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Digitaalisten IP-lohkojen verifiointi on aina ollut haasteellista. Modelsimin kaltaisilla 

softasimulaattoreilla voidaan verifioida aika perusteellisesti yksinkertaiset lohkot, joihin löytyy 

suoraviivaiset testisyötteet. Valitettavasti monimutkaisten järjestelmäpiirien simulointi 

softasimulaattorilla voi kestää päiviä ellei viikkoja. Lisäksi jokaiselle lohkolle, tarkasteltavassa 

järjestelmäpiirissä, on löydyttävä toimiva simulointimalli. Nykyaikaisia ohjelmoitavia FPGA-

piirejä voidaan kylläkin monitoroida reaaliaikaisesti Alteran Signal Tap II:n tapaisilla työkaluilla, 

mutta tämän kaltaisilla työkaluilla voidaan monitoroida vain pieniä määriä signaaleja lyhyellä 

aikavälillä. 

 

IP-informaatiorekisterit (IIR) luotiin ylittämään nämä esteet. Näitä rekistereitä käytetään 

tallentamaan tietoa jota saadaan IP-lohkoista sekä järjestelmäpiireistä kokonaisuutena. Tämä 

tieto voi olla joko staattista tai dynaamista, toisin sanoen se on luotu joko ennen 

järjestelmäpiirin käyttämistä oikealla alustalla tai sen aikana. Tätä tietoa voidaan käyttää 

moneen tarkoitukseen, kuten yksittäisten IP-lohkojen ja kokonaisten järjestelmäpiirien 

verifiointiin. 

 

Tämän työn esimerkkitapauksessa on kolme osaa joissa tutkitaan tarkemmin kolmea näistä 

tarkoituksista Terasicin toisen sukupolven kehitys- ja opetuskäyttöön tarkoitetulla FPGA-kortilla. 

Tähän fyysiseen alustaan integroitiin kaksi järjestelmää. Ensimmäiseen kaksiuloitteiseen 

grafiikkajärjestelmään lisättiin informaatiorekistereitä jotka keräsivät siitä tietoa. Toinen 

järjestelmä taas keräsi tämän tiedon ja välitti sen eteenpäin. 

 

Rekistereiden staattista käyttöä identifioimiseen tutkittiin esimerkkitapauksen ensimmäisessä 

osassa. Toinen ja kolmas osa hyödynnettiin rekistereiden dynaamisen puolen tutkimiseen 

tarkastelemalla niiden käyttöä verifioinnissa ja optimoinnissa. Jokainen näistä eri puolista 

paljastui hyväksi lisäavuksi digitaalisten piirien suunnitteluun. 
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The verification of digital intellectual property (IP) blocks has always been a challenge. Simple 

IP blocks with straightforward test inputs, can be quite thoroughly verified with software 

simulators such as Modelsim. But the verification of a complex System-on-Chip (SoC) on a 

software simulator can last days or even weeks, and that assumes that every IP on the SoC 

has a working simulation model. Although modern programmable chips can be monitored in 

real time with tools like Altera’s Signaltap II, they still only offer monitoring capabilities for a 

limited amount of signals and for a limited amount of time. 

 

To overcome this deficiency, IP information registers (IIR) were developed for this thesis. These 

registers are used to store information pertaining to the IPs and the SoC as a whole. The 

information can be static or dynamic, ie. generated before or during run-time . The information 

itself can be used for many different purposes along with the verification of single IPs or whole 

SoCs. 

 

The case study in this thesis has three parts where three of those purposes are examined with 

Terasic’s second generation development and education (DE2) board. This physical platform 

was fitted with two systems, a 2D graphics system embedded with information registers and a 

system to monitor the first one using these registers. 

 

The first part examined the identification aspects with static information whereas the second 

and third part examined the dynamic aspects of the information registers with their verification 

and optimization capabilities. Each of these aspects was deemed to offer a good service for 

developers designing digital circuits. 
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1. Introduction 
 

 

In the early years of semiconductor design, companies developed digital logic for their internal 

use. The design of these intellectual property (IP) blocks was widely protected and they were 

rarely licensed to third parties. But as the complexity of semiconductor chips has dramatically 

increased, the development of digital IP blocks has become ever so challenging. This has lead 

in the past decade into the increase in the reuse of these IP blocks [gsa]. 

 

Additionally, these blocks are more and more used to construct customised chips that include 

many different IP blocks in them. These constructs are referred to as System-on-Chips (SoC), 

because of the way they implement a fully working system on a chip as opposed to constructing 

the system of individual components [nul06]. A simplified illustraton of a SoC can be seen in 

Figure 1.1. 

 

 

Figure 1.1 - Simplified structure of a SoC 

System-On-Chip

CPU
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IP CPU

IP
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The design of a hardware (HW) IP block, such as a microprocessor or a hardware accelerator, 

always includes the verification of its design. The importance of verification is steadily 

increasing as the complexity of the IP blocks and systems increase [keut00, keat02]. The first 

step to verify the correct behaviour of a design is to simulate it in a test bench on a program like 

Modelsim [model12]. The main hardware description languages (HDL) supported by Modelsim 

are verilog [ver95] and very high-speed integrated circuit HDL (VHDL) [vhd94]. 

 

However, there is also a need to test the IP block in the target platform which may not be 

feasible with software (SW) based simulation. For example, certain clocking and power-saving 

modes are hard to verify in simulation. Moreover, simulation models of external components, 

such as memories and network interfaces, might be missing. Additionally, simulation of a basic 

hardware platform with one or more SoCs can take days or even weeks to complete. This 

makes the iteration process of the verification almost impossible. To overcome these problems, 

the designer needs a way to construct a test platform before the application specific integrated 

circuit (ASIC) is produced of the SoC. 

 

In 1984, Altera introduced the first reprogrammable logic device to the world called the EP300 

which was a major improvement for prototyping [alt12]. Since then, the transistor counts of 

digital devices have increased significantly. From the 21st century, the chips have been large 

enough so that hardware designers have had the opportunity not only to synthesize single IP 

blocks but even whole systems on a chip. Nowadays, it’s common practise to test IP blocks and 

systems with a field programmable gate array (FPGA) or an array of them. Figure 1.2 presents 

a simplified structure of an FPGA chip. 

 

 

Figure 1.2 - Structure of an FPGA chip 
 

The goal of this thesis is to utilize these modern programmable devices in SoC design. 

Moreover, IP components are augmented with special information registers to identify, verify 

Programmable Interconnect I/O Blocks

Logic Blocks
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and optimize their functionality and the system as a whole. These registers are examined 

thoroughly in chapters four and six. 

 

The work presented in this thesis is carried out during a project called Function Based Platform 

(FunBase) [fun12]. It is a project that has been created specially from the need of the small to 

middle sized companies to design and create their own hardware platforms with the same kind 

of modern design flow that is used to create software. 

 

The objective of the project is to develop a design flow and tools which enable the creation of 

an FPGA based product much faster and with less effort than before. The design flow also 

ensures that the development costs are low enough for the small and middle sized companies. 

In addition, the design flow helps companies with little or no expertise in hardware to create 

their own systems [kam11, sal11]. 

 

It’s essential that a company’s IP block is packetized so that it can be effortlessly sold and 

integrated as a part of another system. A company can also purchase IPs from other vendors to 

be used in their own systems. The project also aims to develop a physical platform to which end 

user defined functions can be created from modular software and hardware components. 

Further information of the FunBase project and its design flow can be read in the next chapter. 

 

This thesis is partitioned into seven chapters. The first one is this brief introduction. The second 

chapter delves a little into the concept of metadata. Chapter 3 explores the tools and methods 

used in SoC design flow. Chapter 4 studies the concept of IP information registers. Basic 

concepts of computer graphics are described in chapter 5, and the practical usages IP 

information registers are explored in chapter 6. Finally, chapter 7 makes conclusions of the 

usability of these registers. 
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2. Metadata 
 

 

The term metadata refers here to general information about IP components in addition to its 

source code. This information includes for example, interface specifications, documentation, 

lists of needed files, tool environment and so on. Most of it is created at design-time but some 

parts are defined at runtime. 

 

 

2.1. Requirements from/to IP vendors 
 

Before the actual design of a target system can be started, the requirements for the product 

must be obtained and accurately defined according to the needs of the customer. After these 

requirements are known, requirements for the system and its functions can be defined. 

 

The underlying components or IPs which then carry out these functions can be selected from 

these requirements. The possible vendors for these IPs are then narrowed down to the best 

ones. 

 

The requirements for the IPs include the required functionality, performance, cost, size etc. 

 

 

2.2. Design time information 
 

Design time information is information about the implemented system and its components. IP-

XACT is a standardized format for capturing it [ipxact10]. 
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Usually, part of the needed IP blocks exist already before the system design starts. Some of 

these are IPs developed previously in the company and a part is obtained from third party IP 

vendors. 

 

The components or IPs have information about them that is needed for integrating them into the 

target system. This design time information includes the vendor, library, name and version 

(VLNV) of the IP. Information which is important for the integration of the hardware IP to the 

system include the signal widths and their names, maximum synthesizable speed for a specific 

FPGA chip or ASIC process, size and power usage of the IP on the specific FPGA etc. 

 

This design time information is not used to verify their functionality but to integrate the IP to the 

target system. 

 

 

2.3. Run time information 
 

Run time information is retrieved from the target system by monitoring it somehow. 

 

Physical logic analyzers can be used to do the monitoring. This is however limited to the signals 

that can be physically probed by the analyzer and any of the internal signals of the chips 

containing the digital circuits cannot be directly monitored. 

 

Fortunately Altera provides a way to record the signals within a FPGA chip with their SignalTap 

II Logic Analyzer tool [sig11]. This real time monitoring tool has limited time length for the 

snapshot(s) of the signal traffic inside the FPGA and also a limited amount of signals that can 

be monitored at the same time. A typical snapshot has a few dozen signals captured for few 

thousand cycles. This comes from the simple fact that FPGA chips have limited amount of 

internal memory and logic elements and a good part of this resource will already be consumed 

by the actual SoC synthesized to the FPGA. The physical system which has the FPGA has to 

also be connected directly to a PC so this method is limited to be used in the developer’s work 

space. 
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3. System-on-Chip design flow 
 

 

Large companies have enough designers to create hardware systems with the old way of 

designing digital circuits. The IP blocks which are designed this way are often ad-hoc in nature 

and are only used in the original system for which they were created. However, with a little more 

planning these digital IPs can be reused in later systems. 

 

Software designers have long been using object oriented programming with different software 

layers. This has reduced the development costs because software can be reused in the future 

assuming that the documentation of the functionality is good. 

  

 

3.1. FunBase SoC design flow 
 

At the heart of the FunBase SoC design flow is the idea that the system specification is divided 

into different functional blocks rather than the actual hardware or software blocks [keut02, 

san07]. This abstraction provides the flexibility for the developers to design systems which can 

be later mapped into many different physical platforms. For example, the functionality to 

calculate a residual image from two input images can be mapped into a software, a hardware or 

a mixed hardware/software implementation based on the performance and resource usage 

requirements. 

 

As FunBase is a project in progress there will be later revisions of the design flow but the 

general idea will remain the same. This thesis describes the first version of the design flow. 
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Figure 3.1 - FunBase SoC design flow 
 

The FunBase SoC design flow can be separated in to five parts as illustrated in Figure 3.1. The 

system’s and its components’ functionality is defined first. After this the functionalities are 

partitioned into different hardware and software components. Next, the required hardware and 

the software components are designed which also includes the verification and optimization of 

these individual components. After this, the hardware and software are integrated to the system 

with the FunBase tools and lastly the whole system is verified and optimized. This thesis 

focuses in improving the processes of hardware and system verification and optimization. 

 

 

3.1.1. Design tools 
 

The design tools used in the FunBase flow include software which were originally developed at 

the Tampere University of Technology (TUT), within Altera corporation and the open source 

community. The tools originating from TUT will be further developed as the project continues. 

 

These tools include Kactus, Library manager, Component Editor, KoskiGUI and several 

generators created for KoskiGUI [kos09, kam11]. Most of these tools were written in 

programming languages that either use a virtual machine or run time interpretation to execute 

the code. This ensures the software’s easy portability to several different operating systems 

including Windows, Linux and Unix. For example the graphical interfaces for the tools were 

written in Java and the generators run in KoskiGUI were written in scripting languages like Tcl 

and Python. 

 

Several tools from Altera are also used. These include Quartus II, SOPC builder, FPGA 

programmer, nios2-downloader and nios2-terminal among others [asoft12]. 

 

Kactus is a graphical tool written in Java that is used to integrate components to a target 

hardware platform. It also generates the structural top level description of the hardware platform 

which is later used in KoskiGUI. The hardware platform consists of components and their 
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connections described in IP-XACT format [ipxact10]. The generated design file for the platform 

is also in IP-XACT. The user interface for the Kactus tool consists of five sections which can be 

seen in Figure 3.2. These sections include the menu bar, component library, components, 

properties and messages section. 

 

 

Figure 3.2 - Kactus tool 
 

The menu bar is used to create and open projects, configure the program, start the generation 

of the hardware platform, etc. Components and connections can be selected from the 

component library and dragged to the components section to create a new architecture. 

Properties, parameters and other options related to the components can be set in the properties 

section and any messages related to the generation of the architecture can be seen in the 

messages section. 

 

The IP-XACT descriptions for the IP blocks can be created with the Component editor which is 

launched from the KoskiGUI. It is also possible to create the descriptions with the Eclipse IP-

XACT plugin or any other extensible mark-up language (XML) editor including basic text 

editors. A figure showing KoskiGUI and its main sections can be seen in Figure 3.3. 

 

Properties

Components
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Figure 3.3 - KoskiGUI tool 
 

KoskiGUI is the tool where the automated generation of hardware description language (HDL) 

files and compilation of the software code is done. It has five tools which are used for VHDL 

generation, configuring the compilation environment, setting the HW element identifications 

(ID), real time operating system (RTOS) configuration and SW compilation. 

 

The IP library is governed with a separate tool called Library Manager. The developer can 

easily add, remove and modify the IPs in the library with it. This tool is not mandatory but it 

simplifies and speeds up the design process. 

 

Altera’s Quartus II is used to create the blank synthesis project which is later needed by the 

KoskiGUI. In the first version of the FunBase design flow, Quartus II is also used to synthesize 

the hardware system to the target FPGA. Other synthesis tools may also be used in later 

revisions of the design flow. Nios2-download is used in the prototype phase of the FunBase 

flow to download the software to the Nios II processors on the FPGA. Nios2-terminal is used to 

debug the system via JTAG-UARTs. 

 

 

3.1.2. Hardware integration flow 
 

First step in the hardware integration flow, which can be seen in Figure 3.4, is the gathering of 

all of the necessary hardware IPs to the IP library. These IPs can be added to the library with 

Menu bar

List of tools Tool parameters

Tool flow Messages
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the Library Manager. If an IP does not exist in the library it must be created and packetized so 

that it can be added to the library. It is also possible to purchase already made IPs and 

packetize them if they were not done according to the FunBase flow. 

 

 

Figure 3.4 - Hardware integration flow 

 

The main part of packetizing a hardware IP block is to create an IP-XACT description for it. The 

description includes the vendor name, library name, name of the component and the version. 

VHDL signal widths must be assigned manually in the first version of the SoC design tools. Bus 

interfaces are also created to map the VHDL signal names to the logical ones. After the IP-

XACT XML file is created it can also be validated separately by the XML validator. This is also 

done by the VHDL generator in the KoskiGUI but it is better to validate the file as soon as 

possible. 

 

After the IP is packetized, it is added to the IP library. To create a library component with the 

Library Manager the developer needs to set the ID, name and the path for the component. The 

hardware codes along with the IP-XACT definition must be added to the component. Software 

drivers can also be added. 

 

When all of the required IP blocks are in the library, the developer proceeds to describe the HW 

platform with the Kactus tool. It has a very intuitive graphical interface where the developer 

simply adds the IP blocks and the connectors between them to describe the system. After the 

system is done, it will generate the necessary IP-XACT design needed by KoskiGUI. 
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In the next step of the integration flow, Quartus II is used to create a blank synthesis project. 

After this, KoskiGUI is used to run the necessary generators. These generators include the 

VHDL generator which as the name implies generates the necessary VHDL files required by 

the synthesis. More specifically it generates all of the VHDL files needed to connect the IP 

blocks in to a system. Compilation environment configurator and HW element ID setter also 

modify the VHDL files as is required by the functionality of the system. 

 

The final step in the hardware integration flow is the synthesizing and fitting of the VHDL files to 

the target FPGA. This is done with the Quartus II tool from Altera. 

 

 

3.1.3. Software integration flow 
 

The software integration flow has fewer phases which use FunBase specific tools as the 

software industry has long had good tools to automate the design flow of software. A figure 

illustrating the flow can be seen in Figure 3.5. The software and hardware integration flows also 

have some overlapping like the adding of the software drivers for the hardware IP blocks in 

Library manager. 

 

 

Figure 3.5 - Software integration flow 
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Version one of the FunBase SoC design flow can use three kinds of processing environments 

in the target system. These include a Nios II processor [nios11]  with an eCos RTOS [ecos11], 

a transport triggered architecture (TTA) processor [tta11] with no RTOS and a personal 

computer (PC) environment with an Intel x86 compatible processor running Windows. The PC 

environment is only used as a part of the target systems in this early stage of the SoC flow but 

as the FunBase project continues it will be replaced with an embedded processor board with an 

Intel Atom processor running a Linux RTOS. 

 

Actually, the eCos RTOS will not either be used in later revisions of the SoC flow as there is not 

a need to have multiple processors running a fully fledged RTOS. The removal of the eCos 

RTOS decreases unnecessary software overhead and thus the performance of the 

processor(s) is increased. Another improvement is achieved as the software run on the 

processor has smaller size. 

 

The software integration flow starts the same as the hardware one with the gathering of the IP 

blocks needed by the target system. These are then integrated into larger software blocks 

which are run by the different processors in the system. 

 

After this the RTOS environments are configured by the RTOS configuration tool in the 

KoskiGUI. And finally all of the software is compiled by the SW compilation tool. 

 

 

3.2. FunBase hardware platform 
 

Microteam [micro12] which is one of the FunBase partner companies designed a baseboard 

which can be used as a physical platform for the FunBase SoC design flow. The core of the 

FunBase baseboard is an Arria II GX FPGA chip manufactured by Altera [arria11]. It is a mid-

range FPGA designed for transceiver applications and offers up to 3.75 Gbps of input/output 

(I/O) bandwidth. As can be seen from Figure 3.6 the board has extensive amount of high speed 

interfaces to meet the requirements of a broad range of systems. Smaller and less complex 

boards can and will be later designed based on this baseboard. 
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Figure 3.6 - FunBase hardware platform 
 

 

3.3. Altera tools used in FunBase 
 

As the FPGA chips used at TUT are primarily manufactured by Altera there are several tools 

made by them that are used in the FunBase design flow. Many of them integrate easily to the 

flow but as can be read in the next section of this thesis there is one that does not. 

 

SOPC builder is a hardware design tool which is used to create SOPC sub-systems. These 

sub-systems comprise of one or multiple Nios II processors and the accompanying peripherals 

used by the processor(s). In short, SOPC builder can be described as a tool to create soft-core 

microcontrollers for Altera’s FPGAs. The graphical user interface (GUI) of the SOPC builder can 

be seen in Figure 3.7. A SOPC sub-system is created by adding IP blocks from the IP library 

section to the SOPC architecture view. In this view the blocks can be configured and mapped 

into memory regions seen by the CPU(s). The HDL and some configuration files for the system 

is created by clicking the generate button at the bottom of the GUI. Messages related to the 

generation and design of the system can be seen in the messages section. 
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Figure 3.7 - SOPC builder 
 

Quartus II is mostly used to synthesize and program the hardware design of a SoC to an FPGA. 

However, it is also a hardware design tool and it can be compared with the KoskiGUI tool 

excluding the software functionality. Like KoskiGUI, it can be used to integrate different tools for 

the SoC design flow. These tools can be either Altera’s own or third-party tools. A dialog 

showing the third party EDA tool configuration in Quartus II is shown in Figure 3.8. 
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Figure 3.8 - Quartus II EDA tool configuration 
 

Tools launched from Quartus II are used to integrate, design and verify the architecture of a 

single SoC that is synthesized to an FPGA chip. It can also be used to create the top level 

design of the SoC either with a graphical block diagram file or a text based HDL file. SOPC sub-

system(s) can be added to this top level design along with other IP blocks. An illustration 

showing Quartus II and its main sections can be seen in Figure 3.9. 
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Figure 3.9 - Quartus II 
 

Command line tools like nios2-download and nios2-terminal are used to debug the software on 

the Nios II processor(s). 

 

Altera’s SOPC builder is used to manually create SOPC systems which include one Nios II 

processor and IP blocks used by the processor. At the time of writing this thesis there have 

been four of these SOPC systems created for FunBase SoCs. These include three systems 

specifically made for Altera’s Stratix II development board and one for the lower end DE2 

development board. In these systems, a Nios II processor is used for fast processing with 

minimal amount of supporting IPs, a similar setup but with faster memory for the processor, a 

system with a slower clocked processor but more external communication interfaces and finally 

a similar system for the DE2 than the previous one. As can be clearly seen, this type of 

generation of multiple SOPC systems with each one differing little from the other leads to the 

result that each SOPC system has to be manually created just for one specific platform and this 

does not fit with the FunBase SoC design flow. Improvements to this SOPC builder integration 

issue are explored in the next sub-chapter. 
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3.4. Third party tools used in FunBase 
 

Initially, Nios II processors are used to run software within an eCos RTOS. This RTOS is 

configured and the software library components are generated manually with the ecosconfigtool 

[ecos11]. The eCos RTOS has to be configured and generated for each of the different SOPC 

systems. This leads to a similar problem as was earlier described with the SOPC system 

generation. Fortunately for the FunBase project, it has been decided that the eCos RTOS is not 

really needed and will be replaced with a software model without a fully fledged RTOS. 

 

In the future, the Nios II integrated development environment (IDE) is used to create the 

software library files. UCos II RTOS could also be used. Nios II IDE can be controlled by 

command line tools so integrating it to the FunBase SoC flow is fairly easy. 

 

 

3.5. Third party IPs used in FunBase 
 

These IPs include memory controllers, timer units, jtag-uarts, etc. Researchers at TUT have 

done some IPs which are used in the SOPC environment but they can also be used outside it 

with small modifications. 

 

All of the IPs provided by Altera require some kind of generation. A part of the IPs can be 

generated outside the SOPC environment with the Megawizard tool included in Quartus II but 

the rest have to be generated into a SOPC system. 

The SOPC IP blocks are manually designed by using the graphical user interface (GUI) of the 

SOPC builder. 

 

 

3.6. Improving the integration of Altera tools to FunBase 
 

Since the tools for the Altera corporation and the FunBase flow were developed separately, 

there is bound to be some overlapping between them. The best example of this overlap is 

Altera’s SOPC builder tool. 

 

The SOPC systems created with the SOPC builder tool cannot be modified directly by the first 

generation FunBase tools. Hence, they are treated as any other IP block the internal structure 

of which cannot be changed with the FunBase tools. It can be said that they have even less 

adaptability than most IP blocks because they do not even have parameters to configure like 

many IP blocks. 
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These two reasons make the integration of IP blocks with an Avalon switch fabric interface 

require more knowledge about Altera’s tools along with more work. To improve the situation, 

the tools have to be better integrated as a part of the FunBase SoC design flow. 

 

To better integrate the SOPC tool to the FunBase flow, SOPC blocks have to be customizable 

with the Kactus tool. An example illustration of how the presentation of a SOPC block would be 

changed in a future version of Kactus is given in Figure 3.10. The grey CPU block indicates the 

situation as of now and the blue one is how the block would look like in the new version of 

Kactus with the internal architecture of the SOPC block hidden. The big transparent block 

shows what the SOPC block would look like with the internal architecture revealed. By enabling 

the Kactus tool to customize the SOPC blocks, any unnecessary components within the blocks 

can be removed. This is also shown in the figure below. 

 

 

Figure 3.10 - Improving the integration of the SOPC builder to the Kactus tool 
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SOPC system configuration file so that the Kactus tool could build any SOPC system which can 

be created with the actual SOPC builder. 

 

 

3.6.1. SOPC builder integration approach one  
 

Many of the IPs used in SOPC systems can only be generated within one. To use them outside 

they must be first generated into a SOPC system. After this the generated HDL file for the 

particular IP can be used to instantiate the IP outside the SOPC system it came from. 

 

In this approach IPs and all their variations, which can only be generated with the SOPC 

builder, are generated into HDL files as was earlier described. These IPs are then packetized 

the same way any other IP is packetized for the FunBase SoC design flow. 

 

This way of dealing with the SOPC builder integration problem would unfortunately create other 

problems and limitations that would have to be dealt with. These IPs would have an Avalon 

interface but no Avalon bus and the required arbitrators. Fortunately the Avalon interface is very 

similar to the Wishbone interface so the IP blocks could be connected to a Wishbone bus in a 

pretty straightforward manner. Wrappers could also be made to interface them with a 

Heterogeneous IP Block Interconnection (HIBI) bus [sal01]. 

 

There would be one major limitation with this approach. The IPs could not be configured like 

they can be with the SOPC builder so that multiple variations would have to be made to 

compensate for this. For example, many variations of the Nios II processor with different cache 

sizes and other properties would have to be generated beforehand. Memory controller 

variations for each different type of external memory would also have to be made. Considerable 

time would also have to be committed to packetize all these components. 

 

For all these reasons, this approach would not obviously fit with the targets of the FunBase SoC 

design flow. 

 

 

3.6.2. SOPC builder integration approach two 
 

The second approach adds a new feature to the Kactus tool. The developer could add a 

configurable SOPC system to the Kactus project and decide what components would be 

generated into it. 

 

To enable the creation of this new feature, one large SOPC system would initially be designed 

but only one variation of each of the IPs would be placed in the system. This system would then 
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be treated as a starting point from which a modified SOPC system would be generated 

according to the developer’s decisions. 

 

After the developer had made the SOPC system along with the components outside it, the 

Kactus tool would then modify the base SOPC system configuration file and initiate the 

generation of this modified SOPC system. The modification would simply include three kinds of 

operations. First the Kactus tool could disable any unnecessary components, secondly it could 

make copies of the components and finally it could change the configuration parameters of the 

components. As a result, Kactus could make any SOPC system which included the components 

found in the base SOPC system. 

 

In this approach the Avalon bus would not have to be replaced and more importantly excessive 

time used for generating and packetizing the IPs could be avoided. Considerable work would 

still have to be done so that Kactus could make the required modifications to the SOPC 

system’s configuration file. 

 

 

3.6.3. SOPC builder integration approach three 
 

The last approach adds the ability to fully create a SOPC system configuration file to Kactus. 

This would include the most work of all of the three different approaches and it would not 

necessarily offer significant advantages over the second approach. 

 

 

3.6.4. SOPC builder integration conclusion 
 

As a conclusion, it can be said that the second approach is the one to go for. If it would not be 

sufficient for some reason, the work put to adding the SOPC system configuration file 

modification function to the Kactus tool could be continued and full generation of the 

configuration file could be achieved. 

 

 

3.7. FunBase case study 
 

To demonstrate the main capability of the FunBase SoC design flow an example system is 

created. As was earlier stated in this chapter, the main idea of the FunBase SoC flow is to treat 

parts of a system as functions rather than actual hardware or software components. This way 

the functions can be later mapped to the actual components based on the requirements and 

limitations of the target platform. 
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3.7.1. Image residual with different hardware architectures 
 

This case study deals with a system capable of producing a residual image of two input images. 

The residual of two images shows the differences between them. An illustration of this 

functionality is given Figure 3.11. 

 

 

Figure 3.11 - Calculation of a residual from two images 
 

Four different hardware architecture variations are created to demonstrate the function 

abstraction capability of the FunBase SoC design. The structure of these architectures is 

depicted in Figure 3.12. 

 

 

Figure 3.12 - Image residual with different hardware architectures 
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external SDRAM chip. The software implementation uses a Nios II processor with SDRAM and 

the mixed implementation uses a TTA processor with SDRAM. This specific TTA processor was 

developed at TUT and is generated from C software source files into a hardware accelerated 

version of the software. 
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4. IP information registers 
 

 

As was already discussed in the introduction for this thesis, traditional software simulation offers 

the possibility to examine signals through relative long time periods but extra effort is needed to 

create the simulation models for the whole range of hardware components. If the simulation 

models for the components behave the same way as their physical counterparts, the register-

transfer level (RTL) simulation provides a view to the system’s signals on a clock cycle level. 

But as the system is simulated on this level, the time needed to carry out a sufficiently long 

simulation can be measured in days or even weeks. This of course makes it practically 

impossible to iterate the verification process with these kinds of simulations, as was already 

noted. 

 

The other way currently to verify the behavior of a system is to use some kind of hardware 

probing. Altera provides a tool for this called the SignalTap II Logic Analyzer. With this tool, 

signals can be probed directly from an FPGA chip at runtime. There are though a couple of 

critical disadvantages with this method. Only a small group of signals over a short time period 

can be examined at a time due to the finite logic cell and routing resources of the FPGA chip. 

Also if the design of a SoC consumes nearly all of these resources it will be impossible to use 

this kind of probing. 

 

It would be good to have the means to record events and information from a physical prototype 

through long time periods [sal11]. 

 

To achieve this goal, the specification for these information registers, which are embedded to IP 

blocks, were developed for this thesis. These registers are added alongside the pre-existing 

ones and are filled with important information from the blocks and the system at run time. This 

information is used to check the IP blocks and the system for possible error events which may 

significantly aid the verification process. Information is also used to optimize the performance. 

Additionally the registers can be used to identify IP blocks and their place on a CPU’s address 

map. An illustration of what the architecture of an IP block with embedded IP information 
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registers (IIR) looks like is given in Figure 4.1. The bus interface is on the left. Information 

registers are distinct from the regular ones in this example and hence, separate logic for 

interface sharing (arbitrator) is needed. 

 

 

Figure 4.1 - IP block with embedded information registers 
 

A simplified test setup using the information registers is depicted in Figure 4.2. The setup 

includes a System-Under-Test (SUT), a data gathering system attached to it and a PC to 

analyze the data. 

 

 

Figure 4.2 - A test setup with IP information registers 
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4.1. Verification and optimization flow 
 

The flow for the verification and optimization process using the IP information registers is 

depicted in Figure 4.3. In this flow, a set of usage cases are defined from the requirements 

specification for the system. Possible optimization areas for the system and the IP blocks are 

explored and defined from the usage cases. And if any problem areas can be found they are 

also defined. After this, concrete plans for test runs for the system are specified. 

 

 

Figure 4.3 - Verification and optimization flow with IP information registers 
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A version of the test setup with a dedicated IP information bus could be later designed to gather 

information which requires continuous monitoring along with a high data bandwidth. 

 

 

4.2.1. Register and interconnection types 
 

The term register is used loosely in this thesis as there can be multiple physical registers or 

even on-chip memories behind them. A register is only used to describe an entry point for the 

underlying memory. 

 

IP information registers come in three main types which include regular, fifo and special header 

registers. These registers are described in Table 4.1. 

 

Table 4.1 - IP information register types 

Register type R/W/C Description 

Regular R/W/C A single word 

Fifo 
R 

The number of words is known and only words 

containing the actual values are stored 

IIR header 
R 

The words are stored normally and a word with all 

bits set to one indicates the end of the register 

 

Regular registers can be subjected to three kinds of operations which include reading (R), 

writing (W) and clearing (C) the information on the register. A register can be either writable or 

clearable but not both. A register’s content is cleared by writing any word to the register. No 

specific word is defined to reduce the amount of needed logic. 

 

Fifo registers are associated with the logging capabilities in certain information registers. These 

fifo registers act as read only sources for the data stored by the logging logic. Finally the read 

only IIR header register has special functionality which allows it to change its contents during 

sequential accesses. IIR header registers are further described in the next sub-chapter. 

 

The register map of an IIR enabled block is divided into three different parts as can be seen in 

Figure 4.4. These parts include the IP block’s original registers, the general information 

registers and the optional information registers. The structure and functionality of these 

registers are described in later sub-chapters. 
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Figure 4.4 - IP information registers in IP block’s memory space 
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Table 4.2 - General information register layout 

Offset R/W/C Name Description 

0x00 R IIR1 header A 32-bit header that inverts its byte ordering on 

reads 

0x01 R IIR type 0: internal IIR, 1: external IIR 

0x02 R IP reg. offset / address Memory pointer in Figure 4.4 

0x03 R/W IP reset Can be used to reset the IP-block 

0x04 R Instance number Number to distinguish different instances of IIR 

blocks 

0x05 R/W Mutex Used in multi-master systems 

0x06 R VLNV 

Four ascii strings separated by null bytes … R ... 

0xXX R VLNV 

0xXX R Extra information Optional information, fill with zeros if not used 

 

The arbitrary placement of this address space is enabled by the IIR1 header register which is a 

special read only register used to identify the address space. This register returns a 32-bit ascii 

string reading “IIR1” on first access, and a “1RII” string on second access. Successive accesses 

will repeat the same alternating pattern. Using this unique characteristic, a processor can scan 

its full address space looking for IIR enabled IP blocks. 

 

The second register contains three bits of information about the IIRs and the parent block. If the 

first bit on this register is one, the IIR block is external but otherwise it resides inside the parent 

IP. Secondly, the parent IP has accessible registers if the second bit is one. For example a Nios 

II CPU has not got any registers accessible outside and therefore its external IIR block has this 

bit set to zero. Lastly, if the third bit of this register is set to one the parent IP can be set to a 

reset state and the reset register on the IIR block is enabled. The SRAM controller used in this 

thesis cannot be set to a reset state and has this bit set to zero. 

 

The information on the previous register determines how the third register is interpreted and it 

either has an IP register offset or an address. If the IIR block is internal this register provides the 

offset pointing to the parent block’s registers otherwise it provides a direct address to the 

registers. The direct address has to be set manually before synthesis. If the IP block has not got 

any accessible registers this register is set to zero. 

 

An IIR enabled IP block has usually two reset signals. A system reset which comes from 

outside of the IP and an internal IP reset signal coming from the IP reset register. The fourth 

register is this reset register which can set the parent IP block to a reset state for example to 

recover from an error event. The reset is active high and it should normally be set to low at 

system reset. 
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If the IIR block of an IP is accessed by more than one component on the system, a multiple 

access mutex has to be implemented on that block. The mutex is the fifth register and it has to 

be used when accessing registers which operation has to be uniform and to ensure that when 

one block (e.g. a Nios II CPU) is accessing the registers no other component will interfere with 

the access. 

 

The VLNV registers have four ASCII strings of basic information concerning the IP block and its 

creator. The strings are null terminated and include the vendor name, the library name, the 

name of the component as well as the component’s version. 

 

Lastly, the extra information registers are optional and can be used to store additional 

information pertaining to the parent IP or the IIR block. The string on the registers is null 

terminated and has to be filled with zeros if not in use. Useful information on these registers 

could for example be the design date of the parent IP. 

 

 

4.2.3. Optional information registers 
 

The optional information registers reside right after the general information registers and 

accommodate registers specific to the IP block. These registers mainly provide functionality to 

verify and optimize the IP block and the system. Other useful functions like usage statistics are 

described in Table 4.3. 

 

Table 4.3 - Optional information register usages 

Usage Example 

Verification 

Log to examine CPU crashes 

Number of faulty write or read accesses done to IP block 

Clock cycles without write or read accesses done to IP block 

Optimization Log to optimize shared memory usage 

Statistics 

Number of write or read accesses done to IP block 

Number of cycles/frames from reset 

Bytes written to frame/line buffer in a frame/period of frames (eg. fill rate) 

Log to store unused frame/line buffer cycles 

 
The log registers which can be present in the optional information registers are described 

further in chapter 6. 

 

 



4. IP information registers 30 

 

4.3. Supporting IP blocks 
 

There are five different kinds of supporting IP blocks defined in this specification: the data 

gathering unit, data transfer unit, data buffer, system IIR and the external IP block monitor. 

These were previously illustrated in Figure 4.2. 

 

 

4.3.1. Data gathering unit 
 

To transfer the data from the IP information registers to the developer, a data gathering 

mechanism has to be implemented. There are basically two different approaches to 

implementing this mechanism. 

 

Both approaches include a data gathering unit on the FPGA and a connection from this unit to 

the PC. The first approach sends data continuously to the PC whereas in the second approach 

the data is written to a data buffer during the monitoring and sent to the PC after the monitoring 

ends. The second approach might be the only viable one if the data bandwidth for the gathered 

information is too large to be sent in real time. Unfortunately this approach is not always 

practical in systems meant for the end user market. 

 

The data gathering unit can either be a processor or a custom data gathering component. 

 

 

4.3.2. Data transfer unit 
 

To transfer the data to the PC and the developer, a connection is naturally required for it. 

Additionally to interface this connection to the FPGA, a controller for the connection has to be 

included. These two blocks form the data transfer unit. 

 

Depending on the bandwidth and other requirements for the connection, some of the following 

connections can be considered: a USB connection with a virtual JTAG UART, a USB 

connection with a proprietary transfer protocol, a serial RS232 connection or an ethernet 

connection. JTAG UARTS and RS232 connections are traditionally quite slow (in the order of 

100 kbs) [tex02] and therefore are not sufficient for many systems. A USB connection on the 

other hand can vary from the slow 1.0 standard (1.5 Mbs) to the ultra high speed standard of 

3.0 (4.8 Gbs). As the 3.0 standard is quite new and not mature, the transfer speed of a USB 

connection is practically limited to the speed of the 2.0 standard (480 Mbs) [usb11]. An ethernet 

connection can have a maximum speed varying from 10 Mbs to 10 Gbs. Though ethernet 

controllers for the basic customer market support only up to 1 Gbs speed [eth08]. 
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4.3.3. Temporary data memory 
 

The temporary data memory comprises of an actual physical memory and its controller. The 

unit is used if the gathered data is sent to the PC after the monitoring is done. Of course the 

system must have a memory with extra space and bandwidth on it. Considering the latter two 

requirements, this will not usually be plausible to be used on a product that is used by the end 

user. 

 

This unit can be really useful when a system is verified or optimized on a development platform 

and the collected information requires high data bandwidth. It subsequently removes the need 

for a high bandwidth connection to the PC because the data does not need to be transferred in 

real time. 

 

 

4.3.4. System IIR 
 

A system IIR is a special IIR block that has information pertaining to the system and also 

provides services to regular IIR blocks. In the first version of the IIR specification, it provides a 

service with its embedded system counter. 

 

The system counter is very basic in its functionality but it still offers one of the main functions of 

the IP information registers which is the ability to store timestamps in the log registers. It is 

constructed of only one 32 or 64-bit wide counter. This counter is set to zero when the system 

reset is active and incremented by one on every clock cycle when the system reset is inactive. 

The counter is then connected to all of the IIR blocks that have log register(s). 

 

Additionally the VLNV registers on the system IIR can be used to discern if a program run on 

the system’s CPU was meant for the system, as is done on the first part of the usage case in 

chapter six. This functionality can be especially useful for developers dealing with FPGAs who 

can accidentally use either a wrong FPGA configuration or a wrong program. 

 

 

4.3.5. IP monitor 
 

An additional IP monitor is needed for each IP block that does not have information registers 

and cannot be modified for some reason. For example a Nios II processor can only be 

monitored by an external IP monitor because the HDL of the Nios II processor is encrypted and 

therefore not modifiable. 
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This kind of an IP monitor implements all the required information registers. The VLNV registers 

of such a monitor should be filled with information associated with the monitored IP block. 
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5. Basics of computer graphics 
 

 

One needs to know the basics of computer graphics to understand how IP information registers 

can be used to optimize a 2D graphics system in the case study for this thesis. There are many 

different kinds of methods and hardware designed to generate computer graphics, but there is a 

set of basic concepts behind them [ake08, eck01]. 

 

This chapter describes a part of these concepts along with the basic functionality of computer 

monitors and the graphical elements used in line buffer based graphical processing units 

(GPU). 

 

Every graphics system consists of five main components. These include the graphics memory, 

blitter, scene memory, image buffer and the digital to analog converter (DAC). These 

components are shown in Figure 5.1. The contents of the graphics memory and image buffers 

are only partially visible to save space. 

 

 

Figure 5.1 - Image generation methods 
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5.1. Color information 
 

Every pixel on an image buffer has to be described as a binary number. The color of the pixel 

can either be directly read from this number or can be derived from this number using a color 

palette [eck01]. Many of the devices intended for customer markets from the 1970s to the start 

of the 1990s recorded the pixels’ color information as index number tied to a color palette. 

Figure 5.2 shows 4-bit color palette with 16 different colors. 

 

 

Figure 5.2 - Example of a 4-bit color palette 
 

The colors of pixels are usually coded in RGB format where every color consists from a 

combination of three base colors (red, green and blue). If every one of these base colors is 

described with 8 bits, the pixels colours consists of a combined 24 bits which can define 16 

million of different colors. This color format is in wide use in modern graphics systems. 

 

 

5.2. Image buffers 
 

An image buffer is an area of memory where a processor or a GPU can store a part or the 

whole displayed image. The GPU reads this image buffer in the pace the processor has 

instructed and sends the color information to the DAC. The DAC then converts the information 

into an analog signal that is relayed to the monitor. 

 

Digital circuits that generate pixel based 2D images can be divided into two categories based 

on which kind of an image buffer it uses for the generated image. As can earlier be seen in 

Figure 5.1, these buffers include the line and the frame buffer [adv84]. Both of these buffers 

have advantages and disadvantages associated with them. 

 

Japanese game company Namco developed the first line buffer based graphics system for the 

arcade game Galaxian in 1980 [adv84]. The 8 and 16-bit videogame consoles used mainly this 

technology until the early 1990s. This buffer type is still used in some modern video signal 

processors like the YGV629 [yam08] from Yamaha and MB88F332 [fuj09] 'Indigo' from Fujitsu. 

It needs less memory than the frame buffer and can be implemented in onchip-memories, but it 

also makes the generation of the image harder and more restricted. 

 

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15



5. Basics of computer graphics 35 

 

A frame buffer which stores the entire image, makes the image generation easier and less 

restricted than with a line buffer. But unlike the line buffer it cannot be practically implemented 

in a SoC and needs an external memory. This makes it the more expensive approach. 

 

Nowadays memories are fairly cheap and modern day GPUs use mainly frame buffers to 

generate the displayed image. More specifically they usually use double buffering to achieve a 

clean looking moving image. A GPU implementing double buffering writes the next displayed 

image to one buffer while the image currently being displayed is read from the other buffer. 

These two buffers are then switched as the next image is started to be displayed. The same 

kind of double buffering can also be used with line buffers. 

 

Image size directly defines the needed line or frame buffer size. Table 5.1 shows the double 

buffered line and frame buffer sizes for four common video standards [vga, atsc08, ebu10]. 

 

Table 5.1 - Line and frame buffer sizes 

Video 
standard 

Image 
dimensions 

bytes/pixel 
line buffer 
size* (bytes) 

frame buffer 
size* (bytes) 

proportional 
frame buffer 
size 

VGA 640*480 4 5 120 2 457 600 480 

SVGA 800*600 4 6 400 3 840 000 600 

HD 720 1280*720 4 10 240 7 372 800 720 

HD 1080 1920*1080 4 15 360 16 588 800 1 080 

* double buffered 

 

For example a VGA image is comprised of 0.3 mega pixels in total. And if one pixel is described 

with three color values and one transparency value with each value requiring eight bits of 

storage, a double buffered frame buffer would need 2400 KB of space. A double buffered line 

buffer would in the other hand require only 5 KB. 

 

 

5.3. 2D graphics elements 
 

Hardware accelerated 2D graphics systems use mainly two different kinds of graphics 

elements. These are the sprites and the tile arrays. 

 

 

5.3.1. Sprites 
 

Sprites are rectangular shaped images or parts of them, which the GPU writes into the image 

buffer based on the instructions made by the controlling processor [eck01]. Old videogame 

consoles usually had sprites which size was limited [nes04, snes04, gen98]. Their size was 

considerably smaller than in the modern 3D GPUs, although their dimensions were similarly 
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powers of two in size. The size for example could have been 8x8 or 64x64. Figure 5.3 shows a 

character made of 23 8x8 sprites. 

 

 

Figure 5.3 - A character made of 8x8 sprites 
 

 

5.3.2. Tiles 
 

Like sprites, tiles can for example be 8x8 pixels in size, but unlike sprites they cannot be placed 

in arbitrary coordinates [nes04]. They are placed in an orderly array like the one depicted in 

Figure 5.4. 

 

 

Figure 5.4 - A 16x10 tile array made of 16x16 tiles 
 

The figure has a tile array made of 16x16 tiles in a formation that has 16 tiles in the horizontal 

and 10 tiles in the vertical plane. As can be seen in the figure they are commonly used as a 

background graphic. 

 

 

5.4. Graphics memory, etc. 
 

The graphics memory is where all the necessary graphical building blocks reside. These 

building blocks are used to create the image according to the instructions held in the scene 
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memory. The instructions include information about the position, color palette and other 

properties of each of the used building blocks. Blitter is the component which reads graphics 

data from the graphics memory according to the instructions on the scene memory. This data or 

pixels are then written to one of the two different buffers which feeds the video DAC. The 

analog video signal is then transmitted to the monitor which displays the generated image. 

 

 

5.5. Video signals 
 

The image displayed on a monochrome cathode ray tube (CRT) monitor is physically drawn by 

sweeping an electron beam across the surface of the monitor from left to right [tpu]. An 

illustration how this is done is given in Figure 5.5. 

 

Figure 5.5 - Image displayed on a CRT monitor 
 

When the beam sweeps the surface, it energizes specific pixels one line at a time. As the end 

of a line or far right-hand side of the screen is reached the beam is turned off and it is moved to 

the beginning of the next line. After the entire screen is swept like this, the beam is turned off for 

last time for that frame and it is returned to the beginning of the first line on the screen. This is 

then repeated for multiple consecutive frames to form a moving image. 

 

Three analog signals are needed to control the intensity and position of the electron beam on a 

monitor. These signals include the video luminance, horizontal synchronisation and vertical 

synchronization signals. The levels of these signals through time are represented in Figure 5.6 

[jav]. The upper graph shows the luminance and horizontal synchronization signals for one 
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vertical line whereas the lower graph shows the luminance and vertical synchronization signal 

for a single frame. 

 

 

Figure 5.6 - Monochrome video signals 
 

The video luminance signal is responsible for controlling the intensity of the beam which in turn 

creates the visible image. The horizontal and vertical synchronization signals control the 

horizontal and vertical retrace of the electron beam. More specifically the retrace of the beam 

happens during the horizontal and vertical blanking periods shown in the figure. 

 

To display a color image, three signals are required for the three main colors which include the 

red, green and blue colors. 
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6. IP information register case study 
 

 

This chapter is dedicated to examining the IP information registers in a practical environment. 

To do this, a test setup is devised with a 2D graphics system as the SUT and a data gathering 

system attached to it. These two systems are synthesized to the FPGA chip on the DE2 board 

[de2] as can be seen in Figure 6.1. The setup is used to examine three usages for the IP 

information registers which include the identification of IIR enabled IP blocks as well as the run-

time gathering of information to verify and optimize the target system 

 

 

Figure 6.1 - Case study test setup 
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The main components of the SUT, or the 2D graphics system, are a Nios II processor, an XD 

GPU [arvio11], a shared SRAM controller, which is used by the processor and the GPU, and an 

Avalon bus to connect the components. 

 

The data gathering system also includes a Nios II processor which is connected to a SDRAM 

controller and a JTAG UART. Additional supporting blocks include an external Nios II monitor 

which is used to probe the processor’s activity on the SUT and a system IIR. Both of these 

systems are operated by a clock running at 100 MHz. 

 

Before the IIR usages are examined in detail, the physical hardware and the IP blocks used in 

the FPGA are described in the next three sub-chapters. 

 

 

6.1. Test setup hardware 
 

 

6.1.1. DE2 board 
 

Terasic’s DE2 board is the main component in the test setup. It is the successor for the DE1 

board. The DE2 board is a versatile and low cost development board targeted at students who 

study digital and computer systems and embedded programming. It can be used to illustrate 

fundamental concepts but also prototype advanced designs in multimedia, storage and 

networking applications. 

 

At its core, it has a Cyclone II FPGA chip [cyc05] with over 33 thousand logic elements and and 

almost 500 thousand bits of on-chip memory. The board also incorporates four different kinds of 

memories which include a SRAM, a SDRAM and two flash memory chips. It also has an 

extensive range of digital and analog I/O connections which enable its use in various 

applications [de2]. The board layout and the main components can be seen in Figure 6.2. 

 



6. IP information register case study 41 

 

 

Figure 6.2 - DE2 development and education board 
 

At the time of writing this thesis, the price of the board for commercial use was $495 and $269 

for academic purposes [de2]. The lower price for academic purposes is enabled by Altera 

including the board in its university program. 

 

 

6.1.2. Samsung SyncMaster 957MB monitor 
 

An old 19 inch Samsung CRT monitor is connected to the DE2 board. The monitor is used to 

verify that the 2D graphics system is working properly while data is gathered from the IP 

information registers. 

 

 

6.2. Altera IPs used in the test setup 
 

6.2.1. Nios II processor 
 

The Nios II [nios11] processor is Altera’s own configurable 32-bit soft-core processor which is 

the successor to Altera’s Nios processor. The older processor could be synthesized either as a 

16 or 32-bit processor. Both of these processors are soft-core, which means they have not got 

a fixed netlist and can be targeted to any FPGA made by Altera. The Nios II processor is also 

configurable so that it can be customized to the target system by adding or removing features 

from it. 

 

The Nios II processor has three cores to choose from. These include the fast, standard and the 

economy core from which the fast has the highest and economy the lowest performance. 
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Two Nios II processors are used in this case study. The first processor, which uses the fast core 

and has 4 kByte data and instruction caches, is used on the 2D graphics system to run a 

graphics demo. The second processor, which uses the economy core with no caches, is used 

on the data gathering unit to examine the IIR enabled IP blocks. 

 

 

6.2.2. SDRAM controller 
 

A SDRAM controller connected to an 8MB SDRAM chip [icsi00] is used in the data gathering 

system. It is used as program and data memory for the second processor as well as to store the 

data from XD GPU’s log register. 

 

 

6.2.3. FLASH controller 
 

An Altera provided CFI FLASH controller connected to a 4MB FLASH chip [spa05] is used as 

boot memory for the two processors. It also contains the graphical elements used with the XD 

GPU. 

 

 

6.3. IPs designed for the test setup 
 

All of the IPs designed for the test setup are fitted with IP information registers. 

 

 

6.3.1. Nios II monitor 
 

As the name suggests, the Nios II monitor is used to probe the activity of a Nios II processor. 

And as was already mentioned in chapter four, the source code of the Nios II processor is 

encrypted. This leads to the reality that the information registers cannot be placed inside the 

processor and the monitor has to be external. 

 

The register layout for the monitor itself can be seen in Table 6.1. Unused registers are marked 

with a dash. The monitor has all the required IP information registers as well as eight optional 

registers, of which three are used for creating logs of the processor’s activity. 
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Table 6.1 - Nios II monitor information register layout 

Offset R/W/C Name Description 

0x00 R IIR1 header A 32-bit header that inverts itself on reads 

0x01 R IIR type value: 101 

0x02 - - - 

0x03 R/W IP reset Can be used to reset the Nios II CPU 

0x04 R Instance number value: 0 

0x05 - - - 

0x06 R VLNV  
vendor:TUT,  library:TUT, name: Nios II monitor, 

version:  0.2 
… R ... 

0x0C R VLNV 

0x0D - - - 

0x0E R/W Log register pointer  

0x0F R/C Reads Number of reads done to the Nios II monitor 

0x10 R/C Writes Number of writes done to the Nios II monitor 

0x11 R/C Faulty reads Number of reads with faulty address 

0x12 R/C Faulty writes Number of writes with faulty address 

0x13 R/C CPU longest wait 
Longest time in cycles the CPU has waited for 

memory access 

0x14 R/C CPU mem stall log 
Log storing the events when the CPU was stalled 

waiting for memory access 

0x15 R/C CPU I rd log 
Log storing the events when the CPU was reading 

instructions from external  memory 

0x16 R/C CPU D rw log 
Log storing the events when the CPU was writing 

or reading data to or from external  memory 

 

These types of log registers are further described in the next sub-chapter.  

 

 

6.3.1.1. Log registers 
 

There are two main types for the log registers. The first one is an event based in which one 

event includes a timestamp and the accompanying data for the event. The accompanying data 

can be excluded if the event log register stores only the timestamps of an event and the event 

can be identified implicitly. The second one is a periodic log with a custom sized log interval and 

only the data is stored for the intervals. For example an error log is event based and a utilization 

log is periodic. 
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The logging functionality can be controlled by writing specific words to specific registers. The 

logging can be disabled, enabled, cleared and the log mode can be set. The log register 

commands are described in Table 6.2. 

 

Table 6.2 - Log register commands 

Code Command Description 

0x00 disable logging - 

0x01 enable logging - 

0x02 clear the log - 

0x03 disable automatic clear Disables automatic clearing of log contents after a full 

read 

0x04 enable automatic clear Enables automatic clearing of log contents after a full 

read 

0x05 enable linear log mode - 

0x06 enable fifo log mode - 

0x07 read log memory Next reads will read the log’s contents 

0x08 read log status Next reads will read the log’s status 

 

 

Table 6.3 - Log status structure 
 

 

 

* log size = 128 words 

 

The log mode of these registers can be set to either a linear mode or a FIFO mode. In the linear 

mode, the memory reserved for the log is filled from the beginning and when the end has been 

reached the logging is stopped. In the FIFO mode, the memory is used as a FIFO so when the 

whole log memory is filled, the values at the beginning of the log will be replaced with new 

ones. 

 

There is a possibility that a component reading an event based log can miss data by first 

reading the entire log and after this manually clearing it. This happens because additional 

events can be written to the log during the clock cycles after the log is read and it is cleared. To 

ensure that no logged data is lost by clearing the log manually, an automatic clear after a full 

read can be enabled. 

 

b31..b11 b10..b03* b02 b01 b00 

- log fill amount log overflow log auto clear log enable 
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The content for an event based log is described in Table 6.4. The example logr shown in the 

table has eight words of data for each event and there are 32 events in the log. The contents of 

a periodic log described in Table 6.5 . 

 

Table 6.4 - Example of event based log content 

Event Word Content 

0 

0 timestamp 0 

1 data 0 [1/8] 

2 data 0 [2/8] 

… … 

 8 data 0 [8/8] 

1 

9 timestamp 1 

10 data 1 [1/8] 

… … 

16 data 1 [8/8] 

… … … 

31 256 data 31 [8/8] 

- 257  

 

Table 6.5 - Example of periodic log content 

Period Word Content 

0 

0 data 0 [1/8] 

1 data 0 [2/8] 

… … 

7 data 0 [8/8] 

1 

8 data 1 [1/8] 

… … 

15 data 1 [8/8] 

… … … 

31 255 data 31 [8/8] 

- 256  

 

 

6.3.2. XD GPU 
 

The XD GPU is a VGA display controller and a 2D graphics processing unit (GPU) which is still 

early in development [arvio11]. It is inspired by old video game consoles and their pixel 

processing units (PPU), and has a fixed resolution of 640x480. Unlike today’s GPUs, the PPUs 
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did not have frame buffers and the graphics were generated at the same time the pixel line was 

displayed on the television or monitor. 

 

XD GPU uses only two line buffers to store the generated graphics. The line buffers are used 

the same way as double buffered frame buffers are used. The next line of graphics is generated 

at the same time as the previous one is being displayed. 

 

Information registers were added to the GPU after its design. Besides the required registers, 

the IIR block has registers to log the activity of the CPU’s and GPU’s access to the shared 

SRAM. This log functionality is used in the third part of the case study. The register layout for 

the IIR block can be seen in Table 6.6. 

 

Table 6.6 - XD GPU information register layout 

Offset R/W/C Name Description 

0x00 R IIR1 header A 32-bit header that inverts itself on reads 

0x01 R IIR type binary value: 110 

0x02 R IP offset value: - 0x1800 

0x03 R/W IP reset Can be used to reset the XD GPU 

0x04 R Instance number value: 0 

0x05 - - - 

0x06 R VLNV 
vendor: liHard,  library: gfx, name: xd_gpu, 

version:  0.2 
… R ... 

0x0B R VLNV 

0x0C - - - 

0x0D R Frames from reset Incrementing frame number starting from exit of 

reset state on the main FSM (not system or IP 

reset) 

0x0E R/C Faulty writes Number of writes with faulty address 

0x0F R/C Faulty reads Number of reads with faulty address 

0x10 R/W Frames to capture Frames to capture on the log 

0x11 R/W Log mem. begin Start address for the log 

0x12 R/W Log mem. end End address for the log 

0x13 R/W Log status bit 0: log active, bit 1: fifo overrun 

 

 

6.3.3. SRAM controller 
 

As the usage of SRAM chips is very straightforward, they really do not need fully fledged 

memory controllers for operation. But in the case of this 2D graphics system where two 
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components have to have access to a 512 kB SRAM [issi01], a controller was implemented 

which has the logic to arbitrate the access rights to the memory. 

 

There is a SOPC memory controller for the SRAM chip on the DE2 provided by Terasic, but this 

“controller” can only use the chip at 50 MHz which is half of the full 100 MHz frequency the chip 

can operate under. The chip can operate at full speed by adding extra timing information for the 

Quartus II fitter and generating a 5 ns write pulse. 

 

Memory controllers normally do not have registers which to configure and have only one 

address space which spans the whole of the underlying memory. Therefore it was logical to 

house the information registers for the controller on a whole new Avalon slave port, while 

retaining the other port solely for the underlying memory. The layout for the information 

registers can be seen in Table 6.7. 

 

Table 6.7 - SRAM information register layout 

Offset R/W/C Name Description 

0x00 R IIR1 header A 32-bit header that inverts itself on reads 

0x01 R IIR type binary value: 000 

0x02 - - - 

0x03 - - - 

0x04 R Instance number value: 0 

0x05 - - - 

0x06 R VLNV 
vendor: liHard,  library: storage, name: 

sram_2x_access, version:  0.2 
… R ... 

0x0E R VLNV 

0x0F - - - 

0x10 R/C Mem. writes Writes done to the SRAM (lower bytes of value) 

0x11 R/C Mem. writes Writes done to the SRAM (upper bytes of value) 

0x12 R/C Mem. reads Reads done to the SRAM (lower bytes of value) 

0x13 R/C Mem. reads Reads done to the SRAM (upper bytes of value) 

 

 

6.4. Test setup software 
 

The test setup has four different programs, of which maximum of two are run at a time. The 

program run on the 2D graphics system is a simple graphics demo which uses about 50% of 

the fill rate on the XD GPU. The demo utilises two tile arrays and 256 moving sprites. An 

artificial work load was also added to the demo to induce data cache flushing and loading 

between frames. A screenshot of the demo can be seen in Figure 6.3. 
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Figure 6.3 - Screenshot of XD GPU demo 
 

The three other programs are run by the processor on the data gathering unit and are used to 

gather the required data for the three different parts of the case study. Additional information 

about these programs can be read in the case study that is described in the next sub-chapters. 

 

 

6.5.  Examining IP information register usages 
 

This case study is divided in to three parts where the main three usages of the IP information 

registers are examined. The first part examines the use of the IIR1 header register which can 

be used to identify IP blocks by scanning a CPU’s address space. The second part peers into 

how a log register can be used to discover SRAM timing problems. And finally a group of log 

registers are examined which store the CPU’s and the XD GPU’s usage patterns of the shared 

SRAM, which is then used to optimize the usage of a shared memory. 

 

The test setup for all of these parts is wired so that the Nios II monitor’s IP reset register is set 

to one at system reset. And as this IP reset controls the reset state of the first processor, the 

processor is left in a reset state until the second processor frees it by writing a zero to the Nios 

II monitor’s reset register. This leaves the CPU on the data gathering system to control the 

examination process, while the first CPU just provides a practical usage case which to examine. 
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6.5.1. Scanning for IIR enabled IP blocks 
 

This usage part is the simplest and demonstrates the use of the identification features on the 

IIR blocks. The first processor is left in a reset state as a program is run on the second one 

which scans its full address space for IIR enabled IP blocks. After the program has scanned the 

address space, it confirms that the program being run matches the system it is run on. This is 

done by comparing the VLNV information of the system which is stored in software with the one 

stored in hardware. The hardware counterpart is found on the system IIR as is described in the 

end of chapter four.  Full address space for the second processor is described in Table 6.8. 

 

Table 6.8 - Address space for the data gathering unit’s Nios II CPU 

address Name Description 

0x00001800...0x00001FFF JTAG debug module Used to debug programs 

0x01000000…0x010001FF onchip memory Used as interrupt memory 

0x01000200…0x0100023F Timer 64-bit cycle accurate counter 

0x01000240…0x01000247 JTAG UART Used for debug printing 

0x02080000…0x0208007F SRAM IIR port Port to access SRAM IIR block 

0x03000000…0x037FFFFF 8MB SDRAM Main memory for second CPU 

0x04000000…0x053FFFFF 4MB FLASH memory Boot memory for both CPUs 

0x05000000…0x05003FFF XD GPU 2D GPU 

0x06000000…0x060000FF Nios II monitor External IIR block for first CPU 

0x06000100…0x0600017F System IIR Holds information for the system 

 

 As this address space is scanned, one would except to find four IIR blocks. These are the ones 

in the XD GPU, the SRAM controller, the Nios II monitor and the system IIR. But Altera’s Avalon 

bus mirrors some addresses, and as a result each of the four IIR blocks are found in the 

address space 32 times. To counter this, the program searching for the blocks keeps track of 

their instance numbers and discards any mirrors. 

 

The address space for a Nios II processor is 2GB in size. The scan for this particular processor 

lasts about 3 minutes and 44 seconds, which in doubly is affected by the large address space 

and the fact that slow components like the FLASH memory are mirrored several times. 

 

A short printout of the program can be seen in Figure 6.4. 
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Figure 6.4 - Case study part 1 printout 
 

This usage part clearly shows that even with an interconnect like Avalon, which by its design 

mirrors parts of its address space, can be successfully scanned for IIR blocks without crashing 

the scanning program. 

 

 

6.5.2. Determining memory related timing problems 
 

As the verification of the different individual components in the system has been earlier made 

by simulating them on test benches in ModelSim, the system as a whole still has to be verified. 

This verification can be aided by adding IP information registers which monitor and log the 

events in the system and its components at run time. These logs can be later analysed for any 

error events. 

 

For example, the operation of a SRAM chip has to be monitored on an actual physical system 

in a real environment so that possible timing related problems can be sorted out. If there are 

timing problems with the SRAM and some of the accesses done by the CPU are not completed 

correctly, the program run by the CPU will most likely crash. The developer can observe the 

crash by seeing that the output for example coming from a JTAG UART or, like in the 2D 

graphics system, from the monitor connected to the DE2 board has stopped or that it is 
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corrupted. The crash event can be seen in greater detail by using information registers to 

monitor certain signals on the FPGA. 

 

If the CPU has crashed, the program execution might jump to a random memory location which 

does not contain any code. If this happens, it can safely be said that the occurrence of this 

abnormality was likely caused by a memory error. To see if a soft core CPU is reading 

instructions from an incorrect memory address, the program counter of the CPU must be 

inspected. But as the HDL source code of the Nios II processor is encrypted, the only way to 

directly monitor the operation of the program counter is by using the SignalTap II logic analyzer 

found in the Quartus II software. As this analyzer is run outside of the FPGA, the program 

counter address has to be monitored indirectly outside of the CPU. Fortunately the SOPC 

system’s HDL file is not encrypted, so the filling of the instruction cache and therefore the 

program counter addresses can be seen by monitoring the instruction master port’s read 

address. 

 

Additionally, as the information register to monitor this cannot be placed on the Nios II CPU, an 

external monitor block for the CPU was made. The use of this monitor is further explored in the 

next sub-chapter of this thesis. 

 

There are also other means to monitor the operation of the CPU. Initially, there were errors in 

SRAM timing which crashed the CPU. The crash was detected by monitoring cache fillings and 

flushes which should go on and on all the time.  If the filling and flushing has stopped it can be 

safely said that the program has crashed. A watchdog counter can be implemented in an 

information register that counts up when there is not any filling or flushing of the caches and it 

can be reset to zero when there is. So if the counter reaches a predetermined high value, it can 

be said that the program has crashed and therefore there can be a problem with the SRAM 

timings. This predetermined value can be chosen based on the external memory usage pattern 

of the cache. 

  

The filling and flushing of the caches must be determined by monitoring the data and instruction 

master ports read and write signals. If no direct memory accesses to the SRAM are made, the 

only accesses through these two master ports are the filling and flushing of the caches. 

 

 

6.5.3. Verifying SRAM timings 
 

The second part of this case study examines the use of the aforementioned log registers which 

store the access pattern and addresses of a processor’s instruction port. In this part, both of the 

test setup’s processors are used. The one on the 2D graphics system is used to run a graphics 

demo, while the second processor is used to monitor the first one with the Nios II monitor. 
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Certain assignments on the Quartus project synthesising the system were disabled to induce 

timing problems with the first processor’s access to the SRAM. This was done to examine this 

particular usage case relating to timing problems. 

 

An illustration visualizing the sample points used with the Nios II monitor is presented in Figure 

6.5. The simplified illustration shows the internal structure of the Nios II CPU, the SRAM 

controller and the external monitor. The signals between the sample points and the monitor 

were able to be created simply by editing the generated top level verilog file of the SOPC sub-

system. 

 

  

Figure 6.5 - Monitoring the Nios II CPU 
 

When the second CPU is started, it first enables the log register for monitoring and after that 

releases the first CPU to execute its program. But as the SRAM is induced with artificial timing 

problems, the graphics demo visibly crashes. This can be examined in further detail by 

inspecting the log data. A part of the log at the crash time is presented in Table 6.9. 
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Table 6.9 - Log data during crash 

cycles from reset cpu inst. read cpu inst. addr 

21 387 192 1 0x20111B4 

21 387 194 1 0x20111B8 

21 387 196 1 0x20111BC 

21 387 198 0 0x20111A0 

21 387 202 1 0x0000004 

21 387 203 1 0x0000008 

21 387 204 1 0x000000C 

21 387 205 1 0x0000010 

21 387 206 1 0x0000014 

21 387 207 1 0x0000018 

21 387 208 1 0x000001C 

21 387 209 1 0x0000000 

21 387 210 0 0x0000004 

21 387 245 1 0x0000020 

21 387 246 1 0x0000024 

21 387 247 1 0x0000028 

21 387 248 1 0x000002C 

21 387 249 1 0x0000030 

21 387 250 1 0x0000034 

21 387 251 1 0x0000038 

21 387 252 1 0x000003C 

 

The address range from the SRAM, which is used by the CPU, starts from 0x02000000 and 

ends at 0x0202FFFF. Additionally, the instruction section of the program (.text) spans from 

0x02000000 to 0x02011CC0. 

 

Based on the latter address range, it can be seen from the log that the CPU was filling its 

instruction cache correctly until 21 387 196 cycles from system reset. But after 21 387 202 

cycles from reset it started filling the cache from an address range that does not contain any 

instructions for the CPU. 

 

Based on this observation, it can be said that the CPU possibly read invalid data around this 

time and its execution went off track. 
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6.5.4. Sharing an external memory 
 

Similarly to modern CPUs, the Nios II processor has the option to include a data and an 

instruction cache. The functionality of these caches involves storing frequently used instructions 

and data in the caches so that the CPU does not always need to access the slow external 

memory. Consequently, the CPU is not using the external memory all the time and another 

component can use this extra bandwidth. In fact, the first version of the GPU must be granted 

access to the external memory every time it requests it. The problem with this arrangement is 

that while the GPU can operate at maximum speed, the CPU has to wait extensive time periods 

to get access. 

 

A simplified illustration showing an example of the accesses by these two components can be 

seen in Figure 6.6. Instead of showing a one dimensional array of timestamps and the 

corresponding values, the figure below is constructed to show how the accesses relate to the 

GPU’s image shown on the monitor. The earliest accesses are on the upper left corner and the 

timeline continues the same way an electron beam travels trough a screen surface, which was 

previously shown in Figure 5.5. The area in time where the visible frame is located, is marked 

with a dark blue background and ranges from 0 to 639 lines in the horizontal axis and 0 to 479 

on the vertical axis. Likewise, the horizontal blanking period is marked with a light blue 

background while the vertical blanking period with a white background. The GPU can fill its line 

buffers during the visible frame and the horizontal blanking period. 

 

   

Figure 6.6 - GPU and CPU memory usage pattern, GPU has top priority 
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The CPU’s accesses, shown in the figure with black stripes, consist of mainly the CPU filling the 

caches from or flushing them to the external memory. Some control data designed for the XD 

GPU is also written directly to the memory by the CPU. 

 

The CPU’s and the GPU’s accesses to the external memory can be mapped using IP 

information registers. This functionality is examined in the next sub-chapter. 

 

 

6.5.5. Acquiring usage patterns for the shared SRAM 
 

This final part examines the possibilities of IP information registers to be used for optimizing IP 

blocks. As with the second part, the 2D graphics system is monitored by the CPU on the data 

gathering system. Although this time, the usage of the shared SRAM by the 2D graphics 

system’s CPU and GPU is examined. 

 

The memory usage patterns of the two components are recorded by event log registers present 

on the XD GPU. A simplified illustration showing how these information registers are connected 

to the surrounding system is depicted in Figure 6.7. 

 

 

Figure 6.7 - XD GPU IP information register connections 
 

Each of the events is stored in a 32-bit word. The data on the word consist of a timestamp of 

the event along with bits which tell whether the CPU or GPU was accessing the external 

memory at the time. Unlike in the previous part, the timestamp is acquired from the GPU’s VGA 

signal generator and is stored either as a frame number or as the coordinates of the frame. The 

frame number is stored only at the beginning of a frame and otherwise the coordinates are 
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stored. These two variant event formats can be seen in tables 6.10 and 6.11. No addresses are 

stored for the CPU’s and the GPU’s accesses. The GPU active bit is high when the GPU reads 

from the SRAM while the active bit for the CPU is high when the CPU reads from or writes to 

the SRAM. The GPU active bit is acquired from the GPU’s internal logic, whereas the active bit 

for the CPU is acquired from the SRAM controller. 

Table 6.10 - Shared SRAM log event format for frame start 

bit 31 30..22 21..02 1 0 

description frame 

begin 
- 

frame number cpu 

active 

gpu 

active 

 

Table 6.11 - Shared SRAM log event format for intra frame events 

bit 31 30..24 23..13 12..11 10..02 1 0 

description frame 

begin 
- 

screen x screen x 

cycle 

fill y cpu 

active 

gpu 

active 

 

Unlike in the previous part, the first CPU is released for operation at the start of the experiment 

and the monitoring CPU waits for two seconds before proceeding. The wait ensures that the XD 

demo run by the first processor is in full swing when the second CPU starts the monitoring. 

 

The second CPU configures the logging functionality by writing the start and end addresses for 

the log memory and the logging starts when the amount of frames to capture is written to the 

specific register. Now as the logging logic is active, it checks for changes in the aforementioned 

activity signals. When the signals change, ie. an event occurs, the logging logic writes an event 

word into an internal fifo. The output of this fifo is constantly written to the specified address 

range on the external log memory. 

 

The monitoring CPU then sits in a loop waiting for the activity bit on the log’s status register to 

go down. After this happens, the CPU reads the entirety of the log and outputs a graphical 

presentation of the acquired data. The first full frame of the data can be seen on the next page 

in Figure 6.8. 

 

This figure is divided into three rectangular areas, exactly like the previous example figure. As 

can be seen from the red color, the CPU on the 2D graphics system is stalled for prolonged 

time periods waiting for access to the external memory. This is the flushing and loading of the 

data cache that was described earlier in this chapter. But as the figure shows, there is spare 

time to be given to the CPU at these utilisation levels. 

 

Other aspects of the XD GPU’s operation can also be observed from the figure. Such as the 

regular spikes in GPU access times every 16 lines, which is induced by the filling of the tile 

buffers for the two tile arrays. It also can be seen that the timing for writing the coordinates of 
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the sprites for the next frame is perfect. This is seen at the bottom end of the GPU filling area. 

Additionally, the GPU’s brief access to the external memory before the next frame can be seen 

at the bottom of the figure. This is the time the GPU reads information pertaining to the next 

frame. 
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Figure 6.8 - CPU and GPU memory usage pattern, GPU has top priority
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6.5.6. Optimizing the use of the shared SRAM 
 

Most of the CPU’s stalling time, which is shown for the frame on the previous page, can be 

avoided. For example, an internal memory containing 480 values could be embedded to the XD 

GPU. Additional logic would store the access time that was left unused for each of the visible 

lines for one frame. This information would then be used within the GPU’s main FSM to 

determine the amount of cycles which could be given to the CPU on a given line. An example 

illustration showing how this would look like with the access times is given in Figure 6.9. 

 

 

Figure 6.9 - Arbitrating access times 
 

The left portion of the figure shows a simplified example how the access patterns look like with 

no access time arbitration by the GPU. After the additional arbitration logic is added, the 

patterns would look like the right portion of the figure. Notice that the CPU stalls (red) have 

reduced significantly. 

 

For additional optimization, the CPU could be given access rights to the aforementioned 

memory so that it could grant itself more access time. This would be a good tool for the CPU in 

certain circumstances. If the CPU for example knew that the next frame differed from the last 

one and was significantly less taxing to the GPU, it could give itself more of the access time. 

The CPU could also grant itself more access time, if it needed it for processing power 

regardless of the graphics. 

 

 



7. Conclusions 60 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusions 
 

 

Based on the case study on this thesis, it is clear that IP information registers can provide many 

good services. A short summary of the case study and its parts is presented in Table 7.1. The 

table shows each of the parts’ purpose, the number of IIR blocks used for that purpose as well 

as the logic elements consumed by the information registers for that purpose. The logic element 

counts in this last chapter were acquired from a single synthesis instance and will wary a little 

from different instances with different synthesis parameters. 

 

Table 7.1 - Case study parts 

Part Purpose IIR blocks IIR le:s 

1 IP recognition during boot, VLNV registers,  SW and HW 

matching 

4 1056 

2 Log CPU’s instruction address to detect timing errors 1 380 

3 Log CPU’s and GPU’s access patterns to optimize memory 

usage 

1 255 

 

As can be seen from the table, the first part proved that the IIR1 header register can be used to 

identify IIR enabled IP blocks within a CPU’s address space, as well as the system IIR can be 

used to verify that the correct software was used with the proper hardware. The latter of these 

functions serves to reduce the amount of things that can go wrong when developing IPs and 

SoCs. 

 

The second part involved helping to verify the timing parameters for the SRAM by monitoring 

the 2D graphics system’s CPU’s instruction reading patterns. These patterns were specifically 

monitored during the programs crash to determine if the crash was caused by wrong or 

insufficient timing parameters. 



7. Conclusions 61 

 

 

The final part of the case study involved monitoring the CPU’s and the GPU’s access pattern to 

the shared SRAM. The log registers embedded to the GPU provided a detailed view for the 

accesses and a good way to utilize this knowledge for optimization was discussed. This part 

was so successful that the proposed optimization will be implemented in the next version of the 

XD GPU. The log registers will also be enhanced to include more data pertaining to the GPU’s 

functions relative to the access patterns. 

 

 

7.1. HDL files 
 

Although information registers provide a good service for the developer, they are relative simple 

to implement. This can be seen in the amount of code which had to be written for implementing 

the IIR blocks. The exact number of lightly commentated lines coded for these blocks can be 

seen in Table 7.2. 

Table 7.2 - IIR block lines of code 

File name Lines of code 

nios2_monitor.v 757 

event_log.v 156 

sram_2x_access.v 241 

system_iir.v 166 

iir_xd_gpu.v 470 

TOTAL 1790 

 

To put the IIR block in the XD GPU into perspective, Table 7.3 shows the code lines for the 

different source files used to construct the GPU. The IIR block stands at 470 lines of code or 

about 16% of total amount in the XD GPU. 
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Table 7.3 - XD GPU lines of code 

File name Lines of code Percent of total 

x2d_gpu.v 1623 56,1 

x2d_gpu.h 37 1,3 

x2d_gpu_if.v 55 1,9 

vga_sync_gen.v 147 5,1 

line_buf.v 203 7,0 

tile_buf.v 44 1,5 

alpha_blend_4x.v 53 1,8 

alpha_blend_channel.v 38 1,3 

alpha_blend_pixel.v 98 3,4 

clut.v 74 2,6 

dp_ram.v 51 1,8 

iir_xd_gpu.v 470 16,2 

TOTAL 2893 100 

 

New IIR blocks can be constructed from older ones, which further reduces the work amount 

required for their implementation. Especially the general information registers are very similar in 

all of the IIR blocks reducing required effort. 

 

 

7.2. Hardware resource usage 
 

The logic resources consumed for the two systems and their IP blocks can be seen in Table 

7.4. The total was 11557 logic cells, 56 onchip memories and 32 onchip multipliers. Average 

logic cell interconnect usage was at 15%. 
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Table 7.4 - IP block resource usage 

Name Logic cells Onchip memory 
Onchip 

multipliers (9x9) 

Nios II CPU 0 core 2998 20 4 

CPU 0 data master 297 - - 

CPU 0 inst. Master 132 - - 

CPU 0 interrupt memory 1 1 - 

CPU 0 timer (32-bit) 154 - - 

Nios II CPU 1 core 783 2 - 

CPU 1 data master 282 - - 

CPU 1 inst. Master 70 - - 

CPU 1 interrupt memory 1 1 - 

CPU 1 timer (64-bit) 283 - - 

SDRAM controller 475 - - 

SRAM controller - orig. logic 70 - - 

SRAM controller - IIR block 300 - - 

JTAG UART 167 2 - 

Key parallel input 10 - - 

Switch parallel input 18 - - 

Green led parallel output 16 - - 

Red led parallel output 20 - - 

Nios II monitor 681 2 - 

XD GPU - original logic 3227 27 28 

XD GPU - IIR block 585 1 - 

System IIR 222 - - 

TOTAL 11557 56 32 

 

The four IIR blocks in the system consumed a combined 1788 logic cells, which is about 5,4% 

of the available logic cells on the chip. Three onchip memories were also used in the IIR blocks. 

Additionally 2061 logic cells or about 6,2% was used for the CPU and its peripheral 

components on the monitoring system. The IIR blocks, the monitoring CPU and etc. contribute 

to 3849 logic cells or about 11,6% of the available resources. Of course the first and last part of 

the case study can be done with only one CPU along with the additional SDRAM memory. So 

the extra amount of logic cells stands at 2536 (7,6%) for these two parts and 3849 for the 

second one. 
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An illustration showing the resource usage for the FPGA on the DE2 board can be seen in 

Figure 7.1. The left part shows the resource usage for the IIR blocks highlighted in blue, 

whereas the right part does the same for the monitoring CPU and its peripheral components. 

 

 

Figure 7.1 - Resource usage for the IIR blocks on the left, monitoring CPU, etc. on the right 
 

For comparison, a performance monitor created by Lancaster et al. consumes 1655 look-up 

tables (LUT) and 1260 registers from a 98304 LUT/register FPGA [lan09]. This can be 

compared to the performance monitoring present in the XD GPU’s IIR block, which consumes 

300 LUTs and 276 registers. 

 

 

7.3. Software files 
 

The software part of the case study was fairly straightforward, which was reflected in amount of 

lines written for the Nios II processors. The amount of code written for the software source files 

can be seen in Table 7.5. 
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Table 7.5 - Software lines of code 

file name lines of code 

main.c (XD demo) 260 

main.c (IIR part 1) 59 

main.c (IIR part 2) 71 

main.c (IIR part 3) 71 

ip_info_reg.h 228 

ip_info_reg.c 516 

misc.h 129 

misc.c 261 

TOTAL 1595 

 

As can be seen from the table, the main.c files for the different IIR usage parts have only a 

small amount of code. This is due to the fact that the functions for using the information 

registers reside in the ip_info_reg.h and .c files. The functions ensure that the future use of the 

information registers is simple and straightforward, and any developer using the registers has 

not got much work to do to utilize them properly. 
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