the system, or altering the system’s time functions are used
to attempt to learn secrets from the system [26].

Electromagnetic / power attack: observation of electromagnetic radiation or the
power used by the system can help the attacker infer information about the
system [38].

Fault injection: an electrical fault can be injected into the system to get it to a
state not intended by the designer [39].

Data remanence: some computer memories retain state if cooled, even if power
is removed [40].

Software attacks: these attempt to exploit the system security by software
means: buffer overflow, unexpected inputs, misinterpretations of inputs, using
data at a time much after it was checked, abusing privileges, and accessing
undocumented functions [26].

 13

The cryptosystem presented in this thesis will be referenced against this list of
attacks to enumerate which ones are considered and modeled and which are
not, in order to define the bounds of what can be expected from the proposed
system.

2.2 Reconfigurable Hardware

Another goal of this thesis is to explore reconfiguration as part of a secure
embedded system. To accomplish this, an FPGA that is under control of the end
user is part of the system.

FPGAs accomplish custom functions via use of reconfigurable interconnect to a
set array of fixed hardware elements. Take, for example, the Altera Cyclone II. It
has a large array of Logic Elements (LEs) that are small combinatorial logic
blocks that are optimized to perform synthesized logic functions [41]. These
consist of a Look-Up-Table (LUT) that is a function generator of four inputs, a
programmable register, inputs and outputs to row and column interconnects, and
various ancillary logic [41].

LEs are connected to each other and other on chip devices via a programmable
interconnect to realize the system as synthesized, placed, and routed by the
Quartus [42] tool. This interconnect, as with all programmable aspects of the
Cyclone II, is configured based on SRAM memory cells [41]. These cells are
loaded with the desired function during FPGA programming. Programming is
accomplished by serial input to predefined pins and must be done on each power
cycle.

The Cyclone II also has configurable embedded memory blocks, PLL blocks,
multipliers, and Input-Output Elements (IOEs).

The Cyclone III LS provides advanced security features relevant to this thesis. It
allows a 256-bit volatile key to be stored internally [43]. This key is used to
decrypt the configuration file for the device. The configuration file is encrypted
with AES-256. Tamper detection zeros the key. The key is maintained between
power cycles by a battery, similar to the concepts in the IBM 4758.

2.3 The Security Problem and Current Solutions

Having reviewed a basic cryptographic model that includes secrecy,
authentication, and access control and having reviewed principles of
reconfigurable hardware, it is possible to define the current state of security

 14

problems and to show examples of systems that are designed to solve those
problems. Then, the design in this thesis can be compared to that work.

2.3.1 The Security Problem

Computer systems process information that is valuable to the user and must be
protected. In addition, this information may come to the user from a second party,
or may go to a second party; in either case, it is necessary to be able to ensure
the source of the information and to ensure that it has not been tampered with.
Further, a system may need to attest to another system that it is in a known-good
state and to convince itself of that fact before operating fully. Computer viruses,
including malware, can infect systems and compromise these goals. In addition,
an entity may physically attack a system to acquire the system’s valuable
information or to change it to operate in an abnormal manner. The same
problems apply to smaller embedded computer systems. For example, consider
the case of downloadable content for mobile phones. How can the user know
that the application cannot access data that the user wishes to keep private?
How can a content provider know that a user platform is not duplicating data that
was trusted to not be duplicated? Conversely, how can a user know that
transactions he or she wishes to perform on a remote machine are occurring
correctly and that the machine is in an untampered state? As embedded systems
continue to increase in power and run applications that only a full computer could
run a few years ago, the need to extend security developed for full platforms to
embedded systems will be needed. Consider finally the case of military hardware
that could fall to an adversary. It should not provide secrets even it is physically
compromised and should not be electronically repurposed for unauthorized use.

To solve these problems, multiple hardware and software solutions are
employed. This section covers ones of specific interest to this thesis.

2.3.2 The Security Problem: Access Control

Section 2.1.4 covers the basic principles of access control. Of interest to this
thesis is role-based access control (RBAC). The concept of a role-based access
control dates to the 1970s in multi-user, multi-application systems [44]. A
general-purpose RBAC was generalized by [45]. They note three guiding rules:
first, a subject can only execute a transaction if the subject has been assigned a
role (or selected one) [45]. Secondly, a subject’s active role must be authorized
for the subject [45]. Thirdly, a transaction may only be done by a subject if
authorized by the subject’s role [45]. Note that roles are different from groups in
that a group is a collection of users where a role is a collection of permissions.
[46]. Role-based access control can also have advanced descriptions that allow
for mutual exclusion so that entities cannot have overlapping roles [44].

 15

Additionally, roles can inherit from parent roles [44]. RBAC can be applied to
applications to control their access to application data instead of embedding
specific code in specific locations to control that access [45]. This can be done in
two ways: (1) roles are assigned with permissions to execute entire programs, or
(2), roles are assigned with permissions to execute specific functions [47]. RBAC
has been studied extensively since the 1990s and was standardized in a 2004
NIST standard based on [46].

Beyond the abstract concept of RBAC, general access control is commonly used
to prevent execution in one context from accessing memory regions allocated to
another context [48]. Hypervisors are designed to support memory separation
between guest operating systems and between the hypervisor and the guests
[48]. The Hypervisor Xen is an example of this [48]. The actual mechanism of
separation with Xen is very complex, with multi-level page tables where each
table can have 1024 entries [48].

Memory can be monitored for unusual operation in the scheme of intrusion
detection, then the system could react, and this forms a type of access control.
Proposed in [49] is a scheme whereby the code compiler identifies what areas of
memory could be changed by the code and under what conditions, and then
conveys that to the hardware for enforcement. This is called dynamic access
control [49].

General access control is a necessary precondition for establishing a trusted
path [50]. Suppose that a user is to enter a password and to interact with a
screen that shows banking information. It is necessary to be able to isolate
systems to ensure that a trusted path can be made between the program and the
peripheral—in this case a keyboard and a screen. Additionally, take the case of a
modern motherboard. A CPU connects to memory through a north bridge and to
slower I/O through a south bridge. Peripherals can access memory directly
through direct-memory-access (DMA). For example, [51] describes the case of a
network card accessing memory intended only for the graphics processor. A
compromised driver can change the memory mapped I/O (MMIO) region of a
device to overlap another device so that it can intercept data [50]. For example, a
display could be sent to a network card [50]. Hypervisor design is suggested that
provides isolation and prevents these attacks [50].

An ARM processor with TrustZone technology is designed for integrated access
control throughout its processor, bus system, and peripherals [52]. The design
goal is to provide total separation between a trusted execution context and an
untrusted execution context [52]. Objects in the unsecured context cannot access
objects in the secured context [52]. Two extra bits are added to read and write
signals on the system bus to indicate which context the system is operating in
and memory has an extra bit added to it to indicate which context is in use [52].
In addition, some processors have extensions that allow one core to serve in

 16

both contexts in a time-sliced manner [52]. Careful attention is paid to objects
that are used for debugging in order to control their access [52].

2.3.3 The Security Problem: Secrecy

Both data and code may be made secret. A platform may execute code stored in
a secure area [26]. The encrypted code may be stored in a public location and
decrypted prior to execution by the processor [26]. Alternatively, only key parts of
the code may be encrypted [26]. The problem of code encryption is difficult [26].
This is because the code should be enciphered with a stream cipher or block
cipher operating in cipher block chaining mode as the message space for
processor code is small and patterns would easily appear in the ciphertext.
However, branches in the code and re-execution of segments of the code make
synchronizing the blocks of the running key difficult. Data can be stored as
encrypted using standard encryption methods.

2.3.4 The Security Problem: Authentication

The terms “secure boot” [53], “trusted computing,” and “trusted platform module”
occur often in computer security literature. These all relate to the concept of trust.
“Why should Alice trust computation on Bob’s machine?” [26]. This question is an
extension of the cryptographic concepts of secrecy and authentication as it
applies to computation. In addition, how can a computer system detect changes
to itself?

The answer to this is to create trust. Trust is defined by the Trusted Computer
Group as “An entity can be trusted if it always behaves in the expected manner
for the intended purpose.” Computers could earn our trust by being able to
“strongly identify themselves” and to “strongly identify their configuration” [54].
The first part comes from using asymmetric cryptography with the secret key
“strongly tied” to the platform and the second part comes from making
cryptographic hashes of the state of the machine [54].

To accomplish those two goals, a Trusted Platform Module (TPM) can be added
to the system. This module, with specifications defined by the Trusted Computer
Group, and the system, provide three roots-of trust and a method to keep track of
the state of the system:

1. Root of Trust for Measurement (RTM) is a computation engine that makes
reliable integrity measurements [55]. This is usually done by the system’s
normal computation engine [55].

2. Root of Trust for Storage (RTS) is a computation engine that maintains
digests of the state of the system [55]. This is stored in the TPM [55].

 17

3. Root of Trust for Reporting (RTR) is a computation engine that can report
the contents of the RTS reliably [55]. This is integrated into the TPM [55].

4. Platform Configuration Registers (PCR) are a set of registers that are
cleared on reset. When written to, they take the current value and
combine it with the new value [54].

How can these elements be used to establish trust in a computer? The process
of a secure boot provides a solution. In this process, a “chain-of-trust” is built with
its roots in the hardware TPM [54]. The chain-of-trust describes the integrity of
the boot process and program loading.

What does a TPM measure to keep track of the state of the system so that it can
attest to it? Although code execution changes the state of a platform, and
attempting to record these dynamic changes could be a goal, the best means of
proving the system state is to do a cryptographic hash of code before it executes
and to do this for every piece of code that loads during the boot process and to
track these through a secure boot process [56]. This process was first described
by [53]. This works by always checking code before it is executed. This could be
done using the TPM in the following manner: on reset of a system, the PCR is
cleared. A measurement is made of the first code segment using RTM. This
value is checked against a list that has been signed by an authority (the
authority’s public key must reside in the system to do this) [56]. If it is acceptable,
then that code segment is loaded and executed [56]. It then makes a hash of the
next piece of code that is to be loaded and adds this to the PCR, which takes it
and combines it with the previous hash [56]. If an attempt is made to load
unauthorized code, then the system halts [56]. The current value of the PCR can
then attest to a chain of certified software loads. By making it through the boot
process, the system has demonstrated that it is running in a trusted manner [56].

TPMs can also “seal” data by a process of withholding the decryption keys for a
memory block or similar until the PCRs are in a specific state. In that manner, the
data cannot be read until the system is in an exact state as required by the
designers [54]. Microsoft’s BitLocker seals the keys used to encrypt the hard
drive and to authenticate it. They are sealed to the state of the PCR.

To accomplish all of these goals, a TPM has key generation ability based on a
true random number generator [54]. It also has a non-volatile monotonic counter
that helps to prevent against replay attacks [54]. The TPM must be able to
demonstrate its identity and to maintain secrecy of keys and this is accomplished
with the RTS and the RTR.

How does this concept of secure boot and state measurement apply to
reconfigurable FPGA hardware? In [55] a system is proposed that consists of an
FPGA that has three sections: a static section that interfaces to passive TPM
functions and checks reconfiguration streams, a fixed section that is user-defined

 18

to interface with external hardware, and a dynamically reconfigurable section of
the FPGA that is located in the fixed section [55]. Outside the FPGA is a trusted
area called the Trust Block that has an initialization ROM configuration of the
FPGA along with passive TPM style registers. The ROM initializes the FPGA to
describe the static sections and to clear the fixed area [55]. The static area
evaluates and checks the user’s configuration data for compliance before
allowing it to load [55]. Also, PCR registers are used to track the state of the
FPGA with special consideration given to reconfiguration [55]. Unlike normal
PCRs, these PCRs reset when the system loads a new configuration as no trace
of the previous is left on the system [55]. They also propose a system that
integrates the TPM functionality completely into the FPGA and assumes an
FPGA that can be partially reconfigured [57]. They assume a user application on
the FPGA such as a microprocessor and cite the benefits of not having the TPM
be a separate entity. Trust is likewise derived from examination of the FPGA
bitstream. Special consideration is given to how to maintain secrecy of the TPM
information.

2.3.5 The Security Problem: The IBM 4758 Solution

The IBM 4758 secure co-processor is one example solution to the security
problems outlined and provides an excellent example of a complete system
designed with security inherently.

The goals of the IBM 4758 encompass those defined previously and expand on
them:

1. To provide physical armor to prevent tampering by an adversary [26].
2. To protect designated data from the adversary given the fact that he has

access to part of the system. Protection of data means ensuring that the data
is secret and authentic [26].

3. To prove code is executing in a correct environment [26]. In this manner,
multiple parties who have differing motivations can participate in a
computation securely [26].

4. To possibly provide secrecy of the code executing on the system [26].
5. To be general purpose [26].
6. To support multiple operating systems [26].
7. To support multiple vendors [26].
8. To allow for security in the presence of mutually untrusted parties [26].
9. To be reconfigurable [26].
10. To be easy to update [26].
11. To allow for updates to the cryptographic engine [26].
12. To ensure secrets go away when under attack [26].
13. To ensure secrets start out secret [26]. This means careful consideration of

the deployment of the system from factory initialization to end use.

 19

14. To ensure secrets remain secret even in the presence of a software attack
[26]. This is a result of number (8) as code running on the system may have
been designed with different motivations.

It uses the concept of secure boot to defend against software attacks [26]. As
with the general system that is improved with the addition of a TPM, the IBM
4758, upon reset, executes code from an initial, trusted space that cannot be
altered [26]. This code then certifies the next segment of code that is to be
executed and passes control to it [26]. The first section of code cannot be
reached again without resetting the device. The second segment of code
executes, checks the integrity of the third layer of code, and passes execution to
it. Likewise, this second segment of code cannot be reached again without a
system reset, which causes the entire process to start over [26]. The access
control policy of the platform uses the boot stage to decide what accesses are
allowed [26]. To ensure that the system cannot be tricked by software into
operating as if it were in a lower, more privileged stage, a hardware counter,
called the trust ratchet, is incremented at each step and cannot be rolled back
without a system reset [26].

Concerning physical attacks, tamper response refers to how a system responds
to a detected tamper event. The IBM 4758 system employs tamper reaction in
the form of sensor circuits that could detect a tamper event and a system that
zero secrets and that takes the system off-line [26]. These tamper events include
physical penetration, alteration of expected electrical inputs, and changes in
temperature [26].

Beyond the mechanics of the device itself, the deployment model of a system is
a key factor to the system’s design and overall security as well as complexity.
How is the device initialized at the factory [26]? How is it transported to the user
[26]? How is code maintenance done [26]? Is it possible to reuse the device for
another purpose [26]? Can the system be audited [26]? How is software
developed for it [26]? Can the device be exported [26]? Is the device secure
enough for the environment [26]? Is it feasible and robust [26]? What levels of
compromise should be assumed [26]? Will it need updates [26]? These factors
were carefully considered in the design and deployment of the IBM 4758.

Many of these design parameters can be qualified by proving that the system
meets the FIPS 140-2 standard. FIPS 140-2 [58] is a standard that defines what
it means for a security device to be secure. The IBM 4758 is a level four system
and has the following characteristics: it resists the highest level of physical
attacks, all cryptographic functions are performed in a protected envelope, and it
is intended to be used in physically unprotected areas [58].

The IBM 4764 represents a later entry into the market. The IBM 4764 is a PCI-X
based secure co-processor that performs high-speed cryptographic functions and

 20

is also certified at FIPS 140-2 Level 4 [59]. It has an IBM PowerPC
microprocessor [59]. It also has hardware for DES, Triple DES, AES, hashing,
and public-private key algorithms [59]. A secure clock and a hardware random
number generator are also provided [59]. Like the IBM 4758, it clears its secrets
on detection of a tamper event [59]. Typical applications are anywhere high-
speed data encryption and signing are needed that may be traced to trustworthy
hardware [59].

2.3.6 The Security Problem: A Role-Based SoPC Reconfigurable Solution

The purpose of this thesis is to design a system that could be used as a template
for a secure, reconfigurable computing platform. At a high level, such a system is
comprised of two parts: one part that controls all security aspects of the system
and is not user alterable, and a second part that is a user area, which can run
user applications, both hardware and software. Additionally, this user area could
be reconfigured in hardware while in use. This system uses cryptographic
principles to make the system secure. The system employs a role-based access
model that would make it well suited for military applications. The system divides
secrets between hardware components such that loss of part of the system
would not provide information about the data stored on that part. It offers a dual-
authentication system to authenticate the user.

This thesis proposes a system that draws on the principles and previous
solutions described and adds to them. A system is proposed that has the
following features:

 Hardware-enforced RBAC: the system will determine access control
based on the precepts of RBAC. The access control is flattened so that it
can be described in a simple matrix of subjects vs. objects. Inheritance
and mutual exclusion can be allowed for by direct description in this
simple matrix; in other words, this will not automatically occur. This access
control ensures that security objects (peripherals) are adequately isolated
from each other and trusted paths. The hardware enforcement will be
address-based so that it can control access to a device but does not
perform semantic inspection of data that being transacted. General access
control to the entire platform is provided by a dual-authentication system
of a password and a key-card.

 Reconfiguration: The system will support reconfigurable hardware.
Descriptions of the hardware will be on a key-card and will be encrypted.
The platform will authenticate and decrypt the configurations before
loading them. A reconfigurable area of an FPGA is assumed while
maintaining an immutable area.

 21

 Context switching: As part of reconfiguration, the system will allow
commands to be received that will instruct it to reconfigure in a secure
manner using data from the key card.

 Computation: The system will use a soft-core processor as an example of
a user-defined computer system.

 Secrecy: The system will be designed with consideration of physical
recovery by an adversary of different parts. Data will be encrypted so that
recovery of individual parts does not provide useful information. The
processor can directly encrypt and decrypt instructions in a simplified ECB
model, and can do the same with data.

 Trust: The system will provide a simple model to attest its trustworthiness
to the user application.

 System on Programmable Chip (SoPC): The system will be designed
using SoPC technology.

 Tamper reaction: the system will model a tamper event with a push-button
and will clear its secrets.

 Authentication: configuration data signatures are checked before loaded.
The user will enter a password and a key card to use the system.

 User-initiated data secrecy: A unique system whereby each user has the
ability to selectively encrypt and decrypt data with keys that are not related
to the board itself is added.

 Deployment: A detailed deployment model and threat model will be
presented.

Chapter 3 defines these goals specifically.

 22

CHAPTER 3
DESIGN

This section defines the threat model that the proposed system, when fully
implemented, is designed to resist. Specifications of the system are also given.

3.1 Threat Model

To understand the system, it is necessary to understand the threats that it is
designed to resist. The thesis system has simplifications to make implementation
more manageable. The threat model assumes that a full embodiment of the
system is being attacked.

The proposed system is designed around the following types of attackers:

 Funded organizations who can uncover any secrets hard-coded in the
silicon. They cannot overcome the tamper-detection and zeroing system.

 Knowledgeable insiders who develop user software applications. Although
this system allows the user to develop hardware and software, the system
is only designed to resist user software attacks. User hardware attacks are
not considered and present an interesting area of study.

The proposed system assumes the following time-line:

1. The hardware is in a safe place when the user accesses it and inserts the
key card. The hardware remains in the safe place during the check of the
key card and the loading of the user application.

2. The key card is removed and the system is deployed to the field. In this
scenario, run-time user reconfiguration is not allowed. Run-time user
reconfiguration is only allowed while operating in the safe area as it
requires the key card, which is no longer with the system.

3. The system operates in the field and is captured.
4. The system is attacked and tamper-detecting circuits zero the secrets.

This could be easily extended to zeroing the entire FPGA, in which no
information about the purpose of the FPGA could be found, but that is not
implemented in this thesis.

5. All information that remains after a tamper reaction event is available to
the attacker.

Two other cases are also considered. First, the key card becomes available to
the attacker for whatever reason, and secondly, the key card and the running
system are captured at separate times. The estimated system responses to
these cases are examined in Table 3.

 23

3.2 Design Specifications

The following two tables enumerate the thesis specifications. Table 1 lists all of
the cryptographic concepts reviewed in Chapter 1 in one column, and then lists
the specification for that concept. The specification may appear in one of two
columns. The first column lists the specification without qualification. The second
column lists a “Simplified Design Goal” which is a simplification to make the
thesis scope manageable. If a specification is not listed next to a concept, this
indicates that it is not in the scope of this project. Table 2 is in the same format
and lists the goals of the hardware system as first envisioned along with
simplifications as needed.

 24

Table 1. Security Design Goals

Cryptographic or Security
Design Concern

Design Goal Simplified Design Goal

Cryptosystems Use standard cryptographic functions Provide template functions
for standard cryptographic
functions

Compromise model Any secret stored on a piece of hardware is
encrypted with a key held by the remaining
parts of the system.

Symmetric key system 128-bit block cipher Provide template functions

Asymmetric key system Full system that uses symmetric keys with
public-private keys to speed decryption

Provide template function,
only use public-private keys

Stream cipher

Electronic code book mode Avoid ECB Note where used

Cipher block chaining mode Use CBC Note where it should be
used

Multiple encryption on data Allowed as needed

Authenticated encryption Encrypt-then-sign Provide template functions
for encrypt-then-sign (valid
for a two-party system)

Identification protocol: passwords Use as part of identification protocol

Identification protocol: challenge-
response

Use challenge-response for any key-fob
tokens

Use passive token

Identification protocol: biometrics

Access control policy: access
matrix

Develop an access control policy
expressible in a matrix

Access control policy: role based Allow for four roles: unclassified,
confidential, secret, top secret

Use three roles: level 1, level
2, level 3

Access control policy: information
flow

Complete Mediation The access mechanism should intercept
and control all accesses

Data is secret Data stored on system is encrypted User application can choose
what is stored encrypted and
to have it encrypted
automatically

Code is secret Code stored on system is encrypted Select code segments can
be encrypted and executed
directly given special
constraints (ECB mode)

Data is authenticated Data is cryptographically signed Provide template functions
for Sign() and Verify()

Code is authenticated Code is cryptographically signed Provide template functions
for Sign() and Verify()

Secrets go away when under
attack

Keys are cleared on reset; FPGA is de-
configured

Keys are cleared; FPGA
configuration is maintained.

 25

Table 1. Continued.
Cryptographic or Security Design

Concern
Design Goal Simplified Design Goal

Secrets start secret Suggest deployment model

Secrets remain secret with software
attack

User software must not be able to
violate the access policy

Secure Boot First booted code segment is
unalterable, it checks and loads higher
level code segments, which do the
same

Boot code is unalterable and performs
system checks before allowing user
access

Trust Ratchet Use a hardware counter as a Trust
Ratchet

Exhaustive key search

Dictionary attack

Denial of service attack

Code book attack

Replay attack

Man-in-the-middle attack

Impersonation attack

Chosen-text attacks

Linear / Differential cryptanalysis

Environmental attack Simulate with a hardware input

Electromagnetic attack / electrical
attack

Physical armor

Fault injection attack

Data remanence attack

Software attack System resists user software attacks

System is general purpose

System supports multiple operating
systems

System supports multiple vendors

Mutually suspicious software
components

System resists user software attacks

Reconfigurable User system is reconfigurable

Easy to update

Deployment model Describe the build process for the
system, including encryption

FIPS-140-2 Level Similar to Level 4 in concept

Random, uniform keys Select keys randomly from a uniform
key space

Keys manually selected

 26

Table 2. Hardware Design Goals

Hardware Concept Design Goal Simplified Design Goal

Platform Microprocessor Commonly used microprocessor NIOS II soft-core processor
without interrupt support

Microprocessor Clock 200 MHz 50 MHz

User token Active Passive SD card

System peripherals UART, SDRAM, PIO, Terminal PIO, Terminal, Internal
RAM

Two component solution: dual
FPGAs

One FPGA provides security functions, the
second FPGA provides reconfigurable
USER functions

One FPGA demonstrates
security and user functions,
Second FPGA
demonstrates secure
reconfiguration only

 27

CHAPTER 4
HARDWARE DESIGN

4.1 System Architecture Design

This chapter describes the hardware design of a system that meets the goals
presented in Chapter 3. Explored in this section are the high-level hardware
design, the high level FPGA design, and the security design. Built upon this is the
software system that is presented in the next chapter.

4.1.1 Hardware Design

Figure 1 depicts the hardware system as originally designed. This will be referred
to as Case 1. Two printed circuit boards (PCBs) and a Secure Digital (SD) card
contain all of the necessary hardware. The primary one is the DE2 development
kit from Altera. This board will be referred to as the DE2 Main Board.
It has an Altera Cyclone II in addition to many peripherals. The second PCB was
designed and fabricated for this thesis and has a Cyclone II and support circuitry
along with two seven-segment displays connected to the Cyclone II. This board
is designed to plug into the expansion header of the DE2 board. This board will
be referred to as the DE2 Sub-Board.

The system consists of two parts: a user part and a security part. The user part is
contained on the User FPGA, is designed by the security subject, and is
reconfigurable during run-time.

The security part is designed by entities who define the access control policy,
referred to as the system owners. Its function cannot be altered by the user
during runtime. It provides the sole point of contact between any hardware
designed by the user and the system peripherals. In that manner, it meets the
definition of complete mediation.

The system deployment model is as follows. The user develops hardware and
software to run on the system. This hardware is defined by binary files describing
the User FPGA configuration and the applications that may run on the user-
defined hardware, such as programs for a NIOS II. These binary files are
encrypted and placed on an SD card. The user application design, in order to
communicate with the host peripherals, is required to include a component
known as the User Bridge. This component provides any encryption services that
the user may wish to employ and it performs a serialization of the data bus to
reduce the I/O count needed in hardware. The user’s only interface to the rest of
the system is by connecting to the Security Bridge on the

 28

Figure 1. System Hardware, Case 1

Terminal

Local IO

Configurations
Key Card

Local IO JTAG

PIO

 USER RAM UART PIO

Cyclone II

Cyclone II

FPGA Config

Data,
Inst

User

 Access
Control

Sec Ratchet

Security Bridge

Board Key

Data

Instruction,

 Data

Instruction

Reset

 RAM

Data

Reset

Program

 Sec RAM

Pass Key
Card Key

Sec Unsecured

Secured

Index
Configuration 1
Configuration 2
Program 1
Program 2
Card Key

DE2 Sub-Board

K

K

K
K K

Data

User Bridge

Pass Key
Ram

K
K

SerDes

SerDes

DE2

RAM

Card Key

Enc Control

Instruction, data

 29

DE2 Main Board and it is suggested that this be done with the specified User
Bridge.

When the user wishes to use the system, he or she inserts the SD card and
enters a password. The User FPGA is configured as designed by the user, and if
a NIOS II is present, its code is copied to user RAM for execution.

The security components on the security FPGA handle many services to ensure
correct and secure operation of the system. They are commanded by a NIOS II
running the security system code. The security components are called the
Security Controller.

This system, Case 1, most clearly demarks the secure, fixed parts of the system
from the unsecure, user-designed parts. This was the original design. This
proved to complicate development too much, although the DE2 Sub-Board is
designed to accommodate that approach.

To meet the system design goals and to simply the system, Case 2 is designed
and implemented in hardware. It is presented now, as it is a simplification of
Case 1. Figure 2 shows how the system is simplified. The user NIOS II is moved
to the DE2 Main Board along with its User Bridge and associated components.
The DE2 Sub-Board FPGA (User FPGA) is now not connected to the Security
Bridge, but its configuration is still under control from the DE2 Main Board. In this
manner, the secure control of an FPGA configuration can still be demonstrated.
The same deployment model is assumed, but with the realization that this system
is an example model as it would not be desirable for the user to use the same
development platform that is used for the security control components.

4.1.2 FPGA Design

The FPGA high-level design for this thesis is done using Altera Qsys. This is a
system-on-programmable-chip design (SoPC) tool. Figure 3 shows the SoPC
system architecture including addresses that the firmware uses to access those
components. This is a more detailed view of the internals of the FPGA on the
DE2 Main Board for Case 2. Important to note at this level is that the Security
Controller NIOS II is the Qsys component nios2_qsys0 and the user Nios II is the
Qsys component nios2_qsys1. It can now be seen that all connections from
nios2_qsys1, the user NIOS II, are mediated through the
avalon_bridge_master_side component, which is the User Bridge, and it
connects to the avalon_bridge_slave_side, which is the Security Bridge.

 30

Figure 2. System Hardware, Case 2

DE2

Terminal

Local IO

Configurations
Key Card

Local IO

JTAG

PIO

 USER RAM UART PIO

Cyclone II

Cyclone
II

FPGA Config

RAM

Instruction

Data

User Bridge

User

 Access
Control

Sec Ratchet

Security Bridge

Board Key

Pass Key
Ram Card Key

Data

Instruction

 Data

Instruction

Reset

 RAM
 Data

Reset

Program

Enc Control

 Sec RAM

Pass Key
Ram Card Key

Sec Unsecured

Secured

Index
Configuration 1
Configuration 2
Program 1
Program 2
Card Key

DE2 Sub-board

 K

K

K
K

K
K

 K

Data

SerDes

SerDes

 31

Figure 3. DE2 Main Board FPGA Internals--SoPC

 32

Figure 4. Address Map

Also, notice that the Security Controller Nios II connects to many components as
it has complete control of the system. Figure 4 shows an address map of the
system. Each device that is a bus master is listed along with the addresses at
which it reaches its peripherals. This is an introduction to the FPGA internals. A
more detailed examination of important components is provided in Section 4.2

4.1.3 Secrecy

Secrecy is integral to the hardware design, so the security model used to achieve
the design goals is explored in this section and is depicted in Figure 5. The
system uses three main keys, known as the board key, the pass key, and the

card key, which are referred to as sksc, kpass, and kcard respectively. These are
shown in color in Figure 1 and Figure 2 as well.

The pass key, kpass, comes from the user when prompted to enter a password. It
is comprised of sixteen hex characters for a total of sixty-four bits. Entry of this
password is strictly controlled by the Security Controller. It is critical that a system
using this model ensure that the password entry is via a trusted route such that
software attacks on it are not possible. Ideally, this would even be a separate key
entry area with a dedicated display apart from any keyboard used by the end

user. This is a part of a symmetric key pair. The card key, kcard comes from the
user token--the SD card. It is a sixty-four bit value. Ideally, this would be held in a
secure place on the user token, and the token could be verified with a command-
response protocol by the Security Controller. For this thesis, the concept is
simplified and it is stored on the SD card encrypted.

 33

Figure 5. Security Design

User NIOS
II

Security Bridge
Global Com enable

Address Control Policy
Security Ratchet

sksc

pkca

 Devices
Secure RAM

kpass
kcard

Local RAM

.bss

.entry

.exceptions

.heap

.rodata

.rwdata

.stack

.text

Plaintext
SD Card

SDdata = Enc (Level n ||
FPGA1.rbf ||
FPGA2.rbf ||
App1.hex ||
App2.hex ||
H(kpass) ||
kcard
, pksc

)
SDsignature = Sign(SDdata , skca)

User RAM

.text (plaintext code segments)

Enc(.text , kpass || kcard)
(Enc code segments)

Password kpass Entry

Configuration

User Bridge
Enc(bus, kpass || kcard) Enable

kpass
kcard

User
FPGA

 34

Kcard is concatenated (denoted as ||) with kpass to form a 128-bit key. This key is
part of a symmetric pair used by the user for his or her encryption system in the
user application. Exclusive-or would normally be preferred as one key does not
imply information about the other and the system maintains the same number of
bits in the security parameter if part is lost. In this thesis, two 64-bit keys
concatenate to 128-bits for demonstration. Ideally, this could be two 128-bit keys

or higher mixed by exclusive-or (|| replaced by ⊕ everywhere).

The board key, sksc, is a special key that resides in the FPGA hardware of the
Security Controller and is part of the system design and deployment model. It is
the private key of a public-private key-pair that enables configuration information
to be written securely to the Security Controller.

In the diagram, and hereafter, “Enc(…)” refers to an encryption function where the
first parameter is the value being encrypted and the second is the key. If listed
with a public or private key, then it is assumed to be an encryption taking place in
a private-public cryptosystem, otherwise it is assumed to be a symmetric cipher.
In this manner, the system may be described generically. The same holds for

“Dec()” as a decryption function. H(…) is a general collision-resistant hash
function that takes an input and digests it to a hash value. Sign(…) is a
cryptographic public-private key signing algorithm that takes data to sign as the
first parameter and a private key as the second parameter and returns a

signature value that is the output of a cryptographic hash. Verify(…) is the
verification function for Sign(…). The first parameter is the claimed message to

verify, the second parameter is the signature value generated by Sign(…), and
the third parameter is the public key associated with Sign(…). It returns true or
false to indicate the validity of the signature. These cryptographic functions are
simplified and are described in Chapter 5.

The key system can now be explained as follows: all secrets on the SD card are
encrypted with the public board key and signed by the private key of the system
owners who are acting as the certificate authority CA. As such, if the SD card is
physically acquired by an adversary, the secrets on it are held as strongly as the
encryption that stores it. One could encrypt a symmetric key in the SD card using
the Security Controller’s public key, and then encipher the data on the SD card
with the symmetric key to improve speed when the Security Controller unpacks it.
The model here is simplified to indicate that data is passed to the Security
Controller using a public-private key system.

The password key, kpass, is held by the operator who must ensure its secrecy.

The DE2 Main Board and the attached sub-board have two secret areas. One,
the user RAM, is implemented as a RAM component in this thesis design, but
conceptually it could be a flash memory where the user wishes to store
permanent applications or data. This data can be encrypted by the user under

 35

the pass key and card key by the User Bridge or deployed as encrypted. In this
way, should the adversary acquire the main board setup, and additionally find the
board key on the security FPGA, the data saved on the system RAM / flash again
is as secure as the encryption system used to store it, as there is not a trace of
the pass key or the card key on that part.

The second secret stored on the DE2 Main Board, as alluded to, is the board
key. Finding this key only gives the adversary the board key as the data on the
DE2 Main Board is stored under the pass and card keys.

Refer to Table 3 and Table 4 for a full listing of scenarios where entities have
portions of the system and the resulting compromises. Note, this system is
designed with a 128-bit composite key in mind, but it could be extended to 256-
bit to increase security.

The user Nios II has a plaintext area in the tightly coupled RAM adjacent to it.
This RAM is part of the user-defined configuration, does not persist between
system uses, and allows for the user Nios II to execute faster.

Operationally, the system works as follows:

1. The system owners decide on a role-based access matrix for the system
address map. All system peripherals are accessed through a memory map
based model. All users are assigned to roles.

2. The system owners generate public-private key pair pkca, skca for signing.
3. The system owners generate a board public-private key pair pksc, sksc.
4. The system owners generate a symmetric key kpass for each user.
5. The system owners generate a symmetric key kcard for each user.

6. The system owners develop the system hardware and embed sksc and
pkca into the Security Controller.

7. The system owners place the access control policy in the Security
Controller firmware.

8. The system owners secure the Security Controller FPGA. Secure
configuration is available on certain devices from FPGA manufactures
such as Altera.

9. The system owners give the security subjects a template for the User
Bridge for incorporation into their designs and an address map for the
system so that the subjects can access the hardware. They are also given

kpass and kcard.

 36

Table 3. System Compromise when an Adversary Recovers Components

Case DE2
Main Board
System
Recovered

User Token
Recovered

Password
Recovered

Adversary
has these Keys:

Adversary has this Data Strength
 Bits

1 X kpass n †
2 X Enc(kcard , pksc)

 Enc(SDdata , pksc) l ‡

3 X X kpass
Enc(kcard , pksc)

Enc(SDdata , pksc) l

4 X sksc

Enc(userdata , kpass ||
kcard)

n

5 X X sksc
kpass

Enc(userdata , kcard) n/2
††

6 X X sksc
kcard

SDdata
Enc(userdata , kpass)

n/2
††

7 X X X All keys All data 0

† Security parameter for symmetric keys (n-bit system)
‡ Security parameter for asymmetric keys (l-bit)

†† Exclusive-or keys instead of concatenating to make this n.

 37

Table 4. System Compromise Summary by Case

Case Summary

1 The adversary only has the password kpass.

2 He has the user’s configuration encrypted with the board key pksc.
He has physical access to the User Token.

3 He has the user’s configuration encrypted with the board key pksc.
He has physical access to the User Token.

4 The adversary has broken the DE2 Main Board.
He has unencrypted parts of application flash memory and
unencrypted user data (if any—this is user determined) .
He has physical access to the DE2 Main Board.

5 The adversary has broken the DE2 Main Board and has the
password.
He has unencrypted parts of application flash memory and
unencrypted user data (if any—this is user determined).
He has degraded the encryption of user data and applications for
designs using key-concatenation instead of XOR mixing.
He has physical access to the DE2 Main Board.

6 The adversary has broken the SD card and has FPGA1 and FPGA2
and the unencrypted parts of application flash memory (if any—user
determined) .
He has degraded the encryption of user data and applications for
designs using key-concatenation instead of XOR mixing.
He has physical access to the DE2 Main Board.
He has physical access to the User Token.

7 The adversary has the same privileges as the user.

 38

10. The security subjects, hereafter referred to as the users, design and
develop system hardware and firmware to meet the goals.

11. The users send the FPGA configuration files and application .hex files to
the system owners via some application.

12. The system owners append n, the user’s security level, to the data.
13. The system owners append H(kpass) to the data.
14. The system owners append kcard to the data.

15. The system owners encrypt the data with the public board key pksc and
then sign the data with their private key skca. This application could
automatically load and format the SD card or active token.

16. The user wishes to use the secure platform to accomplish her goals and
therefore is in proximity of the system as this is not a distributed secure
system.

17. The user applies power or resets the secure platform.
18. The system resets and secrets that compromise encrypted data on the

system are cleared.
19. The system performs security checks.
20. The user enters the SD card when requested.

21. The Security Controller reads the SDdata and the SDsignature.
22. The Security Controller runs Verify(SDdata , SDsignature , pkca) on the SD

card data. It halts if false.

23. The user enters pass key kpass’ when requested.
24. The Security Controller checks

H(kpass’) = Dec(Enc(H(kpass) , pksc) , sksc). It halts if false.
25. The Security Controller sets the access policy based on the level

Dec(Enc(n , pksc) , sksc).
26. The Security Controller sets kcard = Dec(Enc(kcard , pksc) , sksc).
27. The Security Controller loads the user FPGA1 configuration. It terminates

if there is a problem.
28. The Security Controller clears user RAM and loads the user APP1

program. User-selected secure parts of this are already encrypted by the

user and now decrypt to Enc(App1 secure segment, kpass || kcard).
29. The Security Controller now enables communication on the Security

Bridge.
30. The Security Controller starts the user Nios II.

31. The user Nios II, if the user wishes to use encryption, must copy kpass and
kcard from the shared security RAM to the User Bridge.

32. The user Nios II executes and uses the services available to it.
33. The user Nios II may request the current hardware configuration of the

system which is H(Security Controller ROM) + H(hardware) where
hardware represents any component whose configuration is under control.
This is simulated by the switches on the DE2 board.

34. The user Nios II may request the value of the security ratchet.

35. The user application may elect to run Enc(bus, kpass || kcard) or Dec(bus, kpass
|| kcard) where bus is the combined instruction/data bus which originates at

 39

the User Bridge and ends at the Security Bridge. This can occur at any
time and is controlled by the user.

36. The user application may request a context change wherein FPGA2 and
APP2 are loaded and checked in a similar process as steps 26-35. If it is
running in the second configuration, it can request a switch back to the
first, again, in a process consisting of steps 26-35.

37. Any system reset clears kcard and kpass from the User Bridge and from the
Security RAM.

4.1.4 Authentication

The system authenticates, to itself, the user by checking a hash of the user’s
password against the decrypted hash provided on the SD card that was signed
by the system owners.

The system authenticates, to itself, the configuration data by checking its
signature from the system owners before decrypting it.

The user application authenticates, to itself, the hardware system that it is
running on by requesting a hash of the current board state and by checking the
security ratchet. The board state hash is a simplification of a PCR. It is a hash of
the Security Controller Nios II RAM and switches on the board.

4.1.5 Access Control

The Security Controller enforces a role-based access policy based on its reading
of the signed user’s access level. There are three access levels, level 1 through
level 3. The system owner predetermines what security objects can be accessed
for which levels. The Security Controller is designed to allow this matrix to be
changed in real time by the Security Controller Nios II microprocessor. In this
manner, the system is more flexible.

The access policy is expressed as a matrix in Table 5. Each subject can be
dynamically allowed to access three different memory-mapped regions, plus
peripherals. The Security Controller performs real time cycle level inspection of
data to and from the user Nios II.

 40

Table 5. Access Control Template

User Level Address
Range 1

Address
Range 2

Address
Range 3

LEDs Switches UART

1 Low:high Low:high Low:high Yes / No Yes / No Yes / No

2 Low:high Low:high Low:high Yes / No Yes / No Yes / No

3 Low:high Low:high Low:high Yes / No Yes / No Yes / No

4.2 System Component Design

This section details key design aspects of the components of the system
described the in previous sections.

4.2.1 SoPC Design

System on Programmable Chip (SoPC) design refers to the use of reconfigurable
hardware (FPGAs) to build System On Chip (SoC) designs [60]. These have a
microprocessor, peripherals, memory, and custom hardware designed on a
single chip [60]. The configurable FPGA hardware for this thesis is designed at a
high level using Qsys, which is an Altera tool that expedites SoPC design by
providing a graphical interface to instantiate intellectual property cores and to
generate their interconnections [42]. At a lower level, custom hardware modules
are developed in Verilog, which is C-like hardware description language that
allows various abstraction levels [61].

The complete SoPC system is shown in Figure 3. The system is designed by
instantiating and customizing Qsys-provided components and the custom
designed components and connecting them. Then the system is compiled and
the Qsys tool generates a large amount of quite complex interconnect logic to
connect the system. This interconnect is comprised of Altera-designed Avalon
components. The Avalon interconnect fabric is an open, high-speed interconnect
fabric that is designed for streaming data between hardware cores and for
reading and writing to registers and for controlling off-chip devices [62]. These
components perform a host of complex functions such as serialization, de-
serialization, arbitration, routing, multiplexing, and demultiplexing. The
interconnect structures are compliant with the Avalon bus specification and so
are the custom hardware modules that are designed. The Avalon interconnect is
best described as a small internet-like serial interconnect that achieves high
speed by using very wide bus widths such that much data is transacted on each
cycle. Data is encoded, routed, arbitrated, and decoded when it moves from point
to point. The output of the Qsys tool is a set of Verilog files and a set of test
bench files that are imported to Quartus for synthesis, mapping, placing, and

 41

routing. The test bench is imported into ModelSim for system simulation.
ModelSim is a widely used graphical simulator for hardware description
languages such as Verilog and is made by Mentor Graphics [63]. The Qsys
output is placed into a larger Verilog container, which tells the SoPC design how
to connect to the physical board. The system in Figure 3 is comprised of the
parts detailed in this section.

4.2.2 Avalon SoPC Components

This section is a brief overview of the standard Avalon components used in the
system and focus is on the more interesting high-level components. Note: lower
case names are system components.

The NIOS II Processor: this is a 32-bit Harvard-architecture RISC processor that
can address 2 Gbytes of space [64]. It can be instantiated in three versions. The
version used for this thesis is the NIOS II/e with a minimum feature set.

The user sets the reset vector and exception vector. The processor also comes
with a joint test action group (JTAG) debug port [65]. The full version of the NIOS
II incorporates more advanced features such as a hardware multiplication unit,
configurable instruction and data caches, configurable interrupt controller, and
configurable memory management support.

There are three total NIOS II/e processors in the system. The Security Controller
uses a NIOS II for command and control (nios2_qsys_0). Its data bus is
connected to the local RAM, Security Bridge, Security RAM, the user RAM, the
SD card via a Parallel Input/Output (PIO) interface [42], a Universal
Asynchronous Receiver/Transmitter (UART) [42] for user interaction, a reset
controller that controls the user Nios II reset, LEDs, switches, the user UART,
and finally, PIO used to program the User FPGA. Its instruction bus is connected
to the same local RAM.

The second is the user Nios II (nios2_qsys_1). Its data bus is connected to a
local RAM for fast, unencumbered access to data and is also connected to the
User Bridge so that it can access the full system. The instruction bus is
connected to the local RAM and also to the User Bridge so that it can execute
code from user RAM. It has a second connection to the User Bridge that allows it
to configure the bridge.

The third Nios II appears on the User FPGA as an example configuration. Refer
to Figure 1.

Clock Source (clk_0): this SoPC component takes an actual clock input and
redistributes it along with a reset to every component in the system.

 42

Altpll (alt_pll_0): this component is a configurable PLL used to condition the
system clock such that it is advanced by 10 ns for use with the SDRAM.

JTAG UART: this is a UART to JTAG interface that allows the system to
communicate with a terminal window. There are multiple ones in the system.
Jtag_uart_0 is connected to the data bus of the Security Controller NIOS II and is
used to communicate with the user and to get the pass key password.
Jtag_uart_1 is connected directly to the user NIOS II, is inserted for development
only, and would not be used in a full system. Uart is a JTAG UART connected to
the Security Controller data bus and can be accessed by the user Nios II
according to the security policy. Ghost_uart is a JTAG UART connected to the
data bus of the user Nios II and is in place as a software construct. For a system
developed as Case 1 in Figure 1, it is necessary for the Eclipse complier board
support package to recognize and understand that a UART is present on the
data bus. The User Bridge prevents the tool from seeing the UART attached to
the Security Controller, so it does not allow for its use. For development
purposes, the ghost_uart could be addressed at the same location so that the
Eclipse tool can compile for it.

RAM: there are multiple RAMs in the system design. Ram_0 is the Security
Controller Nios II RAM and is initialized with the Security Controller program
when the Security Controller FPGA is initialized. It is located on the data and
instruction buses of the Security Controller Nios II. Ram_1 is the local RAM for
the user Nios II. It is located on the instruction and data buses of the user Nios II.
It can be initialized according to the user application needs. It can be configured
to contain all of the user code, obviating the need for the user RAM that is
mediated through the Security Controller. For this thesis, the user application is
specified to run in the user RAM through the Security Controller. Ram is located
on the Security Controller data bus and is accessible by the user Nios II as
allowed by the access policy.

Parallel Input/Output (PIO): The Avalon PIO component allows for general-
purpose input and output. The following is a list of PIO controllers that are
connected to the Security Controller Nios II data bus: sd_data, sd_command,
and sd_clock drive the SD card. Being PIO, the SD interface is in software.
Additionally, ps_dclk, ps_d0, ps_nconfig, and ps_nstatus are command and
status lines to the User FPGA to configure it and confirm that it is configured. The
configuration protocol is designed in software to follow the passive-serial
programming option for the User FPGA. Other PIO connections to the Security
Controller data bus are switches and LEDs. These interface to the switches and
green LEDs on the DE2 board and make them software addressable.

SDRAM: The Avalon component labeled sdram is an Avalon-based SDRAM
controller and connects to the SDRAM on the DE2 Board. The SDRAM is not

 43

used in this thesis. Although the hardware functioned, the Avalon intellectual
property SDRAM module would not properly process the data for converting its
16-bit contents to a 32-bit word in this system.

4.2.3 Designed SoPC Components

Several system components are designed without building on existing
components. Their designs are detailed in this section. They are built upon the
Avalon interface specifications by Altera [62].

The Avalon architecture supports several interface types based on the system
goals. The “Memory Mapped” interface type is used for custom modules in this
thesis as it best serves to connect the custom components to the Nios II bus
systems. Components designed as memory-mapped can be either a “memory-
mapped slave” or a “memory-mapped master.” An Avalon bus can have multiple
masters and multiple slaves. The Qsys tool inserts proper interconnect logic to
perform arbitration and routing decisions. The bus structure is flexible in that it
has features that are optional when designing components for it.

The Avalon bus masters designed in this thesis connect to the Avalon fabric with
a data bus (separate inbound read data and outbound write data), an address
bus, a read signal, a write signal, and a wait request. For a master to write data
to a location on a slave, the data is placed on the data bus and the address to
which it is to be written is placed on the address bus. Next, the write signal is
asserted which tells the Avalon fabric to receive data from the master and to
route it to the destination address at the slave. The master then waits for the wait
request signal to clear, indicating that the data was received. The read process is
complementary. The Avalon master places the requested address on the
address bus and asserts the read signal. It then waits for the wait request to
clear. Then it reads the data from the data bus and uses it as needed.

This thesis also makes use of custom Avalon slave interfaces. These operate in
a manner that complements the master. When their read or write signals are
asserted, they respond by accepting or posting data to the data bus. While busy,
they post a wait request signal. Of particular interest are the User Bridge and
Security Bridge, which have both a master and two slaves.

The following paragraphs describe the design of the custom components used in
Figure 3:

Slave_to_reset source: this is a custom-designed peripheral that is on the
Security Controller Nios II’s data bus. It allows the reset of the User Nios II to be
controlled by the Security Controller software. It has one Avalon slave input and it
has an output that controls the reset of the User Nios II.

 44

Figure 6. Slave to Reset Source State Machine

The logic used to implement the Avalon slave is a Moore state machine. In state
Run, it holds the user Nios II reset as not asserted. In state Reset, it asserts the
reset on the user Nios II. The decision to change states is based on the slave
port. When it receives a write, if the data is 1, then state Reset is selected. If the
data received from the master is 0, then state Run is selected. The state machine
states are shown in Figure 6.

The User Bridge: this more complex custom component is shown as
avalon_bridge_master_side in Figure 3.

This component performs three functions for the user Nios II. First, it serializes
and de-serializes the user Nios II Avalon bus to the Security Bridge, which
reduces the number of pins needed for Case 1 in Figure 1 from ninety-five to
twenty-five, at the cost of running more cycles. Secondly, it stores a copy of the
pass key and the card key on the user side of the system. These locations are
cleared on reset. Finally, it provides encryption and decryption services for the
connection between the user Nios II and the Security Bridge.

This component is designed to be as transparent to the upstream master as
possible. The incoming data is 64-bits wide, (it has separate inbound and
outbound data lines that are 32-wide) but are serialized down to two 8-bit buses.
The 24-bit address bus passes through without change.

This component has a slave port that is connected to the instruction bus of the
user Nios II and the data bus of the user Nios II. It also has a second slave port
that connects to the data bus of the user Nios II. It has an Avalon master output
that connects to the Security Bridge slave port. The second slave port connection
to the user Nios II data bus master is so that the user Nios II can directly
configure parts of the User Bridge. The code can reference the card key and the
pass key directly from this hardware and the code can enable and disable
encryption on the bus.

It functions as follows. Two state machines operate this component. The primary
state machine is the main state machine that performs serialization, de-
serialization, and encryption on the bus. It is depicted along with state names

 45

in Figure 7. There are two main paths through this machine. The first path
through the machine is a write cycle in which the machine takes the incoming
write data from the upstream master, which is received on this component’s
slave port, and serializes it and writes it out on this component’s master port,
encrypted if needed. The secondary machine (Figure 8) stores the pass key, the
card key, and an enable for encryption. There are two flows through this state
machine, a read path and a write path, similar to before. In the write path, the
user writes the pass key, the card key, or the encryption enable value. In the
read path, these values are repeated back to the bus.

The encryption function, as with all encryption functions in this thesis, is a
template function. It is implemented as:

Enc(bus , kpass[47:44] || kcard[47:44] || kpass [43:40] || kcard [43:40] || kpass [7:4] ||
kcard [7:4] || kpass [3:0] || kcard [3:0])

Where Enc() mixes the bus with the pass key and the card key using an
exclusive-or function. The decryption function takes the same form. Since this
encryption does not depend on prior encryptions, it works in electronic code book
mode. This mode, as opposed to cipher block chaining, is used to simply the
function.

The Security Bridge: this component is labeled as avalon_bridge_slave_side in
Figure 3. This component performs the majority of the security-based functions of
this system. Refer to Figure 9 and Figure 10. Its slave connects to the User
Bridge bus master on the upstream side, and its master connects to slave ports
on all security objects on the downstream side. It has a second slave port that
connects to the Security Controller Nios II data bus so that the Security Controller
Nios II can configure this component from software. It provides the following
functions:

Serialization / de-serialization: this component serializes and de-serializes the
bus from the User Bridge and converts it to a normal 32-bit bus for connecting to
the security objects.

Access control: this component inspects every address access from the user
Nios II on a cycle-by-cycle basis and compares it to the security policy stored in it
by the Security Controller Nios II. If the access is not valid, it is ignored and any
requested data is zero. It also has a master control that causes all
communication to be ignored.

 46

Figure 7. User Bridge Primary State Machine

Figure 8. User Bridge Secondary State Machine

 47

Figure 9. Security Bridge Primary State Machine

Figure 10. Security Bridge Secondary State Machine

 48

Board Key Storage: the board private key is stored here.

Security ratchet: a security ratchet, based on the IBM 4758, is implemented in
hardware. It is a counter that goes from zero to eight. Writing any value to it
increments it. Reading it returns its current value. It can only be set back to a
lower number through a reset. The two state machines for this component are
very similar to the User Bridge and are only summarized. In Figure 9, two flows
through the state machine can be seen. One is the read, in which the component
gets a read request from User Bridge and it processes it by communicating with
the downstream peripherals. The other path through is a write cycle, in which this
component receives data from the upstream User Bridge and writes it to the
downstream devices.

As with the User Bridge, there is a second slave port on this device that allows it
to be configured and the state machine that controls this function is depicted in
Figure 10. The slave port provides access to the parameters that set the access
policy shown in Table 5. It also provides access to the security ratchet, the board

key sksc, and as access to a global control that inhibits the user Nios II from any
communication.

The Security Bridge inspects the incoming address by a large combinatorial logic
function that is the core of the access control mechanism. It references a set of
registers that define the low and high address ranges and devices that are
allowed, as seen in Table 5.

Sec_ram (security RAM) is a 32-byte RAM shared between the user Nios II and
the security Nios II and allows them to communicate apart from the Security
Bridge. This allows the user Nios II to get the pass key and the card key from the
Security Controller, to request a checksum of the current configuration of the
board, and to request a context change. The sec_ram component has only one
state and takes write data from the bus and stores it, or provides read data to the
bus when commanded. It has a custom Verilog implementation that ensures that
it clears on reset. This is not true of regular Altera SoPC RAM components.

This section reviews the hardware that runs on the DE2 Main Board security
FPGA. This hardware must physically connect from the security FPGA to devices
on the DE2 board. The next section briefly details how this is accomplished.

4.2.4 Development Platform

Refer to Figure 11 and Figure 12. The SoPC system just presented is configured
in the Security Controller FPGA. For it to connect to hardware on the DE2 board,
it is instantiated in a high-level Verilog file that specifies the pin-out so that it can
connect to the DE2 board. This file specifies that the SoPC system connects to

 49

Figure 11. DE2 Main Board

Figure 12. DE2 Sub-Board

Cyclone
II

Headers
To DE2
Main
Board

JTAG EXPANSION

3.3V REG

 50

the system 50 MHz clock, that push button 0 connects to the system reset, that
the switches and LEDs are connected to their respective PIO components, that
the SD card connects to the SD card PIO components, that the User FPGA
configuration lines connect to their PIO components, and that the SDRAM
connects to the SoPC SDRAM controller. Also, at this level, a clock is provided to
the DE2 Sub-Board along with a set of red LEDs that show the status of the
programming lines to the DE2 Sub-Board. A 50 MHz clock provides timing for the
system. The DE2 is programmed through the USB byte blaster.

4.2.5 DE2 Sub-Board Platform

The DE2 Sub-Board plugs into the DE2 Main Board expansion headers. The
DE2 manufacturing drawing is depicted in Figure 12.

This board is a custom-designed PCB with a Cyclone II FPGA, 3.3 V regulator,
and two seven-segment LED displays. The Cyclone II connects directly to the
headers through carefully laid LVDS pairs. It also connects directly to the seven-
segment displays. Its clock, configuration, and configuration status pins also go
to the header as they connect to the Security Controller FPGA for programming
and verification. The PCB is a six-layer board that is designed with good return
path and decoupling. The layout was imported to HyperLynx and the extracted
layout was analyzed for rise and fall times and termination using a field solver.
The FPGA is programmed in passive-serial mode using custom software running
in the Security Controller Nios II.

4.2.6 User FPGA Configurations

Two FPGA configurations are designed that demonstrate the user’s ability to
configure an FPGA from a secure source. The configurations are depicted in
Figure 2 as a Nios II in the User FPGA. Both configurations have a basic Nios II
processor, JTAG UART, as well as PIO that interfaces to the seven-segment
display. For simplicity, the only difference between the two configurations is what
is displayed on the seven-segment LEDs. In this manner, it is possible to tell
what state the FPGA is configured in.

4.2.7 SD Card

The Secure Digital (SD) card is a 2 Gbyte SanDisk memory card [66]. The FPGA
configuration files, the Nios II application files, the card key file, the key hash file,
the security level file, and the security header file are stored on it using HxD Hex
editor [67]. The Security Controller accesses the files using low level reads and

 51

writes using libraries based on work by [68]. This reduces the code requirements
for the Security Controller.

 52

CHAPTER 5
SOFTWARE DESIGN

The software for the Security Controller and the user applications is designed in
the C language using the Eclipse tool set with Nios II extensions. The Eclipse
toolset provides a full, integrated development environment [69]. The C
language, being function-oriented, is ideal for highlighting the hardware as
described in Chapter 4. The extra cost of using a more object-centric language
such as C++ is avoided, although the toolset allows for this.

The software is designed in C and compiled for the Nios II processor. The
Eclipse toolset takes a description of the SoPC platform as described in Chapter
4 and builds a user-customizable board support package (BSP) for it. This
includes many convenient input and output functions, user customizable linker
tables, and many other options to specifically tailor the BSP for the application
needs.

Two complete systems are designed in software. The first is the Security
Controller software. This executes on the Nios II in the Security Controller. This
processor has complete control of every device in the system. The second are
the two user applications. They have their own complete BSP and application
files.

5.1 Security Controller Application

The purpose of the Security Controller software is to initialize the system, check
the system integrity, enforce the access control policy, and perform the user
services of loading and verifying FPGA configurations and application files for the
user Nios II.

5.1.1 Board Support Package

In order to build a Nios II based Security Controller, it is necessary to ensure that
the entire system can easily be accessed in software and that basic functions for
any needed peripherals are present. Figure 13 shows the BSP for the Security
Controller.

 53

Figure 13. Security Controller BSP

 54

All unnecessary functions are omitted, such as support for C++. Altera offers a
set of drivers with reduced capability that have a smaller code size, and these
are selected. No special exit from the code is needed as this application runs in a
continuous loop. Inputs and outputs are directed to jtag_uart_0 such that they
can be viewed from the PC. Code optimization is disabled; in this multiprocessor
situation, the complier may incorrectly assume a code block has no effect, when
actually the second processor is accessing the same memory locations for
information. A small interrupt stack and a small exception stack are included.
Interrupts are not used in this design to simply the implementation.

Figure 13 also shows the linker settings. This specifies where the actual hex
code for the Nios II resides. Ram_0 is the Security Controller RAM and the entire
application is located in this region. Note the eight linker sections: .bss, .entry,
.heap, .rodata, .rwdata, .stack, and .text. Each of these can be individually placed
in any memory accessible to the Nios II, with the exception of .entry and
.exceptions, which are defined when instantiating the Nios II in Qsys. The size
and address range of each of the sections is shown as well. Note that sec_ram is
a 32-byte shared RAM that both the user Nios II and the Security Controller Nios
II access.

Once defined, the BSP is compiled and the main software application references
it.

5.1.2 Software Overview

The Security Controller software design is shown in flow-chart form in Figure 14a
through Figure 14c. Upon reset, the Nios II starts at its .entry address as defined
in the SoPC design. From there it jumps to .text and begins execution of the BSP
functions, which finally allow the program to enter main() where it performs the
process shown in Figure 14a through Figure 14c.

The first task is to ensure that the user application’s communication is inhibited.
This is a double check as no user application should be allowed at this point as
the user FPGA is not configured. Next, the security ratchet is checked to be zero.
Upon a tamper event, the code will reenter as before, but the security ratchet will
be higher than zero, which will cause the process to terminate. This termination
is simply an infinite loop.

The ratchet is set to one, confirming that the Security Bridge is disabled and the
user processor is halted. This progression of boot steps with incrementing ratchet
values is an implementation of the trust ratchet as developed by the IBM 4758
team.

 55

Figure 14a. Security Controller Software Flow

 56

Figure 14b. Security Controller Software Flow

 57

Figure 14c. Security Controller Software Flow

 58

Next, the DE2 Main-Board hardware is checked. The user RAM area is cleared
and checked and the 32-byte security RAM area is written to and read from to
confirm its operation. The Security Bridge is checked by a similar process of
write-read-verify.

If these operations succeed, then the security ratchet is set to two and the
processor waits for the SD card to be inserted.

The SD card communication is accomplished by manipulating PIO lines directly
from the processor. An SD library from [68] is incorporated, in part, to initialize
and read the SD card. Additional functions are designed on top of this library to
read and cache an entire 512-byte block from the file system, as well as various
functions to convert ASCII to hex.

Next, the user enters kpass at the terminal window. Then a security index file is
read (this is depicted in Figure 5). This file contains file pointers to the FPGA

configurations, the user applications, the allowed security level file, the kcard file,
and the hashed password file. It also has the signature of the system owners

attesting to the validity of those encrypted files, which are encrypted with pksc.

securityheaderexample
SLVL 53d5cf41
SGK1 53d5cf00
SGK2 53D5CF81
CAFS 53d5cfc2
CAFE 53d73f87
CATS 53d8aba5
CATE 53d8d10a
CBFS 53d73fc2
CBFE 53d8ab59
CBTS 53d8d1c5
CBTE 53d8f72a
SID1 01cf1d9b
SID2 00000000
SID3 00000000
SID4 00000000
SID5 00000000
SID6 00000000
SID7 00000000
SID8 00000000
endofexample

Text at the start and end are comments and are ignored. Each entry has a four-

letter mnemonic followed by eight hex values. SLVL is the security level file

pointer. SGK1 is a pointer to the file containing kcard. SGK2 is a pointer to the file
containing H(kpass). CAFS and CAFE are pointers to the FPGA1 file endpoints.
CATS and CATE are pointers to the APP1hex file endpoints. CBFS, CBFE, CBTS,
CBTE serve the same roles but for FPGA2 and APP2. SID1 is the CA’s signature

 59

over the concatenation of all of the encrypted files. The index file is not encrypted
as it contains the signature for the encrypt-then-sign protocol that is used for the
data on the SD card, so this value must be separate from the encrypted data.
The file pointers could be encrypted in their own file, but they are only indexes to
files that are encrypted and signed. To change the pointer, one would have to

forge the SD card signature and place that value in SID1, which is assumed hard.

Using these file pointers, Verify(SDdata , SID1 , pkca) is checked. The system
halts if this fails. This is a two-party encrypt-then-sign scheme [19].

Then the user password is received, hashed, and checked against the decryption
of the hash stored in the password hash file. This system halts if this fails.

Next, the security level is determined by decrypting the security level file and
using that number. The access control policy is set. The usefulness of the
custom hardware designed in Chapter 3 is now apparent as the access policy
can easily be changed in real-time. It takes the form of a set of registers whose
names are explanatory.

#define SEC_CONTROL_COM_ENABLE (unsigned int *) 0x10010000
#define SEC_CONTROL_RAMSEG1_LOW (unsigned int *) 0x10010004
#define SEC_CONTROL_RAMSEG1_HIGH (unsigned int *) 0x10010008
#define SEC_CONTROL_RAMSEG2_LOW (unsigned int *) 0x1001000C
#define SEC_CONTROL_RAMSEG2_HIGH (unsigned int *) 0x10010010
#define SEC_CONTROL_RAMSEG3_LOW (unsigned int *) 0x10010014
#define SEC_CONTROL_RAMSEG3_HIGH (unsigned int *) 0x10010018
#define SEC_CONTROL_ALLOW_UART (unsigned int *) 0x1001001C
#define SEC_CONTROL_ALLOW_SW (unsigned int *) 0x10010020
#define SEC_CONTROL_ALLOW_LEDS (unsigned int *) 0x10010024

These registers are filled with the access policy:

// Level 1
#define SEC_CONTROL_RAMSEG1_LOW1 0x200000
#define SEC_CONTROL_RAMSEG1_HIGH1 0x20025F
#define SEC_CONTROL_RAMSEG2_LOW1 0x204000
#define SEC_CONTROL_RAMSEG2_HIGH1 0x204007
#define SEC_CONTROL_RAMSEG3_LOW1 0x200263
#define SEC_CONTROL_RAMSEG3_HIGH1 0x200263

//Level 2
#define SEC_CONTROL_RAMSEG1_LOW2 0x200000
#define SEC_CONTROL_RAMSEG1_HIGH2 0x20025F
#define SEC_CONTROL_RAMSEG2_LOW2 0x204000
#define SEC_CONTROL_RAMSEG2_HIGH2 0x204007
#define SEC_CONTROL_RAMSEG3_LOW2 0x200264
#define SEC_CONTROL_RAMSEG3_HIGH2 0x200264

 60

//Level 3
#define SEC_CONTROL_RAMSEG1_LOW3 0x200000
#define SEC_CONTROL_RAMSEG1_HIGH3 0x20025F
#define SEC_CONTROL_RAMSEG2_LOW3 0x204000
#define SEC_CONTROL_RAMSEG2_HIGH3 0x204007
#define SEC_CONTROL_RAMSEG3_LOW3 0x200265
#define SEC_CONTROL_RAMSEG3_HIGH3 0x200265

*SEC_CONTROL_ALLOW_UART = 0;
*SEC_CONTROL_ALLOW_SW = 1;
*SEC_CONTROL_ALLOW_LEDS = 1;

Next, the card key, kcard, is decrypted and saved into secure RAM. Then the
security ratchet is incremented and the first FPGA configuration is decrypted and
loaded. Should the user FPGA indicate a fault with the .rbf file load process, the
Security Controller program will halt. The load function is designed to implement
the Altera passive serial protocol [41].

Next, the application .hex file for the user Nios II is decrypted and loaded into a
cleared user RAM. Then the Security Bridge is enabled, shared request and
status registers are cleared and the user Nios II is allowed to start execution.

From this point forward, the Security Controller monitors the shared RAM for
requests from the user Nios II. It can respond with a checksum of the board
hardware to assure the application running on the user Nios II of the correctness
of the run environment. It can also report the security ratchet to the User Nios II.
It also responds to context change requests from the user.

When these are requested, the previous steps are mostly repeated, with a
different FPGA .rbf file and application .hex file loaded, however. Figure 14a
through Figure 14c show how this is handled.

5.1.3 Important Functions

This section briefly details the more important software functions:

Decryptsp: This function simulates a public-private key system decryption. It
takes three parameters, all 32-bit unsigned represented. The first is the value to
decrypt. The second combined with the third are the private key.

M = Decryptsp(Menc , sk1 , sk2) , where sk = sk1 || sk2

The cryptosystem is represented by a major simplification:

 61

K1 = sk ∙ pk
Where K1 is a fixed value for the thesis

< sk , pk > is a public-private key pair and are integers

The decryption process finds:

M = Menc ⊕ (sk)

This data is encrypted previously by the function:

Menc = M ⊕ (

)

In this manner, public-private key cryptography can be represented as a template
function with unique public and private keys and the exclusive-or function.

GetCardKey : This function decrypts the card key from the SD card using the
board public key:

kcard[31:0] = Decryptsp(Enc(kcard[31:0] , pksc) , sksc)
kcard[63:32] = Decryptsp(Enc(kcard[63:32] , pksc) , sksc)

DetermineSecurityLevel: This function gets the security level by decrypting the
security level file:

n = Decryptsp(Enc(n , pksc) , sksc)

LoadApp: This function takes start and stop file pointers to the SD card and
downloads and decrypts the user application file using the board key:

instruction[31:0] = Decryptsp(Enc(instruction[31 : 0] , pksc) , sksc)

Config: This function takes a file start and a file stop pointer to the SD card and
decrypts the FPGA configuration file and loads it to the user FPGA and checks
for problems. The file is decrypted using the board key exactly as in LoadApp,
with an exception being that it is done byte-wise instead of word-wise.

CRC_SD and checksum: These functions simply add up data into a 32-bit
unsigned register; this is a simplification of a cryptographic hash.

VerifySD: This function takes a message, a signature, and a public key and
performs signature checking:

valid = VerifySD(signature , pk)

 62

The simplification behind this is verifying:

signature ≟ checksum(SDdata) ⊕ (

)

Creating the signature take form:

signature = checksum(message) ⊕ (sk)

Where K2 is a fixed value for the thesis
K2 = sk ∙ pk

< sk , pk > is a public-private key pair and are integers

In this manner, signing and verifying a signing operation are simulated.

5.2 User Applications

The user software is designed to display the features of the entire platform. The
Qsys SoPC system, when used with the Eclipse IDE allows the actual code to be
fully simulated in ModelSim once the environment is carefully set up. The user
applications are designed to both run the hardware and to run in the simulator,
and the selection is made by compiler directives.

5.2.1 Board Support Package

As seen in Section 5.1.1, it is necessary for the design of the user application to
be built upon a BSP designed for the goals in mind. Figure 15 shows the BSP for
the user applications. It varies from the Security Controller BSP as its code
segments are divided across two devices: ram_1, which is the tightly coupled
RAM attached directly to the user Nios II, and userram, which is an alias for the
user RAM whose access is mediated by the Security Bridge access control
policy.

The standard input / output device is set to jtag_uart1. This communication port
is directly attached to the user Nios II for debug purposes and would not be
desired in a full implementation of this system due to security concerns.

All linker regions except .text, which is the main user application, are located in
ram_1 that is attached to the Nios II directly. The user application .text segment
is located in the user RAM area and is loaded by the Security Controller. Ram_1
is loaded during FPGA configuration.

 63

Figure 15. User Application BSP

 64

5.2.2 Software

Refer to Figure 16. Upon reset, code executes from ram_1 then jumps to user
RAM through the Security Controller. The Nios II then requests the current value
of the security ratchet and checks that it is correct. It then requests a checksum
of the DE2 Main Board and checks that value before continuing. Then it copies
the pass key and the card key to the User Bridge. Next, it reads and writes to
three test locations. The first is allowed and the remaining two are disallowed.
Also, the actual code to perform the first test is encrypted, so the User Bridge
decrypts and executes it. Next, the LEDs are set based on the user application—
for application 1 they are set to one value and a different value for application 2.

Finally, the application requests that the Security Controller load the next
configuration. The application then halts. Application 2 is identical except for the
value of the LEDs displayed.

5.3 Encryption Software

The Quartus II toolset output files and the Eclipse output files must be post-
processed for use with this system design. Custom programs are designed in
Scilab to accomplish this. This post-processing approximates the processing
needed as described in Section 5.1.3.

Code processing: This program asks the user which code segment has
secondary encryption. Then it takes the user application object file and strips out
all except the addresses and the instruction codes.

Next, it parses the file. If a particular segment is inside the secondary encryption
segment, then it is encrypted as

instenc[31:0] = Inst[31:0] ⊕ (kpass[47:44] || kcard[47:44] || kpass[43:40] ||
kcard[43:40] || kpass[7:4] || kcard[7:4] || kpass[3:0] || kcard[3:0])

Next, all code is encrypted as:

instenc‘ = inst[31:0] ⊕ (

)

FPGA configuration processing: this program takes a user FPGA.rbf file and
encrypts it:

FPGAbyteenc[7:0] = FPGAbyte ⊕ (

)

 65

Figure 16. User Application

 66

Data Signing: to model the CA signature of the encrypted data, SID1 on the SD
card is set to:

SID1 = checksum(SDdata) ⊕ (skca)
where SDdata is FPGA1 || FPGA2 || APP1 || APP2 || security level assigned ||

checksum(kpass) || kcard

5.4 Ancillary Software

Multiple small applications are designed to run the entire development platform to
automate the tasks of FPGA synthesis, placement, routing, loading, rbf file
generation, hex file generation, application of the encryption programs, SD card
loading, and correct placement of files for ModelSim.

 67

CHAPTER 6
RESULTS

The complete system as described is run successfully on hardware and in
ModelSim. This chapter details the results from the tests with the hardware
system as well as simulation results that show the internal operation clearly.

The simulation results are used show the totality of the system operation as well
as interesting portions of important modules as they interact with the system.
Some aspects of the simulation are not modeled to reduce the model complexity,
such as modeling of the SD card. Other aspects cannot be modeled, such as
FPGA reconfiguration. In cases where simulation simplifications are made,
testing relies on actual hardware to show the results. Simulation provides results
that are not seen by observation of the hardware, such as zeroing of secrets.
Taken together, they show the full system operation.

6.1 Full System Operation

First, the full system is generated. The tasks to coordinate a system built are
numerous and use multiple tools.

1. A full set of keys are generated by manual selection of hex digits.
2. The user FPGA1 configuration is generated in a special, separate project

environment.
3. The user FPGA1 file is run through Scilab to encrypt it with the board key.
4. The user FPGA1 file is altered to output a different set of LEDs on the

DE2 Sub-Board and is saved as FPGA2.
5. The user FPGA2 file is run through Scilab to encrypt it with the board key.
6. The FPGA files have markers added to them so that they can be located

on the SD card.
7. A checksum of the password key is made and placed in a file. The file is

encrypted with the board key. A marker is added to the file to locate it.
8. The user’s security level is looked up and placed in a file. The file is

encrypted with the board key. A marker is added to the file to locate it.
9. The user’s key card key is placed in a file. The file is encrypted using the

board key. A marker is added to the file to locate it.
10. The FPGA1 file, FPG2 file, key card file, password hash file, and security

level file are placed on the SD card and located manually using the
markers. These locations are noted for placement in the security index file.

11. The Security Controller Nios II application is compiled and the hex code is
generated.

12. The full Security Controller FPGA is compiled in Quartus using a custom
script to synthesize, map, place, and fit the SoPC. It also takes the hex

 68

code from step 11 and inserts it into the FPGA configuration so the
Security Controller Nios II starts correctly when the FPGA is programmed.

13. A checksum of the Security Controller ROM is calculated.
14. The checksum is inserted in the user APP1 and APP2 program as the

expected board checksum value.
15. The user APP1 program is selected by a pre-compiler directive. It is

compiled, and the hex code generated.
16. A Scilab program is executed that that takes APP1 and asks the user

which code addresses to apply secondary encryption to, such that when
the application decrypted and loaded by the Security Controller, that
segment is still encrypted. That program then encrypts that code segment
with the pass key and the card key.

17. Next, the Scilab program encrypts the entire program with the board key.
18. Steps 14-17 are repeated for the user APP2 program.
19. The Scilab program adds markers to APP1 and APP2 to locate them on

the SD card and it loads them onto the SD card.
20. A security index file is generated. To do this, the files loaded on the SD

card have to be located. This is accomplished with a very useful program
called HxD that allows direct access to drive data. Pointers to the files are
added to the security header file.

21. A signature of the encrypted files is made using the private key of the CA
skca. This is added to the security index file.

22. The security index file is inserted in a specific place on the SD card using
HxD.

23. The system is powered off and on and the SD card is inserted.
24. The system is programmed from Quartus. This programs the Security

Controller FPGA.
25. A terminal window is opened in the Eclipse IDE. A connection is made to

jtag_uart0.
26. System operation begins and is recorded as follows.

Figure 17 shows the complete system prior to start up. A laptop is connected via
USB to the device port on the DE2 Sub-Board. The system is booted and the

password, kpass, is entered; “x” demarks the start of the password:

x000f000f000f000f

Then the system runs the described system checks. No further user intervention
is needed to demonstrate the system.

 69

Figure 17. The Full System

Figure 17. Continued.

 70

The terminal informs the user of the status:

SC Starting..
..SC HASH 9bc6b732
Testing RAM, Sec Ram, Bridge..
Waiting for SD card..
Checking SD card..
..SD signature 1cf1d9b
..SD calculated signature 1cf1d9b
Enter Password: x000f000f000f000f
Setting sec policy..
Loading FPGA A..
Loading APP A..
Starting Processor A
Sec Ratchet 3 sent to USER
Board Hash 9bc6b732 sent to USER
User Requested Context Change
Stopping User Processor..
Loading FPGA B..
Loading APP B..
Starting User Processor..
Sec Ratchet 3 sent to USER
Board Hash 9bc6b732 sent to USER
User Requested Context Change
Stopping User Processor..
Loading FPGA A..
Loading APP A..
Starting User Processor..
Sec Ratchet 3 sent to USER
Board Hash 9bc6b732 sent to USER
User Requested Context Change
Stopping User Processor..
Loading FPGA B..
Loading APP B..
Starting User Processor..
Sec Ratchet 3 sent to USER
Board Hash 9bc6b732 sent to USER
User Requested Context Change
Stopping User Processor..
Loading FPGA A..
Loading APP A..
Starting User Processor..
Sec Ratchet 3 sent to USER
Board Hash 9bc6b732 sent to USER
User Requested Context Change
Stopping User Processor..
Loading FPGA B..
Loading APP B..
Starting User Processor..
Sec Ratchet 3 sent to USER
Board Hash 9bc6b732 sent to USER
User Requested Context Change
Stopping User Processor..

 71

“SC Starting” indicates the reset of the Security Controller Nios II. It then
performs a checksum on its program area and outputs the value. This value is
later checked by the user software. Next, the Security Controller performs system
checks. It clears the user RAM area and checks that it is clear. It checks that the
security RAM can be written to and read. It checks that the Security Bridge
registers work. It then requests an initialization from the SD card. After that, it
calculates the signature of the SD card data based on the system owner’s public
key. It checks this value against the one published on the SD card and halts if
there is a mismatch. It then waits for the user to enter the password. Following
that, it determines the user’s authorization level (1, 2, or 3) and sets the access
policy accordingly. Then it loads the first FPGA configuration. It loads the user
application 1 and allows the user processor to start. The user processor starts
and immediately requests the value of the security ratchet and checks it. It then
requests a checksum of the state of the board and checks this against the
expected value in its code. It then attempts three writes (not shown) to three
different addresses, which are at each security level (1, 2, and 3), and verifies
that it can write only to its level. It then requests FPGA configuration 2 and
application 2. The security controller loads them and restarts the processor. This
process repeats continuously to demonstrate the system.

The complete flow from Figure 14a through Figure 14c and Figure 16 can be
followed from this output.

Figure 18 shows the state of the board after the FPGA has been configured for
configuration 1 and application 1 is running. A green LED on the DE2 Sub-Board
is illuminated by the user FPGA as it has been configured and is operational. The

green LEDs on the bottom indicate 55h, which is commanded by the user
application 1.

Figure 19 shows the state of the board again, except after it has been configured
with the second FPGA configuration and the second user application. Now the
seven-segment LED on the DE2 Sub-Board is fully illuminated as this is the
output from FPGA configuration 2, and the LEDs on the bottom of the board

display A0h as commanded by the user Nios II second application.

Pushbutton 0 on the DE2 Sub-Board is pressed at various times to verify the
operation of the system under simulated tamper events. Repeated restarts still
cause the system to halt. It takes a reprogramming to clear the security ratchet:

Checking SD card..
SC Starting..

..SECURITY FAILURE: halting..
SC Starting..

..SECURITY FAILURE: halting..

 72

Figure 18. Configuration 1

Figure 19. Configuration 2

 73

Figure 20 shows the state of the DE2 Main Board after the simulated tamper

event. The green LEDs indicate 77h and this is a code from the Security
Controller when it is in a halt state.

The full system operation is simulated in ModelSim with minor changes. The SD
card is not simulated. Instead, information that it provides to the Security
Controller is inserted into the code directly by direct variable assignments. This
occurs when the simulation pre-compiler directive is defined. The user password
entry is forced to make the system simulate faster. Additionally, the switches are
forced to zero. The display of messages from the UART is inhibited to reduce the
number of cycles needed to simulate. The FPGA configuration is not simulated,
and as an extension of that, only one user application is simulated, but it provides
adequate opportunity to observe the operation of the system internals.

Figures 21a through 21c show the full operation of the system through a user
Nios II reconfigure command and a forced security fault. The organization is from
top to bottom: the Security Controller Nios II and its components start the figure,
then below is the User Nios II and its required components, and below that is the
User Bridge. Then the Security Bridges follows and connects to the user Ram
and Security RAM.

Starting at the top, the Security Controller Nios II instruction bus is accessed from
power up until the security fault occurs, at which point it resets. It is getting
instructions from ram_0, its nearby RAM. The Security Controller Nios II data bus
is accessing that RAM as well to access the stack and variables. Also, the data
bus is accessed to communicate with all of the security objects to initialize them.

Skipping past the local RAM, the User Nios II Reset Control is seen to command
resets as directed by the Security Controller. The brief logic 1 times are when the
User Nios II is commanded to reset. This occurs several times as the simulation
is allowed to run through several configuration cycles.

By looking at the user Nios II instruction bus, it can be seen where the user Nios
II comes out of reset and starts execution as commanded by the Security
Controller. Its instructions are coming from the user RAM through the User
Bridge and the Security Bridge. The user Nios II data bus also communicates
with the User Bridge to interact with the security objects through the Security
Bridge.

The User Bridge together with the Security Bridge serialize, transport, and
deserialize the user Nios II’s instruction and data bus and decide if the access is
allowed. The user RAM provides the application code to the user Nios II.

 74

Figure 20. Security Fault State

 75

Figure 21a. Full System Simulation with ModelSim

 76

Figure 21b. Full System Simulation with ModelSim

 77

Finally the security RAM, the User Bridge, and the Security Bridge secrets clear
on the reset. This can be seen at in Figure 21b where the stored data changes to
zeros and stay at zero.

6.2 Component Operation

This section details the cycle-level operation of the unique, key components of
the system.

6.2.1 User Bridge

The User Bridge simulations show the configuration of the bridge, the
serialization of the data crossing the bridge, and the encryption and decryption of
the data to and from the user Nios II.

Consider the execution of this segment of code that copies the pass key (alias:
blue key) from the security RAM to the User Bridge:

*SEC_BLUE_KEY1 = *USER_BLUE_KEY1;
 800120: 00c40074 movhi r3,4097
 800124: 18e42804 addi r3,r3,-28512
 800128: 00802074 movhi r2,129
 80012c: 10800017 ldw r2,0(r2)
 800130: 18800015 stw r2,0(r3)

Pointers are used extensively so that the keys are only referenced from the
designated locations that are cleared on reset. For the user Nios II to read the

first instruction at 800120h, it places this address on the instruction bus address
and asserts a read. Figure 22 shows this operation with all extraneous detail
removed. The Avalon fabric converts the global address, which is in bytes, to a

word address for the User Bridge slave, so the address is converted to 200048h.
The User Bridge serializes this and outputs it on its own master port, which
connects to the Security Bridge slave port (not shown.) The Security Bridge
accesses the instruction from user RAM, serializes it, and places it back on the
User Bridge’s master bus, on the readdata bus. The User Bridge de-serializes
the data and places it on its slave port readdata bus so the Avalon fabric can
take it. The User Bridges takes waitrequest low to indicate the data is ready. The
Avalon fabric transports the result to the Nios II instruction bus, where it appears
under readdata. The Avalon fabric takes the wait request for this transaction low
to tell the Nios II instruction that the data is ready. The cursor is placed at this

point, indicating that a read of 00C40074h is received by the Nios II, which is the
first instruction in this sequence. Figure 23 shows a write operation across the
User Bridge.

 78

Figure 22. User Nios II Instruction Read without Encryption

Figure 23. User Nios II Data Bus Write without Encryption

 79

In this case, the LEDs are written to:

*LEDs = 0x2;
 800110: 00c02034 movhi r3,128
 800114: 18d02c04 addi r3,r3,16560
 800118: 00800084 movi r2,2
 80011c: 18800015 stw r2,0(r3)

The write takes place at instruction 80011ch and the data value to be written is

2h. This write originates from the user Nios II data bus instead of the instruction
bus, and this 2h is seen on the data bus with the address bus indicating
8040b0h, which is where the LEDs are located. A similar process to the read
operation occurs. The request is serialized and sent to the Security Bridge
master port and the system does not continue until the wait request propagates
from the Security Bridge, through the User Bridge, back to the user Nios II.

Figure 24 and Figure 25 show how data crossing the User Bridge is encrypted
and decrypted according to Figure 5. The data is encrypted with a composite
pass and card key. The difference between this operation and the operations in
Figure 22 and Figure 23 is that the User Bridge has been commanded to encrypt
the data. This allows the user application to selectively run encrypted code
segments and to selectively encrypt data that is stored in RAM, without any
additional processor interaction. During compilation, the following code segment
is marked as encrypted and is encrypted by Scilab with the pass key and the
card key:

 *RAMt0 = 0xace0ace0;
 80018c: 00c02034 movhi r3,128
 800190: 18c26304 addi r3,r3,2444
 800194: 00ab3874 movhi r2,44257
 800198: 10ab3804 addi r2,r2,-21280
 80019c: 18800015 stw r2,0(r3)
 a = *RAMt0;
 8001a0: 00802034 movhi r2,128
 8001a4: 10826304 addi r2,r2,2444
 8001a8: 10800017 ldw r2,0(r2)
 8001ac: e0bfff15 stw r2,-4(fp)
 *SEC_CRYPTO_ENABLE = 0;
 8001b0: 00840074 movhi r2,4097
 8001b4: 10a42c04 addi r2,r2,-28496
 8001b8: 10000015 stw zero,0(r2)

RAMt0 is a location in user RAM that is allowed by the access policy. This code
segment simply writes and reads a test word to RAMt0 then disables the User
Bridge Encryption. The code to enable the encryption is not shown, as it is not
encrypted.

 80

Figure 24. User Nios II Encrypted Instruction Read

Figure 25. User Nios II Encrypted Data Write

 81

The first encrypted instruction retrieved is 80018c: 00c02034 movhi r3,128. Figure
24 shows 00c0234h being received by the User Nios II instruction bus. The
cursor is located on the reception of the wait request clear so that the returned

value is displayed in the table. However, the user RAM value at 80018ch is

0dec277ch. The User Bridge has performed this transformation on the data as it
crossed:

Dec(Inst , kpass[47:44] , kcard[47:44] , kpass[43:40] , kcard[43:40] , kpass[7:4] , kcard[7:4] ,
kpass[3:0] , kcard[3:0]), where Inst is 00c02034h,

kpass is 000f000f000f000fh, and kcard is 0ABCDEF012345678h.

An encrypted write is shown in Figure 25. Here 80019c: 18800015 stwr2,0 (r3) is
executed. The write is to 80098ch with data ace0ace0h. This is encrypted to

a1eeab18h as can be seen at the bottom of Figure 25. The User Bridge is
configured by the user Nios II. Figure 26 shows the configuration in process. The
pass key, upper and lower, has been filled in (shown as blue_key). The card key
upper half is also filled in (shown as green_key). The current operation is writing

the lower half of the card key, 0abcedf0h.

6.2.2 Security Bridge

As with the User Bridge, the Security Bridge also has a slave port that allows its
internals to be configured during run-time. In this case, the configuration is under
control of the Security Controller Nios II instead of the user Nios II. Refer to
Figure 27. The board keys are constants and can only be read. The next ten
registers set what addresses are allowed to be accessed and their names are
explanatory. Note the correlation with Table 5. The security ratchet can be seen
incrementing from zero to three. Note that the registers in the Security Bridge are
written to twice, with the final value being the correct configuration. The first set
of write and reads is due to a software check on initialization that confirms that
the registers are operational.

Next, consider this segment of code that illustrates the operation of the Security
Bridge serialization, de-serialization, and access control functions.

*RAMt0 = 0xace0ace0;
 80018c: 00c02034 movhi r3,128
 800190: 18c26304 addi r3,r3,2444
 800194: 00ab3874 movhi r2,44257
 800198: 10ab3804 addi r2,r2,-21280
 80019c: 18800015 stw r2,0(r3)
 A = *RAMt0;
 8001a0: 00802034 movhi r2,128
 8001a4: 10826304 addi r2,r2,2444

 82

Figure 26: Configuring the User Bridge

Figure 27: Configuring the Security Bridge

 83

 8001a8: 10800017 ldw r2,0(r2) See Figure 29.
 8001ac: e0bfff15 stw r2,-4(fp)
 *SEC_CRYPTO_ENABLE = 0;
 8001b0: 00840074 movhi r2,4097
 8001b4: 10a42c04 addi r2,r2,-28496
 8001b8: 10000015 stw zero,0(r2)
 if (a != 0xace0ace0)
 8001bc: e0ffff17 ldw r3,-4(fp)
 8001c0: 00ab3874 movhi r2,44257
 8001c4: 10ab3804 addi r2,r2,-21280
 8001c8: 18800126 beq r3,r2,8001d0 <main+0x114>
 halt();
 8001cc: 080003c0 call 80003c <halt>
 *RAMt1 = 0xace1ace1;
 8001e0: 00c02034 movhi r3,128
 8001e4: 18c26404 addi r3,r3,2448
 8001e8: 00ab38b4 movhi r2,44258
 8001ec: 10ab3844 addi r2,r2,-21279
 8001f0: 18800015 stw r2,0(r3) See Figure 30.
 a = *RAMt1;
 8001f4: 00802034 movhi r2,128
 8001f8: 10826404 addi r2,r2,2448
 8001fc: 10800017 ldw r2,0(r2) See Figure 31.

 800200: e0bfff15 stw r2,-4(fp)
 if (a != 0x0)
 800204: e0bfff17 ldw r2,-4(fp)
 800208: 1005003a cmpeq r2,r2,zero
 80020c: 1000011e bne r2,zero,800214 <main+0x158>
 halt();
 800210: 080003c0 call 80003c <halt>
 *RAMt2 = 0xace2ace2;
 800224: 00c02034 movhi r3,128
 800228: 18c26504 addi r3,r3,2452
 80022c: 00ab38f4 movhi r2,44259
 800230: 10ab3884 addi r2,r2,-21278
 800234: 18800015 stw r2,0(r3) See Figure 32.

 a = *RAMt2;
 800238: 00802034 movhi r2,128
 80023c: 10826504 addi r2,r2,2452
 800240: 10800017 ldw r2,0(r2) See Figure 33.
 800244: e0bfff15 stw r2,-4(fp)
 if (a != 0x0)
 800248: e0bfff17 ldw r2,-4(fp)
 80024c: 1005003a cmpeq r2,r2,zero
 800250: 1000011e bne r2,zero,800258 <main+0x19c>
 halt();

This user code attempts to write three different test words to three different
addresses and it also attempts to read them back (Figure 28-33). The first
address is allowed by the access control policy and the last two are not.

 84

Figure 28: Access Control Test 1 Write

Figure 29: Access Control Test 1 Read

 85

Figure 30: Access Control Test 2 Write

Figure 31: Access Control Test 2 Read

 86

Figure 32. Access Control Test 3 Write

Figure 33. Access Control Test 3 Read

 87

Since this is a demonstration test program, the user Nios II checks that it
succeeded with the first operation and that it failed with the next two. The
Security Controller ignores invalid access requests and returns zeros for any
read data.

In addition, serialization and de-serialization of the data crossing the Security
Bridge can be observed in Figures 28-33. Of particular interest is the signal
address_allowed. It is the output of a complex logic function in the Security
Bridge that evaluates the address requested on each cycle and determines if it is
allowed or not. This evaluation is a continuous-class Verilog statement and does
not require registering to wait for the next cycle.

Next, operation of the Security Bridge is tested when the security level is

increased to level 2. Instructions 80019c, 8001f0, and 800234 are attempted
again. This time, as expected with the access control policy, only the second
write/read attempt is allowed. Figures 34-36 show the write operations.
It can be see that test 1 and test 3 have their access attempts rejected.

This process is repeated for level 3. It is verified that only the third test word is
allowed to be accessed.

6.2.3 Secure RAM

The Secure RAM is shared between the Security Controller and the User Bridge
and allows them to communicate directly. Execution of the custom Verilog to
implement this memory is shown in Figure 37. The pass key and the card key are
filled in. The user application has requested a checksum of the DE2 Main Board
and this is filled in. The user has also requested a reconfiguration operation.

6.3 Secrecy

Figure 38 shows zeroing of the secrets contained on the DE2 Main Board when a
tamper event is detected. All keys except the hard-coded board keys are cleared.
The security ratchet remains at three as required.

 88

Figure 34. Access Control Test 1, Level 2

Figure 35. Access Control Test 2, Level 2

 89

Figure 36. Access Control Test 3, Level 2

Figure 37. Security RAM Operation

 90

Figure 38. Clearing of Secrets on a Tamper Event

 91

6.4 Authentication

Authentication of the user to the DE2 Main Board is described in section 5.1. The
DE2 Main Board accepts the user’s pass key from the input terminal and then
performs a checksum on it. This checksum is compared to the decrypted
checksum from the key card. The system is tested with a bad password and
shown to halt:

SC Starting..
..SC HASH 9bc6b732
Testing RAM, Sec Ram, Bridge..
Waiting for SD card..
Checking SD card..
..SD signature 1cf1d9b
..SD calculated signature 1cf1d9b
Enter Password: ght6yj

The second authentication that takes place is the checking that the SD card is
signed correctly:

SC Starting..
..SC HASH 9bc6b732
Testing RAM, Sec Ram, Bridge..
Waiting for SD card..
Checking SD card..
..SD signature 1cf1d9b
..SD calculated signature 1cf1daa
..SECURITY FAILURE: halting..

In this case, the security level file is altered:

correct: (startofseclevel)AAA8AAA8AAA8AAA9(endofseclevel)
altered:(startofseclevel)0AA8AAA8AAA8AAA9(endofseclevel)

Note that the signature from the SD card does not match the calculated signature
value.

The third authentication is the DE2 Board to the user. This takes place by a
checksum of the board that is represented by a checksum of the Security
Controller RAM and the state of the DE2 Switches. It is tested by turning on a
switch and verifying that that user application halts. This test is completed
successfully:

Board Hash 9bc6b733 sent to USER

 92

This value is one more that the correct hash as switch 1 is in the on position. The
system halts in an error state according to the user application, which is to

indicate 7h on the LEDs.

 93

CHAPTER 7
REVIEW AND IMPROVEMENTS

The system described in this thesis meets the design goals in chapter 3. Loss of
one part of the cryptosystem, be it the key card, the password, or the DE2 Main
Board does not provide an adversary with any information about the key used to
encrypt the data in his possession. For the cryptosystem, template functions
model ciphers to first order; it is necessary to use cipher-block-chaining.
Encrypted code execution is modeled to first order as it is in the electronic code
book mode only. Encrypt-then-sign is approximated with the template function.
The role based access system is shown clearly through many examples and
allows real-time changes to the cycle-level access of the user processor. The
secure boot process is demonstrated by the immutable security ratchet counter
and attestation of the board state to the user processor. Encrypted data storage
and retrieval is shown to be transparent to the user processor once the user
processor indicates that the data should be encrypted. The system secrets are
shown to clear on a detected tamper event. A first order description of a
deployment model is made, in that a system of tools and programs using Scilab
are created to act as the toolset that the system owners would use to generate
the user files and load them on a key card. Reconfiguration of hardware is
demonstrated by two user FPGA configurations, which are initiated as requested
by the user application. More specific results in attempting the goals listed in
Chapter 2 follow:

 Hardware-enforced RBAC: the user software is shown to have its access
to the system limited by the Security Controller based on the
predetermined security level. The access control is shown to occur on a
cycle-by-cycle basis and can be changed by the Security Controller at any
time. This suggests that the system could be extended in an interesting
way to work with a compiler system to enforce proper flow control [48].
The user is shown to have to have the key card and the password and this
forms a two-part authentication for access. The access policy is shown to
be a simple matrix that allows for both overlapping permissions and
exclusive permission as it allows entry for every subject versus every
object. Software attacks by knowledge insiders would require some type
of access violation (this is presupposed by this thesis in that users are
granted access to objects or denied access; no checking of the meaning
of the communication between the user and the object is checked). The
enforcement mechanism is shown to reject the attempted invalid address
attempts, so there is no known access control violation.

 Reconfiguration: simple FPGA reconfiguration from a signed, encrypted
configuration file residing on the key card is shown. This is interesting in
that the key card can be removed before deployment to the field, as long
as the user code does not request a context change. This is because the

 94

key card is only used for configuration and can be removed once that is
completed. In that mode, a tamper event could clear the entire FPGA and
the adversary would have no information about the FPGA. This can be
considered in this thesis by assuming a tamper event turns off FPGA
power. This concept suggests many useful applications, especially
concerning mobile platforms that start in a secure place then leave that
place to perform some function.

 Context switching: The system is shown to be able to verify, decrypt, load,
and execute two different contexts, with the user code being able to
request a context change while running.

 Computation: The system is shown to employ a basic 32-bit
microprocessor.

 Secrecy: Consider the threat model in Chapter 3 and Table 3.
o If the adversary gets the DE2 board while it is running, a tamper

event clears the pass key and the card key. All keys could be
cleared if the system is implemented with a battery-backed RAM as
with the IBM 4758 and IBM 4764. The data on the DE2 is stored (at
the user’s discretion) with the pass key and the card key. In that
manner, it is encrypted as strongly as the cryptosystem allows.

o If the key card is recovered, the adversary reads it but it is signed
and encrypted with the public key for the board, so that data is
encrypted as strongly as the cryptosystem allows. Changing the
card requires forging the CA signature, which is designed by the
cryptosystem to be hard.

o Recovering the key card and the DE2 board gives the adversary all
of the information on the key card as the board secret key is
compromised. This is the FPGA files, the application files, the
security level file, the card key file, and the password hash file.
However, data that the user wishes to have secondary encryption
applied to is encrypted still with the pass key half. It is reviewed that
changing the system from concatenating the card key with the pass
key to performing the exclusive-or mixing of them would leave the
data fully encrypted, but with the concatenation scheme, the
number of bits is halved.

o Recovering the password and the DE2 board gives the adversary
the board secret key. However, the user data is encrypted with the
key card key and the pass key. Again, possessing the pass key
reduces the security parameter bits by half for the concatenated
key system used in this thesis, but an exclusive-or implementation
would leave the data fully encrypted.

 Trust: The system models a secure boot in that it performs system tests at
start up and halts on a problem and it performs a measurement of the
system and can provide that to the user application on demand. It employs
a monotonic counter than can only be reset by a full system power-off and
reprogramming.

 95

 SoPC: The system is designed on a highly configurable system-on-
programmable-chip fabric.

 Tamper reaction: Tamper reaction is shown to clear the secrets on the
DE2 board. The SD card does not employ tamper reaction, but certainly
could in an active token design. In addition, by inspection it can be said
that the FPGA power switch is the tamper switch, in which case all
information about the FPGA and user applications is cleared. The only
remaining data would be data stored by the user in a flash memory (not
implemented, but modeled). This data would be fully encrypted with the
card key and the pass key.

 Authentication: To use the system, the user is demonstrated to have to
use the key card and the password. The Security Controller is shown to
attest its configuration to the user software, which can decide if it is
acceptable or not. The system is shown to be assured of the identity of the
key card in as much as the signature cryptosystem is secure.

 User-initiated data secrecy: The system is shown to allow the user to
apply secondary encryption to instruction and data using the pass key and
the card key. In this manner, the encryption of the user data is separate
from the board key, whose purpose is to receive configuration information
from the key card. The system is shown to allow the user software to
enable or disable this encryption function at any time.

 Deployment: A simple model for system deployment is provided including
how encrypted data gets to the system and its source. In addition, the
expectation of the system is noted in the threat model presented.

To best use the concepts presented in this thesis, the following
recommendations are made:

1. Change the system to a single-chip solution to increase speed.
2. In the single-chip solution, use wide serial buses to connect the User

Bridge to the Security Bridge and remove the SERDES.
3. Redesign the User Bridge so that the toolset can understand that it is a

bridge to secondary peripherals, or use an SoPC system that recognizes
this.

4. Create custom applications to automatically generate and encrypt the files
and to load them to the key card.

5. Make the key card active and have its secrets zero on tamper. Also, make
it respond to command-response tests for identification.

6. Possibly use biometrics for identification.
7. Enable the use of interrupts and other full-processor features.
8. Use a development platform that has up-to-date IP already made for the

peripherals instead of one that does not.
9. Expand the number and types of peripherals available to the user.
10. Use a stream cipher for instruction encryption.
11. Provide a tamper-detecting enclosure.

 96

12. Use as many bits as possible for the encryption system.
13. Allow for system updates.
14. Allow for a full operating system.
15. Tag information with level numbers and control the information flow.
16. Create a compiler system that can take advantage of hardware that allows

dynamic access control to increase security.
17. Allow programs to be stored in flash.
18. Increase the number of levels to four: unclassified, classified, secret, top

secret.
19. Use a more powerful processor.
20. Increase the signature length.
21. Clear the FPGA configuration on a tamper event.
22. Change the checksum to a cryptographic hash.

 97

LIST OF REFERENCES

 98

[1] J. K. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles
and Protocols, Chapman and Hall/CRC, 2007.

[2] F. Bauer, "Cryptology," Encyclopedia of Cryptology and Security, p. 118,
2005.

[3] F. L. Bauer, "Cryptanalysis," Encyclopedia of Cryptology and Security, pp.
113-114, 2005.

[4] C. E. Shannon, "Communication theory and secrecy systems," Bell Systems
Technical Journal, vol. 28, pp. 656-715, 1949.

[5] F. L. Bauer, "Encryption," Encyclopedia of Cryptology and Security, p. 202,
2005.

[6] H. van Tilborg, "Shannon's Model," Encyclopedia of Cryptography and
Security, p. 568, 2005.

[7] F. Bauer, "Cryptosystem," Encyclopedia of Cryptology and Security, p. 119,
2005.

[8] L. R. Knudsen, "Block Ciphers," Encyclopedia of Cryptology and Security,
pp. 41-46, 2005.

[9] K. Sako, "Public Key Cryptography," Encyclopedia of Cryptology and
Security, pp. 487-488, 2005.

[10] B. Preneel, "Modes of Operation of a Block Cipher," Encyclopedia of
Cryptology and Security, p. 386, 2005.

[11] J. Daemen and V. Rijmen, "Rijndael / AES," Encyclopedia of Cryptology and
Security, pp. 520-524, 2005.

[12] A. Biryukov and C. De Canniere, "Data Encryption Standard," Encyclopedia
of Cryptology and Security, pp. 129-134, 2005.

[13] A. Canteaut, "Stream Cipher," Encyclopedia of Cryptology and Security, pp.
596-597, 2005.

[14] A. Canteaut, "A5/1," Encyclopedia of Cryptology and Security, p. 1, 2005.

[15] C. Adams, "Replay Attack," Encyclopedia of Cryptology and Security, p. 519,
2005.

[16] B. Preneel, "Hash Functions," Encyclopedia of Cryptology and Security, pp.
257-264, 2005.

[17] B. Preneel, "MAC Algorithms," Encyclopedia of Cryptology and Security, pp.
361-368, 2005.

[18] J. Black, "Authenticated Encryption," Encyclopedia of Cryptology and
Security, pp. 11-20, 2005.

[19] J. An, Y. Dodis and T. Rabin, "On the Security of Joint Signature and
Encryption," 2002.

[20] M. Just, "Challenge-Response Identification," Encyclopedia of Cryptology
and Security, pp. 73-74, 2005.

 99

[21] R. Zuccherato, "Identity Verification Protocol," Encyclopedia of Cryptology
and Security, pp. 285-286, 2005.

[22] R. Zuccherato, "Entity Authentication," Encyclopedia of Cryptology and
Security, p. 203, 2005.

[23] A. Jain and A. Ross, "Biometrics," Encyclopedia of Cryptology and Security,
pp. 34-36, 2005.

[24] G. Brose, "Access Control," Encyclopedia of Cryptology and Security, pp. 2-
6, 2005.

[25] C. Adams, "Authorization Architecture," Encyclopedia of Cryptology and
Security, pp. 23-27, 2005.

[26] S. W. Smith, Trusted Computing Platforms: Design and Applications, Boston:
Springer Science + Business Media, Inc., 2005.

[27] M. Wiener, "Exhaustive Key Search," Encyclopedia of Cryptology and
Security, pp. 206-209, 2005.

[28] C. Adams, "Dictionary Attack I," Encyclopedia of Cryptology and Security, p.
147, 2005.

[29] E. Cronin, "Denial of Service," Encyclopedia of Cryptology and Security, pp.
143-144, 2005.

[30] A. Biryukov, "Code Book Attack," Encyclopedia of Cryptology and Security,
p. 80, 2005.

[31] Y. Desmedt, "Man-in-the-Middle Attack," Encyclopedia of Cryptology and
Security, p. 368, 2005.

[32] C. Adams, "Impersonation Attack," Encyclopedia of Cryptography and
Security, p. 286, 2005.

[33] A. Biryukov, "Adaptively Chosen Ciphertext Attack," Encyclopedia of
Cryptology and Security, p. 7, 2005.

[34] A. Biryukov, "Adaptive Chosen Plaintext Attack," Encyclopedia of
Cryptography and Security, p. 8, 2005.

[35] A. Biryukov, "Adaptive Chosen Plaintext and Chosen Ciphertext,"
Encyclopedia of Cryptography and Security, p. 7, 2005.

[36] A. Biryukov and C. De Canniere, "Linear Cryptanalysis for Block Ciphers,"
Encyclopedia of Cryptology and Security, pp. 351-353, 2005.

[37] E. Biham, "Differential Cryptanalysis," Encyclopedia of Cryptology and
Security, pp. 147-148, 2005.

[38] J.-J. Quisquater and S. David, "Electromagnetic Attack," Encyclopedia of
Cryptology and Security, pp. 170-172, 2005.

[39] O. Benoit, "Fault Attack," Encyclopedia of Cryptology and Security, pp. 218-
219, 2005.

[40] M. Kuhn, "Data Remanence," Encyclopedia of Cryptology and Security, p.
135, 2005.

 100

[41] Altera, Cyclone II Device Handbook, Volume I, San Jose, CA, 2008.

[42] Altera, Quartus II Handbook Version 13, San Jose: 2013.

[43] Altera, Cyclone III Device Handbook, San Jose, 2012.

[44] R. Sandhu, E. Coyne, H. Feinstein and C. Youman, "Role-Based Access
Control Modes," IEEE Computer, vol. 29, no. 2, pp. 38-47, 1996.

[45] D. Ferraiolo and D. Kuhn, "Role Based Access Control," in 15th National
Computer Security Conference, Baltimore, 1992.

[46] NIST, "Role Based Access Control - Frequently Asked Questions," [Online].
Available: http://csrc.nist.gov/groups/SNS/rbac/faq.html. [Accessed 11 July
2013].

[47] R. Sandhu, E. Coyne, H. Feinstein and C. Youman, "Role-Based Access
Control: A Multi-Dimensional View*".

[48] J. Franklin, S. Chaki, A. Datta, M. J. McCune and A. Vasudevan, "Parametric
Verification of Address Space Separation".

[49] K. Zhang, T. Zhang and S. Pande, "Memory Protection through Dynamic
Access Control".

[50] Z. Zhou, V. Gilgor, J. Newsome and J. McCune, "Building Verifiable Trusted
Path on Commodity x86 Computers".

[51] A. Triulzi, "The Jedi Packet takes over the Deathstar, taking NIC backdoor to
the next level.," in The 12th Annual CanSec West Conference, 2010.

[52] ARM, ARM Security Technology: Building a Secure System using TrustZone
Technology, 2009.

[53] M. Gasser, A. Goldstein, C. Kaufman and B. Lampson, "The Digital
Distributed System Security Architecture," in Proceedings of the National
Computer Security Conference, 1989.

[54] A. Martin, "The ten-page introduction to Trusted Computing," 2008.

[55] B. Glas, A. Klimm, K. Muller-Glaser and J. Becker, "Configuration
Measurement for FPGA-based Trusted Platforms," 2009.

[56] B. Parno, J. McCune and A. Perrig, "Bootstraping Trust in Commodity
Computers".

[57] B. Glas, A. Klimm, D. Schwab, K. Muller-Glaser and J. Becker, "A prototype
of trusted platform functionality on reconfigurable hardware for bitstream
updates," 2008.

[58] T. Caddy, "FIPS 140-2," Encyclopedia of Cryptology and Security, pp. 227-
230, 2005.

[59] IBM, "IBM 4764 PCI-X Cryptographic Coprocessor," [Online]. Available:
http://www-03.ibm.com/security/cryptocards/pcixcc/overhardware.shtml.
[Accessed 15 July 2013].

[60] P. Chu, Embedded SoPC Design with Nios II Processor and Verilog
Examples, Wiley, 2012.

 101

[61] P. Chu, FPGA Prototyping by Verilog Examples, Wiley, 2008.

[62] Altera, Avalon Interface Specifications, San Jose, CA, 2013.

[63] Mentor Graphics, "ModelSim PE," [Online]. Available:
http://modelsim.s3.amazonaws.com/modelsim-pe-datasheet.pdf. [Accessed
25 July 2013].

[64] Altera, "Nios II Processor: The World's Most Versatile Embedded
Processor," [Online]. Available:
http://www.altera.com/devices/processor/nios2/ni2-index.html. [Accessed 25
July 2013].

[65] IEEE, "1149.7-2009 - IEEE Standard for Reduced-Pin and Enhanced-
Functionality Test Access Port and Boundary-Scan Architecture," 2010.

[66] SanDisk, "SanDisk SD and SDHC Cards," [Online]. Available:
http://www.sandisk.com/products/memory-cards/sd/standard-
class4/?capacity=2GB. [Accessed 25 July 2013].

[67] MH- Nexus, "HxD - Freeware Hex Editor and Disk Editor," [Online].
Available: http://mh-nexus.de/en/hxd/. [Accessed 25 July 2013].

[68] L. Jasio, Programming 32-bit Microcontrollers in C: Exploring the PIC32,
Newnes, 2008.

[69] Eclipse, "Eclipse," [Online]. Available: http://www.eclipse.org/. [Accessed 25
July 2013].

[71] G. Kabatiansky and B. Smeets, "Authentication," Encyclopedia of Cryptology
and Security, pp. 21-22, 2005.

[72] F. Bauer, Encyclopedia of Cryptography and Security, 2005.

 102

VITA

William Collins graduated from the University of Tennessee, Knoxville with a
BSEE in 1999 and has developed applications across military, industrial, and
research domains employing digital, analog, and power systems design.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2013

	A Secure Reconfigurable System-On-Programmable-Chip Computer System
	William Herbert Collins
	Recommended Citation

	tmp.1375396073.pdf.2dIDi

