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ABSTRACT 
 
Surface modelling and editing is one of important subjects in computer graphics. Decades 

of research in computer graphics has been carried out on both low-level, hardware-related 

algorithms and high-level, abstract software. Success of computer graphics has been 

seen in many application areas, such as multimedia, visualisation, virtual reality and the 

Internet. However, the hardware realisation of OpenGL architecture based on FPGA (field 

programmable gate array) is beyond the scope of most of computer graphics researches. 

It is an uncultivated research area where the OpenGL pipeline, from hardware through the 

whole embedded system (ES) up to applications, is implemented in an FPGA chip. 

This research proposes a hybrid approach to investigating both software and hardware 

methods. It aims at bridging the gap between methods of software and hardware, and 

enhancing the overall performance for computer graphics. It consists of four parts, the 

construction of an FPGA-based ES, Mesa-OpenGL implementation for FPGA-based ESs, 

parallel processing, and a novel algorithm for surface modelling and editing. 

The FPGA-based ES is built up. In addition to the Nios II soft processor and DDR 

SDRAM memory, it consists of the LCD display device, frame buffers, video pipeline, and 

algorithm-specified module to support the graphics processing. 

Since there is no implementation of OpenGL ES available for FPGA-based ESs, a 

specific OpenGL implementation based on Mesa is carried out. Because of the limited 

FPGA resources, the implementation adopts the fixed-point arithmetic, which can offer 

faster computing and lower storage than the floating point arithmetic, and the accuracy 

satisfying the needs of 3D rendering. Moreover, the implementation includes Bézier-spline 

curve and surface algorithms to support surface modelling and editing. 

The pipelined parallelism and co-processors are used to accelerate graphics processing 

in this research. These two parallelism methods extend the traditional computation 

parallelism in fine-grained parallel tasks in the FPGA-base ESs. 

The novel algorithm for surface modelling and editing, called Progressive and Mixing 

Algorithm (PAMA), is proposed and implemented on FPGA-based ES’s. Compared with 

two main surface editing methods, subdivision and deformation, the PAMA can eliminate 

the large storage requirement and computing cost of intermediated processes. With four 

independent shape parameters, the PAMA can be used to model and edit freely the shape 

of an open or closed surface that keeps globally the zero-order geometric continuity. The 

PAMA can be applied independently not only FPGA-based ESs but also other platforms. 

With the parallel processing, small size, and low costs of computing, storage and power, 

the FPGA-based ES provides an effective hybrid solution to surface modelling and editing. 
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Chapter 1  Introduction 

 

1.1 Background 

The research in this project is a comprehensive process involving software, hardware and 

parallelism. These issues have to be discussed individually. 

1.1.1 Software and Hardware in Computer Graphics 

In computer graphics, methods of software and hardware have been successfully 

implemented and applied to a number of areas. The applications can be found in many 

important fields, such as the Internet, multimedia, visualisation, and virtual reality.  Many 

application areas have benefited from computer graphics, for examples, automotive and 

computer industries, science and engineering, education, entertainment, information 

visualisation, pharmaceutical research, 3D (three-dimensional) medical imaging, and 

earth and weather modelling (Bliss 1980, Krone et al 2009, Losh 2006, Martinez and 

Chalmers 2004, Nahum 1996, Schröder et al 2012, and Yoo et al 2012). 

Computer graphics covers a wide range of research subjects. They include animation, 

colour, display algorithms, geometric algorithms, lighting, interaction techniques, morphing, 

object modelling, picture and image generation, rendering technologies, representations 

and editing of curve, surface, solid and object, shading, shadowing, texture, 3D graphics 

and realism, virtual or augmented reality, and others (House 1996, Pan et al 2000, and 

Sathyanarayana and Kumar 2008). 

In the surface modelling and editing, studies are also plentiful (Barsky and DeRose 

1990, Cheng and Goshtasby 1989, Duchamp and Stuetzle 2003, Farin 1993, Hearn et al 

2011, Hoppe et al 1994, Huang et al 2006, Joe 1990, Lawrence and Funkhuser 2003, 

Loop and DeRose 1989, Loop 1994, Müller et al 2010, Nasri and Abbas 2002, Perez et al 

2003, Sederberg et al 2003, Sorkine et al 2004, Wang et al 2006, Welch and Witkin 1994, 

and Yu et al 2004). For 3D rendering, it is one of purposes to make the geometrical 

images as smooth as possible. There are three mainstream schemes to maintain the local 

control during modelling and editing. They are subdivision, deformation and shape 

parameterisation with a specific-order geometric continuity (shorten as shape 
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parameterisation in the rest of the thesis). According to the number of researches and 

application results that have been published, the first two have achieved more success 

than the third one.  

Since this research aims at a hybrid solution of software and hardware to computer 

graphics, resources of the hardware system to support graphics applications have to be 

considered. As algorithms for surface modelling and editing are applications on the top of 

the system architecture, their storage and computing costs can increase the requirements 

of hardware resources. Compared to the first two methods, shape parameterisation 

methods have lower storage and computing costs because intermediated processes 

required by the first two methods are eliminated. Shape parameterisation methods can be 

used to construct a composite curve or surface with geometric continuities that can yield 

the smoothness in the geometric sense, rather than with the agreement of parameter 

derivatives of parameter continuities. Parameter continuities have more restrictive 

conditions than geometric continuities do. This research proposes an algorithm, 

Progressive and Mixing Algorithm (PAMA), which belongs to the third one. It is detailed in 

Chapter 7. 

1.1.2 Hardware Solution in Computer Graphics 

Compared with existent studies on software in computer graphics (Barsky and DeRose 

1990, Botsch and Sorkine 2008, Cheng and Goshtasby 1989, Duchamp and Stuetzle 

2003, Hoppe et al 1994, Huang et al 2006, Lawrence and Funkhuser 2003, Loop and 

DeRose 1989, Loop 1994, Müller et al 2010, Nasri and Abbas 2002, Perez et al 2003, 

Sederberg et al 2003, Sorkine et al 2004, Wang et al 2006, Welch and Witkin 1994, and 

Yu et al 2004), there are fewer hardware accomplishments published in this field. Related 

implementations were initiated mainly by Silicon Graphics Inc. (Kilgard 1997, Kilgard and 

Akeley 2008, Luebke and Humphreys 2007, and Patashev et al 2000). Some publications 

are related to simulation and performance evaluation for general-purpose computer 

systems and only a few of them are for graphics applications. Others are implemented 

with GPUs (Graphics Processing Unit) and also used in general-purpose computer 

surroundings (Nickolls and Dally 2010, Owens et al 2008, and Vuduc and Czechowski 

2011). 

The hardware accomplishment for abstract algorithms of the graphical pipeline requires 

the support from the computer system to which the hardware implementation is integrated. 

If an entire graphical system is built up from the hardware, individual parts of the graphical 

pipeline system can be easily compatible with each other and it also means that a lot of 

construction work is necessary. But when a single hardware solution to an abstract 

algorithm is embedded into an existent system, the compatibility with the original system 

environment requires much attention. It requires a large amount of time and effort to 
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bridge the new part with the original system. Or, the new part can be incompatible with the 

original hardware. This issue can reduce the attraction to hardware when researchers look 

for solutions to graphics algorithms and make a choice between hardware and software 

(Chua and Neumann 2000, Guthe et al 2005, Kazakov 2007, Li et al 2006, and Weyrich et 

al 2007). 

In the evolution history of OpenGL, it can be seen that there are always some 

hardware-dependent and some hardware-independent sections involved in the OpenGL 

pipeline. The OpenGL pipeline consists of two joined-together sub-pipeline, geometric 

pipeline (or vertex pipeline) and fragment pipeline (pixel pipeline) (Hearn et al 2011, and 

True et al 2004). The OpenGL is also a state machine with a fixed topology and 

orthogonal state variables. From the input of OpenGL API (application programming 

interface), an object rendering has to be transmitted with a set of state variables and 

carried out through the OpenGL pipeline. The OpenGL state machine performs all the 

processing in a fixed order that follows the geometric and fragment pipeline, and finally 

displays the object on a device screen. 

Embedded systems (ES) are defined with a computing core and are intended for in-field 

applications rather than general-purpose computing. ESs cover a major fraction of the 

digital systems market, and act as a key technology in the automotive, consumer 

electronics, industrial automation, military and aerospace applications, office automation, 

and telecommunication and data-communication industries (Green and Edwards 2000, 

Henzinger and Sifakis 2007, Konrad et al 2004, and Zave 1982). When computers 

become more and more popular in daily life, ESs dominate areas of controlling 

communication, transportation, and medical systems (Henzinger and Sifakis 2007). 

Compared with general-purpose computers, except for computation requirements 

considered in general-purpose computers, control requirements are more significant for 

ESs.  

As FPGAs (field programmable gate array) provide a platform to configure hardware 

systems, FPGA-based ESs allow designers to build up their system not only with software 

blocks but also via hardware modules. They give designers more freedom and opportunity 

for options. 

Naturally, the upstream part of OpenGL pipeline that is close to the graphics 

applications at the top of a system tends to a software solution. The downstream part that 

approaches frame buffers is prone to acquire the hardware support. Therefore, in this 

project, a hybrid method combining hardware-related procedures and software-related 

algorithms is adopted to implement the pipeline in an overall and progressive way. 

Because of the flexibility of the programmable hardware and system design combining 

with software and hardware, an FPGA-based ES is chosen as the research platform for 
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this project. 

1.1.3 Parallelism in Computer Graphics 

As known, a program solving a typical large problem is usually composed of parallelisable 

and non-parallelisable parts. For this kind of problem, Amdahl’s law (Amdahl 1967) can be 

roughly described as that the non-parallelisable part of a program will limit the overall 

speed-up via parallelisation of the program. It can also be further described as that the 

maximum speedup with parallelisation of a sequential program is reciprocal of the fraction 

of running time the program spends on its non-parallelisable parts. 

For the same type of problem, Gustafson’s law (Gustafson 1988) tells that for the overall 

speedup, optimising the large running-time portion of a program will have a greater effect 

than making effort on speeding up the much smaller part of the program. 

Parallelisation of algorithms, however, relies on their data dependencies as well. In 

most algorithms, there are dependent and independent calculations in parallel. There are 

one or more critical paths that are the longest chain of dependent calculations in 

algorithms. The study of Bernstein 1966 offers the conditions that two program fragments 

can be executed in parallel. 

There are different types of parallelism, including bit-level, instruction-level, data, and 

task parallelisms (Grama et al 2003). Since it adopts a hybrid method of software and 

hardware based on FPGA, this project makes the best use of task parallelism. If viewed 

from a system standpoint, as applications are executed on FPGA-based ESs, 

co-processors play a key role (Cevik 2004, Cheng and Goshtasby 1989, and Sridharan 

and Priya 2004). From an algorithm implementation’s point of view, because of its 

graphics pipeline goal, the parallel attribute is deconstructed naturally into the pipeline 

accomplishment of FPGA. 

 

1.2 Research Motivation 

OpenGL architectures with FPGA-based hardware realisations are not within the scope of 

most computer graphics researchers (Constantinides and Nicolici 2011, Kilgard 1997, 

Kilgard and Akeley 2008, Luebke and Humphreys 2007, and Patashev et al 2000). The 

FPGA hardware has not attracted the same passion and effort in graphics researches as 

software in the past decades. It is still an area waiting for exploation where the OpenGL 

pipeline, from the hardware system through the whole ES up to applications, is 

implemented in an FPGA chip. Thus, this project presents a hybrid solution to graphics 

pipeline with software and hardware based on an FPGA ES in order to enhance the 

overall system performance in computer graphics applications.  
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On the other hand, a lot of research results in computer graphics have been applied to 

other fields, such as automobile industry, archaeology, biomedicine, chemistry, earth 

mantle convection analysis, and videogames and virtual reality (Bliss 1980, Krone et al 

2009, Losh 2006, Martinez and Chalmers 2004, Nahum 1996, Schröder et al 2012, and 

Yoo et al 2012). Thus, with the features of small size, low power cost, and parallelism 

processing, this research can be promoted in many in-field applications, such as robots, 

measuring fields, crafts designs, and medical surroundings.  

 

1.3 Research Aims and Objectives 

This research aims to develop a novel parallel algorithm for effective surface modelling 

and editing, which is incorporated with hardware support by an FPGA implementation in 

parallel. Following comprehensive literature reviews and in-depth analysis of existing 

algorithms, a novel algorithm has been developed for surface modelling and editing in 3D 

computer graphics. The enhancement and parallelism of the algorithm with FPGA support 

have also been done in this work. 

The objectives of the research have been fulfilled as follows, 

▪ The realisation of the computer graphics pipeline has been divided effectively and 

efficiently between hardware and software to enhance the overall performance of 

the computer graphics system in an integrated way. The hybrid solution has been 

carried out with an FPGA-based ES. 

▪ During the development and implementation of FPGA-based ES with a hybrid 

approach, the parallelism has been considered and adopted in the task processing. 

Co-processors and pipelines have been used to further enhance the entire 

performance of the FPGA-based ES. 

▪ An implementation of Mesa-based OpenGL has been completed for the 

FPGA-based ES. In addition to specifications of the OpenGL ES standard, this 

implementation consists of the Bézier-spline curve and surface algorithms that 

support the surface modelling and editing. To meet requirements of limited storage 

and logic elements of the FPGA chip, this implementation adopts the fixed point 

arithmetic, which provides a satisfactory accuracy for the 3D rendering. The fixed 

point arithmetic is composed of designated processes for multiplication, division, 

dot production, cross production, square root, linear interpolation, and 

trigonometric functions. 

▪ The new algorithm for surface modelling and editing, PAMA, has been developed 

and enhanced for effective and flexible applications not only in the general-purpose 

computer environment but also in the FPGA-based ES environment. In the 
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FPGA-based ES, the PAMA is more practical because of its lower requirements on 

storage and computation than two other methods, subdivisions and deformations. 

The results of its hybrid implementation verify that the PAMA can be applied in the 

shape change in an interactive way. 

▪ For a rigorous mathematic derivation based on the differential geometry, parameter 

continuities and geometric continuities have been investigated. The geometric 

properties of Bézier-spline curves and surfaces have been also inspected. Above 

these, continuities of the PAMA have been explored and summarised 

mathematically.  

▪ Research results have been collected and systematically analysed via the 

comparison between two environments of the FPGA-based ES and 

general-purpose computer. 

 

1.4 Research Methodology 

This project proposes a hybrid approach to investigating both software and hardware 

methods. This approach can bridge the gap between methods of software and hardware, 

and thus enhance the overall performance for computer graphics. 

Since it investigates both software and hardware to stay up-to-date, a comprehensive 

research method is adopted in this work. This research method includes four aspects. 

▪ To merge different technologies into a technology programme. As a new 

research usually crosses two or more disciplines, it is necessary to apply different 

technologies of different groups, such as individuals, companies, and academic 

institutes, to a comprehensive and complex project. To make these technologies 

work effectively and efficiently for a specific complicated goal, it is critical to know 

each of them and bridge related parts with their interfaces and correct techniques. 

These techniques must be based on principles of each of relevant disciplines and 

also bridge the gap between them. 

▪ To attempt different means and theories until a solution is obtained. Because 

of uncertainties of a new research, a trial-and-error method is required. As regards 

a hybrid solution of hardware and software, an adjustment on one part can lead to 

changes of many related parts. It is normal to do many times of adjustment or 

revision during attempts and explorations of different methods. Before the correct 

result comes out, it can make one keep re-searching and re-verifying. During this 

process, it is based on the rational analysis and rich experiences to make a 

decision about which direction one should move in at the next step. 

▪ To shift timely from an obsolete technology to an up-to-date one. As 
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technologies develop quickly, old technologies are always replaced with new ones. 

When a technology is not available for some reason, such as obsolete, a substitute 

one has to be found. This alternative can not only make a project proceed but also 

provide a space for the project to develop. This is also based on rich knowledge 

and experiences that help one to gain the ability of making a right decision about 

the shifting direction.  

▪ To flexibly use the existent knowledge and concepts. Any existent technology 

model can be broken to yield a new one in order to meet new needs of the real 

society. The existing knowledge and concepts can give one a method of thinking 

about old models. One must produce new ideas and concepts for new 

requirements during the research process. 

 

1.5 Thesis Organisation 

This research includes four parts: the construction of the FPGA-based ES, Mesa-OpenGL 

implementation for the FPGA-based ES, parallelism processing, and a novel algorithm for 

surface modelling and editing in computer graphics. From a system perspective from the 

top to the bottom, the implementation of the algorithm for surface modelling and editing is 

an application of computer graphics at the high level and has induced a series of research 

activities, all the way through the OpenGL implementation, ES construction, and 

integration of the parallelism context down to the hardware system setup with FPGA. 

The system structure of this project can be shown in Figure 1.1. In a system view, this 

structure is composed of five main parts from the top of application to the bottom of 

hardware. 

▪ On the top, the algorithm for surface modelling and editing is the application using 

Mesa-OpenGL and auxiliary functions to edit surfaces through user interactions 

and displaying the resulting images on the display device.  

▪ In the middle, the Mesa-OpenGL implementation carries out functions of the 

OpenGL pipeline.  

▪ The connection between Mesa-OpenGL and hardware abstract layer is the 

auxiliary interface of the OpenGL to communicate with the FPGA-based ES.  

▪ The FPGA-based ES is a hybrid set of software and hardware resources that 

comprises the hardware abstract layer and the configured FPGA supported by 

Altera Embedded System development board of Cyclone III (Altera 2008a).  

▪ The parallelism is applied to the speedup of the graphics and video processing of 

the system. It includes pipelines and co-processors. 
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Figure 1.1 Structure of the Project 

The thesis is organised as follows. 

▪ After the introduction of Chapter 1, literature reviews are presented in Chapter 2. 

Chapter 2 encompasses the contents of ES, FPGA, parallelism, and computer 

graphics. 

▪ An FPGA-based ES is built up. In addition to Nios II soft processor and DDR 

SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory) 

memory, the ES consists of the LCD (liquid crystal display) display device, frame 

buffers, video pipeline, and algorithm-specified module to support the graphics 

processing. These are discussed in Chapters 3 and 4. Chapter 3 explores an 

integrated hybrid ES. Chapter 4 focuses on the FPGA-based embedded hardware 

system for graphics applications. 

▪ An OpenGL implementation based on Mesa is carried out for the FPGA-based ES. 

It has been ported successfully to the FPGA-based ES. These are detailed in 

Chapter 5. 

▪ The parallelism implementation in the FPGA-based ES is explored in Chapter 6. 

▪ A novel algorithm for surface modelling and editing, PAMA, is proposed and 

implemented. It is detailed in Chapter 7. Applications of the PAMA in a 

general-purpose computer environment are presented in Chapter 7. 

▪ Results of surface modelling and editing with PAMA on the FPGA-based ES are 

presented in Chapter 8. Comparisons between applications on two environments of 

the general-purpose computer and FPGA-based ES are also discussed in Chapter 

8. 

▪ The future work is discussed in Chapter 9. 

▪ Conclusions are presented in Chapter 10. 

▪ Continuities of the PAMA and the mathematical context are explored rigorously in 

Appendix. 

 

Embedded Hardware System Constructed with FPGA 

Combination of Mesa-OpenGL to Hardware Abstract Layer 

Mesa-OpenGL Implementation 

Algorithm for Surface Modelling and Editing 

Parallelism  



 

 

 

 

Chapter 2  Literature Reviews 

 

Since this research aims at bridging the gap between software and hardware solutions for 

computer graphics with a hybrid approach, it is a study crossing two disciplines of 

computer science and electronics engineering. The principles in both disciplines have to 

be followed and a scheme integrating the individual features of them into one application 

goal must be created in order to find a feasible and effective solution. Researches on both 

disciplines have been done in this project. According to four parts of this project, as shown 

in Figure 1.1 and Section 1.5, these being the construction of a novel FPGA-based ES, a 

new implementation of OpenGL based on Mesa for the FPGA-based ES, parallel 

processing, and a new algorithm of surface modelling and editing – PAMA, the literature 

reviews on them will be discussed in different sections and in the order of the thesis 

organisation and system architecture from the bottom (the hardware system) up to the top 

(applications).  

 

2.1 Related Studies of ESs 

ESs, as a younger discipline than computer science, have been flourished in many 

application fields, such as life science, nano-engineering, controlling communication, 

transportation, and medical systems (Chen et al 2008, Ghasemzadeh et al 2013, Gorski et 

al 2010, Liu et al 2012, Massey et al 2007, Saddem et al 2011, and Surducan et al 2010). 

Since ESs are usually designed directly for special consumers or specific application 

environments, the factors of cost, performance and power consumption have more effect 

on them than general-purpose computers. Each unit of an ES has its cost and benefit, and 

contributes to the entire cost and benefit of the system. To lower the cost and power 

consumption and enhance the system performance, it is necessary to encourage a 

detailed consideration of implementation options for each unit of the system. For example, 

a floating-point algebraic computing system can be implemented with a software or 

hardware unit. The software implementation can have a lower price but a slower 

processing speed. The designated hardware unit can speed up but at a higher price. Thus, 

an ES design must make a choice by balancing between costs and system performance. 
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  The ES design takes the system as a whole (Green and Edwards 2000). It is necessary 

to evaluate implementation options between software and hardware in the context of the 

overall system, rather than according to whether or not a single unit implementation is 

optimum. 

  On the other hand, for developers of high-level applications in a computer system, 

compared with hardware facilities, available software resources give more support to the 

application implementations. For example, software resources have plentiful specified 

libraries and user-friendly APIs of operating systems. Thus, to find answers to new 

problems, developers more likely turn to the software to search algorithm implementations 

for answers, rather than to the fixed obscure hardware. In the computer system, the 

software is more open and easier to expand than the hardware. 

Behind this phenomenon, it is the computer science background of developers that 

leads them to software. The computer science holds a general framework for a system 

design that is highly abstract and logical in order to make the design device-independent, 

user-oriented and computation-targeted. The design and construction of ESs, however, 

are device-dependent, application-oriented and operation-targeted. This is the difference 

between the computer science and electronics engineering. ESs combine the computer 

science and electronics engineering by using both the computing ability of computer 

science and the engineering capability of electronics engineering. The former leads to 

mathematics, logic and science while the latter faces construction, engineering and 

technologies. Researchers in these two fields think in different ways. Researchers with the 

computer science background think in the way of the discrete mathematics of computer 

science while ones with the electronics engineering background have to sample and 

process the signals that continuously change (Henzinger and Sifakis 2007). In fact, it is 

just like the difference of digital and analogue signals. The former can be one and zero 

while the latter can be a range of voltage values. 

These require that ESs, as an emerging discipline, increase and improve their 

knowledge framework for common designs and constructions to meet the diverse and 

varied application needs. ESs have been setting up a bond between computer science 

and electronics engineering for both technologies and applications in a definitely 

interdisciplinary way. In addition, ESs provide a solution of hardware/software co-design of 

a system for applications. This is unachievable for general-purpose computers. 

In this project, since the fixed hardware environment of general-purpose computers 

cannot meet the needs of combining hardware and software to solve the graphics pipeline 

problems, ESs are chosen as the platform. Especially, with FPGA technologies, ESs 

become more feasible and flexible. ESs will be explored deeply in Chapter 3 and the 

FPGA detailed in Chapter 4. 
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2.2 Investigation of Hardware Graphics Applications 

As a branch of computer applications, the graphics applications are also facing the need 

of speeding up with hardware solutions. Because of the spread of the games market, the 

acceleration of processing has become more crucial in graphics applications than many 

other applications. Compared with other technologies in the computer graphics, GPUs 

(Graphics Processing Unit) can be one of the most attractive devices. 

2.2.1 GPU Applications 

GPUs have been gradually merging into the graphics design to speed up the processing 

and also playing a promising role in scientific computing applications (Baladron et al 2012, 

Choe et al 2013, Nickolls and Dally 2010, Owens et al 2008, and Vuduc and Czechowski 

2011). Over the past several years, many researches have attained rich results in games, 

biophysics, and neuroscience. 

In games, GPUs save the host CPU from complex graphics tasks and improve the 

performance of the overall system. With the parallelism, large throughput, and high 

computational ability, GPUs have an effective pipelining mechanism for graphics pipeline. 

The synergy of GPU architecture is obtained by an array of computing units in the 

fine-grained and closely coupled parallel. The upstream of the computer system gives the 

GPU the input of a list of vertices of 3D coordinate system. These vertices are grouped in 

geometric primitives. For example, a triangle primitive can be composed of three vertices 

with three coordinate data for each vertex. Through several steps, including vertex 

operations, primitive assembly, rasterisation, fragment operations, and composition, these 

geometric primitives are shaded and mapped onto a display screen. GPUs bring games 

into an unprecedented speed-up. It is a proof that the hardware is more effective at the 

speed-up than the software. In the design and development of a target application, 

hardware can be more flexible and direct in the system speed-up than software. The 

details of the graphics pipeline will be explored in Chapter 5. The parallelism will be 

discussed in Chapter 6. 

In biophysics, GPUs fulfil their potential for solving computationally complex, large 

problems. Also with the parallelism, large throughput, and high computational ability, 

GPUs have produced a considerable performance in protein sequence search (Xiao et al 

2011), dynamic protein structural comparison (Bonnel and Marteau 2012), and molecular 

modelling (Daga et al 2011, and Lampe et al 2007). 

The neuroscience is another field that embraces the GPUs for the solution to its huge 

computation in simulation (Baladron et al 2012). In this field, to describe brain activities, 

scientists design models of neurons and networks. They want to test hypotheses about 
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how the brain operates. The number of model neurons must be huge enough to simulate a 

real biological brain. It is an extremely computational challenging. GPUs have supported 

to do the simulation of spiking neural networks (Yudanov and Reznik 2012), visual 

neurons (Egashira et al 2012), and stochastic dendritic neurons (Karol et al 2011).  

The basic idea beneath these applications is that the programmable unit of the GPU 

adopts a single-program multiply-data (SPMD) model. In this model, a single program is 

executed in all the elements. Each element does its task in parallel independently of 

others and does not communicate with others. 

From the above discussion, it is obvious that GPUs have the strength in speeding up 

computation in parallel. But the GPUs evolved from the model with a fixed-function 

special-purpose processor. The fixed-function model with special-purpose functionality is 

the main characteristic of GPUs even though a lot of effort has been put in to make their 

processing programmable. It can also be seen that GPU applications go into two 

directions: one is a full speed-up solution to the graphics pipeline; the other is the 

computing speed-up for large computation-intensive problems. These mean that GPUs 

have limitations on the flexibility in the hardware structure building and the applications in 

heterogeneous problems. 

Compared to commercial video designated cards that adopt GPUs mostly, FPGAs give 

alternative solution to graphics applications with their flexibility in the hardware structure 

building. 

2.2.2 FPGA Applications 

At the very beginning, FPGAs were mostly used in signal and image processing, neural 

networks (Nagendra et al 1993, and Van den Bout et al 1992).  

After that, FPGA-based applications expanded quickly. Many fields have adopted FPGA 

technology, such as aerospace system, ASIC (Application-Specific Integrated Circuit) 

prototyping, automotive, consumer electronics, bioinformatics, cryptography, computer 

hardware emulation, DSP (digital signal processing), industry control systems, medical 

imaging, optimisation, portable applications, software-defined radio, speech recognition, 

and others (Chelton and Benaissa 2008, Chrysos et al 2012, DeGroat et al 2008, Gao and 

Long 2008, Kasik and Chvostkova 2013, Liu et al 2009, Lopez-Ongil et al 2005, Melnikova 

et al 2009, Monmasson and Cristea 2007, Smith and De La Torre 2006, and Turqueti et al 

2010). The FPGA technology has assisted and supported these researches to stay at the 

leading edge in their fields. 

In the DSP, numerous units for integer multiply-accumulate operations in a high-end 

FPGA provide the ideal building blocks for high data-rate DSP. Several design flows for 

DSP-oriented input specifications have been formed by some manufacturers’ design tools, 
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for example, National Instruments LabView and Xilinx System Generator (Simulink) flows. 

In scientific computing, the potential of FPGA technology for computing acceleration has 

been well understood, but there is still a mismatch between the design tools supported by 

FPGA manufacturers and the compilation flows expected by FPGA-based application 

developers. Another obstacle in the scientific computing is that the numerical analysis 

methods, which are used often in the scientific computing, have not been mapped 

effectively into FPGAs. It is also the similar case for other complicated algorithms in the 

scientific computing, such as the wavelet methods for time series analysis and analysis on 

fractals. Before scientific applications can be ported to FPGAs, it is the key to find the 

operations that are simple and common in the scientific computing, and can be 

transformed into reusable building blocks in FPGA devices. 

In the computer graphics, since GPUs have attracted most attentions of the academia, 

industry and governments, GPUs have dominated the entirely speed-up of graphics 

pipelines in general-purpose computers. FPGAs are developed only in the image 

processing. With the similar performance on the parallelism, throughput and computing 

ability as GPUs, FPGAs have not acted as an appropriate role in this field. To inspect this 

phenomenon, let us make a deep analysis between FPGAs and GPUs. 

2.2.3 FPGAs vs. GPUs 

FPGAs have the similar features of high density and excellent parallelism as GPUs. Both 

of them benefit from the constant progress in semiconductor technologies. In all the 

academic, industrial and governmental societies, however, GPUs are more attractive than 

FPGAs. In these two decades, more activities of research, development, and investment 

are promoted to enhance conditions for mapping scientific applications onto GPUs. The 

specification languages, design environments and compiler technologies for GPUs have 

been formed quickly (Constantinides and Nicolici 2011). In spite of having a two-decade 

evolution history, FPGAs do not have an open, completed, and generic platform for the 

application design and development. Thus, the research, development and investment on 

FPGAs are separate and indifferent. 

Because of the inconvenient design methods and tools for FPGA-based accelerators, 

many applications turn to general-purpose graphics processing unit (GPGPU) for their 

solutions. In fact, since their configurability ability, FPGAs have more potential to provide a 

large number of processing engines in parallel on a silicon die than GPUs. FPGAs need 

new tools to equip developers and engineers who are used to using compilers such as C 

compiler for microprocessor programming in order to migrate to FPGA platforms without 

needs to learn new languages and design environment. 

GPUs dominate in the research, development and investment by productivity rather 
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than performance reasons (Constantinides and Nicolici 2011). In fact, GPUs dominate the 

graphics speed-up in general-purpose computers, but do not in ESs. Because the full 

potential of FPGAs has not been realised, FPGAs should be invested more attention and 

effort in development and applications in order to fulfil their potential in ESs. For the above 

reasons, an FPGA platform is chosen as the platform for this research. 

In addition, in general-purpose computers, CPUs are the central microprocessors of 

systems for computing. Without the speed-up GPUs, CPUs have to manipulate graphics 

pipelines. This architecture is still adopted by low-end computers. Thus, let us make 

another comparison between FPGAs and CPUs. 

2.2.4 FPGAs vs. CPUs 

Compared with CPUs, solutions with FPGAs have advantages and disadvantages. Table 

2.1 displays the comparison. 

Table 2.1 Comparison between FPGAs and CPUs 

 CPUs FPGAs 

Power Consumption High Low 

Parallelism Instruction Processing in 

Sequence 

Inherent Operation 

Parallelism 

Design Complexity Low High 

Increasing Speed in Capability Low High 

 

2.2.4.1 Lower Power Consumption 

Modern FPGAs exhibit a lower order of magnitude of power consumptions than CPUs. For 

example, Altera Cyclone III FPGAs with up to 200K logic elements claim to consume less 

than 0.25 watts whereas Intel Core i5-460M, a high end dual core CPU for laptops, 

requires 35 Watts.  

2.2.4.2 Higher Parallelism 

Because of its architecture, a microprocessor tackles an application as a sequence of 

instructions while the logic blocks in an FPGA can be configured to operate in parallel. 

Compared to the software executed on a CPU, the inherent parallelism of FPGA logic 

resources can offload time intensive operations from the CPU. 

2.2.4.3 Higher Design Complexity 

The design complexity of FPGA solutions is higher than software solutions by the CPU. It 

is an obstacle for promoting FPGA solutions to problems. A minor change in the software 
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can take several minutes to re-compile with a compiler, but a minor adjustment in the 

hardware may take several hours to re-build on the FPGA design platform. 

2.2.4.4 Higher Increasing Speed in Capability 

According to studies of Arden and Awad (Arden 2002, Awad 2009, and Kahng 2013), 

FPGA technology would be ahead of microprocessors in increasing speed for the recent 

15 years because FPGAs follow the International Technology Roadmap for 

Semiconductors, rather than the microprocessors roadmap. The FPGA density is growing 

at the rate of advanced CMOS (complementary metal-oxide-semiconductor) technology, 

which makes its size decrease by a factor of 1.26 per year. With time, as the FPGA 

community settles CAD (computer-aided design) tools limitations, FPGA will affect even 

more on most digital logic designs and implementations. 

Predicted by Awad (Awad 2009), a hybrid system with multi-core CPUs and FPGAs 

operating in tandem with parallel-core GPUs can be expected to offer an enhanced 

hardware performance and programmability for supercomputing platforms. 

 

2.3 Introduction of OpenGL, OpenGL ES and their Implementations 

In the computer graphics, the OpenGL is a widely-accepted standard for 2D 

(two-dimensional) and 3D graphics applications with user interactions. In the OpenGL, the 

graphics pipeline is a state machine that can be implemented with an OpenGL-capable 

computer (Kilgard 1997, and Kilgard and Akeley 2008).  

The graphics pipeline consists of two sub-pipelines, geometric pipeline and fragment 

pipeline (Hearn et al 2011, and True et al 2004). The geometric pipeline processes the 

vertex coordinates of displayed objects through a sequence of coordinate transformations, 

including transformations from vertex coordinates to eye coordinates, to clip coordinates, 

to normalised coordinates, and finally to window coordinates. After rasterisation, the 

fragment pipeline processes the pixels in frame buffers to make the images of displayed 

objects rendering on a display screen. The fragment pipeline includes steps of texel 

generation, depth test, stencil test, alpha blending, and logical operations. These steps 

can be enabled or disabled according to whether or not they are required to perform 

during rendering. 

  The OpenGL ES (OpenGL for Embedded Systems) is one of OpenGL standards 

specified for ESs (Angle and Shreiner 2008, and KHRONOS 2013). It can be applied to 

automobile digital parts, hand-held gadgets, and mobile phones. Since there are wide 

applications in ESs, the OpenGL ES consists of versions and profiles for different 

applications (KHRONOS 2013). 

  Because there are a broad range of display devices and platforms in embedded 
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markets, the OpenGL ES has two versions for two different development requirements 

and platforms, respectively. These are OpenGL ES 1.X and 2.X. The OpenGL ES 1.X is 

specified for the fixed function hardware in order to decrease the memory bandwidth, to 

enhance image quality and graphics performance, and to improve hardware acceleration. 

The OpenGL ES 2.X is set for programmable hardware. It consists of specifications for a 

programmable 3D graphics pipeline. They include the definitions of constructing shader 

objects and programming vertex and fragment shaders in the OpenGL ES Shading 

Language. 

Three profiles of the OpenGL ES have been released, which are Common, Common-Lit, 

and Safety Critical Platforms. The Common Profile is designated for consumer handhold 

devices, such as PDAs (personal digital assistant), cell phones, game consoles, television 

set-top boxes, and others. The Common-Lite profile primarily concentrates on a simpler 

class of graphics system with a requirement on even less footprint. It only supports the 

fixed-point calculations. The Safety Critical Profile is specified for consumer and industrial 

surroundings that have high requirements on being certifiable and reliable. It can be used 

in 3D graphics applications of safety certifications, and avionics and automotive displays. 

No matter the OpenGL or OpenGL ES, they must be implemented on different platforms. 

Since the hardware system of one platform is different that of another, the 

implementations on them are different. Companies, such as Intel, Imagination 

Technologies, ARM, Apple, and NVIDIA, have their own implementations of OpenGL ES 

(KHRONOS 2013). Mesa (Paul 2013) has many implementations of OpenGL for different 

general-purpose computer platforms, which are free and open-source.  

Since the existent implementations of the OpenGL ES do not encompass one specified 

for FPGA-based ESs and the algorithms of Bézier curves and surfaces are not included in 

specifications of general OpenGL ES, a Mesa-based implementation of OpenGL is carried 

out in this research in order to meet the needs of surface modelling and editing with the 

PAMA.  

 

2.4 Investigation of Traditional Computation Parallelism 

As the hybrid way is adopted in the construction of FPGA-base ES in this project, the 

parallelism is considered naturally to enhance the performance of the system. Thus, it is 

necessary to investigate the traditional computation parallelism and to find a root to 

expand the concept of the traditional computation parallelism to meet new requirements of 

FPGA-based ESs and hybrid methods. 

At the beginning, the emphasis of parallel algorithm design was on messaging and 

loop-based parallelism, and on precise mapping of tasks to specific topologies such as 
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meshes and hypercubes. It has evolved into the programmability and portability of parallel 

algorithm design and implementation (Grama et al 2003).  

In computer systems, the principle at the heart of parallel algorithms, which is the 

locality of data reference, provides a solution to cache-friendly serial algorithms. It has 

been extended to the development of out-of-core computations. 

2.4.1 Data Parallelism: SIMD and MIMD 

Traditionally, the parallel architecture can be classified in two large classes: single 

instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) (Jonker and 

Vogelbruch 1997, Krishnakumar et al 2011, Nomoto et al 2011, Pitas 1993, and Wang and 

Ziavras 2006). They have been developed in digital imaging processing, computer vision, 

neural networks, and other fields. Such machines exploit data level parallelism. 

The SIMD is a class of parallel computers in the Flynn's taxonomy. It describes 

computers with multiple processing elements (PEs) that perform the same operation on 

multiple data simultaneously.  

SIMD machines are the first ones that appeared in applications of digital image 

processing and computer vision. Most of them exploit cellular logic arrays. They are 

composed of large arrays of simple one-bit PEs. All the PEs form a processor grid by 

connecting each of them to its immediate neighbours. Instructions are broadcast to all PEs. 

Using local data transfers, it can perform local neighbourhood operations synchronously. 

The advantage of cellular logic arrays is to make the best use of both geometrical and 

neighbourhood parallelisms. However, it has some disadvantages. One is that it can 

process an array with a small size of 128 X 128 pixels simultaneously. An image with a 

typical size of 1024 X 1024 pixels must be split in segments and each segment must be 

processed independently. When multiple local operations must be applied in pipeline, it 

can result in border effects that may seriously influence the image performance. The 

second disadvantage is that it can bring a heavy I/O load to the system. The third one is its 

restricted ability in high-level vision. 

In computing, the MIMD is another technique employed to achieve parallelism. In 

contrast to the SIMD, in the MIMD, any PE is able to execute a different program 

independently of the others. Machines using the MIMD have a number of processors that 

function asynchronously and independently. At any time, different processors may 

execute different instructions on different pieces of data. MIMD architectures may be used 

in a number of application areas such as CAD, simulation, modelling, communication 

switches, image processing, and computer vision. In digital image processing applications, 

massive MIMD machines have been developing for at least three decades. 

MIMD machines can be divided in two categories: common shared memory and 
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distributed memory. This classification is according to how MIMD processors access 

memory.  

In common shared memory architectures, all processors access the same memory 

through the bus. They are extendable with a hierarchical structure. Their advantage is that 

since data are stored in the common shared memory, any processor can access them at 

any time. The disadvantage is that the competition in memory access among processors 

can occur. 

In distributed memory architectures, each processor has its own local memory and 

communicates with others via a common bus, communication link, or both. A hypercube or 

mesh interconnection scheme may be adopted in distributed memory architectures. In this 

case, data must also be divided into small chunks and distributed among processors. It 

means that data exchanges between processors are required when data processing 

algorithms execute. Data exchanges can aggravate the communication load and reverse 

the speedup expected. If a common bus is used, bus congestion may occur as well. If the 

serial communication links are used, typically in DSPs, the small bandwidth of serial links 

for most data processing applications can be a bottleneck. A modified scheme is to 

combine a high-speed common bus with communication links. The former is specified for 

the data transfer; the latter are used for the message passing. 

In the image processing, for example, the SIMD architecture is used in the low-level 

processing while the MIMD is applied in the high-level processing. In the middle, it can be 

a mixed architecture that is a hybrid or mixed one of SIMD and MIMD (Siegel et al 1981). 

2.4.2 Operator Parallelism 

An alternative parallelism approach is operator parallelism. In this architecture, each 

operator can be optimised for specified tasks and be linked together to accomplish a 

sequence of tasks (Pitas 1993, and Ramasubramanian et al 2002). Thus, it is also called 

as pipelining even though it has different functions from the pipeline that will be discussed 

in detail in the next section. There is a special architecture in the operator parallelism, the 

operator parallelism within loops. To form a loop, the starting processor in the pipelining 

can be linked to the end processor. This loop structure can be used in a situation where 

the same operations must be performed on the data cyclically and repeatedly. 

  In DSPs, the operator parallelism has been widely used in the implementation of 

low-level digital signal or image processing algorithms. It has been proved that the 

operator parallelism is very efficient for the morphological image processing. In 

special-purpose integrated circuit boards, heterogeneous pipelines are successfully used 

in operating on a high-speed image bus. With integrated circuit board drivers, the 

pipelining function can be controlled by a host computer. 
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2.4.3 Pipelined Processors 

Pipelined processors for real time low-level image processing have been developed for 

three decades as well (Kelly and Hsu 1998, Kim H. et al 2012, Kim J.K. et al 2012, and 

Pitas 1993). These processors receive data in the raster scan order and pass them to the 

processing pipeline sequentially. Each stage in the processing pipeline performs the same 

pre-specified operation on every element of the data in sequence. Pipelined processors 

have been applied in processing algorithms for pixel-wise and local images. The 

advantage of pipelined processor is to process the image in real time. Incoming data can 

be accepted from the image sensing device directly. The intermediate processing results 

are not necessary to store, which simplifies communication between stages. Their 

disadvantage is the lower flexibility on the hardware devices. Once specified and built up 

for a special algorithm, devices cannot be changed for other algorithms. 

2.4.4 Cache 

Compared to the above parallelism technologies, it is not obvious that the caching 

technology is included in the parallelism. It is known that there is a speed mismatch 

between processor and DRAM (Dynamic Random Access Memory). One reason for this is 

the memory latency, a period of time needed by the memory device for preparing the data 

to transmit; the other reason is the low bandwidth of memory, which is the rate of data 

transmission between the processor and memory device. The memory bandwidth is 

determined by the size of memory blocks and the bus bandwidth of the memory. Memory 

blocks are the smallest units that can be physically fetched to the cache each time.  

  The cache, which acts as a temporary low-latency high-bandwidth storage, is used to 

speed up the memory access with the reuse and locality of code and data (Grama et al 

2003). The reuse means that a section of code or data can be re-accessed more than 

once. The locality is the feature that the access to a section of code or data can be kept for 

a while when a program is executed. If several of consecutive and contiguous blocks are 

pre-fetched to the cache in subsequent bus cycles when the first word is retrieved, the 

subsequent consecutive blocks can save the memory latency. Both of the reuse and 

locality are features that the programming mostly has. 

There are varied types of cache. The lower latency and higher bandwidth a cache has, 

the more expensive it is. Thus, a system can have multiple levels of caches. The 

lower-latency and higher-bandwidth cache is put closer to the processor. The system’s 

performance is improved by raising the rate at which data can be transmitted into the CPU, 

rather than by increasing the processing rate of the CPU. 

This structure does not belong to typical traditional parallelism architectures. As the 

multiple levels of caches are cascaded in between the processor and DRAM, it can be 
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treated as an implicit pipeline. 

2.4.5 Promotion for New Concept Introduction to Parallelism 

Driving the parallelism evolution is needed to speed up the computation, which is always 

required by advanced applications. Since there is no limitation for the requirement of 

speeding up computation, the parallelism in computer systems and applications becomes 

diverse, flexible, and changeable. Researchers have attempted many different ways in 

different hardware platforms to extend and even break through the conventional 

parallelism concepts. Different application situations can spawn different methods, and 

lead to different solutions. 

For example, a pipeline has many variants in different parallelism contexts, which will be 

further discussed in Chapter 6. Applications in graphics and visualisation can use multiple 

rendering pipelines and PEs of different levels in parallel in order to compute and render 

realistic scenes with millions of polygons in real time. This parallelism simulates but does 

not exactly map rendering tasks to specific topologies of processors. 

Another issue is the capability of hardware system where a parallelised algorithm is 

implemented may influence the speed. The effect of speeding up of the parallelised 

algorithm relies on whether or not the capability of a hardware platform is sufficient for this 

parallelised algorithm. This may result in modifying the parallelised algorithm in order to 

speed up the computation at that hardware platform. The parallelism can produce an 

effect in that system context, which is different from those in other system contexts. 

In graphics and video processing, the pipeline, however, can be transformed to have a 

cache-like function. Just like the mismatch between processor speed and the memory 

latency needs a hierarchy of successively faster caches to compensate, the mismatch 

between frame buffers in memory and pixels processed and displayed line by line on a 

device screen has to be pipelined to display images smoothly on the screen. Therefore, a 

new type of parallelism can be modified and synthesised. 

These new concepts of parallelism are applied to this project and will be detailed in 

Chapter 6. 

 

2.5 Related Studies in Surface Modelling and Editing 

According to Cunningham 2008, and Hearn et al 2011, many methods and technologies of 

other areas are needed in the computer graphics, such as the geometrics, numerical 

analysis, approximation theory, and interactive computer systems, to support the 

representation, manipulation and display of free-form surfaces. These free-form surfaces 

can represent varied objects. But the computer graphics has its own features and rules to 
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model objects in order to display them on computer screens.  

For the 3D rendering, it needs to go through the whole graphics pipeline that an 

OpenGL implementation can provide. From the application perspective, it includes 

modelling, several coordinate transformations from the local coordinates to scene world 

coordinates, to viewing coordinates, and to projection coordinates, clipping with view 

volume, and mapping viewport coordinates to screen device coordinates. 

In order to display an object properly on the screen, it is fundamental to model the object 

in a controllable, flexible, and effective way at the beginning. The object can be modelled 

with a surface or mesh. The surface can have a set of control vertices that are used by the 

user interaction for surface editing (Barsky 1984, Cunningham 2008, Hearn et at 2011, 

Hoppe et at 1994, and Hoschek and Lasser 1993). 

In many applications of computer graphics, for instant, computer-aided geometric 

design (CAGD) and CAD, the manipulation of surfaces or meshes is necessary because 

users expect to edit and modify the object shapes according to their design intentions. 

Therefore, for surface/mesh editing, it is important to model objects in a controllable and 

flexible way. 

There are many methods for object modelling and editing in 2D or 3D, which have been 

published in these three decades (Abbasinejad et al 2013, Cheng and Goshtasby 1989, 

Duchamp and Stuetzle 2003, Hoppe et al 1994, Huang et al 2006, Loop and DeRose 1989, 

Loop 1994, Nasri 1987, Perez et al 2003, Sederberg et al 2003, Sorkine et al 2004, Wang 

et al 2006, Welch and Witkin 1994, and Yu et al 2004). 

For the 3D rendering, there is a general purpose, which is to make the geometrical 

images as smooth as possible. For this goal, there are three mainstream schemes to 

maintain the local control during surface modelling and editing, these being subdivision, 

deformation, and shape parameterisation. 

The multi-time reuse of subdivision in different levels can create a limit surface with 

visual smoothness (Catmull and Clark 1978, Deng and Ma 2013, Doo and Sabin 1978, 

Kazakov 2007, Lin et al 2008, Müller et al 2006, Müller et al 2010, Nasri and Abbas 2002, 

Patney et al 2009, and Sederberg et al 1998). Since the limit surface is the convergence of 

infinite-time applications of subdivision, there is always a compromise between 

computation cost and surface smoothness during practising subdivisions. Depending on 

the smoothness and local geometric details to be attained, this compromise varies and the 

number of subdivisions to be applied is empirical. That is, when using the subdivision 

method, designers may use fewer times of subdivisions if the situations allow the lower 

smoothness and fewer local geometric details. Or, they may use more times of 

subdivisions if the cases need the higher smoothness and more local geometric details. 
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Deformations of solid primitives can be assembled in a hierarchical structure to create 

complex objects (Barr 1984, Botsch and Sorkine 2008, Clack and Keyser 2013, Lawrence 

and Funkhuser 2003, Sederberg and Parry 1986, and Sumner et al 2007). In order to 

change the shapes of primitives, deformations have several hierarchical solid modelling 

operations to support user interactions. Deformations provide a flexible way to construct 

3D geometrical shapes. The disadvantages are that the assemblies of different levels of 

primitives can result in the unexpected non-smoothness between different primitives. The 

more complicated the target object structure is, the more assembly layers are required, 

and the more calculations are involved. 

The shape parameterisation can be used to get local control with the predicable surface 

smoothness and without multi-time reuses to reach the smoothness (Barsky and DeRose 

1989, and Barsky and DeRose 1990). The local controls are not divided into any 

hierarchical structure. Seen from publications, the aforementioned two schemes involve a 

lot of researches of different individuals and groups, but the last one does attract much 

less attention after the study of Barsky and DeRose 1990.  

Table 2.2 displays comparisons among these three methods. As the above discussion, 

the multi-time reuse is required by subdivision methods, rather than by the two others. The 

assembling sub-models are needed by deformation methods, but not by the two others. 

Without primitive assembles of deformation methods, the surface parameterisation 

methods offer a definite smoothness. The reason for this is that the geometric continuities 

on the common boundary of two connected patches are the conditions that are used to 

construct the algorithms for surface parameterisation methods, which will be explained 

later. Without intermediated processes, the surface parameterisation methods have lower 

storage and computing cost than subdivision methods. Since the multiple applications and 

primitive assembles are eliminated, the computation cost of surface parameterisation 

methods are lower than the other two.  

In addition, for the surface modelling and editing, the user interactions are necessary 

and require the operations with the input and output system. The times of user interactions 

caused by the surface editing engender the same times of input/output operations. The 

latter leads to the computation cost and makes the time cost even more because the time 

cost is the sum of the time cost by both the computation, and the input and output system. 

Thus, the time cost of surface parameterisation methods is much lower than two other 

methods. Moreover, considering that it is applied to an FPGA platform, which is limited in 

the storage space and computing ability, a shape parameterisation method is even better 

than the two other methods. 

The novel algorithm, PAMA, proposed in this thesis, can be classified into shape 

parameterisation. 
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Table 2.2 Comparisons among Three Surface Modelling and Editing Methods 

 Subdivision  Deformation  Shape 

Parameterisation 

Multi-time Reuse Required None None 

Assembling Sub-models None Required None 

Smoothness Varied, Empirical Non-smoothness 

Between Primitives 

Smooth 

Hierarchical Structure Depending on 

Geometrical Details 

Required Flatted in One Level 

Storage Cost High High Low 

Computation Cost High  High  Low  

Time Cost High  High Low 

 

Among many existent spline algorithms, B-spline (Cheng and Goshtasby 1989, Forsey 

and Bartels 1988, Liu et al 2009, Loop and DeRose 1990, and Martin et al 2008) and 

Bézier-spline (Efremov et al 2005, Hagen 1986, Li et al 2006, Loop and DeRose 1989, 

and Si and Guenter 2010) can smoothly approximate an irregular control mesh. They are 

often used as a basis, and proved simple, efficient, and of a polynomial form. 

Bézier-spline curves and surfaces provide a convenient method for interactive design 

applications. A curve or surface formed with two Bézier sections or patches can be 

established with a zero-order and first-order parametric continuity ( 0C and 1C ) at the 

common boundary point or line (Barsky and DeRose 1989, and Hohmeyer and Barsky 

1989). Since the degree of the Bézier curve is determined by the number of all control 

points to be approximated and their relative positions, Bézier-spline curves and surfaces 

have a limited local control on control points. Parametric continuities can shrink the set of 

parameterisations by excluding ones that can generate geometrically smooth curves. The 

reason for this is that the condition of a given order of parametric continuity is stricter than 

one of the same order of geometric continuity, which will be explained later in this section. 

Beta-splines have many merits (Barsky and DeRose 1990, Farin 1993, Hearn et al 2011, 

and Hohmeyer and Barsky 1989). They can acquire constructed curves that are smooth 

and fit control points. They can also add Beta-constraints to a curve so that Bézier curve 

segments can be joined together with geometric continuities and more controls can be 

provided with shape parameters for users to edit curves interactively. For each control 

point of the curve, each of shape parameters has its own efficacy for changing the curve 

shape, which is different from changing the position of control point. 
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Cubic Beta-splines can give the second-order geometric continuity ( 2G ), which is more 

relaxed than the second parametric continuity ( 2C ) (Barsky and DeRose 1989, and 

Hohmeyer and Barsky 1989). With shape parameters that ensure Beta-constraints, 

Beta-spline curves can match parametric derivatives and lead to local controls on curves. 

In the study of Barsky and DeRose 1989, the authors give an application of stitching cubic 

Bézier-spline curves together with the first-order and second-order geometric continuity 

( 1G  and 2G ), which is a development of cubic Beta-splines with 2G . The scheme of 

joining cubic Bézier-spline sections together with the 1G and 2G conditions (or 

Beta-constraints) is first proposed by Farin (Farin 1982), enhanced by Boehm (Boehm 

1985), and applied to Beta-spline curves by Barsky and DeRose (Barsky and DeRose 

1989). It has palpable geometrical meanings and is feasible to construct the polygons of 

cubic Bézier-spline sections with 2G common boundaries, which will be explored in 

Appendix. Following these thoughts, the PAMA attempts to extend the geometrical 

construction scheme to Bézier-spline patches of a composite surface with the common 

boundary curves that hold specific-order geometrical continuities. 

With Beta-splines, the curve construction is given by several researchers, such as 

Barsky and DeRose (Barsky and DeRose 1990). For the surface construction, a special 

case is presented in the article of Barsky and DeRose (Barsky and DeRose 1985), which 

has the same shape parameters in two parameterisations. In the article of Joe (Joe 1990), 

Beta-spline surfaces are constructed with an algorithm, in which one of the shape 

parameters (βu2) is set to one for all control points, and the computing cost is reduced 

while the control of these shape parameters is lost. There has been no recent published 

work on comprehensive extensions of surface modelling with Beta-splines or 

Beta-like-splines of four shape parameters changing independently in two 

parameterisation directions. 

Considering the tension product of Beta-splines surfaces can result in a large 

computational cost of multiplication and the shape parameters of each control point should 

be manipulated independently for the design purpose by user interactions, this research 

proposes and applies a Beta-like-splines of four shape parameters to surface modelling 

and editing through user interactions. The Beta-like-splines proposed in this research are 

not deduced directly from the tensor product of Beta-spline blending functions, but derived 

with a progressive and mixing way, which takes account of both the geometric continuities 

of surfaces and the shape parameters of two parameter directions naturally adding to the 

surface construction. These lead to the novel algorithm, PAMA, which will be detailed in 

Chapter 7. Open and closed spline surfaces have been constructed and edited with the 

PAMA through user interactions and are also shown in Chapter 7. In addition, the 

applications of the PAMA in two environments of the general-purpose computer and 
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FPGA-based ES are presented in Chapters 7 and 8, respectively. For the coherence of 

the thesis, a lucid exposition of the rigorous mathematical deduction of the PAMA and its 

continuities will be presented in Appendix. 

 

2.6 Chapter Summary 

In this chapter, five aspects of literature reviews are presented, which are relative to five 

aspects of this project. The first aspect is Section 2.1, the related studies of ESs. The 

second one is Section 2.2, the investigation of hardware graphics applications. The third 

one is Section 2.3, the introduction of OpenGL, OpenGL ES and their implementations. 

The forth one is Section 2.4, the investigation of traditional computation parallelism. The 

last one is Section 2.5, the related studies in surface modelling and editing. The contents 

in these sections are followed by the rest chapters of the thesis, respectively. Chapter 3 

discusses an integrated hybrid ES following the discussion in Section 2.1. Chapter 4 

explores the FPGA-based embedded hardware system for graphics applications, which 

deepens the investigation in Section 2.2. Chapter 5 details integrating the Mesa-OpenGL 

implementation into FPGA-based ES, which follows the introduction in Section 2.3. 

Chapter 6 explores the parallelism implementation in FPGA-based ES that deepens the 

investigation in Section 2.4. Chapter 7 focuses on the novel algorithm for surface 

modelling and editing, PAMA, which deduces from the studies of Section 2.5. 

 

 

 



 

 

 

 

Chapter 3  An Integrated Hybrid Embedded System 

 

 

The discussions of Sections 2.1 and 2.2 clearly suggest that to obtain a hybrid solution of 

software and hardware for graphics applications, we need to choose a platform that allows 

us to construct a system as a whole by considering both hardware and software. This has 

the merit that the ES outstrips general-purpose computers. In addition, since the ES is 

known as an interdisciplinary field, we need to investigate the features of ES design and 

gradually explore how to use an ES model to construct a goal system for graphics 

applications and allow the PAMA to execute on this system. 

   

3.1 Features and Principles of ES Design 

According to the study of Henzinger and Sifakis (Henzinger and Sifakis 2007), an ES is an 

engineering artefact involving computation that is subject to physical constraints. In other 

words, even though involved in the computation, the ES is a physical system that has to 

meet the physical requirements and be implemented with engineering methods. 

3.1.1 Physical Requirements for ESs 

The physical requirements for ESs are twofold. One is responding to its physical 

environment; the other is performing operations on its physical platform. These operations 

can be, but are not limited to, computations. They can be the moving of actuators, 

receiving sensor signals, transmitting signals, and many other controls. The ES mainly 

interacts with its environment. The interactions can be from human beings’ control with 

consoles and to a monitor, or making a response to a sensor signal, such as turning a 

robot around when it is about to bump into a wall. Both the response ability and operations 

can significantly influence the ES performance. 

3.1.1.1 Response 

Requirements for response include deadlines, throughput, and jitter performance. 

Because of real-time requirements, the response of ES to an outside event has a start 
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or completion time as a deadline. Beyond this deadline, the response is pointless. In other 

words, the real-time response must be able to keep up with the event with which it is 

concerned and be started or completed before this deadline. Otherwise, it will lead to a 

fatal failure to the system or undesirable damage. 

 The throughput has a different meaning for an ES from a general-purpose computer. 

For a general-purpose computer, the throughput indicates the amount of data that the 

computer can accept and process without missing any of the data. For an ES, except for 

the amount of data to be processed, the throughput usually means the processing ability 

of the ES. That is, the ES must tackle all the specified operations in real time without 

missing any of them. In other words, the operations can comprise not only a large amount 

of data to process but also a sequence of responses to a series of events. 

Jitter problems are natural but undesired for electronic circuits. They can occur when the 

switches in electronic circuits are turned on and off and lead to instantaneously undulation 

of signals. Without properly protection, they can cause ESs to malfunction. Thus, jitter 

performance is critical for ESs. Protection measures for jitter problems can come at the 

cost of system resources, however. 

3.1.1.2 Operations 

In ESs, the requirements of operations involve the speeds of on-board processors and the 

capabilities of system resources. The processors and system resources are related to the 

price for which the end products can be paid, the sizes and capabilities of chips and 

boards, and power capabilities. Hardware failure rates can also have an influence on 

operations. These requirements affect each other. 

  Usually, when considering the higher cost restriction and less computation, ESs use 

slower processors than general-purpose computers do. In general, for general-purpose 

computers, for which computation is the main task, the higher the speed of their 

microprocessors, the better their system performances. For ESs, because of the cost 

restriction, a proper option can be a processor with a speed fast enough for response to 

their application environment, or a processor with a speed sufficient for the completion of 

specified operations before the deadline. Similarly, the size of memory, which is one of the 

most important system resources, is also restricted to an appropriate range for specified 

applications of ESs. 

  The sizes and capabilities of chips and boards can impose restrictions on the on-board 

processor option. Because of their application environments, ESs often do not have large 

space for accommodation. A small size is the regular choice. Higher capabilities of chips 

or boards mean higher costs. An unrealistic high-quality chip or board is not compatible 

with the limited budget of a mass electronic-consumer product.  
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  Because of the limited space, the power units of ESs cannot be large. Small sizes lead 

to power restrictions. Greater power means higher cooling requirement. Usually, 

rechargeable batteries are alternative power sources for ESs. For rechargeable batteries, 

a large size is inappropriate. 

  Lower hardware failure rates are often required, especially for the applications in life 

science, medical instruments, and avionics. Decreasing hardware failure rates means 

increasing the cost in terms of enhancing the check and protection units of systems.  

Roughly, to decrease hardware failure rates, there are two levels for safety-critical 

requirements in ESs, hard and soft. For hard safety-critical ESs, the necessary computing 

power must be guaranteed at all times. The needs of the static scheduling and worst-case 

execution time analysis must be met in real time. Hard deadlines must be met. System 

reliability must be guaranteed with massive redundancy technologies and measures for 

failure detection and recovery. These ESs are usually used in life science and avionics. 

Soft safety-critical ESs make a soft demand on service quality. The efficient use of 

resources is the goal for this type of system design. The applications for this type of 

systems can tolerate some service degradation or even temporary service shortage. Soft 

deadlines are not too serious and allow a small amount of being missed. Thus, the 

best-effort mechanism can be adopted. The best-effort mechanism tries to balance 

system performance and cost when systems go into degenerated situations. It can get 

feedback from the degenerated situations and adjust some parameters to maintain an 

acceptable performance or to recover from the degenerated state at the run time. 

Communication networks and multimedia systems belong to the soft safety-critical ESs. 

In these systems, the best-effort scheme is often used to guarantee a lower failure rate. 

Even more, since the workloads of these systems vary dynamically at the run time, the 

best-effort scheme can be used to adjust performance according to different workloads. It 

uses different users with different priorities or data traffic to balance performance levels of 

the whole systems during different periods of time. 

  All the above requirements decide the implementation options on ESs. Since they 

influence each other, it is necessary for ESs to find a balance among these requirements. 

Control theory and computer engineering can help to balance the capabilities of response 

and operation of ESs with all the requirements. Therefore, ESs need to carry out a design 

that can meet a designated set of requirements on a given implementation platform. 

3.1.2 Analysis for ES Design 

Since an ES design involves both hardware and software design, it is necessary to make 

an in-depth analysis on regular paradigms of software and hardware designs, respectively. 

Then it can be seen clearly how to progressively build up a new way with current design 
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conditions for the ES design.  

3.1.2.1 Software Design Paradigm 

In software engineering, a system design employs an abstract representation of the 

system requirements. The abstract system representation is a model that follows the 

standards and rules of software engineering and some high-level language syntax. The 

model can give a description of a target system design. A designated language compiler 

uses the model to generate automatically a system that meets the given requirements. 

This system is a piece of software that is usually the collection of the machine codes and 

can be executed on a computer. 

Software design is usually carried out on a virtual machine. This machine is an abstract 

one defined with a real interface via which application software can interact with a real 

machine. No matter which machine it is, the interface is real and generic for all types of 

machines. Since it consists of different functional units, the standard input and output 

system is divided by functions and defined in specific blocks. These blocks are available 

for software calling via the interface. Therefore, software design does not necessarily 

analyse the content of the virtual machine but only knows how it works. A real machine 

can be uncertain before the software is ported to it. But the real interface can guarantee 

software portable among real machines with the generic interface. 

On the virtual machine, the software design is set up. The software is conventionally 

designed as a model that consists of sequential blocks. These blocks can be instructions 

and routines representing threads and objects. The implementation of each block is 

changeable depending on the actual algorithm, but the function and interface of each 

block must be clarified and consistent. Designers can add and delete individual blocks 

according to their target system’s requirements. Designers can define the blocks’ layout 

by specifying the control flow among them. 

Software programming usually does not treat timing as seriously as hardware 

construction does. One reason for this is that the computation result is often more 

important than the computing process. The other reason is a side-effect of high 

abstraction. High abstraction encapsulates and hides CPUs and memories from the 

applications in a computer system. It also hides how the computation result is being 

attained. On the other hand, the hardware knows that all the processing in a computer 

system is done with a series of actions of processors controlled by the system clock, no 

matter whether the processing is computing or controlling. 

Time-sharing systems have led to greater efficiency of computer systems by making the 

CPU busy manipulating several jobs concurrently. In this architecture, one CPU’s working 

time is shared by several different jobs. This sharing idea has been extended in many 

other applications, such as sharing different system resources among different tasks or 
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users in telecommunication networks and multimedia systems. These sharing models 

attempt to satisfy every task or user by sharing and averaging services among them and 

can result in some resources being temporarily unable to serve some users. They do not 

let any of them occupy a resource exclusively. These models can be realised with just a 

system counter to schedule the tasks. There is no critical task that is so pressing to require 

timing and have an absolute priority that it occupies the system resources exculsively. 

Thus, serial or concurrent processing can meet most of demands.  

In general, a piece of software is a computation process to execute on a machine. It is 

important whether its result is correct or not. It does not matter how the computation is 

accomplished. Thus, it can be implemented in sequence. It can be highly abstractive, 

device-independent, and transparent. The implementations of a software design can vary. 

3.1.2.2 Hardware Design Paradigm 

Hardware design is a totally different scenario. Every component has to be verified before 

execution in order to avoid the target system getting out of control because each of them 

has its own necessary task and makes a contribution to the whole system, which is 

deduced from the system requirements. 

  Even though there are different abstraction levels to describe building blocks in 

hardware design, each block has an explicit definition of its components, for example, 

logic gates and transistors. The abstraction blocks can be functional blocks, such as 

adders, multipliers, and others, or architectural ones, such as processors, multi-core 

architectures with caches, etc. There are fewer options for replacing one type of device 

component with another in hardware than software. Since the signals that represent 

different data transmit along different parallel branches in a complex electronic circuit, the 

parallel feature is inherent in hardware design. 

As regards top-down design, a design model can consist of dataflow diagrams and 

netlists. The dataflow diagrams can represent transfer functions of a target system. The 

netlists can be a description of connections between different blocks. 

  As regards the hardware implementation of a system, FPGA devices can be adopted, 

which will be detailed in the next chapter. The basic idea is that with a computer-aided 

design (CAD) tool, such as Altera Quartus, Xilinx ISE, Mentor Graphics HDL Designer, or 

Synopsys Synplify, a system representation written with a HDL (hardware description 

language), such as VHDL (VHSIC HDL, very high speed integrated circuit hardware 

description language) or Verilog HDL can be programmed and synthesised the target 

system circuit and downloaded into an FPGA chip. With a CAD tool, the representation 

can be translated into a RTL (register transfer level) schematic of a target circuit. The 

generated schematic can be verified by using simulation software to show the waveforms 

of inputs and outputs of the circuit. The verified schematic provides a lucid illustration of 
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the blocks and connections of the target circuit. The VHDL or Verilog HDL model is 

translated into the hardware description information about the gates and their connections. 

Then, the information is mapped onto an FPGA device. The FPGA device is configured 

with the model and ready to function as the target system. 

  In hardware design, the abstraction technique is used as well. For instance, real-valued 

transistors can be abstracted as Boolean-valued gate-level models, and now 

system-on-a-programmable-chips (SOPCs) provide even more abstractive models.  

  Compared with software design, timing is critical to hardware design. Timing is hard to 

express in building blocks of a model. Viewed in the bottom-up way, with gates, it can be 

clearly seen how many system clocks a process has to accomplish. But when the design 

is abstracted into different building blocks, unless the clocks that have to be cost by a unit 

are marked explicitly, it is hard to maintain exactly timing. On the other hand, in some 

control applications, such as those with hard deadlines, timing is critical. When a system is 

large, such as VLSI (very large scale integration), with millions of gates, the manual 

identification of timing is not realistic and timing analysis becomes necessary. In reality, 

given the FPGA background, the synchronisation of processing is encouraged more than 

asynchronous operations because synchronous units are easier to control in circuits than 

asynchronous ones. This is why the timing analysis is very important for hardware design, 

as well as logic analysis. 

  Many hardware designs are applied to a designated control or operation, often 

exclusively. They have one critical task, which occupies all the system resources in its 

critical time. It does not share the resources with others. This can result in the under-use of 

system resources. The deadlines of the critical task must be met. To guarantee the task’s 

accomplishment without any known risk, massive redundancy in system resources 

sometimes has to be adopted. This is the case with hard safety-critical ESs, as mentioned 

in Section 3.1.1.1 

In addition, it is relatively easier to express a logic statement by a specified language 

than to describe a hardware action, especially an action that is a series of operations 

controlled by the system clock. Hardware synthesis tools are more difficult to understand 

than automatic model transformations of software compilers. In hardware design, some 

stages, such as adjustments according to the results of logic analysis and timing analysis, 

cannot be done automatically by some tools. Without some expertise, skills, and 

experience, it is almost impossible for newcomers how to handle these tasks. The more 

human-guided decisions need to be involved, the more difficult it is to be understood. 

Therefore, hardware design needs more specialised training and practice.  

Unlike a piece of software, which is a temporary execution process, a hardware system 

is a permanent physical machine that is expected to execute different tasks, which may be 
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a program or a operation of an actuator, at any time. Its error case may always exist and 

be tested after it starts to run. Therefore, the demands put on a hardware system are 

different from those put on software, and the verification process passed by a hardware 

system is more serious and detailed than software.  

  In the above two paradigms, the compilers or CAD tools are quite mature. The process 

of compiling or synthesising is automatic without too much manual work. It saves 

designers a lot of energy and time. The design formula has a well-organised structure. It 

allows not only the bottom-up style but also the top-down way to design. Two ways can be 

combined for making, adjusting, and refining the design models. 

3.1.2.3 Comparison between Hardware and Software Developments 

In the design and development of a system with a hybrid way, it is harder to add new 

functions to the hardware part of the system than to the software part. During the 

implementation, the variation and extension in the hardware part can cost designers and 

developers more time and energy than the software. Compared with software 

development, hardware development faces several restrictions.  

▪ For regular developers, understanding hardware implementation is more difficult 

than understanding that of software. As the logical feature of software is more 

readable than the electronics engineering notation of hardware design, software 

implementation is easier to master.  

▪ If the hardware is changed, more work related to the system reconstruction has to 

be done by the developers. Many facilities are unavailable, such as the API and 

device driver of a new hardware addition. 

▪ The design and development platforms for the hardware and its software 

accessories (for example APIs, device drivers, and integration and porting to the 

system) are not as complete as the ones for the software. Unlike software 

development tools that can compile programs automatically, the compile, build and 

link tools are separated and intertwined with a lot of manual work. The 

infrastructure for the hardware development is not as developed and popular as 

that for the software. 

▪ Different hardware devices, especially from different suppliers, are not compatible 

with each other whereas software code programmed with one language, such as C 

or C++ language, can merge more easily with other parts of the software system. 

The reuse of modules in hardware design and implementation is lower than for 

software codes, especially regarding different devices from different suppliers.  

Despite these constraints, the hardware solution has some features that its software 

counterpart does not. 
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▪ The hardware accelerates the operations more effectively and directly than the 

software. The hardware can be sped up by lowering the number of system clocks 

by optimising the hardware design. Since the hardware is the final actuator in a 

complete ES, its acceleration can make the software running on it more quickly. 

▪ Parallel processing is achieved more easily and reasonably with hardware than via 

software. The multiple branches of data flow in the hardware implementation are 

inherently parallel. 

▪ The pipeline of a sequence of dependent operations or instructions can be 

implemented more straightforwardly with hardware modules than via the software 

code. It can also make a substantial contribution to the speeding-up of the system. 

3.1.2.4 Current Conditions of ES Design 

No complete and systematic tool for ES design is available yet. Since ESs consist of 

hardware and software, it is difficult to integrate a hardware design tool into a software 

environment, vice versa, in a short period of time, especially as researchers from two 

different backgrounds are involved. Researchers involved in software study and 

development follow the rules of software engineering in computer science whereas 

researchers in hardware design and development follow the standards of electronics 

engineering. Their design tools are developed for different goals. It is difficult to convince 

people in a short while that combining these two together could be effective. After all, it 

needs a lot of more work to build up a complete design environment for ESs. 

  The good thing is that there are already design tools that can be used in software or 

hardware separately. The Altera Embedded System Development Kit (Altera 2008a) 

provides a good prototype for FPGA-based ES design environment even though there is 

still a lot of work to do. For designers who want to take an ES design as a coherent and 

systemic process, the challenge is the energy and time required to learn and become 

familiar with two different design styles for software and hardware. It is also necessary for 

these designers to figure out how to make two design tools collaborate well to meet a 

unified ES design goal.  

  There are still differences between ES design and single software or hardware design. 

Single software has a closer relationship with the computing-intense processes. The 

input/output-intense processes have to access the input/output peripherals of a system, 

which are usually set up by operating systems and standard libraries. Software designers 

do not necessarily think about it much. The high abstraction in computer science does not 

work for ES. Such high abstraction is generated by significant separation between 

computation and devices, and central enabling management of resources. It hides the 

system resources from applications. Since ESs are often device-dependent, 

application-oriented, and operation-targeted, ES designers must know how to 
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communicate with devices and harness them well. 

  On the other hand, single hardware designers may consider how a hardware unit works 

and which hardware units should be used to set up a target system. They do not think 

much about how their implementations are to be used in an application environment. It is 

usually the responsibility of the application developers of a hardware system to establish 

the facilities to control and harness the hardware, and make a smooth connection between 

the hardware and software over and above the hardware system. It needs considerable 

effort to do this. 

  From the above discussion, it can be seen that hardware design goes in a totally 

different direction from software design. One cannot simply move from software to 

hardware design, or the reverse, to form an ES design. In other words, ES design has to 

fill all the gaps and establish a complete and systematic methodology to integrate control 

theory with fundamental prototypes in hardware and software design. 

3.1.3 Challenges for ES Design 

The challenges for ES design can be summarised as follows. 

▪ There is a big gap between the two model-based methods in computer science and 

electronics engineering. Different models constructed by different tools meet 

different system requirements and support different design processes. Apart from 

these requirements and processes there is a difference between the nature of 

software and hardware, and a distinction between the digital and analogue 

domains. Objects processed in the former are digital and discrete whereas signals 

sampled by the latter are analogue and continuous to time. It is necessary to look 

for an effective method to connect them to make them work together to server 

applications. 

▪ ES design has a wider scope of applications than software programming when 

roughly viewed in the diversity of applications. It has a smaller pool of human 

resources and more distributed force than software design, as shown in Figure 3.1. 

Two factors contribute to this layout. One is the stronger specialty of ES 

technologies than software programming. For this reason, the education 

investment of a good ES designer is greater than that of a good software 

programmer. A hardware development platform is usually more expensive than a 

software one. This makes software programming more attractive to raw recruits 

than hardware development. The other factor is the greater diversity of ES 

applications than those of general-purpose computers. The wider diversity of 

applications divides the small pool of researchers and developers in ESs into many 

groups and makes each group even smaller. The narrow strip of ES, as shown in 
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Figure 3.1, illustrates the division effect of the application diversity. These two 

factors lead to more researchers maintaining the design environment for software 

programming than those for ESs. Furthermore, they result in the better design 

environment for software programming than that for ESs. 

 

Figure 3.1 Comparisons of Application Requirements and Human Resources between ES and Software 
Programming Designs. Horizontal Widths Represent Application Requirements; Vertical Heights Represent 

Human Resources for Research and Development. The Wider Width of the Rectangle of Design in ESs 
Shows the Wider Application Diversity of ESs. The Thinner Height of the Rectangle of Design in ESs Shows 

the Smaller Separate Human Resources in ESs. 

 

▪ Another problem related to human resources for ESs is the lack of researchers and 

engineers who are expert in both two fields, software programming in computer 

science and technology and hardware engineering in electronics engineering. 

These two fields have different theories and research methods to support, which 

have been discussed in Section 3.1.2.4. This results in the separate researches in 

two fields. 

▪ These two domains, software programming and hardware engineering, are 

equipped with different mathematics systems. In one system, there are specified 

notations for operands, operations, and restrictions. As a system, it is expected to 

be complete or self-contained. Inside their own domain or system, operations and 

operands can be transformed and executed in a right way. Outside their domain, 

they cannot be guaranteed to behave in a correct way. ES design includes the two 

in order to cope with any system that has to consist of both hardware and software. 

A mathematics system designated for ESs has to be established, just like computer 

science has discrete mathematics. It can fully express and analyse the ES domain. 
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Since software programming concerns itself with discrete and digital data and 

hardware engineering is required to transform continuous analogue signals into 

discrete and digital data, it is reasonable to suggest a new mathematics system 

combining or comprising the digital and analogue domains. 

▪ ES designs need a sufficient library of building blocks to support wide and 

changeable modelling. This library takes time to accumulate. 

▪ A transforming means is required to compile and (or) synthesise a constructed 

model into a style which the underlying systems can accept and execute. The 

means cannot be single but is complex. It can be interwoven with many user 

manual interactions. 

3.1.4 Prospective Principles for ES Design 

Some prospective principles for ES design can be summarised as follows. 

3.1.4.1 A Rational Combination of Functional and Computational Models 

Conventional functional and computational models are also applicable in ES design. They 

have different benefits, meet different system requirements, and are suitable for different 

targets. 

Functional models are adept in the situations that involve in concurrency tasks with 

quantitative restriction conditions. They are not good at dealing with sophistic mathematics 

algorithms and uncertain tasks. They are usually used in hardware design, scheduling and 

dispatching tasks, and performance evaluation. Therefore, functional models can be used 

in ESs.  

The System Identification Toolkit of National Instruments Corporation is an example of a 

functional model tool (National Instruments 2007). The toolkit consists of a library of VIs 

(virtual instruments) and an assistant for developing models of a system. Because of its 

graphical programming language, one can use the toolkit to construct control models for 

mechanical engineering, biology, and economics applications. The model can reflect the 

behavior of a certain dynamic system. Even though it is a software model tool, the models 

constructed with System Identification Toolkit can be analysed and validated, even used 

as a controller to hardware. 

Computational models are inherently abstract and hierarchical. They are good at 

dealing with complicated mathematics problems, and partial and changeable tasks. They 

are not adept at tackling concurrency and quantitative restriction conditions between tasks. 

Computational models have been successfully used in programs, operating systems, 

state machines, time sharing systems, distributed systems, and situations where tasks 

have to be tackled dynamically. The compilers of many high-level languages, such as 
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GCC (GNU Compiler Collection), can be computational model design tools. 

Computational models can be applied in ES design to some extent. At a high abstraction 

level, computational models are not suitable for ESs because of nondeterministic 

sequential processing. The hardware part of ESs has to retain the ability of parallelism, 

pipelines and precise cooperative constrains between tasks. Otherwise, the hardware 

design cannot be accurately mapped to the components of electronic circuits. 

The compilers and synthesis tools have limitations. For example, they can produce 

inefficient codes from a constructed model. The transformation semantics may be 

misunderstood or its library may not include some functions or computations that 

designers expect; for example, floating point computation is not always supported. 

Designers need to change the way they construct a special model and include computing 

insights to make the compiler or synthesis tools transform correctly. Therefore, the 

intelligence of designers can improve the effect of compiler and synthesis tools. 

For the tools of functional or computational models, the basic idea is to provide an 

environment where designers work with a designated human-friendly language; the 

language can be a high-level language or a graphical language. The environment helps to 

transform or translate a model constructed by a designer into a set of codes that the 

underlying system can identify. This underlying system can be software, such as an 

operating system or hardware abstract layer, or hardware, such as FPGA devices or VLSI 

systems. 

In any model-based design method, at the early stage of a design, system components 

in a modelling language cannot produce a design that is executable or interactive, or can 

be implemented successfully in a hardware device. Multi-times of model construction, 

analysis, compilation (or synthesising) and improvement are required for the redesign of 

systems. Verifications and adjustments of the hardware systems are also required in the 

engineering context. Therefore, it is a trial-and-error process. 

To meet the connection goal, the consistent aspects of the two domains have to be 

identified for decisions on how to do any ES design in a convenient way that can be 

promoted in ES world.  

3.1.4.2 A Promising Design Platform for Generic ESs 

As two models, functional and computational models, exist, a new platform that can 

include these two models is required. Figure 3.2 shows the structure of the new platform. 

This structure gives a partitioned solution. As functional and computational models have 

different application targets, support different design processes, and satisfy different 

system requirements, it is unrealistic to mix them directly together. Any application target, 

like ES itself, consists of software and hardware. It involves software programming and 

hardware construction. Consequently, the system design should start by decoupling the 
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top coupled models. The top coupled models are obtained from the system requirement 

analysis. Through decoupling, the functional sub-models and computational sub-models 

can be obtained. With coupling, an entire ES can be composed with all the sub-models. 

During construction, the functional sub-models can be built up with building blocks for 

hardware and software and the computational sub-models can be constructed with 

building blocks for software. Two pools of building blocks, one for software and the other 

for hardware, can be accumulated, based on the standard software libraries and hardware 

component engineering archives. Intermediate modification is allowed. After verification, 

executable and configure codes for a specified target machine can be generated ready for 

application. The design can also be optimised to cover the entire ES for the designated 

applications. 

 

 

Figure 3.2 Structure of New Platform for ES Design 

It is sensible to integrate existing software and hardware design tools into a complete 

design kit or platform in order to implement a system that includes hardware and software. 

It is not a simple task, and it will need a lot of more work to make such a system 
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To accompany this structure, a hierarchy of design process for ESs has to be defined. 
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implementation after the hardware accomplishment. Figure 3.3 shows the hierarchical 

design process for ESs. It is a process for a bottom-up design but it can be accomplished 

in parallel. Hardware construction is expected to be completed before software 

verification. 

 

Figure 3.3 Hierarchy of Design Process for ESs 

The second layer is the software that is closest to the hardware system. Since any unit 

of a hardware system must have a section of codes or device driver that can be used by 

the top software to control or communicate with the hardware unit, the hardware abstract 

layer must be programmed by designers or be provided by a third-party organisation or 

suppliers.  

The third layer is not mandatory. As regards computational, multi-task, and sharing-time 

applications, a micro-core real-time operating system is very helpful to manage the tasks 

and resources. A micro-core operating system is available from some open-source 

software resources. It is usually necessary to customise it to fit in the target applications. 

One reason for this is the limited memory space. The other reason is that some required 

functions may not be available in an open-source operating system. For simple control 

systems without an operating system, a complete hardware abstract layer is sufficient to 

handle the issues involved in communicating with the hardware system. Without an 

operating system, the response to the environment may be even faster and the system 

performance can be enhanced. 
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links between the layers, the design of ESs has to follow the order of this hierarchy loosely 

in order to avoid wasting the energy and time of developers on multiple re-designs or 

re-implementations. 

3.1.4.3 A Rational Division of Functional and Non-functional Requirements 

In ES design, there are functional requirements for the services and functions that 

systems should provide. There are also other requirements for performance and 

robustness, such as the response speed and the recovery ability from the worse case. 

The functional requirements are easily mapped into building blocks, but non-functional 

requirements are not. It depends on the test and verification of the implementation of a 

design model and even the application of the implementation whether or not the 

non-functional requirements are met. Some non-functional requirements, such as 

performance, can be tested by a number of tests, but others, such as resistance to failures 

and attacks, cannot. The non-functional requirements can influence all design decisions in 

system construction. For example, to enhance the safety of system, redundancy 

technology must be used; to raise the security level of system data, some protection 

measures should be applied in data access and delivery. Therefore, rational anticipation 

for these non-functional requirements is expected. 

 

3.2 Reasons for Choosing an ES as this Project Platform 

There are several reasons for choosing an ES as the platform for this research. 

▪ Flexibility for construction. ESs equip the designers with the ability to construct 

the system from the hardware. In this way, designers can customise the hardware 

units according to their requirements. For developers of performance-intense 

application, ESs are more designer-friendly than other platforms. They provide 

designers and developers with more options for processors, memories, devices 

and peripherals to enhance the whole system performance including operation 

speed, power requirement, and system size. The flexibility of ESs can offer more 

options for graphics applications of this project than the general-purpose 

computers. 

▪ Uncertainties. ESs are an emerging discipline of science and technology, and 

there are likely to be many possibilities for their use. Although they are becoming 

more and more prevalent, their new environments are not well known yet, and it 

may be necessary to make an estimate and then experiment with a trial-and-error 

approach. The difference between the expected and worst-case situations may be 

expected. These uncertainties have risks as well as opportunities for exploration. 

Although GPUs are a popular solution to the graphics speed-up for the 
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general-purpose computers, the ES may present a new field to be explored for a 

solution to the graphics units for other applications, such as small handheld 

gadgets and in-field equipment. 

▪ Changeable structures. ESs have been adapted and adopted in many 

applications. They offer changeable structures by using different unit options and 

parallel processing schemes to suit the application environment. The changeable 

structures can provide a systemic strategy to solve the graphics application issues. 

▪ Room for further development. Since FPGA and VLSI technologies progress 

rapidly, more sophisticated components and architectures can be introduced in ES 

design: for example, pipelines, multi-core CPUs with caches, and speculative 

execution. These can lead to further changes and development in terms of the ES. 

The pipelines can readily be applied in graphics for speed-up. 

  These are part of reasons why the ES is adopted in this project even though most of 

other researchers in computer graphics are trying to find solutions in GPUs. 

The ES is mostly thought as a device embedded into a large system. It is involved 

frequently in the hardware. The word ‘embedded’ can describe not only the hardware but 

also the software. Also, a device (like a bank of memory, peripheral, or processor) or a 

section of codes (such as a function or routine) can be embedded or integrated 

seamlessly into a target system. It means that ‘embedded’ has connotations of adding to 

and subtracting from, tailoring, and customising a system. That is, if the infrastructure is 

available, the application developer can construct an ES with any hardware device module 

and software element and integrate it into a larger system. 

In terms of hardware development, there are several technological difficulties, including 

the construction of the API and hardware abstract layer of device drivers, and porting and 

integration of a new additive unit in the system. Furthermore, the fact that there is no 

existent device that can fit into a specified algorithm needed by the designer can be a 

serious obstacle. An FPGA can help to accomplish the design and implementation of a 

hardware module for a specified algorithm. Some advanced FPGA chips have integrated 

DSPs (Digital Signal Processing) into their elements. For these reasons, an FPGA-based 

ES is an ideal option for this project that includes a special graphics algorithm, PAMA, to 

be supported. 

Another difficulty is how to link all the design and development processes for hardware 

and software together and make them function together well. It is the required 

infrastructure setup for the design and development of an ES with the FPGA support. 

The Nios II Embedded Design Suite (EDS) of Altera Corporation (Altera 2008a) gives a 

comprehensive solution to an ES with FPGA support. Several years of using the FPGA 
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development platform, Qurtues II, and FPGA device products, have shown that the Altera 

Corporation’s Nios II EDS accords with the research demands of this project. It provides 

the infrastructure for the research and development of an ES with FPGA support and the 

flexibility and freedom to explore new research approaches. After full consideration, it was 

decided to use the FPGA-based ES as the main research platform for this project. 

This research has been done on the Nios II EDS and Altera Embedded Systems 

Development Kit, Cyclone III Edition (Altera 2008a). Figure 3.4 shows a photo of the board. 

The details will be introduced in the next section (3.3).  

 

Figure 3.4 Altera Cyclone III ESs Development Board  

 

3.3 Environment Structure of this Research 

Since the research goal is to enhance the whole system performance in a hybrid way, both 

hardware and software have to be involved at the very beginning of system design. The 

environment structure has to be open to development in both hardware and software, 

which is one of the prerequisites for the research platform chosen. 

The environment structure for this research and its expansion is shown in Figure 3.5. 

Different from the common computer system architecture, this structure has a clearer 

boundary between low-level hardware services and high-level applications, and both 

hardware and software are open to customisation. It is helpful that new modules can be 

freely added to the target ES. The hardware design and implementation can influence the 

software. Inversely, the set of applications decide the requirements that may be used to 

customise the components of the hardware system. Therefore, a top-down design and 

bottom-up implementation are employed. Moreover, as the design and development are 

processed in a sequence of relevant and integrated platforms (Altera 2008a), some 

algorithm coded by C language for an application can be transformed into a hardware part 
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and merged into the target embedded hardware system. 

 

Figure 3.5 Environment Structure of the Research and its Expansion 

This structure consists of six levels, from bottom to top, including the embedded 

hardware system, device driver functions, Altera Hardware Abstraction Level (HAL), ANSI 

(American National Standards Institute) C Library and HAL API, operating system, and 

applications. 

It is also evident in the dotted-line blocks at the right column of Figure 3.5 that the 

structure can be expanded. If needed, some hardware peripherals can be added to the 

ESs no matter whether they are the devices on the board or the configurable parts in the 

FPGA. The relevant device drivers have to be added to the level of device driver functions. 

During HAL regeneration, the functions are merged into the original HAL and equipped 

with the HAL API. Whether the new HAL API is with or without the software addition in the 

HAL API level depends on whether or not the newly added devices belong to one of the 

general peripheral classes. For some new applications, new hardware peripherals may 

not be needed but the user software library that is not available in the Altera embedded 

systems may be required. The operating system remains unchanged. On the top level, 

more applications can be supported. 

3.3.1 Embedded Hardware System 

The embedded hardware system is the Altera Embedded Systems Development Kit 

(ESDK) (Altera 2008a). The ESDK consists of three parts: the Cyclone III 3C120 FPGA 

basic board, LCD Multimedia High Speed Mezzanine card (HSMC), and Multi-purpose 

HSMC for debugging and developing software via the USB and SD card. In this research, 

all the three parts are used during development; when the graphics applications are 

executed, only the first two parts are used because the HSMC is meant for debugging and 

developing software. 
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The FPGA of Altera Cyclone III EP3C120F780 provides hardware design support. With 

the SOPC (system-on-a-programmable-chip) facilities provided by Altera Corporation, a 

soft microprocessor (Nios II) can be incorporated with general peripherals and standard 

interfaces for most embedded applications. Along with another development tool of the 

Altera Corporation, the Nios II C-to-Hardware Acceleration (C2H) compiler, the SOPC can 

also be used to add a new algorithm-specified hardware module to the target ES, which 

has been designed to include all the regular parts, such as processor (Nios II), memory, 

and peripherals (for example, LCD controller, video processing pipeline, and LCD touch 

panel controller). The design details will be introduced in Chapter 4. 

The C2H compiler can transform an application algorithm programmed with C language 

and executed by the Nios II processor into hardware in FPGA if the algorithm software is 

programmed according to C2H rules. The mapping hardware can improve the execution 

performance by using parallelism and pipelines. The C2H compiler is able to make the 

mapping hardware of independent statements operate in parallel and create the pipeline 

logic to lower the memory access latency. The process is the converse for 

bottom-up-to-top implementation. It shows the interaction and feedback between the 

design and implementation in order to enhance the whole system performance. It also 

reveals that the target embedded hardware system can be customised. 

The Nios II soft processor is 113 DMIPS (Dhrystone Million Instructions Per Second) at 

100 MHz, with two 32-Kbyte caches for data and instruction, respectively, which uses 

around 1500 of 119000 total logic elements in the Cyclone III 3C120 FPGA. The memory 

resources on the board include two banks of 64-Mbyte DDR2 SDRAM memory, 64-Mbyte 

common flash interface (CFI) flash memory, and 1-Gbit SD card memory. The key 

peripherals for the research are the LCD controller of the 800 X 480 pixel LCD colour 

screen display, which are also integrated into the ESDK. A PLL (phase-locked loop) 

receives the 50 MHz on-board oscillator input as its clock source and outputs two clocks: 

100 MHz clock for the CPU and 60 MHz clock for the slow peripherals. A performance 

counter helps to analyse the system performance. The response unit of four buttons is 

used for the user interaction. Figure 3.6 shows the block diagram of the ES customised for 

this research. 

As the Altera ES provides the software and hardware support of a Nios II processor and 

a rich set of peripherals, it saves the developers designing and developing the whole ES 

from scratch and makes them just focus on areas of interest and add them to the target 

ES. 

3.3.2 Device Driver Functions 

For this research, the graphics application is the goal. Therefore, the device drivers and 

functions include an LCD controller, video pipeline, response unit of four buttons, and 
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algorithm-specified module.  

 

Figure 3.6 Block Diagram of the ES Customised for the Research 

The LCD controller software module consists of two parts: an LCD controller driver and 

the LCD controller software API. The LCD controller driver provides a set of low-level 

functions for communicating with the LCD module registers. During the system 

configuration, the LCD module registers have to be configured with the LCD controller 

software API. 

The graphics pipeline is constructed from the resources provided with the ESDK. The 

algorithm-specified module is created for a novelty graphics algorithm at a high level in the 

graphics pipeline. Its output data are sent to the frame buffers. Then the data are 

transferred to the video pipeline. The video pipeline processes the data to meet the pixel 

and timing requirements of the LCD display stream. Since the frame data in the fame 

buffer that resides in one of DDR2 SDRAM memory banks do not match the LCD video 

stream, the video pipeline provided by the ESDK reads the frame buffer, and produces 

and synchronises the pixel data to match the video stream of the LCD device. Finally, the 

graphics is displayed on the LCD screen. The process is shown in Figure 3.7. 

 

Figure 3.7 Graphics Pipeline in FPGA-based ES 

The graphics pipeline software module includes driver functions and API. The driver 

functions and API can be used to initialise the device and manipulate frame buffers. 

The response unit of four buttons receives signals when the user presses one of buttons 

and transforms them into interruption signals for Nios II processor. 
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3.3.3 Hardware Abstraction Level 

The Altera HAL integrates all the device drivers into the Nios II processor system. The 

HAL can provide a basic runtime environment for the ES even without an operating 

system. When the system power is switched on, the HAL performs the system and device 

initialisation. It has a consistent interface to the device drivers. This interface provides a 

channel for procedures to control and manipulate the hardware devices. The HAL can be 

customised as well. 

As the HAL defines a consistent interface to the device drivers, the drivers for new 

peripherals are explicit and concise and can be programmed and integrated into the target 

ES. For general peripherals, the HAL provides a device model for each class of devices 

that defines a group of procedures for managing the class. The HAL supports general 

peripherals including character mode devices, flash memory devices, file subsystems, 

timer devices, DMA devices and Ethernet devices. For some hardware that does not 

belong to any of the above classes, its deriver should have a header file and a group of 

dedicated procedures to access it. 

The clear differentiation between device drivers and application software separated by 

the HAL makes high-level applications reusable when the hardware system changes.  

To expand the hardware configuration, during the embedded hardware system 

generation, the Altera Nios II BSP (board support package) can be configured at the top 

level of the hardware system by means of the BSP settings. These settings are usually the 

system-dependent and influence the system performance and functions. These settings 

include those for the standard input and output devices, system timers, memory regions 

and section mapping for the linker, and the boot loader enable. The details are as follows. 

▪ Settings for standard input and output devices. They can choose and make 

one of the character mode devices connect to the Nios II processor in the target 

hardware system. 

▪ Setting system timers. They can choose and make one of the system timers 

connected to the Nios II processor in the target hardware system. 

▪ Setting default memory region. The first choice of the default memory region is 

the largest volatile memory. The second choice is the largest non-volatile memory. 

But a specific memory region can also be set that is available in the system with the 

memory region settings. The default memory section mappings consist 

of .entry, .exceptions, .text, .rodata, .rwdata, .bss, .heap, and .stack, which are the 

section names of the boot and reset entry, exception service entry, instruction 

section, and data sections for different functions, respectively. 
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▪ Setting the boot loader. When the boot loader enable is set, the instruction 

section mapping and the Nios II reset port will be examined. As regards the system 

reset function, it will also engender that the boot loader copies the data sections. 

3.3.4 ANSI C Library and HAL API 

With the HAL, the ANSI C standard library is integrated into the Altera embedded software 

system, and its library functions are available for the high-level applications. The HAL 

defines the interface for communication with the embedded hardware system, called HAL 

API. The hardware access macros of HAL API cooperate with the ANSI C Library 

functions to allow the applications to access the devices and files. Therefore, when 

accessing the system resources, applications may pass through the ANSI C library or the 

HAL API. 

3.3.4.1 HAL System-Specific Settings 

The ANSI C library, because of its portability, defines explicitly the data width for data 

types. The HAL is dependent on the embedded hardware system, especially the 

embedded processor, Nios II processor. It has to give the data width for different data 

types clearly. 

The HAL also provides a basic system interface and environment for executing the 

application programs without an operating system. This system interface consists of some 

UNIX-style functions that perform system settings and file I/O operations. 

3.3.4.2 HAL Device Management Strategy 

The HAL manages the devices in the same way as the UNIX operating system. At the 

system generation time, the HAL registers devices as nodes in the HAL file system 

(identifies their path names with the prefix /dev/) and builds the connection between each 

device and its access functions. Generally, a file descriptor is associated to a device’s 

name when the device is accessed with ANSI C file operation – fopen(). If data are sent to 

or received from the device, the ANSI C file I/O functions – fread() and fwrite() – can be 

used. 

3.3.4.3 HAL Character Mode Devices 

For a character mode device, with the file descriptor associated with the device, a program 

can send characters to or receive from the character mode device with fread() or fwrite(). 

The HAL also supports standard input (stdin), standard output (stdout) and standard 

error (stderr). It gives another channel to access the I/O devices without passing through 

file descriptors. 
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3.3.4.4 HAL File System 

Like the UNIX file system, the HAL file system mounts a file subsystem on a given mount 

point, which is a directory under /mnt/ directory. Therefore, it is convenient to access the 

directory by using the ANSI C file operations. 

3.3.4.5 HAL Timer Devices 

HAL timer devices count the elapsed number of system clocks and generate interrupt 

requests periodically. As regards time devices, the HAL have two types of drivers: a 

system clock driver and a timestamp driver. The former supports alarms and can be used 

in a thread scheduler. The latter provides high-resolution timing procedures to launch the 

counter start and return the current value of the timestamp counter, which can be used in 

the program performance analysis. 

3.3.4.6 HAL Flash Devices 

As a non-volatile memory, flash memories have a physical nature. A flash memory is often 

divided into blocks. To erase a block of flash memory one needs to set their values to ones 

rather than zeros. An entire block must be set to one at the same time. A single address in 

a block of flash memory cannot be erased individually. To write one bit in a flash memory 

one has to change it from one to zero. If a change of any bit from zero to one is expected, 

the entire block where the bit is located must be erased totally.  

Generally, if just reading the flash memory, programs can do the reading in the same 

way as a simple memory without calling the special HAL API. If writing the flash memory, 

programs have to perform several operations, which require the procedures of the flash 

device model in the HAL API, such as alt_flash_open_dev(), alt_flash_read_dev(), 

alt_flash_write_dev(), and alt_flash_close_dev(). 

The HAL API for the flash device model provides two ways to operate the flash. One is 

simple flash access; the other is fine-grained flash access. The former writes a buffer to 

the flash memory at the block unit. If the buffer is less than a full block, the whole block 

where the new data are written is erased first and then the new data are written to the 

designated addresses. If the previous data on the addresses around the new data are 

useful, the writing operation of the simple flash access will cause data corruption.  

To solve this problem, the latter way can be used. It can change the data at the 

designated addresses of flash. It provides three more procedures that can perform 

operations on the written block: alt_get_flash_info(), alt_erase_flash_block() and 

alt_write_flash_block(). If the buffer is less than a full block and new data writing is 

expected without change of the surrounding data, some subtle operations must be 

performed. First, the whole block where the new data will be written is read to a buffer. 

Second, the new data are written to the buffer, which leaves the surrounding data 
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unchanged. Third, the whole block is erased. Fourth, the buffer is written to the block.  

3.3.4.7 Video Pipeline 

The video pipeline software API provides a set of procedures which control the video 

pipeline and manage the graphical frame buffers. These procedures include the opening 

and initialisation of the video pipeline, the manipulation of frame buffers, and the closing of 

video pipeline. 

  The opening and initialisation procedure, which is alt_video_display_init(), opens and 

initialises the video pipeline for graphics display. Its tasks include allocating memory 

space for all the frame buffers and their SGDMA (Scatter-Gather Direct Memory Access) 

descriptors and initialising the descriptors for each frame buffer. These descriptors can 

control the pixel data in each frame buffer and send them into the video pipeline 

automatically without the Nios II processor’s intervention. The memory access of frame 

buffers and their descriptors can employ absolute or relative address, depending on the 

parameter setting in the head file of the video pipeline API.  

Relative addressing is usually adopted in the heap memory. Its advantage is that the 

heap procedure in C runtime library can provide and manage the required memory for all 

the frame buffers and their descriptors, and save designers and developers from having to 

consider it. Its limitation is that contention can arise when both the Nios II processor and 

SGDMA have to access to the heap memory. 

After the allocation, all the pixels in the frame buffers are replaced with the default black 

colour or other specified colour. The initialisation procedure can also create a structure 

that can keep track of the information of all the frame buffers, and return a pointer to this 

structure that can be used to access the frame buffers later.  

  The manipulation procedures of frame buffers are used to access the frame buffers. 

There are two or more frame buffers for the graphics pipeline. One is designated for 

writing a new frame by the graphics application, as shown in Figure 3.7; the others are for 

displaying on the LCD device screen. After one frame is written, the frame buffers can be 

swapped. Therefore, manipulation procedures are useful for handling these issues. For 

example, alt_video_display_buffer_is_available() is used to acquire a free frame buffer for 

writing; alt_video_display_register_written_buffer() is used to display the frame buffer on 

the LCD screen. All the manipulation procedures use the structure pointer that the 

initialisation procedure returns to require, access, or display the frame buffer.  

When the video pipeline is not used any more, the closing procedure of video pipeline 

( alt_video_display_close() ) can be used to stop the video pipeline, close it, and release 

the memory resource to the system. 
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3.3.4.8 LCD Device 

The LCD software API provides an initialisation procedure and a set of low-level 

procedures for communicating with the LCD device registers. 

The initialisation procedure of the LCD device can be used to configure it. This 

procedure sets the default parameters for the gamma curve and the positive polarity 

voltage. It also creates a structure for the LCD device and returns a pointer to the structure. 

The LCD device is configured with the parameters that specify the resolution of the LCD 

screen. 

The LCD device, as a general purpose I/O peripheral on the FPGA, has a simple 

three-wire interface. Its configuration registers of enable, clock and data signals can be 

communicated through this interface. Low-level procedures are used to read and write 

these registers. 

3.3.4.9 Response Unite to Four Buttons 

Since there is no keyboard or mouse available on this board, the response unit of four 

buttons are adopted by this project to implement the response to the inputs of the user 

interaction for surface editing at high-lever application. 

Four user-defined buttons are available on the Cyclone III embedded system 

development board, as shown in Figure 3.8. They can be also seen at the left-bottom 

corner in Figure 3.4. They can be configured as four general purpose I/O peripherals. The 

input ports can catch the rising edge of signals when the user presses one of the buttons 

and generate an interrupt signal for the Nios II processor.  

 

Figure 3.8 Four User-Defined Buttons on Altera Cyclone III ESs Development Board  

The initialisation procedure ( init_button_pio() ) is used to register the rising edge of 

signals from each of four I/O ports as an interrupt signal for the Nios II processor by using 

the procedure of alt_irq_register(). 

  The button interrupt handler ( handel_button_interrupts() ) can store the value in the 

button’s edge capture register when one of the buttons is pressed by the user. An interrupt 

service routine is programmed in the user’s application to accomplish functions that the 

user defines. In this project, the user’s defined functions are the operations for surface 

modelling and editing algorithm, PAMA.  
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3.3.5 Operating System 

The operating system is MicroC/OS-II of Micrium Inc., created by Jean J. Labrosse, which 

is open-source, portable, and scalable. Altera has ported the MicroC/OS-II to the Nios II 

ESs. In the environment structure of the research, the MicroC/OS-II is a layer on top of the 

Altera HAL and shares a common structure. It is a multi-threaded runtime environment. It 

implements a simple RTOS (real-time operating system) scheduler. Its directory structure 

is a superset of the HAL BSP (board support package) directory structure. With the 

MicroC/OS-II above the HAL, application programs can be reused when the embedded 

hardware is changed, and portable to different Nios II embedded hardware systems. 

For the HAL, the MicroC/OS software procedures are similar as the device drivers for 

the Nios II processor. As the HAL is a runtime single-threaded environment, the 

MicroC/OS scheduler is used inter alia to dispatch the running time of the processor 

among several tasks to create the multi-threaded environment. The HAL API of hardware 

devices can also be extended to cover the multi-threaded environment of the 

MicroC/OS-II.  

Altera provides a group of operating-system-independent macros that access operating 

system facilities. During the system generation, these macros can make a switch between 

the single-threaded HAL environment and the multi-threaded MicroC/OS-II environment in 

order to make a decision whether or not using the operating system. 

3.3.6 Applications 

In this project, the application is the implementation of the surface modelling and editing 

algorithm, PAMA, with the Mesa-OpenGL support. The PAMA will be discussed in Chapter 

7. The application results of the PAMA algorithm on an FPGA-based ES will be presented 

in Chapter 8. The Mesa-OpenGL implementation for the FPGA-based ES will be 

discussed in Chapter 5. 

 

3.4 Chapter Summary  

Since the general-purpose computer cannot meet the need for combined hardware and 

software to solve graphics pipeline problems, ESs are chosen as the platform for this 

project. This chapter has first discussed the ffeatures and principles of ES design. Then 

the reasons for choosing an ES as the platform for this project are analysed scrupulously. 

Finally, the environment structure is detailed for the research. 

It is shown that ESs equip designers with options for processors, memories, devices 

and peripherals to enhance overall system performance including operation speed, power 

requirement, and system size. The novel approach of hybrid hardware and software 
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design method allows designers to consider the strengths of both hardware and software 

in an integrated ES. The change from stand-alone hardware and software in conventional 

system design has great potential to enhance overall system performance. The 

consequent challenge posed is detailed in the next chapters. 



 

 

 

 

Chapter 4  FPGA-based Embedded Hardware System for Graphics 

Applications 

 

 

Conventional building of ESs needs three groups of engineers and developers: hardware 

engineers, device driver developers, and application developers. There is no such team 

available for this project. One of the important tasks for this project is to find a feasible 

strategy for one or few developers to establish an ES for the graphics applications in a 

whole process by combining both hardware and software designs. It also needs to validate 

whether this hybrid way is viable for a research and development project. On the other 

hand, as mentioned in Chapter 3, ES development involves both hardware and software 

implementations. The expertise and skills required for hardware design and 

implementations are different from those for software. The knowledge and skills for 

software programming is not sufficient for a hybrid system construction and more effort 

and time should be spent in studying the details of hardware implementation. The benefit 

is that it is known how to make all of them function together well and realise the expected 

goal under the prevailing conditions. 

This chapter discusses the hardware system construction with FPGA. Before that, 

however, the traditional ES development process is introduced. 

 

4.1 Traditional ES Development 

In traditional ES development, hardware engineers, device driver developers, and 

application developers do their tasks relatively independently. The hardware engineers 

initially need to know the application goal and take account of the system performance 

and power and size limitations. They choose the devices required to build the target ES 

and try to strike a balance between the high performance of computing speed and 

response ability and the low cost of power and hardware resources.  

To create the device drivers to control and manipulate the devices properly, the device 

driver developers should understand the physical characters of hardware resources that 
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hardware engineers choose during the hardware system’s building. They should also 

know the standard calibrations of application programming interfaces that the application 

developers will use to program the applications to interact with the hardware resources. 

The application developers program the designated applications according to the 

standard API and a set of functions that the device driver developers provide. The top 

applications are constrained by the supply of hardware resources and the integrity of the 

device drivers and API. The two previous steps can heavily influence the development 

flexibility of applications. Successful implementation for an application goal largely relies 

on adequate construction of the embedded hardware system and device drivers. 

The separate engineering process blocks direct communication between these three 

groups of developers and engineers. Since the initial requirement analysis of a goal 

application can be incomplete and shallow, the embedded hardware system constructed 

by the hardware engineers may not meet all the requirements of the targeted application. 

Issues may occur during or after the application development. In addition, in academic 

researches and new product developments, the requirements of an application can be 

modified when the research is deepened. These issues require the redesign of the 

embedded hardware system. In the separate engineering process, it means extra cost as 

the application developers have to ask the hardware engineers to modify the embedded 

hardware system. The modified hardware system can result in a change in device drivers. 

This can also increase the cost. Also, inadequately understanding others’ design 

intentions may degrade the implementation of the target application-specified ES. 

This separate engineering process can give rise to another problem: hardware 

appears more fixed and less flexible than software. There are two main reasons for this 

problem. One is that a hardware unit or device is harder to be changed once used in the 

implementation than a section of software because of the differences between the 

compiling and verification processes for hardware and software. A change of hardware 

may result in the replacement of physical devices or units whereas a change of software is 

only the replacement of a section of codes. The other reason is that it is more difficult for 

an application developer to change a hardware unit or device if s/he thinks it should be 

replaced with a better one because changing the hardware has to be carried out by the 

hardware engineer who designed the hardware system.  

FPGA-based ES development offers a solution to the above issues since all the tasks of 

hardware engineers, device driver developers, and application developers can be 

performed in an integrated design environment by one or a few individuals. The main 

benefit of FPGA-based ESs is to make most hardware devices available for designs. It 

can save a lot of work in terms of constructing a system, adding new devices to the system, 

modifying units of the system. 
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In fact, even though it needs more time and experience to make a change on a 

hardware design to meet the newest requirements than to make a change on a software 

design, the former has become achievable and feasible with FPGAs. The FPGA-based 

platform provides a design-friendly environment for updating designs to realise new 

academic ideas and meet new market requirements. The Altera ESDK (Altera 2008a) is a 

good example. With the utilities and tools that Altera Corporation provides, the 

development and building of application-specified ESs is a feasible undertaking for one or 

few people. Section 4.3 will detail the FPGA-base ES development. 

 

4.2 FPGA Device Evolution and Applications 

In recent years, the increasing density of chips has provided an opportunity for the 

development of complex high-performance ESs on FPGA devices. FPGAs have been 

considered an appropriate solution for many applications that are expected to give high 

performance at low cost. 

4.2.1 FPGA Evolution History 

In 1986, when the first commercial SRAM-based FPGA was developed by Xilinx Inc., the 

products of FPGA technology began to be put on the market (Awad 2009). Many 

manufacture companies were active in the FPGA field until the early 2000s, but after 

several acquisitions and mergers, only a few of them are left. Among the biggest ones are 

Altera, Actel, Lattice, Quicklogic and Xilinx. As the competition among companies is strong, 

these companies’ FPGA products cover a wide range for applications and functional 

architectures. 

In the 1990s, FPGAs were small devices with low computational throughput, simple 

internal structure, and few components, and could not meet the needs of complex 

computation and functional applications (Constantinides and Nicolici 2011, and Qasim et 

al 2009). Along with the sustained progress of VLSI technology, FPGA devices have 

developed into ones that are composed of multi-million gates and diverse logic 

components. Thanks to the architectural innovations, the FPGA device density has been 

improved. Many hardware units specified for some operations, such as multipliers and 

embedded memory blocks, have been gradually integrated in FPGA devices. In the 

newest generation of FPGA devices, all the complex blocks, such as multipliers, 

microprocessors, embedded memory, and fast routing matrices, can be integrated in one 

silicon die. 

4.2.2 FPGA Features and Reprogrammable Technologies 

As mentioned above, several manufacturers produce FPGA devices with their own 
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technologies and each company has several series of FPGA devices. For example, Altera 

has Cyclone (low-cost), Arria (midrange), and Stratix (high-end) series. Thus, the range of 

FPGAs is wide and varied. They provide different solutions for their FPGA devices. But the 

basic idea is the same. 

4.2.2.1 FPGA Features 

An FPGA device consists of a matrix of configurable logic blocks, configurable 

input/output (I/O) banks and an interconnect network that is reprogrammable to connect 

logic blocks and I/O blocks according to a design target. The configurations of logic blocks 

and interconnection network are dependent on memory cells. By changing the contents of 

memory cells, the FPGA can be made to fulfill the required applications. 

The configurable logic blocks can be used to make up combinatorial, sequential or 

mixed circuits. Each of them includes several logic elements (LEs) or logic cells. Each LE 

consists of a four-bit lookup table (LUT), which can be configured either as a combinatorial 

function, or a (16 X 1) RAM or ROM, as shown in Figure 4.1. A carry-lookahead data path 

is also included in order to build efficient arithmetic operators. A D-type flip-flop, with its 

control inputs of synchronous or asynchronous set/reset and enable, allows the output of 

the LE to be registered. When its registered output is configured as its input, a LE can 

function as a microstate machine. 

 

Figure 4.1 LE’s Composition 

The configurable I/O blocks can have different I/O elements. Each I/O block may 

contain a bidirectional I/O buffer, one input register, two output registers, and two 

output-enable registers. Each I/O element can be configured as an input, output, or 

bidirectional data path.  

I/O pins support single-ended and differential I/O standards. Single-ended signalling 

uses only one signal line, and its voltage potential is referred to the ground. The signal line 

provides just the forward path and the ground offers the return path for the signal. The 

differential signalling uses two wires to send two complementary signals, which can 

improve resistance to electromagnetic noise compared with the single-ended signalling 
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but occupy one more pin. 

  The programmable interconnect network consists of switch matrixes and paths, as 

shown in Figure 4.2. An item of a switch matrix can be programmed to make a row path 

connect to a column path and make an output of one LE link to an input of another LE. A 

good layout of an interconnect network of a FPGA design can decrease area, delay and 

power consumption. Figure 4.3 shows a generic structure of an FPGA device. 

 

Figure 4.2 Programmable Interconnect Network 

4.2.2.2 FPGA Reprogrammable Technologies 

Several configurable technologies exist, such as Flash, EPROM, SRAM and antifuse. The 

EPROM and SRAM technologies are just like the common memory uses of EPROM and 

SRAM in a microprocessor system. 

 

Figure 4.3 Generic Structure of an FPGA 

SRAM is by far the most widespread in the FPGA field. SRAM-based FPGA stores LE 

configuration data in its static memory. Since SRAM is volatile and cannot keep data 

without a power source, an SRAM-based FPGA reads configuration data from an external 

Flash memory chip, which is called master mode. It can also be configured by an external 

processor via a boundary-scan (JTAG, joint test action group) interface, which is called 

slave mode. 
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A Flash-based FPGA uses a flash memory as a primary resource for configuration 

storage. The advantages of Flash-based FPGAs are less power consumption and greater 

tolerance to radiation effects. When the power is off, the flash memory can preserve the 

configuration of FPGA. Flash-based FPGAs fit into applications of space and aircraft 

industries. 

An antifuse-based FPGA adopts antifuse technology. An antifuse does not conduct 

current initially, but can be fused to conduct current. Once an anitfuse-based FPGA is 

programmed, the process cannot be reversed. Compared with the previous two 

technologies, which can program FPGAs several times, an antifuse-based FPGA can only 

be programmed once. 

The above manufacturers share the FPGA product market with their different 

technologies for reprogramming. Altera, Lattice, and Xilinx tend to use the SRAM-based 

FPGAs; Altera, Latice, and Xilinx also use the Flash-based FPGAs; Actel and Quicklogic 

adopt the antifuse-based technology.  

4.2.3 Architecture Diversity in FPGA-based Systems 

The following are some of the current architectures of FPGA-based systems. 

4.2.3.1 Stand-alone FPGA-based Systems 

Stand-alone FPGA-based systems can be ESs, which are often employed in consumer 

electronics, industry control systems, and portable applications. They have a typical ES 

structure, which is described in Chapter 3. After the system power is switched on, they can 

function well by themselves or interact with their environments, including the user 

interaction. With a real-time operating system, they can also handle several tasks 

concurrently. These systems are complete and independent. 

4.2.3.2 General-Purpose Computer Systems with FPGA Supports 

General-purpose computer systems with FPGA supports have the tightly-connected or 

loosely-coupled co-processor architectures. 

In the co-processor architecture, the general-purpose computer is the host CPU 

whereas the FPGAs can have their own processors that assist to do specific tasks without 

the host’s intervention. The tightly-connected co-processor model has a board connection 

between the host and FPGAs. It has a fast communication rate between the host and 

co-processors. The loosely coupled co-processor model allows the direct communication 

between the host and FPGAs by using some fast interconnection, such as point to point 

networks.  

Since co-processors in FPGAs work simultaneously with the host CPU, this architecture 

can provide more parallelism than general-purpose computers. It can also lead to heavy 
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traffic on the serial bus when the data are transmitted between co-processors and the 

CPU. As long as the serial bus is not overloaded, this architecture will be more effective 

computationally than the model of CPU with simple I/O peripherals. 

4.2.3.3 Reconfigurable Computing Systems 

Reconfigurable computing (RC) systems have become more and more attractive in these 

last two decades (El-Ghazawi et al 2008, Green and Edwards 2000, and Huang et al 

2009). Reconfigurable computing architecture can provide parallel processing at 

instruction or task levels. A central microprocessor is connected to several FPGA-based 

boards. The architecture allows scalable connections between parallel systems on 

FPGA-based boards dynamically. They offer more flexibility in terms of system layout, but 

they need more complicated design techniques to generate a good target design and 

implementation. 

 

4.3 FPGA-based ES Development 

If the hardware system implementation is selected, designers may target either an ASIC 

solution, or one based on FPGAs. Programmable hardware solutions are becoming 

increasingly attractive thanks to recent increases in logic capacities, improvements in 

performance, and the ability of some devices to be wholly or partly reconfigured during the 

runtime of a system (Green and Edwards 2000). 

In Section 4.1, we discussed the difficulties of separate ES development. If a developer 

can pass through all three steps, i.e. hardware building, device driver development, and 

application programming, it will be easier to achieve the goal of the target 

application-specific ES with meeting all requirements. The basic condition is that the 

developer has to know what the hardware can and cannot do and also what the software 

is and is not good at. Even though the necessary expertise is still enormous, the Altera 

ESDK provides an achievable, systematic and coherent solution. Compared with 

traditional ES development, FPGA-based development has the following advantages. 

▪ Programmability – the logic functions in FPGA are volatile, configured with a SRAM 

object file, and programmed electronically with a specified logic design. The 

embedded hardware system built in FPGA is not fixed and can be changed by a 

new configuration in a distinct SRAM object file. 

▪ Customisation – via the FPGA, the hardware system can be customised according 

to the application goal without physically building of devices. The download of the 

design to the FPGA is just a configuration file. All the components in FPGA-based 

hardware systems are generated from the FPGA resources, such as LEs, in-chip 

memories, multipliers, PLLs, etc. 
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▪ Microprocessor substitute – since advanced FPGA devices consist of rich 

resources in one chip, it is practical to implement logic that a complete conventional 

microprocessor can handle. Even better, the FPGA can provide more processor 

and peripheral flexibilities in one chip than the conventional microprocessor. 

▪ Complexity and Integration – not only common logic as a single-function peripheral 

but also sophisticated logic like a soft-core processor can be designed and 

implemented with FPGAs. For advanced FPGA devices, both soft-core processors 

and peripherals can be integrated in an FPGA chip. 

▪ Changeability – the hardware system design based on the FPGA can be changed 

when the target application software cannot be programmed with the resources 

and device driver functions built initially. As the full design flow is a coherent 

process and can be repeated, the later step of the design flow can lead to the 

design modification of the previous step. As it is quicker to modify the design on the 

FPGA and reconfigure the FPGA compared with ASIC, the modification will not 

take up a lot of time and delay the design cycle. 

▪ Systemic development – the JTAG interface of the Alter ESDK supports both 

hardware and software development. The development of a complete ES with 

hardware and software can be implemented systemically and coherently in one 

integrated design environment with one design flow and without crossing 

development platforms. It provides support to application-specific ES development. 

The starting point for a design is to build a complete embedded hardware system with a 

soft-core Nios II processer and basic peripherals in an FPGA chip with necessary external 

devices. Altera provides an SOPC (system on programmable chip) builder to set up 

hardware systems with modules of processors, memories, peripherals and connections 

rather than from the gate level. All the modules have been verified and parameterized for 

specific hardware development. This saves a lot of time and energy in the development 

process. 

 

4.4 FPGA Device for this Research 

FPGA devices vary widely. Different manufacturers have different series of FPGA 

products. Altera has Cyclone, Arria, and Stratix series (Altera 2012). Cyclone series are 

groups of low power and high functionality and are the cheapest in the Altera FPGA 

product family, which can meet the power and function requirements of ESs. In the 

Cyclone series, there were five sub-series, Cyclone I, II, III, IV and V, in 2011. The devices 

in the Cyclone III sub-series consist of more resources in one chip than those in Cyclone I 

and II. According to the logic and I/O requirements of the design and restrictions of the 
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FPGA device, the Altera Cyclone III 3C120F780 meets the requirements of the graphics 

application for this project. The last two sub-series, Cyclone IV and V, were put on the 

market in 2009 and 2011, respectively. This project started in 2009. Thus, the Altera 

Cyclone III 3C120F780 was chosen as the main FPGA device of this project. 

The basic features of Cyclone III devices include densities ranging from 5,000 to 

200,000 LEs, 0.5 Megabits to 8 Mb of memory, and less than 1/4 watt of static power 

consumption (Altera 2012). Thanks to their low power consumption, Cyclone III devices 

can prolong the battery life in handheld and portable applications, cut down cooling 

system cost, and support work in the environment with thermal limitation. Cyclone III 

devices provide numerous external memory interfaces and I/O protocols that can meet the 

needs of high-throughput applications. The architecture of Cyclone III devices consists of 

many logic array blocks (LABs), M9K memory blocks, embedded multiplier blocks, PLLs, 

global clock networks, and I/O banks. The following describes some but not all of the 

features that Cyclone III devices have. 

4.4.1 LABs and LEs 

Each LAB consists of 16 LEs and a LAB-wide control block. An LE is the smallest unit of 

logic in this architecture. Each LE has four inputs, a four-input look-up table, a register, 

and output logic. The four-input LUT is a logic generator that can be used to configure any 

combinatorial logic with four variables. 

4.4.2 M9K Memory Blocks 

Each M9K memory block provides nine Kbits of on-chip memory that can operate at 

maximum 315 MHz. M9K memory blocks can be configured as RAM, fist-in first-out (FIFO) 

buffers, or ROM. They can also be configured as single-port or dual-port operation modes. 

Thus, after configuration, Cyclone III devices can be used in applications of embedded 

data storage, embedded processor program, and high-throughout data processing. 

4.4.3 Multiplier Blocks and DSPs 

The embedded multiplier blocks support two modes: one is an individual 18 X 18-bit 

multiplier; the other is two individual 9 X 9-bit multipliers. In addition to multipliers, by using 

a combinational logic with on-chip resources and external interfaces, the blocks can be 

configured into high-performance, low-cost, and low-power-consumption DSP systems. 

Altera’s facilities also provide DSP IP (Intellectual Property) cores for functions of finite 

impulse response (FIR), fast Fourier transform (FFT), and numerically controlled oscillator 

(NCO). 
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4.4.4 PLLs and Global Clock Networks 

With PLLs and global clock networks, the Cyclone III devices can generate a maximum of 

ten internal clocks and two external clocks from a single external clock source. They also 

provide multiple input source frequencies, with which functions of multiplication, division, 

and phase shift are supported. 

4.4.5 I/O Banks 

Each Cyclone III device contains eight I/O banks. To protect signal integrity and gain high 

I/O performance, all the banks support programmable functions for drive strength, pull-up 

resistors, delay, bus hold, and slew-rate control. They support the capability to plug a 

board in or off a system during operation without having negative effects to the system or 

the board, which also called hot socketing.  

The I/O banks also support single-ended and differential I/O standards as well. The 

high-speed differential interfaces of Cyclone III devices can transmit data at a maximum 

rate of 875 Mbps without the need for external resistors. 

4.4.6 Embedded Processors 

For ES design, Cyclone III devices provide several choices for processor cores. For 

example, they can be ARM Cortex M1, Freescale V1 Coldfire, and Altera Nios II. For this 

project, Nios II has been adopted. 

  They also extend the peripheral set, memory, and I/O interface in order to build up a 

whole ES with high performance and at low cost. 

The Cyclone III 3C120F780 consists of 119,088 LEs, 432 M9K blocks, total 3,981,312 

RAM bits, 288 of 18 X 18 multipliers, four PLLs, twenty global clock networks, and 

maximum 531 user I/Os. It has a small size. Both of its length and width are 29 mm. Its 

height is 2.60 mm. 

 

4.5 FPGA-based ES Design Flow 

The hardware is good at simple repeated operations whereas software does complex 

algorithms well. During design and development, if the features and strengths of both 

hardware and software can be considered and made the best use of, requirements can be 

met and the application goal achieved with a high-performance, low-cost target ES. Thus, 

a high overall performance of the target ES can be guaranteed. 

Since an ES has specific applications, its system structure and components can be 

customised accordingly. Furthermore, the design and development of an ES should be 
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based on the application requirements. Figure 4.4 shows the development flow of 

combined hardware and software for application-specific ESs.  

 

Figure 4.4 Development Flow of Combined Hardware and Software for Application-specific ESs 

The FPGA-based ES design flow is as follows. 

4.5.1 Application Proposal 

The development of an ES starts with applications being specified – i.e. the application 

proposal, the first step in Figure 4.4. In this step, the applications of the target ES should 

be defined. Then the flow moves to the second step. 

4.5.2 Requirement Analysis of ES 

Requirement analysis of the target ES has to be performed. That is the second step of 

Figure 4.4. The requirements of the target ES are separated according to their hardware 

and software tendency. The requirement analysis result should provide clear instructions 

about how to implement the target system in terms of hardware and software. It helps to 

decide which part of the application should be constructed with hardware and which part 

of with software. Then the flow moves to the third step. 
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4.5.3 Separation of Hardware and Software 

With a clear requirement analysis result, a boundary between the hardware and software 

for the target ES can be defined. This is the third step in Figure 4.4, separation of 

hardware and software. The separation results in construction of hardware and software 

parts. These parts can be constructed in parallel or in sequence, depending on the 

dependent relationship between them. If a dependent relationship exists, the software 

parts must be programmed after the hardware system (that is constructed in the fourth 

and fifth steps), for example, the software parts that have to communicate with the 

hardware. Then the flow moves to the fourth step. 

4.5.4 Initial Hardware System Design 

With the requirement analysis result and after the separation of hardware and software, 

the initial design of the hardware system can be done. With the building blocks for 

hardware, as shown in Figure 3.2, the hardware system can be constructed in the design 

environment, such as the Altera ESDK, and stored in files. After compilation, synthesis 

and verification, a configuration file can be generated and downloaded to the FPGA device. 

This is the fourth step in Figure 4.4. Then the flow moves to the fifth step. 

4.5.5 Generation of HAL and Device Drivers 

Depending on the components adopted in the hardware system, such as processor and 

peripherals, the HAL and device drivers can be generated, which is the fifth step in Figure 

4.4. This is also the second layer in Figure 3.3. Most of the software in this layer is 

generated by the design environment, for example Altera ESDK. If a new component is 

used in hardware design but is not available in the SOPC libraries, the device drivers and 

the relevant API of this new component must be programmed and added to the HAL. Then 

the flow moves to the sixth step. 

4.5.6 Operating System and Libraries Integration 

Along with the HAL, a real-time operating system and necessary libraries (including the 

ANSI C standard library and application-specified library) can be added to the 

development. This is the sixth step in Figure 4.4 and the third layer in Figure 3.3. Then the 

flow moves to the seventh step. 

4.5.7 Application Software Development 

The application software can be programmed and downloaded to the target board to run 

and debug, which is the seventh step. Then the first design must be verified whether or not 

it meets the needs of application capabilities or system specifications. If it does, the design 
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of application-specific ES is accomplished, and the process moves on to the ninth step. If 

it does not, the design must be modified. Before the modification is done, it has to be 

determined whether or not the hardware system has to be modified or a new hardware 

module is required. If not, the modification should be done only on the software and the 

application software can be added or modified to enhance its performance, which means 

going back to the seventh step. If yes, the modification on hardware must be done, which 

is the eighth step Figure 4.4. The flow moves to the eighth step. 

4.5.8 Hardware Addition and Modification 

The hardware system has to be changed or some new modules have to be added to the 

hardware system. This results in the second hardware design. The second hardware 

design is carried out. The second configuration file is generated and downloaded to the 

FPGA device. The second iteration of development passes through the fifth step to the 

seventh step. The ES development can take several iterations until the design meets the 

application requirements and system specifications. Then the flow moves to the ninth 

step. 

4.5.9 Application-Specific ES Implementation 

The application-specific ES design meets all the application requirements and system 

specifications and the goal is accomplished.  

 

4.6 FPGA-based ES Design with Altera Facilities 

The Altera EDS (embedded design suite) and other facilities (Altera 2008a) provide an 

integral solution to the design and development of application-specific ESs. They take into 

account both hardware and software in the development flow of an ES. They provide 

different tools for hardware and software development, respectively, and these tools have 

been coherently linked together. Some tasks for system-level building and generating can 

be done automatically by the tools, which can save a lot of effort and time and avoid some 

mistakes caused by unfamiliarity and misunderstanding of designers and developers in 

the separated ES development, as discussed in Section 4.1. They are an effective tool 

suite for the ES development. 

For FPGA-based hardware development, Altera provides the Quartus II and the SOPC 

builder. To build the software for ESs, they use Nios II EDS, including Nios II SBT 

(software build tools), Nios II Command Shell, and Nios II IDE (integrated design editor) 

with associated simulation tools. No matter they are for hardware or software, since they 

have internal coherent relationships these tools are linked to each other by their input and 

output files according to the natural sequence of design and development. 
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In the research of this project, Step 4 and Step 8 in Figure 4.4 are implemented with 

Quartus II and SOPC builder. Steps 5 to 7 are done by means of Nions II SBT, Nios II 

Command Shell, and Nios II IDE. To make the best use of them, the methodologies for the 

research adopted the design and development philosophy of these tools. 

As the SOPC builder adopts a top-down design way, it conforms to the principles of 

modern system design principle and the development flow combining hardware and 

software of application-specific ES, as in Figure 4.4. The Altera IP cores and 

megafunctions, such as Nios II cores and standard components, support most ES 

development on the Cyclone III chip. They can be used to set up a target embedded 

hardware system. Figure 4.5 shows the development flow for embedded hardware 

systems with Quartus II. 

 

Figure 4.5 Development Flow for Embedded Hardware Systems 

4.6.1 Start of a Quartus II Project and Design Constraints 

The development flow for embedded hardware systems begins with a new Quartus II 

project, with which Quartus II manages all the files related to a new hardware design. 

Before the start of a real design, design constraint settings should be done manually. 

These settings produce explicit limitations for device usage, analysis and synthesis, time 

analysis and other requirements during design compilation to achieve a required design 

result. 

  The Quartus II tool includes megafunctions that are used to control the operation mode 

of the embedded multiplier blocks based on user parameter settings. The multipliers can 

also be deduced directly from the Verilog HDL or VHDL source code. 
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4.6.2 SOPC Builder System Setup 

The SOPC Builder is a design tool integrated in the Quartus II environment. With a library 

of more than 50 IP blocks, the SOPC Builder can integrate IP blocks into an FPGA 

system-level design. The SOPC Builder can generate interconnect logic automatically and 

create a testbench to verify functionality.  

With the SOPC Builder, Altera IP cores and megafunctions, a new hardware system 

design can be set up. Sometimes, custom hardware components that are not available in 

the Atera standard components have to be created with one of the HDL languages, such 

as Verilog HDL and VHDL, and integrated into the user custom components. 

The SOPC Builder is used to create a SOPC system that is a representation of a real 

hardware design. Differently from the conventional bottom-up FPGA design, which is 

programmed with the HDL, the SOPC builder adopts a straightforward GUI (graphical user 

interface) to aid the design and generate an HDL file for it, as shown in Figure 4.6. The 

compilation result of the HDL file is an SRAM object file, which is the usable design and 

can be downloaded into an FPGA device. 

 

Figure 4.6 Part of the SOPC Builder GUI 

  Along with a library of 50 other IP blocks in SOPC Builder tool, the embedded processor 

can be selected among Freescale V1 Coldfire, ARM Cortex M1, and Altera Nios II. 

4.6.3 Analysis and Synthesis 

The analysis and synthesis engine automatically performs the following tasks: it verifies 

the design, removes the redundant logic by using don’t-care conditions, detects the 

feedback loops in combinational logic, finds the unused states, removes equivalent states, 

does state assignments, synthesises the logic to meet the constraints of area or speed in 

the FPGA device, and optimises and maps the result into a hardware device. The analysis 

and synthesis are processed automatically by the Quartus II facilities according to the 

above design constrain settings.  
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Conventionally, whether or not the synthesis of a design is successful has mostly 

depended on how well the models written with the HDL accord with synthesis rules. The 

written models must conform to the constraints of the synthesis tool. With the SOPC 

builder, since all of the standard components have been verified, the analysis and 

synthesis engine can optimise logic quickly without errors. 

4.6.4 Pin Location Assignment and Analysis 

Since they are implemented on an FPGA chip, the placement of each pin must conform to 

the microelectronics restrictions of the chip and the physical limitations of the board layout. 

For this reason, the pins on an FPGA chip are sometimes scare and valuable resources 

and cannot be allocated without limitations. Physically, an FPGA device has I/O banks, I/O 

standards, and VREF groups. Understanding the physical features of the FPGA chip is 

helpful in terms of pin placement. Some features that can influence the pin placement are 

listed as follows. 

▪ The I/O pins are grouped into different I/O banks in order to support different I/O 

standards. Each bank has its own voltage source pins, VCCIO pins. The pins in an 

I/O bank must share the same VCCIO voltage source.  

▪ A VREF group is a group of pins that share a same reference voltage pin, a VREF 

pin. An I/O bank usually consists of one or more VREF groups. Thus, the pins in a 

VREF group have the same VCCIO and VREF voltages. 

▪ In the silicon die of a FPGA device, the I/O pins connect to the bond pads that are 

on the perimeter ring of the die top. To guarantee the signal integrity, there are 

restrictions on the minimum number of pads separating single-ended input or 

output pins with a differential pin. There is also a restriction on the maximum 

number of I/O pins supported by a VREF pad. 

▪ Except VREF and VCCIO pins, there are some other pins specified for fixed uses 

that cannot be assigned by users any longer. The pins available for user I/O are far 

fewer than the set of pins that an FPGA device has. For example, some pins have 

their original usages that were retained by the manufacturers when they were 

produced. 

These features have been merged into the pin placement rules of the pin location 

analysis of Quartus II. It is useful to know them when errors are reported and needed to 

correct during the pins are placed manually. 

For a hardware design, the I/O planning is a detailed and comprehensive task. It 

determines whether or not a design can be implemented with an FPGA device. Therefore, 

the I/O planning influences hardware design throughout. There are several issues that 
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should receive more attention. They are listed as follows. 

▪ The first step of I/O planning for a hardware design is to select a proper FPGA 

device that has adequate pins according to the logic and I/O requirements of the 

design and the above restrictions of the FPGA device.  

▪ During the pin location assignment, the pin assignments are done along with the 

definitions of I/O attributes, including I/O standard, slew rate, drive current strength, 

and output load for output and bidirectional pins. A higher slew rate means faster 

transitions and more noise transients for high-performance systems, and 

influences both the rising and falling edges of signals. The drive current strength 

settings can reduce the influences of simultaneously switching outputs and the 

system noise. The pin location assignments have to be verified with I/O assignment 

analysis. 

▪ For some input or output ports, timing constraints can restrict some pin location. 

But this type of effect is not straightforward and can be verified at the later step, 

device fitter, as shown in Figure 4.5. 

▪ After complete compilation, a validated pin-out file for PCB (printed circuit board) 

tools is created and is ready for the board layout. If the compilation is failed, the pin 

location assignments have to be modified according to the reported errors. 

The Pin Planner in Quartus II is a tool for pin location assignment. It can assist 

designers to create, modify, complete and validate pin-related assignments. With the Pin 

Planner, pin location assignments can be done. But the verified pin location assignments 

do not rely on the Pin Planner tool. Some detailed I/O resources on a typical FPGA device 

are quite different from others. Some pins have their original usages and cannot be 

assigned for other purposes. To prevent signal integrity issues, the DDR (double data rate) 

interface has special constraints on the number of output pins in a VREF group. Noticing 

these restrictions is not the responsibility of the Pin Planner. They should be known by the 

designers before using the Pin Planner. 

I/O elements of Cyclone III devices contain five registers: one input register, two output 

registers, and two output-enable registers. The input register can be used for fast setup 

times, and the output registers and output-enable registers are used for DDR applications. 

4.6.5 Device Fitter 

It is not evident to designers what the device fitter does. But it is very important for a 

successful design. Typically, it maps a design to the physical LEs, I/O element and 

interconnect network of a specified FPGA chip. Since there are so many LEs (119,088 for 

3C120F780) in a typical FPGA chip, the number of different solutions for a design can be 
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huge. It means that the fitter has to work through an immense solution space to look for a 

good mapping area as quickly as possible. This is why a small change in one part of a 

hardware design can lead to different results in other parts and partly why the hardware 

design compilation is time-consuming. 

The fitter needs restrictions to determine how to map. The two primary restrictions are 

timing and routing requirements. The timing requirement makes all the timing-critical paths 

meet their timing requirements and reduce the signal delay. The routing requirement is 

intended to make sure that the mapping meets the physical limitations of the target FPGA 

chip and puts connected elements closer together. 

To reduce the compilation time, Quartus II provides the Fast Fit option, besides 

Standard Fit and Auto Fit. Fast Fit can decrease compilation time by a maximum 50% for a 

design by reducing fitter effort. Standard Fit does not reduce fitter effort, but Auto Fit can 

decrease fitter effort after meeting the timing and routing requirements of a design. Fast 

Fit may take half an hour to several hours to accomplish, which depends on the memory 

space and CPU speed of the computer where the design of the embedded hardware 

system is processed. More free memory space and higher CPU speed can accelerate the 

device fitting. 

4.6.6 Timing Analysis 

Timing analysis tests whether or not a hardware system design meets the timing 

requirements. As regards a high-speed design, the propagation delay is vital for proper 

system operation. 

With Altera TimeQuest Timing Analyser, a static timing analysis can be done on 

register-to-register, I/O, and asynchronous reset paths. The TimeQuest Timing Analyser 

can detect possible timing violations by using clock arrival times, times required by data 

processing, and data arrival times. 

4.6.7 Compilation Result Output 

Quartus II provides many compilation and simulation reports for different design stages: 

for example, compilation flow reports, analysis and synthesis reports, partition merge 

reports, fitter reports, and TimeQuest Timing Analyser reports. At any stage, the tools can 

give a report for that stage. With these reports, designers can make modification on their 

designs. The most important ones are the configuration files that can be downloaded to 

the target FPGA device and make the FPGA function as the target embedded hardware 

system. 
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4.6.8 About Go-Back 

In Figure 4.5, the development flow does not give any explicit return to the previous steps 

like those in the software, but almost any step in this flow can go back to its previous steps. 

The compilation of a hardware design can be stopped in half way unsuccessfully by some 

constraints, such as constraints of the design logic, the pins and internal resources of a 

specified FPGA device, time analysis, and others. Therefore, if the compilation of a design 

stops at any point, it is the only way to modify the design until it passes all the compiling 

requirements. The analysis and synthesis have to be redone if any change is made to the 

design. Fortunately, most of the tasks are performed automatically by the facilities of 

Quartus II. They can help reduce the time-consuming work. 

 

4.7 Setup of FPGA-based Embedded Hardware System for Graphics Applications 

As an algorithm for the surface modelling and editing, the PAMA is one of 3D graphics 

applications. An FPGA-based embedded hardware system has to be constructed for the 

graphics applications. Besides the microprocessor, memory and general peripherals, an 

LCD, frame buffers and hardware units for graphics pipelines have to be specified for this 

project. To build up an FPGA-based embedded hardware system, as shown in Figure 3.6, 

two tools provided by Altera Corporation must be used, Quartus II and SOPC builder. 

4.7.1 Nios II Processer Settings 

As a system component, a Nios II processor is a soft core that is volatile and present only 

after the FPGA is configured, as shown in Figure 3.6. Therefore, it must be added to the 

SOPC system with the SOPC builder when the embedded hardware system is set up. 

  As shown in Figure 4.7, there are three configurations of the Nios II processor, the 

lowest configuration is Nios II/e (size-optimised economy), the middle one is Nios II/s 

(standard), and the highest one is Nios II/f (performance-optimum fast). Since the graphics 

speed-up with hardware can support the graphics acceleration with the hybrid way that is 

the goal of this project, the Nios II/f has been chosen. Besides the RISC and 32-bit 

structure of the Nios II/e, the Nios II/f consists of hardware supports for the instruction 

cache, data cache, dynamic branch prediction, hardware multiply, hardware divide, and 

barrel shifter. All the elements can accelerate the computation systemically. The 

accelerated computation is critical for the algorithms of 3D graphics speed-up. 

The Nios II/f processor is configured to run at the 100-MHz frequency. Its performance 

can be up to 113 DMIPS. Its logic usage in FPGA is 1400-1800 LEs. The reset vector is 

located at the physical address 0x10000000 and offset 0x0 in the ext_flash, which is the 

external 64-MByte CFI (common flash interface) flash. The exception vector is located at 
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the physical address 0x1c000040 and offset 0x40 in the ddr_sdram_1, which is one of two 

external DDR2 SRAM memories. Since the operating system does not support the 

memory management, both of MMU (memory management unit) and MPU (memory 

protection unit) options are disabled. In Figure 4.8, both the instruction and data caches 

are set to 32 Kbytes. The data cache line size is 32 Bytes. 

 

 

Figure 4.7 Nios II Settings (1) 

 

Figure 4.8 Nios II Settings (2) 

4.7.2 System Clock Settings 

To enhance the whole performance of the system, different peripherals run in the different 

clock domains from one of Nios II processor.  

Since the Nios II and peripherals function under different system clocks, the system has 
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two external clock sources. One is 50 MHz; the other is 125 MHz. From the 50 MHz clock, 

a PLL is used to produce two clocks. One is 100 MHz for the CPU and the LCD; the other 

is 60 MHz for the slow peripherals. The 50-MHz clock is for one of the two external DDR 

SDRAM memory controllers and the 125-MHz clock is for the other one. 

Because the Nios II processor is connected to the peripherals that run in different clock 

domains from its clock, three clock crossing bridges are needed. Two bridges are used to 

connect the CPU with two external DDR SDRAM memories, respectively. One bridge 

connects the CPU to the slow peripherals, such as system timers, and others. 

4.7.3 DDR2 SDRAM Memory Controller Settings 

For graphics applications, frame buffers are necessary. As an ES, the system code and 

data have to be stored during the system runs. These requirements result in the system 

memory. Two external 64-MByte DDR2 SDRAM memory banks of Micron 

MT4732M16CC-3 are used in the system. They can run at a full rate of 153.85 MHz or half 

rate of 76.9 MHz.  

One memory that stores video frames is controlled by one of two controllers and 

connected to the entry of the video pipeline. It plays the role of video frame buffer. The 

video frame data stored in the buffer adopt a 64-bit format. The entry of the video pipeline 

is an SG-DMA, which is set to a 64-bit width at the half rate of 76.9 MHz and delivers the 

video stream data from the memory into the FIFO of the video pipeline. Thus, the memory 

is controlled to run at the half rate of 76.9 MHz with a 64-bit data width. 

The other memory is controlled by another controller. It is the system instruction and 

data memory, stores instruction code and data, and is connected to the Nios II data bus. It 

runs at the full rate of 153.85 MHz with the 32-bit data width. 

4.7.4 CFI Flash Memory Controller Settings 

FPGA configuration files of FPGA-base ESs have to be stored in a permanent memory. 

For graphics applications, the application software also has to be also stored in a 

permanent memory. A Spansion Flash memory with 64-MByte capacity has been chosen 

as the permanent memory in the present research. It stores the FPGA configuration data 

and application programs for this project. 

The CFI (common flash interface) -compliant flash memory controller is set to control 

this external flash device. Its address width is 25 bits, and its data width is 16 bits. The 

setup time, wait-state time, and hold time for read and write transfers are set to 80.0 ns, 

40.0 ns, and 20.0 ns, respectively.  
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4.7.5 JTAG UART Settings 

During ES development, it is necessary to communicate between a PC host where the ES 

development is practised and the FPGA development board where the target FPGA 

device is located. The JTAG UART (universal asynchronous receiver/transmitter) is used 

to build up the serial communication between the PC host and the FPGA development 

board. Through the JTAG port and cable, the FPGA configuration file and application 

software are downloaded to the devices on the FPGA board. The write FIFO (from Avalon 

interface of FPGA to JTAG) of the JTAG UART is set to eight bytes of buffer depth and 

four of IRQ level. Its read FIFO (from JTAG to Avalon interface) is also set to eight bytes of 

buffer depth and four of IRQ level. Both of them are constructed by using the on-chip 

registers. 

4.7.6 Settings for LCD Controller Interface and Video Pipeline 

For graphics applications, an LCD and video pipeline are the final part of the graphics 

pipeline. The LCD is the screen device used to display the pixels of a graphics image. 

Since the data format stored in frame buffers is different from one streaming to the LCD 

device, the video pipeline is used to do the data matching and synchronising. In this 

project, the LCD device on the board is a 4.3” Toppoly TD043MTEA1 active matrix colour 

display with 800 X 480 pixel resolution. The LCD controller interface and video pipeline 

are integrated into the system. 

4.7.6.1 LCD Controller Interface 

The LCD controller interface built with three Altera PIO (parallel I/O) cores consists of 

three one-bit ports, including <lcd_i2c_scl>, <lcd_i2c_sdat>, and <lcd_i2c_en>. The 

<lcd_i2c_scl> is an output port for the LCD controller clock output. The <lcd_i2c_sdat> is a 

bidirectional port for the LCD controller data. The <lcd_i2c_en> is an output port for the 

LCD controller enable. 

4.7.6.2 Video Pipeline 

The video pipeline is composed of IP cores that can be customised to suit the resolution 

and aspect ratio of the LCD device. Besides the video frame buffer and SGDMA that were 

introduced in Section 4.7.3, the video pipeline is composed of an FIFO, two data format 

adapters, a pixel format converter, and a video sync-generator. 

The FIFO is set to a dual clock FIFO with 128-unit depth and constructed with the 

on-chip memory blocks. It can buffer video stream data when the rate of fetching video 

stream data from the video frame buffer is faster than the rate of displaying the pixels on 

the LCD device. 

One of two data format adapters turns the 64-bit frame data into 32-bit data. It is set to 
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eight data symbols per system clock for input and four data symbols per system clock for 

output. Each symbol has eight bits. 

The pixel format converter is designed to take the 32 bits from the upstream and send 

24 bits to the downstream by discarding eight bits. The 24 bits consist of eight bits for each 

of three channels of red, green and blue. 

When sent out of the FPGA chip, the pixel stream data are a stream of three eight-bit 

data. It needs the other data format adapter to turn the 24-bit stream into the eight-bit 

stream. This adapter is set to three data symbols per system clock for input and a data 

symbol per system clock for output. 

The video sync-generator is used to synchronise the RGB pixels in rows and columns in 

an image by means of horizontal and vertical synchronisation signals. As the display scan 

is done line by line, the horizontal synchronisation for a whole line of pixels should be done 

before the vertical synchronisation. The horizontal synchronisation of 800 RGB pixels in a 

line is done at the rate of one pixel per system clock. The vertical synchronisation of 480 

lines of pixels in an image is done line by line. Since the horizontal blank pixels are set to 

216, horizontal front porch pixels are 40, and horizontal sync pulse pixels are one, the total 

number of horizontal scan pixels is 1056. The vertical blank lines are set to 35, vertical 

front porch lines are ten, and vertical sync pulse lines are one. So the total number of 

vertical scan lines is 525. Figure 4.9 illustrates the video pipeline. 

 

Figure 4.9 Block Diagram of Video Pipeline (Purple Blocks are Off-Video-Pipeline Blocks) 
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The video pipeline provided by the Altera is used simply for the fundamental functions of 

the control and transfer of pixel data to the off-chip LCD display device. It is not sufficient 

for the graphics pipeline. The rest of the graphics pipeline is implemented by an 

algorithm-specified module and Mesa-OpenGL implementation. The detail of graphics 

pipeline will be discussed in Chapter 5. 

 

4.8 Challenges and Features of the FPGA-based ES 

Several challenges are tackled during the system setup and when the solutions are tested 

to achieve the integrated system implementation. 

A Samsung R480 laptop computer with an Intel Core i5 CPU M 460 of 2.53 GHz and 

4.00 GB was used in software programming for this project. It does not have sufficient 

computing power for compiling the design of the FPGA ES in this research, however. An 

HP graphics workstation is used, which adopts the architecture of ACPI multiprocessor PC 

and consists of four 2.27-GHz Intel Xeon E5607 microprocessors. This proves the 

effectiveness of parallelism. 

This project adopts a forward method suggested by the study of Underwood 2004. It 

applies a number of design interactions. It starts with the simplest, most straightforward 

implementation. Then it gradually adds the advanced modules to the simple 

implementation and adjusts each new module to verify its function until it achieves the 

best solution or runs out of FPGA resources. 

Conventionally, it is taken for granted that hardware design is fixed with less flexibility 

software. It is now possible to change hardware design with current FPGA design tools 

even though substantial time and experience are needed. The FPGA-based platform 

provides a design-friendly environment for updating a design to realise new academic 

ideas and new market requirements. 

 

4.9 Chapter Summary 

In this chapter, a traditional ES development method is discussed and compared with the 

novel development of an FPGA-based ES. The evolution and applications of FPGA 

devices are introduced and FPGA-based ES development described. FPGA-based ES 

design and Altera facilities for FPGA development are presented for this project. The 

FPGA-based embedded hardware system is developed for graphics applications. Finally, 

challenges and features of the FPGA-based ES are discussed. 

Constructing a system from hardware can help designers to customise and reuse the 

resources. The FPGA-based platform can provide a design-friendly environment for 
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updating the design to realise new academic ideas and market requirements. This 

research presents a novel alternative to GPUs and designated video cards by applying an 

FPGA-based embedded hardware system to computer graphics. Further development of 

the system incorporating OpenGL is presented in the next chapters. 

 



 

 

 

 

Chapter 5  Integrating Mesa-OpenGL into FPGA-based ES 

 

Discussed in Section 2.3, the OpenGL is a standard for applications of drawing 

high-quality images of 2D and 3D objects in real time with a user interaction interface. The 

user interaction interface allows the user to input operation instructions to edit any object 

or modify any image frame in real time. With different hardware platforms, OpenGL 

implementations are varied, especially for the hardware-dependent part. 

Derived from the OpenGL, the OpenGL ES (OpenGL for Embedded Systems) is one of 

OpenGL standards specified in 2D and 3D graphics on ESs, including mobile phones, 

hand-held gadgets, and automobiles. As the range of ESs is wide, OpenGL ES 

implementations are varied with hardware devices and applications. 

For this project, with a goal different from the general OpenGL ES, it is expected to 

realise the surface editing with FPGA-based implementation and must make a 

modification and addition to the general OpenGL ES implementation. The PAMA 

presented in this research must be supported with the algorithms of Bézier curves and 

surfaces. The evaluation of Bézier curves and surfaces does not belong to the general 

OpenGL ES and must be added to the OpenGL implementation of this project.  

As the introduction in the previous chapters, the Altera ESDK, Cyclone III Edition (Altera 

2008a), is used in this project. This kit is comprised of three components, a Cyclone III 

3C120 FPGA base board, a LCD Multimedia High Speed Mezzanine Card (HSMC), and a 

multi-purpose card for debugging software and developing USB and SD card interfaces. 

The software processer core of Nios II plays the role of the general purpose 

microprocessor of the ES, which carries out the execution of the graphics pipeline and 

applications. The Nios II 3C120 general purpose processor system has 100MHz CPU 

clock and 60 MHz peripheral clock. This kit will be called the FPGA-based ES board (or 

platform) in the following discussion. 

In this chapter, after the introduction of the OpenGL and OpenGL ES standards, the 

differences between the OpenGL ES standard and the implementation of this project will 

be expounded in detail. 
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5.1 OpenGL  

According to Kilgard 1997, and Kilgard and Akeley 2008, the OpenGL can be treated as 

an architecture, which provides a well-specified, widely-accepted pipeline for 3D graphics, 

and an OpenGL-capable computer is a hardware implementation or exemplification of the 

architecture. In the OpenGL, the graphics pipeline is also called the state machine with a 

fixed topology. The OpenGL’s state variables are orthogonal. Rendering steps can be 

broken down and embodied in special-purpose hardware in order to accelerate an object’s 

drawing. 

Described in the studies of Hearn et al 2011, and True et al 2004, the OpenGL pipeline 

consists of two joined-together sub-pipelines, geometric pipeline (or vertex pipeline) and 

fragment pipeline (pixel pipeline), as shown in Figure 5.1. 

 

Figure 5.1 Graphics Pipeline 

5.1.1 Geometric Pipeline 

The geometric pipeline of OpenGL follows a natural process to draw graphics objects on a 

device screen in the analogous way of photography (Cunningham 2008, and Hoschek and 

Lasser 1993). This process carries out a transformation from a drawn 3D object that is 

convenient to be drawn by the application programmers to a 2D image that is easy to be 

displayed on the screen by a hardware device. This process can be simplified as a series 

of stages including 

▪ Drawing objects individually one object after another; 

▪ Placing each of them on a proper location in a common scene;  

▪ Seting a viewing direction for the audience;  

▪ Clipping the visible part according to the viewing volume; 
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▪ Projecting the 3D view onto a 2D viewing plane that is vertical to the viewing 

direction of the audience; 

▪ Mapping the 2D viewing plane onto a 2D screen window of a hardware screen 

device. 

As regards this process, it is conventional to define a scene where a collection of 

graphics objects exist. The scene defines what exists in the scene world, so its coordinate 

system is called the world coordinate system and the coordinates referring to this system 

are the world coordinates. The world coordinate system is shared by each object in this 

scene. Since each object is drawn individually first and then moved into the scene, it is 

convenient to assign a local coordinate system to each object in such a way that the object 

is easy to be drawn geometrically. For example, the centre of a sphere is a good option as 

the origin of its local coordinate system. Because of this process, there are several 

coordinate transformations involved in the geometric pipeline of OpenGL, which will be 

detailed in the following sub-sections. 

5.1.1.1 Model Transformation Module 

In the geometric pipeline, to create an image of a 3D object, the geometric descriptions of 

the object must be input. These descriptions are composed of the modelling coordinates 

or local coordinates. To put all the objects in a common scene, the coordinate 

transformation from local coordinates to world coordinates must be done. This is the work 

of the model transformation module. 

5.1.1.2 Illumination Module 

If an object in the scene is visible, the colour of the object will be drawn on the device 

screen. The light that emits on the object can influence how colour shades to look like on 

the device screen. In the OpenGL, the attribute of a light source can be set, which will 

make contribution to the evaluation of the final colour of an object lit by the light. This is the 

work of illumination module. 

5.1.1.3 Geometric Primitive Assembling Module 

To draw in detail an object with a complex shape, some technologies should be taken. 

One of them is to divide the object into simple primitives, such as triangles, cubes, spheres, 

cylinders, and others, in advance. These primitives are modelled and transformed 

individually. Finally they must be assembled together in order to represent the object. This 

is the work of geometric primitive assembling module. 

5.1.1.4 Clipping Module 

In general, there is a viewing point, from which the audience look at the scene. Like a 

camera viewfinder, there is a viewing volume in the OpenGL, called viewing frustum, 
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which limits the sizes of three dimensions. Objects in the scene must be clipped by the 

size of the viewing frustum. The part outside the viewing frustum will be invisible and have 

to be removed. The part inside the viewing frustum will be retained for the next step in the 

pipeline. These are the work of the clipping module. 

5.1.1.5 Projection Module 

The objects in the scene are then projected to a 2D plane that corresponds to the screen 

of the display device. The third coordinates of the scene will be used in depth test later. In 

general, coordinate values are normalised in the range from -1 to 1. In this way, the 

graphics software is independent of the coordinate range for any specific display device, 

no matter which is 800 X 480 pixels or something else. The above is the work of projection 

module. 

5.1.1.6 Texture Mapping 

As shown in Figure 5.1, except for the illumination module, texture mapping does also 

affect the rendering of an object. For example, a 2D texture can be used to replace the 

colour of or paste on the surface of a 3D object and make the surface of the object coated 

with the texture’s pattern. Because of the texture coordinates’ mapping onto the surface of 

the object, if the user interaction makes the object shape deformed, the coating texture 

must be changed along with the deformation. If not, an artificial effect may be caused. 

5.1.2 Fragment Pipeline 

Before rasterisation, everything related to an object is represented with the vertex 

coordinates. Therefore, it is a geometric description. The geometric description is 

convenient for geometric evaluation and application programming. But for the display 

device, everything drawn on the screen is painted as pixels, the values of red, blue and 

green at different positions with two-dimension coordinates on the screen.  

In OpenGL, a fragment is a pixel with attributes of position and colour (Kuehne et al 

2005). Fragment pipeline is responsible for shading or colouring the appropriate pixels in 

the frame buffer. 

5.1.2.1 Rasterisation Module 

Rasterisation is to make the normalised coordinates of vertices of objects scaled with the 

size of the display screen. After rasterisation, representations of objects are expressed in 

pixels or fragments. 

Except for rasterisation module, typically, the fragment pipeline has several processing 

stages, as shown in Figure 5.2. In the fragment pipeline, many stages must be traversed 

before a fragment being written into a frame buffer. But it is costly and makes the 

rendering slow if all of them are enabled and processed. Therefore, it is wise to make a 
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control to optimise which combination of fragment processing stages is used in an 

application. 

 

Figure 5.2 Processing Stages in Fragment Pipeline 

5.1.2.2 Texel Generation 

A texture element, called texel, is a unit for texture space. Take a 2D texture as an 

example. When texturing a 3D surface, the OpenGL maps texels to appropriate pixels in 

the frame buffer. The texturing process starts from mapping the texture into the model 

space of the object surface where the texture is put on. Then along with projection of the 

object model, the texture is projected on the 2D screen space. As two coordinates of a 

pixel position on the screen are integers, the projected texture coordinates should be 

filtered. Then texels are generated. Sometime a texel can be outside of a texture, such as 

outside the border of the texture. Clamping or wrapping can be used. The former makes 

the texel outside the texture have the colour value of the nearest edge; the latter makes 

the colour value of texel outside the texture repeat the texture colour. Sometimes in the 

texture space, a value exactly corresponding to a texel cannot be found. In this case, 

‘GL-NEAREST’ or ‘GL_LINEAR’ can be used. The former assigns the nearest value to the 

texel; the latter sets the texel to a linear-interpolated value. 

5.1.2.3 Depth Test 

Since all the images have to finally project on the 2D screen, for 3D objects, the vertices at 

the front can be visible whereas those at the back can be blocked and invisible. As 

regards this situation, it is necessary to do the depth test. When coordinates of a vertex 

are projected on the screen, two transformed coordinates, x and y, are corresponding to 

two dimensions of the screen. The third one, z, is taken as the depth coordinate directing 

into the screen, and can be stored in the depth buffer, or z-buffer, when the depth test is 

being done. The depth buffer is a two-dimensional array with one element for each screen 

pixel. If an object in the scene is rendered, the depth test of OpenGL compares its depth 

value with the value of the same pixel in the depth buffer. If it is less, which means the 

object is closer to the audience, it overrides the current value of the pixel. The new depth 

replaces the old one and is stored in the depth buffer. After the depth test, the hidden 

object will be culled and will not be rendered any longer. 

 

Depth 
test 

Alpha 
blending 

Stencil 
test 

Logical 
operations 

Frame 
buffer 

Texel 
generation 

Fragment processing module 



Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES                                 83 

5.1.2.4 Stencil Test 

The stencil test is mainly used to limit the area of rendering with boundary patterns for a 

scene. The boundary patterns are stored in a stencil buffer, which is usually an array of 

bytes, one byte for each screen pixel. Combined with the depth buffer, the stencil buffer 

can be used to make many effects, such as outline drawing, shadows, and highlighting of 

intersections between complex primitives.  

5.1.2.5 Alpha Blending 

To draw a translucent object in a colourful surrounding, such as a glass bottle, alpha 

blending should be used. This function is to mix a translucent foreground colour with a 

background colour to produce a new blended colour. The alpha value can be ranged from 

0 to 1.0, which means the range from completely opaque to completely transparent. At two 

extremes, zero is completely opaque and the blended colour is the foreground colour; one 

is completely transparent and the blended colour is the background colour. At other values, 

the blended colour is assessed by weighting the foreground and background colours with 

the alpha value. 

5.1.2.6 Logical Operation 

In OpenGL, a bitwise, logical operation of combining source and destination pixel colour 

values, such as and, or and exclusive or, is provided. The source pixels can be a copy of a 

block of pixels in the frame buffer, which can be read from the frame buffer by using 

OpenGL commands in advance. A logical operation can result in an effect on the 

destination pixel block in the frame buffer and make the pixel colours different from the 

original ones. 

5.1.2.7 Frame Buffer 

The frame buffer is the video output memory space that contains a complete frame of data, 

colour values of pixels of an entire screen. Each pixel can have one bit for monochrome, 

four bits for palettised, sixteen bits for highcolor, and twenty-four bits for truecolor formats. 

An additional alpha channel is sometimes used to retain information of pixel transparency. 

After the frame buffer is written, a graphics device will paint colour values on the device 

screen by some instruction, such as glFlush. 

To attain a good performance, two frame buffers are usually provided in the graphics 

device. In this case, when the front frame buffer is displayed by the device, the back one 

can be written by the graphics pipeline. Then two frame buffers are swapped. So the video 

images can be played smoothly. 

As the OpenGL implementation involves the image display and user interaction 

interface, there are always hardware-dependent and hardware-independent parts 

involved in the OpenGL pipeline. The upstream of graphics pipeline tends to be 
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implemented with software solution while the downstream is prone to require hardware 

support. Software solution is flexible, varied and slow, and hardware solution is fixed, 

designated and fast. 

5.1.3 Rendering Flow of an OpenGL Interactive Application  

For an object rendering, the processing starts from the input of object vertex coordinates 

at the upstream end of OpenGL API, performs the intermediate steps that the data are 

transformed and transmitted with a set of state variables, and ends by writing the pixel 

colours into a frame buffer to be displayed. The OpenGL state machine can practise the 

whole processing in a fixed order that follows the geometric and fragment pipelines and 

depends on whether an intermediate step is enabled or disabled, and finally make the 

object image display on the device screen. 

From the application perspective, the OpenGL is a structure with several levels, as 

shown in Figure 5.3. From the top (interactive applications) down to the bottom (hardware 

platform), an application program is executed with an application, commands, geometric 

pipeline, fragment pipeline, hardware abstract layer, and hardware platform. 

 

Figure 5.3 OpenGL Structure from the Application Perspective 

In this project, the FPGA-based ES board is the hardware platform. The Altera HAL is 

the hardware abstract layer. Part of OpenGL fragment pipeline is merged into the 

hardware system, for example, the frame buffers, LCD, video pipeline, and buttons for 

user interactions. Part of OpenGL geometric pipeline is also constructed with hardware 

units, which is the algorithm-specified module as shown in Figure 3.6. These hardware 

parts are used to speed up the graphics pipeline. The rest of OpenGL graphics pipeline 

and OpenGL API are constructed with software to form the main part of Mesa-OpenGL on 

FPGA-based ES, which will be detailed in Section 5.5. The auxiliary API is composed of 

three supports that are of the Mesa-OpenGL API, ANSI C library and HAL API. The first 
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support will be expounded in Section 5.5.2. The latter two supports have been discussed 

in Section 3.3.4. The OpenGL applications are the surface modelling and editing, the core 

algorithm of which is the PAMA, which will be detailed in Chapter 7. 

The general rendering flow of an OpenGL interactive application is: 

a Open and initialise a window to draw OpenGL objects. 

b Set any OpenGL state to a target value used on all the objects in the application. 

c Register any event that the user may enter for the user interaction. The event can 

be pressing a key or button, moving or clicking the mouse, or moving or resizing 

the application’s window. 

d Draw the image of 3D objects by using OpenGL with values set by the user or 

defaulted of the OpenGL. The OpenGL state machine keeps a main loop running 

to catch any event and re-draw the variation of objects for the event. 

 

5.2 OpenGL ES 

The OpenGL ES is the standard for embedded accelerated 2D and 3D graphics (Angle 

and Shreiner 2008, and KHRONOS 2013). It provides a graphics API – a low-level 

interface between software applications and hardware or software graphics engines.  

As the hardware conditions of ESs are more limited by their small sizes and designated 

applications than desktop computers, an implementation of OpenGL ES can be turned 

into one of subsets of the desktop OpenGL. The family of OpenGL ES implementations 

may have various versions for different pipelines and multiple hardware platforms, which 

may or may not be integrated with EGL (Native Platform Graphics Interface Layer, 

detailed in Section 5.3.1). Each implementation can be a much smaller engine with few 

function calls. 

Compared with the desktop OpenGL, the archive of OpenGL ES includes profiles not 

only for floating-point systems but also for fixed-point systems. It also provides the EGL 

specification for portability between different native windowing systems. As an 

implementation of the OpenGL ES has a closer bind with hardware devices than the 

desktop OpenGL, the porting of OpenGL ES from one platform to another is more difficult 

and brings about more detailed issues for transplanting. 

5.2.1 Versions and Profiles of OpenGL ES 

The OpenGL ES has several subsets of OpenGL standard for ESs. It is divided in two 

ways, versions and profiles. The former is for different ways in the programming; the latter 

for different dimensions on the footprint. 
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5.2.1.1 Versions 

Since the graphics requirements have a broad range of 3D devices and platforms in 

embedded markets, the OpenGL ES has been developed two versions with two different 

roadmaps, which are for two different development requirements and platforms and have 

evolved in two different directions, respectively. They are OpenGL ES 1.X and 2.X, both of 

which have their counterparts in OpenGL. 

The OpenGL ES 1.X is for fixed function hardware. Its goals are to enhance hardware 

acceleration, to improve image quality and performance, and to reduce the memory 

bandwidth. It is also a software interface that consists of a set of procedures and functions. 

The function calls can be used not only to implement rendering but also to support 

transformations, matrix stacks, Phong lighting, fog, and others. The programmer can 

specify a state by calling a specific function to control the state machine in producing 

graphical images of 3D objects. It can be applied to the new-generation fixed function 3D 

accelerators. 

The OpenGL ES 2.X is for programmable hardware. It defines a programmable 3D 

graphics pipeline to create shader objects and to write vertex and fragment shaders in the 

OpenGL ES Shading Language. Since almost all graphics operations are done in shaders, 

its interface is very small, and focuses on specifying geometry and textures, and dealing 

with shaders and their variables. It can be applied to the emerging programmable 3D 

pipelines. 

Even though the OpenGL ES 1.x is more fixed in functions compared to the OpenGL ES 

2.X, it does not mean that the use of functions of the OpenGL ES 1.x is fixed during 

programming applications. There is still a lot of room to adjust and optimise the order of 

function calls and disable some unnecessary modules in the pipeline during programming 

to speed up the object rendering and save the memory space. 

5.2.1.2 Profiles 

The definition of profiles of the OpenGL ES specification is dependent on their application 

fields. Each profile has its own emphasis, adopts part of the desktop OpenGL specification, 

and extends its own OpenGL ES-specific part as well. For the part derived from the 

OpenGL, each OpenGL ES profile retains the similar API, processing pipeline, command 

structure, and the same name space as the OpenGL. For the extension part, it adds 

OpenGL ES-specific functions to the OpenGL specification in order to meet the needs of 

embedded platforms. Three profiles have been issued. They are Common, Common-Lit, 

and Safety Critical Platforms. As the family of OpenGL ES profiles still grows, along with 

new technologies emerging in the ESs, more profiles may be issued in the future. 

Since it is designated for consumer handhold devices, the Common Profile provides the 
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market support for platforms that have different computation and memory abilities, such as 

full-functioned and texture-mapping 3D graphics with minimum footprint, gaming platform, 

and cell phone platform. The Common Profile supports the floating-point computations. 

Because it focuses on a simple class of graphics system with a small footprint and only 

supports the fixed-point calculations, the Common-Lite profile does not support 

high-performance OpenGL functions that need the floating-point computations. The 

Common and Common-Lit profiles not only share many commands, but also have some 

commands designated to only one of them. 

The Safety Critical Profile has high requirements on being reliable and certifiable. It can 

meet the needs of 3D graphics applications in avionics and automotive displays, and 

safety certifications. 

5.2.2 OpenGL ES Implementations 

Since the OpenGL ES is derived from the OpenGL, many resources and development 

experiences of OpenGL can be applied to the OpenGL ES. These make it feasible a 

crossing-platform migration from desktops to different embedded platforms. The OpenGL 

ES also makes it affordable to provide the diversity of 3D graphics and games in the 

mainstream of embedded and mobile platforms. According to KHRONOS 2013, the 

OpenGL ES has had many implementations that are of some companies, such as Intel, 

Imagination Technologies, QUALCOMM, ARM, Marvell, Apple, NVIDIA, Creative 

Technology Ltd, Media Tek Inc, and NOKIA OYL. 

 

5.3 Different Roles in OpenGL ES 

Since part of the work in this project is to implement the OpenGL ES on the FPGA-based 

ES platform, it is very important to have a proper perspective to view the OpenGL ES. 

Especially, the role of the author has to be turned between an OpenGL implementer and 

application developer when programming the applications to test the effect of integrating 

the Mesa-OpenGL in the FPGA-based ES. Therefore, there are three roles that should be 

considered in the OpenGL ES. They are graphics application developers, implementers, 

and standard setters. 

  For the OpenGL standard setters, after the needs of general graphics application 

developers, the conditions of general graphics platforms, and how to implement the model 

on a general graphics platform were known, the OpenGL ES standard structure should be 

built up to meet general graphics application developers’ needs and satisfy the conditions 

of general graphics platforms. 

Before starting implementing OpenGL ES on the graphics devices, it is necessary for 



Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES                                 88 

OpenGL implementers to know the specification of standard OpenGL ES. If so, the 

implementation of OpenGL ES can be used by application developers of OpenGL ES in a 

right way. 

The graphics application developers should understand the OpenGL ES specification 

and how its implementation at the local platform to work. Although all relative researchers 

try very hard to make OpenGL hardware-independent, it is inevitable to involve the 

hardware part because of the wide species of hardware platforms in ESs. The benefit of 

this is to make the best use of OpenGL ES to realise their applications and attain the best 

performance of the OpenGL ES and graphics platform. 

5.3.1 OpenGL ES Standard Setter Role 

In the view of OpenGL ES standard setter role, the OpenGL ES is treated as a structure 

model and state machine that controls a set of specific operations on drawing (KHRONOS 

2013). The structure model should yield a specification that satisfies the needs of both 

developers and implementers. It does not provide a model for the implementation which 

must bring about the specified results. The ways adopted by different implementations can 

be different and have different efficiency for a particular computation. One of the main 

goals of this specification is to define the OpenGL ES state information, and to explain 

how it changes and what its effects are without ambiguity. 

5.3.1.1 Command Descriptions 

For a graphics command, the specification gives an explicit description of its function and 

interface so that an application developer can correctly use the command and an 

implementer can implement completely the corresponding operation or computation in its 

function. 

5.3.1.2 Profile Definition 

Each profile has its own designated definition of header files, tokens, and command library. 

To simplify the maintenance of a single profile, some conditional pre-processing directives 

can be defined in the header files, which control and show which profile is used and 

indicate which profile runs when an application inquires it by using the OpenGL version 

query. 

5.3.1.3 Minimised Footprint 

Compared to the desktop computers, ESs have smaller memory space and slower 

microprocessor speed. In ESs, the memory space ranges from 1 MB to 64 MB and the 

speed of microprocessor varies from 50MHz to 400MHz. These data are still changing. To 

meet these requirements for different conditions of embedded hardware, the OpenGL ES 

must be implemented with a minimum footprint. It means minimising the instruction and 
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data storage and traffic requirements. It also means that the floating point computation 

may be limited dependently and the integer computation can be encouraged mostly. The 

power consumption can be lowered as well. Furthermore, the size of binaries of an 

OpenGL ES implementation is so small that it is convenient for users to download it to 

devices. 

  In this project, since the FPGA-base ES has a limited memory space, which is a 

memory of 2 X 64 MBytes, it is very important to minimise its footprint. The PAMA takes 

this issue into account during the algorithm research, which will be detailed in Chapter 7. 

The implementation of OpenGL for the FPGA-based ES must balance between the 

freedom for shape modelling and editing and the storage space requirement. On the one 

hand, it has to add the complex algorithms to the OpenGL implementation in order to 

support the graphics applications for surface modelling and editing, which results in 

enlarging the footprint; but on the other hand, it must decrease the total requirement on 

the storage space during the software programming in order to gain a proper system 

performance. 

5.3.1.4. Invariance in Images 

As the hardware platforms and display devices are different, the OpenGL ES specification 

does not require matching exactly among implementations on different hardware 

platforms. However, in some cases, images produced by the same implementation have 

to match exactly in order to make a judgement in some situations, such as making a 

comparison between two images. 

  In another case, invariance is necessary. A complicated object is drawn, which requires 

a whole sequence of operations that may involve many algorithms to support. These 

algorithms may be executed many times for the object rendering. It is expected that 

whenever the rendering is executed, the image displayed in a window should be invariant. 

Invariance, however, can be costly. It can significantly increase the complexity of 

implementation of the OpenGL ES and greatly limit the parallel processing ability of the 

OpenGL ES. In fact, speeding up and a high image quality can be contradictory. An 

implementation of OpenGL ES should balance all the requirements to implement a 

relatively complete OpenGL ES profile. It is not acceptable to make one aspect very 

strong at a price of sacrificing other abilities. On the other hand, among so many choices 

in the ES platforms, a strong invariance requirement on the identical behaviour of the 

hardware and software modules may be too restrictive to meet. A low requirement on the 

invariance behaviour can make a lot of different implementations of OpenGL ES flourish. 

In addition, a great deal of software tools and hardware platforms are disposed to 

accepting the OpenGL ES. It may be one of reasons why there are more profiles in the 

OpenGL ES than in the desktop OpenGL. 
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The OpenGL ES should be able to execute on a wide range of graphics platforms that 

may have different graphics capabilities. To support this diversity, for an OpenGL ES 

operation, the ideal behaviour, rather than actual behaviour, is designated. Therefore, it is 

possible that the behaviour of an implementation is an approximation to or deviation from 

the ideal one. Two different OpenGL ES implementations are allowed not to agree pixel 

for pixel even though they have the identical input and frame buffer configurations. In this 

way, different implementations can be developed in order to fit into different application 

situations and to meet different system requirements on different platforms. For example, 

the requirements on invariance of two images are quite different between the image 

identifying and shape changing of a moving character in a game. The former should meet 

the higher requirement on invariance; the latter can get a benefit of speeding up the 

graphics computation from a lower requirement on invariance. Because of the 

computation of 3D graphics in surface modelling and editing in real time, speeding up is 

crucial for the PAMA. There is not a high requirement on invariance for PAMA since it is 

not necessary to compare two images. This has been taken into account during this 

research. For example, a fixed point arithmetic system is adopted for this reason in this 

project. It will be discussed later in this chapter. 

5.3.1.5 Repeatability of Command Results  

Given an OpenGL ES implementation, frame buffer, and hardware platform, the result of 

any command must be identical whenever the command is executed. The reason is that 

when double buffers are used, subtle difference between results of a command used in 

twice executions can lead to visual difference between two frame buffers when they are 

swapped for rendering with the same command sequence. This difference makes the 

image look artificial or the viewer misunderstand it as the image trembling. In addition, the 

difference of the same command sequence at different moments means that the 

implementation is not stable during testing. 

It is obvious that repeatability is very important in many cases, but not always. For 

example, in changed view angles, a small primitive can be viewed differently. If the small 

primitive is just a small portion of a drawn object or a whole scene, an acceptable variance 

can be allowed when considering the cost and importance of trying to eliminate the 

variance. In fact, the requirement of accuracy on an image drawing is not as important as 

that on the pure computation. The reason for this is that the accuracy of a result of 

computation is usually examined by a tolerance range that is defined for the computation. 

It mostly depends on the audience’s visual impression whether or not a displayed image is 

satisfactory, however. The computation accuracy can be stored to be measured and 

compared later. The visual accuracy of image-drawing is instantaneous and varied for 

different viewers. In addition, some technologies are sometimes used to yield a special 

visual impression in order to satisfy the viewer’s eyes. For example, the antialiasing 
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technology is usually used in computer graphics and others to give the audience the visual 

impression of the smoothness at a corner or boundary, but strictly speaking, it produces 

only a beneficial illusion for the audience.  

Thus, it is often sufficient for an image to convey the meaning that it must deliver. As 

mentioned in the previous section, the comparison between two images sampled in real 

world should be more accurate. For surface modelling and editing, the PAMA is realised 

for the similar goal as the meaning’s conveying, and it has equally an important 

requirement on speeding up for the user interaction in real time. 

5.3.1.6 Extensions 

As the OpenGL family and functions keep increasing, it is necessary and important for the 

OpenGL ES to keep open and make any extension to the OpenGL ES profiles unimpeded.  

Extensions to the OpenGL ES are treated in two ways. In one way, the extensions have 

a strong functionality and will be included into the core profile revisions in the future. In the 

other way, the extensions are still valuable but may not belong to the mainstream of 

OpenGL ES.  

  The OpenGL ES allows the implementations to add new features to the OpenGL ES, 

which may not belong to any existent profile. As mentioned in Section 5.2.1, an existent 

OpenGL ES profile is composed of two sections. One is a subset of the full OpenGL 

graphics pipeline. The other is the extension of OpenGL ES-specific functions, which may 

turn to a core addition to OpenGL in the future, or be collected in another set, the set of 

OpenGL ES-specific functions that is not suitable for the general OpenGL. The extension 

set of OpenGL ES-specific functions are further divided into two groups, the required and 

optional. 

In any new extension, the commands and tokens should match the corresponding 

command subsets. Commands and tokens in the core addition subset do not have 

extension suffixes in their names whereas those in the OpenGL ES-specific set should 

contain the profile extension suffixes. The required part must conform to the existent 

profile implementation. The optional part can be defined by the implementer. 

Following these rules and mechanisms to extend programming, new emerging 

hardware can be accessible through the OpenGL ES API and the OpenGL ES API can be 

upgraded as well. When they are accepted broadly, the new extensions can be merged 

into the OpenGL ES core standard. Furthermore, OpenGL ES, itself, can evolve 

innovatively and controllably. Practically, in the process of implementation and 

development, the OpenGL or OpenGL ES structure model can be further developed and 

extended without separation from the original OpenGL core.  

All the above allows this project to add functions of surface editing and API for the 
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FPGA-based ES to a new implementation even though there is not an existent profile of 

OpenGL ES for FPGA-based ES. For example, the algorithms of Bézier curves and 

surfaces are not included in the specifications of the general OpenGL ES. But they are 

necessary for the surface modelling and editing with the PAMA. Thus, they are added to 

the new implementation of OpenGL for the FPGA-based ES in this project. 

5.3.1.7 Native Platform Graphics Interface Layer 

As shown in Figure 5.3, there is a layer above the hardware platform, which can provide 

the device-dependent functions, including device drivers, memory allocation and 

deallocation, memory access, frame buffer access, and others. 

Some functions of OpenGL ES are device-dependent, for example, drawing objects like 

points, lines and polygons. These functions require writing a frame buffer of the graphics 

hardware. For this reason, they are concerned with frame buffer manipulation. They need 

some functions to bridge between writing the frame buffer and drawing the objects. These 

function implementations are varied with graphics device specifications. Other functions, 

like antialiasing or texturing, if they are enabled, can also influence how to draw objects. 

They must be processed before writing the frame buffer. 

  To minimise and isolate the device-dependent part from the application developers and 

make it portable crossing the hardware platforms, the OpenGL ES establishes a 

specification of a common platform interface layer, called EGL (Native Platform Graphics 

Interface Layer). It is an independent platform interface. The OpenGL ES implementers 

can make a choice between constructing a native hardware platform interface based on 

the EGL and defining their own platform-specific embedding layer in their implementations. 

The former’s benefit is that the implementers do not necessarily consider the consistency 

of the platform interface with other part of OpenGL ES because an associated 

conformance test is provided along with the EGL.  

For the application developers, the hardware-independence brings them a seamless 

transition from software to hardware and from one piece of hardware to another. Although 

the OpenGL ES specification is defined as a hardware-independent graphics processing 

pipeline, the implementations of OpenGL ES must be caught out by a combination of 

software and hardware. The commands call the software routines that finally run on the 

system microprocessor with the system memory access. Following the OpenGL ES 

specification during programming can make applications and implementations seamlessly 

connect to the hardware devices. It means that developers can get a normative software 

engine no matter which implementer completes it, and users can download applications to 

their device gadgets and play them no matter which developer develops them. 
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5.3.2 OpenGL ES Implementer Role 

For an implementer, the OpenGL ES is a set of procedures, or functions that carry out all 

the computations in the graphics pipeline and all the operations of graphics hardware.  

Imagine a graphics hardware device on which the OpenGL ES is implemented. If the 

graphics hardware only had an addressable frame buffer, all the routines of OpenGL ES 

should be implemented and executed on the host CPU. In reality, the graphics hardware 

can be composed of varied graphics acceleration units, ranging from a simple raster 

subsystem that can render 2D lines and polygons to high-end floating-point processors 

that can transform and compute the geometric vertex data. 

The OpenGL ES implementer’s task is to implement the programming of each OpenGL 

ES command procedure. At the same time, they must provide the CPU software interface 

for the application developers. They have to know how to divide the work of each 

procedure between the CPU and the graphics hardware. The former is software-relative 

and logical; the latter needs the device drivers’ support to implement OpenGL ES calls. 

The latter also must be customised to fit into the available graphics hardware units and 

obtain the optimum performance. 

  Thanks to the open and widely-accepted features of OpenGL and OpenGL ES, there 

are numerous resources available and free on the Internet, which can speed up an 

implementation on a new hardware platform and mitigate the programming work without 

building it from scratch. Even better, without too much explanation about the new 

implementation, the application developers of OpenGL ES can understand how to develop 

their applications with it. 

  As an implementer needs to test whether or not the implementation is successful, it is 

necessary to stand in the shoes of application developers during the programming and 

verify the implementation in applications. 

  In this project, one role of the author is the implementer of OpenGL ES because a new 

implementation of OpenGL ES must be constructed on the platform of FPGA-based ES. In 

the discussion of next section, we will see that the other role of the author is the 

application developer of OpenGL ES. 

About command implementation details will be introduced in Sections 5.4 and 5.5. 

5.3.3 OpenGL ES Application Developer Role 

As the OpenGL ES is an open embedded graphics standard, anyone can download the 

OpenGL ES specification from the website of KHRONOS Group (KHRONOS 2013) and 

learn it. With its broad and crossing-platform support in the industry, many individuals and 

companies implement products based on OpenGL ES standard. The standardised 
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abstraction and device-independence at the high level make any developer just focus on 

the function commands without considering the details of hardware platforms and code 

implementations. 

Because the OpenGL ES is derived from the OpenGL, a great deal of relevant 

information, documents, books, and sample code of OpenGL ES can be to find on the 

Internet. For developers having the experience of programming with the OpenGL, it is 

readily to learn the OpenGL ES and write the OpenGL ES applications with the similar 

structure of the design and logical commands as those in the OpenGL. 

For the application programmer, the OpenGL ES is a set of commands. Some of them 

define the specification of geometric objects in two or three dimensions. Some of them 

control how these objects are rendered into a frame buffer. Others provide an 

immediate-mode interface to specify an object, which causes the object to be drawn. 

5.3.3.1 State Information 

The OpenGL ES maintains a considerable amount of state information. The state 

information controls how objects are drawn into a frame buffer. Some state information is 

directly available to the application developer. The developer can use some commands to 

make calls to obtain its value. Other state information is not, but its effect on what is drawn 

can be visible. For example, the glEnable(GL_DEPTH_TEST) command can enable the 

state of depth test and the OpenGL state machine will load and execute depth test in its 

execution loop and create the scene with 3D effect. 

5.3.3.2 OpenGL ES Application Flow 

The programmers should understand the flow of an OpenGL ES application and know 

which part is computation-intense and which part is input/output-intense. During 

programming, they can find strategies for these parts so as to draw objects as fast as 

possible. 

In the flow of an OpenGL interactive application, a typical program starts from creating a 

window to draw objects by using the window API commands. A frame buffer (or two frame 

buffers if double buffers are available) and other context are created and connected to the 

window. Once a context is allocated, the initialisation for lighting and background colour 

cleaning should be done by using the OpenGL ES commands. With the window API 

commands, some user procedures, such as drawing objects, reshaping the window and 

issuing user interaction events, can be registered to enable the OpenGL ES to execute 

them in the main loop. 

In the user procedure of drawing objects, OpenGL ES commands can be used to draw 

specific geometric objects. Some commands are used to draw geometric objects, 

including points, lines, and polygons. Some commands have influences on the rendering 
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of these primitives. For example, they may decide how an object moves away from the 

view point and how the object image of the user’s 2D or 3D model space is mapped to the 

2D screen space. Others perform directly operations on the frame buffer, such as reading 

pixel colours from the buffer. 

In the user procedure of reshaping the window, OpenGL ES commands can set the 

model view, projection view and mode, and resize the window. The operations acting on 

the scene world should be performed in this procedure because they have influences on 

all the objects in the scene world. 

In the user procedure of issuing user interaction events, some events that make 

responses to some actions done by user interactions through the standard input, like 

pressing a key or button, moving and clicking the mouse, and touching the screen, should 

be programmed here. 

5.3.3.3 Global Effect vs. Local Effect 

For the application developer, it is necessary to know how to distinguish commands that 

act on the global scene world from those that have an influence only on individual objects. 

The commands that act on the global scene world where all the objects exist should be 

performed outside or before the display loop specified for individual objects. In this way, 

the processing time can be decreased to a low level. 

In this project, since the PAMA is the graphics application that is the second 

development on the new implementation of OpenGL ES, the author is also the application 

developer of OpenGL ES. 

 

5.4 Mesa-OpenGL 

For this project, there are three reasons that promote to create a new OpenGL 

implementation that can be played on the FPGA-based ES. 

The first reason is that the OpenGL ES takes into considerations only the part of 

graphics pipeline for writing to or reading from a frame buffer. There is no specification for 

how to paint on the display screen and how to interact with other peripherals associated 

with graphics hardware, such as mice and keyboards. Implementers must rely on other 

technologies, such as the Khronos OpenKODE API, to drive the screen painting or obtain 

the user input. Different hardware platforms can have different drivers for their own input 

and output devices, however. 

The second reason is that Altera development and compiler tools, Nios II IDE 

(Integrated Development Environment) and Nios II Software Building Tools for Eclipse, 

are more skilled in software connection to an FPGA design but more restricted in C 
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programming and compiling than a general C-specific development environment. The 

surface modelling and editing need a great deal of flexibly and complicatedly programming 

and a lot of computation and storage space for processing data. 

The last reason is that the implementations of existent OpenGL ES profiles cannot fit 

into this project. In the introduction of Chapter 2 and Section 5.2.1.1, we have observed 

that since GPUs have attracted most attentions of computer graphics researchers, GPUs 

have attained a lot of support from the computer graphics society. One of their benefits is 

that the OpenGL ES 2.X has adapted to the trend of GPU development. On the other hand, 

the algorithms of Bézier curves and surfaces are excluded from specifications of three 

profiles mentioned in Section 5.2.1.2, which are Common, Common-Lit, and Safety 

Critical Platforms. In addition, FPGA-based ESs are an emerging branch in ESs, and they 

still need some time to develop in various application fields, especially in graphics 

applications. 

  Because of the above reasons, a new Mesa-OpenGL implementation must be made for 

FPGA-based ESs. More functions should be added to the new implementation for this 

project than general OpenGL ES profiles. The results of Chapter 8 will show that the new 

implementation has been ported to the FPGA-based ES platform successfully. 

5.4.1 Introduction of Mesa OpenGL 

Mesa (Paul 2013) has a sequence of open-source and evolutionary implementation 

models of the OpenGL specification. Originated from 1993, the Mesa project was started 

by Brian Paul. It has been evolving in twenty years.  

There are a variety of hardware platforms that use the Mesa in various environments 

ranging from software simulation to hardware acceleration for GPUs. For example, the 

hardware drivers that the Mesa supports include Intel i965, i915, AMD Radeon, and 

NVIDIA GPUs. The operating systems that the Mesa supports consist of Linux systems, 

Microsoft Windows, UNIX, and Haiku. The Mesa did not have an implementation for a 

FPGA-based ES before this project, however. 

5.4.2 General OpenGL Implementation 

The following are important elements that must be implemented in the OpenGL graphics 

pipeline, called I-GL in this thesis, which represents Implementation of OpenGL. 

According to their inner relationships, the introduction is from the top of commands to the 

bottom of the connection between software and hardware. 

5.4.2.1 Commands and Orders 

The I-GL provides the API of graphics pipeline for application developers with a set of 

commands. These commands can be used to specify a primitive, set the mode, or perform 
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an operation. Commands can be called with arguments. These arguments are used to 

transfer data to the settings of variants, such as primitives and modes. The data are bound 

to the current context and are transferred to the process that the command executes at the 

moment when the command is called. The subsequent changes on the data will not have 

an influence on the current pipeline.  

  As the OpenGL graphics pipeline is a state machine, commands in the I-GL are always 

executed in an order that they are received although it can be delayed for a command to 

really take effect. For example, an enabled texture can be delayed to be put on the surface 

of an object until the object is drawn, but the enable operation has been performed at the 

point where the glEnable command is used. This delay relies on the programming inside 

the I-GL and is a meaningful strategy for programming that allows all the similar 

operations to be done collectively and enhances the performance of the I-GL. 

  In general, the relationship between commands used in an application program and the 

I-GL is client-server. For a simple platform with a small amount of memory and CPU 

resources and single-threaded programming, such as small-footprint ESs, the relation 

between an application program and I-GL can be treaded as a caller and a set of called 

procedures. The application program (the client or caller) calls commands, and these 

commands are interpreted and processed by the I-GL (the server or procedure service). 

That is, the application program should issue commands to require the I-GL to create a 

context for one drawing task and connect this context to the task at the initialisation stage. 

If the program is not connected to a context with a complete initialisation in advance, 

calling commands can cause undetermined behaviour. A server can manage several 

contexts concurrently, each of which is corresponding to the current pipeline state for a 

drawing task. A client can choose one of the contexts to be connected.  

5.4.2.2 Primitives and Modes 

In the I-GL, a primitive can be a point, line segment, or triangle. A primitive can be drawn 

in several selectable modes. Each mode is independent. The setting of one mode does 

not influence others, but their effects may have a synergy in the frame buffer. Primitives 

and modes are set with the arguments of commands. 

In the I-GL, every primitive is an entirety and must be drawn completely before any 

subsequent one can influence the frame buffer. Also, the effect of one mode on the frame 

buffer must be complete before any subsequent mode setting can have such effect. 

The I-GL does not provide a complete command for constructing complex geometric 

objects, however. To describe a complicated geometric object, the surface of the object 

must be broken down into patches that can be represented by the basic primitives. With a 

whole sequence of commands of describing primitives and some advanced I-GL 

mechanisms, the object can be modelled. That is, the I-GL only provides commands and 
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mechanisms how complex geometric objects are rendered. It is the responsibility of 

application developers to realise and figure out how the complex objects are described. 

Application developments should think about how to divide a complicated-shaped object 

into primitives and divide a complicated process into simple operations, and how to link 

them together in order to render an entire object in a feasible and effective way. They also 

must realise what the effect of a sequence of operations on the frame buffer is. They have 

to re-test it several times and make sure of it.  

5.4.2.3 States 

For the I-GL, each state should put its data into the specified location of the memory. The 

evaluation function should be launched after all the required data are put into their specific 

locations. The evaluation function does just its tasks including fetching the data from the 

assigned location, doing operations, and putting its result into the result’s specified 

location. All the locations in memory have been initialised to allocate to the context of a 

drawing task when an application program makes a requisition for a window initialisation. 

This initialisation is the starting of the drawing task. 

In the I-GL, there are numerous states that can be divided into two groups, server states 

and client states. Most states are server ones. A connection from a client to a server 

needs both the client state and server state, and the transfer between them. An operation 

in the pipeline, which may be primitive specifying, mode setting, or data evaluating, is a 

server state. A command starts from a client state and then the processing is transferred 

to server states when the I-GL processes the command. 

5.4.2.4 Controls 

From the view of application developers, the commands and mechanisms of the I-GL 

provide the direct control over the fundamental operations of 2D and 3D graphics drawing. 

Inside the I-GL, this control can be treated as the states of the OpenGL state machines 

that drive a drawing task to be executed and completed step by step. This control consists 

of commands with parameters of primitive setting, view point specifying, transformation 

matrices, lighting and material equation coefficients, texture mapping, antialiasing 

methods, pixel update operators, and others. Therefore, the entire efficacy of the I-GL 

relies on two aspects, how well the I-GL is accomplished and how well the I-GL is used in 

the application programming.  

5.4.2.5 Data and Orders 

Geometric objects with different shapes and styles may be drawn in many primitives, such 

as points (including point sprites), separated line segments, line strips (connected line 

segments), line segment loops (connected line segments with met endpoints), separated 

triangles, triangle strips (triangle patches arranged in a long strip and stitched seamlessly 
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together), and triangle fans (triangle patches arranged in fan and stitched seamlessly 

together). Primitives are defined as an array of one or more vertices with coordinates. A 

vertex can be the coordinates of a point. A point can be a single point, an endpoint of an 

edge, or a corner where two edges of a triangle or other polygon meet. 

Besides the positional coordinates, data of a vertex consist of colours, normals, and 

texture coordinates. Each group of data with the same attribute is processed 

independently in the same way and order. There is an exception, however. If an object 

cannot fit into a viewing volume, some of its primitives, such as points, lines or triangles, 

must be clipped. Vertex data can be modified. In the line or triangle primitives, some new 

vertices can be inserted into primitives. The new associated data, such as colours, 

normals, and texture coordinates, must be computed or interpolated. 

Typically, data of colours consist of four values, representing red, green, blue and alpha 

values, respectively. Each of them is initiated as one (with values within [0, 1.0]; (1.0, 1.0, 

1.0, 1.0) means white and completely transparent). Data for normals have three values, 

representing three coordinates of normal vectors. They are initialled as (0, 0, 1.0), 

represented a vector directing in z axis. Texture units have four values that represent 

texture coordinates of s, t, r, and q. For a 2D texture, the s and t coordinates are used, and 

the two others are not. [s, t, r, q] is initialised as [0, 0, 0, 1.0], defined as homogeneous 

coordinates. 

Vertices of an object are organised in a vertex array. All the associated data are copied 

in the vertex array and the transformed data of the object are also storied in this vertex 

array. The transformed data consist of eye, clip, normalised device, and window 

coordinates, which will be detailed in Section 5.4.2.7. With the window coordinates, 

vertices of a primitive can be written in the frame buffer with the colours or the texture 

colours according to the texture coordinates. 

5.4.2.6 Vertices 

In the I-GL, a data structure is defined specifically for a vertex array. At the stage of the 

user’s inputting data of an object, the vertex data are placed in the user or client address 

space. Once a command to transmit the data is used, the vertex data are transferred to 

the I-GL or server address space.  

  Blocks of data in these arrays can be specified for vertex coordinates, normals, colours, 

point sizes, and one or more texture coordinate sets of different geometric primitives in the 

execution of an I-GL command. For vertex coordinates, the command of 

glVertexPointer(size, type, offset, pointer) is used. For normals, it is glNormalPointer(type, 

offset, pointer). For colours and texture coordinates, they are glColorPointer(size, type, 

offset, pointer) and glTexCoordPointer(size, type, offset, pointer). All of them have the 

similar argument structure that gives the information of locations and organisations of 
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these arrays: size represents the number of components of the corresponding data stored 

in the array, type represents the data type of the values stored in the corresponding array, 

offset is the number of bytes for a set of components of the corresponding data, and 

pointer means the pointer pointing to the location of the array of corresponding data in the 

user or client address space. The pointer is the location in memory of the first component 

of the first element in the corresponding array. Some arguments are not present because 

they are constant for their data array. Size and type have their allowable values in 

OpenGL. For example, the acceptable values for type can be BYTE, UNSIGNED BYTE, 

SHORT, FIXED, and FLOAT. 

All of them can transfer the corresponding array from the user or client address space to 

the I-GL space. The data in arrays are stored sequentially. The array elements are stored 

sequentially even though the offset is set to zero. No matter how many values an array 

element consists of, from one to four values, a single vertex covers an array element. The 

values in each array element are stored in memory in a consecutive manner as well. The 

number of values of each array element defines the offset between two adjoining elements. 

In an array, the pointer to its (i + 1)st element is greater by one offset number of machine 

memory units (say unsigned bytes) than the ith element. 

5.4.2.7 Coordinate Transformations 

In the graphics pipeline, there are several coordinate transformations. Data of vertices, 

such as, vertex coordinates, normals, and texture coordinates have to be transformed 

before the coordinates are written in the frame buffer to produce an image. 

  In Figure 5.4, the general sequence of transformations applied to vertices is shown. All 

the matrixes are 4 X 4. All the coordinates are four-dimensional, including x, y, z, and w 

coordinates. 

 

Figure 5.4 Coordinate Transformation Sequence 

  The transformation sequence in Figure 5.4 has an inherent relationship with the 

geometric pipeline in Figure 5.1 and Section 5.1.1. In the I-GL, the coordinate 

transformation sequence starts from the transformation from the vertex coordinates of the 

drawn object to eye coordinates by left multiplying with the model-view matrix. This 

corresponds to the transformation from the local coordinates to the world coordinates in 
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Section 5.1.1. The transformation from eye coordinates to clip coordinates is carried out 

by left multiplying eye coordinates with the clipping matrix. It is the function of the clipping 

module of Section 5.1.1.4. The transformation from clip coordinates to normalised 

coordinates is done by left multiplying clip coordinates with the projective matrix. The last 

transformation from normalised coordinates to window coordinates is done by left 

multiplying normalised coordinates with the view-point matrix. The last two transformations 

are the function of the projection module in Section 5.1.1.5. In window coordinates, x and y 

are for the location coordinates of two dimensions on a display screen, and z represents 

the depth of the object looked into the screen by the viewer. 

As mentioned above, the data are put into the specific location of memory when a 

command is called, and the evaluation should start after all the required data are prepared. 

The matrix settings with commands of glMatrixMode and glOrtho can be scattered in 

different parts of the application program, which depends on the application. The order of 

the matrix settings can influence the effect of the object rendering. The evaluation of all the 

transformations in a complete sequence is really done at the final stage of the geometric 

pipeline just before the rasterisation in Figure 5.1, however.  

5.4.2.8 Colours 

The colour processing is also done before rasterisation. There are two sources of colours: 

one is the colours of a primitive; the other is the colours of a texture. Typically, colours 

have four components of red, green, blue and alpha. Following the OpenGL specification, 

the I-GL accepts each colour component with a value ranged in [0, 1.0]. The colour can be 

set by glColor command at the beginning of a drawing task. 

On the other hand, there are many colour palettes in the LCD and screen space. They 

include three bytes in whole and eight bits for each red, green, and blue, two bytes in 

whole and five bits for red and blue but six bits for green, and others. In this project, the 

LCD device adopts three bytes in whole and eight bits for each red, green, and blue. As 

the input colours can be in a different format, the I-GL must do the conversions. As a result 

of limited precision, especially for the hardware platforms of simple ESs, some converted 

values cannot be represented exactly. Different implementations on different platforms 

can yield discrepancies in colour tones and shades.  

5.4.2.9 Lighting 

If lighting is disabled, the current colour is used in the subsequent drawing. If enabled, 

lighting can influence the colours of the drawn object. A light can be set ambient or 

position. The former produces a far ambient lighting effect; the latter yields a near spotlight 

effect. The material reflection can be set as diffuse, specular or shininess. With the 

material setting, the lighting effect can be evaluated with lighting equations and yield new 

colour values. The produced values of colour components must be clamped to the range 
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of [0, 1.0].  

The shade mode can also influence the colours of a primitive. If the shade mode is set 

to flat shade by the glShadeMode(GL_FLAT) command, all vertices of the primitive are to 

have the same colour. If the shade mode is set to smooth shade by the 

glShadeMode(GL_SMOOTH) command, the colours of the primitive are produced by 

smoothly interpolation. 

5.4.2.10 Texture 

In the I-GL, texture functions can insert a texture pattern in a spatial region that may be a 

section of line or a patch of surface. A texture source can be an image described as an 

array of colours in one, two, or three dimensional coordinates.  

Take a 2D texture image as an example. The texture image consists of a sequence of 

groups of values. Each group represents the set of values of red, green, blue and alpha 

components. The first group is the colour value at the lower left corner of the texture image. 

Subsequent groups are arranged firstly in width and secondly in height. In a width row, the 

next colour with the coordinates of (i, j+1) is located just after its previous one with the 

texture coordinates of (i, j). In a height column, the offset between the next colour with the 

coordinates of (i+1, j) and its previous one with the texture coordinates of (i, j) is the value 

of width of the texture image. The texture coordinates are ranged in [0, 1.0] in default. 

Therefore, the coordinates of a texture image have to be normalised in [0, 1.0] before 

texturing an object. 

The I-GL provides a set of functions to perform the operations of texturing. The 

glTexImage2D(tTarget, rv, pMode, tWidth, tHeight, bd, tFormat, tType, tArray) can be 

used to load a user 2D image to the texture space that the I-GL allocates to the context of 

a drawing task while the glTexImage1D() is used for 1D texturing. In the command, 

tTarget shows the dimensions of a texture, for instance, GL_TEXTURE_2D indicating a 

2D texture and GL_TEXUTRE_1D representing a 1D texture; rv is an indicator for a 

reduction version of a larger texture array; pMode is the style of colour pattern of the 

texture image and usually adopts the GL_RGBA style with four values for red, green, blue 

and alpha; tWidth and tHeight are the numbers of columns and rows of the source image 

array; bd is an indicator for having a one-pixel border around the texture image; tFormat 

can specify a monotone of single red (GL_RED), green (GL_GREEN), or blue (GL_BLUE), 

or a colour in the order of blue, green and red (GL_BGR); tType is the data type for the 

colour values in the texture image array; tArray is the pointer pointed to the location of the 

source texture image array. The texture image is stored in a 4 X tWidth X tHeight array.  

Since the tWidth and tHeight are the numbers of columns and rows of the source image 

array, they must be set to numbers that are powers of two. With a one-pixel border around 

the texture image, these numbers have to be the sum of two plus powers of two. 
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When a texture has to be contiguously mapped several regions on a surface or a line, 

the boundaries of different texture copies may not align with the positions of pixel 

boundaries. The glTexParameter(tTarget, tAction, tManner) can be used to set operations 

that can be done on the texture. In this command, tTarget has the same meaning as that 

in the glTexImage; tAction has selectable values to set different operation actions that can 

be done on the texture; tManner defines which way is chosen to do the operation action 

specified by tAction. For example, given GL_TEXTURE_MAG_FILTER set to tAction and 

GL_NEAREST to tManner, the operation action is to enlarge a section of the texture 

image to fit a specified coordinate range in the region of a primitive with the nearest 

colours. Oppositely, the GL_TEXTURE_MIN_FILTER means to reduce the texture image. 

The tManner can get values of GL_NEAREST (for nearest) or GL_LINEAR (for linear), as 

mentioned in Section 5.1.2.2. 

Sometimes coordinate values in texture space are outside the range from 0 to 1.0. The 

glTexParameter can be used to make up for the patterns. In this way, tAction indicates a 

coordinate on which the compensatory pattern will be done, such as s coordinate with 

GL_TEXTURE_WRAP_S and t with GL_TEXTURE_WRAP_T; tManner has selectable 

values, such as GL_REPEAT (replicating with the fractional part of a texture coordinate) 

and GL_CLAMP (clamping a texture coordinate to the unit interval). 

The glTexEnvi command can control how texture elements are applied to an object. 

According to the argument values of glTexEnvi, the I-GL can replace the object colours 

with texture values directly (GL_REPLACE), or combine the current object colour 

components with texture values (GL_BLEND). 

Take a 2D texture as an example. If the texturing is enabled, the texture colour at the 

location indicated by its coordinates will replace or blend with the colour at the 

corresponding location in the region of the object surface. Texture mapping can apply 

more than one specified image to a primitive at a time. In this case the fragment has 

multiple sets of texture coordinates (s, t), which are used to index separate images and to 

collectively modify the fragment’s RGBA colour. Multiple texture mapping requires more 

storage space for different texture images and more computation for processing them than 

one texture mapping. For this reason, this project applies just one texture mapping. 

When the red, green, blue, and alpha components are computed for a group, they are 

assigned to components of a texel as described above. As shown in Figure 5.4, if a 

primitive is clipped, colours (or texture coordinates) must be computed at the vertices 

introduced or modified by clipping. In this project, texturing is applied to patches of a 

surface along with Bézier-spline surface fitting. The texture mapping is done on each 

patch of the Bézier-spline surface. The Bézier-spline surface will be discussed later in 

Section 5.5. 
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5.4.2.11 Rasterisation 

Rasterisation tackles the conversion of primitive coordinates to a 2D image that may be 

displayed on the hardware screen. Each point of the image represents a square (a pixel) 

located with window coordinates and has its values of colour and depth. A window on the 

screen is a grid with integer 2D coordinates while primitive coordinates may be not integer. 

Rasterising a primitive must determine which squares of the window grid are covered by 

the primitive and assign values of colour and depth of the primitive to these squares. 

As mentioned in Section 5.1.2, in OpenGL, a grid square along with its parameters of 

colours, depth, and texture coordinates is called a fragment. In the I-GL, a fragment is 

positioned by its lower left corner, which is on integer grid coordinates. Since a fragment’s 

centre is offset by half of side length of a square in the right and up directions from its 

lower left corner, the centre is on half-integer coordinates. In antialiasing and texturing, 

this subtle difference should be considered. 

In the I-GL, grid squares may not be square. The non-square grid may make a rendered 

image of an object deformed, more flatted or slimmed than its actual situation because of 

the accumulation of differences of all the squares. It can also make the antialiasing and 

texturing even more difficult to be implemented. Thus, a square fragment is accepted 

widely. This project adopts the square fragment. 

A point’s size and line’s width can also influence rasterisation. For large round points 

and wide line segments, antialiasing must be done by using pixel coverage values to 

prevent their images from looking artificial. Computing pixel coverage values is not 

effective for polygon antialiasing. In polygon antialiasing, multisampling is used. 

Polygon rasterisation is more complicated than those of points and line segments. A 

polygon can be a triangle strip, triangle fan, or series of separate triangles. Firstly, for a 

polygon, it must be determined whether it is front facing or back facing. The front facing 

may be produced by rasterisation, but the back facing may not. Secondly, it is determined 

if a fragment centre is inside the polygon or not. The method used to test a fragment 

centre is called point sampling. Inside the polygon, the fragment may be produced by 

rasterisation. Outside the polygon, it is not yielded. On a polygon boundary edge, it should 

be processed carefully to balance two sides of the polygon from left to right in order to 

avoid enlarging the polygon image area by counting both sides and making the image 

artificial. A fragment on a common side of two polygons must be yielded by only one 

polygon rasterisation rather than by both of them. 

To produce fragments of a triangle, defining barycentre coordinates for a triangle is 

recommended by the OpenGL ES because barycentre coordinates can specify any point 

inside or on the boundary of a triangle uniquely. Barycentre coordinates are defined by the 

centre of mass with a set of three numbers, a, b, and c, each ranged in [0, 1.0] and with a 
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+ b + c = 1.0. The rasterisation results are transferred to the next stage of the fragment 

pipeline, as shown in Figure 5.1 and 5.2. The information may be applied to the frame 

buffer update. 

5.4.2.12 Depth Offset 

As introduced in Section 5.1.2, each fragment (or pixel) on a display screen has a unique 

element in the depth buffer. In the context initialisation, all the values of elements in depth 

buffer are set to the depth value of the scene background. When the depth test is enabled, 

any element value in the depth buffer can be changed according to the depth offset that 

any fragment of a foreground object is away from the background. Since several objects 

may exist in the scene and be scattered near or far, the depth test must be done for each 

of the polygons that compose any existing object. Thus, the depth offset in each element 

of the depth buffer may be changed by any polygon that is at the most front of the scene. 

The more individual objects exist in the scene, the more time the depth test processing 

costs. For this reason, to simplify the depth test processing, the depth values for all 

fragments produced by a polygon rasterisation can be set to a single depth offset that is 

computed for the polygon. In addition, the depth test is done along with updating of colours 

in the frame buffer, which will be discussed in the next section. 

5.4.2.13 Fragment Operations 

After rasterisation, each fragment is sent to the next stage of the fragment pipeline, as 

shown in Figure 5.2. The fragment pipeline performs operations on individual fragments 

before they finally alter the frame buffer. 

These operations include updating the frame buffer based on the comparison between 

incoming depth offsets and previously stored ones, masking some fragments based on 

the depth test and stencil test, blending of incoming fragment colours with previously 

stored ones according to the settings of lighting and texturing, and doing logical operations 

on some fragment colours according to logical operation setting. All these operations are 

hidden from the application development. What the applications must do is to specify the 

operation modes and enable them. 

5.4.2.14 Frame Buffer Access and Hardware Controls 

Although the operations of the OpenGL ES are done finally on a frame buffer, the frame 

buffer is not part of the OpenGL ES because of the device-dependence of the frame buffer 

in an implementation. 

  A frame buffer is composed of a two-dimensional array of pixels, but the width and 

height of the array rely on an implementation. For this reason, the width and height of a 

window and the colour format can be set via the I-GL auxiliary API. The conversion from 

the OpenGL ES selectable colour formats to the colour format accepted by the device 
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screen should be implemented by the I-GL. Thus, each pixel in the frame buffer can be 

simply treated as a set of OpenGL ES selectable number of bits by the graphics 

applications. The applications do not necessarily realise how different the specification for 

a physical frame buffer in one implementation context from that in another implementation 

can be. In this I-GL, the width and height are restricted to the resolutions of the LCD 

display available on the FPGA-based ES platform, which are 800 and 480 pixels, 

respectively. 

There are several bitmaps that can help to manage and control the auxiliary data of a 

frame buffer in a fast-access way. One bit in a bitmap has a corresponding pixel in the 

frame buffer. Each bitmap is designed for a specified regular buffer, such as a front colour, 

back colour, depth, or stencil buffer. Whether or not the bitmap is designed relies on 

whether or not its regular buffer is available in an implementation of the OpenGL ES. For 

example, in an implementation with a single buffer, a bitmap for a back frame buffer is no 

use. With a bitmap, the update of a frame buffer can be more efficient. If a bit of the bitmap 

is dirty, it means the corresponding pixel has to be upgraded. If not, it can save once of 

access to the frame buffer. 

Colour values may be read back from a portion of a frame buffer, copied directly from 

one portion of the frame buffer to another, or changed with logical operations and blended 

with another portion. These transfers can involve in decoding or encoding for processing. 

Since there are not OpenGL ES commands to configure a window system and frame 

buffer, and initialise the context for the OpenGL ES, it must depend on an auxiliary 

interface to do these tasks for the OpenGL ES. The initialisation of an OpenGL ES context 

is issued when a window system allocates a window for a drawing task. A frame buffer 

configuration and linkage with a context are also done at the same time. 

In addition, how to display the frame buffer contents on a device screen is not the task of 

the OpenGL ES, either. The OpenGL ES specification does not provide the technique for 

how to transform frame buffer values into streaming of video flow of a device screen with 

gamma correction. Although the EGL API defines a portable mechanism for creating 

OpenGL ES contexts and windows for rendering, there is still a gap that exists outside the 

OpenGL ES and in connection with the physical window system. This part heavily relies 

on the physical window systems that can be quite different on one hardware platform from 

another in the ES world. 

Thus, this auxiliary interface is device-dependent and must be implemented in the I-GL. 

These tasks are crucial because all the effects of OpenGL ES commands on the frame 

buffer are ultimately passed to a window system. The window system bridges the 

communication between OpenGL ES commands and the hardware platform. The window 

system allocates and initialises the frame buffer resources firstly, finds which section of the 
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frame buffer the OpenGL ES may access at a given time, interprets for the OpenGL ES 

how the section is manipulated, and makes a final control of drawing a scene on a display 

screen, all of which an OpenGL ES application specifies. 

 

5.5 Implementation of Mesa-OpenGL on FPGA-based ES 

The OpenGL ES, however, does not include some functions that are used in this project. 

To include these functions, the core and some facilities of a Mesa OpenGL are modified 

and enhanced for this project. The revision of Mesa-OpenGL has been ported 

successfully to the FPGA-based ES platform for this project. 

  These facilities provide not only all the general functions including graphics primitive 

setting, attribute specifying, geometric transformations, illumination, setting up view and 

projection matrices, and clipping and projection transformations, but also some advanced 

computations such as describing complex objects with line and polygon approximations, 

displaying Bézier curves and surfaces, processing the surface-rendering operations, and 

other operations. As OpenGL is designed to be hardware-independent, the input and 

output routines are not included in these facilities. A pivotal interface connecting the 

OpenGL with the FPGA-based ES has been constructed as well, which make the images 

display on the LCD screen and user interaction for the surface editing work well. 

  The general functions have been introduced in the last section. The following is about 

the additive parts that are unique for this project and different from other OpenGL ES 

implementations. 

5.5.1 Bézier Curves and Surfaces 

In the general OpenGL ES specifications, some functions for more advanced evaluation, 

for example, functions that handle Bézier curves and surfaces are removed. For this 

project, however, the goal of surface editing requires the evaluation of Bézier curves and 

surfaces. In addition, functions of Bézier curves and surfaces are device-dependent. To 

see these issues clearly, let us first inspect the process of surface modelling. 

  The surface of a complicated 3D object can be divided into a grid of quadrilaterals in two 

directions, such as horizontal and vertical directions in a local coordinate system. Each 

quadrilateral can be divided further into two triangles. In reverse order, the surface can be 

formed with primitives that are triangles by a sequence of operations. Firstly, triangles are 

linked together to form triangle strips along one direction, for example horizontal direction. 

In the vertical direction, triangle strips can be combined to form the surface. Since each 

triangle has three vertices, vertices of all the triangles in each triangle strip can be 

arranged in a sequence of vertices. 
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To draw the surface, we must choose a starting point, for instance the left-bottom corner 

of the surface. The drawing process starts from this corner and moves in the right 

(horizontal) direction first. In a triangle strip, from left to right, each triangle is drawn one 

after another. In each triangle, the drawing is done by scanning each line section from left 

to right and line by line from bottom to top. 

After one triangle strip is finished, the drawing process moves in the up (vertical) 

direction to the next row of the grid of quadrilaterals, that is, the next triangle strip. The 

triangle strips are drawn row by row from the bottom to the top. The surface drawing is 

done by traversing all the triangles in the grid. It can be seen that to draw the surface of a 

complicated 3D object is costly. This may be one of reasons why the OpenGL ES 

specifications do not include the Bézier curve and surface construction functions. 

In this project, a Bézier surface is formed with a grid of quadrilaterals. The commands of 

glMap2f, glMapGrid2f and glEvalMesh2 can be used to call the main functions for Bézier 

surface evaluation. The glMap2f(GL_MAP2_VERTEX_3, uMin, uMax, uOffset, uPts, vMin, 

vMax, vOffset, vPts, ctrlPtsPointer) is used along with glEnable(GL_MAP2_VERTEX_3). 

These two commands make a 3D patch map into the u and v space of Bézier surface. The 

u values are limited in the range of [uMin, uMax] and spaced evenly as the uPts number of 

values. Similarly, the v values are limited in the range of [vMin, vMax] and spaced evenly 

as the vPts number of values. The 3D patch is described with an array of 3D coordinates 

of vertices whose location is pointed by ctrlPtsPointer. The number of elements in the 

array is the product of uPts and vPts. In the array, the offset between two elements in u 

direction is set to uOffset while the offset between two elements in v direction is vOffset. 

These are also shown in Figure 5.5. 

 

Figure 5.5 A 3D Patch Mapping into Bézier Surface Space 

To map a texture into a patch of Bézier surface, similarly, the 

glMap2f(GL_MAP2_TEXTURE_COORD_2, uMin, uMax, uOffset, uPts, vMin, vMax, 

P(uMin, vMin) P(uMax, vMin) 

P(uMin, vMax) 

P(uMax, vMax) 

P(uMin, vMin+vOffset) 

P(uMin+uOffset, vMin) 

Number of elements in the patch array = uPts * vPts = 7 * 6= 42. 
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vOffset, vPts, texPtsPointer) is used along with glEnable(GL_MAP2_ 

TEXTURE_COORD_2). The texPtsPointer is the pointer that points to the texture 

coordinate array. 

To generate evenly spaced parameter values, the glMapGrid2f( unum, u1, u2, vnum, v1, 

v2 ) and glEvalMesh2( mode, un1, un2, vn1, vn2 ) are used. Compared with glMap2f, they 

can split the surface into smaller triangle primitives and make the surface fitting more fine. 

In these two commands, the unum is the integer number of equal subdivisions over the 

range from u1 to u2, the un1 and un2 are the integer parameter range corresponding to u1 

and u2, and the vnum, v1, v2, vn1 and vn2 have the similar meanings as their 

corresponding u parameters. u and v have the same meanings as the above.  

In fact, the function of glEvalMesh2 is not as simple as the above description. Each 

surface patch is split into a mesh of more fine sub-patches, and each sub-patch is split 

further into two triangles with a common edge that is a diagonal of the sub-patch, as 

shown in Figure 5.6. For each triangle whose bottom edge is not parallel to the x axis of 

the device screen, it is divided further into two sub-triangles, top triangle and bottom 

triangle, by a middle line that passes through the endpoint met by the top edge and bottom 

edge, as shown in Figure 5.7.  

 

Figure 5.6 Process of Dividing a Surface Patch into Sub-patches along the u and v Directions with Functions 
of glMapGrid2f and glEvalMesh2. The Numbers are the Global Indices of new Vertices of Sub-patches. 

There are two situations of scanning these split triangles because of the different 

orientations of triangles, as shown in Figure 5.7. In the left image, the starting points of 

scanning line by line are changed from one leg to another of the triangle when crossing 

the middle line. In the right image, the end points for scanning line by line are moved from 

one leg to another of the triangle when crossing the middle line. These two situations must 

be considered in programming for the Bézier surface evaluation. 

Each sub-triangle is scanned line by line from left to right and from bottom to top. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 10 

11 

u 

v 

P(u1, v1) 

P(u2, v1) 



Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES                                 110 

Without removed by the depth test, stencil test and clipping, a scanned line is written into 

the frame buffer. Two triangles of each sub-patch are scanned in the order of first the 

bottom one and then the top one. All the sub-patches of each surface patch are scanned 

row by row, from left to right and from bottom to top. To facilitate the evaluation of each 

surface patch, new vertices of sub-patches are indexed globally for the surface patch, as 

shown in Figure 5.6. The function of glEvalMesh2 contains inner loops that draw all the 

triangles one by one in the order that they are arranged in triangle strips. 

 

Figure 5.7 Process of Dividing a Triangle. A Split Triangle can be Orientated in Two Ways. The Left One is 
that the Left Endpoint of Middle Line is a Vertex of the Triangle. The Right One is that the Right Endpoint of 

Middle Line is a Vertex of the Triangle. 

 

5.5.2 Window System Interface 

To create a graphics display using the OpenGL, a display window must be set up first on 

the LCD video screen of the FPGA-base ES board. The display window is a rectangular 

area of the screen in which a 2D or 3D image will be displayed. The video screen is a 

typical output device. If the user interaction is needed by tasks, such as the surface editing, 

the input devices are required as well, such as a keyboard, mouse, and touch screen. 

These functions are hardware-dependent, and are not be implemented in the core 

facilities of the OpenGL. 

For PC environments, such as Microsoft Windows, X Window System of UNIX, and the 

Apple Macintosh, there are additional available libraries that have been developed for 

OpenGL applications to communicate with the input and output systems. For example, the 

WGL is the extension for these tasks to the Microsoft Windows; the GLX is the extension 

to the X Window System; the AGL is the extension to the Apple Macintosh. The GLUT 

(OpenGL Utility Toolkit) library is an interface of the OpenGL to other device-specific 

window systems. With the GLUT, the programs of graphics applications can be 

hardware-independent.  

For the FPGA embedded development environments, however, there is no available 

auxiliary library for these tasks. Therefore, an additional set of functions must be created 

to bridge between the FPGA-based ES platform and OpenGL. The output device is the 

Bottom Triangle Bottom Triangle 

Top Triangle Top Triangle 
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LCD display. Since there is neither a keyboard nor a mouse on the FPGA-based ES board, 

four simple buttons available on the board are used for user interactions of the exit control 

and surface editing in this project, as shown in Figure 3.8.  

  The followings are the extension facilities that are implemented for the connection of the 

Mesa-OpenGL to the FPGA-based ES platform. 

▪ To allocate a window system to a drawing task. It carries out the allocation and 

initialisation of a LCD display device and double frame buffers. For user 

interactions of surfacing editing, the allocation and initialisation of buttons are 

done as well.  

▪ To create and initialise a context. It carries out creating a context for the new 

drawing task and allocating the memory space to the context. It also does the 

general initialisation for building default information for the task. 

▪ To make the context as the current state. It accomplishes binding the context to 

the LCD display device and double frame buffers. 

▪ To build the drivers for the frame buffer reading and writing. It implements a 

group of functions for different styles of the frame buffer reading and writing, for 

example, reading or writing four-byte colour span, reading or writing three-byte 

colour span, reading or writing mono-colour span, reading or writing index-colour 

span, reading or writing individual colour pixels, reading or writing individual 

mono-colour pixels, and reading or writing individual index-colour pixels. It can do 

more styles of reading or writing if needed. 

▪ To create a user interaction interface. It completes the registration for the 

interrupt signals of four buttons’ being pressed, and the interrupt service routines 

for pressing each of four buttons. 

▪ To swap between two frame buffers. It swaps the displayed frame buffer with the 

written frame buffer in order to smooth the video flow. 

▪ To output the frame buffer. It makes the written frame buffer that has been 

updated to be displayed on the LCD screen as soon as possible. 

  The line segment scanning for drawing triangle strips in Bézier surfaces must make 

calls of the function of writing four-byte colour span because the frame data format is 32 

bits, as shown in Section 4.7.6.2 and Figure 4.9.  

5.5.3 Fixed Point Arithmetic 

Another issue is that most of the evaluation of Mesa-OpenGL should be done on float 

point numbers, but the float point hardware unit is not available in the FPGA-based ES 
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platform. If using the software float point unit, the computation would increase a lot and the 

speed would be too slow for surface editing with user interactions. Therefore, the fixed 

point system is adopted for most of the graphics evaluation. For this reason, the work to 

modify Mesa-OpenGL from the float point system to the fixed point system must be done. 

To maintain the accuracy, some mathematical operations have to be created for the fixed 

point system, such as multiplication, division, square root, dot production, cross production, 

trigonometric functions, and linear interpolation. 

With the hybrid way to construct ESs, a significant benefit is that we can have a flexible 

control on the data manipulation according to the arithmetic rules. This can support the 

fixed point system to have a satisfactory accuracy during the arithmetic operations. In this 

fixed point system, the fixed-point one is set to 0x00000800 and the fixed-point half is 

0x00000400 in the hexadecimal representation. There are 11 binary bits for the fractional 

part. Its accuracy is 000488.020481 ≈ . Since we can use shift operations directly, we can 

keep the computation accuracy during computing and avoild the overflow by properly 

using the left shift or right shift. For example, if three numbers need to be multiplied, we 

can multiply two of them first, right shift their product by 11 binary bits, multiply the shifted 

product with the third number, right shift the second product by 11 binary bits, and then 

obtain the final product. In the similar way, when doing the division in sequence, we use 

the left shift. Therefore, no matter how many times of multiplication or division in sequence, 

the accuracy can be kept. This mechanism of keeping the accuracy can support the 

surface modelling and editing with the PAMA effectively. 

Compared with the float point system, one of benefits of the fixed point system is to 

accelerate the graphics rendering because of its low cost in computation. For the small 

footprint of ESs, the computation should be simple, feasible and low-cost in memory 

space and time, rather than complicated and unfeasible. The fixed point can meet the 

needs. 

  Applications of this Mesa-OpenGL implementation will be presented in Chapter 8. 

 

5.6 Chapter Summary 

In this chapter, the standard of the OpenGL is introduced. A deduced OpenGL that is 

specified for ESs, the OpenGL ES, is discussed. Because of different views for the 

implementation of the OpenGL or OpenGL ES, three different roles in the OpenGL ES are 

discussed in order to obtain a deep insight of OpenGL ES implementations. As the 

specification of the OpenGL ES does not include the functions of supporting the 3D 

surface editing, Mesa-OpenGL, a special implementation of the OpenGL, is modified and 

enhanced for this project. 
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To implement the novel integration of Mesa-based OpenGL into the FPGA-based ES, 

more functions have been developed and implemented. Specifically, Bézier curve and 

surface construction functions are added to this implementation in order to support the 

PAMA. A dedicated input and output interface has been created for the communication 

between the OpenGL and the hardware platform. A fixed point system is created in the 

Mesa OpenGL ES implementation for this project. To meet the accuracy requirement of 

computation, this fixed point system is equipped with its own functions for multiplication, 

division, square root, dot production, cross production, trigonometric functions, and linear 

interpolation. 

 



 

 

 

 

Chapter 6  Parallelism Implementation in FPGA-based ES 

 

We have investigated the traditional computation parallelism in Section 2.4. Since this 

project presents a new hybrid way to speed up graphics applications, the traditional 

computation parallelism must be expanded to meet the new needs of FPGA-based ESs. 

Thus, in this research, parallelism is seen in a broad and new sense, over and above 

general parallel computation. 

  To make a theoretical connection to traditional parallelism, we should clarify the 

classification of traditional parallelism first. Then we can locate expanded parallelism in a 

proper position in terms of the traditional parallelism framework. 

 

6.1 Classification of Traditional Parallelism 

There are different types of parallelism, including bit-level, instruction-level, data, and task 

parallelisms. Classical parallelism is based on processor elements to execute in parallel. 

Strict speaking, data parallelism means splitting data into segments and assigning them to 

processor elements all of which execute the same instructions. The SIMD and MIMD 

discussed in Section 2.4.1 belong to data parallelism. Task parallelism means dividing a 

large algorithm into small pieces of tasks and distributing them to different processor 

elements to execute concurrently. The operator parallelism introduced in Section 2.4.2 

belongs to task parallelism. 

Granularity is an important feature and is used to make a comparison among different 

parallel systems. The granularity can be relative to two kinds of comparison: processing 

elements and processed data. The former is the comparison between the procedures of 

each processing element among different parallel systems; the latter is the comparison 

between the data sections that are processed by each of processing elements in different 

systems. Three granularity levels are usually defined: fine-grained, medium-grained and 

coarse-grained. In fine-grained systems, the cost of inter-processor communication is low, 

and is comparable to a basic arithmetic operation; conversely, the communication cost of 

coarse-grained systems is higher than that for a basic arithmetic operation. If it is 

appropriate for an application in a parallel system, one instruction can be the most 
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fine-grained in the comparison between procedures of processing elements; one bit can 

be the most fine-grained in the comparison between processed data. Thus, 

instruction-level parallelism can belong to task parallelism. In this case, the tasks 

distributed among processing elements are a small set of instructions. Bit-level parallelism 

can be a member of the data parallelism family, which has a number of datasets 

processed by each processing element. 

Pipelines or cascaded structures can be a variant of task parallelism, and they make a 

chain of different hardware modules with certain flexibility to attain a synergy as a whole. 

From a system perspective, when applications are placed on graphics processing units 

(GPUs) or ESs with FPGAs, co-processors plays a key role (Cevik 2004, Cheng and 

Goshtasby 1989, and Sridharan and Priya 2004). Co-processors can be seen as task 

parallelism in a broad sense.  

From a graphics algorithm and implementation’s perspective, because of the graphics 

pipeline goal, the parallel attributes can be naturally deconstructed into the pipeline 

accomplishment of GPUs or FPGAs. It works similarly to specified graphics pipeline chips 

in the commercial ESs, whose applications can be in mobile phones, video game players, 

GPU-based DSP, video distribution, video windowing, and graphics. It can be an 

extension or refinement of pipelining. 

This project maximises task parallelism where possible and appropriate in more 

operations of elementary arithmetic and logic operators (units) than in processor elements. 

Since the hardware is involved directly in this research, fine-grained parallelism in 

hardware system can be carried out in the FPGA-based ES. The co-processors play an 

important role for such parallelism.  

 

6.2 Analysis on Processing Features in Parallelism 

An in-depth analysis of parallelism in a system must be done before exploring how to 

parallelise the computation and processing in the system. This analysis sees a broader 

picture of the parallelism than traditional parallel computation. Thus, two perspectives are 

discussed to view parallelism, the application programmer’s view and the hardware 

builder’s view, and two styles of parallelism, spatial and temporal. 

6.2.1 Two Perspectives: Application’s View and Hardware’s View 

The study of Grama et al (Grama et al 2003) proposes to view the parallelism from the two 

different perspectives of logical and physical organisation of parallel platforms. Logical 

organisation is seen at a high level from an application programmer’s view of the platform 

whereas physical organisation is taken at a low level from an actual hardware builder’s 
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view of the platform. 

From the application programmer’s view, the goal of parallel computing platforms is how 

to program in order to gain high performance and portable parallelism. To reach the goal, 

two factors of parallel computing are critical: one is the parallel control structure that is the 

mechanism of expressing parallel tasks; the other is the communication model that is the 

ways for indicating communication between parallel tasks. Instructions, rather than 

operations, are concerned more in programming. 

From the hardware builder’s perspective, the goal of parallelism is how to realise 

parallelism with hardware units at low cost to attain high performance. The operations and 

mechanisms needed to make these operations continuous and orderly are the focus of 

hardware building. These result in the technologies of streaming, pipelining, and 

concurrent processing. In a pipeline or stream, a sequence of operations that can be 

implemented by different hardware units performs a series of actions on multiple data 

items. A programmer may be able to execute them all with just one instruction. This 

parallelism may not be visual for programmers. It does, however, conform to the nature 

and rules of physical devices and parallelism. In this project, the video pipeline discussed 

in Section 4.7.6.2 functions in this way.   

On the other hand, in a given system architecture, imagine that any processing level 

could be implemented on hardware specifically designed for it so it can perform its tasks 

efficiently. It might lead directly to the design of heterogeneous pipelined processing 

structures for complex applications. It should be noted that information density and 

operation complexity and flexibility increase from the low level to the high level. But the 

amount of data to be computed and computing power decrease from the low level to the 

high level. Up to the high level, parallelism technologies become more abstract and 

flexible whereas down to the low level, they become more specific and simpler. The 

operations on data at the high level are changeable whereas operations on multiply data 

sequences at the low level are fixed and repeatable. 

In this research, on the top level, surface modelling and editing with PAMA are 

applications. The polygons that form the surface can be computed in parallel without 

limitation of the surface shape. At the low level, the 32-bit data of each pixel can be 

streamed in the video pipeline and finally displayed on the LCD screen that accepts the 

stream of 8-bit data for red, green and blue, individually. 

Therefore, the traditional computation parallelisms are more likely to be viewed from the 

programmer’s perspective even though they have to be supported by designated 

hardware platforms. This project mainly adopts the hardware builder’s view. 
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6.2.2 Two Styles: Pipelined Parallelism and Partitioned Parallelism 

Dewitt and Gray (Dewitt and Gray 1992) state that the dataflow approach to relational 

operators in relational database systems offers two styles of parallelism, pipelined and 

partitioned parallelism. Pipelined parallelism is the technology of streaming the output of 

one operator into the input of another operator when two operators work in series. 

Partitioned parallelism is a mechanism for partitioning the input data among multiple 

operators, each of which has its own processor and memory and works independently on 

part of the data simultaneously along with other operators. Figure 6.1 shows these two 

styles. In fact, pipelined parallelism provides a method for the timely processing a stream 

of a fixed amount of data in series whereas partitioned parallelism offers a way to 

simultaneously process a large amount of data by partitioning them into small portions and 

distributing them to multiple operators. 

The former provides temporal parallelism. It makes a low-capability processer do a 

high-strength task by partitioning the task into small portions and transmitting the portions 

in series at high speed. The latter gives spatial parallelism. It uses several low-capability 

processers together to complete a high-strength task simultaneously.  

 

Figure 6.1 Pipelined Parallelism and Partitioned Parallelism 

This suggests that sometimes a large amount of data in the spatial space, like the data 

of a frame buffer of hardware display, can be transformed into a stream of a fixed amount 

of data to process in series timely. The latter is the division of the former by time.  

In this research, the video pipeline is adopted for this reason. A frame buffer composed 

of 800 X 480 pixels is the high-strength task. The video pipeline plays the role of 

low-capability processer, which handles timely the data pixel by pixel in order to make the 

LCD screen scan line by line in real time. When the surface is edited with the PAMA by 

user interactions on the top application, it is necessary to update the relative pixels on the 

LCD screen with the data of the changed shape of surface. The temporal parallelism of 
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video pipeline supports the shape editing. 

 

6.3 Methodologies of Processing in Parallel 

To implement parallelism for an algorithm in a system, the computation decomposition of 

the algorithm at the high level has to be done with the decomposition techniques first. After 

decomposition, the tasks parsed out by using the techniques have to be mapped onto the 

processes that can be executed by the operators available in the system. 

  The computation decomposition techniques cannot settle all the issues in parallelism. 

For example, in the distribution computation or processing, which is widely used in 

database systems, the client computers do their tasks, such as transactions, 

independently, and the server end batches up the query tasks from each client into the 

database server and processes them in sequence. In this architecture, the tasks of clients 

are independent of servers. They cannot be treated simply as the decomposition from an 

algorithm. 

On the other hand, at the low level, only the computation decompositions are not 

enough for parallelism in hardware building. For the hardware building, the 

operation-dependent relationships between hardware sub-units can have more influence 

on the parallelism in hardware system. Parallelism decomposition thus has to be done 

physically and accurately on every bit and every signal at every system clock, rather than 

logically and roughly on a group of data in an accepted period of time, as is done at the 

high level. 

  From the system perspective, co-processors are an alternative option to parallelism. 

They can do their tasks independently in parallel while the main processor handles the 

main applications. Their tasks are usually a set of physical behaviour or controls rather 

than the computation of an algorithm. Therefore, co-processors should be considered in 

the parallelism of a hardware system. 

6.3.1 Computation Decomposition at High Level 

Grama et al (Grama et al 2003) also address a method for parallelism analysis of 

computation at the high level. It is called decomposition techniques. It can provide a good 

starting point for parallelism analysis in many real computation problems at the high level. 

It can be used to analyse and decompose the operations in complex problems, which can 

be executed in parallel, by combining one or more decomposition techniques. Though 

decomposition techniques may not always bring about the best parallel solution to a 

problem, they offer a feasible method for turning a common problem into a parallelism 

problem. 
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  The basic idea of this method is that a given problem has to be split into computation 

sub-steps that can be executed concurrently and independently, and a task-dependency 

graph can be defined. This graph can tell which sub-steps in the problem can be executed 

concurrently.  

6.3.1.1 Four Decomposition Techniques 

The decomposition technique has four types: data decomposition, recursive 

decomposition, exploratory decomposition, and speculative decomposition. 

The data and recursive decomposition techniques can be applied to general problems 

whereas the speculative and exploratory decomposition techniques may be used in 

specific problems. 

6.3.1.2 Data Decomposition 

Data decomposition can be used in parallelism decomposition on algorithms that operate 

on a large amount of data. It takes place in two steps: data partition and computation task 

division. The former is done on the data with their independency; the latter is carried out 

according to the results of the former to determine which operations should be done on 

each data portion. The operations on one data portion are relatively fixed and similar. Data 

decomposition can produce several solutions to a given problem. It has to evaluate among 

them on their performance and efficiency before choosing one. 

Data decomposition can be done on input, output, and intermediate data of a given 

problem. The data decomposition can also conform to the owner-computes rule. It means 

that each owner has its own task and data, and all the computation operations of its task 

are involved in just its own data. For the input or output data decomposition, the 

relationship between owners and tasks in the owner-computes rule can have different 

meanings. In input data decomposition, the owner of a portion of input data should be the 

owner of the task that performs all the operations on this portion of data and produce 

results. In output data decomposition, the owner of a portion of output data should be the 

owner of the task that performs all the operations that can produce this portion of output 

data. 

With intuition, it is most natural to start with output data decomposition because each 

individual part of the output of the problem can be processed independently from other 

parts of the output. If possible, the operations that are used to yield that part of output 

should be independent of those used in processing other parts of the output. Thus, the 

computation task division occurs naturally.  

For example, it is well-known that matrix operations on large matrixes can be replaced 

by the formulation of matrix operations on small block matrixes. The latter can significantly 

decrease the cost of computing and the requirement for storage. Another benefit of the 
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latter is that the matrix operations on block matrixes can be applied in parallelism 

decomposition. This makes matrix operations on large matrixes transform into matrix 

operations on several small block matrixes, which can be processed in parallel. 

A restriction of output data decomposition is that it can work well only if each output of 

the problem can be computed as a function of the input. Sometimes, it is not the case. It is 

natural to turn to the input data decomposition to find a solution. If it is found that the input 

data of a problem can be divided into independent groups and it induces operations on 

each group that can be performed in parallel, this problem is one that can be addressed in 

the input data decomposition. The obvious feature of this type of problems is that the 

operations of the task performing on each independent group of input data are isolated 

from those on other groups of input data. That is, one task is input data independent of 

other tasks. For instance, number or alphabet sorting is such a case. Figure 6.2 shows 

output and input data decompositions. 

 

Figure 6.2 Output and Input Data Decompositions 

Usually, the problems to solve are not ideally suited to output or input data 

decomposition. For these problems, the intermediate results may be used for parallelism 

decomposition. Intermediate data decomposition suits to problems that need to be 

processed in multiple stages and intermediate data to produce the final output. The 

intermediate data can be treated as the output data of the operation of an intermediate 

stage or the input data of the operation of its subsequent stage. Thus, it can be seen as 

the output or input data decomposition of a sub-problem of the original one. It can focus on 

looking for the data independence in this sub-problem and carrying out data 

decomposition. 

In reality, problems do not obviously belong to any single type of output, input or 

intermediate data decomposition. We need to look for a solution by combining output, 

input and intermediate data decompositions. In some cases, it is possible to gain more 

concurrency by using input data decomposition after the output data decomposition. In 

other cases, a serial algorithm may not explicitly fit into any type of data decomposition. 
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But when the solution structure of the serial algorithm is reorganised, it may yield the 

chance for the intermediate data decomposition. Intermediate data decomposition 

requires more exploration and may produce higher parallelism than the output or input 

data decomposition. 

6.3.1.3 Recursive Decomposition 

Recursive decomposition can be expressed as a problem that is first divided into several 

independent sub-problems, meaning that there is no data-dependent relationship between 

the sub-problems. Each sub-problem is further divided into smaller sub-problems in the 

same way as the upper division level. At any division level, the results of all the 

sub-problems are combined for the upper level. In the end, all the results at different 

division levels are combined at their division levels and finally form the final result at the 

top level recursively. Thus, the problem can be treated as a divide-and-conquer problem. 

Along with problem division, the solution algorithm to this problem can be split into 

sub-sections at different levels as well. At any division level, all the sub-sections can be 

executed concurrently. Figure 6.3 shows a task-dependency graph for three division 

levels.  

 

Figure 6.3 Task-Dependency Graph for Three Division Levels 

6.3.1.4 Exploratory Decomposition 

Exploratory decomposition can be used in problems that carry out a search in a space for 

solutions. The search process shrinks the space in which the solutions are included. 

Therefore, the original search space can be divided into small regions, in each of which 

the search process can be done concurrently until the solutions are found. 

In some way, exploratory decomposition is similar to data decomposition of number or 

alphabet sorting problems. Both of them search in partitioned sets. There are some 

differences between them, however. Data decomposition has to be done in the entire set 

of acceptable values and the final solution of the problem relies on the results of all the 

tasks. Exploratory decomposition can reach the end without waiting for all the tasks to be 

finished if all the solutions of the problem are found. Consequently, the way in which the 

original search space is partitioned can seriously affect the parallelism performance of 
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exploratory decomposition. Poor partitioning means that the parallelism computation may 

not be better at speed than its corresponding serial algorithm. 

6.3.1.5 Speculative Decomposition 

Speculative decomposition can be applied to solving problems that one task has different 

branches of operations because its input has different patterns. The input may be the 

computation result that is produced by the task just before this one. This dependence 

relation means that this task cannot start until the result of the previous task is provided. 

Its behaviour is just like the conditional branch statement in high-level languages.  

One way to solve this kind of problem is simply to compute all the possible branches of 

this task and gain all the possible results without waiting for the last task to yield the 

‘condition’ for this task. Therefore, this task can be performed concurrently with other tasks 

without waiting. It can speed up the whole processing of the problem. Once the ‘condition’ 

is produced, the corresponding result of the correct branch of this task can be output to the 

next task and the results of other branches become useless and are ignored. It is obvious 

that the processing of the incorrect branches is pointless. Thus, speculative 

decomposition issues a compromise solution by simply doing the computation of the most 

likely conditional branches. It can meet most situations. If one of the non-computing 

branches is correct, its relative computation must be made up.  

One the basis of the statistics, the overall performance of the speculative decomposition 

may not be lower than its counterpart, a serial algorithm. If there are several stages of 

speculative decomposition in one problem, their speed-up effect can be enhanced much 

more.  

If we compare speculative decomposition with exploratory decomposition in detail, 

some differences can be discovered.  

In speculative decomposition, there is always more work to be done than its 

corresponding serial algorithm in order to enlarge the parallelism by pre-performing some 

tasks that will not be used in the processing. Speculative decomposition is faster than or 

equal to its corresponding serial algorithm. In exploratory decomposition, since the 

division of search regions is not unique, it cannot be determined in advance how much the 

parallelism can speed up and how much more or less work the parallelism can bring about 

than its corresponding serial algorithm.  

In speculative decomposition, the possible set of output is known. It is the results for all 

the possible conditions. But the input for the correct condition is not known in advance. In 

exploratory decomposition, the possible set of input is known, and is the search space. 

But the output is unknown in advance, i.e. the portion which will result in the correct output 

solution to the search problem. 
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6.3.1.6 Mixing Decomposition 

The above decomposition techniques can be combined during the application. Often, the 

computation for a problem has a structure with multiple stages and these different stages 

may have various features that match different decomposition techniques. Thus, it is 

necessary to apply different types of decomposition in different stages. Hybrid 

decompositions are acceptable. 

  This project is a system-level research that includes a hierarchical architecture 

composed of a wide variety of problems. Mixed decomposition is adopted. 

Since there are many matrix operations in the Mesa-OpenGL for FPGA-based ESs, 

input data decomposition is used in dividing a large matrix into small block matrixes. When 

an object surface is complicated and has to be represented with a big mesh or grid, its 

vertex matrix can be large. Data decomposition in large matrixes can decrease the cost of 

computing (especially multiplication) and storage. 

As discussed in Section 5.5.1, for surface editing with the PAMA, the edited surface is a 

problem at the top level, which can be solved with recursive decomposition. This problem 

is first divided into small patches, as shown in Figure 5.5. Each patch is then divided into 

two triangles, as shown in Figure 5.6. Each triangle can be processed independently 

because its data are independent from those of the others. Thus, the triangles can be 

processed in parallel. 

6.3.2 Parallelism Mapping at High Level 

Decomposition techniques are used to identify the concurrency in a problem and 

decompose it into tasks that can be executed in parallel. After decomposition, the tasks 

that are parsed out can be mapped onto the processes that can be executed by the 

operators available in a specific parallelism system. The mapping includes programming 

the tasks of a parallel algorithm or re-programming a serial algorithm with the parallelism 

style designated for the specific parallelism system. Except for conforming to the 

designated parallelism programming style, the above decomposition can provide a lot of 

fundamental parallelism information for the mapping. The behaviour of the tasks and the 

interactions between them offers guiding for mapping. The task behaviour can explain 

how an operator can process the data portion whereas the interaction behaviour can 

indicate how the operator communicates with others.  

  A parallelism mapping plot is expected to execute faster than its serial counterpart. Four 

features of the tasks significantly affect the parallelism mapping plots. 

6.3.2.1 Task Running Time 

The amount of time that a task requires to complete is the task running time. As is widely 
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known, the inherent serial section that cannot be replaced by parallel tasks places the 

most constraint on a parallelism mapping plot. It is ideal for parallelism mapping where all 

the tasks in parallel take the same amount of time to complete. That is, all the tasks are 

uniform. The parallelism algorithm will be faster than its serial counterpart.  

For example, there are several matrix left multiplication in the Mesa-OpenGL for 

FPGA-base ES, as shown in Section 5.4.2.7 and Figure 5.4. In these matrix multiplication 

problems, the tasks parsed out by the parallelism decomposition can be uniform because 

we can determine the sizes of these matrixes in advance. 

Since the complexity of parallelism problem can vary, parallelism decomposition cannot 

divide every problem into uniform tasks that can be completed in the same amount of time. 

For instance, the search problem is a non-uniform one. Some task, like the inherent serial 

section, may take more time than other tasks. This kind of task will particularly influence 

the effect of the parallelism mapping plot. 

For instance, the recursive decomposition of the edited surface, as given in Section 

6.3.1.6, cannot be divided into uniform tasks since patches with different shapes are 

divided into pairs of different triangles. One triangle can have a different shape and area 

from those of others, which can result in different line segments scanned line by line for 

each triangle, as shown in Figure 5.7. 

6.3.2.2 Knowledge of Task Running Time 

If the task running time of a parallelism mapping plot can be estimated, the task running 

time is known before the task is executed. This information is useful because it can enable 

assessment of how much faster a parallel algorithm can be than a serial algorithm. For 

example, in a matrix multiplication problem, the amount of time can be known, derived by 

the execution of a small block sub-matrix multiplication and scalar algebraic operations. 

This evaluation can help to assess whether or not a parallelism mapping plot is good 

enough and whether or not there is room for optimisation. 

  In some cases, it cannot be known in advance how long a task takes to execute. For 

example, exploratory decomposition for a search problem may mean that we cannot be 

sure how many steps to be taken to find the final solution. It depends on every choice 

made at each stage. Thus, uncontrolled factors make the task running time unobtainable. 

A good judgement cannot be obtained for this problem . 

  In this research, it can be known in advance that the running time of the left 

multiplication of a 4X1 matrix by a 4X4 matrix can be evaluated. The 4X1 matrix 

represents the coordinates of a vertex. The 4X4 matrix can be one of the transformation 

matrixes, as shown in Figure 5.4. On the other hand, it cannot be known in advance how 

long time it will take to draw a surface. The triangles into which the surface is divided can 
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have various shapes and areas.  

6.3.2.3 Known Task and Generated Task 

There are two types of task. One is the task known before the algorithm starts execution, 

called a known task; the other is the task generated during the execution of the algorithm, 

referred as a generated task. 

  Known tasks usually can be parsed out by data decomposition. Even though recursive 

decomposition can generate many sub-tasks by using a task-dependency graph, these 

sub-tasks are known before the parallelism algorithm executes. They belong to known 

tasks as well. 

  Generated tasks may be yielded by decompositions when the parallelism algorithm is 

executing. At the high level, decomposition techniques may not lead to an explicit detailed 

task-dependency graph that includes the actual tasks. Recursive decomposition may yield 

an array of a designated size, but this array can include different number of operators with 

different capabilities for different parallelism hardware platforms because a 

task-dependency graph may not indicate detailed information about the hardware 

platform. 

In any case, a generated task should be one that takes a state as its input or its 

generation condition. Then the task starts to extend by itself with a predefined number of 

stages, such as the scenario in a search problem, and dynamically generates more tasks 

to perform the same computation on each of the resulting states until the solution is found 

and the algorithm terminates. Whether or not the generated tasks are yielded depends on 

the input of an algorithm when being executed. 

In this research, the surface drawing is a problem of recursive decomposition. It was 

seen in Section 6.3.1.6 that it includes three level tasks, these being the surface on the top, 

the patches at the middle level, and the triangles at the lowest level. These tasks are 

known tasks. But underling this recursive decomposition are unknown sub-tasks. We 

cannot know how many lines should be scanned in each triangle before the surface is 

evaluated. The number may change dynamically when the surface is edited with user 

interactions. 

6.3.2.4 Related Data 

In parallelism problems, a large amount of data usually needs to be processed. The 

access and movement of a large amount of data can be costly in terms of CPU and 

memory space, especially when communications between operators or I/O operations are 

required and the overheads become even worse. Therefore, data related to a task and the 

size of the data can also affect a parallelism mapping plot. 

  Sometimes, tasks have an orderly relationship because of data-dependence. The input 
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of the next task is the output of the last one. Whether or not the related data of a task are 

available can determine if the task can be performed in parallel with other tasks. 

  Related data sizes vary. The size of the input data can be different from that of output as 

well. For example, the size of data in a frame buffer is determined by the number of 

resolutions and the type of colour pattern. When it is processed with the streaming, the 

input of a task for a frame buffer is just one or two pixels. But the output can be a whole 

frame buffer. When it is processed by copying a whole image, the input of a task can be 

the whole image and its output can be the pixels in a square area of the frame buffer. For a 

search problem, the input of a task can be the set of search scopes, and the output of a 

task may be just one number in the set. 

  In this research, there are various data sizes in the graphics pipeline of OpenGL, as 

shown in Figure 5.1. In terms of its geometric pipeline, the vertices of a surface are basic 

elements that are processed and are 4X1 matrixes with four coordinates. The coordinates 

are fixed-point numbers with 11 bits for the fractional part. Via its fragment pipeline, a 

frame buffer with 800 X 480 pixels is stored. Each pixel in the frame buffer is an integral of 

32 bits for the RGBA format with four components of red, green, blue and alpha and eight 

bits for each component. When the surface is finally displayed on the device screen, the 

LCD accepts only the stream of eight bits for each colour element including red, green and 

blue. These various data sizes restrict the system parallelism, which results in an orderly 

relationship between the geometric and fragment pipelines, and between steps in each 

pipeline. Thus, in this project, parallelism decomposition cannot map into the SIMD or 

MIMD architecture, but it can map onto the pipelined parallelism discussed in Section 

6.2.2 effectively and efficiently. That is why the pipelined parallelism is adopted in the 

system of this project. 

6.3.3 Expansion on Parallelism Decomposition 

In this section, two ways of expanding parallelism decomposition will be discussed. One is 

broad expansion, to see a parallel frame in distributed systems with the operators that are 

independent computers connected with the particular networking infrastructure, no matter 

whether it is wireless or wired, local or internet. The other is extending down to the low 

level of the system, the hardware platform, to see how to handle the parallelism among the 

hardware units. 

  The co-processors usually applied in ESs and FPGA-based systems are also 

discussed. 

6.3.3.1 Expansion of Parallelism Decomposition to Distributed Systems 

Parallelism processing can exist in distributed systems. The distribution computation or 

processing is widely used in database systems (Jiang et al 2006, Kallman et al 2008, 
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Mohan et al 1986, and Thomson et al 2012). In these systems, each computer does the 

same tasks as others but may be located in a remote area. For example, in transaction 

processing systems, many clients submit requests for the database service. All the client 

computers do transactions in parallel. Each of the client computers executes its 

independent transaction separately. Each client machine can be a simple but integral 

computer system with its CPU, memory, and operating system.  

On the other hand, at the database server end, each query from the clients can be 

translated and batched up into finer jobs to be transmitted to the database server to 

process. This is just like streaming the tasks from each client into the database server, 

which also adopts parallelism technologies. 

Heterogeneous distributed systems can provide even more chance of parallelism at the 

system level. They can induce not only co-processor architecture but also networking of 

various types of computers.  

6.3.3.2 Expansion of Parallelism Decomposition to Hardware Building 

As mentioned above, at the high level, computation decomposition techniques are based 

on the data-dependent relationships between sub-problems. For parallelism problems in 

the hardware building, the operation-dependent relationships between sub-units are 

another important factor that can influence decomposition. This means that the result of 

the previous sub-unit can determine the start of the next sub-unit. For digital circuits, the 

result may be a signal transition from high voltage level to low voltage level, or versa, or a 

predefined number of system clocks, rather than a meaningful numeral value. 

In general, a parallelism hardware platform can be used in one type of problem perfectly 

but not in others. Sometimes, the effect of its speedup may not be obvious because the 

problems that are processed on the platform may not fit into the operator configuration of 

system. Therefore, for a given parallelism hardware platform, applications at the high level 

have to think about how to make the best use of the parallelism resources in system. 

On the other hand, hardware builders usually face the problems on how to make the 

existent hardware units work well together with the parallelism technologies in a flexible 

way, rather than in a particular fixed model. The problems to be solved are more detailed, 

physical and practical.  

In the low level of the system, parallelism decomposition needs to be done physically 

and exactly for each bit, each signal, and each system clock, rather than logically and 

roughly on a group of data in an accepted period of time. It is a detailed, fine, and accurate 

piece of work. 

6.3.3.3 Co-processor’s Role in Parallelism Hardware Building 

In the typical co-processor architecture, the main applications execute on the main 
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processors while the co-processors handle tasks that require a long execution time 

(El-Ghazawi et al 2008). Co-processors have designated hardware implementations, 

which can be fine-grained architectures: for instance, SIMD, engines, pipelines, or others. 

The system can invoke the co-processors to execute the specific tasks. 

With ESs and FPGA technologies, it is to be expected that multiply processors exist in a 

system, and each of them has a designated assignment in the system in terms of assisting 

a host processor to fulfil a number of functions. Some processors may act as apparent or 

unobvious co-processors and do their specific tasks automatically without much 

intervention of the host processor. When these processors undertake their tasks, the host 

processor does not necessarily stop its own task to control and communicate with them. 

The host processor may transmit a small set of instructions to a co-processor to launch 

it and then do its own main tasks. The co-processor starts doing its pre-designed 

assignment automatically. For example, there are co-processors that are designed for 

Fast Fourier Transforms (FFTs), two dimensional Discrete Cosine Transforms (2D DCTs), 

convolution filters, MPEG-4 main profile visual compositing, image processing, or image 

registration (Berekovic et al 2000, Dubois and Mattavelli 2003, Huang et al 2009, 

Kalomiros and Lygouras 2007, and MacLean 2005). These co-processors can share the 

pre-designated memory space on SRAM or DDR SDRAM banks with the host processor. 

The co-processors may send their processing results to the memory, and the host 

processor can access them if necessary. Alternatively, the host processor can put the data 

in the memory, and a co-processor can use them as input data. 

Since co-processors do their tasks without interrupting the host processor’s task, the 

co-processors do their tasks in parallel along with the host processor. Even though they 

do not share the same large task with the host processor, they have procedures totally 

different from those of the host processor, and their structures of hardware units are 

different from those of the host processor as well. Co-processors belong to one of the 

heterogeneous parallelism architectures. 

In this research, the graphics hardware sub-system works independently of the Nios II, 

the core processor of the FPGA-based ES. It acts as a co-processor in the ES. 

 

6.4 Parallelism in the Graphics Processing in this Research 

For this research, in graphics processing, many operations are applied to individual 

objects rather than a 2D range or entire frame buffer. These operations are different and 

changeable depending on the objects processed by them. In other words, the proportion 

of the data processed by the same group of tasks is small in respect of all the vertices of 

the objects in the scene. These operations cannot be done in the same way as the 
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processing elements in the SIMD or MIMD architecture in applications of image 

processing. Pipelining is a good way to apply to graphics processing because one portion 

of vertices can be processed independently from other portions before being written in the 

frame buffer. Therefore, much effort is put in pipelining graphics processing in this project. 

6.4.1 Pipeline Effect 

Before discussing the pipeline effect in graphics processing, let us take a television 

assembly line as an example. If the assembly of a television set includes 50 component 

units and each of them takes one minute, each television set assembly takes 50 minutes 

with a serial assembly line. But if the assembly line is pipelined with ten stages of five units 

each, the assembly line can produce a television set every five minutes by overlapping 

these ten stages in production. The pipelined assembly line is ten times faster than the 

serial one. The pipelining can accelerate the production process. 

In a computer system, pipelines are used to improve the instruction execution. The 

various function stages, including fetch, schedule, decode, operand fetch, execute, store, 

and others, are pipelined and interwoven to be processed at the same time. The reason 

behind this is that all the sub-tasks are done in different hardware units of the computer 

system, just like different work stations in a factory pipeline. When the pipeline runs for a 

while, all the hardware units are filled with their own sub-tasks. The parallel production 

style is set up. 

After the instructions filled in all stages, different instructions are piped into different 

function units and executed each clock cycle in parallel. This can increase the execution 

speed and improve the performance of the whole computer system. 

Theoretically, the smaller sub-task units are broken down, the bigger the overlaps 

between different task units processed at the same time, and the faster the computer 

system executes. The largest physical atomic sub-task of instructions is ultimately the 

smallest unit that can be divided in the pipeline. 

In the LCD controller subsystem of Altera FPGA-based ESs of Cyclone III Version 

(Altera 2008b), the display process adopts the pipeline mechanism to match the data 

format and timing of frame buffer in the DDR SDRAM memory with the video flow of the 

LCD device, as shown in Figure 4.9. The pipelining process makes the video processing 

automatic and fast, and achieves high performance. The data format in the frame buffer is 

32 bits for each pixel, three bytes for red, green, and blue, respectively, and one byte is 

not used. The video flow of the LCD device accepts bytes of red, green and blue, byte by 

byte, in sequence. 
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6.4.2 Timing and Data Format Matching in Pipelining 

Let us give another example. When a tap is turned on to let water run into a container, it 

takes some time before the water begins to come out. How much water flows out and how 

quickly it does so is dependent on the size of the tap. 

In a computer system, the performance of a program running on a computer relies not 

only on the speed of the processor but also on the ability of the memory system to transmit 

data to the processor. There are two factors that can influence the throughput ability of the 

memory system. First, when the processor transfers data from or to the memory, the 

memory takes some time before it is ready for reference, that is, the latency of the memory. 

Second, the rate at which data can be transferred from or to the memory determines how 

fast the data move between the processor and memory. The latter is the bandwidth of the 

memory.  

The mismatch between the processor and SRAM (or SDRAM) speeds has motivated a 

number of architectural innovations in memory system design. As mentioned in Section 

2.4.4, one such innovation addresses speed mismatch by placing a smaller and faster 

memory between the processor and memory, which is cache. 

The differences between the above two examples are that the size of the tap does not 

necessarily exactly match that of the container’s mouth, but the size of data bus of the 

memory has to be the same as that of the processor. A slow rate of the water flow does 

not matter to the container, but a slow transaction speed of the memory system can lower 

system performance even though the processor has a high speed. 

For hardware devices that do not match, it is obviously unacceptable to control the 

devices simply by connecting them together. It is necessary to know how they work first, 

then to connect and harness them in the appropriate way. 

In the graphics sub-system of Altera FPGA, the data transactions are done between the 

frame buffer in the DDR SDRAM memory and the LCD display. At one end of the video 

flow is the frame buffer with a 64-bit data bus. At the other end is the data interface of the 

LCD display that accepts a flow of three sequential 8-bits. Since it is expected to keep the 

video data flow under control, it is necessary to build a precise pipeline that has different 

interface sizes at the two ends between the LCD display and the frame buffer, which is 

video pipeline. At one end of the pipeline, the size of the bandwidth has to match exactly 

the bus of DDR SDRAM memory. At the other end of the pipeline, the size of the 

bandwidth fits into the flow for LCD display. 

Compared to the Nios II processor, the LCD display is an output device, which is slower 

and must be controlled with its abstract registers at its rate and order. The abstract 

registers are not common device registers, but function similarly. The flow of data is 
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expected to be put into their holders at the appropriate rate. 

Figure 6.4 shows the video pipeline applied in Altera LCD controller (Altera 2008b). The 

tasks of the video pipeline are to read data from the frame buffer in the DDR SDRAM 

memory, transform data format, adjust rhythm, and drive video data signals on the LCD 

data bus. For this project, the frame buffer data are generated by the Nios II processor 

with the Mesa-OpenGL implementation for the FPGA-based ES platform, discussed in 

Chapter 5. 

 

Figure 6.4 Video Pipeline in Altera LCD Controller 

  The video pipeline consists of eight parts.  

▪ Having been initialised, the SGDMA controller reads pixel colour data from the 

frame buffer in the DDR SDRAM memory and passes the data to the remainder 

of pipeline without intervention by the Nios II processor. The SGDMA 

autonomous operations are controlled by a chain of descriptors. The descriptors 

do the data transfer at a speed of 64000 bytes per transfer. In the initialisation, 

the descriptors for a whole frame buffer display are prepared. Thus, the SGDMA 

controller can process the entire frame buffer and drive the rest of video pipeline 

continuously. Since the interface width of the DDR SDRAM memory is 64 bits, it 

is more effective for the SGDMA to read 64 bits at a time, which are units for two 

pixels. 

▪ The Timing Adaptor One is used to make up the difference between the time 

length of data latency of the downstream FIFO memory and that of the upstream 

SGDMA. The former is one unit of latency; the latter is zero units of latency. They 

rely on the FPGA design. 

▪ The FIFO memory is an on-chip FIFO memory. It uses the memory resource 

inside the FPGA chip. Because of delays and bus contention problems during the 

SGDMA’s accessing of the DDR SDRAM memory, the SGDMA may not load the 

pixel data in the pipeline timely. On the other hand, the SGDMA usually loads 

data more quickly than the rest of video pipeline processes them. The FIFO 
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memory can provide a data buffering for the rest of video pipeline. During the 

FPGA design, the FIFO memory is configured to accommodate 128 of 64-bit data 

from the upstream Timing Adapter One. One piece of data occupies eight 

symbols, eight bits for each symbol. The rate at which the FIFO passes data to 

the downstream Timing Adapter Two is one unit of 64 bits per clock cycle. The 

FIFO is designed with the Altera Avalon-ST backpressure support, which can 

stop the upstream from loading new data in the FIFO when it is full. 

▪ The Timing Adapter Two is to make up the difference between the time length of 

data latency of the downstream Format Adapter One and that of the upstream 

FIFO memory. The former is zero units of latency; the latter is one unit of latency. 

They also rely on the FPGA design. 

▪ The Format Adapter One is an Altera Avalon-ST data format adapter. It is used to 

transform 64-bit data to 32-bit data. Each piece of 64-bit data contains two pixel 

colour values as mentioned above. Each pixel RGB value is encoded in 32 bits 

by the Mesa-OpenGL implementation for the FPGA-based ES platform. 

▪ The Pixel Converter is used to convert 32-bit pixel colour values to the 24-bit LCD 

data format. The final bytes in the 32 pixel colour values are intended only for the 

bit alignment. 

▪ The Format Adapter Two is used to transform a 24-bit pixel RGB value to three 

separate 8-bit values because the rest of pipeline requires the red, green, and 

blue values of one pixel to be transferred separately in sequence. The Format 

Adapter Two accepts one 24-bit pixel data per clock cycle at its input, generates 

three 8-bit data, and send out one 8-bit data per clock cycle at its output. 

▪ The Video Sync Generator is used to transmit the pixel data to the LCD data 

interface. It accepts a stream of pixel data from the upstream of pipeline, which 

have been encoded with eight bits of data stream width and three clock cycles 

per pixel. The control information that drives the display is added to the input 

video data to form the output video data. The Video Sync Generator transmits the 

control and colour data signals to the LCD data bus in sequence.  

In this context, parallelism constitutes not only the parallel computation but also different 

channels and links between different hardware units working collaboratively in parallel in 

order to get a synergy of different parts in an entire system. 

6.4.3 Co-processor in FPGA-based ES 

The video pipeline in Altera FPGA-based ES also works as a co-processor. Since the Nios 

II processor does not take much control on the video pipeline after it starts streaming the 
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video signals and the video pipeline streams the pixels to the data interface of the LCD 

display automatically, the roles of the Nios II and the control driver of video pipeline are a 

host processor and co-processor, respectively. 

  The Nios II processor and control driver of video pipeline share the frame buffers in one 

of two DDR SDRAM memory banks that are on the board of Altera ESDK, Cyclone III 

Edition, outside the Cyclone III FPGA chip. They also share the memory space of the 

other DDR SDRAM memory bank. Descriptor buffers of the SGDMA in the control driver of 

video pipeline are located in the latter’s bank memory space. 

At the initialisation stage of the control driver of video pipeline, the system performs a 

series of tasks. It allocates the memory space for the frame buffers and descriptor buffers 

of the control driver of the video pipeline. It sets the resolution of the frame buffers and the 

descriptors for the frame buffers. It clears all the frame buffers. It opens the SGDMA, and 

registers the SGDMA callback function. Finally, it starts the control driver of the video 

pipeline. Typically, two frame buffers are allocated. One is for the Nios II processor to write 

when the other can be displayed by the video pipeline smoothly without interruption. The 

former is called the written frame buffer; the latter is the display frame buffer. When the 

display frame buffer has been displayed, these two frame buffer swap roles with each 

other. The original display frame buffer turns into the current written frame buffer, and the 

original written frame buffer is displayed by the video pipeline. 

To address the changeable length of frame buffers and descriptor buffers, the memory 

is allocated from the heap and accommodates all the required number of frames and 

descriptors. All the descriptors form a descriptor chain in order to drive the streaming of 

video pipeline automatically. 

When setting the descriptor buffers, the system has to calculate the number of bytes 

requested by the descriptor storage of a particular display in order to dynamically allocate 

the memory and pointers to a new frame at runtime. 

During the drawing process for the Mesa-OpenGL applications of surface modelling and 

editing with the PAMA, the applications use the commands to call the Mesa-OpenGL 

auxiliary functions to make the Nios II processor process the image and write the results 

into the written frame buffer. The applications can also make requests for the video 

pipeline to display the image on the LCD screen by using a command like glFlush(). Since 

the main loop of an application can be executed repeatedly, both actions, i.e. writing one 

frame buffer of the Nios II processor and displaying the other frame buffer of the video 

pipeline, can be done in parallel. 

In addition, FPGAs can have as many hardware kernels for the basic operation as 

possible. They are good for applications that use the integer arithmetic, and are 

computation-intensive for both spatial and temporal parallelism, albeit without much data 
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transfer between the FPGAs and microprocessors. Heavy data transfer may limit the 

capability of the spatial and temporal parallelism of FPGAs. 

 

6.5 Chapter Summary 

This chapter has categorised traditional parallelism. Even though this project takes a 

different view of parallelism, the discussion of traditional parallel computation provides a 

standpoint from which to extend it. Features of parallel processing are analysed in detail in 

order to achieve an in-depth understanding of parallelism. Two perspectives on 

parallelism, the application programmer’s view and hardware builder’s view, and two 

styles of parallelism, spatial and temporal, are presented. For methodologies of parallel 

processing, four decomposition techniques are studied; then two aspects for parallelism 

extension are presented, one for distributed systems for large data processing, and the 

other for the low-level hardware building. The role of co-processors in the parallelism is 

discussed as well. Finally, the pipeline in the graphics processing and co-processor in this 

research are discussed. 

 



 

 

 

 

Chapter 7  Novel Algorithm for Surface Modelling and Editing, PAMA 

 

From the discussion in Section 2.5, it has been known that the computer graphics is one of 

the most active fields in the computer science and technology. It consists of a wide range 

of research topics, including computational geometry, display algorithms, object modelling, 

rendering, shading, shadowing, solid representation, texture, 2D curve and 3D surface 

modelling, and others. 3D surface modelling and editing is one sub-field of the computer 

graphics. In this project, a novel algorithm for surface modelling and editing has been 

devised and implemented, which is called PAMA (progressive and mixing algorithm). The 

detail of PAMA will be discussed in Section 7.2. 

In this chapter, in order to maintain the narrative coherence of the main chapters in the 

thesis, the discussion of the PAMA is kept concise and it focuses on the applications of the 

PAMA on the general-purpose computer platform. The results of the applications of the 

PAMA on the FPGA-based ES and the analysis between two group results on the 

general-purpose computer and FPGA-based ES will be presented in Chapter 8. The 

contents of this chapter include the preliminary, PAMA, surface modelling and editing with 

PAMA, different effects of shape parameters, and novel features of PAMA. 

The rigorous mathematic exploration of the related theories will be presented in 

Appendix. Those include the in-depth discussions on the parametric continuities and 

geometric continuities, the geometric properties of Bézier-spline curves and surfaces, the 

principle for the construction of control vertices on common boundary curves of 

Bézier-spline surfaces with the PAMA, the twists and constructions of corner points of the 

patches with the PAMA, and the constructions of inside points with the PAMA, and the 

summarisation of the PAMA’s continuities. 

Before the discussion of the PAMA, the Beta-spline curves are introduced in Section 7.1 

in order to provide a reference to the PAMA because the PAMA is an algorithm for the 

modelling and editing of Beta-like-spline surfaces.  
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7.1  Preliminary 

In Section 2.5, one scheme to connect two cubic Bézier-spline curve sections together 

with the 1G and 2G conditions has been introduced. This method is first presented by 

Farin (Farin 1982), improved by Boehm (Boehm 1985), and used in Beta-spline curves by 

Barsky and DeRose (Barsky and DeRose 1989). 

Given two Bézier curves, S(w), [ ]1,0∈w  and T(u), [ ]1,0∈u  which have the degree of 

three with control polygons, [S0, S1, S2, S3] and [T0, T1, T2, T3], respectively. To stitch 

them together with constraints of zero-, first-, and second-order geometric continuities, the 

following conditions should be matched. For the zero-order geometric continuity ( 0G ), the 

beginning of T(u) should be set as the end of S(w), 

T0 = S3.                                                                    (7.1) 

For the first-order geometric continuity ( 1G ), the parameter 01 >β  is involved. The first 

derivative direction at the beginning of T(u) and first derivative direction at the end of S(w) 

meet Equation 7.2, 

)1()0( )1(
1

)1( ST β=                                                             (7.2) 

where )(3)0( 01
)1( TTT −= , and )(3)1( 23

)1( SSS −= . From Equations 7.1 and 7.2, T1 can be 

deduced from control points, S2 and S3, with Equation 7.3, 

)( 23131 SSST −+= β .                                                         (7.3) 

  For the second-order geometric continuity ( 2G ), the parameter 2β is involved. The 

second derivative direction at the beginning of T(u) is restricted by the first and second 

derivation directions at the end of S(w) as Equation 7.4, 
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7.4, T2 can be deduced from control points, S1, S2, and S3 with Equation 7.5, 
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  Therefore, if Equations 7.1, 7.3, and 7.5 are all met, two curves T(u) and S(w) can be 

joined together with the second-order geometrical continuity. As the shape parameters, 

01 >β  and 2β  can be adjusted freely, they provide local control on joined sections of a 

curve for interactive shape editing. 

  The above is the solution to Beta-spline curve modelling with geometric continuities. 

This research has extended it to surface modelling with the freedom of shape changing in 
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two parameter directions independently.  

 

7.2  Progressive and Mixing Algorithm, PAMA 

The new algorithm is called PAMA. Since the PAMA is created for the surface modelling 

and editing with user interactions in real time on the FPGA-based ES platform, there are 

two factors that must be considered.  

The first factor is that its computation is restrained by the limited computation speed and 

storage space, which are 100 MHz of Nios II processor and 2 X 64 MBytes of DDR2 

SDRAM, introduced in Chapter 4. The PAMA must be effective and efficient for the 

surface modelling and editing via user interactions in real time with a small footprint. Thus, 

the PAMA focuses on the constructed surfaces with meshes of less than 64K vertices, 

rather than the existent surfaces with larger grids of more than 1M vertices. The latter are 

usually taken as benchmarks and processed with the subdivision and deformation 

methods in the computer graphics. However, they cannot fit into the surface modelling and 

editing with user interactions in real time on the FPGA-based ES platform. 

The other factor is that the applications of PAMA include both the modelling and editing 

of surfaces. This means that the PAMA can be used to create a surface from scratch with 

user interactions and edit it in a flexible way. The users can use the PAMA to create a new 

design and then change it in order to accomplish their work creation. For this purpose, 

changing the shape of a designed object is a progressive and controllable process. This 

progressive and controllable process must be guaranteed with the tools that the PAMA 

provides. The tools of PAMA equip users with the controllable methods to manipulate the 

shape change of the created object. The measures of the PAMA tools, especially shape 

parameters of ,,, 121 vuu βββ  and 2uβ , are varied values that represent varied effects of 

local shape changes referring to their previous states in the geometric sense, rather than 

the accuracy in the arithmetic sense. Thus, in the rest of the discussion in the thesis, the 

numbers of values of shape parameters, ,,, 121 vuu βββ  and 2uβ , as shown in examples, 

have to be treated as their geometric effects. 

The PAMA can be used to construct smooth surfaces, open or closed, by stitching 

together bi-cubic Bézier-spline patches with local shape controls. 

Given four original control points (shown as hollow-circle points in Figure 7.1), PAMA 

can be described in three steps, 

Step 1 The first blending, to interpolate the first-interpolated points along the u 

and v directions with the adjacent original control points, respectively. This step 

mixes the adjacent original control points with the Beta constraints in the u and v 

directions, respectively. In Figure 7.1, the first-interpolated points, shown as square 
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points, sit on the edges formed with original control points. 

Step 2 The second blending, to fit the original control points with the 

second-interpolated points. This step blends adjacent first-interpolated points by 

averaging Beta constraints in the u and v directions. The second-interpolated points, 

solid circles shown in Figure 7.1, replace original control points when rendered. 

Step 3 The third blending, to interpolate the inside third-interpolated points 

inside each patch formed with original control points. This step blends adjacent 

first-interpolated points by averaging Beta constraints in the u and v directions. The 

third-interpolated points, triangles in Figure 7.1, sit inside the patches formed with 

original control points. By now, all the new points are generated to construct one 

bi-cubic Bézier-spline patch with local shape control. 

 

Figure 7.1 One Bi-cubic Bézier-Spline Patch Interpolated in the u (Horizontal) and v (Vertical) Directions with 
PAMA. Different Types of Points are Represented with Different Shapes in this Figure: Hollow Circles are 

Original Control Points; Squares are First-Interpolated Points; Solid Circles are Second-Interpolated Points; 
Triangles are Third-Interpolated Points. 

 The above described PAMA is just for one patch. The PAMA can be applied to 

construct complex surfaces, open or closed, based on original control points that can be 

designed initially and adjusted progressively through user interactions. As eight 

first-interpolated points and four third-interpolated points are added, each new patch has 

twelve more points than the original one. To continue the deduction of mathematic 

equations, the patch is put in a global surface and is assumed to be formed with control 

polygon, [V(i, j),V(i+1, j),V(i+1, j+1),V(i, j+1)]. The bi-cubic Bézier-spline patches 

constructed via the PAMA are shown in Figure 7.2. 

In Figure 7.2, as the V(i, j)’s are the original control points, pairs of first-interpolated 

points W(3i+1, 3j) and W(3i+2, 3j) along the u direction are formed with the adjacent 

original control points, V(i, j) and V(i+1, j). From the algorithm for drawing a cubic 2G  

Beta-spline curve proposed by Barsky and DeRose (Barsky and DeRose 1990), the 

equation for assessment of W(3i+1, 3j) and W(3i+2, 3j) can be written as Equations 7.6 

and 7.7: 
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where W(l, k) and V(i, j) are vectors with three coordinate values, and ( )jiu ,1β  , ( )jiu ,2β  

and ( )jiu ,γ  are scalars. It is necessary to make variable substitutions, 
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Figure 7.2 Bi-cubic Bézier-Spline Patches Constructed with PAMA in a Global Surface. The Middle Patch is 
Formed with the Original Control Polygon [V(i, j),V(i+1, j),V(i+1, j+1),V(i, j+1)]. After Constructed with PAMA, 
the Middle Patch is a Mesh of 16 Interpolated Points, which are, from Bottom to Top and from Left to Right, 

[W(3i, 3j),W(3i+1, 3j),W(3i+2, 3j),W(3(i+1), 3j), W(3i, 3j+1),W(3i+1, 3j+1),W(3i+2, 3j+1),W(3(i+1), 3j+1), 

W(3i,3j+2),W(3i+1, 3j+2),W(3i+2, 3j+2),W(3(i+1), 3j+2), W(3i, 3(j+1)),W(3i+1, 3(j+1)),W(3i+2, 3(j+1)), 

W(3(i+1),3(j+1))] 

Pairs of first-interpolated points W(3i, 3j+1) and W(3i, 3j+2) along the v direction are 

blended with the adjacent original control points, V(i, j) and V(i, j+1). The equation for 

V(i+1, j+1), 
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evaluation of W(3i, 3j+1) and W(3i, 3j+2) are as Equations 7.9 and 7.10: 
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where ( )jiv ,1β  , ( )jiv ,2β  and ( )jiv ,γ  are scalars, and ( )jiv ,γ  is written as follows 
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Second-interpolated points W(3i, 3j) are evaluated by blending adjacent 

first-interpolated points W(3i,3(j-1)+2), W(3i,3j+1), W(3(i-1)+2,3j), and W(3i+1,3j) and 

averaging Beta constrains along both u and v directions. It is written as follows: 
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The inside third-interpolated points are evaluated by blending adjacent first-interpolated 

points and averaging Beta constrains along both u and v directions with a slight variation 

to reduce the computational cost. The deduction equations are written as Equations 7.12, 

7.13, 7.14, and 7.15, 
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In fact, Equations 7.11, 7.12, 7.13, 7.14 and 7.15 are not deduced strictly from the 

tensor product of Beta-spline blending functions. The whole tensor product of Beta-spline 

blending functions can cause a large computational cost of multiplication applications. 

Nonetheless these equations meet the basic demands for parameterisation. The sum of 

their basic functions is equal to one. For Equation 7.11, it can be proved by the next 

formula, 
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By now, all the interpolated points for inside patches have been generated with the 

PAMA. For an open surface, points on the boundaries should be constructed with a 

slightly adjusted means. Usually, there are three cases for boundary points to be 

constructed in a degenerated way since not all the interpolated points in the two 

parameter directions are available for their construction. Figure 7.3 shows the case when 

the points in just u direction are available for its construction. In this case, the construction 

equation of W(3i, 3j) is as follows, 
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Figure 7.3 Construction of a Point on the Boundary with Interpolated Points Available in the u Direction. 

Figure 7.4 shows the case when the interpolated points in just v direction are available 

to support its construction. In this case, the construction equation of W(3i, 3j) is as follows, 
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Figure 7.4 Construction of a Point on the Boundary with Interpolated Points Available in the v Direction 

If W(3i, 3j) is located on a corner, as shown in Figure 7.5, where the interpolated points 

in neither u nor v directions are enough to support its construction. In this case, W(3i, 3j) 

retains the value of V(i, j). 

 
Figure 7.5 Construction of a Point on a Corner 

 

7.3  Surface Modelling and Editing with PAMA 

When used in the surface modelling and editing, the PAMA can give interactive users the 

following tools to shape surfaces. All the shape parameters, ),,(),,(),,( 211 jijiji uvu βββ and  

),(2 jivβ , for each control point, are initialized to 1.0. This initialisation is done in all the 

following examples. 

▪ Varying Position (VP): The position of a control point, V(i, j), is changed by varying 

values of its 3D coordinates. The effect of geometric variation from Figure 7.6(a) to 

Figure 7.6(b) is generated with VP. 

▪ Varying Beta-u-one (VBU1) and Varying Beta-v-one (VBV1): The former is to 

change the ),(1 jiuβ  parameter of a control point; the latter is to change its 

),(1 jivβ  parameter. For each control point, ),(1 jiuβ  and ),(1 jivβ  can be 

W(3i,3j+1) 

W(3i,3j) 

W(3i,3(j-1)+2) 

W(3i,3j) 
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changed independently. The effect of geometric variation from Figure 7.7(b) to 

Figure 7.7(c) is produced with VBV1 by increasing the ),(1 jivβ  of just the middle 

control point at the top of the chair back to 20.0. 

▪ Varying Beta-u-two (VBU2) and Varying Beta-v-two (VBV2): The former is to 

change the ),(2 jiuβ parameter of a control point; the latter is to change its ),(2 jivβ  

parameter. For each control point, ),(2 jiuβ  and ),(2 jivβ  can be also varied 

separately. The effect of geometric variation from Figure 7.7(b) to Figure 7.7(d) is 

yielded with VBV2 by increasing the ),(2 jivβ ’s of three middle control points at the 

top of the chair back to 70.0, separately. 

▪ Varying Group Position (VGP), Varying Group Beta-u-one (VGBU1), Varying 
Group Beta-v-one (VGBV1), Varying Group Beta-u-two (VGBU2) and Varying 
Group Beta-v-two (VGBV2): All VP, VBU1, VBV1, VBU2 and VBV2 can be 

applied to control points, separately or in groups. Sometimes, manipulations of a 

group of control points are uniform. Accordingly, the manipulations can be done in 

the same way at the same time. Figures 7.6(c) and 7.6(d) are generated with VGP. 

Figure 7.7(b) is created with VGP, and Figure 7.7(d) is reshaped with VGBV2. 

▪ Varying Mixing Beta-one (VMB1) and Varying Mixing Beta-two (VMB2): The 

former is to vary both VBU1 and VBV1 of a control point simultaneously; the latter 

is to change both VBU2 and VBV2 of a control point at the same time. Figures 7.8(c) 

and 7.8(d) show the use of VMB2. The differences between VBU1, VBV1 and 

VMB1 and between VBU2, VBV2 and VMB2 will be discussed later in Section 7.4. 

 
Figure 7.6 Changing from a Flat Box to a Burning Torch. (a) The Flat Box, Initially Modelled Surface; (b) The 

Torch Handle Shaped with VP; (c) Outer Flames Shaped with VGP; (d) Inner Flames Shaped with VGP;  
(e) The Burning Torch. 

(a) 

(b) (c) 

(d) (e) 
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Figure 7.7 Changing from a Flat Board to Chair. (a) The Flat Board, the Initially Modelled Surface; (b) The 

Semi-Finished Chair Shaped with VGP; (c) The Deformed Chair Shaped with VBV1 by Increasing βv1(i, j) 

of just the Middle Top Control Point on the Chair Back to 20.0; (d) The Completed Chair Reshaped from (b) 

with VGBV2 by Increasing βv2(i, j)’s of Three Middle Control Points at the Top of Chair Back to 70.0. 

 

 
Figure 7.8 Changing of an Imaginary Flying Object. (a) The Imaginary Flying Object; (b) The Flying Object 

Reshaped with VBU2 by Increasing only the βu2(i, j) of the Control Point on the Shoulder Marked with a 

Red Arrow and with a Notch Left; (c) The Flying Object Reshaped with VMB2 by Increasing βu2(i, j) and  

βv2(i, j) of the Same Control Point Together and Without a Notch Left; (d) The Same Fly Object as (c) 

Viewed in a Different Angle. 

(a) 

(b) 

(c) (d) 

(a) 
(b) 

(c) (d) 
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To show the shaping process and geometric effects of different tools carefully, four 

more examples are given. Figure 7.9 presents how an ashtray can be created from a flat 

board. The flat board is the initial model with necessary control points. The control points 

can be determined by users for the design purpose and consist of the points that are 

edited with user interactions. Figure 7.9(b) is shaped with VGP from the flat board. Figure 

7.9(c) is reshaped from Figure 7.9(b) with VGBU2 or VGBV2 according to which direction, 

u or v, the related control points sit along. Among the manipulated control points, eight are 

processed with VGBU2 while six processed with VGBV2. Figure 7.9(c) shows the 

geometric effect of increasing ),(2 jiuβ  or ),(2 jivβ  of these control points to 50.0. Figure 

7.9(d) is the completed ashtray viewed from the bottom. 

 
Figure 7.9 Changing from a Flat board to an Ashtray. (a) The Flat Board; (b) The Semi-Finished Ashtray 

Created with VGP; (c) The Completed Ashtray Shaped with VGBU2 or VGBV2 by Increasing βu2(i, j) or  

βv2(i, j) of Relative Control Points to 50.0; (d) The Completed Ashtray Viewed from the Bottom. 

 

The second example is the construction of a clamshell box, as shown in Figure 7.10. 

The construction is started from Figure 7.10(a) by pulling upwards control points along 

three sides of a flat board with VGP. Figure 7.10(b) is generated by pulling upwards 

control points on the fourth side of the flat board with VGP. By continuing pulling these 

control points but in the horizontal direction with VGP, a rough clamshell box is shaped, as 

shown in Figure 7.10(c). Then control points along the connection side between the box 

body and lid are pulled to their positions with VGP. The connection side is curved, seen in 

Figure 7.10(d). Finally, the connection side is straightened with VGBU2. Figure 7.10(e) 

shows the geometric effect of increasing ),(2 jiuβ ’s of five middle control points to 50.0. 

Figure 7.10(f) shows the completed clamshell box viewed from the side. 

(a) 
(b) 

(c) (d) 
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Figure 7.10 Shaping of a Clamshell Box. (a) A Semi-Finished Box Created with the VGP Operation from a 
Flat Board; (b) A Semi-Finished Box with a Half Lid Reshaped with VGP; (c) A Semi-Finished Box with a Lid 
Reshaped with VGP; (d) A Semi-Finished Box with a Full Lid Reshaped with VGP; (e) A Finished Clamshell 

Box Completed with the VGBU2 Operation by Increasing βu2(i, j)’s of Five Middle Control Points on the 
Connection Side Between the Box and Lid to 50.0; (f) The Clamshell Box Viewed from one Side. 

The third example is a series of changes from a flat board to a table, a chair and finally a 

double chair, as shown in Figure 7.11. It begins with a flat board. The flat board is turned 

into a table with VGP by pulling downwards four legs in Figure 7.11(a). The table is 

changed into a semi-finished chair with VGP by pulling upwards the chair back in Figure 

7.11(b). The chair is completed with VGBV2. Figure 7.11(c) shows the geometric effect of 

increasing the ),(2 jivβ ’s of three middle control points at the top of the chair back to 50.0. 

Finally, the completed chair becomes a double chair with VBV1. Figure 7.11(d) shows the 

geometric effect of increasing ),(1 jivβ of just the middle control point at the top of the chair 

back to 4.0, which is the double chair. 

The fourth example is the construction of a loose bud, given in Figure 7.12. The process 

starts from Figure 7.12(a) that is a disc with necessary control points. Figure 7.12(b) is 

generated with VGP to pull out the relative control points to the proper positions. Figure 

7.12(c) is reshaped with VBU1 (or VBV1) separately. It shows the geometric effect of 

increasing ),(1 jiuβ ’s (or ),(1 jivβ ’s) of the related control points to 11.0. Figure 7.12(d) is 

generated from Figure 7.12(b) with VMB1. The geometric effect is yielded by increasing 

simultaneously ),(1 jiuβ ’s and ),(1 jivβ ’s of the related control points to 11.0. Figure 

7.12(e) is the completed loose bud viewed from the side. 

(a) 
(b) 

(c) 

(d) 

(e) (f) 
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Figure 7.11 A Series of Changing from a Flat Board to a Table, a Chair and Finally a Double Chair. (a) A 
Table Created with VGP from a Flat Board; (b) The Semi-Finished Chair Reshaped with VGP from the Table; 

(c) A Completed Chair Reshaped with VGBV2 by Increasing βv2(i, j)’s of Three Middle Control Points at the 

Top of the Chair Back to 50.0; (d) A Completed Double Chair Reshaped with VBV1 by Increasing βv1(i, j) of 

the Middle Control Point at the Top of the Chair Back to 4.0. 

 
Figure 7.12 Construction of a Loose Bud. (a) A Disc, the Initially Modelled Surface; (b) The Image Reshaped 

with VGP; (c) Image Reshaped from (b) with VBU1 (or VBV1) by Increasing βu1(i, j)’s (or βv1(i, j)’s) of 

Relative Control Points to 11.0; (d) Image Reshaped from (b) with VMB1 by Increasing Simultaneously  

βu1(i, j)’s and βv1(i, j)’s of Relative Control Points to 11.0; (e) Image of the Completed Loose Bud Viewed 

from a Different Angle. 

 

(a) 
(b) 

(c) (d) 

(a) 

(b) (c) 

(d) (e) 
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7.4  Different Effects of Shape Parameters 

To clearly describe different effects of shape parameters, further operations of the tools 

introduced above are discussed in detail. 

7.4.1 Skewing in u or v Directions 

Skewing in the u and v directions can be done with VBU1 and VBV1, respectively. 

Increasing ),(1 jiuβ  makes the skewing depart from the control point in the u direction 

while decreasing ),(1 jiuβ  has skewing approach to the control point in the u direction. 

Increasing and decreasing ),(1 jivβ  have the same effect in the v direction. Attention 

must be paid to keep 0),(1 >jiuβ  and 0),(1 >jivβ . 

In Figures 7.13 and 7.14, images are different results reshaped from Figure 7.13(a). All 

of them are manipulated on the middle control point at the top of the chair back. Figures 

7.13(b) and 7.13(d) show the geometric effect of increasing ),(1 jiuβ  to 6.0, viewed from 

the front and back, respectively. Figures 7.13(c) and 7.13(e) show the geometric effect of 

the result of decreasing ),(1 jiuβ  to 0.1, seen from the front and back, respectively. 

 

Figure 7.13 Chair Images Reshaped with VBU1 on the Middle Control Point at the Top of Chair Back. (a) The 

Image Reshaped in the Similar Way as Figure 7.7(b); (b) Image Reshaped by Increasing βu1(i, j) of the 

Control Point to 6.0 with VBU1; (c) Image Reshaped by Decreasing βu1(i, j) to 0.1 with VBU1; (d) The 

Same Chair Image as (b) but Viewed from the Back; (e) The Same Chair Image as (c) but Viewed from the 
Back. 

Figure 7.14(a) and 7.14(c) show the geometric effect of the same result of increasing 

),(1 jivβ  to 6.0, viewed from the front and back, respectively. Figures 7.14(b) and 7.14(d) 

(a) 

(b) (c) 

(d) (e) 
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show the geometric effect of the result of decreasing ),(1 jivβ  to 0.1, seen from the front 

and back, respectively. 

                 
Figure 7.14 Chair Images Reshaped from Figure 7.13(a) with VBV1 on the Middle Control Point at the Top of 

the Chair Back. (a) The Image Reshaped by Increasing βv1(i, j) of the Control Point to 6.0 with VBV1;  

(b) Image Reshaped by Decreasing βv1(i, j ) to 0.1 with VBV1; (c) The Same Chair Image as (a) but 

Viewed from the Back; (d) The Same Chair Image as (b) but Viewed from the Back. 

7.4.2 Tenseness in u or v Directions 

The tenseness pulling towards a control point in the u direction is done with VBU2 by 

increasing its ),(2 jiuβ . The tenseness towards the control point in the v direction is done 

by using VBV2 by increasing its ),(2 jivβ . The smaller the value of the ),(2 jiuβ  or 

),(2 jivβ  is, the more obvious the tenseness change is. 

Figures 7.15(a)-(d) show the various geometric effects with different values of ),(2 jiuβ . 

Values of ),(2 jiuβ  of the five control points on the connection side between the box and 

lid are 1.0, 6.0, 12.0, and 50.0, respectively for Figures 7.15(a), (b), (c) and (d). Figures 

7.15(b)-(d) are done with VGBU2 while the box construction is shown in Figure 7.10. 

7.4.3 Skewing in Both u and v Directions 

Increasing or decreasing ),(1 jiuβ  and ),(1 jivβ  together with VMB1 can make the 

skewing depart from or approach to a control point in both u and v directions 

simultaneously. 

 

(a) (b) 

(c) (d) 
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Figure 7.15 Smoothing the Connection Side of a Clamshell Box by Using VGBU2 with Differentβu2(i, j) 

Values. (a) The Image for Five Middle Control Points on Connection Side withβu2(i, j) Value of 1.0;  

(b) Image withβu2(i, j) Value of 6.0; (c) Image withβu2(i, j) Value of 12.0; (d) Image withβu2(i, j) Value of 

50.0; (e) Image for Completed Clamshell Box Viewed from a Different Angle. 

Sometimes, it is necessary to balance the skewing in both u and v directions. Figure 

7.16(b) is reshaped from Figure 7.16(a) with just VBU1 (or just VBV1). It shows the 

geometric effect of increasing ),(1 jiuβ ’s (or ),(1 jivβ ’s) of the related control points to 6.0. 

Figure 7.16(c) is reshaped from Figure 7.16(a) with VMB1. It also shows the geometric 

effect of increasing both ),(1 jiuβ ’s and ),(1 jivβ ’s of the related control points to 6.0. It 

can be seen that varying ),(1 jiuβ  and ),(1 jivβ  together makes petals, each of which is 

one Bézier-spline patch, more crowded together than varying only ),(1 jiuβ  (or ),(1 jivβ ) 

does. 

7.4.4 Tenseness in Both u and v Directions 

Increasing or decreasing ),(2 jiuβ  and ),(2 jivβ  together with VMB2 can have the 

tenseness pulling towards or pushing away from a control point in both u and v directions 

simultaneously. 

In some situations, it is not enough to use only VBU2 or VBV2 on a control point. Figure 

7.17(b) (or Figure 7.8(b)) is reshaped with VBU2 by increasing only ),(2 jiuβ  of the 

control point on the shoulder marked with a red arrow of Figure 7.17(a) (or Figure 7.8(a)). 

There is a notch left, which is marked with the red arrow in Figure 7.17(b). But when VMB2 

is used, the surface patch is pulled towards the control point totally without any notch left, 

as shown in Figure 7.17(c) (or Figure 7.8(c)). 

(a) (b) (c) 

(d) (e) 
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Figure 7.16 Difference between Geometric Effects of VMB1 and VBU1 (or VBV1). (a) The Loose Bud Shaped 

with VGP; (b) Image Reshaped from (a) with VBU1 (or VBV1) by Increasing onlyβu1(i, j)’s (or 

βv1(i, j)’s) of Relative Control Points to 6.0; (c) Image Reshaped from (a) with VMB1 by Increasing Both  

βu1(i, j)’s andβv1(i, j)’s of Relative Control Points to 6.0. 

 

 
Figure 7.17 Difference Between Geometric Effects of VMB2 and VBU2. (a) The Imaginary Flying Object;  

(b) Image Reshaped from (a) with VBU2 by Increasing onlyβu2(i, j) of the Control Point on the Shoulder 

Marked with a Red Arrow and with a Notch Left; (c) Image Reshaped from (a) with VMB2 by Increasing both

βu2(i, j) andβv2(i, j) of the Control Points without any Notch Left. 
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7.5 Novel Features of PAMA 

The PAMA is a novel algorithm which can be applied, independently, in CAD, CAGD, 

computer-aided art creation, and other related fields for surface modelling and editing. 

With the PAMA, shape parameters are added to construct surfaces with control points. 

The surface shapes can be modified by changing the shape parameters for the design 

purpose. PAMA tools are flexible and suitable for practical applications. The features are 

outlined below: 

▪ Values of position and shape parameters of each control point are controlled 

through user interactions. For instance, the user can decide interactively the length 

of the torch handle in Figures 7.6 and 7.18. The end points of torch handles in 

Figures 7.18 (b) – (g) are moved in the same direction but by different lengths of 4, 

8, 16, 36, 41, and 60 units, respectively, from the initial position shown in Figure 

7.18(a). In Figures 7.15 and 7.19, the user can decide the smoothness extent of the 

connection side of the clamshell box in two parameter directions, u and v. In the u 

direction, the curve is straightened smoothly while in the v direction, the sharp fold 

is held. Figure 7.19(a) shows the shape fold in the v direction on the connection 

side. Figures 7.19(b) – (k) show the different smoothness extents of the connection 

side in the u direction, with different ),(2 jiuβ values of 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 

14.0, 24.0, 34.0, and 50.0, respectively. 

 

 
Figure 7.18 Images to Show the Control on the Position of the Control Point at the End of the Torch Handle. 
(a) The Initial Position; (b) – (g) Positions Moved by 4, 8, 16, 36, 41, and 60 Units, Respectively, in the Same 

Direction. 
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Figure 7.19 Images to Show the Control on the Different Smoothness Extents of the Connection Side of the 
Clamshell Box. (a) The Shape Fold in the v Direction of the Connection Side; (b) – (k) The Curves in the u 

Direction of the Connection Sides Reshaped with Different βu2(i, j) Values of 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 

14.0, 24.0, 34.0, and 50.0, respectively. 

 

▪ The user can adjust the object shape at any time by interweaving different tools. 

The sequence of processing steps does not affect the final result if the sum of 

application of each used tool is kept uniform in different processes. For example, 

Figures 7.20 and 7.21 show two different processing chains to create an ashtray 

with the same shape, respectively. Figure 7.20 is the chain that the applications of 

VGP are kept first until the four sides are formed, and then the applications of 

VGBU2 or VGBV2 are done continually until the shape of ashtray is accomplished. 

Figure 7.21 is a different chain from Figure 7.20. The chain in Figure 7.21 is that the 

applications of VGP and VGBU2 (or VGBV2) are done four times in turn. The 

condition that the same shape of ashtray can be attained in both ways, as shown in 

Figures 7.20(h) and 7.21(h), is that the two ways have the same total amounts of 

VGP, VGBV2, and VGBV2 applications, respectively, for each of control points. 

That is, the sum of varied amount of VGP applications for each of control points of 

all the steps of Figure 7.20 is equal to the sum of VGP applications to the same 

control point of all the steps of Figure 7.21. The sum of amount of VGBU2 (or 

VGBV2) applications for each of control points of all the steps in Figure 7.20 are 

equal to one of VGBU2 (or VGBV2) applications for the same point of all the steps 

in Figure 7.21. 

▪ PAMA tools can help the user accumulate experience and inspiration in the 

modelling process. The user can edit the model to satisfy the artistic intuition or 
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creative purpose. 

▪ The control points can be defined by users. It provides them the freedom to 

manipulate the work at the very beginning of designs. 

▪ The PAMA can be applied in modelling and editing of open and closed surfaces. In 

the examples, Figures 7.7, 7.9 and 7.10 are open surfaces while Figures 7.6, 7.8, 

and 7.12 are closed surfaces. 

 

 

 
Figure 7.20 A Processing Chain to Create an Ashtray. (a) – (d) Images Reshaped with a List of VGPs; 

(e) – (h) Images Reshaped from (d) with a List of VGBU2s or VGBV2s. (h) The Completed Ashtray. 
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Figure 7.21 A Different Processing Chain from Figure 7.20 to Create an Ashtray with the Same Shape as 

Figure 7.20(h). (a) Image Shaped with VGP; (b) Image Reshaped from (a) with VGBU2 or VGBV2; (c) Image 
Reshaped from (b) with VGP; (d) Image Reshaped from (c) with VGBU2 or VGBV2; (e) Image Reshaped 
from (d) with VGP; (f) Image Reshaped from (e) with VGBU2 or VGBV2; (g) Image Reshaped from (f) with 

VGP; (h) The Completed Ashtray Reshaped from (g) with VGBU2 or VGBV2. 

 

7.6 Chapter Summary 

In this chapter, the novel algorithm for surface modelling and editing, PAMA, is presented. 

Before the presentation of PAMA, the preliminary is introduced. The PAMA algorithm and 

surface modelling and editing with PAMA are introduced. Different effects of shape 

parameters are also discussed. Finally, the novel features of PAMA are outlined. 

The applications of the PAMA in this chapter are programmed and verified on a general 
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purpose computer environment of the SAMAUNG’s R480 laptop computer. The PAMA is 

also ported to the FPGA-based ES that is discussed in the previous chapters. Chapter 8 

will detail the results of the PAMA applications on the FPGA-based ES. 

 

 



 

 

 

 

Chapter 8  Results of Surface Modelling and Editing with PAMA on 

FPGA-based ES 

 

Applications on surface modelling and editing with the PAMA on the general-purpose 

computer environment have been presented in Chapter 7. In this chapter, results of 

surface modelling and editing with the PAMA on the FPGA-based ES are presented and 

analysed. 

First, the verification methodology is introduced. Results of the PAMA application on the 

FPGA-based ES are given along with the corresponding results on a laptop computer. 

Then, graphics applications on the FPGA-base ES are analysed and summarised in order 

of system layers from the hardware system up to applications. 

 

8.1 Verification Methodology 

Since the solution to graphics applications on the FPGA-based ES presented in this 

research is a hybrid one including software and hardware, it is necessary to analyse 

applications of surface modelling and editing with the PAMA in the FPGA-based ES from a 

system perspective. Each layer in this system from the hardware system to the 

applications makes its contribution and has its effect on the results. Thus, the analysis on 

results must take all of them into consideration. 

In the next section, two groups of results are presented and compared. One group are 

the results of surface modelling and editing with the PAMA on the FPGA-based ES. The 

other group are the results of surface modelling and editing with the PAMA on the 

general-purpose computer – a laptop computer. The latter are generated on a platform 

where the hardware system, operating system, and OpenGL implementation have been 

verified and wide-accepted before this project and will be detailed in Section 8.3. The 

PAMA is mathematically proved in Appendix. The comparison between the above two 

groups of results can show the effect of surface modelling and editing with the PAMA on 

the FPGA-based ES. Furthermore, the FPGA-based ES and its parallel processing are 

verified when the PAMA is applied to the FPGA-based ES platform. 
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8.2 Results of PAMA Applications in the FPGA-based ES 

With the Mesa-OpenGL implementation, surface modelling and editing with PAMA have 

been done in parallel and verified on the FPGA-based ES.  

To make comparisons easy and equitable, the following results on the FPGA-based ES 

are presented along with the corresponding results on the laptop computer. Two groups of 

images are taken with the same resolution, 800 X 480 pixels, and the same black 

background when programs of PAMA are executed. The resolution for the result images of 

FPGA-based ES is the one of the LCD (shown on the right in Figure 3.4 and in Figure 8.1) 

while the resolution for the result images in the laptop computer is that of the window for 

the graphics applications running on the laptop. 

Since the HAL and operating system of FPGA-base ES do not include the facility of print 

screen that operating systems in general-purpose computers usually provide, the images 

displayed on the LCD on the FPGA-based ES cannot be printed out with the print screen 

facility when programs of PAMA run in the ES. The images for results of the laptop 

computer are obtained with the print screen facility of Microsoft Windows. In addition, the 

figures for results on the FPGA-based ES are pictures taken of the LCD with a digital 

camera of Sony Cyber-shot DSC-P73 when programs of surface modelling and editing are 

executed in the FPGA-based ES. Figure 8.1 is a whole picture of table taken of the LCD. 

Other figures of the FPGA-base ES in the rest of this chapter are main parts cut from the 

original pictures of the LCD in order to facilitate the comparison. Therefore, this technique 

distinction between these two groups of figures exists.  

 

Figure 8.1 A Picture of Table Taken of the LCD when Programs of Surface Modelling and Editing with PAMA 
Run in the FPGA-based ES. 

Figures 8.2(a)-(d) show the changing process of the table and chair on the FPGA-based 
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ES. These figures are main parts of pictures taken of the LCD. Figures 8.3(a)-(d) show the 

corresponding results of changing process of the table and chair that are done on the 

laptop computer, as shown in Figure 7.11. They are printed out with the print screen 

facility of Microsoft Windows. 

 

   
            (a)                            (b) 

   
             (c)                           (d) 

Figure 8.2 A Series of Changing from a Flat Board to a Table and Chair with PAMA on the FPGA-based ES.  
(a) The Flat Board; (b) The Table; (c) The Semi-finished Chair; (d) The Completed Chair. 

 

 

               (a)                            (b) 

  

               (c)                            (d) 

Figure 8.3 A Series of Changing from a Flat Board to a Table and Chair with PAMA on the Laptop Computer. 
(a) The Flat Board; (b) The Table; (c) The Semi-finished Chair; (d) The Completed Chair. 

 

Figures 8.4(a)-(d) show the changing process of a clamshell box on the FPGA-based 

ES. These figures are main parts of pictures taken by the digital camera. Figures 8.5(a)-(d) 

show the corresponding results on the laptop computer, which are also shown in Figure 
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7.10. The latter are printed out with the print screen facility of Microsoft Windows. 

 

   
             (a)                           (b) 

   
             (c)                           (d) 

Figure 8.4 A Series of Changing from a Flat Board to a Clamshell Box with PAMA on the FPGA-based ES.  
(a) The Flat Board; (b) The Semi-finished Box with a Half Lid; (c) The Semi-finished Box with a Full Lid; 

(d) The Completed Clamshell Box. 

  

             (a)                                (b) 

  

             (c)                                 (d) 
Figure 8.5 A Series of Changing from a Flat Board to a Clamshell Box with PAMA on the Laptop Computer. 

(a) The Flat Board; (b) The Semi-finished Box with a Half Lid; (c) The Semi-finished Box with a Full Lid;    
(d) The Completed Clamshell Box. 

 

Figures 8.6(a)-(d) show the changing process of a flower bud on the FPGA-based ES. 

These figures are main parts of pictures taken with the digital camera. Figures 8.7(a)-(d) 

show the corresponding results on the laptop computer, which are also shown in Figure 

7.12. The latter are printed out with the print screen facility of Microsoft Windows. 
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             (a)                              (b) 

  
             (c)                              (d) 

Figure 8.6 A Series of Changing from a Flat Box to a Flower Bud with PAMA on the FPGA-based ES.  
(a) The Flat Box; (b) The Semi-finished Flower Bud; (c) The Semi-finished Flower Bud Viewed in a Different 

Angle; (d) The Completed Flower Bud. 

 

              (a)                             (b) 

 

              (c)                              (d) 
Figure 8.7 A Series of Changing from a Flat Box to a Flower Bud with PAMA on the Laptop Computer.  

(a) The Flat Box; (b) The Semi-finished Flower Bud; (c) The Semi-finished Flower Bud Viewed in a Different 
Angle; (d) The Completed Flower Bud. 

 

8.3 Discussions of Graphics Applications on FPGA-based ES 

As graphics applications, the programs of surface modelling and editing with the PAMA 

are used to verify the entire hybrid ES – FPGA-based ES. As shown in Figure 1.1, this 

hybrid ES, from the top down to the bottom, includes the algorithm for surface modelling 

and editing (PAMA), Mesa-OpenGL implementation, combination of Mesa-OpenGL to 

HAL, and FPGA-based embedded hardware system. Figures 8.1, 8.2, 8.4, and 8.6 are the 

test results on this platform. 

  In the corresponding environment of general-purpose computer, the hardware system is 
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the SAMAUNG’s R480 laptop computer. The operating system is Microsoft Windows 7. 

The OpenGL implementation is the one for Microsoft Windows. All of them are verified and 

accepted by many researches in academic and industry societies before this project. 

Figures 8.3, 8.5, and 8.7 are the results generated on this platform. 

Compared with the images printed out on the laptop computer, as shown in Figures 8.3, 

8.5 and 8.7, Figures 8.2, 8.4 and 8.6 (of FPGA-based ES) seem to have poorer 

performance. However, a comparison of technical specifications between the two 

environments in Section 8.3.1 will indicate that the FPGA-based ES achieves the graphics 

application goal by balancing the system performance with the computation, storage, and 

power costs. 

The user interaction for surface editing has been carried out with four on-board buttons 

(as shown in Figure 3.8). By pressing buttons, the surface shape can be changed. 

The following discussions of graphics applications on the FPGA-based ES are 

summarised in order of system layers from the hardware system up to applications of the 

PAMA. 

8.3.1 Distinction between Two Hardware Systems 

Table 8.1 presents a comparison of technical specifications between the two 

environments. It can show the very limited resources, memory and processor speed that 

the FPGA-based ES has, compared with the laptop computer.  

Table 8.1 Comparisons between Environments of Laptop Computer and FPGA-based ES 

 Laptop Computer FPGA-based ES  

Microprocessor Intel Core i5 CPU M 460 Altera Nios II 

Microprocessor Speed 2.53 GHz 100 MHz 

Main Memory Space 3.36 GB (4 GB Available) 2 X 64 MB 

Display Adapter ATI Mobility Radeon HD 

5470 GPU 

None 

Display Memory 2 GB None 

Maximum Resolution (pixels) 2560 X 1600 800 X 480 

 

In Table 8.1, the processor of FPGA-based ES is the Altrea Nios II at the speed of 100 

MHz whereas the microprocessor of the laptop computer is the Intel Core i5 CPU M 460 at 

the speed of 2.53 GHz. The main memory space in the FPGA-based ES is 2 X 64 MBytes 

while that in the laptop computer is 3.36 GBytes. There is a display adapter of ATI Mobility 

Radeon HD 5470 GPU in the laptop computer while there is not in the FPGA-based ES. 
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There is a memory of 2 GB specified for display in the laptop computer, but there is not in 

the FPGA-based ES. The maximum resolution of screen on the laptop computer is 2560 X 

1600 pixels while that of the LCD in the FPGA-based ES is 800 X 480 pixels. 

8.3.2 Difference between Two OpenGL Implementations 

In two environments of the general-purpose computer and FPGA-based ES, except for the 

distinctions between their hardware systems and APIs, there is another difference 

between them. It is the difference between their OpenGL implementations.  

In the general-purpose computer environment, the OpenGL implementation is the 

OpenGL for Microsoft Windows Operating System, which has been widely accepted in 

Microsoft Windows and popularly applied to the computer graphics. 

  In the FPGA-based ES, the Mesa-OpenGL implementation for this platform is first 

applied after its development. Thus, the applications of surface modelling and editing with 

the PAMA to the general-purpose computer environment are references for the verification 

of the entire FPGA-based ES for the surface modelling and editing with the PAMA. From 

the perspective of system architecture, the former provide references for not only the 

PAMA but also the Mesa-OpenGL implementation on the FPGA-based ES platform. 

  For the Mesa-OpenGL implementation, there are three issues that need to be analysed 

in detail. They are the texture mapping, fixed point system and graphics processing 

bottleneck. 

8.3.2.1 Texture Mapping 

Compared with Figures 8.3, 8.5 and 8.7, in Figures 8.2, 8.4 and 8.6, the texture mapping 

has not provided as good performance as on the laptop computer yet. One reason for this 

is that the LCD resolution is lower than needed. Since the surface is divided into many tiny 

triangles, each scan line in a triangle often includes just one or two pixels. It results in the 

texture pattern being linearly degraded, and many details cannot be mapped in this tiny 

range. Another reason is that the transition between the tiny triangles is not so detailed for 

a high visual performance. A more effective scheme is needed for antialising. 

8.3.2.2 Fixed Point System 

The images shown in Figures 8.2, 8.4 and 8.6 give the similar geometric sense and visual 

performance as in Figures 8.3, 8.5 and 8.7. It indicates that the accuracy of the fixed point 

system can satisfy the computations of the Bézier-spline surface fitting algorithm and 

PAMA. In fact, the floating point issue in this project is important and common for FPGA 

implementations. Many FPGA systems are less successful in processing applications 

based on floating point arithmetic, especially double-precision (El-Ghazawi et al 2008). 

The disadvantage of floating point is its heavy usage of FPGA resources. According to the 
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study of El-Ghazawi et al (El-Ghazawi et al 2008), integer arithmetic applications can 

achieve high performance in fine-grained parallelism under area constraints. 

8.3.2.3 Graphics Processing Bottleneck 

The graphics processing speed of FPGA-based ES is slower than that of the laptop, in 

which all the editing operations can be real time. To modify the object shape on the 

FPGA-based ES, it takes around nine seconds for the table and chair and half a minute for 

the flower. 

In the study of Kuehne et al 2005, they argue that no matter how well a program is 

written, one section of the program will always execute more slowly than any of the rest of 

the program. The slowest part of the program is called the bottleneck. They also give three 

possibilities of bottleneck in an OpenGL implementation, being filling limited, vertex limited, 

and application limited. 

For this project, the bottleneck is vertex limited and partly application limited. Since the 

size of full-screen window on the LCD is only 800 X 480 pixels, it is able to flush and 

re-flush all the pixels on the screen in real time continuously for still 3D rendering. Thus, 

the bottleneck is not filling limited. If the application is only to display still surfaces rather 

than the surface editing, which requires a lot of vertex transformation, the 3D rendering 

can be real time. Thus, the bottleneck results partly from applications. 

The evaluation of texture mapping and vertex transformation of the triangle strips costs 

most of the execution time. The object deformation takes a longer time than real time. It is 

about nine seconds, less or more dependent on the complexity of the objects. The triangle 

strips are needed when the Bézier-spline surface is drawn. For the example of the table 

and chair in Figure 8.2, the triangle strips consist of 42 triangles for each strip, 21 strips for 

each Bézier patch, and 49 patches and 43218 triangles in total. As regards the flower 

example in Figure 8.6, there are 91 patches and 80262 triangles in total. The object 

surfaces are broken down into such a tiny extent that some scanning lines are composed 

of just one or two pixels when the triangles are written into the frame buffer. 

The evaluation of vertex transformation is limited by the small memory of 2 X 64 MBytes 

of the FPGA board of Altera ESs Development Kit, Cyclone III Edition. 

8.3.3 Storage and Computing Costs of PAMA 

Discussions of the previous chapters have shown that the computer graphics often 

requires large storage and computing costs, especially for 3D rendering. In this project, 

the hybrid solution with the FPGA-base ES has a restricted storage space, and the shape 

editing with user interactions in real time is heavily influenced by the computing cost.  

Compared to subdivision and deformation methods discussed in Section 2.5, the PAMA 
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can eliminate the large storage requirement and computing cost of intermediate processes 

because the interpolated points are generated mainly from the original control points 

without intermediate processing. 

Compared specifically with the subdivision work by Kazakov (Kazakov 2007) and Bolz 

and Schroder (Bolz and Schroder 2002), the PAMA has better performances in terms of 

input data, computing cost, and vertex buffer storage, which are detailed as follows: 

▪ With the PAMA, the input data include the original control points of the control 

mesh while subdivisions include a list of vertices making up the control mesh and a 

variable-size list of vertices from its 1-ring neighbourhood. 

▪ The PAMA requires 52 multiplications, 18 divisions, and 52 additions per control 

patch. Kazakov’s work (Kazakov 2007) requires 123 multiplications and 248+2k 

additions per control mesh tessellated to a two-level subdivision, where k is the 

valence of the only extraordinary vertex. Bolz and Schroder’s work (Bolz and 

Schroder 2002) requires 200+75k multiplications and 175+75k additions. For a 

simple recursive application of subdivision rules, given by Kazakov’s work 

(Kazakov 2007), it requires 40 multiplications and 89+4k additions per face for 

tessellation to a two-level subdivision. 

▪ The PAMA requires four times of buffer storage for the interpolated points as that 

for the original control points. One- and two-level subdivision meshes require four 

and sixteen times of vertex buffer storage as that of a control mesh. 

 

8.4 Chapter Summary 

In this chapter, the verification methodology is introduced first. Then, two groups of results 

of surface modelling and editing with the PAMA on two environments, which are the 

FPGA-based ES and the laptop computer, are presented together. The discussions of 

graphics applications on the FPGA-base ES are detailed in order of system layers from 

the hardware system up to the applications. 

In general, when considering the graphics rendering, speed-up is the first requirement, 

which is achieved at a high price of the memory space and processor ability that are 

designated specifically for graphics processing, such as, GPU in the laptop. From a 

practical standpoint, there are many situations that may limit the speed, such as the ES 

applications. FPGAs are highly desirable from an economic perspective given the cost 

difference between FPGAs and microprocessors, and they are particularly suitable for 

special-purpose systems. 

Although the FPGA looks like a low-cost and low-quality solution to the graphics 

rendering with OpenGL compared with the general-purpose computer with the high-end 
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GPU, the FPGA does give an alternative option for graphics applications with the low 

computation, storage and power costs. For academic researches, a new exploration in a 

new direction looks imperfect at the beginning, just like what has been done in this project. 

This research, however, presents a new hybrid solution to graphics applications by using 

the FPGA platform to draw and edit 3D objects with user interactions. 

 

 

 



 

 

 

 

Chapter 9  Future Work 

 

Since this research involves the FPGA-based ES for graphics applications, Mesa-OpenGL 

implementation, parallelism processing, and surface modelling and editing with the PAMA, 

the future work is discussed in five aspects. These five aspects are the future work for the 

methodology of hybrid design of application-specific ESs with software and hardware 

components, FPGA-based ESs, OpenGL implementations, parallelism processing and the 

PAMA, respectively. 

 

9.1 Future Work for Methodology of Hybrid Design of Application-specific ESs with 
Software and Hardware Components 

The hybrid way of solving specified applications with FPGA-based ESs presented in this 

thesis is different from those of the separate software and hardware solutions. The future 

work for this hybrid scheme is as follows. 

▪ This hybrid methodology needs to be advanced and completed so that 

application-specific ESs can be designed and implemented with software and 

hardware components via a practical process for not only academic researches but 

also electronic commodity developments.  

▪ System-level verification methods need to be developed and enhanced for the 

hybrid design and implementation of application-specific ESs in order to guarantee 

that the hybrid design and implementation of an ES meet requirements of its target 

applications. 

▪ A new mathematic system for this hybrid way of constructing a system for specified 

applications needs to be established. The new mathematic system needs to 

combine or include the digital and analogue domains so that the hybrid 

methodology can have a mathematic foundation to support it. 
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9.2 Future Work for FPGA-based ESs 

Since the hybrid scheme needs to consider both software and hardware during design and 

implementation of an FPGA-based ES, the conventional environments for design of 

separate software and hardware cannot satisfy the requirements of an entire system 

design that needs to consider both software and hardware during the process of design 

and implementation. To promote this hybrid scheme, the future work needs to be done as 

follows. 

▪ Maintaining and advancing of design environments for FPGA-base ESs with the 

hybrid way need to accumulate more libraries and tools so that the facilities in 

these environments can be as available and convenient as those of software 

programming. 

▪ Developing and advancing of hybrid design environments also need raw recruits to 

observe that more opportunities will benefit ESs than software programming if the 

potential of ESs can be explored by more researchers and engineers. The lower 

popularity and higher speciality of recent ESs can lead to openings for good ES 

designers and developers. These can help the ES community grow quickly. 

 

9.3 Future Work for OpenGL Implementations 

The standards of OpenGL and OpenGL ES can be implemented in varied hardware 

platforms. When they are implemented to realise 3D rendering with user interactions on a 

new hardware platform, some tasks must be undertaken. These tasks are listed as 

follows. 

▪ User interactions need the support of a simple keyboard, which can provide 

adequate keys and allow users to manipulate graphics objects flexibly. A touch 

screen is an alternative tool of user interactions for portable gadgets, but its device 

drivers for 3D rendering must be developed before it functions as an effective input 

and output device for user interactions of 3D graphics applications. 

▪ High-quality 3D images need the support of an effective antialiasing technique. 

This technique needs to produce smooth transition between tiny patches that are 

usually used in complex objects’ rendering, such as tiny triangles in Bézier-spline 

surface fitting. 

▪ High-quality 3D images also need a high-resolution LCD screen (such as 1024 X 

512 pixels or more). It needs to display details of complex objects and allow proper 

texture mapping. 

▪ A hardware solution to an advanced algorithm is required to speed up graphics 
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processing if this algorithm is repeated multiple times during 3D rendering. For 

instance, the part of triangle processing and writing in the frame buffer for 

Bézier-spline surfaces needs to be transformed to a hardware solution with the 

C2H tool of the Altera ESDK. This part needs to be integrated with the 

FPGA-based embedded hardware system to accelerate the 3D rendering because 

it is at the low layer of the software system, close to the HAL, and repeated many 

times during the execution of the PAMA. 

 

9.4 Future Work for Parallel Processing 

The pipelines and co-processors need to receive an emphasis in the parallel computing 

community because they can effectively speed up computing and processing and help to 

enhance the entire performance of a system. They need to gradually become parallelism 

mainstreams of the modern parallel theory in order to be widely used by designers during 

the process of system design and implementation. 

 

9.5 Future Work for PAMA 

As the increasing density of FPGA chips, more complex and higher-quality FPGA devices 

than the Altera Cyclone III 3C120F780 adopted by this research are available. They can 

provide larger storage space and faster processor units. In this situation, the PAMA needs 

to be enhanced in several aspects as follows. 

▪ More complex objects (with a grid of 1M vertices) need to be modelled and edited 

with the PAMA. An effective technique of manipulating the shape of complex 

objects via user interactions needs to be found because a complex object may 

have more control points than a simple one. Each of control points has its position 

and four shape parameters to be manipulated. When the number of control points 

increases, the number of parameters to be changed increase five times as many as 

the number of control points. This issue must be handled in an effective way. 

▪ The constructions of four inside interpolated points of a Bézier-spline patch with the 

PAMA can be changed according to conditions of 0G , 1G ,or 2G . These changes 

can produce different geometric effects on the common boundary curves between 

patches. Furthermore, they can meet the needs for different design purposes. 

▪ An effective scheme for inputting or outputting a large amount of processed data of 

vertices of a complex object from or to a file needs to be found. This scheme is 

helpful for the situation where the work creation cannot be completed once by a 

designer and needs to be refined several times. 



 

 

 

 

Chapter 10  Conclusions 

 

This research has demonstrated an integrated hybrid method for graphics and video 

processing by using both hardware and software. Surface modelling and editing with the 

PAMA have been carried out and applied to the FPGA-based ES, which has been built in 

the hybrid way of hardware and software. For the hybrid method, several facilities have 

been established. They are included in four main parts of this research as follows:  

▪ The FPGA-based ES offers an alternative solution to graphics and video 

processing, which is different from a general-purpose computer platform with 

GPUs. 

▪ The Mesa-OpenGL implementation for the FPGA-based ES completes not only 

specifications of the general OpenGL ES but also additional functions needed for 

surface modelling and editing. 

▪ The parallel processing of pipelines and co-processors is used to accelerate the 

computing and processing of graphics and video;  

▪ The novel algorithm for surface modelling and editing, PAMA, has been created 

and verified. 

Conclusions for this research are summarised in five sections. The first section presents 

conclusions for the methodology for hybrid design and implementation of ESs. The other 

four sections are used for the conclusions of the above four main parts, respectively. 

 

10.1 Conclusions of Methodology for Hybrid Design and Implementation of ESs 

Along with the accomplishment and verification of the goal of this project, the hybrid 

method of solving the graphics applications has been validated. As regards this method, 

several conclusions can be summarised as follows. 

▪ The new design platform and development flow for FPGA-based ES design in the 

hybrid way presented in this thesis can provide facilities for designers and 

developers of application-specific ESs to implement the system construction for 
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designated applications in the hybrid way even though the prevailing design 

environments have not been developed completely for this method. A set of 

techniques for the hybrid system design and construction, which must take both 

hardware and software into consideration of the design flow and system 

construction, are created. These techniques include the pools of building blocks for 

hardware and software, the hierarchy of design process, and the processing order 

of the system construction and verification. 

▪ The novel hybrid approach offers new solutions to computer graphics applications. 

This hybrid methodology can provide an effective and efficient strategy to obtain an 

adequate performance of an entire ES with low costs of computing, storage and 

power. It can allow designers to treat the design and implementation of ESs from a 

system perspective and construct them in a systematic way, rather than from the 

conventional partial perspective. In this hybrid way, designers can find a solution 

with a proper performance and low costs for target applications. 

▪ This hybrid methodology can make good use of the strengths of both hardware and 

software. The parallel feature of hardware can be used during the construction of 

the hardware system and the complexity and logicality of software can be exploited 

during software programming. 

▪ The system verification method presented in the thesis can provide a verification 

method for the FPGA-based ES design for specified applications. It can use the 

completed applications to test whether or not an ES implementation meets 

requirements of the targeted applications. 

 

10.2 Conclusions of FPGA-based ES 

The FPGA-based ES for graphics applications presented in this thesis offers a new 

solution for computer graphics applications. Compared with GPUs, this solution has lower 

costs of computing, storage and power, and its lower performance can be enhanced by 

replacing relative devices and refining related algorithms. The FPGA-based ES platform 

also allows one or several developers to accomplish an entire ES design for specific 

applications, which usually needs a team including hardware engineers, device driver 

developers and application developers to be accomplished if the conventional ES 

development method is taken.  

 

10.3 Conclusions of Mesa-OpenGL Implementation 

The Mesa-OpenGL implementation provided in the thesis is established for the 

FPGA-base ES. It increases the set of existing implementations of OpenGL ES. Its 
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addition of Bézier-spline curve and surface algorithms extends the standard specifications 

of OpenGL ES. Its fixed point system satisfies the computations of Bézier-spline curve and 

surface algorithms and the PAMA. Its small footprint meets the needs of the computing 

and storage limitations of FPGA-based ESs. 

 

10.4 Conclusions of Parallel Processing 

Rather than the application programmer’s view, the hardware builder’s view taken in this 

research provides a proper standpoint from which the parallelism possibility in the hybrid 

system construction with software and hardware can be identified accurately and used 

effectively. This develops the fine-grained task parallelism in the traditional parallelism that 

emphasised the data parallelism of SIMD and MIMD. 

Compared with the partitioned parallelism that uses the spatial division of data 

processing, the pipelined parallelism employed in this research can fit more into the 

FPGA-based ES for the graphics applications. The latter makes the best use of the 

temporal division of pipeline and speeds up graphics processing.  

The video pipeline of the FPGA-based ES also functions as a co-processor, which can 

automatically work without the Nios II processor’s intervention. 

 

10.5 Conclusions of PAMA 

The conclusions about the PAMA presented in this thesis can be summarised as follows. 

▪ The PAMA has a small footprint that meets the requirements of storage, computing 

and power costs of the FPGA-based ES. 

▪ It allows users to designate control points of a surface that can be open or closed 

for their design purposes. This is necessary for the original creation of work. 

▪ It provides tools that users can use to change the shapes of object surfaces freely 

by changing independently the position, and four shape parameters of each control 

point. These tools can help users accumulate the design experience during surface 

modelling and editing. 

▪ A global composite surface joined with the PAMA is 0G  (and 0C ). This results in 

the freedom for shape variation by user interactions. It also brings varied shapes of 

not only 1G  but also 0G . The 0G  can offer a sharp fold on a common boundary 

curve between two patches whereas the 1G can only provide a smooth transition 

crossing two patches. 

 



 

 

 

 

Appendix  Continuities of PAMA 

 

In this appendix, the continuities of the PAMA will be explored. 

Since the PAMA is an algorithm that is used to generate a composite surface by joining 

bi-cubic Bézier-spline surface patches together with geometric continuities on common 

boundary curves, two relevant issues must be investigated before the exploration of 

PAMA’s geometric continuities. One is that parametric continuities and geometric 

continuities must be ascertained further. The other is that some geometric properties of 

Bézier-spline curves and surfaces, which will be used later in the PAMA’s discussion, 

must be identified as well.  

In this appendix, Sections A.1 discusses parametric continuities and geometric 

continuities. From Section A.2 to Section A.6, the geometric properties of Bézier-spline 

curves and surfaces will be studied. From Section A.7, the exploration into the PAMA will 

proceed. To articulate it, in Section A.7, the principle for the construction of control vertices 

on common boundary curves of Bézier-spline surfaces with the PAMA is presented after 

the introduction of Beta-spline curves. In Section A.8, the twists and constructions of 

corner points of patches with the PAMA are discussed. In Section A.9, the constructions of 

inside points with the PAMA are inspected. Finally, Section A.10 is used to summarise 

PAMA’s continuities. 

In the rest of discussion, Bézier-spline curves and surfaces will be simplified as Bézier 

curves and surfaces. 

 

A.1 Parametric Continuities and Geometric Continuities 

In the study of Hoschek and Lasser (Hoschek and Lasser 1993), the deductive reasoning 

of the parametric continuities and geometric continuities is provided in a mathematical way, 

which is palpable for a thorough investigation of these two types of continuities. 

  Given two parametric curves, T(u), [ ]10 ,uuu∈ , and S(w), [ ]10 ,www∈ , in 

dR (d-dimensional Riemannian space), which meet at a common point ( ) ( )10 wSuTP == , 
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we say these two curves meet with the r-order geometric continuity ( rG ), if there exists an 

algebraic curve which meets both curves T(u) and S(w) at P with contact of order r in the 

sense that the first r terms in the Taylor series expansions about the point P of the two 

given curves and the algebraic curve all agree at P (Hoschek and Lasser 1993).  

To compare the Taylor series of T(u) and S(w) with each other, if they are developed 

with respect to the same parameter, we can find the derivatives with respect to the same 

parameter and derive the conditions of r-order parametric continuities( rC ), written as  

( ) ( ) −+ =
10

|| wi

i

ui

i

wS
dw
duT

du
d , where 10 wu = , and i = 0, …, r.                         (A.1) 

  If they join with the parametric continuities with respect to the natural arc length 

parametrisation and with the assistance of the chain rule, T(u) and S(w) meet the 

conditions of geometric continuities. For the zero-, first-, and second-order geometric 

continuities ( 0G , 1G  and 2G ), the conditions are written as the following equations, 

respectively, 
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where ( )−− = 01 uww , ( ) −=
0

|1 uuw
du
dβ , and ( ) −=

0
|2

2

2 uuw
du
dβ . 

Equation A.2a is the condition of zero-order geometric continuity ( 0G ) of adjoining 

parametric curves, Equation A.2b is of first-order ( 1G ), and Equation A.2c is of 

second-order ( 2G ), respectively. 

Through the above process of deductive reasoning, since the Taylor series expansions 

of T(u) and S(w) have remainders, we can say that no matter they meet the r-order 

parametric continuities or the r-order geometric continuities, the algebraic curve agrees 

with T(u) and S(w) at P in an approximate means.  

For surfaces, the study of Hoschek and Lasser (Hoschek and Lasser 1993) states that 
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for 1C  continuity, the first partial derivatives agree along and across the common 

boundary curve between two neighbouring Bézier patches. That study also provides the 

lucid mathematical expressions of conditions of geometric continuities of parametric 

surfaces. If two parametric surfaces, T(u,v) and S(w,t), meet at a point, ( ) ( )twSvuTP ˆ,ˆˆ,ˆ == , 

after the reparametrisation of ( )twuu ,  and ( )twvv , , by using the theory of 

manifolds, the conditions for the zero-, first- and second-order geometric continuities are 

written as 

( ) ( ) ( )twStwvtwuTvuT ˆ,ˆ)ˆ,ˆ(),ˆ,ˆ(ˆ,ˆ == ,                                            (A.3a) 
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11
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Equation A.3a is the condition of 0G  of adjoining parametric surfaces, Equation A.3b is 

of 1G , and Equation A.3c is of 2G , respectively. The first-order condition has a 

straightforward geometric meaning. That is, it is that two adjoining surface patches with 
1G  have common tangent planes on their common boundary curve. We will discuss it in 

detail in Section A.4. 

  Since the 22Ψ  and 12Ψ  have a variety of first- and second-order partial derivatives 

and their varied compositions do not have definite geometric meanings, it is difficult to find 

a practical way to construct a composite surface that meets the condition of 2G .  
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A.2 Geometric Properties of Bézier Curves 

In this section, we concentrate on the geometric properties of Bézier curves that we will 

apply to the exploration of PAMA’s geometric continuities.  

A Bézier curve is formed with a control polygon that is composed of a series of control 

points. A Bézier curve of degree n is written in a Bernstein polynomial form as 

( ) ( ),
0

uBbux n
k

n

k k∑
=

=                                                             (A.4) 

where 10 ≤≤ u , and ( ) ( ) knkn
k uu

k
n

uB −−







= 1 . Its control polygon is [ ]nbbbb ,...,,, 210  and 

3
10 ,...,, Ebbb n ∈ (three-dimensional Euclidean space). We can state some geometric 

properties of the Bézier curve. 

Property 1. The Bézier curve x(u) of Equation A.4 passes through two control points at 

two ends of the curve, which are two endpoints, 0b  and nb , of its control polygon.  

  The proof of Property 1 is straightforward by replacing the value of parameter u with 0 

and 1 in Equation A.4 and having ( ) 00 bx =  and ( ) nbx =1 . 

Property 2. Both of two lines passing, respectively, through the first two control points, 

0b  and 1b , and through the last two control points, 1−nb  and nb , are tangents of the 

Bézier curve x(u) of Equation A.4.  

  Proof of Property 2. The derivative of the Bézier curve of Equation A.4 is written as 

( ) ( )uBbnux
du
d n

k
n

k k
11

0

−
∑
−

=
∆= ,                                                     (A.5) 

where kkk bbb −=∆ +1 . Two special cases of Equation A.5 are obtained by u = 0 and u = 1 

as 

( ) ( )010 bbnx
du
d

−= ,                                                          (A.6) 

and 

( ) ( )11 −−= nn bbnx
du
d .                                                         (A.7) 

Equation A.5 shows that the derivative of the Bézier curve is also a Bézier curve. But its 

coefficients are not points in 3E . They are differences of points of 3E , or vectors in 3R  

(three-dimensional Riemannian space).  
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Equation A.6 states that 1b  and 0b  determine the tangent at u = 0 while Equation A.7 

indicates that nb  and 1−nb  define the tangent at u = 1. Thus Property 2 is proved.    □ 

Then, we attempt to find a tangent at an arbitrary point of the Bézier curve. The de 

Casteljau algorithm offers an effective scheme for the Bézier curve computation, which is 

a process including multiple repeated steps (Farin 1993, and Hoschek and Lasser 1993). 

Figure A.1 shows the process to yield a point on a cubic Bézier curve with the de Casteljau 

algorithm. 

 

Figure A.1 Process of Generating a Point on the Cubic Bézier Curve with the de Casteljau Algorithm. 
Properties 2 and 3 can be observed. Property 2 is that Two Lines Passing Through Control Points 0 and 1, 
and Through Control Points 2 and 3, respectively, are Tangent to the Bézier Curve. Property 3 is that the 
Line Passing through the Intermediate Points 0 and 1 at the Second Step (also the Second Last Step) is 

Tangent to the Cubic Bézier Curve.  

The de Casteljau algorithm can generate the tangent at any point of the Bézier curve. 

The number of steps of this algorithm is the number of control points of the Bézier curve 

minus one. 

Property 3. For a given value of parameter u, the de Casteljau algorithm yields the point 

on the Bézier curve of Equation A.4 at the last step and the tangent of the curve at that 

point with the difference of two intermediate points that are generated at the second last 

step. 

Proof of Property 3. The derivative of the Bézier curve of Equation A.4 has been given 

by Equation A.5. 

With the de Casteljau algorithm, the intermediate de Casteljau points are obtained as 

( ) ( ) ( ) ( )uububuub r
k

r
k

r
k

1
1

11 −
+

− +−= ,                                                 (A.8) 

where 




−=
=

rnk
nr

,...,1,0
,...,2,1

 , and ( ) kk bub =0 . ( )ubn
0  is the point with the parameter value u on 

Control point 0 

Control point 1 Control point 2 

Control point 3 

Intermediate point 0 
at the first step 

Intermediate point 1 
at the first step 

Intermediate point 2 
at the first step 

Intermediate point 0 
at the second step 

Intermediate point 1 
at the second step 

Curve point at 
the last step 
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the Bézier curve. ( )ubn
0  is generated at the last step of the de Casteljau algorithm and 

has the formula as 

( ) ( ) ( ) ( )uububuub nnn 1
1

1
00 1 −− +−= .                                                 (A.9) 

The intermediate de Casteljau points can be written in terms of Bernstein polynomials of 

degree r: 

( ) ( )uBbub r

i

r
iki

r
k ∑

= +=
0

,                                                         (A.10) 

where 




−=
=

rnk
nr

,...,1,0
,...,2,1

. 

Let us inspect two intermediate de Casteljau points at the second last step of the de 

Casteljau algorithm, where r = n-1, 

( ) ( )uBbub n

i

n
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n
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0 ,                                                        (A.11) 

and 
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n
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1
1 .                                                       (A.12) 

Subtracting Equation A.12 and Equation A.11 and replacing i with k, we can obtain 

( ) ( ) ( ) ( ) ( ) ( )uBbbuBbuBbubub n
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  Compare Equation A.13 with Equation A.5. The difference between them is the multiple, 

n. After normalised, they are the same unit vector in 3R . Since Equation A.5 indicates the 

tangent of the Bézier curve of Equation A.4, so does Equation A.13. The point, 

( ) ( )uxubn =0 , is also a point of this tangent, which is observed in Equation A.9. Therefore, 

( )ubn 1
0
−  and ( )ubn 1

1
−  determine the tangent passing through the point of ( )ubn

0  that can 

be any point on the Bézier curve of Equation A.4 as 10 ≤≤ u .  

Thus Property 3 is proved.                                                    □ 

The tangents of Properties 2 and 3 for the cubic Bézier curve are shown in Figure A.1. 

 

A.3 Composite Bézier Surfaces 

Following the discussion of the PAMA in Chapter 6, we choose one patch of a composite 

bi-cubic Bézier surface, which is formed with a control net with four corner vertices, [W(3i, 

3j),W(3i, 3(j+1)),W(3(i+1),3(j+1)),W(3(i+1), 3j)], as shown in Figure A.2. The patch consists 

of eight points on four boundaries, two on each boundary. There are four points inside the 
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patch. The number of overall control vertices of one Bézier patch is sixteen. We stitch 

these patches together with the PAMA to form a composite Bézier surface and will 

ascertain the geometric continuities of the composite Bézier surface later. 

 

Figure A.2 Control Net of one Patch of the Composite Bi-cubic Bézier Surface, Formed with Four Corner 
Control Vertices, [W(3i, 3j), W(3i, 3(j+1)), W(3(i+1), 3(j+1)), W(3(i+1), 3j)]. 

Let us explore a special case of a Bézier surface (or patch). The tense product form of 

the Bézier patch with degree (3, 3) is defined as 

( ) ( ) ( ) ( ),3,3, 333

0

3

0, vBuBljkiWvux lkk lji ∑
=

∑
=

++=                                       (A.14) 

where 1,0 ≤≤ vu , ( ) ( ) kk
k uu

k
uB −−








= 33 1

3
, and ( ) ( ) ll

l vv
l

vB −−







= 33 1

3
. 

The patch xi,j(u,v) is a map of the unit square 1,0 ≤≤ vu  in the u, v-plane, as shown in 

Figure A.3. This unit square is the domain of parameters u and v while the patch xi,j(u,v) is 

its range. 

To derive the geometric properties of this tense-product Bézier patch, we must analyse 

further the construction of Equation A.14. According to Farin 1993, a tense-product Bézier 

patch is the locus of a Bézier curve that is moving through space along another Bézier 

curve while changing its shape at the same time. Take the Equation A.14 as the example. 

The former Bézier curve is a generating curve, which is,  

( ) ( )uBbux kk kg
33

0
∑
=

= . 

Let each kb  traverse another Bézier curve, 

( ) ( )vBbvb ll lkk
33

0 ,∑
=

= .                                                          (A.15) 

W(3i, 3j) 

W(3i, 3(j+1)) W(3(i+1), 3(j+1)) 

W(3(i+1), 3j) 

W(3(i+1), 3j+1) 

W(3(i+1), 3j+2) W(3i, 3j+2) 

W(3i, 3j+1) 

W(3i+1, 3(j+1)) W(3i+2, 3(j+1)) 

W(3i+1, 3j) W(3i+2, 3j) 

W(3i+1, 3j+1) W(3i+2, 3j+1) 

W(3i+1, 3j+2) W(3i+2, 3j+2) 
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We derive the tense-product Bézier patch of Equation A.14 by combining the above two 

formulas and replacing with ( )ljkiWb lk ++= 3,3, . 

 

Figure A.3 A Patch, xi,j(u, v), of the Composite Bézier Surface and its v-Isoparametric Curves. [W(3i, 3j), 

W(3i+1, 3j), W(3i+2, 3j), W(3(i+1), 3j)] are the Control Polygon of the Isoparametric Curve, xi,j(u, 0). [W0,1, W1,1, 

W2,1, W3,1] are the Control Polygon of the Isoparametric Curve, xi,j(u, 1/3). [W0,2, W1,2, W2,2, W3,2] are the Control 
Polygon of the Isoparametric Curve, xi,j(u, 2/3). [W(3i, 3(j+1)), W(3i+1, 3(j+1)), W(3i+2, 3(j+1)), W(3(i+1), 

3(j+1))] are the Control Polygon of the Isoparametric Curve, xi,j(u, 1). 

By setting the parameter u or v as a constant in Equation A.14, we obtain a u- or 

v-isoparametric curve, respectively. As each of four coefficients of any isoparametric curve 

traversing a Bézier curve in the way of Equation A.15, we can obtain an arbitrary 

isoparametric curve of the patch of Equation A.14. 

In general, we can state the following property. 

Property 4. Given a Bézier surface of degree (m, n) in 3E , 

( ) ( ) ( )vBuBbvux n
l

m
k

m

k

n

l lk∑
=

∑
=

=
0 0 ,, , where 1,0 ≤≤ vu ,                                 (A.16) 

its u- or v-isoparametric curves are Bézier curves.  

Proof of Property 4. Set u as a constant, saying c, in Equation A.16. We obtain 
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klk
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0 0 ,0 0 , ][, .                                (A.17) 

  To make it obvious, we define new coefficients as the bracketed terms as follows 

( )cBbb m
k

m

k lkl ∑
=

=
0 ,


.                                                           (A.18) 

Substituting the bracketed terms in Equation A.17 with Equation A.18, we obtain 

W(3i, 3(j+1)) 

W(3i, 3j) 

W(3(i+1), 3(j+1)) 

W(3(i+1), 3j) 

W3,2 

W2,2 W1,2 

W0,2 

W3,1 

W2,1 W1,1 

W0,1 W(3i+2, 3j) W(3i+1, 3j) 

W(3i+2, 3(j+1)) W(3i+1, 3(j+1)) 
xi,j(u, v) xi,j(u, 1) 

xi,j(u, 2/3) 

xi,j(u, 1/3) 

xi,j(u, 0) 
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( ) ( )vBbvcx n
l

n

l l∑
=

==
0

,


.                                                        (A.19) 

New coefficients can be seen as the control points of control polygon, ],...,,[ 10 nbbb


. 

Equation A.19 represents an arbitrary u-isoparametric curve of the Bézier surface x(u,v) 

and is a Bézier curve with degree n. 

Analogously, by setting v as a constant, c, we can obtain a v-isoparametric curve of the 

Bézier surface x(u,v) that is a Bézier curve with degree m as the following equation 

( ) ( )vBbcux m
k

m

k k∑
=

==
0

,


,                                                       (A.20) 

where ( )cBbb n
l

n

l lkk ∑
=

=
0 ,


.                                                     (A.21) 

Therefore, Property 4 is true.                                                    □ 

Let us return to the previous bi-cubic Bézier patch case. Four v-isoparametric curves of 

the patch, which having the constant values of v, are chosen. With Property 4, we can set 

the parameter v to an arbitrary value that ]1,0[∈v . Without loss of generality, these values 

are assigned as 0, 1/3, 2/3, and 1.0, respectively. The control polygons of these four 

isoparmetric curves are computed as follows. 

For v=0, the control polygon of the isoparametric Bézier curve xi,j(u,0) is [W(3i, 

3j),W(3i+1, 3j),W(3i+2,3j),W(3(i+1), 3j)]. These four points are the control points of the 

boundary of the Bézier patch, xi,j(u,v). 

For v=1/3, the control polygon of the isoparametric Bézier curve xi,j(u,1/3) consists of 

four control points that are intermediate points computed by replacing v with 1/3 in 

Equation A.14 and as the follows, 

( ) ( )3
13,3 33

01, llk BljkiWW ∑
=

++=  

( ) ( ) ( ) ( ))1(3,3
27
123,3

9
213,3

9
43,3

27
8

++++++++++= jkiWjkiWjkiWjkiW ,     (A.22) 

where k=0,1, 2,and 3. 

For v=2/3, four intermediate points of the control polygon of the isoparametric Bézier 

curve xi,j(u,2/3) are computed by 

( ) ( )3
23,3 33

02, llk BljkiWW ∑
=

++=  

( ) ( ) ( ) ( ))1(3,3
27
823,3

9
413,3

9
23,3

27
1

++++++++++= jkiWjkiWjkiWjkiW ,     (A.23) 

where k=0,1, 2,and 3. 
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For v=1, the control polygon of the Bézier curve xi,j(u,1) is [W(3i, 3(j+1)),W(3i+1, 

3(j+1)),W(3i+2,3(j+1)),W(3(i+1), 3(j+1))]. These four vertices are the control points of the 

boundary of the Bézier patch, xi,j(u,v). 

These four isoparametric curves are also illustrated in Figure A.3. 

In the analogous manner, four u-isoparametric curves of the patch, which are assigned 

the parameter u with 0, 1/3, 2/3, and 1.0, respectively, can be obtained as follows. 

For u=0, the control polygon of the isoparametric Bézier curve xi,j(0,v) is [W(3i, 3j),W(3i, 

3j+1),W(3i,3j+2),W(3i, 3(j+1))].  

For u=1/3, the control polygon of the isoparametric Bézier curve xi,j(1/3,v) consists of 

four control points that are intermediate points computed by replacing u with 1/3 in 

Equation A.14 and these control points are 

( ) ( )3
13,3 33

0,1 kkl BljkiWW ∑
=

++=  

( ) ( ) ( ) ( )ljiWljiWljiWljiW ++++++++++= 3),1(3
27
13,23

9
23,13

9
43,3

27
8 ,       (A.24) 

where l=0,1, 2,and 3. 

For u=2/3, four intermediate points of the control polygon of the isoparametric Bézier 

curve xi,j(2/3,v) are computed by 

( ) ( )3
23,3 33

0,2 kkl BljkiWW ∑
=

++=  

( ) ( ) ( ) ( )ljiWljiWljiWljiW ++++++++++= 3),1(3
27
83,23

9
43,13

9
23,3

27
1 ,       (A.25) 

where l=0,1, 2,and 3. 

For u=1, the control polygon of the Bézier curve xi,j(1,v) is [W(3(i+1), 3j),W(3(i+1), 

3j+1),W(3(i+1),3j+2),W(3(i+1), 3(j+1))].  

 

A.4 First-order Geometric Continuity of Composite Bézier Surfaces 

In this section, we will explore the geometric meaning of composite parametric surfaces 

with the common boundary curves of 1G . In the studies of Farin, and Hoschek and Lasser 

(Farin 1993, and Hoschek and Lasser 1993), the condition of two adjacent patches with 
1G  is expressed in a lucid geometric manner as Definition 1, rather than in Equation A.3b. 

Definition 1. Two patches with a common boundary curve are called 1G  if they have a 

continuously varying tangent plane along this boundary curve. 
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To investigate the continuities of tangent planes of the points on the common 

boundaries, we have to look for the tangent planes at points that sit on the boundary of two 

adjoining patches. Without loss of generality, three patches, xi,j(u,v), xi-1,j(u,v), and xi,j-1(u,v), 

are chosen, as shown in Figure A.4. They are generated with three control nets, each of 

which has four corner control vertices, being [W(3i, 3j), W(3i, 3(j+1)), W(3(i+1), 3(j+1)), 

W(3(i+1), 3j)], [W(3(i-1), 3j), W(3(i-1), 3(j+1)), W(3i, 3(j+1)), W(3i, 3j)], and [W(3i, 3(j-1)), 

W(3i, 3j), W(3(i+1),3j), W(3(i+1), 3(j-1))], respectively. Their common boundary curves are 

Bézier curves, xi,j(u,0) and xi,j(0,v). 

 

Figure A.4 Tangent Planes on Common Boundary Curves of Neighbouring Bézier Patches, xi,j(u, v), xi-1,j(u, v), 

and xi,j-1(u, v).  

Let us inspect the common boundary, xi,j(u,0). Consider two points on this curve. They 

are xi,j(1/3,0) and xi,j(2/3,0). With the properties in Section A.1, we investigate the tangent 

planes at these two points on both sides of this common boundary between two Bézier 

patches, xi,j(u,v) and xi,j-1(u,v). 

With Property 3 and the de Casteljau algorithm, we can obtain two intermediate points 

passed through by the line that is tangent to the isoparametric Bézier curve xi,j(u,0) at the 

curve point xi,j(1/3,0). The curve point is written as 

( ) ( ) ( ) ( ) ( )jiWjiWjiWjiWx ji 3),1(3
27
13,23

9
23,13

9
43,3

27
80,3/1, ++++++= .           (A.26) 

In the instructive way, the computation process of a point on a bi-cubic Bézier surface 

with the de Casteljau algorithm is shown in Figure A.5. In this figure, the two superscripts 

of intermediate coefficients b’s represent the order numbers of steps for the de Casteljau 
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algorithm, the left superscript one is for the parameter u and the right one for the v; the two 

subscripts means the order numbers of intermediate coefficients, the left subscript one is 

for the parameter u and the right one for the v.  

Figure A.5 illustrates the process that the recursive computation is firstly performed on 

the parameter u and then on the parameter v. The upper part can generate four 

coefficients of a u-isoparametric curve that the parameter u is set to a constant. If the 

computation order is exchanged by being done firstly on v then on u, the computation 

result will not be varied. This algorithm provides a scheme to yield an arbitrary 

isoparameteric curve as well. 

 

 

 

Figure A.5 The de Casteljau Algorithm for Computation of a Point on a Bi-cubic Bézier Surface Consists of 
Two Parts. The First Part is the Upper Half that is Used to Compute the Coefficients on the u-Isoparametric 

Curves where the Parameter u is Set as a Constant. The Second Part is the Lower Half that is Used to 
Compute the Points on the Bi-cubic Bézier Surface. These Two Parts can be Exchanged with Modifications 

on Superscripts and Subscripts for First v Then u. In that Way, the Coefficients on the v-Isoparametric 
Curves, where the Parameter v is Set as a Constant, are Computed Firstly. In Each Part, the Computing 

Process Proceeds from Left to Right by Computing with the Formula at the Right Top of that Part. The Two 
Subscripts and Superscripts at the Right-hand Sides of Formulas Have Commas in Between Them just for 
Expressions Without any Ambiguity, but They Have the Same Meanings as Ones without Commas in Other 

Parts in this Figure and Section. 

In Section A.3, we have observed that the control polygon of the isoparametric Bézier 

curve xi,j(u,0) is [W(3i, 3j),W(3i+1, 3j),W(3i+2,3j),W(3(i+1), 3j)]. Because we compute the 

intermediate points on the curve xi,j(u,0), which is both the boundary and isoparametric 

Bézier curve, the process for computation on the parameter v with the de Casteljau 
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algorithm can be saved. The two intermediate points at the second last step on the 

parameter u at the curve point xi,j(1/3,0) are  

( ) ( ) ( )jiWjiWjiWb 3,23
9
13,13

9
43,3

9
420

01 ++++= ,                                 (A.27) 

and 

( ) ( ) ( )jiWjiWjiWb 3),1(3
9
13,23

9
43,13

9
420

11 +++++= .                             (A.28) 

Analogously, the curve point xi,j(2/3,0) and its two relevant intermediate points are 

written as the follows, 

( ) ( ) ( ) ( ) ( )jiWjiWjiWjiWx ji 3),1(3
27
83,23

9
43,13

9
23,3

27
10,3/2, ++++++= ,          (A.29) 

( ) ( ) ( )jiWjiWjiWb 3,23
9
43,13

9
43,3

9
120

02 ++++= ,                                 (A.30) 

and 

( ) ( ) ( )jiWjiWjiWb 3),1(3
9
43,23

9
43,13

9
120

12 +++++= .                             (A.31) 

With Properties 1 and 2 and Equation A.24, on the xi,j(u,v) patch side, we can find 

another tangent at the point xi,j(1/3,0) along the v direction, which passes through the 

following point, 

( ) ( ) ( ) ( )13),1(3
27
113,23

9
213,13

9
413,3

27
8

1,1 ++++++++++= jiWjiWjiWjiWW .      (A.32) 

With Equation A.25, on the xi,j(u,v) patch side, a tangent at the point xi,j(2/3,0) along the v 

direction passes through the following point, 

( ) ( ) ( ) ( )13),1(3
27
813,23

9
413,13

9
213,3

27
1

1,2 ++++++++++= jiWjiWjiWjiWW .     (A.33) 

The xi,j(1/3,0), xi,j(2/3,0), 20
01b , 20

11b , 20
02b , 20

12b , 1,1W  and 1,2W  are shown in Figure A.4. 

On the xi,j-1(u,v) patch side, by using Equations A.24 and A.25 and the Λ mark for 

distinguishing from the coefficients on the xi,j(u,v) patch side, the tangents at the point 

xi,j-1(1/3,1) and xi,j-1(2/3,1) along the v direction pass, respectively, through the following 

points,  

( ) ( ) ( ) ( )13),1(3
27
113,23

9
213,13

9
413,3

27
8ˆ

2,1 −++−++−++−= jiWjiWjiWjiWW ,      (A.34) 

and 
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( ) ( ) ( ) ( )13),1(3
27
813,23

9
413,13

9
213,3

27
1ˆ

2,2 −++−++−++−= jiWjiWjiWjiWW .     (A.35) 

  Next let us inspect the common boundary, xi,j(0,v). Consider two points on this curve, 

these being xi,j(0,1/3) and xi,j(0,2/3). We investigate tangent planes at these two points on 

both sides of the common boundary between two Bézier patches, xi-1,j(u,v) and xi,j(u,v). 

With Property 3 and the de Casteljau algorithm, we can obtain two intermediate points 

passed through by the line that is tangent to the isoparametric Bézier curve xi,j(0,v) at the 

curve point xi,j(0,1/3). The curve point and its two relative intermediate points are 

( ) ( ) ( ) ( ) ( ))1(3,3
27
123,3

9
213,3

9
43,3

27
83/1,0, ++++++= jiWjiWjiWjiWx ji ,           (A.36) 

( ) ( ) ( )23,3
9
113,3

9
43,3

9
402

10 ++++= jiWjiWjiWb ,                                 (A.37) 

and 

( ) ( ) ( ))1(3,3
9
123,3

9
413,3

9
402

11 +++++= jiWjiWjiWb .                             (A.38) 

 Analogously, the curve point xi,j(0,2/3) and its two relevant intermediate points are 

( ) ( ) ( ) ( ) ( ))1(3,3
27
823,3

9
413,3

9
23,3

27
13/2,0, ++++++= jiWjiWjiWjiWx ji ,          (A.39) 

( ) ( ) ( )23,3
9
413,3

9
43,3

9
102

20 ++++= jiWjiWjiWb ,                                 (A.40) 

and 

( ) ( ) ( ))1(3,3
9
423,3

9
413,3

9
102

21 +++++= jiWjiWjiWb .                             (A.41) 

On the xi,j(u,v) patch side, with Equation A.22, we can find another tangent at the point 

xi,j(0,1/3) along the u direction, which passes through the following point, 

( ) ( ) ( ) ( ))1(3,13
27
123,13

9
213,13

9
43,13

27
8

1,1 ++++++++++= jiWjiWjiWjiWW .      (A.42) 

On the xi,j(u,v) patch side, with Equation A.23, a tangent at the point xi,j(0,2/3) along the u 

direction passes through the following point, 

( ) ( ) ( ) ( ))1(3,13
27
823,13

9
413,13

9
23,13

27
1

2,1 ++++++++++= jiWjiWjiWjiWW .     (A.43) 

On the xi-1,j(u,v) patch side, with Equations A.22 and A.23 and by using the ~ mark for 

distinguishing from the coefficients on the xi,j(u,v) patch side, the tangents at the point 

xi-1,j(1,1/3) and xi-1,j(1,2/3) along the u direction pass, respectively, through the following 

points,  
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( ) ( ) ( ) ( ))1(3,13
27
123,13

9
213,13

9
43,13

27
8~

1,2 +−++−++−+−= jiWjiWjiWjiWW ,      (A.44) 

and 

( ) ( ) ( ) ( ))1(3,13
27
823,13

9
413,13

9
23,13

27
1~

2,2 +−++−++−+−= jiWjiWjiWjiWW .     (A.45) 

Now, we make four remarks: the plane formed with three points, 1,1W , 20
01b  and 20

11b , is 

a tangent plane of the xi,j(u,v) patch at the point xi,j(1/3,0) on the common boundary xi,j(u,0); 

the plane formed with three points, 1,2W , 20
02b  and 20

12b , is a tangent plane of the xi,j(u,v) 

patch at the point xi,j(2/3,0) on the common boundary xi,j(u,0); the plane formed with three 

points, 2,1Ŵ , 20
01b  and 20

11b , is a tangent plane of the xi,j-1(u,v) patch at the point xi,j-1(1/3,1) 

on the common boundary xi,j-1(u,1); the plane formed with three points, 2,2Ŵ , 20
02b  and 20

12b , 

is a tangent plane of the xi,j-1(u,v) patch at the point xi,j-1(2/3,1) on the common boundary 

xi,j-1(u,1). Notice that the xi,j(1/3,0) and xi,j-1(1/3,1) are the same point on the common 

boundary, xi,j(u,0) (or xi,j-1(u,1)), and so are the xi,j(2/3,0) and xi,j-1(2/3,1). These tangent 

planes are illustrated in Figure A.4.  

Analogously, we can make four remarks of tangent planes on the common boundary 

xi,j(0,v). The plane formed with three points, 1,1W , 02
10b  and 02

11b , is a tangent plane of the 

xi,j(u,v) patch at the point xi,j(0,1/3) on the common boundary xi,j(0,v); the plane formed with 

three points, 2,1W , 02
20b  and 02

21b , is a tangent plane of the xi,j(u,v) patch at the point 

xi,j(0,2/3) on the common boundary xi,j(0,v); the plane formed with three points, 1,2
~W , 02

10b  

and 02
11b , is a tangent plane of the xi-1,j(u,v) patch at the point xi-1,j(1,1/3) on the common 

boundary xi-1,j(1,v); and the plane formed with three points, 2,2
~W , 02

20b  and 02
21b , is a 

tangent plane of the xi-1,j(u,v) patch at the point xi-1,j(1,2/3) on the common boundary xi-1,j(1,v). 

The xi,j(0,1/3) and xi-1,j(1,1/3) are the same point on the common boundary, xi,j(0,v) (or 

xi-1,j(1,v)), and so are the xi,j(0,2/3) and xi-1,j(1,2/3). These tangent planes are also shown in 

Figure A.4. 

In the next section, we will give the proofs for the above remarks. Before proving these 

remarks, we require a definition of a tangent plane of a Bézier surface. 

 

A.5 Tangent Planes of a Bézier Surface 

According to the study of Dubuluowen et al 2006 (Dubuluowen et al 2006), the tangent 

plane of a Bézier surface is expressed as Definition 2. 
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Definition 2. Given a Bézier surface of degree (m, n) in 3E ,  

( ) ( ) ( )vBuBbvux n
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m
k

m

k

n

l lk∑
=

∑
=

=
0 0 ,, , where 1,0 ≤≤ vu ,                                 (A.46) 

its partial derivatives with respect of variates u and v are written as, respectively, 

( )vux
uu

x ,
∂
∂

=
∂
∂   

and  

( )vux
vv

x ,
∂
∂

=
∂
∂ , both of which are vectors in 3R . An arbitrary tangent vector of the surface 

x(u, v) at the point (u, v) is a linear combination of two partial derivative vectors, 
u
x
∂
∂  and 

v
x
∂
∂  . The subspace of 2R  space (two-dimensional Riemannian space) spanned by two 

partial derivative vectors, 
u
x
∂
∂  and 

v
x
∂
∂ , is the tangent plane of the surface x(u, v) at the 

point (u, v). 

Equations A.16 and A.46 are identical. To copy it in Definition 2 is just for facilitating the 

discussion. 

In the Bézier curve case, Equation A.5 is the derivative. Analogously, the u-partial 

derivative of the Bézier surface in the form of Equation A.46 is computed with a series of 

equations as follows (Farin 1993),  
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where lklklk bbb ,,1,
0,1 −=∆ +  and the one of left superscript represents the differential 

operation performed only on the first subscripts of control vertices, lkb , . Its v-partial 

derivative is computed in the next equation, 

( ) ( )vBuBbn
v
x n

l
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k

n

l

m
klk

1

0
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0 ,
1,0 −

∑
=

∑
−

=
∆=

∂
∂ ,                                               (A.48) 

where lklklk bbb ,1,,
1,0 −=∆ +  and the one of right superscript means the differential operation 

performed only on the second subscripts of lkb , . 

Property 5.  For a Bézier surface of degree (m, n) in 3E  with the form of Equation 

A.46, a v-partial derivative of this surface at a point (u,v) is a tangent vector of a 

u-isoparametric curve of this surface at this point, and a u-partial derivative of this surface 

at the point (u,v) is a tangent vector of its v-isoparametric curve at this point. 
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Proof of Property 5. Let us prove the v-partial derivative case. With Property 4 and 

Equations A.17 and A.19, a u-isoparametric curve of Equation A.46 (or A.16) is a Bézier 

curve with degree n. Thus, Properties 1, 2, and 3 are true for a u-isoparametric curve, and 

the de Casteljau algorithm for a Bézier curve is true for a u-isoparametric curve as well. To 

facilitate the discussion, we copy Equations A.17 and A.19 here,  

( ) ( ) ( ) ( ) ( )vBcBbvBcBbvcx n
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=

=
0 ,


.                                 

With the de Casteljau algorithm for a Bézier curve and referring to Equation 13 in the 

Proof of Property 3, we obtain a tangent of the u-isoparametric curve x(c,v) as follows, 

( ) ( ) ( ) ( )vBbbvbvb n
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l ll
nn 11
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−− −=−
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where the superscript n-1 of 1
1
−nb


 is the order number of the de Casteljau algorithm, 

which also means the second last step. 

By substituting lb


 and 1+lb


 with Equation A.18, we further obtain the following 

equation, 
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Let us inspect v-partial derivatives that are obtained with Equation A.48, 

( ) ( )vBuBbn
v
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∑
=

∑
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=
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∂
∂ , where lklklk bbb ,1,,

1,0 −=∆ + .                     

When we take v-partial derivatives, we can treat the u parameter as a constant, saying c. 

Taking u = c in Equation A.48, compare Equation A.48 to Equation A.49. After normalised, 

these two equations represent the same unit vector. Since c is arbitrary, Equation A.48 is 

a v-partial derivative of the Bézier surface x(u,v) at the point (u,v) and Equation A.49 

indicates the tangent of a u-isoparametric curve of the Bézier surface x(u,v) at this point. 

The u-partial derivative case can be proved straightforward by exchanging u and v and 

modifying the relative superscripts and subscripts. We will not give details of its proof. 

The proof of Property 5 is accomplished.                                       □ 

Let us return the proof of remarks at the end of Section A.4. 

With Definition 2 and Properties 2, 3, 4, and 5, since both the line passing through 20
01b  

and 20
11b  and line through 1,1W  and xi,j(1/3,0) in Figure A.4 are tangents on the xi,j(u,v) 



Appendix                                                                           190 

patch side, the plane formed with three points, 1,1W , 20
01b  and 20

11b  is a tangent plane of 

the xi,j(u,v) patch at the point xi,j(1/3,0) on the common boundary xi,j(u,0). Thus, the first 

remark is true. With the similar reasons, the other remarks are true as well.          □ 

To articulate them, we list these remarks palpably. 

▪ On the xi,j(u,v) side, the plane formed with three points, 1,1W , 20
01b  and 20

11b , is a 

tangent plane of the xi,j(u,v) patch at the point xi,j(1/3,0) on the common boundary 

xi,j(u,0). 

▪ The plane formed with three points, 1,2W , 20
02b  and 20

12b , is a tangent plane of the 

xi,j(u,v) patch at the point xi,j(2/3,0) on the common boundary xi,j(u,0).  

▪ On the xi,j-1(u,v) patch side, the plane formed with three points, 2,1Ŵ , 20
01b  and 20

11b , 

is a tangent plane of the xi,j-1(u,v) patch at the point xi,j(1/3,0) on the common 

boundary xi,j(u,0).  

▪ The plane formed with three points, 2,2Ŵ , 20
02b  and 20

12b  is a tangent plane of the 

xi,j-1(u,v) patch at the point xi,j(2/3,0) on the common boundary xi,j(u,0).  

▪ On the xi,j(u,v) side, the plane formed with three points, 1,1W , 02
10b  and 02

11b , is a 

tangent plane of the xi,j(u,v) patch at the point xi,j(0,1/3) on the common boundary 

xi,j(0,v). 

▪ The plane formed with three points, 2,1W , 02
20b  and 02

21b , is a tangent plane of the 

xi,j(u,v) patch at the point xi,j(0,2/3) on the common boundary xi,j(0,v). 

▪ On the xi-1,j(u,v) side, the plane formed with three points, 1,2
~W , 02

10b  and 02
11b , is a 

tangent plane of the xi-1,j(u,v) patch at the point xi,j(0,1/3) on the common boundary 

xi,j(0,v). 

▪ The plane formed with three points, 2,2
~W , 02

20b  and 02
21b , is a tangent plane of the 

xi-1,j(u,v) patch at the point xi,j(0,2/3) on the common boundary xi,j(0,v). 

 

A.6 Analysis of First Order Geometric Continuities 

To construct a sufficient condition for two adjacent bi-cubic Bézier patches, we refer to the 

scheme of Farin (Farin 1993) to construct a sufficient condition for two adjacent triangular 

Bézier patches to be 1G . According to Definition 1, a sufficient condition for two adjacent 

bi-cubic Bézier patches is that these two patches have the same tangent planes along 

their common boundary curve.  
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Following the discussion of Section A.5, we have four cases, 

▪ For two patches, xi,j(u,v) and xi,j-1(u,v), the condition of the same tangent plane on 

the point xi,j(1/3,0) of the common boundary curve xi,j(u,0) is equivalent to that four 

points, 1,1W , 2,1Ŵ , 20
01b  and 20

11b , are coplanar.  

▪ The condition of the same tangent plane on the point xi,j(2/3,0) is equivalent to that 

four points, 1,2W , 2,2Ŵ , 20
02b  and 20

12b , are coplanar. 

▪ For two patches, xi,j(u,v) and xi-1,j(u,v), the condition of the same tangent plane on 

the point xi,j(0,1/3) of the common boundary curve xi,j(0,v) is equivalent to that four 

points, 1,1W , 1,2
~W , 02

10b  and 02
11b , are coplanar.  

▪ The condition of the same tangent planes on the point xi,j(0,2/3) is equivalent to that 

four points, 2,1W , 2,2
~W , 02

20b  and 02
21b , are coplanar. 

All the above four cases are shown in Figure A.4.  

Take the case of 1,1W , 2,1Ŵ , 20
01b  and 20

11b . Let us inspect 20
01b  and 20

11b . It has been 

observed that points, 20
01b  and 20

11b , are collinear with xi,j(1/3,0). Referring to Figure A.4, if 

the coplanarity of 1,1W , 2,1Ŵ , 20
01b  and 20

11b  is held, this means that when a point moving 

and crossing the point xi,j(1/3,0) from one patch (such as xi,j-1(u,v)) to another (xi,j(u,v)) along 

the v direction, the moving direction keeps in the same tangent plane without change. 

Otherwise, the moving direction changes to another tangent plane and the point’s locus 

develops a corner when the point crosses the common boundary between patches, 

xi,j-1(u,v) and xi,j(u,v). This leads to a fold along the boundary curve xi,j(u,0) when all the 

points of a v-isoparametric curve moving from one patch (such as xi,j-1(u,v)) to another 

(xi,j(u,v)).  

The sufficient condition of the same tangent plane is further equivalent to that numbers 

α  and θ  exist such that 

2,11,1
20

11
20
01

ˆ)1()1( WWbb θθαα −+=−+ .                                           (A.50) 

  The geometric meaning of Equation A.50 is illustrated in Figure A.6. The line passing 

through two points 1,1W  and 2,1Ŵ  has an intersection (P) with the line passing through 

two points 20
01b  and 20

11b . The ratio of lengths of two line segments, [ 1,1W ,P] and [P, 2,1Ŵ ] is 

θθ :)1( − , and the ratio of lengths of two line segments, [ 20
01b ,P] and [P, 20

11b ] is αα :)1( − . 

To inspect the other three cases, [ 1,2W , 2,2Ŵ , 20
02b , 20

12b ], [ 1,1W , 1,2
~W , 02

10b , 02
11b ], and 
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[ 2,1W , 2,2
~W , 02

20b , 02
21b ], we should investigate whether or not different pairs of numbers of 

α  and θ  exist to meet the condition that is replaced with the corresponding coefficients 

in Equation A.50 for each of them. Furthermore, considering all the points on a common 

boundary curve, to meet the condition of first-order geometric continuity, we have to find 

pairs of numbers of α  and θ  for them. The study of Hoschek and Lasser 1993 provides 

the special functions for α  and θ  to create a practical method to construct control 

vertices. The authors of Hoschek and Lasser 1993 state that the special choice of the 

factors α  and θ  may cause that free parameters inside patches are not sufficient to 

meet all the boundary conditions. For example, if two adjoining patches are distinct in 

shape, or if along their common boundary they have very different ‘radii’, the special 

choice of factors α  and θ  can be too restricted to allow a sharp shape change when 

points’ crossing the boundary. 

 

Figure A.6 The Geometric Meaning of the Coplanarity of 1,1W , 2,1Ŵ , 20
01b  and 20

11b . 

In addition, if factors, α  and θ , adopt polynomial functions, they can meet the 

conditions of higher-order geometric continuities on common boundaries. However, the 

authors of Hoschek and Lasser 1993 indicate that raising the polynomial degrees of factor 

functions does not really increase the number of available degrees of freedom for the 

design purpose.  

By substituting 20
01b , 20

11b , 1,1W , and 2,1Ŵ  with Equations A.27, A.28, A.32, and A.34 in 

Equation A.50, we derive  

( ) ( ) ( ))3,23
9
13,13

9
43,3

9
4( jiWjiWjiW ++++α  

( ) ( ) ( ))3),1(3
9
13,23

9
43,13

9
4)(1( jiWjiWjiW +++++−+ α  

( ) ( ) ( ) ( ))13),1(3
27
113,23

9
213,13

9
413,3

27
8( ++++++++++= jiWjiWjiWjiWθ  

( ) ( ) ( ) ( ))13),1(3
27
113,23

9
213,13

9
413,3

27
8)(1( −++−++−++−−+ jiWjiWjiWjiWθ .   (A.51) 

20
01b

20
11b

1,1W

2,1Ŵ

P αα−1
θ

θ−1
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  If we tried to make four points, 20
01b , 20

11b , 1,1W , and 2,1Ŵ , coplanar, equation A.51 should 

be met rigorously. Even worse, each point along common boundary curves should meet 

their own conditions similar to Equation A.51 with replacement of corresponding 

coefficients. This is not practical for the design purpose. For this reason, the PAMA does 

not follow this condition on purpose. The following sections present the constructions of 

control points with the PAMA. 

 

A.7 Construction of Control Points on Common Boundaries with PAMA 

Since cubic Bézier curves are parametric curves, with Equations A.2a-c, we can construct 

a composite curve with two cubic Bézier curve segments. In Section 6.2 of Chapter 6, we 

have discussed conditions of two Bézier curve segments, T(u) and S(w), 1,0 ≤≤ wu , 

meeting 0G , 1G  and 2G . The condition for 0G  is that the end point of the first segment 

meets with the start point of the second segment. That is, these two points have the same 

position. The condition for 1G  is that these two segments have the same unit tangent 

vector at their common point. The condition for 2G  is that these two segments have the 

same curvature vector at their common point. Referring to Equations A.2a-c, these 

conditions are written as the following equations, which are also called Beta constraints 

(Barsky and DeRose 1989), 

( ) ( )10 ST = ,                                                               (A.52a) 

( ) ( )10 1 S
du
dT

du
d β= ,                                                       (A.52b) 

and 

( ) ( ) ( )110 22

2
2

12

2

S
du
dS

du
dT

du
d ββ += .                                           (A.52c) 

These three equations can also be written as Equations 7.1, 7.2 and 7.4. With Beta 

constraints, these being Equations A.52a-b, and the geometric approach that is presented 

by Farin (Farin 1982), improved by Boehm (Boehm 1985), and applied to Beta-spline 

curves by Barsky and DeRose (Barsky and DeRose 1989), the control polygons of cubic 

Bézier curve segments with shape parameters 1β  and 2β  can be generated. Given 

original control points V(i)’s, a cubic Bézier segment is constructed between each 

adjoining pair of V(i) and V(i+1). The control points, W(j)’s, of cubic Bézier curve segments 

are written as the following equations, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )111

1)111(13 2
1

2
1

++++
+++++

=+
iii

iViiViiiW
γβγ
γγβ ,                                (A.53a) 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )111

1)1(1123 2
1

2
1

++++
+++++

=+
iii

iViiViiiW
γβγ
γγβ ,                                (A.53b) 

and 

( ) ( ) ( ) ( )
( )i

iWiWiiW
1

1

1
132)1(33

β
β

+
+++−

= ,                                        (A.53c) 

where ( ) ( )
( ) ( ) ( ))1(2

)1(2

112

1

iii
ii

βββ
βγ

++
+

= . 

The geometric meaning is illustrated in Figure A.7. [W(3i),W(3i+1),W(3i+2),W(3(i+1))] 

are the control polygon of a cubic Bézier segment. The ratio of lengths of three line 

segments, [V(i),W(3i+1)], [W(3i+1),W(3i+2)], and [W(3i+2),V(i+1)], is 

( ) ( ) ( )11:1: 2
1 ++ iii γβγ . The ratio of lengths of two line segments, [W(3(i-1)+2),W(3i)] and 

[W(3i) ,W(3i+1)], is ( )i1:1 β . 

Following the discussion in Section A.1, we can state that the condition of 2G  of 

composite surfaces (Equation A.3c) cannot provide a practical design scheme to join two 

adjoining parametric surface patches. However, since the isoparametric curves of Bézier 

surfaces are Bézier curves, we can let these curves meet 2G  by setting the special 

conditions on their second-order partial derivatives. Therefore, in the rest of this section, 

we will involve in the 2
2

u∂
∂  and 2

2

v∂
∂ , and in the next section, we will discuss the 

vu∂∂
∂2

, also called twist. 

 

Figure A.7 Control Polygon of a Cubic Bézier Segment Generated with the Geometric Approach to Meet 2G . 

Referring to three Equations A.52a-b, we can write the equations for points on common 

boundary curves of two bi-cubic Bézier patches along the u or v direction, respectively. 

Along the u direction, they are 

( ) ( )vxvx jiji ,1,0 ,1, −= ,                                                       (A.54a) 

V(i) 
V(i+1) 

W(3i+1) W(3i+2) 
W(3(i-1)+2) 

W((3i+1)+2) 

( ) ( )112
1 ++ ii γβ( )iγ :  1  : 

( )i1β1 : 

W(3i) W(3(i+1)) 
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( ) ( ) ( )vx
u

jivx
u jiuji ,1,,0 ,11, −∂

∂
=

∂
∂ β ,                                            (A.54b) 

and 

( ) ( ) ( ) ( ) ( )vx
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jivx
u

jivx
u jiujiuji ,1,,1,,0 ,12,12

2
2
1,2

2

−− ∂
∂

+
∂
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=
∂
∂ ββ .                        (A.54c) 

Along the v direction, they are 

( ) ( )1,0, 1,, uxux jiji −= ,                                                       (A.55a) 

( ) ( ) ( )1,,0, 1,1, ux
v

jiux
v jivji −∂

∂
=

∂
∂ β ,                                            (A.55b) 

and 

( ) ( ) ( ) ( ) ( )1,,1,,0, 1,21,2

2
2
1,2

2

ux
v

jiux
v

jiux
v jivjivji −− ∂

∂
+

∂
∂

=
∂
∂ ββ .                        (A.55c) 

In the similar way as the curve case, with Equations A.54a-b and setting v = 0, we can 

generate points on the common boundary, W(3i+1,3j) and W(3i+2,3j), as shown in Figure 

A.8 (a),  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )jijiji

jiVjijiVjijijiW
uuu

uu

,1,1,1
,1,,),1,11(3,13 2

1

2
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++++
+++++

=+
γβγ
γγβ ,                    (A.56a) 

and 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )jijiji

jiVjijiVjijijiW
uuu

uuu
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,1),1(,,1,13,23 2
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2
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γβγ
γγβ ,                   (A.56b) 

where ( ) ( )
( ) ( ) ( )),1(,2,

),1(2,
112

1

jijiji
jiji

uuu

u
u βββ

βγ
++

+
= . 

 

Figure A.8 Generation of Points on Common Boundaries of Bézier Patches. (a) For Points Along the u 
Direction; (b) For Points Along the v Direction. 

xi-1,j(u, v) xi,j(u, v) 

xi,j-1(u, v) 

xi,j(u, v) 

V(i,j) V(i+1,j) V(i-1,j) 

V(i-1,j+1) V(i,j+1) V(i+1,j+1) 

V(i-1,j-1) V(i,j-1) V(i+1,j-1) 

(a) (b) 

W(3i+1,3j) 

W(3i+2,3j) 

W(3i,3j+2) 

W(3i,3j+1) 
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With Equations A.55a-b and setting u = 0, we can derive points on the common 

boundary, W(3i,3j+1) and W(3i,3j+2), as shown in Figure A.8 (b),  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )1,1,,1

1,,,)1,1,1(13,3 2
1

2
1

++++
+++++

=+
jijiji

jiVjijiVjijijiW
vvv

vv

γβγ
γγβ ,                    (A.56c) 

and 
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( ) ( ) ( )1,1,,1

1,),1(,1,1,23,3 2
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2
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vvv
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where ( ) ( )
( ) ( ) ( )),1(,2,

),1(2,
112

1

jijiji
jiji

vvv

v
v βββ

βγ
++

+
= . 

These equations are just part of the scheme used to yield the first-interpolated points 

with the PAMA. They have been given in Section 7.3 of Chapter 7. Equations A56a-d are 

also Equations 7.6, 7.7, 7.9, and 7.10. 

 

A.8 Twists and Constructions of Corner Points with PAMA 

Twists are the mixed partial derivatives, 
vu∂∂

∂2

. The twists of the Bézier surface of degree 

(m, n) expressed in Equation A.46 can be deduced with Equation A.47 and the following 

equations, 
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∑
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where lklklklklk bbbbb ,,11,1,1,
1,1 +−−=∆ ++++ .                                       (A.58) 

Let us inspect four points in the twist vector lkb ,
1,1∆ , lklklk bbb ,11,1,1 ,, ++++ , and lkb , . If one of 

these four points is a corner of a patch, the twist is an important factor for the geometric 

property of the composite surface, as shown in Figure A.9. In this figure, W(3i,3j) is the 

corner point. 

  For each of four patches, xi-1,j-1(u,v), xi-1,j(u,v), xi,j-1(u,v), and xi,j(u,v), W(3i,3j) has different 

indices for Equation A.58. Take the xi,j(u,v) as an example. According to Farin 1993, the 

geometric interpretation of the twist at the patch corner, W(3i,3j), is the deviation of the 

corner subquadrilateral [W(3i,3j), W(3i,3j+1), W(3i+1,3j+1), W(3i+1,3j)] of the control net 

from the tangent plane formed with three boundary points, [W(3i,3j), W(3i,3j+1), 

W(3i+1,3j)]. The twist vector lkb ,
1,1∆  is a measure for the deviation of the inside point 
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(W(3i+1,3j+1)) from the tangent plane at the corner (W(3i,3j)). Analogously, we can write 

the twist vectors for four patches, xi-1,j-1(u,v), xi,j-1(u,v), xi-1,j(u,v), and xi,j(u,v) respectively, as 

),2)1(3,2)1(3()2)1(3,3()3,2)1(3()3,3()2)1(3,2)1(3(1,1 +−+−++−−+−−=+−+−∆ jiWjiWjiWjiWjiW  

)2)1(3,3()2)1(3,13()3,3()3,13()2)1(3,3(1,1 +−++−+−−+=+−∆ jiWjiWjiWjiWjiW , 

)3,2)1(3()3,3()13,2)1(3()13,3()3,2)1(3(1,1 jiWjiWjiWjiWjiW +−+−++−−+=+−∆ , 

and 

)3,3()3,13()13,3()13,13()3,3(1,1 jiWjiWjiWjiWjiW ++−+−++=∆ . 

 

Figure A.9 Control Points Related to Twists at Four Patch Corners. 

  The 1C  patches have the same twist along the common boundary on both sides, 

especially the same four twists at the corner (Farin 1993). Therefore, it is restrictive to 

have the same twist at the corner for four adjoining patches and for two adjoining patches 

along common boundary curves. For this reason, the PAMA does not exert the condition 

of the same twists at the corner of four adjoining patches. 

In general, control points along both u and v directions have effects on corner points and 

should be considered at the same time. Referring to Equation A.53c, the PAMA blends the 

effects of control points along u and v directions into one equation with the linear 

interpolation, which is written as 

( ) =jiW 3,3  

( ) ( )jiji
jiWjiWjijiWjiWji

vu

vu

,,2
)13,3()2)1(3,3(),()3,13()3,2)1(3(),(

11

11

ββ
ββ
++

+++−++++−
.        (A.59) 

  Equation A.59 is also Equation 7.11 in Chapter 7. 

In Section A.7 and Figure A.7, we have discussed the construction of the intersection 

xi-1,j(u, v) 

xi-1,j-1(u, v) xi,j-1(u, v) 

xi,j(u, v) 
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W(3i+1,3j+1) 
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W(3(i-1)+2,3j+1) 

W(3(i-1)+2,3(j-1)+2) 

W(3i,3j+1) 

W(3i,3(j-1)+2) 

W(3i,3j) 
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(W(3i)) of two Bézier line segments with the method of Frain, Boehm, Barsky and DeRose 

(Barsky and DeRose 1989, Boehm 1985, and Farin 1982). To see it clearly, we re-write 

Equation A.59 as follows, 
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where ( )
),(1

)3,13()3,2)1(3(),(3,3
1
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+
+++−
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),(1
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jiWjiWjijiW

v

v

β
β

+
+++−
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In Equation A.60, )3,3( jiW is constructed along the u direction in the sense of Equation 

A.53c since the common boundary curve along the u direction is not only a 

v-isoparametric curve but also a Bezier curve. )3,3(~ jiW is constructed along the v 

direction in the sense of Equation A.53c because the common boundary curve along the v 

direction is both a u-isoparametric curve and Bezier curve. The geometric meaning of 

Equation A.60 is shown in Figure A.10. The ratio of lengths of two line segments, 

[W(3(i-1)+2,3j), )3,3( jiW ], and [ )3,3( jiW ,W(3i+1,3j)], is ( )jiu ,:1 1β . The ratio of lengths of 

two line segments, [W(3i,3(j-1)+2), )3,3(~ jiW ] and [ )3,3(~ jiW ,W(3i,3j+1)], is ( )jiv ,:1 1β . The 

ratio of lengths of two line segments, [ )3,3( jiW ,W(3i,3j)] and [W(3i,3j), )3,3(~ jiW ], is 

)),(1(:)),(1( 11 jiji uv ββ ++ . 

 

Figure A.10 Geometric Meaning of Equation A.60. 
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A.9 Constructions of Inside Points with PAMA 

In Figure A.2, we can see four inside points in the patch xi,j(u,v) are W(3i+1,3j+1), 

W(3i+2,3j+1), W(3i+1,3j+2), and W(3i+2,3j+2). To follow the construction of the 

intersection (W(3i)) of two Bézier line segments with the method of Frain, Boehm, Barsky 

and DeRose (Barsky and DeRose 1989, Boehm 1985, and Farin 1982), we have to 

consider two issues. One issue is that each of these four points should meet the 

constraints of geometric continuities on u and v parameters. The other issue is that the 

shape parameters, ( )jiu ,1β , ( )jiv ,1β , ( )jiu ,2β , and ( )jiv ,2β , should vary along common 

boundary curves. Let us analyse these two issues, respectively. 

If the first issue was met rigorously, the composite surface would be constructed with 

lower shaping freedom because it would be reduced to B-spline surfaces that hold higher 

parametric continuities but lower shaping freedom. We have observed that the higher 

shaping freedom comes from shape parameters. Thus, in the PAMA, the first issue is dealt 

with by blending the variations of points along both u and v directions with the method of 

Frain, Boehm, Barsky and DeRose (Barsky and DeRose 1989, Boehm 1985, and Farin 

1982) and the bisection interpolation.  

If the second issue was met seriously, we should interpolate shape parameters for 

points along common boundary curves with shape parameters of original points (V(i,j)), 

which would increase the multiplication computations. In the PAMA, shape parameters 

that are not available take approximately the values of shape parameters that are 

available and nearest to them in the position. For example, shape parameters of W(3i,3j+1) 

take the shape parameter values of V(i,j), and those of W(3i+2,3j) take the shape 

parameter values of V(i+1,j). 

The construction equations of W(3i+1,3j+1), W(3i+2,3j+1), W(3i+1,3j+2), and 

W(3i+2,3j+2) with the PAMA are written as 
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  Equations A.61, A.62, A.63, and A.64 are also Equations 7.12, 7.13, 7.14, and 7.15 in 

Chapter 7, respectively. 

 

A.10 Summarising PAMA’s Continuities 

Inside a bi-cubic Bézier patch, xi,j(u,v), it is naturally 2C  continuous. Thus, we just focus 

on the continuities of points on boundaries, which join different patches. Figure A.4 

illustrates these neighbouring patches and boundary curves. 

A.10.1 For 0G  

According to Equation A.3a, along a common boundary curve between two joined patches, 

these two patches agree with each other. Thus, the condition of 0C  continuity (and also 
0G ) is met for the global composite surface stitched with the PAMA. 

A.10.2 For 1G  

According to the analysis in Section A.6, the PAMA does not exert the sufficient condition 

of the 1G at all the points along common boundary curves. In this way, it brings the 

following advantages, 

▪ Four more degrees of freedom are added to the shape variation of surfaces for 

design purposes by shape parameters, ( )jiu ,1β , ( )jiv ,1β , ( )jiu ,2β , and ( )jiv ,2β . 

▪ More types of shapes remain, besides the shapes that the continuous tangent 

planes along common boundary curves can provide. For example, the sharp 

change across two patches is retained, which can form folds along common 

boundary curves. In Figure A.11, the connection side of the clamshell box (marked 

with a red arrow) is constructed in this way. Figures A.11a and A.11b show the 
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wire-frame and filled-area views of the same box, respectively. The sharp folds 

cannot be provided by the 1G  surfaces. 

 

 

Figure A.11 The Sharp Fold along the Connection Side of (a) Wire-frame View and (b) Filled-area View of a 
Clamshell Box, Marked with Red Arrows. 

A.10.3 For 2G  

Following the discussion of Sections A.7-A.9, with the scrupulous construction scheme of 

the PAMA, the composite surfaces are maintained in a sense of the approximate 2G  

along the u- and v-isoparametric curves. The benefits are that the effects of changing four 

shape parameters, ( )jiu ,1β , ( )jiv ,1β , ( )jiu ,2β , and ( )jiv ,2β , independently are 

distinguishable, which have been introduced in Section 7.4 of Chapter 7. Even better, they 

are analogous to their corresponding ones in curve cases. That is, ( )jiu ,1β  and ( )jiv ,1β  

have the skewing effect (that is called ‘bias’ in Barsky 1984), and ( )jiu ,2β , and ( )jiv ,2β  

have the tenseness effect (that is called ‘tension’ in Barsky 1984). In addition, these 

effects are orientated towards u or v direction, respectively. These are useful for the 

design purpose. 

A.10.4 For 1C  

We have known in Section A.1 that for 1C , the first partial derivatives agree along and 

across the common boundary curve between two neighbouring Bézier patches (Hoschek 

and Laser 1993).  

With Properties 3, 4, and 5, it is straightforward to prove that the first partial derivatives 

agree naturally along a common boundary curve between two adjoining Bézier patches 

because the common boundary curve is a Bézier curve. They are also met by the PAMA 

because the PAMA is used to construct the control net for Bézier patches. 

If expressed with formulas, the condition of the first partial derivatives of two adjoining 

patches agree across the common curves are written as the following equations. Referring 

to Figure A.4, along the u-isoparametric curve, xi,j(0,v), it is 

(a)                       (b) 
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along the v-isoparametric curve, xi,j(u,0), it is 

( ) ( )0,1, ,1, ux
v

ux
v jiji ∂

∂
=

∂
∂

− .                                                   (A.65b) 

The PAMA does not place the constraints of the first partial derivatives agreeing across 

common boundary curves on control points. 

These are the summary for the PAMA’s continuities.  
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