

Juha Arvio

Augmenting IP blocks for verification and

optimization

Master of Science Thesis

Examiners: Dr. Tech. Erno Salminen

Prof. Timo D. Hämäläinen

Subject approved by Faculty of

Computing and Electrical Engineering

Council meeting on 04.04.2012

Tiivistelmä ii

Tiivistelmä

TAMPEREEN TEKNILLINEN YLIOPISTO

Sähkötekniikan koulutusohjelma

Arvio, Juha: Augmenting IP blocks for verification and optimization

Pääaine: Digitaali- ja tietokonetekniikka

Diplomityö, 79 sivua

Tarkastajat: Tek. Toht. Erno Salminen, Prof. Timo D. Hämäläinen

Avainsanat: Metadata, verifiointi, optimointi

Helmikuu 2012

Digitaalisten IP-lohkojen verifiointi on aina ollut haasteellista. Modelsimin kaltaisilla

softasimulaattoreilla voidaan verifioida aika perusteellisesti yksinkertaiset lohkot, joihin löytyy

suoraviivaiset testisyötteet. Valitettavasti monimutkaisten järjestelmäpiirien simulointi

softasimulaattorilla voi kestää päiviä ellei viikkoja. Lisäksi jokaiselle lohkolle, tarkasteltavassa

järjestelmäpiirissä, on löydyttävä toimiva simulointimalli. Nykyaikaisia ohjelmoitavia FPGA-

piirejä voidaan kylläkin monitoroida reaaliaikaisesti Alteran Signal Tap II:n tapaisilla työkaluilla,

mutta tämän kaltaisilla työkaluilla voidaan monitoroida vain pieniä määriä signaaleja lyhyellä

aikavälillä.

IP-informaatiorekisterit (IIR) luotiin ylittämään nämä esteet. Näitä rekistereitä käytetään

tallentamaan tietoa jota saadaan IP-lohkoista sekä järjestelmäpiireistä kokonaisuutena. Tämä

tieto voi olla joko staattista tai dynaamista, toisin sanoen se on luotu joko ennen

järjestelmäpiirin käyttämistä oikealla alustalla tai sen aikana. Tätä tietoa voidaan käyttää

moneen tarkoitukseen, kuten yksittäisten IP-lohkojen ja kokonaisten järjestelmäpiirien

verifiointiin.

Tämän työn esimerkkitapauksessa on kolme osaa joissa tutkitaan tarkemmin kolmea näistä

tarkoituksista Terasicin toisen sukupolven kehitys- ja opetuskäyttöön tarkoitetulla FPGA-kortilla.

Tähän fyysiseen alustaan integroitiin kaksi järjestelmää. Ensimmäiseen kaksiuloitteiseen

grafiikkajärjestelmään lisättiin informaatiorekistereitä jotka keräsivät siitä tietoa. Toinen

järjestelmä taas keräsi tämän tiedon ja välitti sen eteenpäin.

Rekistereiden staattista käyttöä identifioimiseen tutkittiin esimerkkitapauksen ensimmäisessä

osassa. Toinen ja kolmas osa hyödynnettiin rekistereiden dynaamisen puolen tutkimiseen

tarkastelemalla niiden käyttöä verifioinnissa ja optimoinnissa. Jokainen näistä eri puolista

paljastui hyväksi lisäavuksi digitaalisten piirien suunnitteluun.

Abstract iii

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Electrical Engineering

Arvio, Juha: Augmenting IP blocks for verification and optimization

Major: Digital- and Computer Systems

Master of Science Thesis, 79 pages

Examiners: Dr. Tech Erno Salminen, Prof. Timo D. Hämäläinen

Keywords: Metadata, verification, optimization

February 2012

The verification of digital intellectual property (IP) blocks has always been a challenge. Simple

IP blocks with straightforward test inputs, can be quite thoroughly verified with software

simulators such as Modelsim. But the verification of a complex System-on-Chip (SoC) on a

software simulator can last days or even weeks, and that assumes that every IP on the SoC

has a working simulation model. Although modern programmable chips can be monitored in

real time with tools like Altera’s Signaltap II, they still only offer monitoring capabilities for a

limited amount of signals and for a limited amount of time.

To overcome this deficiency, IP information registers (IIR) were developed for this thesis. These

registers are used to store information pertaining to the IPs and the SoC as a whole. The

information can be static or dynamic, ie. generated before or during run-time . The information

itself can be used for many different purposes along with the verification of single IPs or whole

SoCs.

The case study in this thesis has three parts where three of those purposes are examined with

Terasic’s second generation development and education (DE2) board. This physical platform

was fitted with two systems, a 2D graphics system embedded with information registers and a

system to monitor the first one using these registers.

The first part examined the identification aspects with static information whereas the second

and third part examined the dynamic aspects of the information registers with their verification

and optimization capabilities. Each of these aspects was deemed to offer a good service for

developers designing digital circuits.

Preface iv

Preface

This Master of Science thesis was written at the Department of Computer Systems, Tampere

University of Technology. The work for this thesis was partly done for the Funbase project

which was funded by TEKES, and spanned from spring 2010 to spring 2012.

I would like to thank all my co-workers for providing a good working environment. Specifically

two persons gave me valuable advice on completing this thesis. These two were Dr. Tech. Erno

Salminen and Dr. Tech Timo Hämäläinen.

Tampere, February 28, 2012

Juha Arvio

Multiojankatu 28 D 29

33850 Tampere

Finland

Contents v

Contents

1. Introduction ... 1

2. Metadata ... 4

2.1. Requirements from/to IP vendors ... 4

2.2. Design time information .. 4

2.3. Run time information ... 5

3. System-on-Chip design flow .. 6

3.1. FunBase SoC design flow .. 6

3.1.1. Design tools ... 7

3.1.2. Hardware integration flow .. 9

3.1.3. Software integration flow .. 11

3.2. FunBase hardware platform ... 12

3.3. Altera tools used in FunBase .. 13

3.4. Third party tools used in FunBase .. 17

3.5. Third party IPs used in FunBase ... 17

3.6. Improving the integration of Altera tools to FunBase .. 17

3.6.1. SOPC builder integration approach one .. 19

3.6.2. SOPC builder integration approach two .. 19

3.6.3. SOPC builder integration approach three.. 20

3.6.4. SOPC builder integration conclusion ... 20

3.7. FunBase case study .. 20

3.7.1. Image residual with different hardware architectures .. 21

4. IP information registers .. 23

4.1. Verification and optimization flow ... 25

4.2. Resources ... 25

4.2.1. Register and interconnection types ... 26

4.2.2. General information registers ... 27

4.2.3. Optional information registers .. 29

4.3. Supporting IP blocks ... 30

Contents vi

4.3.1. Data gathering unit .. 30

4.3.2. Data transfer unit .. 30

4.3.3. Temporary data memory ... 31

4.3.4. System IIR .. 31

4.3.5. IP monitor .. 31

5. Basics of computer graphics ... 33

5.1. Color information ... 34

5.2. Image buffers ... 34

5.3. 2D graphics elements ... 35

5.3.1. Sprites .. 35

5.3.2. Tiles .. 36

5.4. Graphics memory, etc. ... 36

5.5. Video signals ... 37

6. IP information register case study .. 39

6.1. Test setup hardware... 40

6.1.1. DE2 board .. 40

6.1.2. Samsung SyncMaster 957MB monitor .. 41

6.2. Altera IPs used in the test setup ... 41

6.2.1. Nios II processor .. 41

6.2.2. SDRAM controller .. 42

6.2.3. FLASH controller .. 42

6.3. IPs designed for the test setup ... 42

6.3.1. Nios II monitor ... 42

6.3.1.1. Log registers .. 43

6.3.2. XD GPU .. 45

6.3.3. SRAM controller... 46

6.4. Test setup software .. 47

6.5. Examining IP information register usages .. 48

6.5.1. Scanning for IIR enabled IP blocks ... 49

6.5.2. Determining memory related timing problems ... 50

Contents vii

6.5.3. Verifying SRAM timings ... 51

6.5.4. Sharing an external memory ... 54

6.5.5. Acquiring usage patterns for the shared SRAM .. 55

6.5.6. Optimizing the use of the shared SRAM .. 59

7. Conclusions ... 60

7.1. HDL files .. 61

7.2. Hardware resource usage .. 62

7.3. Software files .. 64

List of figures viii

List of figures

Figure 1.1 - Simplified structure of a SoC ... 1

Figure 1.2 - Structure of an FPGA chip ... 2

Figure 3.1 - FunBase SoC design flow ... 7

Figure 3.2 - Kactus tool ... 8

Figure 3.3 - KoskiGUI tool ... 9

Figure 3.4 - Hardware integration flow .. 10

Figure 3.5 - Software integration flow ... 11

Figure 3.6 - FunBase hardware platform .. 13

Figure 3.7 - SOPC builder ... 14

Figure 3.8 - Quartus II EDA tool configuration .. 15

Figure 3.9 - Quartus II ... 16

Figure 3.10 - Improving the integration of the SOPC builder to the Kactus tool 18

Figure 3.11 - Calculation of a residual from two images ... 21

Figure 3.12 - Image residual with different hardware architectures .. 21

Figure 4.1 - IP block with embedded information registers ... 24

Figure 4.2 - A test setup with IP information registers .. 24

Figure 4.3 - Verification and optimization flow with IP information registers 25

Figure 4.4 - IP information registers in IP block’s memory space ... 27

Figure 5.1 - Image generation methods .. 33

Figure 5.2 - Example of a 4-bit color palette ... 34

Figure 5.3 - A character made of 8x8 sprites .. 36

Figure 5.4 - A 16x10 tile array made of 16x16 tiles .. 36

Figure 5.5 - Image displayed on a CRT monitor ... 37

Figure 5.6 - Monochrome video signals .. 38

Figure 6.1 - Case study test setup .. 39

Figure 6.2 - DE2 development and education board .. 41

Figure 6.3 - Screenshot of XD GPU demo .. 48

Figure 6.4 - Case study part 1 printout.. 50

Figure 6.5 - Monitoring the Nios II CPU .. 52

Figure 6.6 - GPU and CPU memory usage pattern, GPU has top priority 54

Figure 6.7 - XD GPU IP information register connections .. 55

Figure 6.8 - CPU and GPU memory usage pattern, GPU has top priority 58

Figure 6.9 - Arbitrating access times ... 59

Figure 7.1 - Resource usage for the IIR blocks on the left, monitoring CPU, etc. on the right ... 64

List of tables ix

List of tables

Table 4.1 - IP information register types ... 26

Table 4.2 - General information register layout ... 28

Table 4.3 - Optional information register usages .. 29

Table 5.1 - Line and frame buffer sizes... 35

Table 6.1 - Nios II monitor information register layout .. 43

Table 6.2 - Log register commands .. 44

Table 6.3 - Log status structure .. 44

Table 6.4 - Example of event based log content ... 45

Table 6.5 - Example of periodic log content .. 45

Table 6.6 - XD GPU information register layout .. 46

Table 6.7 - SRAM information register layout ... 47

Table 6.8 - Address space for the data gathering unit’s Nios II CPU ... 49

Table 6.9 - Log data during crash ... 53

Table 6.10 - Shared SRAM log event format for frame start... 56

Table 6.11 - Shared SRAM log event format for intra frame events ... 56

Table 7.1 - Case study parts ... 60

Table 7.2 - IIR block lines of code ... 61

Table 7.3 - XD GPU lines of code ... 62

Table 7.4 - IP block resource usage ... 63

Table 7.5 - Software lines of code ... 65

Abbreviations x

Abbreviations

2D Two dimensional

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

CRT Cathode Ray Tube

DAC Digital to Analog Converter

eCos embedded Configurable operating system

fifo first in, first out

FPGA Field Programmable Gate Array

Gbps Giga bits per second

GPU Graphics Processing Unit

GUI Graphical User Interface

HD High Definition

HDL Hardware Design Language

HIBI Heterogeneous IP Block Interconnect

HW Hardware

ID Identification

IDE Integrated Development Environment

I/O Input / Output

IP Intellectual Property

IIR IP Information Registers

JTAG Joint Test Action Group

LUT Look-Up table

Mutex Mutual exclusion

OS Operating System

PC Personal Computer

PPU Pixel Processing Unit

RAM Random Access Memory

RTL Register-Transfer Level

RTOS Real Time Operating System

SDRAM Synchronous Dynamic Random Access Memory

SRAM Static Random Access Memory

SoC System-on-Chip

SUT System-Under-Test

SOPC System-On-Programmable-Chip

SW Software

Tcl Tool Command Language

TTA Transport Triggered Architecture

Abbreviations xi

TUT Tampere University of Technology

USB Universal Serial Bus

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XML Extensible Mark-up Language

1. Introduction 1

1. Introduction

In the early years of semiconductor design, companies developed digital logic for their internal

use. The design of these intellectual property (IP) blocks was widely protected and they were

rarely licensed to third parties. But as the complexity of semiconductor chips has dramatically

increased, the development of digital IP blocks has become ever so challenging. This has lead

in the past decade into the increase in the reuse of these IP blocks [gsa].

Additionally, these blocks are more and more used to construct customised chips that include

many different IP blocks in them. These constructs are referred to as System-on-Chips (SoC),

because of the way they implement a fully working system on a chip as opposed to constructing

the system of individual components [nul06]. A simplified illustraton of a SoC can be seen in

Figure 1.1.

Figure 1.1 - Simplified structure of a SoC

System-On-Chip

CPU

IP

IP CPU

IP

1. Introduction 2

The design of a hardware (HW) IP block, such as a microprocessor or a hardware accelerator,

always includes the verification of its design. The importance of verification is steadily

increasing as the complexity of the IP blocks and systems increase [keut00, keat02]. The first

step to verify the correct behaviour of a design is to simulate it in a test bench on a program like

Modelsim [model12]. The main hardware description languages (HDL) supported by Modelsim

are verilog [ver95] and very high-speed integrated circuit HDL (VHDL) [vhd94].

However, there is also a need to test the IP block in the target platform which may not be

feasible with software (SW) based simulation. For example, certain clocking and power-saving

modes are hard to verify in simulation. Moreover, simulation models of external components,

such as memories and network interfaces, might be missing. Additionally, simulation of a basic

hardware platform with one or more SoCs can take days or even weeks to complete. This

makes the iteration process of the verification almost impossible. To overcome these problems,

the designer needs a way to construct a test platform before the application specific integrated

circuit (ASIC) is produced of the SoC.

In 1984, Altera introduced the first reprogrammable logic device to the world called the EP300

which was a major improvement for prototyping [alt12]. Since then, the transistor counts of

digital devices have increased significantly. From the 21st century, the chips have been large

enough so that hardware designers have had the opportunity not only to synthesize single IP

blocks but even whole systems on a chip. Nowadays, it’s common practise to test IP blocks and

systems with a field programmable gate array (FPGA) or an array of them. Figure 1.2 presents

a simplified structure of an FPGA chip.

Figure 1.2 - Structure of an FPGA chip

The goal of this thesis is to utilize these modern programmable devices in SoC design.

Moreover, IP components are augmented with special information registers to identify, verify

Programmable Interconnect I/O Blocks

Logic Blocks

1. Introduction 3

and optimize their functionality and the system as a whole. These registers are examined

thoroughly in chapters four and six.

The work presented in this thesis is carried out during a project called Function Based Platform

(FunBase) [fun12]. It is a project that has been created specially from the need of the small to

middle sized companies to design and create their own hardware platforms with the same kind

of modern design flow that is used to create software.

The objective of the project is to develop a design flow and tools which enable the creation of

an FPGA based product much faster and with less effort than before. The design flow also

ensures that the development costs are low enough for the small and middle sized companies.

In addition, the design flow helps companies with little or no expertise in hardware to create

their own systems [kam11, sal11].

It’s essential that a company’s IP block is packetized so that it can be effortlessly sold and

integrated as a part of another system. A company can also purchase IPs from other vendors to

be used in their own systems. The project also aims to develop a physical platform to which end

user defined functions can be created from modular software and hardware components.

Further information of the FunBase project and its design flow can be read in the next chapter.

This thesis is partitioned into seven chapters. The first one is this brief introduction. The second

chapter delves a little into the concept of metadata. Chapter 3 explores the tools and methods

used in SoC design flow. Chapter 4 studies the concept of IP information registers. Basic

concepts of computer graphics are described in chapter 5, and the practical usages IP

information registers are explored in chapter 6. Finally, chapter 7 makes conclusions of the

usability of these registers.

2. Metadata 4

2. Metadata

The term metadata refers here to general information about IP components in addition to its

source code. This information includes for example, interface specifications, documentation,

lists of needed files, tool environment and so on. Most of it is created at design-time but some

parts are defined at runtime.

2.1. Requirements from/to IP vendors

Before the actual design of a target system can be started, the requirements for the product

must be obtained and accurately defined according to the needs of the customer. After these

requirements are known, requirements for the system and its functions can be defined.

The underlying components or IPs which then carry out these functions can be selected from

these requirements. The possible vendors for these IPs are then narrowed down to the best

ones.

The requirements for the IPs include the required functionality, performance, cost, size etc.

2.2. Design time information

Design time information is information about the implemented system and its components. IP-

XACT is a standardized format for capturing it [ipxact10].

2. Metadata 5

Usually, part of the needed IP blocks exist already before the system design starts. Some of

these are IPs developed previously in the company and a part is obtained from third party IP

vendors.

The components or IPs have information about them that is needed for integrating them into the

target system. This design time information includes the vendor, library, name and version

(VLNV) of the IP. Information which is important for the integration of the hardware IP to the

system include the signal widths and their names, maximum synthesizable speed for a specific

FPGA chip or ASIC process, size and power usage of the IP on the specific FPGA etc.

This design time information is not used to verify their functionality but to integrate the IP to the

target system.

2.3. Run time information

Run time information is retrieved from the target system by monitoring it somehow.

Physical logic analyzers can be used to do the monitoring. This is however limited to the signals

that can be physically probed by the analyzer and any of the internal signals of the chips

containing the digital circuits cannot be directly monitored.

Fortunately Altera provides a way to record the signals within a FPGA chip with their SignalTap

II Logic Analyzer tool [sig11]. This real time monitoring tool has limited time length for the

snapshot(s) of the signal traffic inside the FPGA and also a limited amount of signals that can

be monitored at the same time. A typical snapshot has a few dozen signals captured for few

thousand cycles. This comes from the simple fact that FPGA chips have limited amount of

internal memory and logic elements and a good part of this resource will already be consumed

by the actual SoC synthesized to the FPGA. The physical system which has the FPGA has to

also be connected directly to a PC so this method is limited to be used in the developer’s work

space.

3.System-on-Chip design flow 6

3. System-on-Chip design flow

Large companies have enough designers to create hardware systems with the old way of

designing digital circuits. The IP blocks which are designed this way are often ad-hoc in nature

and are only used in the original system for which they were created. However, with a little more

planning these digital IPs can be reused in later systems.

Software designers have long been using object oriented programming with different software

layers. This has reduced the development costs because software can be reused in the future

assuming that the documentation of the functionality is good.

3.1. FunBase SoC design flow

At the heart of the FunBase SoC design flow is the idea that the system specification is divided

into different functional blocks rather than the actual hardware or software blocks [keut02,

san07]. This abstraction provides the flexibility for the developers to design systems which can

be later mapped into many different physical platforms. For example, the functionality to

calculate a residual image from two input images can be mapped into a software, a hardware or

a mixed hardware/software implementation based on the performance and resource usage

requirements.

As FunBase is a project in progress there will be later revisions of the design flow but the

general idea will remain the same. This thesis describes the first version of the design flow.

3.System-on-Chip design flow 7

Figure 3.1 - FunBase SoC design flow

The FunBase SoC design flow can be separated in to five parts as illustrated in Figure 3.1. The

system’s and its components’ functionality is defined first. After this the functionalities are

partitioned into different hardware and software components. Next, the required hardware and

the software components are designed which also includes the verification and optimization of

these individual components. After this, the hardware and software are integrated to the system

with the FunBase tools and lastly the whole system is verified and optimized. This thesis

focuses in improving the processes of hardware and system verification and optimization.

3.1.1. Design tools

The design tools used in the FunBase flow include software which were originally developed at

the Tampere University of Technology (TUT), within Altera corporation and the open source

community. The tools originating from TUT will be further developed as the project continues.

These tools include Kactus, Library manager, Component Editor, KoskiGUI and several

generators created for KoskiGUI [kos09, kam11]. Most of these tools were written in

programming languages that either use a virtual machine or run time interpretation to execute

the code. This ensures the software’s easy portability to several different operating systems

including Windows, Linux and Unix. For example the graphical interfaces for the tools were

written in Java and the generators run in KoskiGUI were written in scripting languages like Tcl

and Python.

Several tools from Altera are also used. These include Quartus II, SOPC builder, FPGA

programmer, nios2-downloader and nios2-terminal among others [asoft12].

Kactus is a graphical tool written in Java that is used to integrate components to a target

hardware platform. It also generates the structural top level description of the hardware platform

which is later used in KoskiGUI. The hardware platform consists of components and their

System

functionality

System

verification

and

optimization

HW design

SW design

Verification
and

optimization

HW

integration

SW

integration

Functionality

partitioning

Subject of
this thesis

3.System-on-Chip design flow 8

connections described in IP-XACT format [ipxact10]. The generated design file for the platform

is also in IP-XACT. The user interface for the Kactus tool consists of five sections which can be

seen in Figure 3.2. These sections include the menu bar, component library, components,

properties and messages section.

Figure 3.2 - Kactus tool

The menu bar is used to create and open projects, configure the program, start the generation

of the hardware platform, etc. Components and connections can be selected from the

component library and dragged to the components section to create a new architecture.

Properties, parameters and other options related to the components can be set in the properties

section and any messages related to the generation of the architecture can be seen in the

messages section.

The IP-XACT descriptions for the IP blocks can be created with the Component editor which is

launched from the KoskiGUI. It is also possible to create the descriptions with the Eclipse IP-

XACT plugin or any other extensible mark-up language (XML) editor including basic text

editors. A figure showing KoskiGUI and its main sections can be seen in Figure 3.3.

Properties

Components

Messages

Component

library

Menu bar

3.System-on-Chip design flow 9

Figure 3.3 - KoskiGUI tool

KoskiGUI is the tool where the automated generation of hardware description language (HDL)

files and compilation of the software code is done. It has five tools which are used for VHDL

generation, configuring the compilation environment, setting the HW element identifications

(ID), real time operating system (RTOS) configuration and SW compilation.

The IP library is governed with a separate tool called Library Manager. The developer can

easily add, remove and modify the IPs in the library with it. This tool is not mandatory but it

simplifies and speeds up the design process.

Altera’s Quartus II is used to create the blank synthesis project which is later needed by the

KoskiGUI. In the first version of the FunBase design flow, Quartus II is also used to synthesize

the hardware system to the target FPGA. Other synthesis tools may also be used in later

revisions of the design flow. Nios2-download is used in the prototype phase of the FunBase

flow to download the software to the Nios II processors on the FPGA. Nios2-terminal is used to

debug the system via JTAG-UARTs.

3.1.2. Hardware integration flow

First step in the hardware integration flow, which can be seen in Figure 3.4, is the gathering of

all of the necessary hardware IPs to the IP library. These IPs can be added to the library with

Menu bar

List of tools Tool parameters

Tool flow Messages

3.System-on-Chip design flow 10

the Library Manager. If an IP does not exist in the library it must be created and packetized so

that it can be added to the library. It is also possible to purchase already made IPs and

packetize them if they were not done according to the FunBase flow.

Figure 3.4 - Hardware integration flow

The main part of packetizing a hardware IP block is to create an IP-XACT description for it. The

description includes the vendor name, library name, name of the component and the version.

VHDL signal widths must be assigned manually in the first version of the SoC design tools. Bus

interfaces are also created to map the VHDL signal names to the logical ones. After the IP-

XACT XML file is created it can also be validated separately by the XML validator. This is also

done by the VHDL generator in the KoskiGUI but it is better to validate the file as soon as

possible.

After the IP is packetized, it is added to the IP library. To create a library component with the

Library Manager the developer needs to set the ID, name and the path for the component. The

hardware codes along with the IP-XACT definition must be added to the component. Software

drivers can also be added.

When all of the required IP blocks are in the library, the developer proceeds to describe the HW

platform with the Kactus tool. It has a very intuitive graphical interface where the developer

simply adds the IP blocks and the connectors between them to describe the system. After the

system is done, it will generate the necessary IP-XACT design needed by KoskiGUI.

FPGA configuration

binaries

Project

settings

Synthesis

VHDL

generator

Compilation

environment

configurator

VHDL

FPGA

Kactus

IP-XACT

design
Generators

invokes

modifies

IP library

HW component codes

Library

manager

IP-XACT

descriptions

Header files

creates

IPs created

IPs purchased

3.System-on-Chip design flow 11

In the next step of the integration flow, Quartus II is used to create a blank synthesis project.

After this, KoskiGUI is used to run the necessary generators. These generators include the

VHDL generator which as the name implies generates the necessary VHDL files required by

the synthesis. More specifically it generates all of the VHDL files needed to connect the IP

blocks in to a system. Compilation environment configurator and HW element ID setter also

modify the VHDL files as is required by the functionality of the system.

The final step in the hardware integration flow is the synthesizing and fitting of the VHDL files to

the target FPGA. This is done with the Quartus II tool from Altera.

3.1.3. Software integration flow

The software integration flow has fewer phases which use FunBase specific tools as the

software industry has long had good tools to automate the design flow of software. A figure

illustrating the flow can be seen in Figure 3.5. The software and hardware integration flows also

have some overlapping like the adding of the software drivers for the hardware IP blocks in

Library manager.

Figure 3.5 - Software integration flow

Code cross-

compilation

Software binaries

Component

metadata (XML)

List of makefiles

List of

compilable
components

Makefile

generator

IP library
Library

manager

FPGA

Supporting

code

RTOS libraries

and header
files

SW

component
codes

IPs created

IPs purchased

3.System-on-Chip design flow 12

Version one of the FunBase SoC design flow can use three kinds of processing environments

in the target system. These include a Nios II processor [nios11] with an eCos RTOS [ecos11],

a transport triggered architecture (TTA) processor [tta11] with no RTOS and a personal

computer (PC) environment with an Intel x86 compatible processor running Windows. The PC

environment is only used as a part of the target systems in this early stage of the SoC flow but

as the FunBase project continues it will be replaced with an embedded processor board with an

Intel Atom processor running a Linux RTOS.

Actually, the eCos RTOS will not either be used in later revisions of the SoC flow as there is not

a need to have multiple processors running a fully fledged RTOS. The removal of the eCos

RTOS decreases unnecessary software overhead and thus the performance of the

processor(s) is increased. Another improvement is achieved as the software run on the

processor has smaller size.

The software integration flow starts the same as the hardware one with the gathering of the IP

blocks needed by the target system. These are then integrated into larger software blocks

which are run by the different processors in the system.

After this the RTOS environments are configured by the RTOS configuration tool in the

KoskiGUI. And finally all of the software is compiled by the SW compilation tool.

3.2. FunBase hardware platform

Microteam [micro12] which is one of the FunBase partner companies designed a baseboard

which can be used as a physical platform for the FunBase SoC design flow. The core of the

FunBase baseboard is an Arria II GX FPGA chip manufactured by Altera [arria11]. It is a mid-

range FPGA designed for transceiver applications and offers up to 3.75 Gbps of input/output

(I/O) bandwidth. As can be seen from Figure 3.6 the board has extensive amount of high speed

interfaces to meet the requirements of a broad range of systems. Smaller and less complex

boards can and will be later designed based on this baseboard.

3.System-on-Chip design flow 13

Figure 3.6 - FunBase hardware platform

3.3. Altera tools used in FunBase

As the FPGA chips used at TUT are primarily manufactured by Altera there are several tools

made by them that are used in the FunBase design flow. Many of them integrate easily to the

flow but as can be read in the next section of this thesis there is one that does not.

SOPC builder is a hardware design tool which is used to create SOPC sub-systems. These

sub-systems comprise of one or multiple Nios II processors and the accompanying peripherals

used by the processor(s). In short, SOPC builder can be described as a tool to create soft-core

microcontrollers for Altera’s FPGAs. The graphical user interface (GUI) of the SOPC builder can

be seen in Figure 3.7. A SOPC sub-system is created by adding IP blocks from the IP library

section to the SOPC architecture view. In this view the blocks can be configured and mapped

into memory regions seen by the CPU(s). The HDL and some configuration files for the system

is created by clicking the generate button at the bottom of the GUI. Messages related to the

generation and design of the system can be seen in the messages section.

FPGA

Arria II GX

COM

Intel Atom 1 GHz

Quad

Ethernet PHY

Conf.

FLASH

QDR II SRAM

32 MB

DDR II

128 MB

Video

dec.

JTAG

Leds

1 GB

Ethernet PHY
RS 232

FunBase board

3.System-on-Chip design flow 14

Figure 3.7 - SOPC builder

Quartus II is mostly used to synthesize and program the hardware design of a SoC to an FPGA.

However, it is also a hardware design tool and it can be compared with the KoskiGUI tool

excluding the software functionality. Like KoskiGUI, it can be used to integrate different tools for

the SoC design flow. These tools can be either Altera’s own or third-party tools. A dialog

showing the third party EDA tool configuration in Quartus II is shown in Figure 3.8.

Menu bar

IP library

SOPC architecture

Messages

3.System-on-Chip design flow 15

Figure 3.8 - Quartus II EDA tool configuration

Tools launched from Quartus II are used to integrate, design and verify the architecture of a

single SoC that is synthesized to an FPGA chip. It can also be used to create the top level

design of the SoC either with a graphical block diagram file or a text based HDL file. SOPC sub-

system(s) can be added to this top level design along with other IP blocks. An illustration

showing Quartus II and its main sections can be seen in Figure 3.9.

3.System-on-Chip design flow 16

Figure 3.9 - Quartus II

Command line tools like nios2-download and nios2-terminal are used to debug the software on

the Nios II processor(s).

Altera’s SOPC builder is used to manually create SOPC systems which include one Nios II

processor and IP blocks used by the processor. At the time of writing this thesis there have

been four of these SOPC systems created for FunBase SoCs. These include three systems

specifically made for Altera’s Stratix II development board and one for the lower end DE2

development board. In these systems, a Nios II processor is used for fast processing with

minimal amount of supporting IPs, a similar setup but with faster memory for the processor, a

system with a slower clocked processor but more external communication interfaces and finally

a similar system for the DE2 than the previous one. As can be clearly seen, this type of

generation of multiple SOPC systems with each one differing little from the other leads to the

result that each SOPC system has to be manually created just for one specific platform and this

does not fit with the FunBase SoC design flow. Improvements to this SOPC builder integration

issue are explored in the next sub-chapter.

Menu bar

SoC architecture

Design viewTool flow

Messages

3.System-on-Chip design flow 17

3.4. Third party tools used in FunBase

Initially, Nios II processors are used to run software within an eCos RTOS. This RTOS is

configured and the software library components are generated manually with the ecosconfigtool

[ecos11]. The eCos RTOS has to be configured and generated for each of the different SOPC

systems. This leads to a similar problem as was earlier described with the SOPC system

generation. Fortunately for the FunBase project, it has been decided that the eCos RTOS is not

really needed and will be replaced with a software model without a fully fledged RTOS.

In the future, the Nios II integrated development environment (IDE) is used to create the

software library files. UCos II RTOS could also be used. Nios II IDE can be controlled by

command line tools so integrating it to the FunBase SoC flow is fairly easy.

3.5. Third party IPs used in FunBase

These IPs include memory controllers, timer units, jtag-uarts, etc. Researchers at TUT have

done some IPs which are used in the SOPC environment but they can also be used outside it

with small modifications.

All of the IPs provided by Altera require some kind of generation. A part of the IPs can be

generated outside the SOPC environment with the Megawizard tool included in Quartus II but

the rest have to be generated into a SOPC system.

The SOPC IP blocks are manually designed by using the graphical user interface (GUI) of the

SOPC builder.

3.6. Improving the integration of Altera tools to FunBase

Since the tools for the Altera corporation and the FunBase flow were developed separately,

there is bound to be some overlapping between them. The best example of this overlap is

Altera’s SOPC builder tool.

The SOPC systems created with the SOPC builder tool cannot be modified directly by the first

generation FunBase tools. Hence, they are treated as any other IP block the internal structure

of which cannot be changed with the FunBase tools. It can be said that they have even less

adaptability than most IP blocks because they do not even have parameters to configure like

many IP blocks.

3.System-on-Chip design flow 18

These two reasons make the integration of IP blocks with an Avalon switch fabric interface

require more knowledge about Altera’s tools along with more work. To improve the situation,

the tools have to be better integrated as a part of the FunBase SoC design flow.

To better integrate the SOPC tool to the FunBase flow, SOPC blocks have to be customizable

with the Kactus tool. An example illustration of how the presentation of a SOPC block would be

changed in a future version of Kactus is given in Figure 3.10. The grey CPU block indicates the

situation as of now and the blue one is how the block would look like in the new version of

Kactus with the internal architecture of the SOPC block hidden. The big transparent block

shows what the SOPC block would look like with the internal architecture revealed. By enabling

the Kactus tool to customize the SOPC blocks, any unnecessary components within the blocks

can be removed. This is also shown in the figure below.

Figure 3.10 - Improving the integration of the SOPC builder to the Kactus tool

There are basically three different approaches for implementing this customization and

improving the integration. The first one includes generating a large SOPC system which

contains all the IPs that cannot be generated with the Megawizard in Quartus II and using these

IP blocks with a Wishbone bus or similar. Similarly in the second approach one large SOPC

system is designed but from which the Kactus tool will disable all the unnecessary IPs and then

generate this customized system. The third approach would be to create a generator for the

Nios II IO cpu

Nios II IO cpu

eth

sdram

sram

rs232

flash

hibi

Nios II cpu

inst_mast

data_mast

Ethernet controller

eth_p av_slave

Sram controller

sram_p av_slave

Nios to HIBI buffer

av_slave_1 av_slave_2

Nios to HIBI

av_slave

av_mast_1

hibi_p

av_mast_2

Nios II IO cpu

eth

sram

hibi

unused ports/components

3.System-on-Chip design flow 19

SOPC system configuration file so that the Kactus tool could build any SOPC system which can

be created with the actual SOPC builder.

3.6.1. SOPC builder integration approach one

Many of the IPs used in SOPC systems can only be generated within one. To use them outside

they must be first generated into a SOPC system. After this the generated HDL file for the

particular IP can be used to instantiate the IP outside the SOPC system it came from.

In this approach IPs and all their variations, which can only be generated with the SOPC

builder, are generated into HDL files as was earlier described. These IPs are then packetized

the same way any other IP is packetized for the FunBase SoC design flow.

This way of dealing with the SOPC builder integration problem would unfortunately create other

problems and limitations that would have to be dealt with. These IPs would have an Avalon

interface but no Avalon bus and the required arbitrators. Fortunately the Avalon interface is very

similar to the Wishbone interface so the IP blocks could be connected to a Wishbone bus in a

pretty straightforward manner. Wrappers could also be made to interface them with a

Heterogeneous IP Block Interconnection (HIBI) bus [sal01].

There would be one major limitation with this approach. The IPs could not be configured like

they can be with the SOPC builder so that multiple variations would have to be made to

compensate for this. For example, many variations of the Nios II processor with different cache

sizes and other properties would have to be generated beforehand. Memory controller

variations for each different type of external memory would also have to be made. Considerable

time would also have to be committed to packetize all these components.

For all these reasons, this approach would not obviously fit with the targets of the FunBase SoC

design flow.

3.6.2. SOPC builder integration approach two

The second approach adds a new feature to the Kactus tool. The developer could add a

configurable SOPC system to the Kactus project and decide what components would be

generated into it.

To enable the creation of this new feature, one large SOPC system would initially be designed

but only one variation of each of the IPs would be placed in the system. This system would then

3.System-on-Chip design flow 20

be treated as a starting point from which a modified SOPC system would be generated

according to the developer’s decisions.

After the developer had made the SOPC system along with the components outside it, the

Kactus tool would then modify the base SOPC system configuration file and initiate the

generation of this modified SOPC system. The modification would simply include three kinds of

operations. First the Kactus tool could disable any unnecessary components, secondly it could

make copies of the components and finally it could change the configuration parameters of the

components. As a result, Kactus could make any SOPC system which included the components

found in the base SOPC system.

In this approach the Avalon bus would not have to be replaced and more importantly excessive

time used for generating and packetizing the IPs could be avoided. Considerable work would

still have to be done so that Kactus could make the required modifications to the SOPC

system’s configuration file.

3.6.3. SOPC builder integration approach three

The last approach adds the ability to fully create a SOPC system configuration file to Kactus.

This would include the most work of all of the three different approaches and it would not

necessarily offer significant advantages over the second approach.

3.6.4. SOPC builder integration conclusion

As a conclusion, it can be said that the second approach is the one to go for. If it would not be

sufficient for some reason, the work put to adding the SOPC system configuration file

modification function to the Kactus tool could be continued and full generation of the

configuration file could be achieved.

3.7. FunBase case study

To demonstrate the main capability of the FunBase SoC design flow an example system is

created. As was earlier stated in this chapter, the main idea of the FunBase SoC flow is to treat

parts of a system as functions rather than actual hardware or software components. This way

the functions can be later mapped to the actual components based on the requirements and

limitations of the target platform.

3.System-on-Chip design flow 21

3.7.1. Image residual with different hardware architectures

This case study deals with a system capable of producing a residual image of two input images.

The residual of two images shows the differences between them. An illustration of this

functionality is given Figure 3.11.

Figure 3.11 - Calculation of a residual from two images

Four different hardware architecture variations are created to demonstrate the function

abstraction capability of the FunBase SoC design. The structure of these architectures is

depicted in Figure 3.12.

Figure 3.12 - Image residual with different hardware architectures

In these architectures, the image residual function stays unchanged as the underlying

implementation changes. The function is implemented with two hardware only, one software

only and a mixed hardware/software implementation. In the hardware only implementations, the

image residual function is performed with a hardware component with and without using an

Calculate

image

residual

SDRAM

controller

Image

residual

(VHDL)

Ext SDRAM

ETH

NIOS II

PC

HIBI

HW implementation SW implementation TTA processor (“C to VHDL”)

Image

residual

(VHDL)

ETH

NIOS II

PC

HIBI

SDRAM

controller

Image

residual

(NIOS)

Ext SDRAM

ETH

NIOS II

PC

HIBI

SDRAM

controller

Image

residual

(TTA)

Ext SDRAM

ETH

NIOS II

PC

HIBI

3.System-on-Chip design flow 22

external SDRAM chip. The software implementation uses a Nios II processor with SDRAM and

the mixed implementation uses a TTA processor with SDRAM. This specific TTA processor was

developed at TUT and is generated from C software source files into a hardware accelerated

version of the software.

4. IP information registers 23

4. IP information registers

As was already discussed in the introduction for this thesis, traditional software simulation offers

the possibility to examine signals through relative long time periods but extra effort is needed to

create the simulation models for the whole range of hardware components. If the simulation

models for the components behave the same way as their physical counterparts, the register-

transfer level (RTL) simulation provides a view to the system’s signals on a clock cycle level.

But as the system is simulated on this level, the time needed to carry out a sufficiently long

simulation can be measured in days or even weeks. This of course makes it practically

impossible to iterate the verification process with these kinds of simulations, as was already

noted.

The other way currently to verify the behavior of a system is to use some kind of hardware

probing. Altera provides a tool for this called the SignalTap II Logic Analyzer. With this tool,

signals can be probed directly from an FPGA chip at runtime. There are though a couple of

critical disadvantages with this method. Only a small group of signals over a short time period

can be examined at a time due to the finite logic cell and routing resources of the FPGA chip.

Also if the design of a SoC consumes nearly all of these resources it will be impossible to use

this kind of probing.

It would be good to have the means to record events and information from a physical prototype

through long time periods [sal11].

To achieve this goal, the specification for these information registers, which are embedded to IP

blocks, were developed for this thesis. These registers are added alongside the pre-existing

ones and are filled with important information from the blocks and the system at run time. This

information is used to check the IP blocks and the system for possible error events which may

significantly aid the verification process. Information is also used to optimize the performance.

Additionally the registers can be used to identify IP blocks and their place on a CPU’s address

map. An illustration of what the architecture of an IP block with embedded IP information

4. IP information registers 24

registers (IIR) looks like is given in Figure 4.1. The bus interface is on the left. Information

registers are distinct from the regular ones in this example and hence, separate logic for

interface sharing (arbitrator) is needed.

Figure 4.1 - IP block with embedded information registers

A simplified test setup using the information registers is depicted in Figure 4.2. The setup

includes a System-Under-Test (SUT), a data gathering system attached to it and a PC to

analyze the data.

Figure 4.2 - A test setup with IP information registers

IP block

IP block’s

original logic
and registers

IP information registers

Interface

sharing
logic

data capture

FPGA

PC

Data gathering system

Data

gather

Hardware platform

Data

buffer

Data

transfer

System-Under-Test

IP

IP

IP IP block

monitor

System

IIR

IP information registers

system’s original logic

one way connection

two way connection

backbone interconnection

supporting IP blocks

4. IP information registers 25

4.1. Verification and optimization flow

The flow for the verification and optimization process using the IP information registers is

depicted in Figure 4.3. In this flow, a set of usage cases are defined from the requirements

specification for the system. Possible optimization areas for the system and the IP blocks are

explored and defined from the usage cases. And if any problem areas can be found they are

also defined. After this, concrete plans for test runs for the system are specified.

Figure 4.3 - Verification and optimization flow with IP information registers

After the test run is initiated, the data gathering system periodically accesses the IP blocks and

reads the contents of their information registers. After this, the gathered data is stored in a

temporary data storage unit and sent to the developer’s PC for analysis after the test run has

completed.

Any parts not up to the original specification or any areas for optimization are addressed by the

developer. After the possible corrections and optimizations are made, the same test run is

repeated to analyze the outcome of these changes. This process is then iterated as many times

it is necessary to achieve the wanted results.

4.2. Resources

One needs some extra logic and routing resources from an FPGA chip to instantiate the

required components for information gathering. These components can be divided into IP

information registers and supporting IP blocks. These registers and blocks can be seen in the

earlier Figure 4.2. As can be seen from the figure, the data gathering unit is attached to the

same backbone interconnection that connects the SUT’s IP blocks. This way there is no need

for an additional bus to be used to retrieve the data from the information registers.

External IP block monitors can also be attached to the backbone bus to monitor IP blocks with

no embedded information registers.

Requirements

specification

System /

component

optimization

Usage cases

Optimization

areas

Problem

areas

Test runs

Test runs

System /

component

verification

4. IP information registers 26

A version of the test setup with a dedicated IP information bus could be later designed to gather

information which requires continuous monitoring along with a high data bandwidth.

4.2.1. Register and interconnection types

The term register is used loosely in this thesis as there can be multiple physical registers or

even on-chip memories behind them. A register is only used to describe an entry point for the

underlying memory.

IP information registers come in three main types which include regular, fifo and special header

registers. These registers are described in Table 4.1.

Table 4.1 - IP information register types

Register type R/W/C Description

Regular R/W/C A single word

Fifo
R

The number of words is known and only words

containing the actual values are stored

IIR header
R

The words are stored normally and a word with all

bits set to one indicates the end of the register

Regular registers can be subjected to three kinds of operations which include reading (R),

writing (W) and clearing (C) the information on the register. A register can be either writable or

clearable but not both. A register’s content is cleared by writing any word to the register. No

specific word is defined to reduce the amount of needed logic.

Fifo registers are associated with the logging capabilities in certain information registers. These

fifo registers act as read only sources for the data stored by the logging logic. Finally the read

only IIR header register has special functionality which allows it to change its contents during

sequential accesses. IIR header registers are further described in the next sub-chapter.

The register map of an IIR enabled block is divided into three different parts as can be seen in

Figure 4.4. These parts include the IP block’s original registers, the general information

registers and the optional information registers. The structure and functionality of these

registers are described in later sub-chapters.

4. IP information registers 27

Figure 4.4 - IP information registers in IP block’s memory space

4.2.2. General information registers

The general information registers contain registers to identify the parent IP block along with

other miscellaneous data and functionality.

To comply with the specification, an IP block has to reserve a continuous address space for at

least the general information registers which are described in Table 4.2. Offsets are given as

32-bit words. This address space can reside anywhere within the IP block’s greater address

space.

IP block’s

original
registers

General IP

information
registers

Optional

information
registers

IP information

registers

Memory

pointer

Start of IP’s

address
range

End of IP’s

address
range

4. IP information registers 28

Table 4.2 - General information register layout

Offset R/W/C Name Description

0x00 R IIR1 header A 32-bit header that inverts its byte ordering on

reads

0x01 R IIR type 0: internal IIR, 1: external IIR

0x02 R IP reg. offset / address Memory pointer in Figure 4.4

0x03 R/W IP reset Can be used to reset the IP-block

0x04 R Instance number Number to distinguish different instances of IIR

blocks

0x05 R/W Mutex Used in multi-master systems

0x06 R VLNV

Four ascii strings separated by null bytes … R ...

0xXX R VLNV

0xXX R Extra information Optional information, fill with zeros if not used

The arbitrary placement of this address space is enabled by the IIR1 header register which is a

special read only register used to identify the address space. This register returns a 32-bit ascii

string reading “IIR1” on first access, and a “1RII” string on second access. Successive accesses

will repeat the same alternating pattern. Using this unique characteristic, a processor can scan

its full address space looking for IIR enabled IP blocks.

The second register contains three bits of information about the IIRs and the parent block. If the

first bit on this register is one, the IIR block is external but otherwise it resides inside the parent

IP. Secondly, the parent IP has accessible registers if the second bit is one. For example a Nios

II CPU has not got any registers accessible outside and therefore its external IIR block has this

bit set to zero. Lastly, if the third bit of this register is set to one the parent IP can be set to a

reset state and the reset register on the IIR block is enabled. The SRAM controller used in this

thesis cannot be set to a reset state and has this bit set to zero.

The information on the previous register determines how the third register is interpreted and it

either has an IP register offset or an address. If the IIR block is internal this register provides the

offset pointing to the parent block’s registers otherwise it provides a direct address to the

registers. The direct address has to be set manually before synthesis. If the IP block has not got

any accessible registers this register is set to zero.

An IIR enabled IP block has usually two reset signals. A system reset which comes from

outside of the IP and an internal IP reset signal coming from the IP reset register. The fourth

register is this reset register which can set the parent IP block to a reset state for example to

recover from an error event. The reset is active high and it should normally be set to low at

system reset.

4. IP information registers 29

If the IIR block of an IP is accessed by more than one component on the system, a multiple

access mutex has to be implemented on that block. The mutex is the fifth register and it has to

be used when accessing registers which operation has to be uniform and to ensure that when

one block (e.g. a Nios II CPU) is accessing the registers no other component will interfere with

the access.

The VLNV registers have four ASCII strings of basic information concerning the IP block and its

creator. The strings are null terminated and include the vendor name, the library name, the

name of the component as well as the component’s version.

Lastly, the extra information registers are optional and can be used to store additional

information pertaining to the parent IP or the IIR block. The string on the registers is null

terminated and has to be filled with zeros if not in use. Useful information on these registers

could for example be the design date of the parent IP.

4.2.3. Optional information registers

The optional information registers reside right after the general information registers and

accommodate registers specific to the IP block. These registers mainly provide functionality to

verify and optimize the IP block and the system. Other useful functions like usage statistics are

described in Table 4.3.

Table 4.3 - Optional information register usages

Usage Example

Verification

Log to examine CPU crashes

Number of faulty write or read accesses done to IP block

Clock cycles without write or read accesses done to IP block

Optimization Log to optimize shared memory usage

Statistics

Number of write or read accesses done to IP block

Number of cycles/frames from reset

Bytes written to frame/line buffer in a frame/period of frames (eg. fill rate)

Log to store unused frame/line buffer cycles

The log registers which can be present in the optional information registers are described

further in chapter 6.

4. IP information registers 30

4.3. Supporting IP blocks

There are five different kinds of supporting IP blocks defined in this specification: the data

gathering unit, data transfer unit, data buffer, system IIR and the external IP block monitor.

These were previously illustrated in Figure 4.2.

4.3.1. Data gathering unit

To transfer the data from the IP information registers to the developer, a data gathering

mechanism has to be implemented. There are basically two different approaches to

implementing this mechanism.

Both approaches include a data gathering unit on the FPGA and a connection from this unit to

the PC. The first approach sends data continuously to the PC whereas in the second approach

the data is written to a data buffer during the monitoring and sent to the PC after the monitoring

ends. The second approach might be the only viable one if the data bandwidth for the gathered

information is too large to be sent in real time. Unfortunately this approach is not always

practical in systems meant for the end user market.

The data gathering unit can either be a processor or a custom data gathering component.

4.3.2. Data transfer unit

To transfer the data to the PC and the developer, a connection is naturally required for it.

Additionally to interface this connection to the FPGA, a controller for the connection has to be

included. These two blocks form the data transfer unit.

Depending on the bandwidth and other requirements for the connection, some of the following

connections can be considered: a USB connection with a virtual JTAG UART, a USB

connection with a proprietary transfer protocol, a serial RS232 connection or an ethernet

connection. JTAG UARTS and RS232 connections are traditionally quite slow (in the order of

100 kbs) [tex02] and therefore are not sufficient for many systems. A USB connection on the

other hand can vary from the slow 1.0 standard (1.5 Mbs) to the ultra high speed standard of

3.0 (4.8 Gbs). As the 3.0 standard is quite new and not mature, the transfer speed of a USB

connection is practically limited to the speed of the 2.0 standard (480 Mbs) [usb11]. An ethernet

connection can have a maximum speed varying from 10 Mbs to 10 Gbs. Though ethernet

controllers for the basic customer market support only up to 1 Gbs speed [eth08].

4. IP information registers 31

4.3.3. Temporary data memory

The temporary data memory comprises of an actual physical memory and its controller. The

unit is used if the gathered data is sent to the PC after the monitoring is done. Of course the

system must have a memory with extra space and bandwidth on it. Considering the latter two

requirements, this will not usually be plausible to be used on a product that is used by the end

user.

This unit can be really useful when a system is verified or optimized on a development platform

and the collected information requires high data bandwidth. It subsequently removes the need

for a high bandwidth connection to the PC because the data does not need to be transferred in

real time.

4.3.4. System IIR

A system IIR is a special IIR block that has information pertaining to the system and also

provides services to regular IIR blocks. In the first version of the IIR specification, it provides a

service with its embedded system counter.

The system counter is very basic in its functionality but it still offers one of the main functions of

the IP information registers which is the ability to store timestamps in the log registers. It is

constructed of only one 32 or 64-bit wide counter. This counter is set to zero when the system

reset is active and incremented by one on every clock cycle when the system reset is inactive.

The counter is then connected to all of the IIR blocks that have log register(s).

Additionally the VLNV registers on the system IIR can be used to discern if a program run on

the system’s CPU was meant for the system, as is done on the first part of the usage case in

chapter six. This functionality can be especially useful for developers dealing with FPGAs who

can accidentally use either a wrong FPGA configuration or a wrong program.

4.3.5. IP monitor

An additional IP monitor is needed for each IP block that does not have information registers

and cannot be modified for some reason. For example a Nios II processor can only be

monitored by an external IP monitor because the HDL of the Nios II processor is encrypted and

therefore not modifiable.

4. IP information registers 32

This kind of an IP monitor implements all the required information registers. The VLNV registers

of such a monitor should be filled with information associated with the monitored IP block.

5. Basics of computer graphics 33

5. Basics of computer graphics

One needs to know the basics of computer graphics to understand how IP information registers

can be used to optimize a 2D graphics system in the case study for this thesis. There are many

different kinds of methods and hardware designed to generate computer graphics, but there is a

set of basic concepts behind them [ake08, eck01].

This chapter describes a part of these concepts along with the basic functionality of computer

monitors and the graphical elements used in line buffer based graphical processing units

(GPU).

Every graphics system consists of five main components. These include the graphics memory,

blitter, scene memory, image buffer and the digital to analog converter (DAC). These

components are shown in Figure 5.1. The contents of the graphics memory and image buffers

are only partially visible to save space.

Figure 5.1 - Image generation methods

read operation

write operation

Blitter
Video

DAC

Scene

memory

Frame buffer

Graphics memory

Line buffer

Graphics system

Monitor
Image buffer

5. Basics of computer graphics 34

5.1. Color information

Every pixel on an image buffer has to be described as a binary number. The color of the pixel

can either be directly read from this number or can be derived from this number using a color

palette [eck01]. Many of the devices intended for customer markets from the 1970s to the start

of the 1990s recorded the pixels’ color information as index number tied to a color palette.

Figure 5.2 shows 4-bit color palette with 16 different colors.

Figure 5.2 - Example of a 4-bit color palette

The colors of pixels are usually coded in RGB format where every color consists from a

combination of three base colors (red, green and blue). If every one of these base colors is

described with 8 bits, the pixels colours consists of a combined 24 bits which can define 16

million of different colors. This color format is in wide use in modern graphics systems.

5.2. Image buffers

An image buffer is an area of memory where a processor or a GPU can store a part or the

whole displayed image. The GPU reads this image buffer in the pace the processor has

instructed and sends the color information to the DAC. The DAC then converts the information

into an analog signal that is relayed to the monitor.

Digital circuits that generate pixel based 2D images can be divided into two categories based

on which kind of an image buffer it uses for the generated image. As can earlier be seen in

Figure 5.1, these buffers include the line and the frame buffer [adv84]. Both of these buffers

have advantages and disadvantages associated with them.

Japanese game company Namco developed the first line buffer based graphics system for the

arcade game Galaxian in 1980 [adv84]. The 8 and 16-bit videogame consoles used mainly this

technology until the early 1990s. This buffer type is still used in some modern video signal

processors like the YGV629 [yam08] from Yamaha and MB88F332 [fuj09] 'Indigo' from Fujitsu.

It needs less memory than the frame buffer and can be implemented in onchip-memories, but it

also makes the generation of the image harder and more restricted.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

5. Basics of computer graphics 35

A frame buffer which stores the entire image, makes the image generation easier and less

restricted than with a line buffer. But unlike the line buffer it cannot be practically implemented

in a SoC and needs an external memory. This makes it the more expensive approach.

Nowadays memories are fairly cheap and modern day GPUs use mainly frame buffers to

generate the displayed image. More specifically they usually use double buffering to achieve a

clean looking moving image. A GPU implementing double buffering writes the next displayed

image to one buffer while the image currently being displayed is read from the other buffer.

These two buffers are then switched as the next image is started to be displayed. The same

kind of double buffering can also be used with line buffers.

Image size directly defines the needed line or frame buffer size. Table 5.1 shows the double

buffered line and frame buffer sizes for four common video standards [vga, atsc08, ebu10].

Table 5.1 - Line and frame buffer sizes

Video
standard

Image
dimensions

bytes/pixel
line buffer
size* (bytes)

frame buffer
size* (bytes)

proportional
frame buffer
size

VGA 640*480 4 5 120 2 457 600 480

SVGA 800*600 4 6 400 3 840 000 600

HD 720 1280*720 4 10 240 7 372 800 720

HD 1080 1920*1080 4 15 360 16 588 800 1 080

* double buffered

For example a VGA image is comprised of 0.3 mega pixels in total. And if one pixel is described

with three color values and one transparency value with each value requiring eight bits of

storage, a double buffered frame buffer would need 2400 KB of space. A double buffered line

buffer would in the other hand require only 5 KB.

5.3. 2D graphics elements

Hardware accelerated 2D graphics systems use mainly two different kinds of graphics

elements. These are the sprites and the tile arrays.

5.3.1. Sprites

Sprites are rectangular shaped images or parts of them, which the GPU writes into the image

buffer based on the instructions made by the controlling processor [eck01]. Old videogame

consoles usually had sprites which size was limited [nes04, snes04, gen98]. Their size was

considerably smaller than in the modern 3D GPUs, although their dimensions were similarly

5. Basics of computer graphics 36

powers of two in size. The size for example could have been 8x8 or 64x64. Figure 5.3 shows a

character made of 23 8x8 sprites.

Figure 5.3 - A character made of 8x8 sprites

5.3.2. Tiles

Like sprites, tiles can for example be 8x8 pixels in size, but unlike sprites they cannot be placed

in arbitrary coordinates [nes04]. They are placed in an orderly array like the one depicted in

Figure 5.4.

Figure 5.4 - A 16x10 tile array made of 16x16 tiles

The figure has a tile array made of 16x16 tiles in a formation that has 16 tiles in the horizontal

and 10 tiles in the vertical plane. As can be seen in the figure they are commonly used as a

background graphic.

5.4. Graphics memory, etc.

The graphics memory is where all the necessary graphical building blocks reside. These

building blocks are used to create the image according to the instructions held in the scene

5. Basics of computer graphics 37

memory. The instructions include information about the position, color palette and other

properties of each of the used building blocks. Blitter is the component which reads graphics

data from the graphics memory according to the instructions on the scene memory. This data or

pixels are then written to one of the two different buffers which feeds the video DAC. The

analog video signal is then transmitted to the monitor which displays the generated image.

5.5. Video signals

The image displayed on a monochrome cathode ray tube (CRT) monitor is physically drawn by

sweeping an electron beam across the surface of the monitor from left to right [tpu]. An

illustration how this is done is given in Figure 5.5.

Figure 5.5 - Image displayed on a CRT monitor

When the beam sweeps the surface, it energizes specific pixels one line at a time. As the end

of a line or far right-hand side of the screen is reached the beam is turned off and it is moved to

the beginning of the next line. After the entire screen is swept like this, the beam is turned off for

last time for that frame and it is returned to the beginning of the first line on the screen. This is

then repeated for multiple consecutive frames to form a moving image.

Three analog signals are needed to control the intensity and position of the electron beam on a

monitor. These signals include the video luminance, horizontal synchronisation and vertical

synchronization signals. The levels of these signals through time are represented in Figure 5.6

[jav]. The upper graph shows the luminance and horizontal synchronization signals for one

5. Basics of computer graphics 38

vertical line whereas the lower graph shows the luminance and vertical synchronization signal

for a single frame.

Figure 5.6 - Monochrome video signals

The video luminance signal is responsible for controlling the intensity of the beam which in turn

creates the visible image. The horizontal and vertical synchronization signals control the

horizontal and vertical retrace of the electron beam. More specifically the retrace of the beam

happens during the horizontal and vertical blanking periods shown in the figure.

To display a color image, three signals are required for the three main colors which include the

red, green and blue colors.

time / horizontal position

s
ig

n
a

l l
e

v
e

l

video luminance

horizontal sync.

video luminance

vertical sync.

s
ig

n
a

l l
e

v
e

l

time / vertical position

horizontal

blanking

vertical

blanking

visible line

visible frame

6. IP information register case study 39

6. IP information register case study

This chapter is dedicated to examining the IP information registers in a practical environment.

To do this, a test setup is devised with a 2D graphics system as the SUT and a data gathering

system attached to it. These two systems are synthesized to the FPGA chip on the DE2 board

[de2] as can be seen in Figure 6.1. The setup is used to examine three usages for the IP

information registers which include the identification of IIR enabled IP blocks as well as the run-

time gathering of information to verify and optimize the target system

Figure 6.1 - Case study test setup

DE2 board

SOPC

sub-system

FPGA

External

SRAM

Nios II CPU

Avalon M

Avalon S

USB Blaster

Nios II CPU

Avalon M

External

SDRAM
VGA DAC

PC

System-Under-Test Data gathering system

Monitor

XD GPU

Avalon S

SRAM

controller

XD avalon

interface

Avalon S

JTAG UART

Nios II

monitor

Avalon S

one way connection

two way connection

backbone interconnection

IP information registers

original components

supporting components

Avalon S

SDRAM

controller

Avalon S

System IIR

6. IP information register case study 40

The main components of the SUT, or the 2D graphics system, are a Nios II processor, an XD

GPU [arvio11], a shared SRAM controller, which is used by the processor and the GPU, and an

Avalon bus to connect the components.

The data gathering system also includes a Nios II processor which is connected to a SDRAM

controller and a JTAG UART. Additional supporting blocks include an external Nios II monitor

which is used to probe the processor’s activity on the SUT and a system IIR. Both of these

systems are operated by a clock running at 100 MHz.

Before the IIR usages are examined in detail, the physical hardware and the IP blocks used in

the FPGA are described in the next three sub-chapters.

6.1. Test setup hardware

6.1.1. DE2 board

Terasic’s DE2 board is the main component in the test setup. It is the successor for the DE1

board. The DE2 board is a versatile and low cost development board targeted at students who

study digital and computer systems and embedded programming. It can be used to illustrate

fundamental concepts but also prototype advanced designs in multimedia, storage and

networking applications.

At its core, it has a Cyclone II FPGA chip [cyc05] with over 33 thousand logic elements and and

almost 500 thousand bits of on-chip memory. The board also incorporates four different kinds of

memories which include a SRAM, a SDRAM and two flash memory chips. It also has an

extensive range of digital and analog I/O connections which enable its use in various

applications [de2]. The board layout and the main components can be seen in Figure 6.2.

6. IP information register case study 41

Figure 6.2 - DE2 development and education board

At the time of writing this thesis, the price of the board for commercial use was $495 and $269

for academic purposes [de2]. The lower price for academic purposes is enabled by Altera

including the board in its university program.

6.1.2. Samsung SyncMaster 957MB monitor

An old 19 inch Samsung CRT monitor is connected to the DE2 board. The monitor is used to

verify that the 2D graphics system is working properly while data is gathered from the IP

information registers.

6.2. Altera IPs used in the test setup

6.2.1. Nios II processor

The Nios II [nios11] processor is Altera’s own configurable 32-bit soft-core processor which is

the successor to Altera’s Nios processor. The older processor could be synthesized either as a

16 or 32-bit processor. Both of these processors are soft-core, which means they have not got

a fixed netlist and can be targeted to any FPGA made by Altera. The Nios II processor is also

configurable so that it can be customized to the target system by adding or removing features

from it.

The Nios II processor has three cores to choose from. These include the fast, standard and the

economy core from which the fast has the highest and economy the lowest performance.

6. IP information register case study 42

Two Nios II processors are used in this case study. The first processor, which uses the fast core

and has 4 kByte data and instruction caches, is used on the 2D graphics system to run a

graphics demo. The second processor, which uses the economy core with no caches, is used

on the data gathering unit to examine the IIR enabled IP blocks.

6.2.2. SDRAM controller

A SDRAM controller connected to an 8MB SDRAM chip [icsi00] is used in the data gathering

system. It is used as program and data memory for the second processor as well as to store the

data from XD GPU’s log register.

6.2.3. FLASH controller

An Altera provided CFI FLASH controller connected to a 4MB FLASH chip [spa05] is used as

boot memory for the two processors. It also contains the graphical elements used with the XD

GPU.

6.3. IPs designed for the test setup

All of the IPs designed for the test setup are fitted with IP information registers.

6.3.1. Nios II monitor

As the name suggests, the Nios II monitor is used to probe the activity of a Nios II processor.

And as was already mentioned in chapter four, the source code of the Nios II processor is

encrypted. This leads to the reality that the information registers cannot be placed inside the

processor and the monitor has to be external.

The register layout for the monitor itself can be seen in Table 6.1. Unused registers are marked

with a dash. The monitor has all the required IP information registers as well as eight optional

registers, of which three are used for creating logs of the processor’s activity.

6. IP information register case study 43

Table 6.1 - Nios II monitor information register layout

Offset R/W/C Name Description

0x00 R IIR1 header A 32-bit header that inverts itself on reads

0x01 R IIR type value: 101

0x02 - - -

0x03 R/W IP reset Can be used to reset the Nios II CPU

0x04 R Instance number value: 0

0x05 - - -

0x06 R VLNV
vendor:TUT, library:TUT, name: Nios II monitor,

version: 0.2
… R ...

0x0C R VLNV

0x0D - - -

0x0E R/W Log register pointer

0x0F R/C Reads Number of reads done to the Nios II monitor

0x10 R/C Writes Number of writes done to the Nios II monitor

0x11 R/C Faulty reads Number of reads with faulty address

0x12 R/C Faulty writes Number of writes with faulty address

0x13 R/C CPU longest wait
Longest time in cycles the CPU has waited for

memory access

0x14 R/C CPU mem stall log
Log storing the events when the CPU was stalled

waiting for memory access

0x15 R/C CPU I rd log
Log storing the events when the CPU was reading

instructions from external memory

0x16 R/C CPU D rw log
Log storing the events when the CPU was writing

or reading data to or from external memory

These types of log registers are further described in the next sub-chapter.

6.3.1.1. Log registers

There are two main types for the log registers. The first one is an event based in which one

event includes a timestamp and the accompanying data for the event. The accompanying data

can be excluded if the event log register stores only the timestamps of an event and the event

can be identified implicitly. The second one is a periodic log with a custom sized log interval and

only the data is stored for the intervals. For example an error log is event based and a utilization

log is periodic.

6. IP information register case study 44

The logging functionality can be controlled by writing specific words to specific registers. The

logging can be disabled, enabled, cleared and the log mode can be set. The log register

commands are described in Table 6.2.

Table 6.2 - Log register commands

Code Command Description

0x00 disable logging -

0x01 enable logging -

0x02 clear the log -

0x03 disable automatic clear Disables automatic clearing of log contents after a full

read

0x04 enable automatic clear Enables automatic clearing of log contents after a full

read

0x05 enable linear log mode -

0x06 enable fifo log mode -

0x07 read log memory Next reads will read the log’s contents

0x08 read log status Next reads will read the log’s status

Table 6.3 - Log status structure

* log size = 128 words

The log mode of these registers can be set to either a linear mode or a FIFO mode. In the linear

mode, the memory reserved for the log is filled from the beginning and when the end has been

reached the logging is stopped. In the FIFO mode, the memory is used as a FIFO so when the

whole log memory is filled, the values at the beginning of the log will be replaced with new

ones.

There is a possibility that a component reading an event based log can miss data by first

reading the entire log and after this manually clearing it. This happens because additional

events can be written to the log during the clock cycles after the log is read and it is cleared. To

ensure that no logged data is lost by clearing the log manually, an automatic clear after a full

read can be enabled.

b31..b11 b10..b03* b02 b01 b00

- log fill amount log overflow log auto clear log enable

6. IP information register case study 45

The content for an event based log is described in Table 6.4. The example logr shown in the

table has eight words of data for each event and there are 32 events in the log. The contents of

a periodic log described in Table 6.5 .

Table 6.4 - Example of event based log content

Event Word Content

0

0 timestamp 0

1 data 0 [1/8]

2 data 0 [2/8]

… …

 8 data 0 [8/8]

1

9 timestamp 1

10 data 1 [1/8]

… …

16 data 1 [8/8]

… … …

31 256 data 31 [8/8]

- 257

Table 6.5 - Example of periodic log content

Period Word Content

0

0 data 0 [1/8]

1 data 0 [2/8]

… …

7 data 0 [8/8]

1

8 data 1 [1/8]

… …

15 data 1 [8/8]

… … …

31 255 data 31 [8/8]

- 256

6.3.2. XD GPU

The XD GPU is a VGA display controller and a 2D graphics processing unit (GPU) which is still

early in development [arvio11]. It is inspired by old video game consoles and their pixel

processing units (PPU), and has a fixed resolution of 640x480. Unlike today’s GPUs, the PPUs

6. IP information register case study 46

did not have frame buffers and the graphics were generated at the same time the pixel line was

displayed on the television or monitor.

XD GPU uses only two line buffers to store the generated graphics. The line buffers are used

the same way as double buffered frame buffers are used. The next line of graphics is generated

at the same time as the previous one is being displayed.

Information registers were added to the GPU after its design. Besides the required registers,

the IIR block has registers to log the activity of the CPU’s and GPU’s access to the shared

SRAM. This log functionality is used in the third part of the case study. The register layout for

the IIR block can be seen in Table 6.6.

Table 6.6 - XD GPU information register layout

Offset R/W/C Name Description

0x00 R IIR1 header A 32-bit header that inverts itself on reads

0x01 R IIR type binary value: 110

0x02 R IP offset value: - 0x1800

0x03 R/W IP reset Can be used to reset the XD GPU

0x04 R Instance number value: 0

0x05 - - -

0x06 R VLNV
vendor: liHard, library: gfx, name: xd_gpu,

version: 0.2
… R ...

0x0B R VLNV

0x0C - - -

0x0D R Frames from reset Incrementing frame number starting from exit of

reset state on the main FSM (not system or IP

reset)

0x0E R/C Faulty writes Number of writes with faulty address

0x0F R/C Faulty reads Number of reads with faulty address

0x10 R/W Frames to capture Frames to capture on the log

0x11 R/W Log mem. begin Start address for the log

0x12 R/W Log mem. end End address for the log

0x13 R/W Log status bit 0: log active, bit 1: fifo overrun

6.3.3. SRAM controller

As the usage of SRAM chips is very straightforward, they really do not need fully fledged

memory controllers for operation. But in the case of this 2D graphics system where two

6. IP information register case study 47

components have to have access to a 512 kB SRAM [issi01], a controller was implemented

which has the logic to arbitrate the access rights to the memory.

There is a SOPC memory controller for the SRAM chip on the DE2 provided by Terasic, but this

“controller” can only use the chip at 50 MHz which is half of the full 100 MHz frequency the chip

can operate under. The chip can operate at full speed by adding extra timing information for the

Quartus II fitter and generating a 5 ns write pulse.

Memory controllers normally do not have registers which to configure and have only one

address space which spans the whole of the underlying memory. Therefore it was logical to

house the information registers for the controller on a whole new Avalon slave port, while

retaining the other port solely for the underlying memory. The layout for the information

registers can be seen in Table 6.7.

Table 6.7 - SRAM information register layout

Offset R/W/C Name Description

0x00 R IIR1 header A 32-bit header that inverts itself on reads

0x01 R IIR type binary value: 000

0x02 - - -

0x03 - - -

0x04 R Instance number value: 0

0x05 - - -

0x06 R VLNV
vendor: liHard, library: storage, name:

sram_2x_access, version: 0.2
… R ...

0x0E R VLNV

0x0F - - -

0x10 R/C Mem. writes Writes done to the SRAM (lower bytes of value)

0x11 R/C Mem. writes Writes done to the SRAM (upper bytes of value)

0x12 R/C Mem. reads Reads done to the SRAM (lower bytes of value)

0x13 R/C Mem. reads Reads done to the SRAM (upper bytes of value)

6.4. Test setup software

The test setup has four different programs, of which maximum of two are run at a time. The

program run on the 2D graphics system is a simple graphics demo which uses about 50% of

the fill rate on the XD GPU. The demo utilises two tile arrays and 256 moving sprites. An

artificial work load was also added to the demo to induce data cache flushing and loading

between frames. A screenshot of the demo can be seen in Figure 6.3.

6. IP information register case study 48

Figure 6.3 - Screenshot of XD GPU demo

The three other programs are run by the processor on the data gathering unit and are used to

gather the required data for the three different parts of the case study. Additional information

about these programs can be read in the case study that is described in the next sub-chapters.

6.5. Examining IP information register usages

This case study is divided in to three parts where the main three usages of the IP information

registers are examined. The first part examines the use of the IIR1 header register which can

be used to identify IP blocks by scanning a CPU’s address space. The second part peers into

how a log register can be used to discover SRAM timing problems. And finally a group of log

registers are examined which store the CPU’s and the XD GPU’s usage patterns of the shared

SRAM, which is then used to optimize the usage of a shared memory.

The test setup for all of these parts is wired so that the Nios II monitor’s IP reset register is set

to one at system reset. And as this IP reset controls the reset state of the first processor, the

processor is left in a reset state until the second processor frees it by writing a zero to the Nios

II monitor’s reset register. This leaves the CPU on the data gathering system to control the

examination process, while the first CPU just provides a practical usage case which to examine.

6. IP information register case study 49

6.5.1. Scanning for IIR enabled IP blocks

This usage part is the simplest and demonstrates the use of the identification features on the

IIR blocks. The first processor is left in a reset state as a program is run on the second one

which scans its full address space for IIR enabled IP blocks. After the program has scanned the

address space, it confirms that the program being run matches the system it is run on. This is

done by comparing the VLNV information of the system which is stored in software with the one

stored in hardware. The hardware counterpart is found on the system IIR as is described in the

end of chapter four. Full address space for the second processor is described in Table 6.8.

Table 6.8 - Address space for the data gathering unit’s Nios II CPU

address Name Description

0x00001800...0x00001FFF JTAG debug module Used to debug programs

0x01000000…0x010001FF onchip memory Used as interrupt memory

0x01000200…0x0100023F Timer 64-bit cycle accurate counter

0x01000240…0x01000247 JTAG UART Used for debug printing

0x02080000…0x0208007F SRAM IIR port Port to access SRAM IIR block

0x03000000…0x037FFFFF 8MB SDRAM Main memory for second CPU

0x04000000…0x053FFFFF 4MB FLASH memory Boot memory for both CPUs

0x05000000…0x05003FFF XD GPU 2D GPU

0x06000000…0x060000FF Nios II monitor External IIR block for first CPU

0x06000100…0x0600017F System IIR Holds information for the system

 As this address space is scanned, one would except to find four IIR blocks. These are the ones

in the XD GPU, the SRAM controller, the Nios II monitor and the system IIR. But Altera’s Avalon

bus mirrors some addresses, and as a result each of the four IIR blocks are found in the

address space 32 times. To counter this, the program searching for the blocks keeps track of

their instance numbers and discards any mirrors.

The address space for a Nios II processor is 2GB in size. The scan for this particular processor

lasts about 3 minutes and 44 seconds, which in doubly is affected by the large address space

and the fact that slow components like the FLASH memory are mirrored several times.

A short printout of the program can be seen in Figure 6.4.

6. IP information register case study 50

Figure 6.4 - Case study part 1 printout

This usage part clearly shows that even with an interconnect like Avalon, which by its design

mirrors parts of its address space, can be successfully scanned for IIR blocks without crashing

the scanning program.

6.5.2. Determining memory related timing problems

As the verification of the different individual components in the system has been earlier made

by simulating them on test benches in ModelSim, the system as a whole still has to be verified.

This verification can be aided by adding IP information registers which monitor and log the

events in the system and its components at run time. These logs can be later analysed for any

error events.

For example, the operation of a SRAM chip has to be monitored on an actual physical system

in a real environment so that possible timing related problems can be sorted out. If there are

timing problems with the SRAM and some of the accesses done by the CPU are not completed

correctly, the program run by the CPU will most likely crash. The developer can observe the

crash by seeing that the output for example coming from a JTAG UART or, like in the 2D

graphics system, from the monitor connected to the DE2 board has stopped or that it is

6. IP information register case study 51

corrupted. The crash event can be seen in greater detail by using information registers to

monitor certain signals on the FPGA.

If the CPU has crashed, the program execution might jump to a random memory location which

does not contain any code. If this happens, it can safely be said that the occurrence of this

abnormality was likely caused by a memory error. To see if a soft core CPU is reading

instructions from an incorrect memory address, the program counter of the CPU must be

inspected. But as the HDL source code of the Nios II processor is encrypted, the only way to

directly monitor the operation of the program counter is by using the SignalTap II logic analyzer

found in the Quartus II software. As this analyzer is run outside of the FPGA, the program

counter address has to be monitored indirectly outside of the CPU. Fortunately the SOPC

system’s HDL file is not encrypted, so the filling of the instruction cache and therefore the

program counter addresses can be seen by monitoring the instruction master port’s read

address.

Additionally, as the information register to monitor this cannot be placed on the Nios II CPU, an

external monitor block for the CPU was made. The use of this monitor is further explored in the

next sub-chapter of this thesis.

There are also other means to monitor the operation of the CPU. Initially, there were errors in

SRAM timing which crashed the CPU. The crash was detected by monitoring cache fillings and

flushes which should go on and on all the time. If the filling and flushing has stopped it can be

safely said that the program has crashed. A watchdog counter can be implemented in an

information register that counts up when there is not any filling or flushing of the caches and it

can be reset to zero when there is. So if the counter reaches a predetermined high value, it can

be said that the program has crashed and therefore there can be a problem with the SRAM

timings. This predetermined value can be chosen based on the external memory usage pattern

of the cache.

The filling and flushing of the caches must be determined by monitoring the data and instruction

master ports read and write signals. If no direct memory accesses to the SRAM are made, the

only accesses through these two master ports are the filling and flushing of the caches.

6.5.3. Verifying SRAM timings

The second part of this case study examines the use of the aforementioned log registers which

store the access pattern and addresses of a processor’s instruction port. In this part, both of the

test setup’s processors are used. The one on the 2D graphics system is used to run a graphics

demo, while the second processor is used to monitor the first one with the Nios II monitor.

6. IP information register case study 52

Certain assignments on the Quartus project synthesising the system were disabled to induce

timing problems with the first processor’s access to the SRAM. This was done to examine this

particular usage case relating to timing problems.

An illustration visualizing the sample points used with the Nios II monitor is presented in Figure

6.5. The simplified illustration shows the internal structure of the Nios II CPU, the SRAM

controller and the external monitor. The signals between the sample points and the monitor

were able to be created simply by editing the generated top level verilog file of the SOPC sub-

system.

Figure 6.5 - Monitoring the Nios II CPU

When the second CPU is started, it first enables the log register for monitoring and after that

releases the first CPU to execute its program. But as the SRAM is induced with artificial timing

problems, the graphics demo visibly crashes. This can be examined in further detail by

inspecting the log data. A part of the log at the crash time is presented in Table 6.9.

SRAM

one way connection

two way connection

Avalon

slave

Inst. master

Data master

Program

Counter

General

purpose
register

file

Instruction

cache

Data

cache

Nios II CPU

SOPC sub-system

SRAM

controller

Data

cache
bypass

logic

Nios II CPU

monitor

6. IP information register case study 53

Table 6.9 - Log data during crash

cycles from reset cpu inst. read cpu inst. addr

21 387 192 1 0x20111B4

21 387 194 1 0x20111B8

21 387 196 1 0x20111BC

21 387 198 0 0x20111A0

21 387 202 1 0x0000004

21 387 203 1 0x0000008

21 387 204 1 0x000000C

21 387 205 1 0x0000010

21 387 206 1 0x0000014

21 387 207 1 0x0000018

21 387 208 1 0x000001C

21 387 209 1 0x0000000

21 387 210 0 0x0000004

21 387 245 1 0x0000020

21 387 246 1 0x0000024

21 387 247 1 0x0000028

21 387 248 1 0x000002C

21 387 249 1 0x0000030

21 387 250 1 0x0000034

21 387 251 1 0x0000038

21 387 252 1 0x000003C

The address range from the SRAM, which is used by the CPU, starts from 0x02000000 and

ends at 0x0202FFFF. Additionally, the instruction section of the program (.text) spans from

0x02000000 to 0x02011CC0.

Based on the latter address range, it can be seen from the log that the CPU was filling its

instruction cache correctly until 21 387 196 cycles from system reset. But after 21 387 202

cycles from reset it started filling the cache from an address range that does not contain any

instructions for the CPU.

Based on this observation, it can be said that the CPU possibly read invalid data around this

time and its execution went off track.

6. IP information register case study 54

6.5.4. Sharing an external memory

Similarly to modern CPUs, the Nios II processor has the option to include a data and an

instruction cache. The functionality of these caches involves storing frequently used instructions

and data in the caches so that the CPU does not always need to access the slow external

memory. Consequently, the CPU is not using the external memory all the time and another

component can use this extra bandwidth. In fact, the first version of the GPU must be granted

access to the external memory every time it requests it. The problem with this arrangement is

that while the GPU can operate at maximum speed, the CPU has to wait extensive time periods

to get access.

A simplified illustration showing an example of the accesses by these two components can be

seen in Figure 6.6. Instead of showing a one dimensional array of timestamps and the

corresponding values, the figure below is constructed to show how the accesses relate to the

GPU’s image shown on the monitor. The earliest accesses are on the upper left corner and the

timeline continues the same way an electron beam travels trough a screen surface, which was

previously shown in Figure 5.5. The area in time where the visible frame is located, is marked

with a dark blue background and ranges from 0 to 639 lines in the horizontal axis and 0 to 479

on the vertical axis. Likewise, the horizontal blanking period is marked with a light blue

background while the vertical blanking period with a white background. The GPU can fill its line

buffers during the visible frame and the horizontal blanking period.

Figure 6.6 - GPU and CPU memory usage pattern, GPU has top priority

X

0 100 200 300 400 500 600 700 799

Y

0

100

200

300

400

CPU access

GPU access visible frame

horizontal blanking period

GPU access,

CPU stalled

479

639

vertical blanking period

524

6. IP information register case study 55

The CPU’s accesses, shown in the figure with black stripes, consist of mainly the CPU filling the

caches from or flushing them to the external memory. Some control data designed for the XD

GPU is also written directly to the memory by the CPU.

The CPU’s and the GPU’s accesses to the external memory can be mapped using IP

information registers. This functionality is examined in the next sub-chapter.

6.5.5. Acquiring usage patterns for the shared SRAM

This final part examines the possibilities of IP information registers to be used for optimizing IP

blocks. As with the second part, the 2D graphics system is monitored by the CPU on the data

gathering system. Although this time, the usage of the shared SRAM by the 2D graphics

system’s CPU and GPU is examined.

The memory usage patterns of the two components are recorded by event log registers present

on the XD GPU. A simplified illustration showing how these information registers are connected

to the surrounding system is depicted in Figure 6.7.

Figure 6.7 - XD GPU IP information register connections

Each of the events is stored in a 32-bit word. The data on the word consist of a timestamp of

the event along with bits which tell whether the CPU or GPU was accessing the external

memory at the time. Unlike in the previous part, the timestamp is acquired from the GPU’s VGA

signal generator and is stored either as a frame number or as the coordinates of the frame. The

frame number is stored only at the beginning of a frame and otherwise the coordinates are

XD GPU

SRAM

SOPC sub-system

SRAM

controller
Nios II CPU

IP info.

registers

GPU logic

CPU read/write

GPU read, frame

number/coordinates

6. IP information register case study 56

stored. These two variant event formats can be seen in tables 6.10 and 6.11. No addresses are

stored for the CPU’s and the GPU’s accesses. The GPU active bit is high when the GPU reads

from the SRAM while the active bit for the CPU is high when the CPU reads from or writes to

the SRAM. The GPU active bit is acquired from the GPU’s internal logic, whereas the active bit

for the CPU is acquired from the SRAM controller.

Table 6.10 - Shared SRAM log event format for frame start

bit 31 30..22 21..02 1 0

description frame

begin
-

frame number cpu

active

gpu

active

Table 6.11 - Shared SRAM log event format for intra frame events

bit 31 30..24 23..13 12..11 10..02 1 0

description frame

begin
-

screen x screen x

cycle

fill y cpu

active

gpu

active

Unlike in the previous part, the first CPU is released for operation at the start of the experiment

and the monitoring CPU waits for two seconds before proceeding. The wait ensures that the XD

demo run by the first processor is in full swing when the second CPU starts the monitoring.

The second CPU configures the logging functionality by writing the start and end addresses for

the log memory and the logging starts when the amount of frames to capture is written to the

specific register. Now as the logging logic is active, it checks for changes in the aforementioned

activity signals. When the signals change, ie. an event occurs, the logging logic writes an event

word into an internal fifo. The output of this fifo is constantly written to the specified address

range on the external log memory.

The monitoring CPU then sits in a loop waiting for the activity bit on the log’s status register to

go down. After this happens, the CPU reads the entirety of the log and outputs a graphical

presentation of the acquired data. The first full frame of the data can be seen on the next page

in Figure 6.8.

This figure is divided into three rectangular areas, exactly like the previous example figure. As

can be seen from the red color, the CPU on the 2D graphics system is stalled for prolonged

time periods waiting for access to the external memory. This is the flushing and loading of the

data cache that was described earlier in this chapter. But as the figure shows, there is spare

time to be given to the CPU at these utilisation levels.

Other aspects of the XD GPU’s operation can also be observed from the figure. Such as the

regular spikes in GPU access times every 16 lines, which is induced by the filling of the tile

buffers for the two tile arrays. It also can be seen that the timing for writing the coordinates of

6. IP information register case study 57

the sprites for the next frame is perfect. This is seen at the bottom end of the GPU filling area.

Additionally, the GPU’s brief access to the external memory before the next frame can be seen

at the bottom of the figure. This is the time the GPU reads information pertaining to the next

frame.

6. IP information register case study 58

Figure 6.8 - CPU and GPU memory usage pattern, GPU has top priority

X

0 100 200 300 400 500 600 700 799

Y

0

100

200

300

400

CPU access

GPU access visible frame

horizontal blanking period

tile array buff. fill

GPU access,

CPU stalled

sprite coord. write start
frame information read

CPU stall

479

639

vertical blanking period

524

6. IP information register case study 59

6.5.6. Optimizing the use of the shared SRAM

Most of the CPU’s stalling time, which is shown for the frame on the previous page, can be

avoided. For example, an internal memory containing 480 values could be embedded to the XD

GPU. Additional logic would store the access time that was left unused for each of the visible

lines for one frame. This information would then be used within the GPU’s main FSM to

determine the amount of cycles which could be given to the CPU on a given line. An example

illustration showing how this would look like with the access times is given in Figure 6.9.

Figure 6.9 - Arbitrating access times

The left portion of the figure shows a simplified example how the access patterns look like with

no access time arbitration by the GPU. After the additional arbitration logic is added, the

patterns would look like the right portion of the figure. Notice that the CPU stalls (red) have

reduced significantly.

For additional optimization, the CPU could be given access rights to the aforementioned

memory so that it could grant itself more access time. This would be a good tool for the CPU in

certain circumstances. If the CPU for example knew that the next frame differed from the last

one and was significantly less taxing to the GPU, it could give itself more of the access time.

The CPU could also grant itself more access time, if it needed it for processing power

regardless of the graphics.

7. Conclusions 60

7. Conclusions

Based on the case study on this thesis, it is clear that IP information registers can provide many

good services. A short summary of the case study and its parts is presented in Table 7.1. The

table shows each of the parts’ purpose, the number of IIR blocks used for that purpose as well

as the logic elements consumed by the information registers for that purpose. The logic element

counts in this last chapter were acquired from a single synthesis instance and will wary a little

from different instances with different synthesis parameters.

Table 7.1 - Case study parts

Part Purpose IIR blocks IIR le:s

1 IP recognition during boot, VLNV registers, SW and HW

matching

4 1056

2 Log CPU’s instruction address to detect timing errors 1 380

3 Log CPU’s and GPU’s access patterns to optimize memory

usage

1 255

As can be seen from the table, the first part proved that the IIR1 header register can be used to

identify IIR enabled IP blocks within a CPU’s address space, as well as the system IIR can be

used to verify that the correct software was used with the proper hardware. The latter of these

functions serves to reduce the amount of things that can go wrong when developing IPs and

SoCs.

The second part involved helping to verify the timing parameters for the SRAM by monitoring

the 2D graphics system’s CPU’s instruction reading patterns. These patterns were specifically

monitored during the programs crash to determine if the crash was caused by wrong or

insufficient timing parameters.

7. Conclusions 61

The final part of the case study involved monitoring the CPU’s and the GPU’s access pattern to

the shared SRAM. The log registers embedded to the GPU provided a detailed view for the

accesses and a good way to utilize this knowledge for optimization was discussed. This part

was so successful that the proposed optimization will be implemented in the next version of the

XD GPU. The log registers will also be enhanced to include more data pertaining to the GPU’s

functions relative to the access patterns.

7.1. HDL files

Although information registers provide a good service for the developer, they are relative simple

to implement. This can be seen in the amount of code which had to be written for implementing

the IIR blocks. The exact number of lightly commentated lines coded for these blocks can be

seen in Table 7.2.

Table 7.2 - IIR block lines of code

File name Lines of code

nios2_monitor.v 757

event_log.v 156

sram_2x_access.v 241

system_iir.v 166

iir_xd_gpu.v 470

TOTAL 1790

To put the IIR block in the XD GPU into perspective, Table 7.3 shows the code lines for the

different source files used to construct the GPU. The IIR block stands at 470 lines of code or

about 16% of total amount in the XD GPU.

7. Conclusions 62

Table 7.3 - XD GPU lines of code

File name Lines of code Percent of total

x2d_gpu.v 1623 56,1

x2d_gpu.h 37 1,3

x2d_gpu_if.v 55 1,9

vga_sync_gen.v 147 5,1

line_buf.v 203 7,0

tile_buf.v 44 1,5

alpha_blend_4x.v 53 1,8

alpha_blend_channel.v 38 1,3

alpha_blend_pixel.v 98 3,4

clut.v 74 2,6

dp_ram.v 51 1,8

iir_xd_gpu.v 470 16,2

TOTAL 2893 100

New IIR blocks can be constructed from older ones, which further reduces the work amount

required for their implementation. Especially the general information registers are very similar in

all of the IIR blocks reducing required effort.

7.2. Hardware resource usage

The logic resources consumed for the two systems and their IP blocks can be seen in Table

7.4. The total was 11557 logic cells, 56 onchip memories and 32 onchip multipliers. Average

logic cell interconnect usage was at 15%.

7. Conclusions 63

Table 7.4 - IP block resource usage

Name Logic cells Onchip memory
Onchip

multipliers (9x9)

Nios II CPU 0 core 2998 20 4

CPU 0 data master 297 - -

CPU 0 inst. Master 132 - -

CPU 0 interrupt memory 1 1 -

CPU 0 timer (32-bit) 154 - -

Nios II CPU 1 core 783 2 -

CPU 1 data master 282 - -

CPU 1 inst. Master 70 - -

CPU 1 interrupt memory 1 1 -

CPU 1 timer (64-bit) 283 - -

SDRAM controller 475 - -

SRAM controller - orig. logic 70 - -

SRAM controller - IIR block 300 - -

JTAG UART 167 2 -

Key parallel input 10 - -

Switch parallel input 18 - -

Green led parallel output 16 - -

Red led parallel output 20 - -

Nios II monitor 681 2 -

XD GPU - original logic 3227 27 28

XD GPU - IIR block 585 1 -

System IIR 222 - -

TOTAL 11557 56 32

The four IIR blocks in the system consumed a combined 1788 logic cells, which is about 5,4%

of the available logic cells on the chip. Three onchip memories were also used in the IIR blocks.

Additionally 2061 logic cells or about 6,2% was used for the CPU and its peripheral

components on the monitoring system. The IIR blocks, the monitoring CPU and etc. contribute

to 3849 logic cells or about 11,6% of the available resources. Of course the first and last part of

the case study can be done with only one CPU along with the additional SDRAM memory. So

the extra amount of logic cells stands at 2536 (7,6%) for these two parts and 3849 for the

second one.

7. Conclusions 64

An illustration showing the resource usage for the FPGA on the DE2 board can be seen in

Figure 7.1. The left part shows the resource usage for the IIR blocks highlighted in blue,

whereas the right part does the same for the monitoring CPU and its peripheral components.

Figure 7.1 - Resource usage for the IIR blocks on the left, monitoring CPU, etc. on the right

For comparison, a performance monitor created by Lancaster et al. consumes 1655 look-up

tables (LUT) and 1260 registers from a 98304 LUT/register FPGA [lan09]. This can be

compared to the performance monitoring present in the XD GPU’s IIR block, which consumes

300 LUTs and 276 registers.

7.3. Software files

The software part of the case study was fairly straightforward, which was reflected in amount of

lines written for the Nios II processors. The amount of code written for the software source files

can be seen in Table 7.5.

7. Conclusions 65

Table 7.5 - Software lines of code

file name lines of code

main.c (XD demo) 260

main.c (IIR part 1) 59

main.c (IIR part 2) 71

main.c (IIR part 3) 71

ip_info_reg.h 228

ip_info_reg.c 516

misc.h 129

misc.c 261

TOTAL 1595

As can be seen from the table, the main.c files for the different IIR usage parts have only a

small amount of code. This is due to the fact that the functions for using the information

registers reside in the ip_info_reg.h and .c files. The functions ensure that the future use of the

information registers is simple and straightforward, and any developer using the registers has

not got much work to do to utilize them properly.

References 66

References

[atsc08] ATSC Standard: Video System Characteristics of AVC in the ATSC Digital

Television System Document A/72 Part 1, Advanced Television Systems

Committee Inc., 2008.

[ake08] Tomas Akenine-Möller, Eric Haines, Naty Hoffman, Realtime rendering 3
rd

 edition,
book, A K Peters Ltd, 2008, pp. 829-877.

[arria11] Arria II device handbook, Altera Corporation, [online], available:
http://www.altera.com/literature/hb/arria-ii-gx/arria-ii-gx_handbook.pdf

[cyc05] Cyclone II Device Handbook, Altera Corporation, 2005.

[de2] DE2 Development and Education Board, Altera Corporation, [online], available:

http://www.altera.com/education/univ/materials/boards/de2/unv-de2-board.html

[asoft12] Design software, Altera Corporation, [online], available:
http://www.altera.com/products/software/sfw-index.jsp

[nios11] Nios II Processor Reference Handbook, Altera Corporation, May 2011, [online],
available: http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

[sig11] Quartus II Handbook v11.1.0 Volume 3 Chapter 13, Altera Corporation, November
2011, pp. 1-72

[alt12] Altera Corporation’s Technology Milestones, Altera corporation, [online], available

http://www.altera.com/corporate/about_us/history/abt-history.html

[arvio11] J. Arvio, Tampere University of Technology, Bachelor of Science thesis, 2011, [in

Finnish].

[tta11] Jani Boutellier, Transport-triggered processors, slideset, Computer Science

and Engineering Laboratory, 2011, [online], available:

http://tce.cs.tut.fi/slides/tta_uo.ppt

[gen98] Barry Cantin, John Hokanson Jr, Ken Arromdee, Sega Genesis/Mega drive faq
version 1.5, 1998, [online], available: http://www.gamefaqs.com/genesis/916377-
genesis/faqs/2756

[nes04] Patrick Diskin, Nintendo Entertainment System Documentation Version 1.0,

Nintendo Entertainment System Architecture version 1.4, 2004, [online], available:
http://nesdev.parodius.com/NESDoc.pdf

[ebu10] EBU – TECH 3299: High Definition(HD) Image Formats for Television Production,

EBU, 2010.

[eck01] R. Eckert, Computer Graphics, course slides, Binghamton U., N.Y., 2001, [online],

available:http://www.cs.binghamton.edu/~reckert/enginet.html

http://www.altera.com/literature/hb/arria-ii-gx/arria-ii-gx_handbook.pdf
http://www.altera.com/education/univ/materials/boards/de2/unv-de2-board.html
http://www.altera.com/products/software/sfw-index.jsp
http://www.altera.com/corporate/about_us/history/abt-history.html
http://tce.cs.tut.fi/slides/tta_uo.ppt
http://www.gamefaqs.com/genesis/916377-genesis/faqs/2756
http://www.gamefaqs.com/genesis/916377-genesis/faqs/2756
http://nesdev.parodius.com/NESDoc.pdf

References 67

[ecos11] eCos User Guide, Free Software Foundation Inc., 2011, [online], available:
http://ecos.sourceware.org/docs-latest/user-guide/ecos-user-guide.html

[vga] Video Signal Standards and Conversion Page, Epanorama.net, [online], available:

http://www.epanorama.net/links/videosignal.html

[gaj00] D.D. Gajski, A.C.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama, P. Bricaud, Essential

issues for IP reuse, ASP-DAC, Jan. 2000, pp. 37-42.

[gsa] GSA's IP Subcommittee's Industry Baseline Working Group, Understanding the

semiconductor Intellectual property (sip) business process, handbook, Global

Semiconductor Alliance, [online], available:

http://www.gsaglobal.org/resources/tools/docs/Handbook_Understanding_SIP_Bu

sinessProcess.pdf

[ver95] IEEE Std 1364-1995, IEEE Standard Hardware Description Language Based on

the Verilog Hardware Description Language, IEEE, 1995.

[vhd94] ANSI/IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual,

IEEE, Piscataway, New Jersey, 1994.

[eth08] IEEE 802.3-2008, IEEE Standard for Information technology-Specific requirements

- Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Access Method and Physical Layer Specifications, IEEE, 2008.

[ipxact10] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tools Flows, IEEE Std 1685-2009, 2010, 360 pages.

[tpu] The cathode-ray tube (CRT), Integrated Publishing, [online], available:

http://www.tpub.com/neets/book6/21e.htm.

[icsi00] IS42S16400 1M Words x 16 Bits x 4 Banks (64-Mbit) Synchronous Dynamic RAM,

datasheet, Integrated Circuit Solution Inc, 2000.

[issi01] IS61LV25616 256k x 16 high speed asynchronous cmos static ram with 3.3v

supply, datasheet, Integrated Silicon Solution Inc, 2001.

[kam11] Antti Kamppi, Lauri Matilainen, Joni-Matti Määttä, Erno Salminen, Timo D.
Hämäläinen, Marko Hännikäinen, "Kactus2: Environment for Embedded Product
Development Using IP-XACT and MCAPI", The 14th Euromicro Conference on
Digital System Design (DSD), Oulu, Finland, August 31, 2011 - September 2,
2011, pp. 262-265.

[keat02] M. Keating and P. Bricaud, Reuse Methodology Manual, 3rd ed. Kluwer Academic

Publishers, 2002.

[keut00] K. Keutzer, S. Malik, R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,

“System-level design: Orthogonalization of concerns and platform-based design,”

http://ecos.sourceware.org/docs-latest/user-guide/ecos-user-guide.html
http://www.gsaglobal.org/resources/tools/docs/Handbook_Understanding_SIP_BusinessProcess.pdf
http://www.gsaglobal.org/resources/tools/docs/Handbook_Understanding_SIP_BusinessProcess.pdf
http://www.tpub.com/neets/book6/21e.htm

References 68

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
no. 12, Dec. 2000.

[kos09] Tapio Koskinen, Metadata-based automated configuration of system-on-chip,

Master of Science thesis, Tampere University of Techonology, 2009.

[lan09] Joseph M. Lancaster, Jeremy D. Buhler, and Roger D. Chamberlain, Efficient

runtime performance monitoring of FPGA-based applications, SOCC 2009 IEEE
International, 2009, pp. 23-28.

[micro12] Microteam Oy web page, [online], available: http://www.microteam.fi/

[model12] ModelSim – Advanced Simulation and debugging, Mentor Graphics, [online],

available: http://model.com/

[nul06] Linda Null, Julia Lobur, The essentials of computer organization and architecture,

Jones & Bartlett Learning, 2006, pp. 511.

[usb11] Universal Serial Bus Specification Revision 3.0, USB Implementers Forum, 2011,

pp. 1.1.

 [sal01] Erno Salminen, Interface design for multiple processors in a system-on-chip video

encoder, Master of Science thesis, Tampere University of Techonology, 2001.

[sal11] Erno Salminen, Timo D. Hämäläinen, Marko Hännikäinen, "Applying IP-XACT for

product data management", International Symposium on System-on-Chip,
Tampere, Finland, October 31, 2011 - November 2, 2011, pp. 86-91.

[san07] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? reasoning about the trends and

challenges of system level design,” Proc. IEEE, vol. 95, no. 3, pp. 467–506, Mar.
2007.

[spa05] S29AL032D 32 Megabit CMOS 3.0 Volt-only Flash Memory, Spansion LLC, 2005.

[fun12] Funbase main page, Department of computer systems, Tampere University of

Technology, [online], available: http://funbase.cs.tut.fi/

[tex02] Interface circuits for TIA/EIA-232, Design notes, Texas Instruments Inc, 2002.

[jav] Javier Valcarce, VGA Video Signal Format and Timing Specifications, Javier

Valcarce's Personal Website, [online], available:

http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Timing_Specifi

cations

[wag04] F.R. Wagner et al., Strategies for the integration of hardware and software IP
components in embedded systems-on-chip, Integration, the VLSI Journal,
September 2004, Vol. 37, Iss. 4, pp. 223-252.

[snes04] Jason Williams, SNES faq version 1.05, 2004, [online], available:
http://www.gamefaqs.com/snes/916396-snes/faqs/31726

[adv84] Marshall C. Yovits, Thomas A. Defanti, Advances in Computers, volume 23, book,
Academic Press Inc, 1984, pp. 116-117.

http://www.microteam.fi/
http://funbase.cs.tut.fi/
http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Timing_Specifications
http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Timing_Specifications

