

Title A novel parallel algorithm for surface editing

and its fpga implementation

Name Yukun Liu

This is a digitised version of a dissertation submitted to the University of
Bedfordshire.

It is available to view only.

This item is subject to copyright.

A NOVEL PARALLEL ALGORITHM FOR SURFACE

EDITING AND ITS FPGA IMPLEMENTATION

YUKUN LIU

Ph.D.

September 2013

UNIVERSITY OF BEDFORDSHIRE

A NOVEL PARALLEL ALGORITHM FOR SURFACE

EDITING AND ITS FPGA IMPLEMENTATION

by

YUKUN LIU

Ph.D.

Institute for Research in Applicable Computing

A thesis submitted to the University of Bedfordshire in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

September 2013

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation I

ABSTRACT

Surface modelling and editing is one of important subjects in computer graphics. Decades

of research in computer graphics has been carried out on both low-level, hardware-related

algorithms and high-level, abstract software. Success of computer graphics has been

seen in many application areas, such as multimedia, visualisation, virtual reality and the

Internet. However, the hardware realisation of OpenGL architecture based on FPGA (field

programmable gate array) is beyond the scope of most of computer graphics researches.

It is an uncultivated research area where the OpenGL pipeline, from hardware through the

whole embedded system (ES) up to applications, is implemented in an FPGA chip.

This research proposes a hybrid approach to investigating both software and hardware

methods. It aims at bridging the gap between methods of software and hardware, and

enhancing the overall performance for computer graphics. It consists of four parts, the

construction of an FPGA-based ES, Mesa-OpenGL implementation for FPGA-based ESs,

parallel processing, and a novel algorithm for surface modelling and editing.

The FPGA-based ES is built up. In addition to the Nios II soft processor and DDR

SDRAM memory, it consists of the LCD display device, frame buffers, video pipeline, and

algorithm-specified module to support the graphics processing.

Since there is no implementation of OpenGL ES available for FPGA-based ESs, a

specific OpenGL implementation based on Mesa is carried out. Because of the limited

FPGA resources, the implementation adopts the fixed-point arithmetic, which can offer

faster computing and lower storage than the floating point arithmetic, and the accuracy

satisfying the needs of 3D rendering. Moreover, the implementation includes Bézier-spline

curve and surface algorithms to support surface modelling and editing.

The pipelined parallelism and co-processors are used to accelerate graphics processing

in this research. These two parallelism methods extend the traditional computation

parallelism in fine-grained parallel tasks in the FPGA-base ESs.

The novel algorithm for surface modelling and editing, called Progressive and Mixing

Algorithm (PAMA), is proposed and implemented on FPGA-based ES’s. Compared with

two main surface editing methods, subdivision and deformation, the PAMA can eliminate

the large storage requirement and computing cost of intermediated processes. With four

independent shape parameters, the PAMA can be used to model and edit freely the shape

of an open or closed surface that keeps globally the zero-order geometric continuity. The

PAMA can be applied independently not only FPGA-based ESs but also other platforms.

With the parallel processing, small size, and low costs of computing, storage and power,

the FPGA-based ES provides an effective hybrid solution to surface modelling and editing.

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation II

DECLARATION

I declare that this thesis is my own unaided work. It is being submitted for the degree of

Doctor of Philosophy at the University of Bedfordshire.

It has not been submitted before for any degree or examination in any other university.

Name of candidate:

Signature:

Date:

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation III

DEDICATION

To my parents

To my husband, Jie Geng

To my son, Hao Geng

To all who gave me a hand to reach this achievement, I will always say:

Thank you.

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation IV

ACKNOWLEDGEMENTS

Issac Newton said, “If you say that I see far, it is because I am standing on the shoulders

of giants”.

This PhD research would have been a huge, unachievable piece of work if there had not

been the facilities available in the surroundings, which come from different companies and

organisations, and, of course, without the Internet. Thanks for all the open or commercial

resources. With them, the research has been accomplished at the foundation built from

the facilities and sources. Most of them have been quoted as references at the end of the

thesis. It is just like “standing on the shoulders of giants”.

It is a trial-and-error process. It is a dark tunnel always with a definite light in front of me,

far or near. It is a lonely journey full of joys and sadness. It is my PhD journey. It is just a

scientific exploration, I think. Thanks for all the help from different places and my deep

heart to support me.

I would like to express my thanks to my team of supervisors, Prof. Yong Yue, Prof.

Carsten Maple, and Prof. Jiaomin Liu, for their encouragement, criticism, guidance,

suggestions, and support during the research.

I would like to thank Mrs. Carol Connett and her family for their help and good time along

with them during my stay in the UK.

I would like to thank Qixiang Wang for his suggestions and advice in my research.

I would like to thank my colleagues in my working university, Hebei University of Science

and Technology, Prof. Liwei Guo, Chunru Huang, Guojiang Gao, and Shiquan Qiao, for

their help in my work during my PhD research.

Thanks to Prof. M. James C. Crabbe, Dr. Dayou Li, Dr. Jon Hitchcock, Dr. Herbert Daly, Dr.

Xiaohua Feng, Shijuan Pan, Hui Wei, Shuang Gu, Beisheng Liu, Tao Cao, and others, for

providing help when I needed.

Finally, my very special thanks are due to my beloved family, parents, husband and son,

whose encouragement has been invaluable.

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation V

TABLE OF CONTENTS

ABSTRACT ·· I

DECLARATION ·· II

DEDICATION ·· III

ACKNOWLEDGEMENTS ·· IV

TABLE OF CONTENTS ··· V

LIST OF TABLES ·· XI

LIST OF FIGURES ··· XII

LIST OF ABBREVIATIONS·· XVIII

LIST OF NOTATIONS ·· XXI

Chapter 1:

 Introduction ·· 1

1.1 Background ··· 1

1.1.1 Software and Hardware in Computer Graphics ···························· 1

1.1.2 Hardware Solution in Computer Graphics ·································· 2

1.1.3 Parallelism in Computer Graphics ·· 4

1.2 Research Motivation ·· 4

1.3 Research Aims and Objectives ··· 5

1.4 Research Methodology··· 6

1.5 Thesis Organisation ··· 7

Chapter 2:

 Literature Reviews ··· 9

2.1 Relative Studies of ESs ·· 9

2.2 Investigation of Hardware Graphics Applications ·································· 11

2.2.1 GPU Applications ··· 11

2.2.2 FPGA Applications ··· 12

2.2.3 FPGAs vs. GPUs ··· 13

2.2.4 FPGAs vs. CPUs ··· 14

2.3 Introduction of OpenGL, OpenGL ES and their Implementations ·············· 15

2.4 Investigation of Traditional Computation Parallelism ······························ 16

2.4.1 Data Parallelism: SIMD and MIMD ··· 17

2.4.2 Operator Parallelism ··· 18

2.4.3 Pipelined Processors ·· 19

2.4.4 Cache·· 19

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation VI

2.4.5 Promotion for New Concept Introduction to Parallelism ··············· 20

2.5 Related Studies in Surface Modelling and Editing ································· 20

2.6 Chapter Summary ··· 25

Chapter 3:

 An Integrated Hybrid Embedded System ··· 26

3.1 Features and Principles of ES Design ·· 26

3.1.1 Physical Requirements for ESs·· 26

3.1.2 Analysis for ES Design ·· 28

3.1.3 Challenges for ES Design ·· 34

3.1.4 Prospective Principles for ES Design ······································ 36

3.2 Reasons for Choosing an ES as this Project Platform ···························· 40

3.3 Environment Structure of this Research ··· 42

3.3.1 Embedded Hardware System ·· 43

3.3.2 Device Driver Functions ··· 44

3.3.3 Hardware Abstraction Level ·· 46

3.3.4 ANSI C Library and HAL API ··· 47

3.3.5 Operating System··· 51

3.3.6 Applications ·· 51

3.4 Chapter Summary ··· 51

Chapter 4:

 FPGA-based Embedded Hardware System for Graphics Applications ······ 53

4.1 Traditional ES Development ·· 53

4.2 FPGA Device Evolution and Applications ·· 55

4.2.1 FPGA Evolution History ··· 55

4.2.2 FPGA Features and Reprogrammable Technologies ·················· 55

4.2.3 Architecture Diversity in FPGA-based Systems ························· 58

4.3 FPGA-based ES Development ··· 59

4.4 FPGA Device for this Research ·· 60

4.4.1 LABs and LEs ··· 61

4.4.2 M9K Memory Blocks ··· 61

4.4.3 Multiplier Blocks and DSPs ··· 61

4.4.4 PLLs and Global Clock Networks ··· 62

4.4.5 I/O Banks ··· 62

4.4.6 Embedded Processors ·· 62

4.5 FPGA-based ES Design Flow ·· 62

4.5.1 Application Proposal ··· 63

4.5.2 Requirement Analysis of ES ··· 63

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation VII

4.5.3 Separation of Hardware and Software ····································· 64

4.5.4 Initial Hardware System Design ··· 64

4.5.5 Generation of HAL and Device Drivers ···································· 64

4.5.6 Operating System and Libraries Integration ······························ 64

4.5.7 Application Software Development ··· 64

4.5.8 Hardware Addition and Modification ·· 65

4.5.9 Application-Specific ES Implementation ··································· 65

4.6 FPGA-based ES Design with Altera Facilities ······································ 65

4.6.1 Start of a Quartus II Project and Design Constraints ··················· 66

4.6.2 SOPC Builder System Setup ··· 67

4.6.3 Analysis and Synthesis ·· 67

4.6.4 Pin Location Assignment and Analysis ···································· 68

4.6.5 Device Fitter·· 69

4.6.6 Timing Analysis ··· 70

4.6.7 Compilation Result Output ·· 70

4.6.8 About Go-Back ·· 71

4.7 Setup of FPGA-based Embedded Hardware System for Graphics

Applications ·· 71

4.7.1 Nios II Processer Settings ·· 71

4.7.2 System Clock Settings ··· 72

4.7.3 DDR2 SDRAM Memory Controller Settings ······························ 73

4.7.4 CFI Flash Memory Controller Settings ····································· 73

4.7.5 JTAG UART Settings ·· 74

4.7.6 Settings for LCD Controller Interface and Video Pipeline ············· 74

4.8 Challenges and Features of the FPGA-based ES ································· 76

4.9 Chapter Summary ··· 76

Chapter 5:

 Integrating Mesa-OpenGL into FPGA-based ES ································· 78

5.1 OpenGL ·· 79

5.1.1 Geometric Pipeline ··· 79

5.1.2 Fragment Pipeline ·· 81

5.1.3 Rendering Flow of an OpenGL Interactive Application ················· 84

5.2 OpenGL ES ··· 85

5.2.1 Versions and Profiles of OpenGL ES ······································ 85

5.2.2 OpenGL ES Implementations ·· 87

5.3 Different Roles in OpenGL ES ·· 87

5.3.1 OpenGL ES Standard Setter Role ·· 88

5.3.2 OpenGL ES Implementer Role ·· 93

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation VIII

5.3.3 OpenGL ES Application Developer Role ·································· 93

5.4 Mesa-OpenGL·· 95

5.4.1 Introduction of Mesa OpenGL ··· 96

5.4.2 General OpenGL Implementation ··· 96

5.5 Implementation of Mesa-OpenGL on FPGA-based ES ·························· 107

5.5.1 Bézier Curves and Surfaces ·· 107

5.5.2 Window System Interface ·· 110

5.5.3 Fixed Point Arithmetic ·· 111

5.6 Chapter Summary ·· 112

Chapter 6:

 Parallelism Implementation in FPGA-based ES·································· 114

6.1 Classification of Traditional Parallelism ··· 114

6.2 Analysis on Processing Features in Parallelism ··································· 115

6.2.1 Two Perspectives: Application’s View and Hardware’s View ········ 115

6.2.2 Two Styles: Pipelined Parallelism and Partitioned Parallelism ······ 117

6.3 Methodologies of Processing in Parallel ·· 118

6.3.1 Computation Decomposition at High Level ······························ 118

6.3.2 Parallelism Mapping at High Level ··· 123

6.3.3 Expansion on Parallelism Decomposition ································ 126

6.4 Parallelism in the Graphics Processing in this Research ························ 128

6.4.1 Pipeline Effect ·· 129

6.4.2 Timing and Data Format Matching in Pipelining ························ 130

6.4.3 Co-processor in FPGA-based ES ·· 132

6.5 Chapter Summary ·· 134

Chapter 7:

 Novel Algorithm for Surface Modelling and Editing, PAMA ···················· 135

7.1 Preliminary ··· 136

7.2 Progressive and Mixing Algorithm, PAMA ·· 137

7.3 Surface Modelling and Editing with PAMA·· 142

7.4 Different Effects of Shape Parameters ·· 148

7.4.1 Skewing in u or v Directions ··· 148

7.4.2 Tenseness in u or v Directions ··· 149

7.4.3 Skewing in Both u and v Directions ·· 149

7.4.4 Tenseness in Both u and v Directions ···································· 150

7.5 Novel Features of PAMA ··· 152

7.6 Chapter Summary ·· 155

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation IX

Chapter 8:

 Results of Surface Modelling and Editing with PAMA on FPGA-based

ES ··· 157

8.1 Verification Methodology ·· 157

8.2 Results of PAMA Applications in the FPGA-based ES ·························· 158

8.3 Discussions of Graphics Applications on FPGA-base ES······················· 161

8.3.1 Distinction between Two Hardware Systems···························· 162

8.3.2 Difference between Two OpenGL Implementations ··················· 163

8.3.3 Storage and Computing Costs of PAMA ································· 164

8.4 Chapter Summary ·· 165

Chapter 9:

 Future Work ·· 167

9.1 Future Work for Methodology of Hybrid Design of Application-specific

ESs with Software and Hardware Components ·································· 167

9.2 Future Work for FPGA-based ESs ··· 168

9.3 Future Work for OpenGL Implementations ··· 168

9.4 Future Work for Parallel Processing ··· 169

9.5 Future Work for PAMA ·· 169

Chapter 10:

 Conclusions ··· 170

10.1 Conclusions of Methodology for Hybrid Design and Implementation of

ESs ··· 170

10.2 Conclusions of FPGA-based ES ·· 171

10.3 Conclusions of Mesa-OpenGL Implementation ·································· 171

10.4 Conclusions of Parallel Processing ··· 172

10.5 Conclusions of PAMA ·· 172

Appendix:

 Continuities of PAMA ··· 173

A.1 Parametric Continuities and Geometric Continuities ····························· 173

A.2 Geometric Properties of Bézier Curves ··· 176

A.3 Composite Bézier Surfaces ·· 178

A.4 First-order Geometric Continuity of Composite Bézier Surfaces ·············· 182

A.5 Tangent Planes of a Bézier Surface ··· 187

A.6 Analysis of First Order Geometric Continuities ···································· 190

A.7 Construction of Control Points on Common Boundaries with PAMA ········· 193

A.8 Twists and Constructions for Corner Points with PAMA ························ 196

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation X

A.9 Constructions of Inside Points with PAMA ··· 199

A.10 Summarising PAMA’s Continuities ··· 200

A.10.1 For 0G ··· 200

A.10.2 For 1G ··· 200

A.10.3 For 2G ··· 201

A.10.4 For 1C ··· 201

References

 ·· 203

List of Publications (2009 to 2013)

 ··· 212

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XI

LIST OF TABLES

Table 2.1: Comparisons between FPGAs and CPUs ·· 14

Table 2.2: Comparisons among Three Surface Modelling and Editing Methods········· 23

Table 8.1:

 Comparisons between Environments of Laptop Computer and

FPGA-based ES ··· 162

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XII

LIST OF FIGURES

Figure 1.1: Structure of the Project ··· 8

Figure 3.1: Comparisons of Application Requirements and Human Resources
between ES and Software Programming Designs. Horizontal Widths
Represent Application Requirements; Vertical Heights Represent Human
Resources for Research and Development. The Wider Width of the
Rectangle of Design in ESs Shows the Wider Application Diversity of ESs.
The Thinner Height of the Rectangle of Design in ESs Shows the Smaller
Separate Human Resources in ESs. ··· 35

Figure 3.2: Structure of New Platform for ES Design··· 38

Figure 3.3: Hierarchy of Design Process for ESs ··· 39

Figure 3.4: Altera Cyclone III ESs Development Board ·· 42

Figure 3.5: Environment Structure of the Research and its Expansion ···················· 43

Figure 3.6: Block Diagram of the ES Customised for the Research ························ 45

Figure 3.7: Graphics Pipeline in FPGA-based ES ·· 45

Figure 3.8: Four User-Defined Buttons on Altera Cyclone III ESs Development
Board ·· 50

Figure 4.1: LE’s Composition ·· 56

Figure 4.2: Programmable Interconnect Network ··· 57

Figure 4.3: Generic Structure of an FPGA ·· 57

Figure 4.4: Development Flow of Combining Hardware and Software for
Application-specific ESs ·· 63

Figure 4.5: Development Flow for Embedded Hardware Systems ·························· 66

Figure 4.6: Part of the SOPC Builder GUI ·· 67

Figure 4.7: Nios II Settings (1) ··· 72

Figure 4.8: Nios II Settings (2) ··· 72

Figure 4.9: Block Diagram of Video Pipeline (Purple Blocks are Off-Video-Pipeline

Blocks) ·· 75

Figure 5.1: Graphics Pipeline ·· 79

Figure 5.2: Processing Stages in Fragment Pipeline ··· 82

Figure 5.3: OpenGL Structure from the Application Perspective ···························· 84

Figure 5.4: Coordinate Transformation Sequence ··· 100

Figure 5.5: A 3D Patch Mapping into Bézier Surface Space ································ 108

Figure 5.6: Process of Dividing a Surface Patch into Sub-patches along the u and

v Directions with Functions of glMapGrid2f and glEvalMesh2. The Numbers

are the Global Indices of new Vertices of Sub-patches. ································ 109

Figure 5.7: Process of Dividing a Triangle. A Split Triangle can be Orientated in

Two Ways. The Left One is that the Left Endpoint of Meddle Line is a Vertex

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XIII

of the Triangle. The Right One is that the Right Endpoint of Meddle Line is a

Vertex of the Triangle. ·· 110

Figure 6.1: Pipelined Parallelism and Partitioned Parallelism ······························· 117

Figure 6.2: Output and Input Data Decompositions ··· 120

Figure 6.3: Task-Dependency Graph for Three Division Levels ···························· 121

Figure 6.4: Video Pipeline in Altera LCD Controller ··· 131

Figure 7.1: One Bi-Cubic Bézier-Spline Patch Interpolated in the u (Horizontal)

and v (Vertical) Directions with PAMA. Different Types of Points are

Represented with Different Shapes in this Figure: Hollow Circles are Original

Control Points; Squares are First-Interpolated Points; Solid Circles are

Second-Interpolated Points; Triangles are Third-Interpolated Points. ··············· 138

Figure 7.2: Bi-cubic Bézier-Spline Patches Constructed with PAMA in a Global

Surface. The Middle Patch is Formed with the Original Control Polygon [V(i,j),

V(i+1,j), V(i+1,j+1), V(i,j+1)]. After Constructed with PAMA, the Middle Patch

is a Mesh of 16 Interpolated Points, which are, from Bottom to Top and from

Left to Right, [W(3i,3j), W(3i+1,3j), W(3i+2,3j), W(3(i+1),3j), W(3i,3j+1),

W(3i+1,3j+1), W(3i+2,3j+1), W(3(i+1),3j+1), W(3i,3j+2), W(3i+1,3j+2),

W(3i+2,3j+2), W(3(i+1),3j+2), W(3i,3(j+1)), W(3i+1,3(j+1)), W(3i+2,3(j+1)),

W(3(i+1),3(j+1))] ··· 139

Figure 7.3: Construction of a Point on the Boundary with Interpolated Points

Available in the u Direction ·· 141

Figure 7.4: Construction of a Point on the Boundary with Interpolated Points

Available in the v Direction ·· 142

Figure 7.5: Construction of a Point on a Corner ·· 142

Figure 7.6: Changing from a Flat Box to a Burning Torch. (a) The Flat Box, Initially
Modelled Surface; (b) The Torch Handle Shaped with VP; (c) Outer Flames
Shaped with VGP; (d) Inner Flames Shaped with VGP; (e) The Burning Torch.
 ··· 143

Figure 7.7: Changing from a Flat Board to Chair. (a) The Flat Board, the Initially
Modelled Surface; (b) The Semi-Finished Chair Shaped with VGP; (c) The
Deformed Chair Shaped with VBV1 by Increasing βv1(i, j) of just the Middle
Top Control Point on the Chair Back to 20.0; (d) The Completed Chair
Reshaped from (b) with VGBV2 by Increasing βv2(i, j)’s of Three Middle
Control Points at the Top of Chair Back to 70.0. ··· 144

Figure 7.8: Changing of an Imaginary Flying Object. (a) The Imaginary Flying
Object; (b) The Flying Object Reshaped with VBU2 by Increasing only the
βu2(i, j) of the Control Point on the Shoulder Marked with a Red Arrow and
with a Notch Left; (c) The Flying Object Reshaped with VMB2 by Increasing
βu2(i, j) and βv2(i, j) of the Same Control Point Together and Without a Notch
Left; (d) The Same Fly Object as (c) Viewed in a Different Angle. ··················· 144

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XIV

Figure 7.9: Changing from a Flat board to an Ashtray. (a) The Flat Board; (b) The
Semi-Finished Ashtray Created with VGP; (c) The Completed Ashtray
Shaped with VGBU2 or VGBV2 by Increasing βu2(i, j) or βv2(i, j) of Relative
Control Points to 50.0; (d) The Completed Ashtray Viewed from the Bottom.····· 145

Figure 7.10: Shaping of a Clamshell Box. (a) A Semi-Finished Box Created with
the VGP Operation from a Flat Board; (b) A Semi-Finished Box with a Half Lid
Reshaped with VGP; (c) A Semi-Finished Box with a Lid Reshaped with VGP;
(d) A Semi-Finished Box with a Full Lid Reshaped with VGP; (e) A Finished
Clamshell Box Completed with the VGBU2 Operation by Increasing βu2(i, j)’s
of Five Middle Control Points on the Connection Side Between the Box and
Lid to 50.0; (f) The Clamshell Box Viewed from one Side. ····························· 146

Figure 7.11: A Series of Changing from a Flat Board to a Table, a Chair and
Finally a Double Chair. (a) A Table Created with VGP from a Flat Board; (b)
The Semi-Finished Chair Reshaped with VGP from the Table; (c) A
Completed Chair Reshaped with VGBV2 by Increasing βv2(i, j)’s of Three
Middle Control Points at the Top of the Chair Back to 50.0; (d) A Completed
Double Chair Reshaped with VBV1 by Increasing βv1(i, j) of the Middle
Control Point at the Top of the Chair Back to 4.0. ······································· 147

Figure 7.12: Construction of a Loose Bud. (a) A Disc, the Initially Modelled
Surface; (b) The Image Reshaped with VGP; (c) Image Reshaped from (b)
with VBU1 (or VBV1) by Increasing βu1(i, j)’s (or βv1(i, j)’s) of Relative Control
Points to 11.0; (d) Image Reshaped from (b) with VMB1 by Increasing
Simultaneously βu1(i, j)’s and βv1(i, j)’s of Relative Control Points to 11.0; (e)
Image of the Completed Loose Bud Viewed from a Different Angle. ·············· 147

Figure 7.13: Chair Images Reshaped with VBU1 on the Middle Control Point at
the Top of Chair Back. (a) The Image Reshaped in the Similar Way as Figure
7.7(b); (b) Image Reshaped by Increasing βu1(i, j) of the Control Point to 6.0
with VBU1; (c) Image Reshaped by Decreasing βu1(i, j) to 0.1 with VBU1; (d)
The Same Chair Image as (b) but Viewed from the Back; (e) The Same Chair
Image as (c) but Viewed from the Back. ··· 148

Figure 7.14: Chair Images Reshaped from Figure 7.13(a) with VBV1 on the Middle
Control Point at the Top of the Chair Back. (a) The Image Reshaped by
Increasing βv1(i, j) of the Control Point to 6.0 with VBV1; (b) Image Reshaped
by Decreasing βv1(i, j) to 0.1 with VBV1; (c) The Same Chair Image as (a) but
Viewed from the Back; (d) The Same Chair Image as (b) but Viewed from the
Back. ··· 149

Figure 7.15: Smoothing the Connection Side of a Clamshell Box by Using VGBU2
with Different βu2(i, j) Values. (a) The Image for Five Middle Control Points on
Connection Side with βu2(i, j) Value of 1.0; (b) Image with βu2(i, j) Value of 6.0;
(c) Image with βu2(i, j) Value of 12.0; (d) Image with βu2(i, j) Value of 50.0; (e)
Image for Completed Clamshell Box Viewed from a Different Angle. ··············· 150

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XV

Figure 7.16: Difference between Geometric Effects of VMB1 and VBU1 (or VBV1).
(a) The Loose Bud Shaped with VGP; (b) The Image Reshaped from (a) with
VBU1 (or VBV1) by increasing only βu1(i, j)’s (or βv1(i, j)’s) of Relative Control
Points to 6.0; (c) Image Reshaped from (a) with VMB1 by Increasing Both
βu1(i, j)’s and βv1(i, j)’s of Relative Control Points to 6.0. ······························ 151

Figure 7.17: Difference between Geometric Effects of VMB2 and VBU2. (a) The
Imaginary Flying Object; (b) Image Reshaped from (a) with VBU2 by
increasing only βu2(i, j) of the Control Point on the Shoulder Marked with a
Red Arrow and with a Notch Left; (c) Image Reshaped from (a) with VMB2 by
Increasing Both βu2(i, j)’s and βv2(i, j)’s of the Control Point without any Notch
Left. ··· 151

Figure 7.18: Images to Show the Control on the Position of the Control Point at the
End of the Torch Handle. (a) The Initial Position; (b) – (g) Potions Moved by 4,
8, 16, 36, 41, and 60 Units, Respectively, in the Same Direction. ················· 152

Figure 7.19: Images to Show the Control on the Different Smoothness Extents of
the Connection Side of the Clamshell Box. (a) The Shape Fold in the v
Direction of the Connection Side; (b) – (k) The Curves in the u Direction of the
Connection Sides Reshaped with Different βu2(i, j) Values of 0.0, 2.0, 4.0, 6.0,
8.0, 10.0, 14.0, 24.0, 34.0, and 50.0, respectively. ···································· 153

Figure 7.20: A Processing Chain to Create an Ashtray. (a) – (d) Images Reshaped
with a List of VGPs; (e) – (h) Images Reshaped from (d) with a List of
VGBU2s or VGBV2s; (h) The Completed Ashtray. ·································· 154

Figure 7.21: A Different Processing Chain from Figure 7.20 to Create an Ashtray
with the Same Shape as Figure 7.20(h). (a) Image shaped with VGP; (b)
Image Reshaped from (a) with VGBU2 or VGBV2; (c) Image Reshaped from
(b) with VGP; (d) Image Reshaped from (c) with VGBU2 or VGBV2; (e)
Image Reshaped from (d) with VGP; (f) Image Reshaped from (e) with
VGBU2 or VGBV2; (g) Image Reshaped from (f) with VGP; (h) The
Completed Ashtray Reshaped from (g) with VGBU2 or VGBV2. ··················· 155

Figure 8.1: A Picture of Table Taken of the LCD when Programs of Surface
Modelling and Editing with PAMA Run in the FPGA-based ES. ···················· 158

Figures 8.2: A Series of Changing from a Flat Board to a Table and Chair with

PAMA on the FPGA-based ES. (a) The Flat Board; (b) The Table; (c) The

Semi-finished Chair; (d) The Completed Chair. ·· 159

Figures 8.3: A Series of Changing from a Flat Board to a Table and Chair with

PAMA on the Laptop Computer. (a) The Flat Board; (b) The Table; (c) The

Semi-finished Chair; (d) The Completed Chair. ·· 159

Figures 8.4: A Series of Changing from a Flat Board to a Clamshell Box with

PAMA on the FPGA-based ES. (a) The Flat Board; (b) The Semi-finished Box

with a Half Lid; (c) The Semi-finished Box with a Full Lid; (d) The Completed

Clamshell Box. ··· 160

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XVI

Figures 8.5: A Series of Changing from a Flat Board to a Clamshell Box with

PAMA on the Laptop Computer. (a) The Flat Board; (b) The Semi-finished

Box with a Half Lid; (c) The Semi-finished Box with a Full Lid; (d) The

Completed Clamshell Box. ·· 160

Figures 8.6: A Series of Changing from a Flat Box to a Flower Bud with PAMA on

the FPGA-based ES. (a) The Flat Box; (b) The Semi-finished Flower Bud; (c)

The Semi-finished Flower Bud Viewed in a Different Angle; (d) The

Completed Flower Bud. ·· 161

Figures 8.7: A Series of Changing from a Flat Box to a Flower Bud with PAMA on

the Laptop Computer. (a) The Flat Box; (b) The Semi-finished Flower Bud; (c)

The Semi-finished Flower Bud Viewed in a Different Angle; (d) The

Completed Flower Bud. ·· 161

Figures A.1: Process of Generating a Point on the Cubic Bézier Curve with the de

Casteljau Algorithm. Properties 2 and 3 can be observed. Property 2 is that

Two Lines Passing Through Control Points 0 and 1, and Through Control

Points 2 and 3, respectively, are Tangent to the Bézier Curve. Property 3 is

that the Line Passing through the Intermediate Points 0 and 1 at the Second

Step (also the Second Last Step) is Tangent to the Cubic Bézier Curve. ·········· 177

Figures A.2: Control Net of one Patch of the Composite Bi-cubic Bézier Surface,

Formed with Four Corner Control Vertices, [W(3i,3j), W(3i,3j+1),

W(3(i+1),3(j+1)), W(3(i+1),3j)]. ··· 179

Figures A.3: The Patch, xi,j(u, v), of the Composite Bézier Surface and its

v-Isoparametric Curves. [W(3i, 3j), W(3i+1, 3j), W(3i+2, 3j), W(3(i+1), 3j)] are

the Control Polygon of the Isoparametric Curve, xi,j(u, 0). [W0,1, W1,1, W2,1,

W3,1] are the Control Polygon of the Isoparametric Curve, xi,j(u, 1/3). [W0,2,

W1,2, W2,2, W3,2] are the Control Polygon of the Isoparametric Curve, xi,j(u,

2/3). [W(3i, 3(j+1)), W(3i+1, 3(j+1)), W(3i+2, 3(j+1)), W(3(i+1), 3(j+1))] are the

Control Polygon of the Isoparametric Curve, xi,j(u, 1). ·································· 180

Figures A.4: Tangent Planes on Common Boundary Curves of Neighbouring

Bézier Patches, xi,j(u, v), xi-1,j(u, v), and xi,j-1(u, v.). ······································· 183

Figures A.5: The de Casteljau Algorithm for Computation of a Point on a Bi-cubic

Bézier Surface Consists of Two Parts. The First Part is the Upper Half that is

Used to Compute the Coefficients on the u-Isoparametric Curves where the

Parameter u is Set as a Constant. The Second Part is the Lower Half that is

Used to Compute the Points on the Bi-cubic Bézier Surface. These Two

Parts can be Exchanged with Modifications on Superscripts and Subscripts

for First v Then u. In that Way, the Coefficients on the v-Isoparametric Curves,

where the Parameter v is Set as a Constant, are Computed Firstly. In Each

Part, the Computing Process Proceeds from Left to Right by Computing with

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XVII

the Formula at the Right Top of that Part. The Two Subscripts and

Superscripts at the Right-hand Sides of Formulas Have Commas in Between

Them just for Expressions Without any Ambiguity, but They Have the Same

Meanings as Ones without Commas in Other Parts in this Figure and Section.

 ··· 184

Figures A.6: 1,1W The Geometric Meaning of the Coplanarity of , 2,1Ŵ , 20
01b and

20
11b . ·· 192

Figures A.7:
2G

 Control Polygon of a Cubic Bézier Segment Generated with the

Geometric Approach to Meet .··· 194

Figures A.8: Generation of Points on Common Boundaries of Bézier Patches. (a)

For Points Along the u Direction; (b) For Points Along the v Direction. ············· 195

Figures A.9: Control Points Related to Twists at Four Patch Corners. ···················· 197

Figures A.10: Geometric Meaning of Equation A.60. ·· 198

Figures A.11:

 The Sharp Fold along the Connection Side of (a) Wire-frame View

and (b) Filled-area View of a Clamshell Box, Marked with Red Arrows. ············ 201

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XVIII

LIST OF ABBREVIATIONS

2D Two-Dimensional

2D DCT Two-Dimensional Discrete Cosine Transform

3D Three-Dimensional

ANSI American National Standards Institute

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BSP Board Support Package
0C Zero-order Parametric Continuity

1C First-order Parametric Continuity

2C Second-order Parametric Continuity

CAD Computer-Aided Design

CAGD Computer-Aided Geometric Design

CFI Common Flash Interface

CMOS Complementary Metal-Oxide-Semiconductor

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory

DMA Direct Memory Access

DMIPS Dhrystone Million Instructions Per Second

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing
3E Three-dimensional Euclidean Space

EDS Embedded Design Suite

ES Embedded System

ESDK Embedded System Development Kit

FFT Fast Fourier Transform

FIFO First-in First-out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array
0G Zero-order Geometric Continuity

1G First-order Geometric Continuity

2G Second-order Geometric Continuity

rG r-order Geometric Continuity

GCC GNU Compiler Collection

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GUI Graphical User Interface

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XIX

HAL Hardware Abstraction Level

HDL Hardware Description Language

HSMC (Multimedia) High Speed Mezzanine Card

I-GL Implementation of OpenGL

I/O Input/Output

IDE Integrated Design Editor

IP Intellectual Property

IRQ Interrupt Request

JTAG Joint Test Action Group

LAB Logic Array Block

LCD Liquid Crystal Display

LE Logic Element

LUT Lookup Table

MIMD Multiple Instruction Multiple Data

MMU Memory Management Unit

MPU Memory Protection Unit

NCO Numerically Controlled Oscillator

PAMA Progressive and Mixing Algorithm

PCB Printed Circuit Board

PE Processing Element

PIO Programmed Input/Output

PLL Phase-Locked Loop
dR d-Dimensional Riemannian Space

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

RTOS Real-Time Operating System

SBT Software Build Tools

SGDMA Scatter-Gather Direct Memory Access

SIMD Single Instruction Multiple Data

SOPC System on a Programmable Chip

SPMD Single-Program Multiply-Data

UART Universal Asynchronous Receiver/Transmitter

VBU1 Varying Beta-u-one

VBV1 Varying Beta-v-one

VBU2 Varying Beta-u-two

VBV2 Varying Beta-v-two

VGBU1 Varying Group Beta-u-one

VGBV1 Varying Group Beta-v-one

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XX

VGBU2 Varying Group Beta-u-two

VGBV2 Varying Group Beta-v-two

VGP Varying Group Position

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale Integration

VMB1 Varying Mixing Beta-one

VMB2 Varying Mixing Beta-two

VP Varying Position

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XXI

LIST OF NOTITIONS

0b , …, ib ,…, nb Control points of a Bézier-spline curve

[nbbbb ,...,,, 210] Control polygon of a Bézier-spline curve of degree n

)(ubr
k Intermediate de Casteljau points at the r step

lkb , Control points of a Bézier surface of degree (m,n)

kb


 Coefficients of a v-isoparametric curve of the Bézier surface

x(u,v)

lb


 Coefficients of a u-isoparametric curve of the Bézier surface

x(u,v)
rq
ijb , qr

jib ,
, Intermediate de Casteljau points at the (r,q) step of

computation of a point on a bi-cubic Bézier surface

)(uBn
k Bernstein polynomials of degree n

)(1 uβ ,)(2 uβ Shape parameters of a Beta-spline curve

),(1 vuuβ ,),(2 vuuβ Shape parameters along the u direction of a Beta-like-spline

surface

),(1 vuvβ ,),(2 vuvβ Shape parameters along the v direction of a Beta-like-spline

surface

lklklk bbb ,,1,
0,1 −=∆ + Differential operation performed on the first subscript k of

control vertices

lklklk bbb ,1,,
1,0 −=∆ + Differential operation performed on the second subscript l of

control vertices

1,1,1,
1,1

+++ −=∆ lklklk bbb

lklk bb ,,1 +− +

Twist vectors

)(iγ Ratio parameters of lengths of two line segments, [V(i),W(3i+1)]

and [W(3i+1),W(3i+2)], of a Beta-spline curve

),(jiuγ Ratio parameters along the u direction of lengths of two line

segments, [V(i,j),W(3i+1,3j)] and [W(3i+1,3j),W(3i+2,3j)], of

v-isoparametric Bézier curves of a Beta-like-spline surface

),(jivγ Ratio parameters along the v direction of lengths of two line

segments, [V(i,j),W(3i,3j+1)] and [W(3i,3j+1),W(3i,3j+2)], of

u-isoparametric Bézier curves of a Beta-like-spline surface

S(w), T(u), x(u) Parametric curves

S(w,t), T(u,v) Parametric surfaces

),(twuu  ,),(twvv  Reparametrisations

V(i) Original control points of a curve

A Novel Parallel Algorithm for Surface Editing and its FPGA Implementation XXII

V(i,j) Original control points of a surface

W(k) Interpolated control points of cubic Bézier curve segments with

Beta constraints

W(k,l) Interpolated control points of bi-cubic Bézier patches with the

PAMA

[W(i),W(j)] Line segment between two control points of W(i) and W(j) of a

curve

[W(i,j),W(k,l)] Line segment between two control points of W(i,j) and W(k,l) of

a surface

[W(3i),W(3i+1),

W(3i+2),W(3(i+1))]

Control polygon of a cubic Bézier curve segment

[W(3i,3j), W(3i,3(j+1)),

W(3(i+1),3(j+1)),

W(3(i+1),3j)]

Control net of a bi-cubic Bézier patch

ikW , , ljW , , ikW ,
~ , ljW ,

ˆ Intermediate points of control polygons of isoparametric Bézier

curves

)3,3(jiW Intermediate points with ()jiu ,:1 1β , the ratio of lengths of two

line segments, [W(3(i-1)+2,3j))3,3(jiW], and

[)3,3(jiW ,W(3i+1,3j)]

)3,3(~ jiW Intermediate points with ()jiv ,:1 1β , the ratio of lengths of two

line segments, [W(3i,3(j-1)+2),)3,3(~ jiW], and

[)3,3(~ jiW ,W(3i,3j+1)]

x(u,v) A Bézier surface of degree (m,n)

),(, vux ji Bézier patches

)(uxg A generating curve of a tense-product Bézier patch

Chapter 1 Introduction

1.1 Background

The research in this project is a comprehensive process involving software, hardware and

parallelism. These issues have to be discussed individually.

1.1.1 Software and Hardware in Computer Graphics

In computer graphics, methods of software and hardware have been successfully

implemented and applied to a number of areas. The applications can be found in many

important fields, such as the Internet, multimedia, visualisation, and virtual reality. Many

application areas have benefited from computer graphics, for examples, automotive and

computer industries, science and engineering, education, entertainment, information

visualisation, pharmaceutical research, 3D (three-dimensional) medical imaging, and

earth and weather modelling (Bliss 1980, Krone et al 2009, Losh 2006, Martinez and

Chalmers 2004, Nahum 1996, Schröder et al 2012, and Yoo et al 2012).

Computer graphics covers a wide range of research subjects. They include animation,

colour, display algorithms, geometric algorithms, lighting, interaction techniques, morphing,

object modelling, picture and image generation, rendering technologies, representations

and editing of curve, surface, solid and object, shading, shadowing, texture, 3D graphics

and realism, virtual or augmented reality, and others (House 1996, Pan et al 2000, and

Sathyanarayana and Kumar 2008).

In the surface modelling and editing, studies are also plentiful (Barsky and DeRose

1990, Cheng and Goshtasby 1989, Duchamp and Stuetzle 2003, Farin 1993, Hearn et al

2011, Hoppe et al 1994, Huang et al 2006, Joe 1990, Lawrence and Funkhuser 2003,

Loop and DeRose 1989, Loop 1994, Müller et al 2010, Nasri and Abbas 2002, Perez et al

2003, Sederberg et al 2003, Sorkine et al 2004, Wang et al 2006, Welch and Witkin 1994,

and Yu et al 2004). For 3D rendering, it is one of purposes to make the geometrical

images as smooth as possible. There are three mainstream schemes to maintain the local

control during modelling and editing. They are subdivision, deformation and shape

parameterisation with a specific-order geometric continuity (shorten as shape

Chapter 1 Introduction 2

parameterisation in the rest of the thesis). According to the number of researches and

application results that have been published, the first two have achieved more success

than the third one.

Since this research aims at a hybrid solution of software and hardware to computer

graphics, resources of the hardware system to support graphics applications have to be

considered. As algorithms for surface modelling and editing are applications on the top of

the system architecture, their storage and computing costs can increase the requirements

of hardware resources. Compared to the first two methods, shape parameterisation

methods have lower storage and computing costs because intermediated processes

required by the first two methods are eliminated. Shape parameterisation methods can be

used to construct a composite curve or surface with geometric continuities that can yield

the smoothness in the geometric sense, rather than with the agreement of parameter

derivatives of parameter continuities. Parameter continuities have more restrictive

conditions than geometric continuities do. This research proposes an algorithm,

Progressive and Mixing Algorithm (PAMA), which belongs to the third one. It is detailed in

Chapter 7.

1.1.2 Hardware Solution in Computer Graphics

Compared with existent studies on software in computer graphics (Barsky and DeRose

1990, Botsch and Sorkine 2008, Cheng and Goshtasby 1989, Duchamp and Stuetzle

2003, Hoppe et al 1994, Huang et al 2006, Lawrence and Funkhuser 2003, Loop and

DeRose 1989, Loop 1994, Müller et al 2010, Nasri and Abbas 2002, Perez et al 2003,

Sederberg et al 2003, Sorkine et al 2004, Wang et al 2006, Welch and Witkin 1994, and

Yu et al 2004), there are fewer hardware accomplishments published in this field. Related

implementations were initiated mainly by Silicon Graphics Inc. (Kilgard 1997, Kilgard and

Akeley 2008, Luebke and Humphreys 2007, and Patashev et al 2000). Some publications

are related to simulation and performance evaluation for general-purpose computer

systems and only a few of them are for graphics applications. Others are implemented

with GPUs (Graphics Processing Unit) and also used in general-purpose computer

surroundings (Nickolls and Dally 2010, Owens et al 2008, and Vuduc and Czechowski

2011).

The hardware accomplishment for abstract algorithms of the graphical pipeline requires

the support from the computer system to which the hardware implementation is integrated.

If an entire graphical system is built up from the hardware, individual parts of the graphical

pipeline system can be easily compatible with each other and it also means that a lot of

construction work is necessary. But when a single hardware solution to an abstract

algorithm is embedded into an existent system, the compatibility with the original system

environment requires much attention. It requires a large amount of time and effort to

Chapter 1 Introduction 3

bridge the new part with the original system. Or, the new part can be incompatible with the

original hardware. This issue can reduce the attraction to hardware when researchers look

for solutions to graphics algorithms and make a choice between hardware and software

(Chua and Neumann 2000, Guthe et al 2005, Kazakov 2007, Li et al 2006, and Weyrich et

al 2007).

In the evolution history of OpenGL, it can be seen that there are always some

hardware-dependent and some hardware-independent sections involved in the OpenGL

pipeline. The OpenGL pipeline consists of two joined-together sub-pipeline, geometric

pipeline (or vertex pipeline) and fragment pipeline (pixel pipeline) (Hearn et al 2011, and

True et al 2004). The OpenGL is also a state machine with a fixed topology and

orthogonal state variables. From the input of OpenGL API (application programming

interface), an object rendering has to be transmitted with a set of state variables and

carried out through the OpenGL pipeline. The OpenGL state machine performs all the

processing in a fixed order that follows the geometric and fragment pipeline, and finally

displays the object on a device screen.

Embedded systems (ES) are defined with a computing core and are intended for in-field

applications rather than general-purpose computing. ESs cover a major fraction of the

digital systems market, and act as a key technology in the automotive, consumer

electronics, industrial automation, military and aerospace applications, office automation,

and telecommunication and data-communication industries (Green and Edwards 2000,

Henzinger and Sifakis 2007, Konrad et al 2004, and Zave 1982). When computers

become more and more popular in daily life, ESs dominate areas of controlling

communication, transportation, and medical systems (Henzinger and Sifakis 2007).

Compared with general-purpose computers, except for computation requirements

considered in general-purpose computers, control requirements are more significant for

ESs.

As FPGAs (field programmable gate array) provide a platform to configure hardware

systems, FPGA-based ESs allow designers to build up their system not only with software

blocks but also via hardware modules. They give designers more freedom and opportunity

for options.

Naturally, the upstream part of OpenGL pipeline that is close to the graphics

applications at the top of a system tends to a software solution. The downstream part that

approaches frame buffers is prone to acquire the hardware support. Therefore, in this

project, a hybrid method combining hardware-related procedures and software-related

algorithms is adopted to implement the pipeline in an overall and progressive way.

Because of the flexibility of the programmable hardware and system design combining

with software and hardware, an FPGA-based ES is chosen as the research platform for

Chapter 1 Introduction 4

this project.

1.1.3 Parallelism in Computer Graphics

As known, a program solving a typical large problem is usually composed of parallelisable

and non-parallelisable parts. For this kind of problem, Amdahl’s law (Amdahl 1967) can be

roughly described as that the non-parallelisable part of a program will limit the overall

speed-up via parallelisation of the program. It can also be further described as that the

maximum speedup with parallelisation of a sequential program is reciprocal of the fraction

of running time the program spends on its non-parallelisable parts.

For the same type of problem, Gustafson’s law (Gustafson 1988) tells that for the overall

speedup, optimising the large running-time portion of a program will have a greater effect

than making effort on speeding up the much smaller part of the program.

Parallelisation of algorithms, however, relies on their data dependencies as well. In

most algorithms, there are dependent and independent calculations in parallel. There are

one or more critical paths that are the longest chain of dependent calculations in

algorithms. The study of Bernstein 1966 offers the conditions that two program fragments

can be executed in parallel.

There are different types of parallelism, including bit-level, instruction-level, data, and

task parallelisms (Grama et al 2003). Since it adopts a hybrid method of software and

hardware based on FPGA, this project makes the best use of task parallelism. If viewed

from a system standpoint, as applications are executed on FPGA-based ESs,

co-processors play a key role (Cevik 2004, Cheng and Goshtasby 1989, and Sridharan

and Priya 2004). From an algorithm implementation’s point of view, because of its

graphics pipeline goal, the parallel attribute is deconstructed naturally into the pipeline

accomplishment of FPGA.

1.2 Research Motivation

OpenGL architectures with FPGA-based hardware realisations are not within the scope of

most computer graphics researchers (Constantinides and Nicolici 2011, Kilgard 1997,

Kilgard and Akeley 2008, Luebke and Humphreys 2007, and Patashev et al 2000). The

FPGA hardware has not attracted the same passion and effort in graphics researches as

software in the past decades. It is still an area waiting for exploation where the OpenGL

pipeline, from the hardware system through the whole ES up to applications, is

implemented in an FPGA chip. Thus, this project presents a hybrid solution to graphics

pipeline with software and hardware based on an FPGA ES in order to enhance the

overall system performance in computer graphics applications.

Chapter 1 Introduction 5

On the other hand, a lot of research results in computer graphics have been applied to

other fields, such as automobile industry, archaeology, biomedicine, chemistry, earth

mantle convection analysis, and videogames and virtual reality (Bliss 1980, Krone et al

2009, Losh 2006, Martinez and Chalmers 2004, Nahum 1996, Schröder et al 2012, and

Yoo et al 2012). Thus, with the features of small size, low power cost, and parallelism

processing, this research can be promoted in many in-field applications, such as robots,

measuring fields, crafts designs, and medical surroundings.

1.3 Research Aims and Objectives

This research aims to develop a novel parallel algorithm for effective surface modelling

and editing, which is incorporated with hardware support by an FPGA implementation in

parallel. Following comprehensive literature reviews and in-depth analysis of existing

algorithms, a novel algorithm has been developed for surface modelling and editing in 3D

computer graphics. The enhancement and parallelism of the algorithm with FPGA support

have also been done in this work.

The objectives of the research have been fulfilled as follows,

▪ The realisation of the computer graphics pipeline has been divided effectively and

efficiently between hardware and software to enhance the overall performance of

the computer graphics system in an integrated way. The hybrid solution has been

carried out with an FPGA-based ES.

▪ During the development and implementation of FPGA-based ES with a hybrid

approach, the parallelism has been considered and adopted in the task processing.

Co-processors and pipelines have been used to further enhance the entire

performance of the FPGA-based ES.

▪ An implementation of Mesa-based OpenGL has been completed for the

FPGA-based ES. In addition to specifications of the OpenGL ES standard, this

implementation consists of the Bézier-spline curve and surface algorithms that

support the surface modelling and editing. To meet requirements of limited storage

and logic elements of the FPGA chip, this implementation adopts the fixed point

arithmetic, which provides a satisfactory accuracy for the 3D rendering. The fixed

point arithmetic is composed of designated processes for multiplication, division,

dot production, cross production, square root, linear interpolation, and

trigonometric functions.

▪ The new algorithm for surface modelling and editing, PAMA, has been developed

and enhanced for effective and flexible applications not only in the general-purpose

computer environment but also in the FPGA-based ES environment. In the

Chapter 1 Introduction 6

FPGA-based ES, the PAMA is more practical because of its lower requirements on

storage and computation than two other methods, subdivisions and deformations.

The results of its hybrid implementation verify that the PAMA can be applied in the

shape change in an interactive way.

▪ For a rigorous mathematic derivation based on the differential geometry, parameter

continuities and geometric continuities have been investigated. The geometric

properties of Bézier-spline curves and surfaces have been also inspected. Above

these, continuities of the PAMA have been explored and summarised

mathematically.

▪ Research results have been collected and systematically analysed via the

comparison between two environments of the FPGA-based ES and

general-purpose computer.

1.4 Research Methodology

This project proposes a hybrid approach to investigating both software and hardware

methods. This approach can bridge the gap between methods of software and hardware,

and thus enhance the overall performance for computer graphics.

Since it investigates both software and hardware to stay up-to-date, a comprehensive

research method is adopted in this work. This research method includes four aspects.

▪ To merge different technologies into a technology programme. As a new

research usually crosses two or more disciplines, it is necessary to apply different

technologies of different groups, such as individuals, companies, and academic

institutes, to a comprehensive and complex project. To make these technologies

work effectively and efficiently for a specific complicated goal, it is critical to know

each of them and bridge related parts with their interfaces and correct techniques.

These techniques must be based on principles of each of relevant disciplines and

also bridge the gap between them.

▪ To attempt different means and theories until a solution is obtained. Because

of uncertainties of a new research, a trial-and-error method is required. As regards

a hybrid solution of hardware and software, an adjustment on one part can lead to

changes of many related parts. It is normal to do many times of adjustment or

revision during attempts and explorations of different methods. Before the correct

result comes out, it can make one keep re-searching and re-verifying. During this

process, it is based on the rational analysis and rich experiences to make a

decision about which direction one should move in at the next step.

▪ To shift timely from an obsolete technology to an up-to-date one. As

Chapter 1 Introduction 7

technologies develop quickly, old technologies are always replaced with new ones.

When a technology is not available for some reason, such as obsolete, a substitute

one has to be found. This alternative can not only make a project proceed but also

provide a space for the project to develop. This is also based on rich knowledge

and experiences that help one to gain the ability of making a right decision about

the shifting direction.

▪ To flexibly use the existent knowledge and concepts. Any existent technology

model can be broken to yield a new one in order to meet new needs of the real

society. The existing knowledge and concepts can give one a method of thinking

about old models. One must produce new ideas and concepts for new

requirements during the research process.

1.5 Thesis Organisation

This research includes four parts: the construction of the FPGA-based ES, Mesa-OpenGL

implementation for the FPGA-based ES, parallelism processing, and a novel algorithm for

surface modelling and editing in computer graphics. From a system perspective from the

top to the bottom, the implementation of the algorithm for surface modelling and editing is

an application of computer graphics at the high level and has induced a series of research

activities, all the way through the OpenGL implementation, ES construction, and

integration of the parallelism context down to the hardware system setup with FPGA.

The system structure of this project can be shown in Figure 1.1. In a system view, this

structure is composed of five main parts from the top of application to the bottom of

hardware.

▪ On the top, the algorithm for surface modelling and editing is the application using

Mesa-OpenGL and auxiliary functions to edit surfaces through user interactions

and displaying the resulting images on the display device.

▪ In the middle, the Mesa-OpenGL implementation carries out functions of the

OpenGL pipeline.

▪ The connection between Mesa-OpenGL and hardware abstract layer is the

auxiliary interface of the OpenGL to communicate with the FPGA-based ES.

▪ The FPGA-based ES is a hybrid set of software and hardware resources that

comprises the hardware abstract layer and the configured FPGA supported by

Altera Embedded System development board of Cyclone III (Altera 2008a).

▪ The parallelism is applied to the speedup of the graphics and video processing of

the system. It includes pipelines and co-processors.

Chapter 1 Introduction 8

Figure 1.1 Structure of the Project

The thesis is organised as follows.

▪ After the introduction of Chapter 1, literature reviews are presented in Chapter 2.

Chapter 2 encompasses the contents of ES, FPGA, parallelism, and computer

graphics.

▪ An FPGA-based ES is built up. In addition to Nios II soft processor and DDR

SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory)

memory, the ES consists of the LCD (liquid crystal display) display device, frame

buffers, video pipeline, and algorithm-specified module to support the graphics

processing. These are discussed in Chapters 3 and 4. Chapter 3 explores an

integrated hybrid ES. Chapter 4 focuses on the FPGA-based embedded hardware

system for graphics applications.

▪ An OpenGL implementation based on Mesa is carried out for the FPGA-based ES.

It has been ported successfully to the FPGA-based ES. These are detailed in

Chapter 5.

▪ The parallelism implementation in the FPGA-based ES is explored in Chapter 6.

▪ A novel algorithm for surface modelling and editing, PAMA, is proposed and

implemented. It is detailed in Chapter 7. Applications of the PAMA in a

general-purpose computer environment are presented in Chapter 7.

▪ Results of surface modelling and editing with PAMA on the FPGA-based ES are

presented in Chapter 8. Comparisons between applications on two environments of

the general-purpose computer and FPGA-based ES are also discussed in Chapter

8.

▪ The future work is discussed in Chapter 9.

▪ Conclusions are presented in Chapter 10.

▪ Continuities of the PAMA and the mathematical context are explored rigorously in

Appendix.

Embedded Hardware System Constructed with FPGA

Combination of Mesa-OpenGL to Hardware Abstract Layer

Mesa-OpenGL Implementation

Algorithm for Surface Modelling and Editing

Parallelism

Chapter 2 Literature Reviews

Since this research aims at bridging the gap between software and hardware solutions for

computer graphics with a hybrid approach, it is a study crossing two disciplines of

computer science and electronics engineering. The principles in both disciplines have to

be followed and a scheme integrating the individual features of them into one application

goal must be created in order to find a feasible and effective solution. Researches on both

disciplines have been done in this project. According to four parts of this project, as shown

in Figure 1.1 and Section 1.5, these being the construction of a novel FPGA-based ES, a

new implementation of OpenGL based on Mesa for the FPGA-based ES, parallel

processing, and a new algorithm of surface modelling and editing – PAMA, the literature

reviews on them will be discussed in different sections and in the order of the thesis

organisation and system architecture from the bottom (the hardware system) up to the top

(applications).

2.1 Related Studies of ESs

ESs, as a younger discipline than computer science, have been flourished in many

application fields, such as life science, nano-engineering, controlling communication,

transportation, and medical systems (Chen et al 2008, Ghasemzadeh et al 2013, Gorski et

al 2010, Liu et al 2012, Massey et al 2007, Saddem et al 2011, and Surducan et al 2010).

Since ESs are usually designed directly for special consumers or specific application

environments, the factors of cost, performance and power consumption have more effect

on them than general-purpose computers. Each unit of an ES has its cost and benefit, and

contributes to the entire cost and benefit of the system. To lower the cost and power

consumption and enhance the system performance, it is necessary to encourage a

detailed consideration of implementation options for each unit of the system. For example,

a floating-point algebraic computing system can be implemented with a software or

hardware unit. The software implementation can have a lower price but a slower

processing speed. The designated hardware unit can speed up but at a higher price. Thus,

an ES design must make a choice by balancing between costs and system performance.

Chapter 2 Literature Review 10

 The ES design takes the system as a whole (Green and Edwards 2000). It is necessary

to evaluate implementation options between software and hardware in the context of the

overall system, rather than according to whether or not a single unit implementation is

optimum.

 On the other hand, for developers of high-level applications in a computer system,

compared with hardware facilities, available software resources give more support to the

application implementations. For example, software resources have plentiful specified

libraries and user-friendly APIs of operating systems. Thus, to find answers to new

problems, developers more likely turn to the software to search algorithm implementations

for answers, rather than to the fixed obscure hardware. In the computer system, the

software is more open and easier to expand than the hardware.

Behind this phenomenon, it is the computer science background of developers that

leads them to software. The computer science holds a general framework for a system

design that is highly abstract and logical in order to make the design device-independent,

user-oriented and computation-targeted. The design and construction of ESs, however,

are device-dependent, application-oriented and operation-targeted. This is the difference

between the computer science and electronics engineering. ESs combine the computer

science and electronics engineering by using both the computing ability of computer

science and the engineering capability of electronics engineering. The former leads to

mathematics, logic and science while the latter faces construction, engineering and

technologies. Researchers in these two fields think in different ways. Researchers with the

computer science background think in the way of the discrete mathematics of computer

science while ones with the electronics engineering background have to sample and

process the signals that continuously change (Henzinger and Sifakis 2007). In fact, it is

just like the difference of digital and analogue signals. The former can be one and zero

while the latter can be a range of voltage values.

These require that ESs, as an emerging discipline, increase and improve their

knowledge framework for common designs and constructions to meet the diverse and

varied application needs. ESs have been setting up a bond between computer science

and electronics engineering for both technologies and applications in a definitely

interdisciplinary way. In addition, ESs provide a solution of hardware/software co-design of

a system for applications. This is unachievable for general-purpose computers.

In this project, since the fixed hardware environment of general-purpose computers

cannot meet the needs of combining hardware and software to solve the graphics pipeline

problems, ESs are chosen as the platform. Especially, with FPGA technologies, ESs

become more feasible and flexible. ESs will be explored deeply in Chapter 3 and the

FPGA detailed in Chapter 4.

Chapter 2 Literature Review 11

2.2 Investigation of Hardware Graphics Applications

As a branch of computer applications, the graphics applications are also facing the need

of speeding up with hardware solutions. Because of the spread of the games market, the

acceleration of processing has become more crucial in graphics applications than many

other applications. Compared with other technologies in the computer graphics, GPUs

(Graphics Processing Unit) can be one of the most attractive devices.

2.2.1 GPU Applications

GPUs have been gradually merging into the graphics design to speed up the processing

and also playing a promising role in scientific computing applications (Baladron et al 2012,

Choe et al 2013, Nickolls and Dally 2010, Owens et al 2008, and Vuduc and Czechowski

2011). Over the past several years, many researches have attained rich results in games,

biophysics, and neuroscience.

In games, GPUs save the host CPU from complex graphics tasks and improve the

performance of the overall system. With the parallelism, large throughput, and high

computational ability, GPUs have an effective pipelining mechanism for graphics pipeline.

The synergy of GPU architecture is obtained by an array of computing units in the

fine-grained and closely coupled parallel. The upstream of the computer system gives the

GPU the input of a list of vertices of 3D coordinate system. These vertices are grouped in

geometric primitives. For example, a triangle primitive can be composed of three vertices

with three coordinate data for each vertex. Through several steps, including vertex

operations, primitive assembly, rasterisation, fragment operations, and composition, these

geometric primitives are shaded and mapped onto a display screen. GPUs bring games

into an unprecedented speed-up. It is a proof that the hardware is more effective at the

speed-up than the software. In the design and development of a target application,

hardware can be more flexible and direct in the system speed-up than software. The

details of the graphics pipeline will be explored in Chapter 5. The parallelism will be

discussed in Chapter 6.

In biophysics, GPUs fulfil their potential for solving computationally complex, large

problems. Also with the parallelism, large throughput, and high computational ability,

GPUs have produced a considerable performance in protein sequence search (Xiao et al

2011), dynamic protein structural comparison (Bonnel and Marteau 2012), and molecular

modelling (Daga et al 2011, and Lampe et al 2007).

The neuroscience is another field that embraces the GPUs for the solution to its huge

computation in simulation (Baladron et al 2012). In this field, to describe brain activities,

scientists design models of neurons and networks. They want to test hypotheses about

Chapter 2 Literature Review 12

how the brain operates. The number of model neurons must be huge enough to simulate a

real biological brain. It is an extremely computational challenging. GPUs have supported

to do the simulation of spiking neural networks (Yudanov and Reznik 2012), visual

neurons (Egashira et al 2012), and stochastic dendritic neurons (Karol et al 2011).

The basic idea beneath these applications is that the programmable unit of the GPU

adopts a single-program multiply-data (SPMD) model. In this model, a single program is

executed in all the elements. Each element does its task in parallel independently of

others and does not communicate with others.

From the above discussion, it is obvious that GPUs have the strength in speeding up

computation in parallel. But the GPUs evolved from the model with a fixed-function

special-purpose processor. The fixed-function model with special-purpose functionality is

the main characteristic of GPUs even though a lot of effort has been put in to make their

processing programmable. It can also be seen that GPU applications go into two

directions: one is a full speed-up solution to the graphics pipeline; the other is the

computing speed-up for large computation-intensive problems. These mean that GPUs

have limitations on the flexibility in the hardware structure building and the applications in

heterogeneous problems.

Compared to commercial video designated cards that adopt GPUs mostly, FPGAs give

alternative solution to graphics applications with their flexibility in the hardware structure

building.

2.2.2 FPGA Applications

At the very beginning, FPGAs were mostly used in signal and image processing, neural

networks (Nagendra et al 1993, and Van den Bout et al 1992).

After that, FPGA-based applications expanded quickly. Many fields have adopted FPGA

technology, such as aerospace system, ASIC (Application-Specific Integrated Circuit)

prototyping, automotive, consumer electronics, bioinformatics, cryptography, computer

hardware emulation, DSP (digital signal processing), industry control systems, medical

imaging, optimisation, portable applications, software-defined radio, speech recognition,

and others (Chelton and Benaissa 2008, Chrysos et al 2012, DeGroat et al 2008, Gao and

Long 2008, Kasik and Chvostkova 2013, Liu et al 2009, Lopez-Ongil et al 2005, Melnikova

et al 2009, Monmasson and Cristea 2007, Smith and De La Torre 2006, and Turqueti et al

2010). The FPGA technology has assisted and supported these researches to stay at the

leading edge in their fields.

In the DSP, numerous units for integer multiply-accumulate operations in a high-end

FPGA provide the ideal building blocks for high data-rate DSP. Several design flows for

DSP-oriented input specifications have been formed by some manufacturers’ design tools,

Chapter 2 Literature Review 13

for example, National Instruments LabView and Xilinx System Generator (Simulink) flows.

In scientific computing, the potential of FPGA technology for computing acceleration has

been well understood, but there is still a mismatch between the design tools supported by

FPGA manufacturers and the compilation flows expected by FPGA-based application

developers. Another obstacle in the scientific computing is that the numerical analysis

methods, which are used often in the scientific computing, have not been mapped

effectively into FPGAs. It is also the similar case for other complicated algorithms in the

scientific computing, such as the wavelet methods for time series analysis and analysis on

fractals. Before scientific applications can be ported to FPGAs, it is the key to find the

operations that are simple and common in the scientific computing, and can be

transformed into reusable building blocks in FPGA devices.

In the computer graphics, since GPUs have attracted most attentions of the academia,

industry and governments, GPUs have dominated the entirely speed-up of graphics

pipelines in general-purpose computers. FPGAs are developed only in the image

processing. With the similar performance on the parallelism, throughput and computing

ability as GPUs, FPGAs have not acted as an appropriate role in this field. To inspect this

phenomenon, let us make a deep analysis between FPGAs and GPUs.

2.2.3 FPGAs vs. GPUs

FPGAs have the similar features of high density and excellent parallelism as GPUs. Both

of them benefit from the constant progress in semiconductor technologies. In all the

academic, industrial and governmental societies, however, GPUs are more attractive than

FPGAs. In these two decades, more activities of research, development, and investment

are promoted to enhance conditions for mapping scientific applications onto GPUs. The

specification languages, design environments and compiler technologies for GPUs have

been formed quickly (Constantinides and Nicolici 2011). In spite of having a two-decade

evolution history, FPGAs do not have an open, completed, and generic platform for the

application design and development. Thus, the research, development and investment on

FPGAs are separate and indifferent.

Because of the inconvenient design methods and tools for FPGA-based accelerators,

many applications turn to general-purpose graphics processing unit (GPGPU) for their

solutions. In fact, since their configurability ability, FPGAs have more potential to provide a

large number of processing engines in parallel on a silicon die than GPUs. FPGAs need

new tools to equip developers and engineers who are used to using compilers such as C

compiler for microprocessor programming in order to migrate to FPGA platforms without

needs to learn new languages and design environment.

GPUs dominate in the research, development and investment by productivity rather

Chapter 2 Literature Review 14

than performance reasons (Constantinides and Nicolici 2011). In fact, GPUs dominate the

graphics speed-up in general-purpose computers, but do not in ESs. Because the full

potential of FPGAs has not been realised, FPGAs should be invested more attention and

effort in development and applications in order to fulfil their potential in ESs. For the above

reasons, an FPGA platform is chosen as the platform for this research.

In addition, in general-purpose computers, CPUs are the central microprocessors of

systems for computing. Without the speed-up GPUs, CPUs have to manipulate graphics

pipelines. This architecture is still adopted by low-end computers. Thus, let us make

another comparison between FPGAs and CPUs.

2.2.4 FPGAs vs. CPUs

Compared with CPUs, solutions with FPGAs have advantages and disadvantages. Table

2.1 displays the comparison.

Table 2.1 Comparison between FPGAs and CPUs

 CPUs FPGAs

Power Consumption High Low

Parallelism Instruction Processing in

Sequence

Inherent Operation

Parallelism

Design Complexity Low High

Increasing Speed in Capability Low High

2.2.4.1 Lower Power Consumption

Modern FPGAs exhibit a lower order of magnitude of power consumptions than CPUs. For

example, Altera Cyclone III FPGAs with up to 200K logic elements claim to consume less

than 0.25 watts whereas Intel Core i5-460M, a high end dual core CPU for laptops,

requires 35 Watts.

2.2.4.2 Higher Parallelism

Because of its architecture, a microprocessor tackles an application as a sequence of

instructions while the logic blocks in an FPGA can be configured to operate in parallel.

Compared to the software executed on a CPU, the inherent parallelism of FPGA logic

resources can offload time intensive operations from the CPU.

2.2.4.3 Higher Design Complexity

The design complexity of FPGA solutions is higher than software solutions by the CPU. It

is an obstacle for promoting FPGA solutions to problems. A minor change in the software

Chapter 2 Literature Review 15

can take several minutes to re-compile with a compiler, but a minor adjustment in the

hardware may take several hours to re-build on the FPGA design platform.

2.2.4.4 Higher Increasing Speed in Capability

According to studies of Arden and Awad (Arden 2002, Awad 2009, and Kahng 2013),

FPGA technology would be ahead of microprocessors in increasing speed for the recent

15 years because FPGAs follow the International Technology Roadmap for

Semiconductors, rather than the microprocessors roadmap. The FPGA density is growing

at the rate of advanced CMOS (complementary metal-oxide-semiconductor) technology,

which makes its size decrease by a factor of 1.26 per year. With time, as the FPGA

community settles CAD (computer-aided design) tools limitations, FPGA will affect even

more on most digital logic designs and implementations.

Predicted by Awad (Awad 2009), a hybrid system with multi-core CPUs and FPGAs

operating in tandem with parallel-core GPUs can be expected to offer an enhanced

hardware performance and programmability for supercomputing platforms.

2.3 Introduction of OpenGL, OpenGL ES and their Implementations

In the computer graphics, the OpenGL is a widely-accepted standard for 2D

(two-dimensional) and 3D graphics applications with user interactions. In the OpenGL, the

graphics pipeline is a state machine that can be implemented with an OpenGL-capable

computer (Kilgard 1997, and Kilgard and Akeley 2008).

The graphics pipeline consists of two sub-pipelines, geometric pipeline and fragment

pipeline (Hearn et al 2011, and True et al 2004). The geometric pipeline processes the

vertex coordinates of displayed objects through a sequence of coordinate transformations,

including transformations from vertex coordinates to eye coordinates, to clip coordinates,

to normalised coordinates, and finally to window coordinates. After rasterisation, the

fragment pipeline processes the pixels in frame buffers to make the images of displayed

objects rendering on a display screen. The fragment pipeline includes steps of texel

generation, depth test, stencil test, alpha blending, and logical operations. These steps

can be enabled or disabled according to whether or not they are required to perform

during rendering.

 The OpenGL ES (OpenGL for Embedded Systems) is one of OpenGL standards

specified for ESs (Angle and Shreiner 2008, and KHRONOS 2013). It can be applied to

automobile digital parts, hand-held gadgets, and mobile phones. Since there are wide

applications in ESs, the OpenGL ES consists of versions and profiles for different

applications (KHRONOS 2013).

 Because there are a broad range of display devices and platforms in embedded

Chapter 2 Literature Review 16

markets, the OpenGL ES has two versions for two different development requirements

and platforms, respectively. These are OpenGL ES 1.X and 2.X. The OpenGL ES 1.X is

specified for the fixed function hardware in order to decrease the memory bandwidth, to

enhance image quality and graphics performance, and to improve hardware acceleration.

The OpenGL ES 2.X is set for programmable hardware. It consists of specifications for a

programmable 3D graphics pipeline. They include the definitions of constructing shader

objects and programming vertex and fragment shaders in the OpenGL ES Shading

Language.

Three profiles of the OpenGL ES have been released, which are Common, Common-Lit,

and Safety Critical Platforms. The Common Profile is designated for consumer handhold

devices, such as PDAs (personal digital assistant), cell phones, game consoles, television

set-top boxes, and others. The Common-Lite profile primarily concentrates on a simpler

class of graphics system with a requirement on even less footprint. It only supports the

fixed-point calculations. The Safety Critical Profile is specified for consumer and industrial

surroundings that have high requirements on being certifiable and reliable. It can be used

in 3D graphics applications of safety certifications, and avionics and automotive displays.

No matter the OpenGL or OpenGL ES, they must be implemented on different platforms.

Since the hardware system of one platform is different that of another, the

implementations on them are different. Companies, such as Intel, Imagination

Technologies, ARM, Apple, and NVIDIA, have their own implementations of OpenGL ES

(KHRONOS 2013). Mesa (Paul 2013) has many implementations of OpenGL for different

general-purpose computer platforms, which are free and open-source.

Since the existent implementations of the OpenGL ES do not encompass one specified

for FPGA-based ESs and the algorithms of Bézier curves and surfaces are not included in

specifications of general OpenGL ES, a Mesa-based implementation of OpenGL is carried

out in this research in order to meet the needs of surface modelling and editing with the

PAMA.

2.4 Investigation of Traditional Computation Parallelism

As the hybrid way is adopted in the construction of FPGA-base ES in this project, the

parallelism is considered naturally to enhance the performance of the system. Thus, it is

necessary to investigate the traditional computation parallelism and to find a root to

expand the concept of the traditional computation parallelism to meet new requirements of

FPGA-based ESs and hybrid methods.

At the beginning, the emphasis of parallel algorithm design was on messaging and

loop-based parallelism, and on precise mapping of tasks to specific topologies such as

Chapter 2 Literature Review 17

meshes and hypercubes. It has evolved into the programmability and portability of parallel

algorithm design and implementation (Grama et al 2003).

In computer systems, the principle at the heart of parallel algorithms, which is the

locality of data reference, provides a solution to cache-friendly serial algorithms. It has

been extended to the development of out-of-core computations.

2.4.1 Data Parallelism: SIMD and MIMD

Traditionally, the parallel architecture can be classified in two large classes: single

instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) (Jonker and

Vogelbruch 1997, Krishnakumar et al 2011, Nomoto et al 2011, Pitas 1993, and Wang and

Ziavras 2006). They have been developed in digital imaging processing, computer vision,

neural networks, and other fields. Such machines exploit data level parallelism.

The SIMD is a class of parallel computers in the Flynn's taxonomy. It describes

computers with multiple processing elements (PEs) that perform the same operation on

multiple data simultaneously.

SIMD machines are the first ones that appeared in applications of digital image

processing and computer vision. Most of them exploit cellular logic arrays. They are

composed of large arrays of simple one-bit PEs. All the PEs form a processor grid by

connecting each of them to its immediate neighbours. Instructions are broadcast to all PEs.

Using local data transfers, it can perform local neighbourhood operations synchronously.

The advantage of cellular logic arrays is to make the best use of both geometrical and

neighbourhood parallelisms. However, it has some disadvantages. One is that it can

process an array with a small size of 128 X 128 pixels simultaneously. An image with a

typical size of 1024 X 1024 pixels must be split in segments and each segment must be

processed independently. When multiple local operations must be applied in pipeline, it

can result in border effects that may seriously influence the image performance. The

second disadvantage is that it can bring a heavy I/O load to the system. The third one is its

restricted ability in high-level vision.

In computing, the MIMD is another technique employed to achieve parallelism. In

contrast to the SIMD, in the MIMD, any PE is able to execute a different program

independently of the others. Machines using the MIMD have a number of processors that

function asynchronously and independently. At any time, different processors may

execute different instructions on different pieces of data. MIMD architectures may be used

in a number of application areas such as CAD, simulation, modelling, communication

switches, image processing, and computer vision. In digital image processing applications,

massive MIMD machines have been developing for at least three decades.

MIMD machines can be divided in two categories: common shared memory and

http://en.wikipedia.org/wiki/Flynn%27s_taxonomy�
http://en.wikipedia.org/wiki/Computing�
http://en.wikipedia.org/wiki/Processors�
http://en.wikipedia.org/wiki/Asynchrony�
http://en.wikipedia.org/wiki/Shared_memory�

Chapter 2 Literature Review 18

distributed memory. This classification is according to how MIMD processors access

memory.

In common shared memory architectures, all processors access the same memory

through the bus. They are extendable with a hierarchical structure. Their advantage is that

since data are stored in the common shared memory, any processor can access them at

any time. The disadvantage is that the competition in memory access among processors

can occur.

In distributed memory architectures, each processor has its own local memory and

communicates with others via a common bus, communication link, or both. A hypercube or

mesh interconnection scheme may be adopted in distributed memory architectures. In this

case, data must also be divided into small chunks and distributed among processors. It

means that data exchanges between processors are required when data processing

algorithms execute. Data exchanges can aggravate the communication load and reverse

the speedup expected. If a common bus is used, bus congestion may occur as well. If the

serial communication links are used, typically in DSPs, the small bandwidth of serial links

for most data processing applications can be a bottleneck. A modified scheme is to

combine a high-speed common bus with communication links. The former is specified for

the data transfer; the latter are used for the message passing.

In the image processing, for example, the SIMD architecture is used in the low-level

processing while the MIMD is applied in the high-level processing. In the middle, it can be

a mixed architecture that is a hybrid or mixed one of SIMD and MIMD (Siegel et al 1981).

2.4.2 Operator Parallelism

An alternative parallelism approach is operator parallelism. In this architecture, each

operator can be optimised for specified tasks and be linked together to accomplish a

sequence of tasks (Pitas 1993, and Ramasubramanian et al 2002). Thus, it is also called

as pipelining even though it has different functions from the pipeline that will be discussed

in detail in the next section. There is a special architecture in the operator parallelism, the

operator parallelism within loops. To form a loop, the starting processor in the pipelining

can be linked to the end processor. This loop structure can be used in a situation where

the same operations must be performed on the data cyclically and repeatedly.

 In DSPs, the operator parallelism has been widely used in the implementation of

low-level digital signal or image processing algorithms. It has been proved that the

operator parallelism is very efficient for the morphological image processing. In

special-purpose integrated circuit boards, heterogeneous pipelines are successfully used

in operating on a high-speed image bus. With integrated circuit board drivers, the

pipelining function can be controlled by a host computer.

http://en.wikipedia.org/wiki/Distributed_memory�
http://en.wikipedia.org/wiki/Grid_network�
http://en.wikipedia.org/wiki/Mesh_networking�

Chapter 2 Literature Review 19

2.4.3 Pipelined Processors

Pipelined processors for real time low-level image processing have been developed for

three decades as well (Kelly and Hsu 1998, Kim H. et al 2012, Kim J.K. et al 2012, and

Pitas 1993). These processors receive data in the raster scan order and pass them to the

processing pipeline sequentially. Each stage in the processing pipeline performs the same

pre-specified operation on every element of the data in sequence. Pipelined processors

have been applied in processing algorithms for pixel-wise and local images. The

advantage of pipelined processor is to process the image in real time. Incoming data can

be accepted from the image sensing device directly. The intermediate processing results

are not necessary to store, which simplifies communication between stages. Their

disadvantage is the lower flexibility on the hardware devices. Once specified and built up

for a special algorithm, devices cannot be changed for other algorithms.

2.4.4 Cache

Compared to the above parallelism technologies, it is not obvious that the caching

technology is included in the parallelism. It is known that there is a speed mismatch

between processor and DRAM (Dynamic Random Access Memory). One reason for this is

the memory latency, a period of time needed by the memory device for preparing the data

to transmit; the other reason is the low bandwidth of memory, which is the rate of data

transmission between the processor and memory device. The memory bandwidth is

determined by the size of memory blocks and the bus bandwidth of the memory. Memory

blocks are the smallest units that can be physically fetched to the cache each time.

 The cache, which acts as a temporary low-latency high-bandwidth storage, is used to

speed up the memory access with the reuse and locality of code and data (Grama et al

2003). The reuse means that a section of code or data can be re-accessed more than

once. The locality is the feature that the access to a section of code or data can be kept for

a while when a program is executed. If several of consecutive and contiguous blocks are

pre-fetched to the cache in subsequent bus cycles when the first word is retrieved, the

subsequent consecutive blocks can save the memory latency. Both of the reuse and

locality are features that the programming mostly has.

There are varied types of cache. The lower latency and higher bandwidth a cache has,

the more expensive it is. Thus, a system can have multiple levels of caches. The

lower-latency and higher-bandwidth cache is put closer to the processor. The system’s

performance is improved by raising the rate at which data can be transmitted into the CPU,

rather than by increasing the processing rate of the CPU.

This structure does not belong to typical traditional parallelism architectures. As the

multiple levels of caches are cascaded in between the processor and DRAM, it can be

Chapter 2 Literature Review 20

treated as an implicit pipeline.

2.4.5 Promotion for New Concept Introduction to Parallelism

Driving the parallelism evolution is needed to speed up the computation, which is always

required by advanced applications. Since there is no limitation for the requirement of

speeding up computation, the parallelism in computer systems and applications becomes

diverse, flexible, and changeable. Researchers have attempted many different ways in

different hardware platforms to extend and even break through the conventional

parallelism concepts. Different application situations can spawn different methods, and

lead to different solutions.

For example, a pipeline has many variants in different parallelism contexts, which will be

further discussed in Chapter 6. Applications in graphics and visualisation can use multiple

rendering pipelines and PEs of different levels in parallel in order to compute and render

realistic scenes with millions of polygons in real time. This parallelism simulates but does

not exactly map rendering tasks to specific topologies of processors.

Another issue is the capability of hardware system where a parallelised algorithm is

implemented may influence the speed. The effect of speeding up of the parallelised

algorithm relies on whether or not the capability of a hardware platform is sufficient for this

parallelised algorithm. This may result in modifying the parallelised algorithm in order to

speed up the computation at that hardware platform. The parallelism can produce an

effect in that system context, which is different from those in other system contexts.

In graphics and video processing, the pipeline, however, can be transformed to have a

cache-like function. Just like the mismatch between processor speed and the memory

latency needs a hierarchy of successively faster caches to compensate, the mismatch

between frame buffers in memory and pixels processed and displayed line by line on a

device screen has to be pipelined to display images smoothly on the screen. Therefore, a

new type of parallelism can be modified and synthesised.

These new concepts of parallelism are applied to this project and will be detailed in

Chapter 6.

2.5 Related Studies in Surface Modelling and Editing

According to Cunningham 2008, and Hearn et al 2011, many methods and technologies of

other areas are needed in the computer graphics, such as the geometrics, numerical

analysis, approximation theory, and interactive computer systems, to support the

representation, manipulation and display of free-form surfaces. These free-form surfaces

can represent varied objects. But the computer graphics has its own features and rules to

Chapter 2 Literature Review 21

model objects in order to display them on computer screens.

For the 3D rendering, it needs to go through the whole graphics pipeline that an

OpenGL implementation can provide. From the application perspective, it includes

modelling, several coordinate transformations from the local coordinates to scene world

coordinates, to viewing coordinates, and to projection coordinates, clipping with view

volume, and mapping viewport coordinates to screen device coordinates.

In order to display an object properly on the screen, it is fundamental to model the object

in a controllable, flexible, and effective way at the beginning. The object can be modelled

with a surface or mesh. The surface can have a set of control vertices that are used by the

user interaction for surface editing (Barsky 1984, Cunningham 2008, Hearn et at 2011,

Hoppe et at 1994, and Hoschek and Lasser 1993).

In many applications of computer graphics, for instant, computer-aided geometric

design (CAGD) and CAD, the manipulation of surfaces or meshes is necessary because

users expect to edit and modify the object shapes according to their design intentions.

Therefore, for surface/mesh editing, it is important to model objects in a controllable and

flexible way.

There are many methods for object modelling and editing in 2D or 3D, which have been

published in these three decades (Abbasinejad et al 2013, Cheng and Goshtasby 1989,

Duchamp and Stuetzle 2003, Hoppe et al 1994, Huang et al 2006, Loop and DeRose 1989,

Loop 1994, Nasri 1987, Perez et al 2003, Sederberg et al 2003, Sorkine et al 2004, Wang

et al 2006, Welch and Witkin 1994, and Yu et al 2004).

For the 3D rendering, there is a general purpose, which is to make the geometrical

images as smooth as possible. For this goal, there are three mainstream schemes to

maintain the local control during surface modelling and editing, these being subdivision,

deformation, and shape parameterisation.

The multi-time reuse of subdivision in different levels can create a limit surface with

visual smoothness (Catmull and Clark 1978, Deng and Ma 2013, Doo and Sabin 1978,

Kazakov 2007, Lin et al 2008, Müller et al 2006, Müller et al 2010, Nasri and Abbas 2002,

Patney et al 2009, and Sederberg et al 1998). Since the limit surface is the convergence of

infinite-time applications of subdivision, there is always a compromise between

computation cost and surface smoothness during practising subdivisions. Depending on

the smoothness and local geometric details to be attained, this compromise varies and the

number of subdivisions to be applied is empirical. That is, when using the subdivision

method, designers may use fewer times of subdivisions if the situations allow the lower

smoothness and fewer local geometric details. Or, they may use more times of

subdivisions if the cases need the higher smoothness and more local geometric details.

Chapter 2 Literature Review 22

Deformations of solid primitives can be assembled in a hierarchical structure to create

complex objects (Barr 1984, Botsch and Sorkine 2008, Clack and Keyser 2013, Lawrence

and Funkhuser 2003, Sederberg and Parry 1986, and Sumner et al 2007). In order to

change the shapes of primitives, deformations have several hierarchical solid modelling

operations to support user interactions. Deformations provide a flexible way to construct

3D geometrical shapes. The disadvantages are that the assemblies of different levels of

primitives can result in the unexpected non-smoothness between different primitives. The

more complicated the target object structure is, the more assembly layers are required,

and the more calculations are involved.

The shape parameterisation can be used to get local control with the predicable surface

smoothness and without multi-time reuses to reach the smoothness (Barsky and DeRose

1989, and Barsky and DeRose 1990). The local controls are not divided into any

hierarchical structure. Seen from publications, the aforementioned two schemes involve a

lot of researches of different individuals and groups, but the last one does attract much

less attention after the study of Barsky and DeRose 1990.

Table 2.2 displays comparisons among these three methods. As the above discussion,

the multi-time reuse is required by subdivision methods, rather than by the two others. The

assembling sub-models are needed by deformation methods, but not by the two others.

Without primitive assembles of deformation methods, the surface parameterisation

methods offer a definite smoothness. The reason for this is that the geometric continuities

on the common boundary of two connected patches are the conditions that are used to

construct the algorithms for surface parameterisation methods, which will be explained

later. Without intermediated processes, the surface parameterisation methods have lower

storage and computing cost than subdivision methods. Since the multiple applications and

primitive assembles are eliminated, the computation cost of surface parameterisation

methods are lower than the other two.

In addition, for the surface modelling and editing, the user interactions are necessary

and require the operations with the input and output system. The times of user interactions

caused by the surface editing engender the same times of input/output operations. The

latter leads to the computation cost and makes the time cost even more because the time

cost is the sum of the time cost by both the computation, and the input and output system.

Thus, the time cost of surface parameterisation methods is much lower than two other

methods. Moreover, considering that it is applied to an FPGA platform, which is limited in

the storage space and computing ability, a shape parameterisation method is even better

than the two other methods.

The novel algorithm, PAMA, proposed in this thesis, can be classified into shape

parameterisation.

Chapter 2 Literature Review 23

Table 2.2 Comparisons among Three Surface Modelling and Editing Methods

 Subdivision Deformation Shape

Parameterisation

Multi-time Reuse Required None None

Assembling Sub-models None Required None

Smoothness Varied, Empirical Non-smoothness

Between Primitives

Smooth

Hierarchical Structure Depending on

Geometrical Details

Required Flatted in One Level

Storage Cost High High Low

Computation Cost High High Low

Time Cost High High Low

Among many existent spline algorithms, B-spline (Cheng and Goshtasby 1989, Forsey

and Bartels 1988, Liu et al 2009, Loop and DeRose 1990, and Martin et al 2008) and

Bézier-spline (Efremov et al 2005, Hagen 1986, Li et al 2006, Loop and DeRose 1989,

and Si and Guenter 2010) can smoothly approximate an irregular control mesh. They are

often used as a basis, and proved simple, efficient, and of a polynomial form.

Bézier-spline curves and surfaces provide a convenient method for interactive design

applications. A curve or surface formed with two Bézier sections or patches can be

established with a zero-order and first-order parametric continuity (0C and 1C) at the

common boundary point or line (Barsky and DeRose 1989, and Hohmeyer and Barsky

1989). Since the degree of the Bézier curve is determined by the number of all control

points to be approximated and their relative positions, Bézier-spline curves and surfaces

have a limited local control on control points. Parametric continuities can shrink the set of

parameterisations by excluding ones that can generate geometrically smooth curves. The

reason for this is that the condition of a given order of parametric continuity is stricter than

one of the same order of geometric continuity, which will be explained later in this section.

Beta-splines have many merits (Barsky and DeRose 1990, Farin 1993, Hearn et al 2011,

and Hohmeyer and Barsky 1989). They can acquire constructed curves that are smooth

and fit control points. They can also add Beta-constraints to a curve so that Bézier curve

segments can be joined together with geometric continuities and more controls can be

provided with shape parameters for users to edit curves interactively. For each control

point of the curve, each of shape parameters has its own efficacy for changing the curve

shape, which is different from changing the position of control point.

Chapter 2 Literature Review 24

Cubic Beta-splines can give the second-order geometric continuity (2G), which is more

relaxed than the second parametric continuity (2C) (Barsky and DeRose 1989, and

Hohmeyer and Barsky 1989). With shape parameters that ensure Beta-constraints,

Beta-spline curves can match parametric derivatives and lead to local controls on curves.

In the study of Barsky and DeRose 1989, the authors give an application of stitching cubic

Bézier-spline curves together with the first-order and second-order geometric continuity

(1G and 2G), which is a development of cubic Beta-splines with 2G . The scheme of

joining cubic Bézier-spline sections together with the 1G and 2G conditions (or

Beta-constraints) is first proposed by Farin (Farin 1982), enhanced by Boehm (Boehm

1985), and applied to Beta-spline curves by Barsky and DeRose (Barsky and DeRose

1989). It has palpable geometrical meanings and is feasible to construct the polygons of

cubic Bézier-spline sections with 2G common boundaries, which will be explored in

Appendix. Following these thoughts, the PAMA attempts to extend the geometrical

construction scheme to Bézier-spline patches of a composite surface with the common

boundary curves that hold specific-order geometrical continuities.

With Beta-splines, the curve construction is given by several researchers, such as

Barsky and DeRose (Barsky and DeRose 1990). For the surface construction, a special

case is presented in the article of Barsky and DeRose (Barsky and DeRose 1985), which

has the same shape parameters in two parameterisations. In the article of Joe (Joe 1990),

Beta-spline surfaces are constructed with an algorithm, in which one of the shape

parameters (βu2) is set to one for all control points, and the computing cost is reduced

while the control of these shape parameters is lost. There has been no recent published

work on comprehensive extensions of surface modelling with Beta-splines or

Beta-like-splines of four shape parameters changing independently in two

parameterisation directions.

Considering the tension product of Beta-splines surfaces can result in a large

computational cost of multiplication and the shape parameters of each control point should

be manipulated independently for the design purpose by user interactions, this research

proposes and applies a Beta-like-splines of four shape parameters to surface modelling

and editing through user interactions. The Beta-like-splines proposed in this research are

not deduced directly from the tensor product of Beta-spline blending functions, but derived

with a progressive and mixing way, which takes account of both the geometric continuities

of surfaces and the shape parameters of two parameter directions naturally adding to the

surface construction. These lead to the novel algorithm, PAMA, which will be detailed in

Chapter 7. Open and closed spline surfaces have been constructed and edited with the

PAMA through user interactions and are also shown in Chapter 7. In addition, the

applications of the PAMA in two environments of the general-purpose computer and

Chapter 2 Literature Review 25

FPGA-based ES are presented in Chapters 7 and 8, respectively. For the coherence of

the thesis, a lucid exposition of the rigorous mathematical deduction of the PAMA and its

continuities will be presented in Appendix.

2.6 Chapter Summary

In this chapter, five aspects of literature reviews are presented, which are relative to five

aspects of this project. The first aspect is Section 2.1, the related studies of ESs. The

second one is Section 2.2, the investigation of hardware graphics applications. The third

one is Section 2.3, the introduction of OpenGL, OpenGL ES and their implementations.

The forth one is Section 2.4, the investigation of traditional computation parallelism. The

last one is Section 2.5, the related studies in surface modelling and editing. The contents

in these sections are followed by the rest chapters of the thesis, respectively. Chapter 3

discusses an integrated hybrid ES following the discussion in Section 2.1. Chapter 4

explores the FPGA-based embedded hardware system for graphics applications, which

deepens the investigation in Section 2.2. Chapter 5 details integrating the Mesa-OpenGL

implementation into FPGA-based ES, which follows the introduction in Section 2.3.

Chapter 6 explores the parallelism implementation in FPGA-based ES that deepens the

investigation in Section 2.4. Chapter 7 focuses on the novel algorithm for surface

modelling and editing, PAMA, which deduces from the studies of Section 2.5.

Chapter 3 An Integrated Hybrid Embedded System

The discussions of Sections 2.1 and 2.2 clearly suggest that to obtain a hybrid solution of

software and hardware for graphics applications, we need to choose a platform that allows

us to construct a system as a whole by considering both hardware and software. This has

the merit that the ES outstrips general-purpose computers. In addition, since the ES is

known as an interdisciplinary field, we need to investigate the features of ES design and

gradually explore how to use an ES model to construct a goal system for graphics

applications and allow the PAMA to execute on this system.

3.1 Features and Principles of ES Design

According to the study of Henzinger and Sifakis (Henzinger and Sifakis 2007), an ES is an

engineering artefact involving computation that is subject to physical constraints. In other

words, even though involved in the computation, the ES is a physical system that has to

meet the physical requirements and be implemented with engineering methods.

3.1.1 Physical Requirements for ESs

The physical requirements for ESs are twofold. One is responding to its physical

environment; the other is performing operations on its physical platform. These operations

can be, but are not limited to, computations. They can be the moving of actuators,

receiving sensor signals, transmitting signals, and many other controls. The ES mainly

interacts with its environment. The interactions can be from human beings’ control with

consoles and to a monitor, or making a response to a sensor signal, such as turning a

robot around when it is about to bump into a wall. Both the response ability and operations

can significantly influence the ES performance.

3.1.1.1 Response

Requirements for response include deadlines, throughput, and jitter performance.

Because of real-time requirements, the response of ES to an outside event has a start

Chapter 3 An Integrated Hybrid Embedded System 27

or completion time as a deadline. Beyond this deadline, the response is pointless. In other

words, the real-time response must be able to keep up with the event with which it is

concerned and be started or completed before this deadline. Otherwise, it will lead to a

fatal failure to the system or undesirable damage.

 The throughput has a different meaning for an ES from a general-purpose computer.

For a general-purpose computer, the throughput indicates the amount of data that the

computer can accept and process without missing any of the data. For an ES, except for

the amount of data to be processed, the throughput usually means the processing ability

of the ES. That is, the ES must tackle all the specified operations in real time without

missing any of them. In other words, the operations can comprise not only a large amount

of data to process but also a sequence of responses to a series of events.

Jitter problems are natural but undesired for electronic circuits. They can occur when the

switches in electronic circuits are turned on and off and lead to instantaneously undulation

of signals. Without properly protection, they can cause ESs to malfunction. Thus, jitter

performance is critical for ESs. Protection measures for jitter problems can come at the

cost of system resources, however.

3.1.1.2 Operations

In ESs, the requirements of operations involve the speeds of on-board processors and the

capabilities of system resources. The processors and system resources are related to the

price for which the end products can be paid, the sizes and capabilities of chips and

boards, and power capabilities. Hardware failure rates can also have an influence on

operations. These requirements affect each other.

 Usually, when considering the higher cost restriction and less computation, ESs use

slower processors than general-purpose computers do. In general, for general-purpose

computers, for which computation is the main task, the higher the speed of their

microprocessors, the better their system performances. For ESs, because of the cost

restriction, a proper option can be a processor with a speed fast enough for response to

their application environment, or a processor with a speed sufficient for the completion of

specified operations before the deadline. Similarly, the size of memory, which is one of the

most important system resources, is also restricted to an appropriate range for specified

applications of ESs.

 The sizes and capabilities of chips and boards can impose restrictions on the on-board

processor option. Because of their application environments, ESs often do not have large

space for accommodation. A small size is the regular choice. Higher capabilities of chips

or boards mean higher costs. An unrealistic high-quality chip or board is not compatible

with the limited budget of a mass electronic-consumer product.

Chapter 3 An Integrated Hybrid Embedded System 28

 Because of the limited space, the power units of ESs cannot be large. Small sizes lead

to power restrictions. Greater power means higher cooling requirement. Usually,

rechargeable batteries are alternative power sources for ESs. For rechargeable batteries,

a large size is inappropriate.

 Lower hardware failure rates are often required, especially for the applications in life

science, medical instruments, and avionics. Decreasing hardware failure rates means

increasing the cost in terms of enhancing the check and protection units of systems.

Roughly, to decrease hardware failure rates, there are two levels for safety-critical

requirements in ESs, hard and soft. For hard safety-critical ESs, the necessary computing

power must be guaranteed at all times. The needs of the static scheduling and worst-case

execution time analysis must be met in real time. Hard deadlines must be met. System

reliability must be guaranteed with massive redundancy technologies and measures for

failure detection and recovery. These ESs are usually used in life science and avionics.

Soft safety-critical ESs make a soft demand on service quality. The efficient use of

resources is the goal for this type of system design. The applications for this type of

systems can tolerate some service degradation or even temporary service shortage. Soft

deadlines are not too serious and allow a small amount of being missed. Thus, the

best-effort mechanism can be adopted. The best-effort mechanism tries to balance

system performance and cost when systems go into degenerated situations. It can get

feedback from the degenerated situations and adjust some parameters to maintain an

acceptable performance or to recover from the degenerated state at the run time.

Communication networks and multimedia systems belong to the soft safety-critical ESs.

In these systems, the best-effort scheme is often used to guarantee a lower failure rate.

Even more, since the workloads of these systems vary dynamically at the run time, the

best-effort scheme can be used to adjust performance according to different workloads. It

uses different users with different priorities or data traffic to balance performance levels of

the whole systems during different periods of time.

 All the above requirements decide the implementation options on ESs. Since they

influence each other, it is necessary for ESs to find a balance among these requirements.

Control theory and computer engineering can help to balance the capabilities of response

and operation of ESs with all the requirements. Therefore, ESs need to carry out a design

that can meet a designated set of requirements on a given implementation platform.

3.1.2 Analysis for ES Design

Since an ES design involves both hardware and software design, it is necessary to make

an in-depth analysis on regular paradigms of software and hardware designs, respectively.

Then it can be seen clearly how to progressively build up a new way with current design

Chapter 3 An Integrated Hybrid Embedded System 29

conditions for the ES design.

3.1.2.1 Software Design Paradigm

In software engineering, a system design employs an abstract representation of the

system requirements. The abstract system representation is a model that follows the

standards and rules of software engineering and some high-level language syntax. The

model can give a description of a target system design. A designated language compiler

uses the model to generate automatically a system that meets the given requirements.

This system is a piece of software that is usually the collection of the machine codes and

can be executed on a computer.

Software design is usually carried out on a virtual machine. This machine is an abstract

one defined with a real interface via which application software can interact with a real

machine. No matter which machine it is, the interface is real and generic for all types of

machines. Since it consists of different functional units, the standard input and output

system is divided by functions and defined in specific blocks. These blocks are available

for software calling via the interface. Therefore, software design does not necessarily

analyse the content of the virtual machine but only knows how it works. A real machine

can be uncertain before the software is ported to it. But the real interface can guarantee

software portable among real machines with the generic interface.

On the virtual machine, the software design is set up. The software is conventionally

designed as a model that consists of sequential blocks. These blocks can be instructions

and routines representing threads and objects. The implementation of each block is

changeable depending on the actual algorithm, but the function and interface of each

block must be clarified and consistent. Designers can add and delete individual blocks

according to their target system’s requirements. Designers can define the blocks’ layout

by specifying the control flow among them.

Software programming usually does not treat timing as seriously as hardware

construction does. One reason for this is that the computation result is often more

important than the computing process. The other reason is a side-effect of high

abstraction. High abstraction encapsulates and hides CPUs and memories from the

applications in a computer system. It also hides how the computation result is being

attained. On the other hand, the hardware knows that all the processing in a computer

system is done with a series of actions of processors controlled by the system clock, no

matter whether the processing is computing or controlling.

Time-sharing systems have led to greater efficiency of computer systems by making the

CPU busy manipulating several jobs concurrently. In this architecture, one CPU’s working

time is shared by several different jobs. This sharing idea has been extended in many

other applications, such as sharing different system resources among different tasks or

Chapter 3 An Integrated Hybrid Embedded System 30

users in telecommunication networks and multimedia systems. These sharing models

attempt to satisfy every task or user by sharing and averaging services among them and

can result in some resources being temporarily unable to serve some users. They do not

let any of them occupy a resource exclusively. These models can be realised with just a

system counter to schedule the tasks. There is no critical task that is so pressing to require

timing and have an absolute priority that it occupies the system resources exculsively.

Thus, serial or concurrent processing can meet most of demands.

In general, a piece of software is a computation process to execute on a machine. It is

important whether its result is correct or not. It does not matter how the computation is

accomplished. Thus, it can be implemented in sequence. It can be highly abstractive,

device-independent, and transparent. The implementations of a software design can vary.

3.1.2.2 Hardware Design Paradigm

Hardware design is a totally different scenario. Every component has to be verified before

execution in order to avoid the target system getting out of control because each of them

has its own necessary task and makes a contribution to the whole system, which is

deduced from the system requirements.

 Even though there are different abstraction levels to describe building blocks in

hardware design, each block has an explicit definition of its components, for example,

logic gates and transistors. The abstraction blocks can be functional blocks, such as

adders, multipliers, and others, or architectural ones, such as processors, multi-core

architectures with caches, etc. There are fewer options for replacing one type of device

component with another in hardware than software. Since the signals that represent

different data transmit along different parallel branches in a complex electronic circuit, the

parallel feature is inherent in hardware design.

As regards top-down design, a design model can consist of dataflow diagrams and

netlists. The dataflow diagrams can represent transfer functions of a target system. The

netlists can be a description of connections between different blocks.

 As regards the hardware implementation of a system, FPGA devices can be adopted,

which will be detailed in the next chapter. The basic idea is that with a computer-aided

design (CAD) tool, such as Altera Quartus, Xilinx ISE, Mentor Graphics HDL Designer, or

Synopsys Synplify, a system representation written with a HDL (hardware description

language), such as VHDL (VHSIC HDL, very high speed integrated circuit hardware

description language) or Verilog HDL can be programmed and synthesised the target

system circuit and downloaded into an FPGA chip. With a CAD tool, the representation

can be translated into a RTL (register transfer level) schematic of a target circuit. The

generated schematic can be verified by using simulation software to show the waveforms

of inputs and outputs of the circuit. The verified schematic provides a lucid illustration of

Chapter 3 An Integrated Hybrid Embedded System 31

the blocks and connections of the target circuit. The VHDL or Verilog HDL model is

translated into the hardware description information about the gates and their connections.

Then, the information is mapped onto an FPGA device. The FPGA device is configured

with the model and ready to function as the target system.

 In hardware design, the abstraction technique is used as well. For instance, real-valued

transistors can be abstracted as Boolean-valued gate-level models, and now

system-on-a-programmable-chips (SOPCs) provide even more abstractive models.

 Compared with software design, timing is critical to hardware design. Timing is hard to

express in building blocks of a model. Viewed in the bottom-up way, with gates, it can be

clearly seen how many system clocks a process has to accomplish. But when the design

is abstracted into different building blocks, unless the clocks that have to be cost by a unit

are marked explicitly, it is hard to maintain exactly timing. On the other hand, in some

control applications, such as those with hard deadlines, timing is critical. When a system is

large, such as VLSI (very large scale integration), with millions of gates, the manual

identification of timing is not realistic and timing analysis becomes necessary. In reality,

given the FPGA background, the synchronisation of processing is encouraged more than

asynchronous operations because synchronous units are easier to control in circuits than

asynchronous ones. This is why the timing analysis is very important for hardware design,

as well as logic analysis.

 Many hardware designs are applied to a designated control or operation, often

exclusively. They have one critical task, which occupies all the system resources in its

critical time. It does not share the resources with others. This can result in the under-use of

system resources. The deadlines of the critical task must be met. To guarantee the task’s

accomplishment without any known risk, massive redundancy in system resources

sometimes has to be adopted. This is the case with hard safety-critical ESs, as mentioned

in Section 3.1.1.1

In addition, it is relatively easier to express a logic statement by a specified language

than to describe a hardware action, especially an action that is a series of operations

controlled by the system clock. Hardware synthesis tools are more difficult to understand

than automatic model transformations of software compilers. In hardware design, some

stages, such as adjustments according to the results of logic analysis and timing analysis,

cannot be done automatically by some tools. Without some expertise, skills, and

experience, it is almost impossible for newcomers how to handle these tasks. The more

human-guided decisions need to be involved, the more difficult it is to be understood.

Therefore, hardware design needs more specialised training and practice.

Unlike a piece of software, which is a temporary execution process, a hardware system

is a permanent physical machine that is expected to execute different tasks, which may be

Chapter 3 An Integrated Hybrid Embedded System 32

a program or a operation of an actuator, at any time. Its error case may always exist and

be tested after it starts to run. Therefore, the demands put on a hardware system are

different from those put on software, and the verification process passed by a hardware

system is more serious and detailed than software.

 In the above two paradigms, the compilers or CAD tools are quite mature. The process

of compiling or synthesising is automatic without too much manual work. It saves

designers a lot of energy and time. The design formula has a well-organised structure. It

allows not only the bottom-up style but also the top-down way to design. Two ways can be

combined for making, adjusting, and refining the design models.

3.1.2.3 Comparison between Hardware and Software Developments

In the design and development of a system with a hybrid way, it is harder to add new

functions to the hardware part of the system than to the software part. During the

implementation, the variation and extension in the hardware part can cost designers and

developers more time and energy than the software. Compared with software

development, hardware development faces several restrictions.

▪ For regular developers, understanding hardware implementation is more difficult

than understanding that of software. As the logical feature of software is more

readable than the electronics engineering notation of hardware design, software

implementation is easier to master.

▪ If the hardware is changed, more work related to the system reconstruction has to

be done by the developers. Many facilities are unavailable, such as the API and

device driver of a new hardware addition.

▪ The design and development platforms for the hardware and its software

accessories (for example APIs, device drivers, and integration and porting to the

system) are not as complete as the ones for the software. Unlike software

development tools that can compile programs automatically, the compile, build and

link tools are separated and intertwined with a lot of manual work. The

infrastructure for the hardware development is not as developed and popular as

that for the software.

▪ Different hardware devices, especially from different suppliers, are not compatible

with each other whereas software code programmed with one language, such as C

or C++ language, can merge more easily with other parts of the software system.

The reuse of modules in hardware design and implementation is lower than for

software codes, especially regarding different devices from different suppliers.

Despite these constraints, the hardware solution has some features that its software

counterpart does not.

Chapter 3 An Integrated Hybrid Embedded System 33

▪ The hardware accelerates the operations more effectively and directly than the

software. The hardware can be sped up by lowering the number of system clocks

by optimising the hardware design. Since the hardware is the final actuator in a

complete ES, its acceleration can make the software running on it more quickly.

▪ Parallel processing is achieved more easily and reasonably with hardware than via

software. The multiple branches of data flow in the hardware implementation are

inherently parallel.

▪ The pipeline of a sequence of dependent operations or instructions can be

implemented more straightforwardly with hardware modules than via the software

code. It can also make a substantial contribution to the speeding-up of the system.

3.1.2.4 Current Conditions of ES Design

No complete and systematic tool for ES design is available yet. Since ESs consist of

hardware and software, it is difficult to integrate a hardware design tool into a software

environment, vice versa, in a short period of time, especially as researchers from two

different backgrounds are involved. Researchers involved in software study and

development follow the rules of software engineering in computer science whereas

researchers in hardware design and development follow the standards of electronics

engineering. Their design tools are developed for different goals. It is difficult to convince

people in a short while that combining these two together could be effective. After all, it

needs a lot of more work to build up a complete design environment for ESs.

 The good thing is that there are already design tools that can be used in software or

hardware separately. The Altera Embedded System Development Kit (Altera 2008a)

provides a good prototype for FPGA-based ES design environment even though there is

still a lot of work to do. For designers who want to take an ES design as a coherent and

systemic process, the challenge is the energy and time required to learn and become

familiar with two different design styles for software and hardware. It is also necessary for

these designers to figure out how to make two design tools collaborate well to meet a

unified ES design goal.

 There are still differences between ES design and single software or hardware design.

Single software has a closer relationship with the computing-intense processes. The

input/output-intense processes have to access the input/output peripherals of a system,

which are usually set up by operating systems and standard libraries. Software designers

do not necessarily think about it much. The high abstraction in computer science does not

work for ES. Such high abstraction is generated by significant separation between

computation and devices, and central enabling management of resources. It hides the

system resources from applications. Since ESs are often device-dependent,

application-oriented, and operation-targeted, ES designers must know how to

Chapter 3 An Integrated Hybrid Embedded System 34

communicate with devices and harness them well.

 On the other hand, single hardware designers may consider how a hardware unit works

and which hardware units should be used to set up a target system. They do not think

much about how their implementations are to be used in an application environment. It is

usually the responsibility of the application developers of a hardware system to establish

the facilities to control and harness the hardware, and make a smooth connection between

the hardware and software over and above the hardware system. It needs considerable

effort to do this.

 From the above discussion, it can be seen that hardware design goes in a totally

different direction from software design. One cannot simply move from software to

hardware design, or the reverse, to form an ES design. In other words, ES design has to

fill all the gaps and establish a complete and systematic methodology to integrate control

theory with fundamental prototypes in hardware and software design.

3.1.3 Challenges for ES Design

The challenges for ES design can be summarised as follows.

▪ There is a big gap between the two model-based methods in computer science and

electronics engineering. Different models constructed by different tools meet

different system requirements and support different design processes. Apart from

these requirements and processes there is a difference between the nature of

software and hardware, and a distinction between the digital and analogue

domains. Objects processed in the former are digital and discrete whereas signals

sampled by the latter are analogue and continuous to time. It is necessary to look

for an effective method to connect them to make them work together to server

applications.

▪ ES design has a wider scope of applications than software programming when

roughly viewed in the diversity of applications. It has a smaller pool of human

resources and more distributed force than software design, as shown in Figure 3.1.

Two factors contribute to this layout. One is the stronger specialty of ES

technologies than software programming. For this reason, the education

investment of a good ES designer is greater than that of a good software

programmer. A hardware development platform is usually more expensive than a

software one. This makes software programming more attractive to raw recruits

than hardware development. The other factor is the greater diversity of ES

applications than those of general-purpose computers. The wider diversity of

applications divides the small pool of researchers and developers in ESs into many

groups and makes each group even smaller. The narrow strip of ES, as shown in

Chapter 3 An Integrated Hybrid Embedded System 35

Figure 3.1, illustrates the division effect of the application diversity. These two

factors lead to more researchers maintaining the design environment for software

programming than those for ESs. Furthermore, they result in the better design

environment for software programming than that for ESs.

Figure 3.1 Comparisons of Application Requirements and Human Resources between ES and Software
Programming Designs. Horizontal Widths Represent Application Requirements; Vertical Heights Represent

Human Resources for Research and Development. The Wider Width of the Rectangle of Design in ESs
Shows the Wider Application Diversity of ESs. The Thinner Height of the Rectangle of Design in ESs Shows

the Smaller Separate Human Resources in ESs.

▪ Another problem related to human resources for ESs is the lack of researchers and

engineers who are expert in both two fields, software programming in computer

science and technology and hardware engineering in electronics engineering.

These two fields have different theories and research methods to support, which

have been discussed in Section 3.1.2.4. This results in the separate researches in

two fields.

▪ These two domains, software programming and hardware engineering, are

equipped with different mathematics systems. In one system, there are specified

notations for operands, operations, and restrictions. As a system, it is expected to

be complete or self-contained. Inside their own domain or system, operations and

operands can be transformed and executed in a right way. Outside their domain,

they cannot be guaranteed to behave in a correct way. ES design includes the two

in order to cope with any system that has to consist of both hardware and software.

A mathematics system designated for ESs has to be established, just like computer

science has discrete mathematics. It can fully express and analyse the ES domain.

Design in
Software
Programming

Design in Embedded Systems

Human
Resources

Application Requirements

Software
Applications in
Computation

Hardware Applications in
Control and Communication
with their Environment

Chapter 3 An Integrated Hybrid Embedded System 36

Since software programming concerns itself with discrete and digital data and

hardware engineering is required to transform continuous analogue signals into

discrete and digital data, it is reasonable to suggest a new mathematics system

combining or comprising the digital and analogue domains.

▪ ES designs need a sufficient library of building blocks to support wide and

changeable modelling. This library takes time to accumulate.

▪ A transforming means is required to compile and (or) synthesise a constructed

model into a style which the underlying systems can accept and execute. The

means cannot be single but is complex. It can be interwoven with many user

manual interactions.

3.1.4 Prospective Principles for ES Design

Some prospective principles for ES design can be summarised as follows.

3.1.4.1 A Rational Combination of Functional and Computational Models

Conventional functional and computational models are also applicable in ES design. They

have different benefits, meet different system requirements, and are suitable for different

targets.

Functional models are adept in the situations that involve in concurrency tasks with

quantitative restriction conditions. They are not good at dealing with sophistic mathematics

algorithms and uncertain tasks. They are usually used in hardware design, scheduling and

dispatching tasks, and performance evaluation. Therefore, functional models can be used

in ESs.

The System Identification Toolkit of National Instruments Corporation is an example of a

functional model tool (National Instruments 2007). The toolkit consists of a library of VIs

(virtual instruments) and an assistant for developing models of a system. Because of its

graphical programming language, one can use the toolkit to construct control models for

mechanical engineering, biology, and economics applications. The model can reflect the

behavior of a certain dynamic system. Even though it is a software model tool, the models

constructed with System Identification Toolkit can be analysed and validated, even used

as a controller to hardware.

Computational models are inherently abstract and hierarchical. They are good at

dealing with complicated mathematics problems, and partial and changeable tasks. They

are not adept at tackling concurrency and quantitative restriction conditions between tasks.

Computational models have been successfully used in programs, operating systems,

state machines, time sharing systems, distributed systems, and situations where tasks

have to be tackled dynamically. The compilers of many high-level languages, such as

Chapter 3 An Integrated Hybrid Embedded System 37

GCC (GNU Compiler Collection), can be computational model design tools.

Computational models can be applied in ES design to some extent. At a high abstraction

level, computational models are not suitable for ESs because of nondeterministic

sequential processing. The hardware part of ESs has to retain the ability of parallelism,

pipelines and precise cooperative constrains between tasks. Otherwise, the hardware

design cannot be accurately mapped to the components of electronic circuits.

The compilers and synthesis tools have limitations. For example, they can produce

inefficient codes from a constructed model. The transformation semantics may be

misunderstood or its library may not include some functions or computations that

designers expect; for example, floating point computation is not always supported.

Designers need to change the way they construct a special model and include computing

insights to make the compiler or synthesis tools transform correctly. Therefore, the

intelligence of designers can improve the effect of compiler and synthesis tools.

For the tools of functional or computational models, the basic idea is to provide an

environment where designers work with a designated human-friendly language; the

language can be a high-level language or a graphical language. The environment helps to

transform or translate a model constructed by a designer into a set of codes that the

underlying system can identify. This underlying system can be software, such as an

operating system or hardware abstract layer, or hardware, such as FPGA devices or VLSI

systems.

In any model-based design method, at the early stage of a design, system components

in a modelling language cannot produce a design that is executable or interactive, or can

be implemented successfully in a hardware device. Multi-times of model construction,

analysis, compilation (or synthesising) and improvement are required for the redesign of

systems. Verifications and adjustments of the hardware systems are also required in the

engineering context. Therefore, it is a trial-and-error process.

To meet the connection goal, the consistent aspects of the two domains have to be

identified for decisions on how to do any ES design in a convenient way that can be

promoted in ES world.

3.1.4.2 A Promising Design Platform for Generic ESs

As two models, functional and computational models, exist, a new platform that can

include these two models is required. Figure 3.2 shows the structure of the new platform.

This structure gives a partitioned solution. As functional and computational models have

different application targets, support different design processes, and satisfy different

system requirements, it is unrealistic to mix them directly together. Any application target,

like ES itself, consists of software and hardware. It involves software programming and

hardware construction. Consequently, the system design should start by decoupling the

Chapter 3 An Integrated Hybrid Embedded System 38

top coupled models. The top coupled models are obtained from the system requirement

analysis. Through decoupling, the functional sub-models and computational sub-models

can be obtained. With coupling, an entire ES can be composed with all the sub-models.

During construction, the functional sub-models can be built up with building blocks for

hardware and software and the computational sub-models can be constructed with

building blocks for software. Two pools of building blocks, one for software and the other

for hardware, can be accumulated, based on the standard software libraries and hardware

component engineering archives. Intermediate modification is allowed. After verification,

executable and configure codes for a specified target machine can be generated ready for

application. The design can also be optimised to cover the entire ES for the designated

applications.

Figure 3.2 Structure of New Platform for ES Design

It is sensible to integrate existing software and hardware design tools into a complete

design kit or platform in order to implement a system that includes hardware and software.

It is not a simple task, and it will need a lot of more work to make such a system

practicable and usable.

To accompany this structure, a hierarchy of design process for ESs has to be defined.

Since software is always executed on the top of hardware, it is natural to do the software

Pool of Building Blocks for

Software

Pool of Building Blocks for

Hardware

Functional
Sub-Models

Executable and
Configure Codes
for a Specified
Target Machine

Top Coupled
Models

Decoupling

Computational
Sub-Models

Coupling

Modifying Constructing

Verifying

Optimising

Chapter 3 An Integrated Hybrid Embedded System 39

implementation after the hardware accomplishment. Figure 3.3 shows the hierarchical

design process for ESs. It is a process for a bottom-up design but it can be accomplished

in parallel. Hardware construction is expected to be completed before software

verification.

Figure 3.3 Hierarchy of Design Process for ESs

The second layer is the software that is closest to the hardware system. Since any unit

of a hardware system must have a section of codes or device driver that can be used by

the top software to control or communicate with the hardware unit, the hardware abstract

layer must be programmed by designers or be provided by a third-party organisation or

suppliers.

The third layer is not mandatory. As regards computational, multi-task, and sharing-time

applications, a micro-core real-time operating system is very helpful to manage the tasks

and resources. A micro-core operating system is available from some open-source

software resources. It is usually necessary to customise it to fit in the target applications.

One reason for this is the limited memory space. The other reason is that some required

functions may not be available in an open-source operating system. For simple control

systems without an operating system, a complete hardware abstract layer is sufficient to

handle the issues involved in communicating with the hardware system. Without an

operating system, the response to the environment may be even faster and the system

performance can be enhanced.

The top level of the hierarchy is the software programming for the specific target

applications. For some systems, it may contain a very small amount of software. For

others, it may consist of many functions, mechanisms and algorithms. It depends on the

special applications that the ESs target.

In fact, even though the design process can apply model-based design methods and no

matter how powerful an integrated design kit is, the final stage will be carried out in a

bottom-up way because the software has to be executed or verified on a hardware

platform. In other words, the hardware implementation should be at least one stage before

the software implementation. The layers of design process can be pipelined, which means

that some unrelated tasks in different layers can be done in parallel. As there are inherent

4. Software Programming for Target
Application

3. Micro-core Real-time Operating System

2. Software Programming for Hardware
Abstract Layer

1. Hardware Constructing

Chapter 3 An Integrated Hybrid Embedded System 40

links between the layers, the design of ESs has to follow the order of this hierarchy loosely

in order to avoid wasting the energy and time of developers on multiple re-designs or

re-implementations.

3.1.4.3 A Rational Division of Functional and Non-functional Requirements

In ES design, there are functional requirements for the services and functions that

systems should provide. There are also other requirements for performance and

robustness, such as the response speed and the recovery ability from the worse case.

The functional requirements are easily mapped into building blocks, but non-functional

requirements are not. It depends on the test and verification of the implementation of a

design model and even the application of the implementation whether or not the

non-functional requirements are met. Some non-functional requirements, such as

performance, can be tested by a number of tests, but others, such as resistance to failures

and attacks, cannot. The non-functional requirements can influence all design decisions in

system construction. For example, to enhance the safety of system, redundancy

technology must be used; to raise the security level of system data, some protection

measures should be applied in data access and delivery. Therefore, rational anticipation

for these non-functional requirements is expected.

3.2 Reasons for Choosing an ES as this Project Platform

There are several reasons for choosing an ES as the platform for this research.

▪ Flexibility for construction. ESs equip the designers with the ability to construct

the system from the hardware. In this way, designers can customise the hardware

units according to their requirements. For developers of performance-intense

application, ESs are more designer-friendly than other platforms. They provide

designers and developers with more options for processors, memories, devices

and peripherals to enhance the whole system performance including operation

speed, power requirement, and system size. The flexibility of ESs can offer more

options for graphics applications of this project than the general-purpose

computers.

▪ Uncertainties. ESs are an emerging discipline of science and technology, and

there are likely to be many possibilities for their use. Although they are becoming

more and more prevalent, their new environments are not well known yet, and it

may be necessary to make an estimate and then experiment with a trial-and-error

approach. The difference between the expected and worst-case situations may be

expected. These uncertainties have risks as well as opportunities for exploration.

Although GPUs are a popular solution to the graphics speed-up for the

Chapter 3 An Integrated Hybrid Embedded System 41

general-purpose computers, the ES may present a new field to be explored for a

solution to the graphics units for other applications, such as small handheld

gadgets and in-field equipment.

▪ Changeable structures. ESs have been adapted and adopted in many

applications. They offer changeable structures by using different unit options and

parallel processing schemes to suit the application environment. The changeable

structures can provide a systemic strategy to solve the graphics application issues.

▪ Room for further development. Since FPGA and VLSI technologies progress

rapidly, more sophisticated components and architectures can be introduced in ES

design: for example, pipelines, multi-core CPUs with caches, and speculative

execution. These can lead to further changes and development in terms of the ES.

The pipelines can readily be applied in graphics for speed-up.

 These are part of reasons why the ES is adopted in this project even though most of

other researchers in computer graphics are trying to find solutions in GPUs.

The ES is mostly thought as a device embedded into a large system. It is involved

frequently in the hardware. The word ‘embedded’ can describe not only the hardware but

also the software. Also, a device (like a bank of memory, peripheral, or processor) or a

section of codes (such as a function or routine) can be embedded or integrated

seamlessly into a target system. It means that ‘embedded’ has connotations of adding to

and subtracting from, tailoring, and customising a system. That is, if the infrastructure is

available, the application developer can construct an ES with any hardware device module

and software element and integrate it into a larger system.

In terms of hardware development, there are several technological difficulties, including

the construction of the API and hardware abstract layer of device drivers, and porting and

integration of a new additive unit in the system. Furthermore, the fact that there is no

existent device that can fit into a specified algorithm needed by the designer can be a

serious obstacle. An FPGA can help to accomplish the design and implementation of a

hardware module for a specified algorithm. Some advanced FPGA chips have integrated

DSPs (Digital Signal Processing) into their elements. For these reasons, an FPGA-based

ES is an ideal option for this project that includes a special graphics algorithm, PAMA, to

be supported.

Another difficulty is how to link all the design and development processes for hardware

and software together and make them function together well. It is the required

infrastructure setup for the design and development of an ES with the FPGA support.

The Nios II Embedded Design Suite (EDS) of Altera Corporation (Altera 2008a) gives a

comprehensive solution to an ES with FPGA support. Several years of using the FPGA

Chapter 3 An Integrated Hybrid Embedded System 42

development platform, Qurtues II, and FPGA device products, have shown that the Altera

Corporation’s Nios II EDS accords with the research demands of this project. It provides

the infrastructure for the research and development of an ES with FPGA support and the

flexibility and freedom to explore new research approaches. After full consideration, it was

decided to use the FPGA-based ES as the main research platform for this project.

This research has been done on the Nios II EDS and Altera Embedded Systems

Development Kit, Cyclone III Edition (Altera 2008a). Figure 3.4 shows a photo of the board.

The details will be introduced in the next section (3.3).

Figure 3.4 Altera Cyclone III ESs Development Board

3.3 Environment Structure of this Research

Since the research goal is to enhance the whole system performance in a hybrid way, both

hardware and software have to be involved at the very beginning of system design. The

environment structure has to be open to development in both hardware and software,

which is one of the prerequisites for the research platform chosen.

The environment structure for this research and its expansion is shown in Figure 3.5.

Different from the common computer system architecture, this structure has a clearer

boundary between low-level hardware services and high-level applications, and both

hardware and software are open to customisation. It is helpful that new modules can be

freely added to the target ES. The hardware design and implementation can influence the

software. Inversely, the set of applications decide the requirements that may be used to

customise the components of the hardware system. Therefore, a top-down design and

bottom-up implementation are employed. Moreover, as the design and development are

processed in a sequence of relevant and integrated platforms (Altera 2008a), some

algorithm coded by C language for an application can be transformed into a hardware part

Chapter 3 An Integrated Hybrid Embedded System 43

and merged into the target embedded hardware system.

Figure 3.5 Environment Structure of the Research and its Expansion

This structure consists of six levels, from bottom to top, including the embedded

hardware system, device driver functions, Altera Hardware Abstraction Level (HAL), ANSI

(American National Standards Institute) C Library and HAL API, operating system, and

applications.

It is also evident in the dotted-line blocks at the right column of Figure 3.5 that the

structure can be expanded. If needed, some hardware peripherals can be added to the

ESs no matter whether they are the devices on the board or the configurable parts in the

FPGA. The relevant device drivers have to be added to the level of device driver functions.

During HAL regeneration, the functions are merged into the original HAL and equipped

with the HAL API. Whether the new HAL API is with or without the software addition in the

HAL API level depends on whether or not the newly added devices belong to one of the

general peripheral classes. For some new applications, new hardware peripherals may

not be needed but the user software library that is not available in the Altera embedded

systems may be required. The operating system remains unchanged. On the top level,

more applications can be supported.

3.3.1 Embedded Hardware System

The embedded hardware system is the Altera Embedded Systems Development Kit

(ESDK) (Altera 2008a). The ESDK consists of three parts: the Cyclone III 3C120 FPGA

basic board, LCD Multimedia High Speed Mezzanine card (HSMC), and Multi-purpose

HSMC for debugging and developing software via the USB and SD card. In this research,

all the three parts are used during development; when the graphics applications are

executed, only the first two parts are used because the HSMC is meant for debugging and

developing software.

Added Peripherals

Added Device Drivers

Interface Added to HAL

User Software Library

ANSI C Library HAL API

HAL: Altera Hardware Abstraction Level

Device driver functions

Hardware system: Cyclone III Embedded
System Board

Operating System: MicroC/OS-II

Added Applications Applications

Chapter 3 An Integrated Hybrid Embedded System 44

The FPGA of Altera Cyclone III EP3C120F780 provides hardware design support. With

the SOPC (system-on-a-programmable-chip) facilities provided by Altera Corporation, a

soft microprocessor (Nios II) can be incorporated with general peripherals and standard

interfaces for most embedded applications. Along with another development tool of the

Altera Corporation, the Nios II C-to-Hardware Acceleration (C2H) compiler, the SOPC can

also be used to add a new algorithm-specified hardware module to the target ES, which

has been designed to include all the regular parts, such as processor (Nios II), memory,

and peripherals (for example, LCD controller, video processing pipeline, and LCD touch

panel controller). The design details will be introduced in Chapter 4.

The C2H compiler can transform an application algorithm programmed with C language

and executed by the Nios II processor into hardware in FPGA if the algorithm software is

programmed according to C2H rules. The mapping hardware can improve the execution

performance by using parallelism and pipelines. The C2H compiler is able to make the

mapping hardware of independent statements operate in parallel and create the pipeline

logic to lower the memory access latency. The process is the converse for

bottom-up-to-top implementation. It shows the interaction and feedback between the

design and implementation in order to enhance the whole system performance. It also

reveals that the target embedded hardware system can be customised.

The Nios II soft processor is 113 DMIPS (Dhrystone Million Instructions Per Second) at

100 MHz, with two 32-Kbyte caches for data and instruction, respectively, which uses

around 1500 of 119000 total logic elements in the Cyclone III 3C120 FPGA. The memory

resources on the board include two banks of 64-Mbyte DDR2 SDRAM memory, 64-Mbyte

common flash interface (CFI) flash memory, and 1-Gbit SD card memory. The key

peripherals for the research are the LCD controller of the 800 X 480 pixel LCD colour

screen display, which are also integrated into the ESDK. A PLL (phase-locked loop)

receives the 50 MHz on-board oscillator input as its clock source and outputs two clocks:

100 MHz clock for the CPU and 60 MHz clock for the slow peripherals. A performance

counter helps to analyse the system performance. The response unit of four buttons is

used for the user interaction. Figure 3.6 shows the block diagram of the ES customised for

this research.

As the Altera ES provides the software and hardware support of a Nios II processor and

a rich set of peripherals, it saves the developers designing and developing the whole ES

from scratch and makes them just focus on areas of interest and add them to the target

ES.

3.3.2 Device Driver Functions

For this research, the graphics application is the goal. Therefore, the device drivers and

functions include an LCD controller, video pipeline, response unit of four buttons, and

Chapter 3 An Integrated Hybrid Embedded System 45

algorithm-specified module.

Figure 3.6 Block Diagram of the ES Customised for the Research

The LCD controller software module consists of two parts: an LCD controller driver and

the LCD controller software API. The LCD controller driver provides a set of low-level

functions for communicating with the LCD module registers. During the system

configuration, the LCD module registers have to be configured with the LCD controller

software API.

The graphics pipeline is constructed from the resources provided with the ESDK. The

algorithm-specified module is created for a novelty graphics algorithm at a high level in the

graphics pipeline. Its output data are sent to the frame buffers. Then the data are

transferred to the video pipeline. The video pipeline processes the data to meet the pixel

and timing requirements of the LCD display stream. Since the frame data in the fame

buffer that resides in one of DDR2 SDRAM memory banks do not match the LCD video

stream, the video pipeline provided by the ESDK reads the frame buffer, and produces

and synchronises the pixel data to match the video stream of the LCD device. Finally, the

graphics is displayed on the LCD screen. The process is shown in Figure 3.7.

Figure 3.7 Graphics Pipeline in FPGA-based ES

The graphics pipeline software module includes driver functions and API. The driver

functions and API can be used to initialise the device and manipulate frame buffers.

The response unit of four buttons receives signals when the user presses one of buttons

and transforms them into interruption signals for Nios II processor.

Instruction Cache

DDR2 SDRAM Controller 0
(Frame Buffers)

DDR2 SDRAM
Controller 1

Video
Pipeline

LCD
Controller

Algorithm-specified
Module

PLL

JTAG UART
Debug Module

Performance
Counter

CFI Flash
Interface

SD/MMC
Card Interface

High-resolution
Timer

Response Unit
of Four Buttons

System Timer
Data Cache

Nios II Processer

Algorithm-specified
Module

Frame
Buffer

LCD
Display

Altera Video
Pipeline

Chapter 3 An Integrated Hybrid Embedded System 46

3.3.3 Hardware Abstraction Level

The Altera HAL integrates all the device drivers into the Nios II processor system. The

HAL can provide a basic runtime environment for the ES even without an operating

system. When the system power is switched on, the HAL performs the system and device

initialisation. It has a consistent interface to the device drivers. This interface provides a

channel for procedures to control and manipulate the hardware devices. The HAL can be

customised as well.

As the HAL defines a consistent interface to the device drivers, the drivers for new

peripherals are explicit and concise and can be programmed and integrated into the target

ES. For general peripherals, the HAL provides a device model for each class of devices

that defines a group of procedures for managing the class. The HAL supports general

peripherals including character mode devices, flash memory devices, file subsystems,

timer devices, DMA devices and Ethernet devices. For some hardware that does not

belong to any of the above classes, its deriver should have a header file and a group of

dedicated procedures to access it.

The clear differentiation between device drivers and application software separated by

the HAL makes high-level applications reusable when the hardware system changes.

To expand the hardware configuration, during the embedded hardware system

generation, the Altera Nios II BSP (board support package) can be configured at the top

level of the hardware system by means of the BSP settings. These settings are usually the

system-dependent and influence the system performance and functions. These settings

include those for the standard input and output devices, system timers, memory regions

and section mapping for the linker, and the boot loader enable. The details are as follows.

▪ Settings for standard input and output devices. They can choose and make

one of the character mode devices connect to the Nios II processor in the target

hardware system.

▪ Setting system timers. They can choose and make one of the system timers

connected to the Nios II processor in the target hardware system.

▪ Setting default memory region. The first choice of the default memory region is

the largest volatile memory. The second choice is the largest non-volatile memory.

But a specific memory region can also be set that is available in the system with the

memory region settings. The default memory section mappings consist

of .entry, .exceptions, .text, .rodata, .rwdata, .bss, .heap, and .stack, which are the

section names of the boot and reset entry, exception service entry, instruction

section, and data sections for different functions, respectively.

Chapter 3 An Integrated Hybrid Embedded System 47

▪ Setting the boot loader. When the boot loader enable is set, the instruction

section mapping and the Nios II reset port will be examined. As regards the system

reset function, it will also engender that the boot loader copies the data sections.

3.3.4 ANSI C Library and HAL API

With the HAL, the ANSI C standard library is integrated into the Altera embedded software

system, and its library functions are available for the high-level applications. The HAL

defines the interface for communication with the embedded hardware system, called HAL

API. The hardware access macros of HAL API cooperate with the ANSI C Library

functions to allow the applications to access the devices and files. Therefore, when

accessing the system resources, applications may pass through the ANSI C library or the

HAL API.

3.3.4.1 HAL System-Specific Settings

The ANSI C library, because of its portability, defines explicitly the data width for data

types. The HAL is dependent on the embedded hardware system, especially the

embedded processor, Nios II processor. It has to give the data width for different data

types clearly.

The HAL also provides a basic system interface and environment for executing the

application programs without an operating system. This system interface consists of some

UNIX-style functions that perform system settings and file I/O operations.

3.3.4.2 HAL Device Management Strategy

The HAL manages the devices in the same way as the UNIX operating system. At the

system generation time, the HAL registers devices as nodes in the HAL file system

(identifies their path names with the prefix /dev/) and builds the connection between each

device and its access functions. Generally, a file descriptor is associated to a device’s

name when the device is accessed with ANSI C file operation – fopen(). If data are sent to

or received from the device, the ANSI C file I/O functions – fread() and fwrite() – can be

used.

3.3.4.3 HAL Character Mode Devices

For a character mode device, with the file descriptor associated with the device, a program

can send characters to or receive from the character mode device with fread() or fwrite().

The HAL also supports standard input (stdin), standard output (stdout) and standard

error (stderr). It gives another channel to access the I/O devices without passing through

file descriptors.

Chapter 3 An Integrated Hybrid Embedded System 48

3.3.4.4 HAL File System

Like the UNIX file system, the HAL file system mounts a file subsystem on a given mount

point, which is a directory under /mnt/ directory. Therefore, it is convenient to access the

directory by using the ANSI C file operations.

3.3.4.5 HAL Timer Devices

HAL timer devices count the elapsed number of system clocks and generate interrupt

requests periodically. As regards time devices, the HAL have two types of drivers: a

system clock driver and a timestamp driver. The former supports alarms and can be used

in a thread scheduler. The latter provides high-resolution timing procedures to launch the

counter start and return the current value of the timestamp counter, which can be used in

the program performance analysis.

3.3.4.6 HAL Flash Devices

As a non-volatile memory, flash memories have a physical nature. A flash memory is often

divided into blocks. To erase a block of flash memory one needs to set their values to ones

rather than zeros. An entire block must be set to one at the same time. A single address in

a block of flash memory cannot be erased individually. To write one bit in a flash memory

one has to change it from one to zero. If a change of any bit from zero to one is expected,

the entire block where the bit is located must be erased totally.

Generally, if just reading the flash memory, programs can do the reading in the same

way as a simple memory without calling the special HAL API. If writing the flash memory,

programs have to perform several operations, which require the procedures of the flash

device model in the HAL API, such as alt_flash_open_dev(), alt_flash_read_dev(),

alt_flash_write_dev(), and alt_flash_close_dev().

The HAL API for the flash device model provides two ways to operate the flash. One is

simple flash access; the other is fine-grained flash access. The former writes a buffer to

the flash memory at the block unit. If the buffer is less than a full block, the whole block

where the new data are written is erased first and then the new data are written to the

designated addresses. If the previous data on the addresses around the new data are

useful, the writing operation of the simple flash access will cause data corruption.

To solve this problem, the latter way can be used. It can change the data at the

designated addresses of flash. It provides three more procedures that can perform

operations on the written block: alt_get_flash_info(), alt_erase_flash_block() and

alt_write_flash_block(). If the buffer is less than a full block and new data writing is

expected without change of the surrounding data, some subtle operations must be

performed. First, the whole block where the new data will be written is read to a buffer.

Second, the new data are written to the buffer, which leaves the surrounding data

Chapter 3 An Integrated Hybrid Embedded System 49

unchanged. Third, the whole block is erased. Fourth, the buffer is written to the block.

3.3.4.7 Video Pipeline

The video pipeline software API provides a set of procedures which control the video

pipeline and manage the graphical frame buffers. These procedures include the opening

and initialisation of the video pipeline, the manipulation of frame buffers, and the closing of

video pipeline.

 The opening and initialisation procedure, which is alt_video_display_init(), opens and

initialises the video pipeline for graphics display. Its tasks include allocating memory

space for all the frame buffers and their SGDMA (Scatter-Gather Direct Memory Access)

descriptors and initialising the descriptors for each frame buffer. These descriptors can

control the pixel data in each frame buffer and send them into the video pipeline

automatically without the Nios II processor’s intervention. The memory access of frame

buffers and their descriptors can employ absolute or relative address, depending on the

parameter setting in the head file of the video pipeline API.

Relative addressing is usually adopted in the heap memory. Its advantage is that the

heap procedure in C runtime library can provide and manage the required memory for all

the frame buffers and their descriptors, and save designers and developers from having to

consider it. Its limitation is that contention can arise when both the Nios II processor and

SGDMA have to access to the heap memory.

After the allocation, all the pixels in the frame buffers are replaced with the default black

colour or other specified colour. The initialisation procedure can also create a structure

that can keep track of the information of all the frame buffers, and return a pointer to this

structure that can be used to access the frame buffers later.

 The manipulation procedures of frame buffers are used to access the frame buffers.

There are two or more frame buffers for the graphics pipeline. One is designated for

writing a new frame by the graphics application, as shown in Figure 3.7; the others are for

displaying on the LCD device screen. After one frame is written, the frame buffers can be

swapped. Therefore, manipulation procedures are useful for handling these issues. For

example, alt_video_display_buffer_is_available() is used to acquire a free frame buffer for

writing; alt_video_display_register_written_buffer() is used to display the frame buffer on

the LCD screen. All the manipulation procedures use the structure pointer that the

initialisation procedure returns to require, access, or display the frame buffer.

When the video pipeline is not used any more, the closing procedure of video pipeline

(alt_video_display_close()) can be used to stop the video pipeline, close it, and release

the memory resource to the system.

Chapter 3 An Integrated Hybrid Embedded System 50

3.3.4.8 LCD Device

The LCD software API provides an initialisation procedure and a set of low-level

procedures for communicating with the LCD device registers.

The initialisation procedure of the LCD device can be used to configure it. This

procedure sets the default parameters for the gamma curve and the positive polarity

voltage. It also creates a structure for the LCD device and returns a pointer to the structure.

The LCD device is configured with the parameters that specify the resolution of the LCD

screen.

The LCD device, as a general purpose I/O peripheral on the FPGA, has a simple

three-wire interface. Its configuration registers of enable, clock and data signals can be

communicated through this interface. Low-level procedures are used to read and write

these registers.

3.3.4.9 Response Unite to Four Buttons

Since there is no keyboard or mouse available on this board, the response unit of four

buttons are adopted by this project to implement the response to the inputs of the user

interaction for surface editing at high-lever application.

Four user-defined buttons are available on the Cyclone III embedded system

development board, as shown in Figure 3.8. They can be also seen at the left-bottom

corner in Figure 3.4. They can be configured as four general purpose I/O peripherals. The

input ports can catch the rising edge of signals when the user presses one of the buttons

and generate an interrupt signal for the Nios II processor.

Figure 3.8 Four User-Defined Buttons on Altera Cyclone III ESs Development Board

The initialisation procedure (init_button_pio()) is used to register the rising edge of

signals from each of four I/O ports as an interrupt signal for the Nios II processor by using

the procedure of alt_irq_register().

 The button interrupt handler (handel_button_interrupts()) can store the value in the

button’s edge capture register when one of the buttons is pressed by the user. An interrupt

service routine is programmed in the user’s application to accomplish functions that the

user defines. In this project, the user’s defined functions are the operations for surface

modelling and editing algorithm, PAMA.

Chapter 3 An Integrated Hybrid Embedded System 51

3.3.5 Operating System

The operating system is MicroC/OS-II of Micrium Inc., created by Jean J. Labrosse, which

is open-source, portable, and scalable. Altera has ported the MicroC/OS-II to the Nios II

ESs. In the environment structure of the research, the MicroC/OS-II is a layer on top of the

Altera HAL and shares a common structure. It is a multi-threaded runtime environment. It

implements a simple RTOS (real-time operating system) scheduler. Its directory structure

is a superset of the HAL BSP (board support package) directory structure. With the

MicroC/OS-II above the HAL, application programs can be reused when the embedded

hardware is changed, and portable to different Nios II embedded hardware systems.

For the HAL, the MicroC/OS software procedures are similar as the device drivers for

the Nios II processor. As the HAL is a runtime single-threaded environment, the

MicroC/OS scheduler is used inter alia to dispatch the running time of the processor

among several tasks to create the multi-threaded environment. The HAL API of hardware

devices can also be extended to cover the multi-threaded environment of the

MicroC/OS-II.

Altera provides a group of operating-system-independent macros that access operating

system facilities. During the system generation, these macros can make a switch between

the single-threaded HAL environment and the multi-threaded MicroC/OS-II environment in

order to make a decision whether or not using the operating system.

3.3.6 Applications

In this project, the application is the implementation of the surface modelling and editing

algorithm, PAMA, with the Mesa-OpenGL support. The PAMA will be discussed in Chapter

7. The application results of the PAMA algorithm on an FPGA-based ES will be presented

in Chapter 8. The Mesa-OpenGL implementation for the FPGA-based ES will be

discussed in Chapter 5.

3.4 Chapter Summary

Since the general-purpose computer cannot meet the need for combined hardware and

software to solve graphics pipeline problems, ESs are chosen as the platform for this

project. This chapter has first discussed the ffeatures and principles of ES design. Then

the reasons for choosing an ES as the platform for this project are analysed scrupulously.

Finally, the environment structure is detailed for the research.

It is shown that ESs equip designers with options for processors, memories, devices

and peripherals to enhance overall system performance including operation speed, power

requirement, and system size. The novel approach of hybrid hardware and software

Chapter 3 An Integrated Hybrid Embedded System 52

design method allows designers to consider the strengths of both hardware and software

in an integrated ES. The change from stand-alone hardware and software in conventional

system design has great potential to enhance overall system performance. The

consequent challenge posed is detailed in the next chapters.

Chapter 4 FPGA-based Embedded Hardware System for Graphics

Applications

Conventional building of ESs needs three groups of engineers and developers: hardware

engineers, device driver developers, and application developers. There is no such team

available for this project. One of the important tasks for this project is to find a feasible

strategy for one or few developers to establish an ES for the graphics applications in a

whole process by combining both hardware and software designs. It also needs to validate

whether this hybrid way is viable for a research and development project. On the other

hand, as mentioned in Chapter 3, ES development involves both hardware and software

implementations. The expertise and skills required for hardware design and

implementations are different from those for software. The knowledge and skills for

software programming is not sufficient for a hybrid system construction and more effort

and time should be spent in studying the details of hardware implementation. The benefit

is that it is known how to make all of them function together well and realise the expected

goal under the prevailing conditions.

This chapter discusses the hardware system construction with FPGA. Before that,

however, the traditional ES development process is introduced.

4.1 Traditional ES Development

In traditional ES development, hardware engineers, device driver developers, and

application developers do their tasks relatively independently. The hardware engineers

initially need to know the application goal and take account of the system performance

and power and size limitations. They choose the devices required to build the target ES

and try to strike a balance between the high performance of computing speed and

response ability and the low cost of power and hardware resources.

To create the device drivers to control and manipulate the devices properly, the device

driver developers should understand the physical characters of hardware resources that

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 54

hardware engineers choose during the hardware system’s building. They should also

know the standard calibrations of application programming interfaces that the application

developers will use to program the applications to interact with the hardware resources.

The application developers program the designated applications according to the

standard API and a set of functions that the device driver developers provide. The top

applications are constrained by the supply of hardware resources and the integrity of the

device drivers and API. The two previous steps can heavily influence the development

flexibility of applications. Successful implementation for an application goal largely relies

on adequate construction of the embedded hardware system and device drivers.

The separate engineering process blocks direct communication between these three

groups of developers and engineers. Since the initial requirement analysis of a goal

application can be incomplete and shallow, the embedded hardware system constructed

by the hardware engineers may not meet all the requirements of the targeted application.

Issues may occur during or after the application development. In addition, in academic

researches and new product developments, the requirements of an application can be

modified when the research is deepened. These issues require the redesign of the

embedded hardware system. In the separate engineering process, it means extra cost as

the application developers have to ask the hardware engineers to modify the embedded

hardware system. The modified hardware system can result in a change in device drivers.

This can also increase the cost. Also, inadequately understanding others’ design

intentions may degrade the implementation of the target application-specified ES.

This separate engineering process can give rise to another problem: hardware

appears more fixed and less flexible than software. There are two main reasons for this

problem. One is that a hardware unit or device is harder to be changed once used in the

implementation than a section of software because of the differences between the

compiling and verification processes for hardware and software. A change of hardware

may result in the replacement of physical devices or units whereas a change of software is

only the replacement of a section of codes. The other reason is that it is more difficult for

an application developer to change a hardware unit or device if s/he thinks it should be

replaced with a better one because changing the hardware has to be carried out by the

hardware engineer who designed the hardware system.

FPGA-based ES development offers a solution to the above issues since all the tasks of

hardware engineers, device driver developers, and application developers can be

performed in an integrated design environment by one or a few individuals. The main

benefit of FPGA-based ESs is to make most hardware devices available for designs. It

can save a lot of work in terms of constructing a system, adding new devices to the system,

modifying units of the system.

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 55

In fact, even though it needs more time and experience to make a change on a

hardware design to meet the newest requirements than to make a change on a software

design, the former has become achievable and feasible with FPGAs. The FPGA-based

platform provides a design-friendly environment for updating designs to realise new

academic ideas and meet new market requirements. The Altera ESDK (Altera 2008a) is a

good example. With the utilities and tools that Altera Corporation provides, the

development and building of application-specified ESs is a feasible undertaking for one or

few people. Section 4.3 will detail the FPGA-base ES development.

4.2 FPGA Device Evolution and Applications

In recent years, the increasing density of chips has provided an opportunity for the

development of complex high-performance ESs on FPGA devices. FPGAs have been

considered an appropriate solution for many applications that are expected to give high

performance at low cost.

4.2.1 FPGA Evolution History

In 1986, when the first commercial SRAM-based FPGA was developed by Xilinx Inc., the

products of FPGA technology began to be put on the market (Awad 2009). Many

manufacture companies were active in the FPGA field until the early 2000s, but after

several acquisitions and mergers, only a few of them are left. Among the biggest ones are

Altera, Actel, Lattice, Quicklogic and Xilinx. As the competition among companies is strong,

these companies’ FPGA products cover a wide range for applications and functional

architectures.

In the 1990s, FPGAs were small devices with low computational throughput, simple

internal structure, and few components, and could not meet the needs of complex

computation and functional applications (Constantinides and Nicolici 2011, and Qasim et

al 2009). Along with the sustained progress of VLSI technology, FPGA devices have

developed into ones that are composed of multi-million gates and diverse logic

components. Thanks to the architectural innovations, the FPGA device density has been

improved. Many hardware units specified for some operations, such as multipliers and

embedded memory blocks, have been gradually integrated in FPGA devices. In the

newest generation of FPGA devices, all the complex blocks, such as multipliers,

microprocessors, embedded memory, and fast routing matrices, can be integrated in one

silicon die.

4.2.2 FPGA Features and Reprogrammable Technologies

As mentioned above, several manufacturers produce FPGA devices with their own

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 56

technologies and each company has several series of FPGA devices. For example, Altera

has Cyclone (low-cost), Arria (midrange), and Stratix (high-end) series. Thus, the range of

FPGAs is wide and varied. They provide different solutions for their FPGA devices. But the

basic idea is the same.

4.2.2.1 FPGA Features

An FPGA device consists of a matrix of configurable logic blocks, configurable

input/output (I/O) banks and an interconnect network that is reprogrammable to connect

logic blocks and I/O blocks according to a design target. The configurations of logic blocks

and interconnection network are dependent on memory cells. By changing the contents of

memory cells, the FPGA can be made to fulfill the required applications.

The configurable logic blocks can be used to make up combinatorial, sequential or

mixed circuits. Each of them includes several logic elements (LEs) or logic cells. Each LE

consists of a four-bit lookup table (LUT), which can be configured either as a combinatorial

function, or a (16 X 1) RAM or ROM, as shown in Figure 4.1. A carry-lookahead data path

is also included in order to build efficient arithmetic operators. A D-type flip-flop, with its

control inputs of synchronous or asynchronous set/reset and enable, allows the output of

the LE to be registered. When its registered output is configured as its input, a LE can

function as a microstate machine.

Figure 4.1 LE’s Composition

The configurable I/O blocks can have different I/O elements. Each I/O block may

contain a bidirectional I/O buffer, one input register, two output registers, and two

output-enable registers. Each I/O element can be configured as an input, output, or

bidirectional data path.

I/O pins support single-ended and differential I/O standards. Single-ended signalling

uses only one signal line, and its voltage potential is referred to the ground. The signal line

provides just the forward path and the ground offers the return path for the signal. The

differential signalling uses two wires to send two complementary signals, which can

improve resistance to electromagnetic noise compared with the single-ended signalling

D Q
Input Output

D-Type Flip-Flop

Look-up
Table
(LUT)

Carry
Path

Carry-out

Carry-in

Input Data [0…3] Register Output

Combinatorial Output

Clock Enable Set/Reset

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 57

but occupy one more pin.

 The programmable interconnect network consists of switch matrixes and paths, as

shown in Figure 4.2. An item of a switch matrix can be programmed to make a row path

connect to a column path and make an output of one LE link to an input of another LE. A

good layout of an interconnect network of a FPGA design can decrease area, delay and

power consumption. Figure 4.3 shows a generic structure of an FPGA device.

Figure 4.2 Programmable Interconnect Network

4.2.2.2 FPGA Reprogrammable Technologies

Several configurable technologies exist, such as Flash, EPROM, SRAM and antifuse. The

EPROM and SRAM technologies are just like the common memory uses of EPROM and

SRAM in a microprocessor system.

Figure 4.3 Generic Structure of an FPGA

SRAM is by far the most widespread in the FPGA field. SRAM-based FPGA stores LE

configuration data in its static memory. Since SRAM is volatile and cannot keep data

without a power source, an SRAM-based FPGA reads configuration data from an external

Flash memory chip, which is called master mode. It can also be configured by an external

processor via a boundary-scan (JTAG, joint test action group) interface, which is called

slave mode.

LE

I/O Block

Switch Matrix

Conduct Path

LE

Conduct Path

Switch Matrix

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 58

A Flash-based FPGA uses a flash memory as a primary resource for configuration

storage. The advantages of Flash-based FPGAs are less power consumption and greater

tolerance to radiation effects. When the power is off, the flash memory can preserve the

configuration of FPGA. Flash-based FPGAs fit into applications of space and aircraft

industries.

An antifuse-based FPGA adopts antifuse technology. An antifuse does not conduct

current initially, but can be fused to conduct current. Once an anitfuse-based FPGA is

programmed, the process cannot be reversed. Compared with the previous two

technologies, which can program FPGAs several times, an antifuse-based FPGA can only

be programmed once.

The above manufacturers share the FPGA product market with their different

technologies for reprogramming. Altera, Lattice, and Xilinx tend to use the SRAM-based

FPGAs; Altera, Latice, and Xilinx also use the Flash-based FPGAs; Actel and Quicklogic

adopt the antifuse-based technology.

4.2.3 Architecture Diversity in FPGA-based Systems

The following are some of the current architectures of FPGA-based systems.

4.2.3.1 Stand-alone FPGA-based Systems

Stand-alone FPGA-based systems can be ESs, which are often employed in consumer

electronics, industry control systems, and portable applications. They have a typical ES

structure, which is described in Chapter 3. After the system power is switched on, they can

function well by themselves or interact with their environments, including the user

interaction. With a real-time operating system, they can also handle several tasks

concurrently. These systems are complete and independent.

4.2.3.2 General-Purpose Computer Systems with FPGA Supports

General-purpose computer systems with FPGA supports have the tightly-connected or

loosely-coupled co-processor architectures.

In the co-processor architecture, the general-purpose computer is the host CPU

whereas the FPGAs can have their own processors that assist to do specific tasks without

the host’s intervention. The tightly-connected co-processor model has a board connection

between the host and FPGAs. It has a fast communication rate between the host and

co-processors. The loosely coupled co-processor model allows the direct communication

between the host and FPGAs by using some fast interconnection, such as point to point

networks.

Since co-processors in FPGAs work simultaneously with the host CPU, this architecture

can provide more parallelism than general-purpose computers. It can also lead to heavy

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 59

traffic on the serial bus when the data are transmitted between co-processors and the

CPU. As long as the serial bus is not overloaded, this architecture will be more effective

computationally than the model of CPU with simple I/O peripherals.

4.2.3.3 Reconfigurable Computing Systems

Reconfigurable computing (RC) systems have become more and more attractive in these

last two decades (El-Ghazawi et al 2008, Green and Edwards 2000, and Huang et al

2009). Reconfigurable computing architecture can provide parallel processing at

instruction or task levels. A central microprocessor is connected to several FPGA-based

boards. The architecture allows scalable connections between parallel systems on

FPGA-based boards dynamically. They offer more flexibility in terms of system layout, but

they need more complicated design techniques to generate a good target design and

implementation.

4.3 FPGA-based ES Development

If the hardware system implementation is selected, designers may target either an ASIC

solution, or one based on FPGAs. Programmable hardware solutions are becoming

increasingly attractive thanks to recent increases in logic capacities, improvements in

performance, and the ability of some devices to be wholly or partly reconfigured during the

runtime of a system (Green and Edwards 2000).

In Section 4.1, we discussed the difficulties of separate ES development. If a developer

can pass through all three steps, i.e. hardware building, device driver development, and

application programming, it will be easier to achieve the goal of the target

application-specific ES with meeting all requirements. The basic condition is that the

developer has to know what the hardware can and cannot do and also what the software

is and is not good at. Even though the necessary expertise is still enormous, the Altera

ESDK provides an achievable, systematic and coherent solution. Compared with

traditional ES development, FPGA-based development has the following advantages.

▪ Programmability – the logic functions in FPGA are volatile, configured with a SRAM

object file, and programmed electronically with a specified logic design. The

embedded hardware system built in FPGA is not fixed and can be changed by a

new configuration in a distinct SRAM object file.

▪ Customisation – via the FPGA, the hardware system can be customised according

to the application goal without physically building of devices. The download of the

design to the FPGA is just a configuration file. All the components in FPGA-based

hardware systems are generated from the FPGA resources, such as LEs, in-chip

memories, multipliers, PLLs, etc.

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 60

▪ Microprocessor substitute – since advanced FPGA devices consist of rich

resources in one chip, it is practical to implement logic that a complete conventional

microprocessor can handle. Even better, the FPGA can provide more processor

and peripheral flexibilities in one chip than the conventional microprocessor.

▪ Complexity and Integration – not only common logic as a single-function peripheral

but also sophisticated logic like a soft-core processor can be designed and

implemented with FPGAs. For advanced FPGA devices, both soft-core processors

and peripherals can be integrated in an FPGA chip.

▪ Changeability – the hardware system design based on the FPGA can be changed

when the target application software cannot be programmed with the resources

and device driver functions built initially. As the full design flow is a coherent

process and can be repeated, the later step of the design flow can lead to the

design modification of the previous step. As it is quicker to modify the design on the

FPGA and reconfigure the FPGA compared with ASIC, the modification will not

take up a lot of time and delay the design cycle.

▪ Systemic development – the JTAG interface of the Alter ESDK supports both

hardware and software development. The development of a complete ES with

hardware and software can be implemented systemically and coherently in one

integrated design environment with one design flow and without crossing

development platforms. It provides support to application-specific ES development.

The starting point for a design is to build a complete embedded hardware system with a

soft-core Nios II processer and basic peripherals in an FPGA chip with necessary external

devices. Altera provides an SOPC (system on programmable chip) builder to set up

hardware systems with modules of processors, memories, peripherals and connections

rather than from the gate level. All the modules have been verified and parameterized for

specific hardware development. This saves a lot of time and energy in the development

process.

4.4 FPGA Device for this Research

FPGA devices vary widely. Different manufacturers have different series of FPGA

products. Altera has Cyclone, Arria, and Stratix series (Altera 2012). Cyclone series are

groups of low power and high functionality and are the cheapest in the Altera FPGA

product family, which can meet the power and function requirements of ESs. In the

Cyclone series, there were five sub-series, Cyclone I, II, III, IV and V, in 2011. The devices

in the Cyclone III sub-series consist of more resources in one chip than those in Cyclone I

and II. According to the logic and I/O requirements of the design and restrictions of the

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 61

FPGA device, the Altera Cyclone III 3C120F780 meets the requirements of the graphics

application for this project. The last two sub-series, Cyclone IV and V, were put on the

market in 2009 and 2011, respectively. This project started in 2009. Thus, the Altera

Cyclone III 3C120F780 was chosen as the main FPGA device of this project.

The basic features of Cyclone III devices include densities ranging from 5,000 to

200,000 LEs, 0.5 Megabits to 8 Mb of memory, and less than 1/4 watt of static power

consumption (Altera 2012). Thanks to their low power consumption, Cyclone III devices

can prolong the battery life in handheld and portable applications, cut down cooling

system cost, and support work in the environment with thermal limitation. Cyclone III

devices provide numerous external memory interfaces and I/O protocols that can meet the

needs of high-throughput applications. The architecture of Cyclone III devices consists of

many logic array blocks (LABs), M9K memory blocks, embedded multiplier blocks, PLLs,

global clock networks, and I/O banks. The following describes some but not all of the

features that Cyclone III devices have.

4.4.1 LABs and LEs

Each LAB consists of 16 LEs and a LAB-wide control block. An LE is the smallest unit of

logic in this architecture. Each LE has four inputs, a four-input look-up table, a register,

and output logic. The four-input LUT is a logic generator that can be used to configure any

combinatorial logic with four variables.

4.4.2 M9K Memory Blocks

Each M9K memory block provides nine Kbits of on-chip memory that can operate at

maximum 315 MHz. M9K memory blocks can be configured as RAM, fist-in first-out (FIFO)

buffers, or ROM. They can also be configured as single-port or dual-port operation modes.

Thus, after configuration, Cyclone III devices can be used in applications of embedded

data storage, embedded processor program, and high-throughout data processing.

4.4.3 Multiplier Blocks and DSPs

The embedded multiplier blocks support two modes: one is an individual 18 X 18-bit

multiplier; the other is two individual 9 X 9-bit multipliers. In addition to multipliers, by using

a combinational logic with on-chip resources and external interfaces, the blocks can be

configured into high-performance, low-cost, and low-power-consumption DSP systems.

Altera’s facilities also provide DSP IP (Intellectual Property) cores for functions of finite

impulse response (FIR), fast Fourier transform (FFT), and numerically controlled oscillator

(NCO).

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 62

4.4.4 PLLs and Global Clock Networks

With PLLs and global clock networks, the Cyclone III devices can generate a maximum of

ten internal clocks and two external clocks from a single external clock source. They also

provide multiple input source frequencies, with which functions of multiplication, division,

and phase shift are supported.

4.4.5 I/O Banks

Each Cyclone III device contains eight I/O banks. To protect signal integrity and gain high

I/O performance, all the banks support programmable functions for drive strength, pull-up

resistors, delay, bus hold, and slew-rate control. They support the capability to plug a

board in or off a system during operation without having negative effects to the system or

the board, which also called hot socketing.

The I/O banks also support single-ended and differential I/O standards as well. The

high-speed differential interfaces of Cyclone III devices can transmit data at a maximum

rate of 875 Mbps without the need for external resistors.

4.4.6 Embedded Processors

For ES design, Cyclone III devices provide several choices for processor cores. For

example, they can be ARM Cortex M1, Freescale V1 Coldfire, and Altera Nios II. For this

project, Nios II has been adopted.

 They also extend the peripheral set, memory, and I/O interface in order to build up a

whole ES with high performance and at low cost.

The Cyclone III 3C120F780 consists of 119,088 LEs, 432 M9K blocks, total 3,981,312

RAM bits, 288 of 18 X 18 multipliers, four PLLs, twenty global clock networks, and

maximum 531 user I/Os. It has a small size. Both of its length and width are 29 mm. Its

height is 2.60 mm.

4.5 FPGA-based ES Design Flow

The hardware is good at simple repeated operations whereas software does complex

algorithms well. During design and development, if the features and strengths of both

hardware and software can be considered and made the best use of, requirements can be

met and the application goal achieved with a high-performance, low-cost target ES. Thus,

a high overall performance of the target ES can be guaranteed.

Since an ES has specific applications, its system structure and components can be

customised accordingly. Furthermore, the design and development of an ES should be

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 63

based on the application requirements. Figure 4.4 shows the development flow of

combined hardware and software for application-specific ESs.

Figure 4.4 Development Flow of Combined Hardware and Software for Application-specific ESs

The FPGA-based ES design flow is as follows.

4.5.1 Application Proposal

The development of an ES starts with applications being specified – i.e. the application

proposal, the first step in Figure 4.4. In this step, the applications of the target ES should

be defined. Then the flow moves to the second step.

4.5.2 Requirement Analysis of ES

Requirement analysis of the target ES has to be performed. That is the second step of

Figure 4.4. The requirements of the target ES are separated according to their hardware

and software tendency. The requirement analysis result should provide clear instructions

about how to implement the target system in terms of hardware and software. It helps to

decide which part of the application should be constructed with hardware and which part

of with software. Then the flow moves to the third step.

1. Application Proposal

2. Requirement Analysis of ES

3. Separation of Hardware and Software

4. Initial Hardware System Design

5. Generation of HAL and Device Drivers

6. Operating System and Libraries Integration

7. Application Software Development (Addition and Modification)

8. Hardware Addition and Modification

Application
capabilities and system
specifications are met?

9. Application-Specific ES Implementation

Hardware is needed
to modify?

No

No

Yes

Yes

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 64

4.5.3 Separation of Hardware and Software

With a clear requirement analysis result, a boundary between the hardware and software

for the target ES can be defined. This is the third step in Figure 4.4, separation of

hardware and software. The separation results in construction of hardware and software

parts. These parts can be constructed in parallel or in sequence, depending on the

dependent relationship between them. If a dependent relationship exists, the software

parts must be programmed after the hardware system (that is constructed in the fourth

and fifth steps), for example, the software parts that have to communicate with the

hardware. Then the flow moves to the fourth step.

4.5.4 Initial Hardware System Design

With the requirement analysis result and after the separation of hardware and software,

the initial design of the hardware system can be done. With the building blocks for

hardware, as shown in Figure 3.2, the hardware system can be constructed in the design

environment, such as the Altera ESDK, and stored in files. After compilation, synthesis

and verification, a configuration file can be generated and downloaded to the FPGA device.

This is the fourth step in Figure 4.4. Then the flow moves to the fifth step.

4.5.5 Generation of HAL and Device Drivers

Depending on the components adopted in the hardware system, such as processor and

peripherals, the HAL and device drivers can be generated, which is the fifth step in Figure

4.4. This is also the second layer in Figure 3.3. Most of the software in this layer is

generated by the design environment, for example Altera ESDK. If a new component is

used in hardware design but is not available in the SOPC libraries, the device drivers and

the relevant API of this new component must be programmed and added to the HAL. Then

the flow moves to the sixth step.

4.5.6 Operating System and Libraries Integration

Along with the HAL, a real-time operating system and necessary libraries (including the

ANSI C standard library and application-specified library) can be added to the

development. This is the sixth step in Figure 4.4 and the third layer in Figure 3.3. Then the

flow moves to the seventh step.

4.5.7 Application Software Development

The application software can be programmed and downloaded to the target board to run

and debug, which is the seventh step. Then the first design must be verified whether or not

it meets the needs of application capabilities or system specifications. If it does, the design

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 65

of application-specific ES is accomplished, and the process moves on to the ninth step. If

it does not, the design must be modified. Before the modification is done, it has to be

determined whether or not the hardware system has to be modified or a new hardware

module is required. If not, the modification should be done only on the software and the

application software can be added or modified to enhance its performance, which means

going back to the seventh step. If yes, the modification on hardware must be done, which

is the eighth step Figure 4.4. The flow moves to the eighth step.

4.5.8 Hardware Addition and Modification

The hardware system has to be changed or some new modules have to be added to the

hardware system. This results in the second hardware design. The second hardware

design is carried out. The second configuration file is generated and downloaded to the

FPGA device. The second iteration of development passes through the fifth step to the

seventh step. The ES development can take several iterations until the design meets the

application requirements and system specifications. Then the flow moves to the ninth

step.

4.5.9 Application-Specific ES Implementation

The application-specific ES design meets all the application requirements and system

specifications and the goal is accomplished.

4.6 FPGA-based ES Design with Altera Facilities

The Altera EDS (embedded design suite) and other facilities (Altera 2008a) provide an

integral solution to the design and development of application-specific ESs. They take into

account both hardware and software in the development flow of an ES. They provide

different tools for hardware and software development, respectively, and these tools have

been coherently linked together. Some tasks for system-level building and generating can

be done automatically by the tools, which can save a lot of effort and time and avoid some

mistakes caused by unfamiliarity and misunderstanding of designers and developers in

the separated ES development, as discussed in Section 4.1. They are an effective tool

suite for the ES development.

For FPGA-based hardware development, Altera provides the Quartus II and the SOPC

builder. To build the software for ESs, they use Nios II EDS, including Nios II SBT

(software build tools), Nios II Command Shell, and Nios II IDE (integrated design editor)

with associated simulation tools. No matter they are for hardware or software, since they

have internal coherent relationships these tools are linked to each other by their input and

output files according to the natural sequence of design and development.

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 66

In the research of this project, Step 4 and Step 8 in Figure 4.4 are implemented with

Quartus II and SOPC builder. Steps 5 to 7 are done by means of Nions II SBT, Nios II

Command Shell, and Nios II IDE. To make the best use of them, the methodologies for the

research adopted the design and development philosophy of these tools.

As the SOPC builder adopts a top-down design way, it conforms to the principles of

modern system design principle and the development flow combining hardware and

software of application-specific ES, as in Figure 4.4. The Altera IP cores and

megafunctions, such as Nios II cores and standard components, support most ES

development on the Cyclone III chip. They can be used to set up a target embedded

hardware system. Figure 4.5 shows the development flow for embedded hardware

systems with Quartus II.

Figure 4.5 Development Flow for Embedded Hardware Systems

4.6.1 Start of a Quartus II Project and Design Constraints

The development flow for embedded hardware systems begins with a new Quartus II

project, with which Quartus II manages all the files related to a new hardware design.

Before the start of a real design, design constraint settings should be done manually.

These settings produce explicit limitations for device usage, analysis and synthesis, time

analysis and other requirements during design compilation to achieve a required design

result.

 The Quartus II tool includes megafunctions that are used to control the operation mode

of the embedded multiplier blocks based on user parameter settings. The multipliers can

also be deduced directly from the Verilog HDL or VHDL source code.

Start of a New Quartus II Project

Compilation Result Output

Pin Location Assignment and Analysis

Design Constraint Settings

Analysis and Synthesis

Device Fitter

Timing Analysis

SOPC Builder System Setup

Custom Hardware Components

Nios II Cores and
Standard Components

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 67

4.6.2 SOPC Builder System Setup

The SOPC Builder is a design tool integrated in the Quartus II environment. With a library

of more than 50 IP blocks, the SOPC Builder can integrate IP blocks into an FPGA

system-level design. The SOPC Builder can generate interconnect logic automatically and

create a testbench to verify functionality.

With the SOPC Builder, Altera IP cores and megafunctions, a new hardware system

design can be set up. Sometimes, custom hardware components that are not available in

the Atera standard components have to be created with one of the HDL languages, such

as Verilog HDL and VHDL, and integrated into the user custom components.

The SOPC Builder is used to create a SOPC system that is a representation of a real

hardware design. Differently from the conventional bottom-up FPGA design, which is

programmed with the HDL, the SOPC builder adopts a straightforward GUI (graphical user

interface) to aid the design and generate an HDL file for it, as shown in Figure 4.6. The

compilation result of the HDL file is an SRAM object file, which is the usable design and

can be downloaded into an FPGA device.

Figure 4.6 Part of the SOPC Builder GUI

 Along with a library of 50 other IP blocks in SOPC Builder tool, the embedded processor

can be selected among Freescale V1 Coldfire, ARM Cortex M1, and Altera Nios II.

4.6.3 Analysis and Synthesis

The analysis and synthesis engine automatically performs the following tasks: it verifies

the design, removes the redundant logic by using don’t-care conditions, detects the

feedback loops in combinational logic, finds the unused states, removes equivalent states,

does state assignments, synthesises the logic to meet the constraints of area or speed in

the FPGA device, and optimises and maps the result into a hardware device. The analysis

and synthesis are processed automatically by the Quartus II facilities according to the

above design constrain settings.

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 68

Conventionally, whether or not the synthesis of a design is successful has mostly

depended on how well the models written with the HDL accord with synthesis rules. The

written models must conform to the constraints of the synthesis tool. With the SOPC

builder, since all of the standard components have been verified, the analysis and

synthesis engine can optimise logic quickly without errors.

4.6.4 Pin Location Assignment and Analysis

Since they are implemented on an FPGA chip, the placement of each pin must conform to

the microelectronics restrictions of the chip and the physical limitations of the board layout.

For this reason, the pins on an FPGA chip are sometimes scare and valuable resources

and cannot be allocated without limitations. Physically, an FPGA device has I/O banks, I/O

standards, and VREF groups. Understanding the physical features of the FPGA chip is

helpful in terms of pin placement. Some features that can influence the pin placement are

listed as follows.

▪ The I/O pins are grouped into different I/O banks in order to support different I/O

standards. Each bank has its own voltage source pins, VCCIO pins. The pins in an

I/O bank must share the same VCCIO voltage source.

▪ A VREF group is a group of pins that share a same reference voltage pin, a VREF

pin. An I/O bank usually consists of one or more VREF groups. Thus, the pins in a

VREF group have the same VCCIO and VREF voltages.

▪ In the silicon die of a FPGA device, the I/O pins connect to the bond pads that are

on the perimeter ring of the die top. To guarantee the signal integrity, there are

restrictions on the minimum number of pads separating single-ended input or

output pins with a differential pin. There is also a restriction on the maximum

number of I/O pins supported by a VREF pad.

▪ Except VREF and VCCIO pins, there are some other pins specified for fixed uses

that cannot be assigned by users any longer. The pins available for user I/O are far

fewer than the set of pins that an FPGA device has. For example, some pins have

their original usages that were retained by the manufacturers when they were

produced.

These features have been merged into the pin placement rules of the pin location

analysis of Quartus II. It is useful to know them when errors are reported and needed to

correct during the pins are placed manually.

For a hardware design, the I/O planning is a detailed and comprehensive task. It

determines whether or not a design can be implemented with an FPGA device. Therefore,

the I/O planning influences hardware design throughout. There are several issues that

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 69

should receive more attention. They are listed as follows.

▪ The first step of I/O planning for a hardware design is to select a proper FPGA

device that has adequate pins according to the logic and I/O requirements of the

design and the above restrictions of the FPGA device.

▪ During the pin location assignment, the pin assignments are done along with the

definitions of I/O attributes, including I/O standard, slew rate, drive current strength,

and output load for output and bidirectional pins. A higher slew rate means faster

transitions and more noise transients for high-performance systems, and

influences both the rising and falling edges of signals. The drive current strength

settings can reduce the influences of simultaneously switching outputs and the

system noise. The pin location assignments have to be verified with I/O assignment

analysis.

▪ For some input or output ports, timing constraints can restrict some pin location.

But this type of effect is not straightforward and can be verified at the later step,

device fitter, as shown in Figure 4.5.

▪ After complete compilation, a validated pin-out file for PCB (printed circuit board)

tools is created and is ready for the board layout. If the compilation is failed, the pin

location assignments have to be modified according to the reported errors.

The Pin Planner in Quartus II is a tool for pin location assignment. It can assist

designers to create, modify, complete and validate pin-related assignments. With the Pin

Planner, pin location assignments can be done. But the verified pin location assignments

do not rely on the Pin Planner tool. Some detailed I/O resources on a typical FPGA device

are quite different from others. Some pins have their original usages and cannot be

assigned for other purposes. To prevent signal integrity issues, the DDR (double data rate)

interface has special constraints on the number of output pins in a VREF group. Noticing

these restrictions is not the responsibility of the Pin Planner. They should be known by the

designers before using the Pin Planner.

I/O elements of Cyclone III devices contain five registers: one input register, two output

registers, and two output-enable registers. The input register can be used for fast setup

times, and the output registers and output-enable registers are used for DDR applications.

4.6.5 Device Fitter

It is not evident to designers what the device fitter does. But it is very important for a

successful design. Typically, it maps a design to the physical LEs, I/O element and

interconnect network of a specified FPGA chip. Since there are so many LEs (119,088 for

3C120F780) in a typical FPGA chip, the number of different solutions for a design can be

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 70

huge. It means that the fitter has to work through an immense solution space to look for a

good mapping area as quickly as possible. This is why a small change in one part of a

hardware design can lead to different results in other parts and partly why the hardware

design compilation is time-consuming.

The fitter needs restrictions to determine how to map. The two primary restrictions are

timing and routing requirements. The timing requirement makes all the timing-critical paths

meet their timing requirements and reduce the signal delay. The routing requirement is

intended to make sure that the mapping meets the physical limitations of the target FPGA

chip and puts connected elements closer together.

To reduce the compilation time, Quartus II provides the Fast Fit option, besides

Standard Fit and Auto Fit. Fast Fit can decrease compilation time by a maximum 50% for a

design by reducing fitter effort. Standard Fit does not reduce fitter effort, but Auto Fit can

decrease fitter effort after meeting the timing and routing requirements of a design. Fast

Fit may take half an hour to several hours to accomplish, which depends on the memory

space and CPU speed of the computer where the design of the embedded hardware

system is processed. More free memory space and higher CPU speed can accelerate the

device fitting.

4.6.6 Timing Analysis

Timing analysis tests whether or not a hardware system design meets the timing

requirements. As regards a high-speed design, the propagation delay is vital for proper

system operation.

With Altera TimeQuest Timing Analyser, a static timing analysis can be done on

register-to-register, I/O, and asynchronous reset paths. The TimeQuest Timing Analyser

can detect possible timing violations by using clock arrival times, times required by data

processing, and data arrival times.

4.6.7 Compilation Result Output

Quartus II provides many compilation and simulation reports for different design stages:

for example, compilation flow reports, analysis and synthesis reports, partition merge

reports, fitter reports, and TimeQuest Timing Analyser reports. At any stage, the tools can

give a report for that stage. With these reports, designers can make modification on their

designs. The most important ones are the configuration files that can be downloaded to

the target FPGA device and make the FPGA function as the target embedded hardware

system.

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 71

4.6.8 About Go-Back

In Figure 4.5, the development flow does not give any explicit return to the previous steps

like those in the software, but almost any step in this flow can go back to its previous steps.

The compilation of a hardware design can be stopped in half way unsuccessfully by some

constraints, such as constraints of the design logic, the pins and internal resources of a

specified FPGA device, time analysis, and others. Therefore, if the compilation of a design

stops at any point, it is the only way to modify the design until it passes all the compiling

requirements. The analysis and synthesis have to be redone if any change is made to the

design. Fortunately, most of the tasks are performed automatically by the facilities of

Quartus II. They can help reduce the time-consuming work.

4.7 Setup of FPGA-based Embedded Hardware System for Graphics Applications

As an algorithm for the surface modelling and editing, the PAMA is one of 3D graphics

applications. An FPGA-based embedded hardware system has to be constructed for the

graphics applications. Besides the microprocessor, memory and general peripherals, an

LCD, frame buffers and hardware units for graphics pipelines have to be specified for this

project. To build up an FPGA-based embedded hardware system, as shown in Figure 3.6,

two tools provided by Altera Corporation must be used, Quartus II and SOPC builder.

4.7.1 Nios II Processer Settings

As a system component, a Nios II processor is a soft core that is volatile and present only

after the FPGA is configured, as shown in Figure 3.6. Therefore, it must be added to the

SOPC system with the SOPC builder when the embedded hardware system is set up.

 As shown in Figure 4.7, there are three configurations of the Nios II processor, the

lowest configuration is Nios II/e (size-optimised economy), the middle one is Nios II/s

(standard), and the highest one is Nios II/f (performance-optimum fast). Since the graphics

speed-up with hardware can support the graphics acceleration with the hybrid way that is

the goal of this project, the Nios II/f has been chosen. Besides the RISC and 32-bit

structure of the Nios II/e, the Nios II/f consists of hardware supports for the instruction

cache, data cache, dynamic branch prediction, hardware multiply, hardware divide, and

barrel shifter. All the elements can accelerate the computation systemically. The

accelerated computation is critical for the algorithms of 3D graphics speed-up.

The Nios II/f processor is configured to run at the 100-MHz frequency. Its performance

can be up to 113 DMIPS. Its logic usage in FPGA is 1400-1800 LEs. The reset vector is

located at the physical address 0x10000000 and offset 0x0 in the ext_flash, which is the

external 64-MByte CFI (common flash interface) flash. The exception vector is located at

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 72

the physical address 0x1c000040 and offset 0x40 in the ddr_sdram_1, which is one of two

external DDR2 SRAM memories. Since the operating system does not support the

memory management, both of MMU (memory management unit) and MPU (memory

protection unit) options are disabled. In Figure 4.8, both the instruction and data caches

are set to 32 Kbytes. The data cache line size is 32 Bytes.

Figure 4.7 Nios II Settings (1)

Figure 4.8 Nios II Settings (2)

4.7.2 System Clock Settings

To enhance the whole performance of the system, different peripherals run in the different

clock domains from one of Nios II processor.

Since the Nios II and peripherals function under different system clocks, the system has

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 73

two external clock sources. One is 50 MHz; the other is 125 MHz. From the 50 MHz clock,

a PLL is used to produce two clocks. One is 100 MHz for the CPU and the LCD; the other

is 60 MHz for the slow peripherals. The 50-MHz clock is for one of the two external DDR

SDRAM memory controllers and the 125-MHz clock is for the other one.

Because the Nios II processor is connected to the peripherals that run in different clock

domains from its clock, three clock crossing bridges are needed. Two bridges are used to

connect the CPU with two external DDR SDRAM memories, respectively. One bridge

connects the CPU to the slow peripherals, such as system timers, and others.

4.7.3 DDR2 SDRAM Memory Controller Settings

For graphics applications, frame buffers are necessary. As an ES, the system code and

data have to be stored during the system runs. These requirements result in the system

memory. Two external 64-MByte DDR2 SDRAM memory banks of Micron

MT4732M16CC-3 are used in the system. They can run at a full rate of 153.85 MHz or half

rate of 76.9 MHz.

One memory that stores video frames is controlled by one of two controllers and

connected to the entry of the video pipeline. It plays the role of video frame buffer. The

video frame data stored in the buffer adopt a 64-bit format. The entry of the video pipeline

is an SG-DMA, which is set to a 64-bit width at the half rate of 76.9 MHz and delivers the

video stream data from the memory into the FIFO of the video pipeline. Thus, the memory

is controlled to run at the half rate of 76.9 MHz with a 64-bit data width.

The other memory is controlled by another controller. It is the system instruction and

data memory, stores instruction code and data, and is connected to the Nios II data bus. It

runs at the full rate of 153.85 MHz with the 32-bit data width.

4.7.4 CFI Flash Memory Controller Settings

FPGA configuration files of FPGA-base ESs have to be stored in a permanent memory.

For graphics applications, the application software also has to be also stored in a

permanent memory. A Spansion Flash memory with 64-MByte capacity has been chosen

as the permanent memory in the present research. It stores the FPGA configuration data

and application programs for this project.

The CFI (common flash interface) -compliant flash memory controller is set to control

this external flash device. Its address width is 25 bits, and its data width is 16 bits. The

setup time, wait-state time, and hold time for read and write transfers are set to 80.0 ns,

40.0 ns, and 20.0 ns, respectively.

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 74

4.7.5 JTAG UART Settings

During ES development, it is necessary to communicate between a PC host where the ES

development is practised and the FPGA development board where the target FPGA

device is located. The JTAG UART (universal asynchronous receiver/transmitter) is used

to build up the serial communication between the PC host and the FPGA development

board. Through the JTAG port and cable, the FPGA configuration file and application

software are downloaded to the devices on the FPGA board. The write FIFO (from Avalon

interface of FPGA to JTAG) of the JTAG UART is set to eight bytes of buffer depth and

four of IRQ level. Its read FIFO (from JTAG to Avalon interface) is also set to eight bytes of

buffer depth and four of IRQ level. Both of them are constructed by using the on-chip

registers.

4.7.6 Settings for LCD Controller Interface and Video Pipeline

For graphics applications, an LCD and video pipeline are the final part of the graphics

pipeline. The LCD is the screen device used to display the pixels of a graphics image.

Since the data format stored in frame buffers is different from one streaming to the LCD

device, the video pipeline is used to do the data matching and synchronising. In this

project, the LCD device on the board is a 4.3” Toppoly TD043MTEA1 active matrix colour

display with 800 X 480 pixel resolution. The LCD controller interface and video pipeline

are integrated into the system.

4.7.6.1 LCD Controller Interface

The LCD controller interface built with three Altera PIO (parallel I/O) cores consists of

three one-bit ports, including <lcd_i2c_scl>, <lcd_i2c_sdat>, and <lcd_i2c_en>. The

<lcd_i2c_scl> is an output port for the LCD controller clock output. The <lcd_i2c_sdat> is a

bidirectional port for the LCD controller data. The <lcd_i2c_en> is an output port for the

LCD controller enable.

4.7.6.2 Video Pipeline

The video pipeline is composed of IP cores that can be customised to suit the resolution

and aspect ratio of the LCD device. Besides the video frame buffer and SGDMA that were

introduced in Section 4.7.3, the video pipeline is composed of an FIFO, two data format

adapters, a pixel format converter, and a video sync-generator.

The FIFO is set to a dual clock FIFO with 128-unit depth and constructed with the

on-chip memory blocks. It can buffer video stream data when the rate of fetching video

stream data from the video frame buffer is faster than the rate of displaying the pixels on

the LCD device.

One of two data format adapters turns the 64-bit frame data into 32-bit data. It is set to

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 75

eight data symbols per system clock for input and four data symbols per system clock for

output. Each symbol has eight bits.

The pixel format converter is designed to take the 32 bits from the upstream and send

24 bits to the downstream by discarding eight bits. The 24 bits consist of eight bits for each

of three channels of red, green and blue.

When sent out of the FPGA chip, the pixel stream data are a stream of three eight-bit

data. It needs the other data format adapter to turn the 24-bit stream into the eight-bit

stream. This adapter is set to three data symbols per system clock for input and a data

symbol per system clock for output.

The video sync-generator is used to synchronise the RGB pixels in rows and columns in

an image by means of horizontal and vertical synchronisation signals. As the display scan

is done line by line, the horizontal synchronisation for a whole line of pixels should be done

before the vertical synchronisation. The horizontal synchronisation of 800 RGB pixels in a

line is done at the rate of one pixel per system clock. The vertical synchronisation of 480

lines of pixels in an image is done line by line. Since the horizontal blank pixels are set to

216, horizontal front porch pixels are 40, and horizontal sync pulse pixels are one, the total

number of horizontal scan pixels is 1056. The vertical blank lines are set to 35, vertical

front porch lines are ten, and vertical sync pulse lines are one. So the total number of

vertical scan lines is 525. Figure 4.9 illustrates the video pipeline.

Figure 4.9 Block Diagram of Video Pipeline (Purple Blocks are Off-Video-Pipeline Blocks)

Off-Chip LCD Data Interface

8 bits

Video-Sync Generator

8 bits

Data Format Adapter

24 bits

Pixel Format Converter

32 bits

Data Format Adapter

64 bits

FIFO

64 bits

SGDMA

64 bits

Video Frame Buffer

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 76

The video pipeline provided by the Altera is used simply for the fundamental functions of

the control and transfer of pixel data to the off-chip LCD display device. It is not sufficient

for the graphics pipeline. The rest of the graphics pipeline is implemented by an

algorithm-specified module and Mesa-OpenGL implementation. The detail of graphics

pipeline will be discussed in Chapter 5.

4.8 Challenges and Features of the FPGA-based ES

Several challenges are tackled during the system setup and when the solutions are tested

to achieve the integrated system implementation.

A Samsung R480 laptop computer with an Intel Core i5 CPU M 460 of 2.53 GHz and

4.00 GB was used in software programming for this project. It does not have sufficient

computing power for compiling the design of the FPGA ES in this research, however. An

HP graphics workstation is used, which adopts the architecture of ACPI multiprocessor PC

and consists of four 2.27-GHz Intel Xeon E5607 microprocessors. This proves the

effectiveness of parallelism.

This project adopts a forward method suggested by the study of Underwood 2004. It

applies a number of design interactions. It starts with the simplest, most straightforward

implementation. Then it gradually adds the advanced modules to the simple

implementation and adjusts each new module to verify its function until it achieves the

best solution or runs out of FPGA resources.

Conventionally, it is taken for granted that hardware design is fixed with less flexibility

software. It is now possible to change hardware design with current FPGA design tools

even though substantial time and experience are needed. The FPGA-based platform

provides a design-friendly environment for updating a design to realise new academic

ideas and new market requirements.

4.9 Chapter Summary

In this chapter, a traditional ES development method is discussed and compared with the

novel development of an FPGA-based ES. The evolution and applications of FPGA

devices are introduced and FPGA-based ES development described. FPGA-based ES

design and Altera facilities for FPGA development are presented for this project. The

FPGA-based embedded hardware system is developed for graphics applications. Finally,

challenges and features of the FPGA-based ES are discussed.

Constructing a system from hardware can help designers to customise and reuse the

resources. The FPGA-based platform can provide a design-friendly environment for

Chapter 4 FPGA-based Embedded Hardware System for Graphics Applications 77

updating the design to realise new academic ideas and market requirements. This

research presents a novel alternative to GPUs and designated video cards by applying an

FPGA-based embedded hardware system to computer graphics. Further development of

the system incorporating OpenGL is presented in the next chapters.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES

Discussed in Section 2.3, the OpenGL is a standard for applications of drawing

high-quality images of 2D and 3D objects in real time with a user interaction interface. The

user interaction interface allows the user to input operation instructions to edit any object

or modify any image frame in real time. With different hardware platforms, OpenGL

implementations are varied, especially for the hardware-dependent part.

Derived from the OpenGL, the OpenGL ES (OpenGL for Embedded Systems) is one of

OpenGL standards specified in 2D and 3D graphics on ESs, including mobile phones,

hand-held gadgets, and automobiles. As the range of ESs is wide, OpenGL ES

implementations are varied with hardware devices and applications.

For this project, with a goal different from the general OpenGL ES, it is expected to

realise the surface editing with FPGA-based implementation and must make a

modification and addition to the general OpenGL ES implementation. The PAMA

presented in this research must be supported with the algorithms of Bézier curves and

surfaces. The evaluation of Bézier curves and surfaces does not belong to the general

OpenGL ES and must be added to the OpenGL implementation of this project.

As the introduction in the previous chapters, the Altera ESDK, Cyclone III Edition (Altera

2008a), is used in this project. This kit is comprised of three components, a Cyclone III

3C120 FPGA base board, a LCD Multimedia High Speed Mezzanine Card (HSMC), and a

multi-purpose card for debugging software and developing USB and SD card interfaces.

The software processer core of Nios II plays the role of the general purpose

microprocessor of the ES, which carries out the execution of the graphics pipeline and

applications. The Nios II 3C120 general purpose processor system has 100MHz CPU

clock and 60 MHz peripheral clock. This kit will be called the FPGA-based ES board (or

platform) in the following discussion.

In this chapter, after the introduction of the OpenGL and OpenGL ES standards, the

differences between the OpenGL ES standard and the implementation of this project will

be expounded in detail.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 79

5.1 OpenGL

According to Kilgard 1997, and Kilgard and Akeley 2008, the OpenGL can be treated as

an architecture, which provides a well-specified, widely-accepted pipeline for 3D graphics,

and an OpenGL-capable computer is a hardware implementation or exemplification of the

architecture. In the OpenGL, the graphics pipeline is also called the state machine with a

fixed topology. The OpenGL’s state variables are orthogonal. Rendering steps can be

broken down and embodied in special-purpose hardware in order to accelerate an object’s

drawing.

Described in the studies of Hearn et al 2011, and True et al 2004, the OpenGL pipeline

consists of two joined-together sub-pipelines, geometric pipeline (or vertex pipeline) and

fragment pipeline (pixel pipeline), as shown in Figure 5.1.

Figure 5.1 Graphics Pipeline

5.1.1 Geometric Pipeline

The geometric pipeline of OpenGL follows a natural process to draw graphics objects on a

device screen in the analogous way of photography (Cunningham 2008, and Hoschek and

Lasser 1993). This process carries out a transformation from a drawn 3D object that is

convenient to be drawn by the application programmers to a 2D image that is easy to be

displayed on the screen by a hardware device. This process can be simplified as a series

of stages including

▪ Drawing objects individually one object after another;

▪ Placing each of them on a proper location in a common scene;

▪ Seting a viewing direction for the audience;

▪ Clipping the visible part according to the viewing volume;

Model
transformation
module

Illumination
module

Geometric
primitive
assembling
module

Clipping
module

Projecting
module

Rasterisation
module Fragment

processing
module

Geometric pipeline

Fragment pipeline

Texture
mapping

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 80

▪ Projecting the 3D view onto a 2D viewing plane that is vertical to the viewing

direction of the audience;

▪ Mapping the 2D viewing plane onto a 2D screen window of a hardware screen

device.

As regards this process, it is conventional to define a scene where a collection of

graphics objects exist. The scene defines what exists in the scene world, so its coordinate

system is called the world coordinate system and the coordinates referring to this system

are the world coordinates. The world coordinate system is shared by each object in this

scene. Since each object is drawn individually first and then moved into the scene, it is

convenient to assign a local coordinate system to each object in such a way that the object

is easy to be drawn geometrically. For example, the centre of a sphere is a good option as

the origin of its local coordinate system. Because of this process, there are several

coordinate transformations involved in the geometric pipeline of OpenGL, which will be

detailed in the following sub-sections.

5.1.1.1 Model Transformation Module

In the geometric pipeline, to create an image of a 3D object, the geometric descriptions of

the object must be input. These descriptions are composed of the modelling coordinates

or local coordinates. To put all the objects in a common scene, the coordinate

transformation from local coordinates to world coordinates must be done. This is the work

of the model transformation module.

5.1.1.2 Illumination Module

If an object in the scene is visible, the colour of the object will be drawn on the device

screen. The light that emits on the object can influence how colour shades to look like on

the device screen. In the OpenGL, the attribute of a light source can be set, which will

make contribution to the evaluation of the final colour of an object lit by the light. This is the

work of illumination module.

5.1.1.3 Geometric Primitive Assembling Module

To draw in detail an object with a complex shape, some technologies should be taken.

One of them is to divide the object into simple primitives, such as triangles, cubes, spheres,

cylinders, and others, in advance. These primitives are modelled and transformed

individually. Finally they must be assembled together in order to represent the object. This

is the work of geometric primitive assembling module.

5.1.1.4 Clipping Module

In general, there is a viewing point, from which the audience look at the scene. Like a

camera viewfinder, there is a viewing volume in the OpenGL, called viewing frustum,

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 81

which limits the sizes of three dimensions. Objects in the scene must be clipped by the

size of the viewing frustum. The part outside the viewing frustum will be invisible and have

to be removed. The part inside the viewing frustum will be retained for the next step in the

pipeline. These are the work of the clipping module.

5.1.1.5 Projection Module

The objects in the scene are then projected to a 2D plane that corresponds to the screen

of the display device. The third coordinates of the scene will be used in depth test later. In

general, coordinate values are normalised in the range from -1 to 1. In this way, the

graphics software is independent of the coordinate range for any specific display device,

no matter which is 800 X 480 pixels or something else. The above is the work of projection

module.

5.1.1.6 Texture Mapping

As shown in Figure 5.1, except for the illumination module, texture mapping does also

affect the rendering of an object. For example, a 2D texture can be used to replace the

colour of or paste on the surface of a 3D object and make the surface of the object coated

with the texture’s pattern. Because of the texture coordinates’ mapping onto the surface of

the object, if the user interaction makes the object shape deformed, the coating texture

must be changed along with the deformation. If not, an artificial effect may be caused.

5.1.2 Fragment Pipeline

Before rasterisation, everything related to an object is represented with the vertex

coordinates. Therefore, it is a geometric description. The geometric description is

convenient for geometric evaluation and application programming. But for the display

device, everything drawn on the screen is painted as pixels, the values of red, blue and

green at different positions with two-dimension coordinates on the screen.

In OpenGL, a fragment is a pixel with attributes of position and colour (Kuehne et al

2005). Fragment pipeline is responsible for shading or colouring the appropriate pixels in

the frame buffer.

5.1.2.1 Rasterisation Module

Rasterisation is to make the normalised coordinates of vertices of objects scaled with the

size of the display screen. After rasterisation, representations of objects are expressed in

pixels or fragments.

Except for rasterisation module, typically, the fragment pipeline has several processing

stages, as shown in Figure 5.2. In the fragment pipeline, many stages must be traversed

before a fragment being written into a frame buffer. But it is costly and makes the

rendering slow if all of them are enabled and processed. Therefore, it is wise to make a

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 82

control to optimise which combination of fragment processing stages is used in an

application.

Figure 5.2 Processing Stages in Fragment Pipeline

5.1.2.2 Texel Generation

A texture element, called texel, is a unit for texture space. Take a 2D texture as an

example. When texturing a 3D surface, the OpenGL maps texels to appropriate pixels in

the frame buffer. The texturing process starts from mapping the texture into the model

space of the object surface where the texture is put on. Then along with projection of the

object model, the texture is projected on the 2D screen space. As two coordinates of a

pixel position on the screen are integers, the projected texture coordinates should be

filtered. Then texels are generated. Sometime a texel can be outside of a texture, such as

outside the border of the texture. Clamping or wrapping can be used. The former makes

the texel outside the texture have the colour value of the nearest edge; the latter makes

the colour value of texel outside the texture repeat the texture colour. Sometimes in the

texture space, a value exactly corresponding to a texel cannot be found. In this case,

‘GL-NEAREST’ or ‘GL_LINEAR’ can be used. The former assigns the nearest value to the

texel; the latter sets the texel to a linear-interpolated value.

5.1.2.3 Depth Test

Since all the images have to finally project on the 2D screen, for 3D objects, the vertices at

the front can be visible whereas those at the back can be blocked and invisible. As

regards this situation, it is necessary to do the depth test. When coordinates of a vertex

are projected on the screen, two transformed coordinates, x and y, are corresponding to

two dimensions of the screen. The third one, z, is taken as the depth coordinate directing

into the screen, and can be stored in the depth buffer, or z-buffer, when the depth test is

being done. The depth buffer is a two-dimensional array with one element for each screen

pixel. If an object in the scene is rendered, the depth test of OpenGL compares its depth

value with the value of the same pixel in the depth buffer. If it is less, which means the

object is closer to the audience, it overrides the current value of the pixel. The new depth

replaces the old one and is stored in the depth buffer. After the depth test, the hidden

object will be culled and will not be rendered any longer.

Depth
test

Alpha
blending

Stencil
test

Logical
operations

Frame
buffer

Texel
generation

Fragment processing module

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 83

5.1.2.4 Stencil Test

The stencil test is mainly used to limit the area of rendering with boundary patterns for a

scene. The boundary patterns are stored in a stencil buffer, which is usually an array of

bytes, one byte for each screen pixel. Combined with the depth buffer, the stencil buffer

can be used to make many effects, such as outline drawing, shadows, and highlighting of

intersections between complex primitives.

5.1.2.5 Alpha Blending

To draw a translucent object in a colourful surrounding, such as a glass bottle, alpha

blending should be used. This function is to mix a translucent foreground colour with a

background colour to produce a new blended colour. The alpha value can be ranged from

0 to 1.0, which means the range from completely opaque to completely transparent. At two

extremes, zero is completely opaque and the blended colour is the foreground colour; one

is completely transparent and the blended colour is the background colour. At other values,

the blended colour is assessed by weighting the foreground and background colours with

the alpha value.

5.1.2.6 Logical Operation

In OpenGL, a bitwise, logical operation of combining source and destination pixel colour

values, such as and, or and exclusive or, is provided. The source pixels can be a copy of a

block of pixels in the frame buffer, which can be read from the frame buffer by using

OpenGL commands in advance. A logical operation can result in an effect on the

destination pixel block in the frame buffer and make the pixel colours different from the

original ones.

5.1.2.7 Frame Buffer

The frame buffer is the video output memory space that contains a complete frame of data,

colour values of pixels of an entire screen. Each pixel can have one bit for monochrome,

four bits for palettised, sixteen bits for highcolor, and twenty-four bits for truecolor formats.

An additional alpha channel is sometimes used to retain information of pixel transparency.

After the frame buffer is written, a graphics device will paint colour values on the device

screen by some instruction, such as glFlush.

To attain a good performance, two frame buffers are usually provided in the graphics

device. In this case, when the front frame buffer is displayed by the device, the back one

can be written by the graphics pipeline. Then two frame buffers are swapped. So the video

images can be played smoothly.

As the OpenGL implementation involves the image display and user interaction

interface, there are always hardware-dependent and hardware-independent parts

involved in the OpenGL pipeline. The upstream of graphics pipeline tends to be

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 84

implemented with software solution while the downstream is prone to require hardware

support. Software solution is flexible, varied and slow, and hardware solution is fixed,

designated and fast.

5.1.3 Rendering Flow of an OpenGL Interactive Application

For an object rendering, the processing starts from the input of object vertex coordinates

at the upstream end of OpenGL API, performs the intermediate steps that the data are

transformed and transmitted with a set of state variables, and ends by writing the pixel

colours into a frame buffer to be displayed. The OpenGL state machine can practise the

whole processing in a fixed order that follows the geometric and fragment pipelines and

depends on whether an intermediate step is enabled or disabled, and finally make the

object image display on the device screen.

From the application perspective, the OpenGL is a structure with several levels, as

shown in Figure 5.3. From the top (interactive applications) down to the bottom (hardware

platform), an application program is executed with an application, commands, geometric

pipeline, fragment pipeline, hardware abstract layer, and hardware platform.

Figure 5.3 OpenGL Structure from the Application Perspective

In this project, the FPGA-based ES board is the hardware platform. The Altera HAL is

the hardware abstract layer. Part of OpenGL fragment pipeline is merged into the

hardware system, for example, the frame buffers, LCD, video pipeline, and buttons for

user interactions. Part of OpenGL geometric pipeline is also constructed with hardware

units, which is the algorithm-specified module as shown in Figure 3.6. These hardware

parts are used to speed up the graphics pipeline. The rest of OpenGL graphics pipeline

and OpenGL API are constructed with software to form the main part of Mesa-OpenGL on

FPGA-based ES, which will be detailed in Section 5.5. The auxiliary API is composed of

three supports that are of the Mesa-OpenGL API, ANSI C library and HAL API. The first

Hardware Platform

Hardware Abstract Layer

OpenGL Fragment Pipeline

OpenGL Geometric Pipeline

OpenGL API and Auxiliary API: Commands

Frame
Buffer

OpenGL Applications

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 85

support will be expounded in Section 5.5.2. The latter two supports have been discussed

in Section 3.3.4. The OpenGL applications are the surface modelling and editing, the core

algorithm of which is the PAMA, which will be detailed in Chapter 7.

The general rendering flow of an OpenGL interactive application is:

a Open and initialise a window to draw OpenGL objects.

b Set any OpenGL state to a target value used on all the objects in the application.

c Register any event that the user may enter for the user interaction. The event can

be pressing a key or button, moving or clicking the mouse, or moving or resizing

the application’s window.

d Draw the image of 3D objects by using OpenGL with values set by the user or

defaulted of the OpenGL. The OpenGL state machine keeps a main loop running

to catch any event and re-draw the variation of objects for the event.

5.2 OpenGL ES

The OpenGL ES is the standard for embedded accelerated 2D and 3D graphics (Angle

and Shreiner 2008, and KHRONOS 2013). It provides a graphics API – a low-level

interface between software applications and hardware or software graphics engines.

As the hardware conditions of ESs are more limited by their small sizes and designated

applications than desktop computers, an implementation of OpenGL ES can be turned

into one of subsets of the desktop OpenGL. The family of OpenGL ES implementations

may have various versions for different pipelines and multiple hardware platforms, which

may or may not be integrated with EGL (Native Platform Graphics Interface Layer,

detailed in Section 5.3.1). Each implementation can be a much smaller engine with few

function calls.

Compared with the desktop OpenGL, the archive of OpenGL ES includes profiles not

only for floating-point systems but also for fixed-point systems. It also provides the EGL

specification for portability between different native windowing systems. As an

implementation of the OpenGL ES has a closer bind with hardware devices than the

desktop OpenGL, the porting of OpenGL ES from one platform to another is more difficult

and brings about more detailed issues for transplanting.

5.2.1 Versions and Profiles of OpenGL ES

The OpenGL ES has several subsets of OpenGL standard for ESs. It is divided in two

ways, versions and profiles. The former is for different ways in the programming; the latter

for different dimensions on the footprint.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 86

5.2.1.1 Versions

Since the graphics requirements have a broad range of 3D devices and platforms in

embedded markets, the OpenGL ES has been developed two versions with two different

roadmaps, which are for two different development requirements and platforms and have

evolved in two different directions, respectively. They are OpenGL ES 1.X and 2.X, both of

which have their counterparts in OpenGL.

The OpenGL ES 1.X is for fixed function hardware. Its goals are to enhance hardware

acceleration, to improve image quality and performance, and to reduce the memory

bandwidth. It is also a software interface that consists of a set of procedures and functions.

The function calls can be used not only to implement rendering but also to support

transformations, matrix stacks, Phong lighting, fog, and others. The programmer can

specify a state by calling a specific function to control the state machine in producing

graphical images of 3D objects. It can be applied to the new-generation fixed function 3D

accelerators.

The OpenGL ES 2.X is for programmable hardware. It defines a programmable 3D

graphics pipeline to create shader objects and to write vertex and fragment shaders in the

OpenGL ES Shading Language. Since almost all graphics operations are done in shaders,

its interface is very small, and focuses on specifying geometry and textures, and dealing

with shaders and their variables. It can be applied to the emerging programmable 3D

pipelines.

Even though the OpenGL ES 1.x is more fixed in functions compared to the OpenGL ES

2.X, it does not mean that the use of functions of the OpenGL ES 1.x is fixed during

programming applications. There is still a lot of room to adjust and optimise the order of

function calls and disable some unnecessary modules in the pipeline during programming

to speed up the object rendering and save the memory space.

5.2.1.2 Profiles

The definition of profiles of the OpenGL ES specification is dependent on their application

fields. Each profile has its own emphasis, adopts part of the desktop OpenGL specification,

and extends its own OpenGL ES-specific part as well. For the part derived from the

OpenGL, each OpenGL ES profile retains the similar API, processing pipeline, command

structure, and the same name space as the OpenGL. For the extension part, it adds

OpenGL ES-specific functions to the OpenGL specification in order to meet the needs of

embedded platforms. Three profiles have been issued. They are Common, Common-Lit,

and Safety Critical Platforms. As the family of OpenGL ES profiles still grows, along with

new technologies emerging in the ESs, more profiles may be issued in the future.

Since it is designated for consumer handhold devices, the Common Profile provides the

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 87

market support for platforms that have different computation and memory abilities, such as

full-functioned and texture-mapping 3D graphics with minimum footprint, gaming platform,

and cell phone platform. The Common Profile supports the floating-point computations.

Because it focuses on a simple class of graphics system with a small footprint and only

supports the fixed-point calculations, the Common-Lite profile does not support

high-performance OpenGL functions that need the floating-point computations. The

Common and Common-Lit profiles not only share many commands, but also have some

commands designated to only one of them.

The Safety Critical Profile has high requirements on being reliable and certifiable. It can

meet the needs of 3D graphics applications in avionics and automotive displays, and

safety certifications.

5.2.2 OpenGL ES Implementations

Since the OpenGL ES is derived from the OpenGL, many resources and development

experiences of OpenGL can be applied to the OpenGL ES. These make it feasible a

crossing-platform migration from desktops to different embedded platforms. The OpenGL

ES also makes it affordable to provide the diversity of 3D graphics and games in the

mainstream of embedded and mobile platforms. According to KHRONOS 2013, the

OpenGL ES has had many implementations that are of some companies, such as Intel,

Imagination Technologies, QUALCOMM, ARM, Marvell, Apple, NVIDIA, Creative

Technology Ltd, Media Tek Inc, and NOKIA OYL.

5.3 Different Roles in OpenGL ES

Since part of the work in this project is to implement the OpenGL ES on the FPGA-based

ES platform, it is very important to have a proper perspective to view the OpenGL ES.

Especially, the role of the author has to be turned between an OpenGL implementer and

application developer when programming the applications to test the effect of integrating

the Mesa-OpenGL in the FPGA-based ES. Therefore, there are three roles that should be

considered in the OpenGL ES. They are graphics application developers, implementers,

and standard setters.

 For the OpenGL standard setters, after the needs of general graphics application

developers, the conditions of general graphics platforms, and how to implement the model

on a general graphics platform were known, the OpenGL ES standard structure should be

built up to meet general graphics application developers’ needs and satisfy the conditions

of general graphics platforms.

Before starting implementing OpenGL ES on the graphics devices, it is necessary for

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 88

OpenGL implementers to know the specification of standard OpenGL ES. If so, the

implementation of OpenGL ES can be used by application developers of OpenGL ES in a

right way.

The graphics application developers should understand the OpenGL ES specification

and how its implementation at the local platform to work. Although all relative researchers

try very hard to make OpenGL hardware-independent, it is inevitable to involve the

hardware part because of the wide species of hardware platforms in ESs. The benefit of

this is to make the best use of OpenGL ES to realise their applications and attain the best

performance of the OpenGL ES and graphics platform.

5.3.1 OpenGL ES Standard Setter Role

In the view of OpenGL ES standard setter role, the OpenGL ES is treated as a structure

model and state machine that controls a set of specific operations on drawing (KHRONOS

2013). The structure model should yield a specification that satisfies the needs of both

developers and implementers. It does not provide a model for the implementation which

must bring about the specified results. The ways adopted by different implementations can

be different and have different efficiency for a particular computation. One of the main

goals of this specification is to define the OpenGL ES state information, and to explain

how it changes and what its effects are without ambiguity.

5.3.1.1 Command Descriptions

For a graphics command, the specification gives an explicit description of its function and

interface so that an application developer can correctly use the command and an

implementer can implement completely the corresponding operation or computation in its

function.

5.3.1.2 Profile Definition

Each profile has its own designated definition of header files, tokens, and command library.

To simplify the maintenance of a single profile, some conditional pre-processing directives

can be defined in the header files, which control and show which profile is used and

indicate which profile runs when an application inquires it by using the OpenGL version

query.

5.3.1.3 Minimised Footprint

Compared to the desktop computers, ESs have smaller memory space and slower

microprocessor speed. In ESs, the memory space ranges from 1 MB to 64 MB and the

speed of microprocessor varies from 50MHz to 400MHz. These data are still changing. To

meet these requirements for different conditions of embedded hardware, the OpenGL ES

must be implemented with a minimum footprint. It means minimising the instruction and

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 89

data storage and traffic requirements. It also means that the floating point computation

may be limited dependently and the integer computation can be encouraged mostly. The

power consumption can be lowered as well. Furthermore, the size of binaries of an

OpenGL ES implementation is so small that it is convenient for users to download it to

devices.

 In this project, since the FPGA-base ES has a limited memory space, which is a

memory of 2 X 64 MBytes, it is very important to minimise its footprint. The PAMA takes

this issue into account during the algorithm research, which will be detailed in Chapter 7.

The implementation of OpenGL for the FPGA-based ES must balance between the

freedom for shape modelling and editing and the storage space requirement. On the one

hand, it has to add the complex algorithms to the OpenGL implementation in order to

support the graphics applications for surface modelling and editing, which results in

enlarging the footprint; but on the other hand, it must decrease the total requirement on

the storage space during the software programming in order to gain a proper system

performance.

5.3.1.4. Invariance in Images

As the hardware platforms and display devices are different, the OpenGL ES specification

does not require matching exactly among implementations on different hardware

platforms. However, in some cases, images produced by the same implementation have

to match exactly in order to make a judgement in some situations, such as making a

comparison between two images.

 In another case, invariance is necessary. A complicated object is drawn, which requires

a whole sequence of operations that may involve many algorithms to support. These

algorithms may be executed many times for the object rendering. It is expected that

whenever the rendering is executed, the image displayed in a window should be invariant.

Invariance, however, can be costly. It can significantly increase the complexity of

implementation of the OpenGL ES and greatly limit the parallel processing ability of the

OpenGL ES. In fact, speeding up and a high image quality can be contradictory. An

implementation of OpenGL ES should balance all the requirements to implement a

relatively complete OpenGL ES profile. It is not acceptable to make one aspect very

strong at a price of sacrificing other abilities. On the other hand, among so many choices

in the ES platforms, a strong invariance requirement on the identical behaviour of the

hardware and software modules may be too restrictive to meet. A low requirement on the

invariance behaviour can make a lot of different implementations of OpenGL ES flourish.

In addition, a great deal of software tools and hardware platforms are disposed to

accepting the OpenGL ES. It may be one of reasons why there are more profiles in the

OpenGL ES than in the desktop OpenGL.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 90

The OpenGL ES should be able to execute on a wide range of graphics platforms that

may have different graphics capabilities. To support this diversity, for an OpenGL ES

operation, the ideal behaviour, rather than actual behaviour, is designated. Therefore, it is

possible that the behaviour of an implementation is an approximation to or deviation from

the ideal one. Two different OpenGL ES implementations are allowed not to agree pixel

for pixel even though they have the identical input and frame buffer configurations. In this

way, different implementations can be developed in order to fit into different application

situations and to meet different system requirements on different platforms. For example,

the requirements on invariance of two images are quite different between the image

identifying and shape changing of a moving character in a game. The former should meet

the higher requirement on invariance; the latter can get a benefit of speeding up the

graphics computation from a lower requirement on invariance. Because of the

computation of 3D graphics in surface modelling and editing in real time, speeding up is

crucial for the PAMA. There is not a high requirement on invariance for PAMA since it is

not necessary to compare two images. This has been taken into account during this

research. For example, a fixed point arithmetic system is adopted for this reason in this

project. It will be discussed later in this chapter.

5.3.1.5 Repeatability of Command Results

Given an OpenGL ES implementation, frame buffer, and hardware platform, the result of

any command must be identical whenever the command is executed. The reason is that

when double buffers are used, subtle difference between results of a command used in

twice executions can lead to visual difference between two frame buffers when they are

swapped for rendering with the same command sequence. This difference makes the

image look artificial or the viewer misunderstand it as the image trembling. In addition, the

difference of the same command sequence at different moments means that the

implementation is not stable during testing.

It is obvious that repeatability is very important in many cases, but not always. For

example, in changed view angles, a small primitive can be viewed differently. If the small

primitive is just a small portion of a drawn object or a whole scene, an acceptable variance

can be allowed when considering the cost and importance of trying to eliminate the

variance. In fact, the requirement of accuracy on an image drawing is not as important as

that on the pure computation. The reason for this is that the accuracy of a result of

computation is usually examined by a tolerance range that is defined for the computation.

It mostly depends on the audience’s visual impression whether or not a displayed image is

satisfactory, however. The computation accuracy can be stored to be measured and

compared later. The visual accuracy of image-drawing is instantaneous and varied for

different viewers. In addition, some technologies are sometimes used to yield a special

visual impression in order to satisfy the viewer’s eyes. For example, the antialiasing

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 91

technology is usually used in computer graphics and others to give the audience the visual

impression of the smoothness at a corner or boundary, but strictly speaking, it produces

only a beneficial illusion for the audience.

Thus, it is often sufficient for an image to convey the meaning that it must deliver. As

mentioned in the previous section, the comparison between two images sampled in real

world should be more accurate. For surface modelling and editing, the PAMA is realised

for the similar goal as the meaning’s conveying, and it has equally an important

requirement on speeding up for the user interaction in real time.

5.3.1.6 Extensions

As the OpenGL family and functions keep increasing, it is necessary and important for the

OpenGL ES to keep open and make any extension to the OpenGL ES profiles unimpeded.

Extensions to the OpenGL ES are treated in two ways. In one way, the extensions have

a strong functionality and will be included into the core profile revisions in the future. In the

other way, the extensions are still valuable but may not belong to the mainstream of

OpenGL ES.

 The OpenGL ES allows the implementations to add new features to the OpenGL ES,

which may not belong to any existent profile. As mentioned in Section 5.2.1, an existent

OpenGL ES profile is composed of two sections. One is a subset of the full OpenGL

graphics pipeline. The other is the extension of OpenGL ES-specific functions, which may

turn to a core addition to OpenGL in the future, or be collected in another set, the set of

OpenGL ES-specific functions that is not suitable for the general OpenGL. The extension

set of OpenGL ES-specific functions are further divided into two groups, the required and

optional.

In any new extension, the commands and tokens should match the corresponding

command subsets. Commands and tokens in the core addition subset do not have

extension suffixes in their names whereas those in the OpenGL ES-specific set should

contain the profile extension suffixes. The required part must conform to the existent

profile implementation. The optional part can be defined by the implementer.

Following these rules and mechanisms to extend programming, new emerging

hardware can be accessible through the OpenGL ES API and the OpenGL ES API can be

upgraded as well. When they are accepted broadly, the new extensions can be merged

into the OpenGL ES core standard. Furthermore, OpenGL ES, itself, can evolve

innovatively and controllably. Practically, in the process of implementation and

development, the OpenGL or OpenGL ES structure model can be further developed and

extended without separation from the original OpenGL core.

All the above allows this project to add functions of surface editing and API for the

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 92

FPGA-based ES to a new implementation even though there is not an existent profile of

OpenGL ES for FPGA-based ES. For example, the algorithms of Bézier curves and

surfaces are not included in the specifications of the general OpenGL ES. But they are

necessary for the surface modelling and editing with the PAMA. Thus, they are added to

the new implementation of OpenGL for the FPGA-based ES in this project.

5.3.1.7 Native Platform Graphics Interface Layer

As shown in Figure 5.3, there is a layer above the hardware platform, which can provide

the device-dependent functions, including device drivers, memory allocation and

deallocation, memory access, frame buffer access, and others.

Some functions of OpenGL ES are device-dependent, for example, drawing objects like

points, lines and polygons. These functions require writing a frame buffer of the graphics

hardware. For this reason, they are concerned with frame buffer manipulation. They need

some functions to bridge between writing the frame buffer and drawing the objects. These

function implementations are varied with graphics device specifications. Other functions,

like antialiasing or texturing, if they are enabled, can also influence how to draw objects.

They must be processed before writing the frame buffer.

 To minimise and isolate the device-dependent part from the application developers and

make it portable crossing the hardware platforms, the OpenGL ES establishes a

specification of a common platform interface layer, called EGL (Native Platform Graphics

Interface Layer). It is an independent platform interface. The OpenGL ES implementers

can make a choice between constructing a native hardware platform interface based on

the EGL and defining their own platform-specific embedding layer in their implementations.

The former’s benefit is that the implementers do not necessarily consider the consistency

of the platform interface with other part of OpenGL ES because an associated

conformance test is provided along with the EGL.

For the application developers, the hardware-independence brings them a seamless

transition from software to hardware and from one piece of hardware to another. Although

the OpenGL ES specification is defined as a hardware-independent graphics processing

pipeline, the implementations of OpenGL ES must be caught out by a combination of

software and hardware. The commands call the software routines that finally run on the

system microprocessor with the system memory access. Following the OpenGL ES

specification during programming can make applications and implementations seamlessly

connect to the hardware devices. It means that developers can get a normative software

engine no matter which implementer completes it, and users can download applications to

their device gadgets and play them no matter which developer develops them.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 93

5.3.2 OpenGL ES Implementer Role

For an implementer, the OpenGL ES is a set of procedures, or functions that carry out all

the computations in the graphics pipeline and all the operations of graphics hardware.

Imagine a graphics hardware device on which the OpenGL ES is implemented. If the

graphics hardware only had an addressable frame buffer, all the routines of OpenGL ES

should be implemented and executed on the host CPU. In reality, the graphics hardware

can be composed of varied graphics acceleration units, ranging from a simple raster

subsystem that can render 2D lines and polygons to high-end floating-point processors

that can transform and compute the geometric vertex data.

The OpenGL ES implementer’s task is to implement the programming of each OpenGL

ES command procedure. At the same time, they must provide the CPU software interface

for the application developers. They have to know how to divide the work of each

procedure between the CPU and the graphics hardware. The former is software-relative

and logical; the latter needs the device drivers’ support to implement OpenGL ES calls.

The latter also must be customised to fit into the available graphics hardware units and

obtain the optimum performance.

 Thanks to the open and widely-accepted features of OpenGL and OpenGL ES, there

are numerous resources available and free on the Internet, which can speed up an

implementation on a new hardware platform and mitigate the programming work without

building it from scratch. Even better, without too much explanation about the new

implementation, the application developers of OpenGL ES can understand how to develop

their applications with it.

 As an implementer needs to test whether or not the implementation is successful, it is

necessary to stand in the shoes of application developers during the programming and

verify the implementation in applications.

 In this project, one role of the author is the implementer of OpenGL ES because a new

implementation of OpenGL ES must be constructed on the platform of FPGA-based ES. In

the discussion of next section, we will see that the other role of the author is the

application developer of OpenGL ES.

About command implementation details will be introduced in Sections 5.4 and 5.5.

5.3.3 OpenGL ES Application Developer Role

As the OpenGL ES is an open embedded graphics standard, anyone can download the

OpenGL ES specification from the website of KHRONOS Group (KHRONOS 2013) and

learn it. With its broad and crossing-platform support in the industry, many individuals and

companies implement products based on OpenGL ES standard. The standardised

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 94

abstraction and device-independence at the high level make any developer just focus on

the function commands without considering the details of hardware platforms and code

implementations.

Because the OpenGL ES is derived from the OpenGL, a great deal of relevant

information, documents, books, and sample code of OpenGL ES can be to find on the

Internet. For developers having the experience of programming with the OpenGL, it is

readily to learn the OpenGL ES and write the OpenGL ES applications with the similar

structure of the design and logical commands as those in the OpenGL.

For the application programmer, the OpenGL ES is a set of commands. Some of them

define the specification of geometric objects in two or three dimensions. Some of them

control how these objects are rendered into a frame buffer. Others provide an

immediate-mode interface to specify an object, which causes the object to be drawn.

5.3.3.1 State Information

The OpenGL ES maintains a considerable amount of state information. The state

information controls how objects are drawn into a frame buffer. Some state information is

directly available to the application developer. The developer can use some commands to

make calls to obtain its value. Other state information is not, but its effect on what is drawn

can be visible. For example, the glEnable(GL_DEPTH_TEST) command can enable the

state of depth test and the OpenGL state machine will load and execute depth test in its

execution loop and create the scene with 3D effect.

5.3.3.2 OpenGL ES Application Flow

The programmers should understand the flow of an OpenGL ES application and know

which part is computation-intense and which part is input/output-intense. During

programming, they can find strategies for these parts so as to draw objects as fast as

possible.

In the flow of an OpenGL interactive application, a typical program starts from creating a

window to draw objects by using the window API commands. A frame buffer (or two frame

buffers if double buffers are available) and other context are created and connected to the

window. Once a context is allocated, the initialisation for lighting and background colour

cleaning should be done by using the OpenGL ES commands. With the window API

commands, some user procedures, such as drawing objects, reshaping the window and

issuing user interaction events, can be registered to enable the OpenGL ES to execute

them in the main loop.

In the user procedure of drawing objects, OpenGL ES commands can be used to draw

specific geometric objects. Some commands are used to draw geometric objects,

including points, lines, and polygons. Some commands have influences on the rendering

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 95

of these primitives. For example, they may decide how an object moves away from the

view point and how the object image of the user’s 2D or 3D model space is mapped to the

2D screen space. Others perform directly operations on the frame buffer, such as reading

pixel colours from the buffer.

In the user procedure of reshaping the window, OpenGL ES commands can set the

model view, projection view and mode, and resize the window. The operations acting on

the scene world should be performed in this procedure because they have influences on

all the objects in the scene world.

In the user procedure of issuing user interaction events, some events that make

responses to some actions done by user interactions through the standard input, like

pressing a key or button, moving and clicking the mouse, and touching the screen, should

be programmed here.

5.3.3.3 Global Effect vs. Local Effect

For the application developer, it is necessary to know how to distinguish commands that

act on the global scene world from those that have an influence only on individual objects.

The commands that act on the global scene world where all the objects exist should be

performed outside or before the display loop specified for individual objects. In this way,

the processing time can be decreased to a low level.

In this project, since the PAMA is the graphics application that is the second

development on the new implementation of OpenGL ES, the author is also the application

developer of OpenGL ES.

5.4 Mesa-OpenGL

For this project, there are three reasons that promote to create a new OpenGL

implementation that can be played on the FPGA-based ES.

The first reason is that the OpenGL ES takes into considerations only the part of

graphics pipeline for writing to or reading from a frame buffer. There is no specification for

how to paint on the display screen and how to interact with other peripherals associated

with graphics hardware, such as mice and keyboards. Implementers must rely on other

technologies, such as the Khronos OpenKODE API, to drive the screen painting or obtain

the user input. Different hardware platforms can have different drivers for their own input

and output devices, however.

The second reason is that Altera development and compiler tools, Nios II IDE

(Integrated Development Environment) and Nios II Software Building Tools for Eclipse,

are more skilled in software connection to an FPGA design but more restricted in C

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 96

programming and compiling than a general C-specific development environment. The

surface modelling and editing need a great deal of flexibly and complicatedly programming

and a lot of computation and storage space for processing data.

The last reason is that the implementations of existent OpenGL ES profiles cannot fit

into this project. In the introduction of Chapter 2 and Section 5.2.1.1, we have observed

that since GPUs have attracted most attentions of computer graphics researchers, GPUs

have attained a lot of support from the computer graphics society. One of their benefits is

that the OpenGL ES 2.X has adapted to the trend of GPU development. On the other hand,

the algorithms of Bézier curves and surfaces are excluded from specifications of three

profiles mentioned in Section 5.2.1.2, which are Common, Common-Lit, and Safety

Critical Platforms. In addition, FPGA-based ESs are an emerging branch in ESs, and they

still need some time to develop in various application fields, especially in graphics

applications.

 Because of the above reasons, a new Mesa-OpenGL implementation must be made for

FPGA-based ESs. More functions should be added to the new implementation for this

project than general OpenGL ES profiles. The results of Chapter 8 will show that the new

implementation has been ported to the FPGA-based ES platform successfully.

5.4.1 Introduction of Mesa OpenGL

Mesa (Paul 2013) has a sequence of open-source and evolutionary implementation

models of the OpenGL specification. Originated from 1993, the Mesa project was started

by Brian Paul. It has been evolving in twenty years.

There are a variety of hardware platforms that use the Mesa in various environments

ranging from software simulation to hardware acceleration for GPUs. For example, the

hardware drivers that the Mesa supports include Intel i965, i915, AMD Radeon, and

NVIDIA GPUs. The operating systems that the Mesa supports consist of Linux systems,

Microsoft Windows, UNIX, and Haiku. The Mesa did not have an implementation for a

FPGA-based ES before this project, however.

5.4.2 General OpenGL Implementation

The following are important elements that must be implemented in the OpenGL graphics

pipeline, called I-GL in this thesis, which represents Implementation of OpenGL.

According to their inner relationships, the introduction is from the top of commands to the

bottom of the connection between software and hardware.

5.4.2.1 Commands and Orders

The I-GL provides the API of graphics pipeline for application developers with a set of

commands. These commands can be used to specify a primitive, set the mode, or perform

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 97

an operation. Commands can be called with arguments. These arguments are used to

transfer data to the settings of variants, such as primitives and modes. The data are bound

to the current context and are transferred to the process that the command executes at the

moment when the command is called. The subsequent changes on the data will not have

an influence on the current pipeline.

 As the OpenGL graphics pipeline is a state machine, commands in the I-GL are always

executed in an order that they are received although it can be delayed for a command to

really take effect. For example, an enabled texture can be delayed to be put on the surface

of an object until the object is drawn, but the enable operation has been performed at the

point where the glEnable command is used. This delay relies on the programming inside

the I-GL and is a meaningful strategy for programming that allows all the similar

operations to be done collectively and enhances the performance of the I-GL.

 In general, the relationship between commands used in an application program and the

I-GL is client-server. For a simple platform with a small amount of memory and CPU

resources and single-threaded programming, such as small-footprint ESs, the relation

between an application program and I-GL can be treaded as a caller and a set of called

procedures. The application program (the client or caller) calls commands, and these

commands are interpreted and processed by the I-GL (the server or procedure service).

That is, the application program should issue commands to require the I-GL to create a

context for one drawing task and connect this context to the task at the initialisation stage.

If the program is not connected to a context with a complete initialisation in advance,

calling commands can cause undetermined behaviour. A server can manage several

contexts concurrently, each of which is corresponding to the current pipeline state for a

drawing task. A client can choose one of the contexts to be connected.

5.4.2.2 Primitives and Modes

In the I-GL, a primitive can be a point, line segment, or triangle. A primitive can be drawn

in several selectable modes. Each mode is independent. The setting of one mode does

not influence others, but their effects may have a synergy in the frame buffer. Primitives

and modes are set with the arguments of commands.

In the I-GL, every primitive is an entirety and must be drawn completely before any

subsequent one can influence the frame buffer. Also, the effect of one mode on the frame

buffer must be complete before any subsequent mode setting can have such effect.

The I-GL does not provide a complete command for constructing complex geometric

objects, however. To describe a complicated geometric object, the surface of the object

must be broken down into patches that can be represented by the basic primitives. With a

whole sequence of commands of describing primitives and some advanced I-GL

mechanisms, the object can be modelled. That is, the I-GL only provides commands and

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 98

mechanisms how complex geometric objects are rendered. It is the responsibility of

application developers to realise and figure out how the complex objects are described.

Application developments should think about how to divide a complicated-shaped object

into primitives and divide a complicated process into simple operations, and how to link

them together in order to render an entire object in a feasible and effective way. They also

must realise what the effect of a sequence of operations on the frame buffer is. They have

to re-test it several times and make sure of it.

5.4.2.3 States

For the I-GL, each state should put its data into the specified location of the memory. The

evaluation function should be launched after all the required data are put into their specific

locations. The evaluation function does just its tasks including fetching the data from the

assigned location, doing operations, and putting its result into the result’s specified

location. All the locations in memory have been initialised to allocate to the context of a

drawing task when an application program makes a requisition for a window initialisation.

This initialisation is the starting of the drawing task.

In the I-GL, there are numerous states that can be divided into two groups, server states

and client states. Most states are server ones. A connection from a client to a server

needs both the client state and server state, and the transfer between them. An operation

in the pipeline, which may be primitive specifying, mode setting, or data evaluating, is a

server state. A command starts from a client state and then the processing is transferred

to server states when the I-GL processes the command.

5.4.2.4 Controls

From the view of application developers, the commands and mechanisms of the I-GL

provide the direct control over the fundamental operations of 2D and 3D graphics drawing.

Inside the I-GL, this control can be treated as the states of the OpenGL state machines

that drive a drawing task to be executed and completed step by step. This control consists

of commands with parameters of primitive setting, view point specifying, transformation

matrices, lighting and material equation coefficients, texture mapping, antialiasing

methods, pixel update operators, and others. Therefore, the entire efficacy of the I-GL

relies on two aspects, how well the I-GL is accomplished and how well the I-GL is used in

the application programming.

5.4.2.5 Data and Orders

Geometric objects with different shapes and styles may be drawn in many primitives, such

as points (including point sprites), separated line segments, line strips (connected line

segments), line segment loops (connected line segments with met endpoints), separated

triangles, triangle strips (triangle patches arranged in a long strip and stitched seamlessly

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 99

together), and triangle fans (triangle patches arranged in fan and stitched seamlessly

together). Primitives are defined as an array of one or more vertices with coordinates. A

vertex can be the coordinates of a point. A point can be a single point, an endpoint of an

edge, or a corner where two edges of a triangle or other polygon meet.

Besides the positional coordinates, data of a vertex consist of colours, normals, and

texture coordinates. Each group of data with the same attribute is processed

independently in the same way and order. There is an exception, however. If an object

cannot fit into a viewing volume, some of its primitives, such as points, lines or triangles,

must be clipped. Vertex data can be modified. In the line or triangle primitives, some new

vertices can be inserted into primitives. The new associated data, such as colours,

normals, and texture coordinates, must be computed or interpolated.

Typically, data of colours consist of four values, representing red, green, blue and alpha

values, respectively. Each of them is initiated as one (with values within [0, 1.0]; (1.0, 1.0,

1.0, 1.0) means white and completely transparent). Data for normals have three values,

representing three coordinates of normal vectors. They are initialled as (0, 0, 1.0),

represented a vector directing in z axis. Texture units have four values that represent

texture coordinates of s, t, r, and q. For a 2D texture, the s and t coordinates are used, and

the two others are not. [s, t, r, q] is initialised as [0, 0, 0, 1.0], defined as homogeneous

coordinates.

Vertices of an object are organised in a vertex array. All the associated data are copied

in the vertex array and the transformed data of the object are also storied in this vertex

array. The transformed data consist of eye, clip, normalised device, and window

coordinates, which will be detailed in Section 5.4.2.7. With the window coordinates,

vertices of a primitive can be written in the frame buffer with the colours or the texture

colours according to the texture coordinates.

5.4.2.6 Vertices

In the I-GL, a data structure is defined specifically for a vertex array. At the stage of the

user’s inputting data of an object, the vertex data are placed in the user or client address

space. Once a command to transmit the data is used, the vertex data are transferred to

the I-GL or server address space.

 Blocks of data in these arrays can be specified for vertex coordinates, normals, colours,

point sizes, and one or more texture coordinate sets of different geometric primitives in the

execution of an I-GL command. For vertex coordinates, the command of

glVertexPointer(size, type, offset, pointer) is used. For normals, it is glNormalPointer(type,

offset, pointer). For colours and texture coordinates, they are glColorPointer(size, type,

offset, pointer) and glTexCoordPointer(size, type, offset, pointer). All of them have the

similar argument structure that gives the information of locations and organisations of

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 100

these arrays: size represents the number of components of the corresponding data stored

in the array, type represents the data type of the values stored in the corresponding array,

offset is the number of bytes for a set of components of the corresponding data, and

pointer means the pointer pointing to the location of the array of corresponding data in the

user or client address space. The pointer is the location in memory of the first component

of the first element in the corresponding array. Some arguments are not present because

they are constant for their data array. Size and type have their allowable values in

OpenGL. For example, the acceptable values for type can be BYTE, UNSIGNED BYTE,

SHORT, FIXED, and FLOAT.

All of them can transfer the corresponding array from the user or client address space to

the I-GL space. The data in arrays are stored sequentially. The array elements are stored

sequentially even though the offset is set to zero. No matter how many values an array

element consists of, from one to four values, a single vertex covers an array element. The

values in each array element are stored in memory in a consecutive manner as well. The

number of values of each array element defines the offset between two adjoining elements.

In an array, the pointer to its (i + 1)st element is greater by one offset number of machine

memory units (say unsigned bytes) than the ith element.

5.4.2.7 Coordinate Transformations

In the graphics pipeline, there are several coordinate transformations. Data of vertices,

such as, vertex coordinates, normals, and texture coordinates have to be transformed

before the coordinates are written in the frame buffer to produce an image.

 In Figure 5.4, the general sequence of transformations applied to vertices is shown. All

the matrixes are 4 X 4. All the coordinates are four-dimensional, including x, y, z, and w

coordinates.

Figure 5.4 Coordinate Transformation Sequence

 The transformation sequence in Figure 5.4 has an inherent relationship with the

geometric pipeline in Figure 5.1 and Section 5.1.1. In the I-GL, the coordinate

transformation sequence starts from the transformation from the vertex coordinates of the

drawn object to eye coordinates by left multiplying with the model-view matrix. This

corresponds to the transformation from the local coordinates to the world coordinates in

Eye
Coordinates

Clip
Coordinates

Normalized
Coordinates

Window
Coordinates

Vertex
Coordinates

Model-view
Matrix

Clipping
Matrix

Projective
Matrix

View-point
Matrix

Left
Multiplication
Matrix

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 101

Section 5.1.1. The transformation from eye coordinates to clip coordinates is carried out

by left multiplying eye coordinates with the clipping matrix. It is the function of the clipping

module of Section 5.1.1.4. The transformation from clip coordinates to normalised

coordinates is done by left multiplying clip coordinates with the projective matrix. The last

transformation from normalised coordinates to window coordinates is done by left

multiplying normalised coordinates with the view-point matrix. The last two transformations

are the function of the projection module in Section 5.1.1.5. In window coordinates, x and y

are for the location coordinates of two dimensions on a display screen, and z represents

the depth of the object looked into the screen by the viewer.

As mentioned above, the data are put into the specific location of memory when a

command is called, and the evaluation should start after all the required data are prepared.

The matrix settings with commands of glMatrixMode and glOrtho can be scattered in

different parts of the application program, which depends on the application. The order of

the matrix settings can influence the effect of the object rendering. The evaluation of all the

transformations in a complete sequence is really done at the final stage of the geometric

pipeline just before the rasterisation in Figure 5.1, however.

5.4.2.8 Colours

The colour processing is also done before rasterisation. There are two sources of colours:

one is the colours of a primitive; the other is the colours of a texture. Typically, colours

have four components of red, green, blue and alpha. Following the OpenGL specification,

the I-GL accepts each colour component with a value ranged in [0, 1.0]. The colour can be

set by glColor command at the beginning of a drawing task.

On the other hand, there are many colour palettes in the LCD and screen space. They

include three bytes in whole and eight bits for each red, green, and blue, two bytes in

whole and five bits for red and blue but six bits for green, and others. In this project, the

LCD device adopts three bytes in whole and eight bits for each red, green, and blue. As

the input colours can be in a different format, the I-GL must do the conversions. As a result

of limited precision, especially for the hardware platforms of simple ESs, some converted

values cannot be represented exactly. Different implementations on different platforms

can yield discrepancies in colour tones and shades.

5.4.2.9 Lighting

If lighting is disabled, the current colour is used in the subsequent drawing. If enabled,

lighting can influence the colours of the drawn object. A light can be set ambient or

position. The former produces a far ambient lighting effect; the latter yields a near spotlight

effect. The material reflection can be set as diffuse, specular or shininess. With the

material setting, the lighting effect can be evaluated with lighting equations and yield new

colour values. The produced values of colour components must be clamped to the range

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 102

of [0, 1.0].

The shade mode can also influence the colours of a primitive. If the shade mode is set

to flat shade by the glShadeMode(GL_FLAT) command, all vertices of the primitive are to

have the same colour. If the shade mode is set to smooth shade by the

glShadeMode(GL_SMOOTH) command, the colours of the primitive are produced by

smoothly interpolation.

5.4.2.10 Texture

In the I-GL, texture functions can insert a texture pattern in a spatial region that may be a

section of line or a patch of surface. A texture source can be an image described as an

array of colours in one, two, or three dimensional coordinates.

Take a 2D texture image as an example. The texture image consists of a sequence of

groups of values. Each group represents the set of values of red, green, blue and alpha

components. The first group is the colour value at the lower left corner of the texture image.

Subsequent groups are arranged firstly in width and secondly in height. In a width row, the

next colour with the coordinates of (i, j+1) is located just after its previous one with the

texture coordinates of (i, j). In a height column, the offset between the next colour with the

coordinates of (i+1, j) and its previous one with the texture coordinates of (i, j) is the value

of width of the texture image. The texture coordinates are ranged in [0, 1.0] in default.

Therefore, the coordinates of a texture image have to be normalised in [0, 1.0] before

texturing an object.

The I-GL provides a set of functions to perform the operations of texturing. The

glTexImage2D(tTarget, rv, pMode, tWidth, tHeight, bd, tFormat, tType, tArray) can be

used to load a user 2D image to the texture space that the I-GL allocates to the context of

a drawing task while the glTexImage1D() is used for 1D texturing. In the command,

tTarget shows the dimensions of a texture, for instance, GL_TEXTURE_2D indicating a

2D texture and GL_TEXUTRE_1D representing a 1D texture; rv is an indicator for a

reduction version of a larger texture array; pMode is the style of colour pattern of the

texture image and usually adopts the GL_RGBA style with four values for red, green, blue

and alpha; tWidth and tHeight are the numbers of columns and rows of the source image

array; bd is an indicator for having a one-pixel border around the texture image; tFormat

can specify a monotone of single red (GL_RED), green (GL_GREEN), or blue (GL_BLUE),

or a colour in the order of blue, green and red (GL_BGR); tType is the data type for the

colour values in the texture image array; tArray is the pointer pointed to the location of the

source texture image array. The texture image is stored in a 4 X tWidth X tHeight array.

Since the tWidth and tHeight are the numbers of columns and rows of the source image

array, they must be set to numbers that are powers of two. With a one-pixel border around

the texture image, these numbers have to be the sum of two plus powers of two.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 103

When a texture has to be contiguously mapped several regions on a surface or a line,

the boundaries of different texture copies may not align with the positions of pixel

boundaries. The glTexParameter(tTarget, tAction, tManner) can be used to set operations

that can be done on the texture. In this command, tTarget has the same meaning as that

in the glTexImage; tAction has selectable values to set different operation actions that can

be done on the texture; tManner defines which way is chosen to do the operation action

specified by tAction. For example, given GL_TEXTURE_MAG_FILTER set to tAction and

GL_NEAREST to tManner, the operation action is to enlarge a section of the texture

image to fit a specified coordinate range in the region of a primitive with the nearest

colours. Oppositely, the GL_TEXTURE_MIN_FILTER means to reduce the texture image.

The tManner can get values of GL_NEAREST (for nearest) or GL_LINEAR (for linear), as

mentioned in Section 5.1.2.2.

Sometimes coordinate values in texture space are outside the range from 0 to 1.0. The

glTexParameter can be used to make up for the patterns. In this way, tAction indicates a

coordinate on which the compensatory pattern will be done, such as s coordinate with

GL_TEXTURE_WRAP_S and t with GL_TEXTURE_WRAP_T; tManner has selectable

values, such as GL_REPEAT (replicating with the fractional part of a texture coordinate)

and GL_CLAMP (clamping a texture coordinate to the unit interval).

The glTexEnvi command can control how texture elements are applied to an object.

According to the argument values of glTexEnvi, the I-GL can replace the object colours

with texture values directly (GL_REPLACE), or combine the current object colour

components with texture values (GL_BLEND).

Take a 2D texture as an example. If the texturing is enabled, the texture colour at the

location indicated by its coordinates will replace or blend with the colour at the

corresponding location in the region of the object surface. Texture mapping can apply

more than one specified image to a primitive at a time. In this case the fragment has

multiple sets of texture coordinates (s, t), which are used to index separate images and to

collectively modify the fragment’s RGBA colour. Multiple texture mapping requires more

storage space for different texture images and more computation for processing them than

one texture mapping. For this reason, this project applies just one texture mapping.

When the red, green, blue, and alpha components are computed for a group, they are

assigned to components of a texel as described above. As shown in Figure 5.4, if a

primitive is clipped, colours (or texture coordinates) must be computed at the vertices

introduced or modified by clipping. In this project, texturing is applied to patches of a

surface along with Bézier-spline surface fitting. The texture mapping is done on each

patch of the Bézier-spline surface. The Bézier-spline surface will be discussed later in

Section 5.5.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 104

5.4.2.11 Rasterisation

Rasterisation tackles the conversion of primitive coordinates to a 2D image that may be

displayed on the hardware screen. Each point of the image represents a square (a pixel)

located with window coordinates and has its values of colour and depth. A window on the

screen is a grid with integer 2D coordinates while primitive coordinates may be not integer.

Rasterising a primitive must determine which squares of the window grid are covered by

the primitive and assign values of colour and depth of the primitive to these squares.

As mentioned in Section 5.1.2, in OpenGL, a grid square along with its parameters of

colours, depth, and texture coordinates is called a fragment. In the I-GL, a fragment is

positioned by its lower left corner, which is on integer grid coordinates. Since a fragment’s

centre is offset by half of side length of a square in the right and up directions from its

lower left corner, the centre is on half-integer coordinates. In antialiasing and texturing,

this subtle difference should be considered.

In the I-GL, grid squares may not be square. The non-square grid may make a rendered

image of an object deformed, more flatted or slimmed than its actual situation because of

the accumulation of differences of all the squares. It can also make the antialiasing and

texturing even more difficult to be implemented. Thus, a square fragment is accepted

widely. This project adopts the square fragment.

A point’s size and line’s width can also influence rasterisation. For large round points

and wide line segments, antialiasing must be done by using pixel coverage values to

prevent their images from looking artificial. Computing pixel coverage values is not

effective for polygon antialiasing. In polygon antialiasing, multisampling is used.

Polygon rasterisation is more complicated than those of points and line segments. A

polygon can be a triangle strip, triangle fan, or series of separate triangles. Firstly, for a

polygon, it must be determined whether it is front facing or back facing. The front facing

may be produced by rasterisation, but the back facing may not. Secondly, it is determined

if a fragment centre is inside the polygon or not. The method used to test a fragment

centre is called point sampling. Inside the polygon, the fragment may be produced by

rasterisation. Outside the polygon, it is not yielded. On a polygon boundary edge, it should

be processed carefully to balance two sides of the polygon from left to right in order to

avoid enlarging the polygon image area by counting both sides and making the image

artificial. A fragment on a common side of two polygons must be yielded by only one

polygon rasterisation rather than by both of them.

To produce fragments of a triangle, defining barycentre coordinates for a triangle is

recommended by the OpenGL ES because barycentre coordinates can specify any point

inside or on the boundary of a triangle uniquely. Barycentre coordinates are defined by the

centre of mass with a set of three numbers, a, b, and c, each ranged in [0, 1.0] and with a

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 105

+ b + c = 1.0. The rasterisation results are transferred to the next stage of the fragment

pipeline, as shown in Figure 5.1 and 5.2. The information may be applied to the frame

buffer update.

5.4.2.12 Depth Offset

As introduced in Section 5.1.2, each fragment (or pixel) on a display screen has a unique

element in the depth buffer. In the context initialisation, all the values of elements in depth

buffer are set to the depth value of the scene background. When the depth test is enabled,

any element value in the depth buffer can be changed according to the depth offset that

any fragment of a foreground object is away from the background. Since several objects

may exist in the scene and be scattered near or far, the depth test must be done for each

of the polygons that compose any existing object. Thus, the depth offset in each element

of the depth buffer may be changed by any polygon that is at the most front of the scene.

The more individual objects exist in the scene, the more time the depth test processing

costs. For this reason, to simplify the depth test processing, the depth values for all

fragments produced by a polygon rasterisation can be set to a single depth offset that is

computed for the polygon. In addition, the depth test is done along with updating of colours

in the frame buffer, which will be discussed in the next section.

5.4.2.13 Fragment Operations

After rasterisation, each fragment is sent to the next stage of the fragment pipeline, as

shown in Figure 5.2. The fragment pipeline performs operations on individual fragments

before they finally alter the frame buffer.

These operations include updating the frame buffer based on the comparison between

incoming depth offsets and previously stored ones, masking some fragments based on

the depth test and stencil test, blending of incoming fragment colours with previously

stored ones according to the settings of lighting and texturing, and doing logical operations

on some fragment colours according to logical operation setting. All these operations are

hidden from the application development. What the applications must do is to specify the

operation modes and enable them.

5.4.2.14 Frame Buffer Access and Hardware Controls

Although the operations of the OpenGL ES are done finally on a frame buffer, the frame

buffer is not part of the OpenGL ES because of the device-dependence of the frame buffer

in an implementation.

 A frame buffer is composed of a two-dimensional array of pixels, but the width and

height of the array rely on an implementation. For this reason, the width and height of a

window and the colour format can be set via the I-GL auxiliary API. The conversion from

the OpenGL ES selectable colour formats to the colour format accepted by the device

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 106

screen should be implemented by the I-GL. Thus, each pixel in the frame buffer can be

simply treated as a set of OpenGL ES selectable number of bits by the graphics

applications. The applications do not necessarily realise how different the specification for

a physical frame buffer in one implementation context from that in another implementation

can be. In this I-GL, the width and height are restricted to the resolutions of the LCD

display available on the FPGA-based ES platform, which are 800 and 480 pixels,

respectively.

There are several bitmaps that can help to manage and control the auxiliary data of a

frame buffer in a fast-access way. One bit in a bitmap has a corresponding pixel in the

frame buffer. Each bitmap is designed for a specified regular buffer, such as a front colour,

back colour, depth, or stencil buffer. Whether or not the bitmap is designed relies on

whether or not its regular buffer is available in an implementation of the OpenGL ES. For

example, in an implementation with a single buffer, a bitmap for a back frame buffer is no

use. With a bitmap, the update of a frame buffer can be more efficient. If a bit of the bitmap

is dirty, it means the corresponding pixel has to be upgraded. If not, it can save once of

access to the frame buffer.

Colour values may be read back from a portion of a frame buffer, copied directly from

one portion of the frame buffer to another, or changed with logical operations and blended

with another portion. These transfers can involve in decoding or encoding for processing.

Since there are not OpenGL ES commands to configure a window system and frame

buffer, and initialise the context for the OpenGL ES, it must depend on an auxiliary

interface to do these tasks for the OpenGL ES. The initialisation of an OpenGL ES context

is issued when a window system allocates a window for a drawing task. A frame buffer

configuration and linkage with a context are also done at the same time.

In addition, how to display the frame buffer contents on a device screen is not the task of

the OpenGL ES, either. The OpenGL ES specification does not provide the technique for

how to transform frame buffer values into streaming of video flow of a device screen with

gamma correction. Although the EGL API defines a portable mechanism for creating

OpenGL ES contexts and windows for rendering, there is still a gap that exists outside the

OpenGL ES and in connection with the physical window system. This part heavily relies

on the physical window systems that can be quite different on one hardware platform from

another in the ES world.

Thus, this auxiliary interface is device-dependent and must be implemented in the I-GL.

These tasks are crucial because all the effects of OpenGL ES commands on the frame

buffer are ultimately passed to a window system. The window system bridges the

communication between OpenGL ES commands and the hardware platform. The window

system allocates and initialises the frame buffer resources firstly, finds which section of the

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 107

frame buffer the OpenGL ES may access at a given time, interprets for the OpenGL ES

how the section is manipulated, and makes a final control of drawing a scene on a display

screen, all of which an OpenGL ES application specifies.

5.5 Implementation of Mesa-OpenGL on FPGA-based ES

The OpenGL ES, however, does not include some functions that are used in this project.

To include these functions, the core and some facilities of a Mesa OpenGL are modified

and enhanced for this project. The revision of Mesa-OpenGL has been ported

successfully to the FPGA-based ES platform for this project.

 These facilities provide not only all the general functions including graphics primitive

setting, attribute specifying, geometric transformations, illumination, setting up view and

projection matrices, and clipping and projection transformations, but also some advanced

computations such as describing complex objects with line and polygon approximations,

displaying Bézier curves and surfaces, processing the surface-rendering operations, and

other operations. As OpenGL is designed to be hardware-independent, the input and

output routines are not included in these facilities. A pivotal interface connecting the

OpenGL with the FPGA-based ES has been constructed as well, which make the images

display on the LCD screen and user interaction for the surface editing work well.

 The general functions have been introduced in the last section. The following is about

the additive parts that are unique for this project and different from other OpenGL ES

implementations.

5.5.1 Bézier Curves and Surfaces

In the general OpenGL ES specifications, some functions for more advanced evaluation,

for example, functions that handle Bézier curves and surfaces are removed. For this

project, however, the goal of surface editing requires the evaluation of Bézier curves and

surfaces. In addition, functions of Bézier curves and surfaces are device-dependent. To

see these issues clearly, let us first inspect the process of surface modelling.

 The surface of a complicated 3D object can be divided into a grid of quadrilaterals in two

directions, such as horizontal and vertical directions in a local coordinate system. Each

quadrilateral can be divided further into two triangles. In reverse order, the surface can be

formed with primitives that are triangles by a sequence of operations. Firstly, triangles are

linked together to form triangle strips along one direction, for example horizontal direction.

In the vertical direction, triangle strips can be combined to form the surface. Since each

triangle has three vertices, vertices of all the triangles in each triangle strip can be

arranged in a sequence of vertices.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 108

To draw the surface, we must choose a starting point, for instance the left-bottom corner

of the surface. The drawing process starts from this corner and moves in the right

(horizontal) direction first. In a triangle strip, from left to right, each triangle is drawn one

after another. In each triangle, the drawing is done by scanning each line section from left

to right and line by line from bottom to top.

After one triangle strip is finished, the drawing process moves in the up (vertical)

direction to the next row of the grid of quadrilaterals, that is, the next triangle strip. The

triangle strips are drawn row by row from the bottom to the top. The surface drawing is

done by traversing all the triangles in the grid. It can be seen that to draw the surface of a

complicated 3D object is costly. This may be one of reasons why the OpenGL ES

specifications do not include the Bézier curve and surface construction functions.

In this project, a Bézier surface is formed with a grid of quadrilaterals. The commands of

glMap2f, glMapGrid2f and glEvalMesh2 can be used to call the main functions for Bézier

surface evaluation. The glMap2f(GL_MAP2_VERTEX_3, uMin, uMax, uOffset, uPts, vMin,

vMax, vOffset, vPts, ctrlPtsPointer) is used along with glEnable(GL_MAP2_VERTEX_3).

These two commands make a 3D patch map into the u and v space of Bézier surface. The

u values are limited in the range of [uMin, uMax] and spaced evenly as the uPts number of

values. Similarly, the v values are limited in the range of [vMin, vMax] and spaced evenly

as the vPts number of values. The 3D patch is described with an array of 3D coordinates

of vertices whose location is pointed by ctrlPtsPointer. The number of elements in the

array is the product of uPts and vPts. In the array, the offset between two elements in u

direction is set to uOffset while the offset between two elements in v direction is vOffset.

These are also shown in Figure 5.5.

Figure 5.5 A 3D Patch Mapping into Bézier Surface Space

To map a texture into a patch of Bézier surface, similarly, the

glMap2f(GL_MAP2_TEXTURE_COORD_2, uMin, uMax, uOffset, uPts, vMin, vMax,

P(uMin, vMin) P(uMax, vMin)

P(uMin, vMax)

P(uMax, vMax)

P(uMin, vMin+vOffset)

P(uMin+uOffset, vMin)

Number of elements in the patch array = uPts * vPts = 7 * 6= 42.

u

v

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 109

vOffset, vPts, texPtsPointer) is used along with glEnable(GL_MAP2_

TEXTURE_COORD_2). The texPtsPointer is the pointer that points to the texture

coordinate array.

To generate evenly spaced parameter values, the glMapGrid2f(unum, u1, u2, vnum, v1,

v2) and glEvalMesh2(mode, un1, un2, vn1, vn2) are used. Compared with glMap2f, they

can split the surface into smaller triangle primitives and make the surface fitting more fine.

In these two commands, the unum is the integer number of equal subdivisions over the

range from u1 to u2, the un1 and un2 are the integer parameter range corresponding to u1

and u2, and the vnum, v1, v2, vn1 and vn2 have the similar meanings as their

corresponding u parameters. u and v have the same meanings as the above.

In fact, the function of glEvalMesh2 is not as simple as the above description. Each

surface patch is split into a mesh of more fine sub-patches, and each sub-patch is split

further into two triangles with a common edge that is a diagonal of the sub-patch, as

shown in Figure 5.6. For each triangle whose bottom edge is not parallel to the x axis of

the device screen, it is divided further into two sub-triangles, top triangle and bottom

triangle, by a middle line that passes through the endpoint met by the top edge and bottom

edge, as shown in Figure 5.7.

Figure 5.6 Process of Dividing a Surface Patch into Sub-patches along the u and v Directions with Functions
of glMapGrid2f and glEvalMesh2. The Numbers are the Global Indices of new Vertices of Sub-patches.

There are two situations of scanning these split triangles because of the different

orientations of triangles, as shown in Figure 5.7. In the left image, the starting points of

scanning line by line are changed from one leg to another of the triangle when crossing

the middle line. In the right image, the end points for scanning line by line are moved from

one leg to another of the triangle when crossing the middle line. These two situations must

be considered in programming for the Bézier surface evaluation.

Each sub-triangle is scanned line by line from left to right and from bottom to top.

0

1

2

3

4

5

6

7

8

9 10

11

u

v

P(u1, v1)

P(u2, v1)

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 110

Without removed by the depth test, stencil test and clipping, a scanned line is written into

the frame buffer. Two triangles of each sub-patch are scanned in the order of first the

bottom one and then the top one. All the sub-patches of each surface patch are scanned

row by row, from left to right and from bottom to top. To facilitate the evaluation of each

surface patch, new vertices of sub-patches are indexed globally for the surface patch, as

shown in Figure 5.6. The function of glEvalMesh2 contains inner loops that draw all the

triangles one by one in the order that they are arranged in triangle strips.

Figure 5.7 Process of Dividing a Triangle. A Split Triangle can be Orientated in Two Ways. The Left One is
that the Left Endpoint of Middle Line is a Vertex of the Triangle. The Right One is that the Right Endpoint of

Middle Line is a Vertex of the Triangle.

5.5.2 Window System Interface

To create a graphics display using the OpenGL, a display window must be set up first on

the LCD video screen of the FPGA-base ES board. The display window is a rectangular

area of the screen in which a 2D or 3D image will be displayed. The video screen is a

typical output device. If the user interaction is needed by tasks, such as the surface editing,

the input devices are required as well, such as a keyboard, mouse, and touch screen.

These functions are hardware-dependent, and are not be implemented in the core

facilities of the OpenGL.

For PC environments, such as Microsoft Windows, X Window System of UNIX, and the

Apple Macintosh, there are additional available libraries that have been developed for

OpenGL applications to communicate with the input and output systems. For example, the

WGL is the extension for these tasks to the Microsoft Windows; the GLX is the extension

to the X Window System; the AGL is the extension to the Apple Macintosh. The GLUT

(OpenGL Utility Toolkit) library is an interface of the OpenGL to other device-specific

window systems. With the GLUT, the programs of graphics applications can be

hardware-independent.

For the FPGA embedded development environments, however, there is no available

auxiliary library for these tasks. Therefore, an additional set of functions must be created

to bridge between the FPGA-based ES platform and OpenGL. The output device is the

Bottom Triangle Bottom Triangle

Top Triangle Top Triangle

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 111

LCD display. Since there is neither a keyboard nor a mouse on the FPGA-based ES board,

four simple buttons available on the board are used for user interactions of the exit control

and surface editing in this project, as shown in Figure 3.8.

 The followings are the extension facilities that are implemented for the connection of the

Mesa-OpenGL to the FPGA-based ES platform.

▪ To allocate a window system to a drawing task. It carries out the allocation and

initialisation of a LCD display device and double frame buffers. For user

interactions of surfacing editing, the allocation and initialisation of buttons are

done as well.

▪ To create and initialise a context. It carries out creating a context for the new

drawing task and allocating the memory space to the context. It also does the

general initialisation for building default information for the task.

▪ To make the context as the current state. It accomplishes binding the context to

the LCD display device and double frame buffers.

▪ To build the drivers for the frame buffer reading and writing. It implements a

group of functions for different styles of the frame buffer reading and writing, for

example, reading or writing four-byte colour span, reading or writing three-byte

colour span, reading or writing mono-colour span, reading or writing index-colour

span, reading or writing individual colour pixels, reading or writing individual

mono-colour pixels, and reading or writing individual index-colour pixels. It can do

more styles of reading or writing if needed.

▪ To create a user interaction interface. It completes the registration for the

interrupt signals of four buttons’ being pressed, and the interrupt service routines

for pressing each of four buttons.

▪ To swap between two frame buffers. It swaps the displayed frame buffer with the

written frame buffer in order to smooth the video flow.

▪ To output the frame buffer. It makes the written frame buffer that has been

updated to be displayed on the LCD screen as soon as possible.

 The line segment scanning for drawing triangle strips in Bézier surfaces must make

calls of the function of writing four-byte colour span because the frame data format is 32

bits, as shown in Section 4.7.6.2 and Figure 4.9.

5.5.3 Fixed Point Arithmetic

Another issue is that most of the evaluation of Mesa-OpenGL should be done on float

point numbers, but the float point hardware unit is not available in the FPGA-based ES

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 112

platform. If using the software float point unit, the computation would increase a lot and the

speed would be too slow for surface editing with user interactions. Therefore, the fixed

point system is adopted for most of the graphics evaluation. For this reason, the work to

modify Mesa-OpenGL from the float point system to the fixed point system must be done.

To maintain the accuracy, some mathematical operations have to be created for the fixed

point system, such as multiplication, division, square root, dot production, cross production,

trigonometric functions, and linear interpolation.

With the hybrid way to construct ESs, a significant benefit is that we can have a flexible

control on the data manipulation according to the arithmetic rules. This can support the

fixed point system to have a satisfactory accuracy during the arithmetic operations. In this

fixed point system, the fixed-point one is set to 0x00000800 and the fixed-point half is

0x00000400 in the hexadecimal representation. There are 11 binary bits for the fractional

part. Its accuracy is 000488.020481 ≈ . Since we can use shift operations directly, we can

keep the computation accuracy during computing and avoild the overflow by properly

using the left shift or right shift. For example, if three numbers need to be multiplied, we

can multiply two of them first, right shift their product by 11 binary bits, multiply the shifted

product with the third number, right shift the second product by 11 binary bits, and then

obtain the final product. In the similar way, when doing the division in sequence, we use

the left shift. Therefore, no matter how many times of multiplication or division in sequence,

the accuracy can be kept. This mechanism of keeping the accuracy can support the

surface modelling and editing with the PAMA effectively.

Compared with the float point system, one of benefits of the fixed point system is to

accelerate the graphics rendering because of its low cost in computation. For the small

footprint of ESs, the computation should be simple, feasible and low-cost in memory

space and time, rather than complicated and unfeasible. The fixed point can meet the

needs.

 Applications of this Mesa-OpenGL implementation will be presented in Chapter 8.

5.6 Chapter Summary

In this chapter, the standard of the OpenGL is introduced. A deduced OpenGL that is

specified for ESs, the OpenGL ES, is discussed. Because of different views for the

implementation of the OpenGL or OpenGL ES, three different roles in the OpenGL ES are

discussed in order to obtain a deep insight of OpenGL ES implementations. As the

specification of the OpenGL ES does not include the functions of supporting the 3D

surface editing, Mesa-OpenGL, a special implementation of the OpenGL, is modified and

enhanced for this project.

Chapter 5 Integrating Mesa-OpenGL into FPGA-based ES 113

To implement the novel integration of Mesa-based OpenGL into the FPGA-based ES,

more functions have been developed and implemented. Specifically, Bézier curve and

surface construction functions are added to this implementation in order to support the

PAMA. A dedicated input and output interface has been created for the communication

between the OpenGL and the hardware platform. A fixed point system is created in the

Mesa OpenGL ES implementation for this project. To meet the accuracy requirement of

computation, this fixed point system is equipped with its own functions for multiplication,

division, square root, dot production, cross production, trigonometric functions, and linear

interpolation.

Chapter 6 Parallelism Implementation in FPGA-based ES

We have investigated the traditional computation parallelism in Section 2.4. Since this

project presents a new hybrid way to speed up graphics applications, the traditional

computation parallelism must be expanded to meet the new needs of FPGA-based ESs.

Thus, in this research, parallelism is seen in a broad and new sense, over and above

general parallel computation.

 To make a theoretical connection to traditional parallelism, we should clarify the

classification of traditional parallelism first. Then we can locate expanded parallelism in a

proper position in terms of the traditional parallelism framework.

6.1 Classification of Traditional Parallelism

There are different types of parallelism, including bit-level, instruction-level, data, and task

parallelisms. Classical parallelism is based on processor elements to execute in parallel.

Strict speaking, data parallelism means splitting data into segments and assigning them to

processor elements all of which execute the same instructions. The SIMD and MIMD

discussed in Section 2.4.1 belong to data parallelism. Task parallelism means dividing a

large algorithm into small pieces of tasks and distributing them to different processor

elements to execute concurrently. The operator parallelism introduced in Section 2.4.2

belongs to task parallelism.

Granularity is an important feature and is used to make a comparison among different

parallel systems. The granularity can be relative to two kinds of comparison: processing

elements and processed data. The former is the comparison between the procedures of

each processing element among different parallel systems; the latter is the comparison

between the data sections that are processed by each of processing elements in different

systems. Three granularity levels are usually defined: fine-grained, medium-grained and

coarse-grained. In fine-grained systems, the cost of inter-processor communication is low,

and is comparable to a basic arithmetic operation; conversely, the communication cost of

coarse-grained systems is higher than that for a basic arithmetic operation. If it is

appropriate for an application in a parallel system, one instruction can be the most

Chapter 6 Parallelism Implementation in FPGA-based ES 115

fine-grained in the comparison between procedures of processing elements; one bit can

be the most fine-grained in the comparison between processed data. Thus,

instruction-level parallelism can belong to task parallelism. In this case, the tasks

distributed among processing elements are a small set of instructions. Bit-level parallelism

can be a member of the data parallelism family, which has a number of datasets

processed by each processing element.

Pipelines or cascaded structures can be a variant of task parallelism, and they make a

chain of different hardware modules with certain flexibility to attain a synergy as a whole.

From a system perspective, when applications are placed on graphics processing units

(GPUs) or ESs with FPGAs, co-processors plays a key role (Cevik 2004, Cheng and

Goshtasby 1989, and Sridharan and Priya 2004). Co-processors can be seen as task

parallelism in a broad sense.

From a graphics algorithm and implementation’s perspective, because of the graphics

pipeline goal, the parallel attributes can be naturally deconstructed into the pipeline

accomplishment of GPUs or FPGAs. It works similarly to specified graphics pipeline chips

in the commercial ESs, whose applications can be in mobile phones, video game players,

GPU-based DSP, video distribution, video windowing, and graphics. It can be an

extension or refinement of pipelining.

This project maximises task parallelism where possible and appropriate in more

operations of elementary arithmetic and logic operators (units) than in processor elements.

Since the hardware is involved directly in this research, fine-grained parallelism in

hardware system can be carried out in the FPGA-based ES. The co-processors play an

important role for such parallelism.

6.2 Analysis on Processing Features in Parallelism

An in-depth analysis of parallelism in a system must be done before exploring how to

parallelise the computation and processing in the system. This analysis sees a broader

picture of the parallelism than traditional parallel computation. Thus, two perspectives are

discussed to view parallelism, the application programmer’s view and the hardware

builder’s view, and two styles of parallelism, spatial and temporal.

6.2.1 Two Perspectives: Application’s View and Hardware’s View

The study of Grama et al (Grama et al 2003) proposes to view the parallelism from the two

different perspectives of logical and physical organisation of parallel platforms. Logical

organisation is seen at a high level from an application programmer’s view of the platform

whereas physical organisation is taken at a low level from an actual hardware builder’s

Chapter 6 Parallelism Implementation in FPGA-based ES 116

view of the platform.

From the application programmer’s view, the goal of parallel computing platforms is how

to program in order to gain high performance and portable parallelism. To reach the goal,

two factors of parallel computing are critical: one is the parallel control structure that is the

mechanism of expressing parallel tasks; the other is the communication model that is the

ways for indicating communication between parallel tasks. Instructions, rather than

operations, are concerned more in programming.

From the hardware builder’s perspective, the goal of parallelism is how to realise

parallelism with hardware units at low cost to attain high performance. The operations and

mechanisms needed to make these operations continuous and orderly are the focus of

hardware building. These result in the technologies of streaming, pipelining, and

concurrent processing. In a pipeline or stream, a sequence of operations that can be

implemented by different hardware units performs a series of actions on multiple data

items. A programmer may be able to execute them all with just one instruction. This

parallelism may not be visual for programmers. It does, however, conform to the nature

and rules of physical devices and parallelism. In this project, the video pipeline discussed

in Section 4.7.6.2 functions in this way.

On the other hand, in a given system architecture, imagine that any processing level

could be implemented on hardware specifically designed for it so it can perform its tasks

efficiently. It might lead directly to the design of heterogeneous pipelined processing

structures for complex applications. It should be noted that information density and

operation complexity and flexibility increase from the low level to the high level. But the

amount of data to be computed and computing power decrease from the low level to the

high level. Up to the high level, parallelism technologies become more abstract and

flexible whereas down to the low level, they become more specific and simpler. The

operations on data at the high level are changeable whereas operations on multiply data

sequences at the low level are fixed and repeatable.

In this research, on the top level, surface modelling and editing with PAMA are

applications. The polygons that form the surface can be computed in parallel without

limitation of the surface shape. At the low level, the 32-bit data of each pixel can be

streamed in the video pipeline and finally displayed on the LCD screen that accepts the

stream of 8-bit data for red, green and blue, individually.

Therefore, the traditional computation parallelisms are more likely to be viewed from the

programmer’s perspective even though they have to be supported by designated

hardware platforms. This project mainly adopts the hardware builder’s view.

Chapter 6 Parallelism Implementation in FPGA-based ES 117

6.2.2 Two Styles: Pipelined Parallelism and Partitioned Parallelism

Dewitt and Gray (Dewitt and Gray 1992) state that the dataflow approach to relational

operators in relational database systems offers two styles of parallelism, pipelined and

partitioned parallelism. Pipelined parallelism is the technology of streaming the output of

one operator into the input of another operator when two operators work in series.

Partitioned parallelism is a mechanism for partitioning the input data among multiple

operators, each of which has its own processor and memory and works independently on

part of the data simultaneously along with other operators. Figure 6.1 shows these two

styles. In fact, pipelined parallelism provides a method for the timely processing a stream

of a fixed amount of data in series whereas partitioned parallelism offers a way to

simultaneously process a large amount of data by partitioning them into small portions and

distributing them to multiple operators.

The former provides temporal parallelism. It makes a low-capability processer do a

high-strength task by partitioning the task into small portions and transmitting the portions

in series at high speed. The latter gives spatial parallelism. It uses several low-capability

processers together to complete a high-strength task simultaneously.

Figure 6.1 Pipelined Parallelism and Partitioned Parallelism

This suggests that sometimes a large amount of data in the spatial space, like the data

of a frame buffer of hardware display, can be transformed into a stream of a fixed amount

of data to process in series timely. The latter is the division of the former by time.

In this research, the video pipeline is adopted for this reason. A frame buffer composed

of 800 X 480 pixels is the high-strength task. The video pipeline plays the role of

low-capability processer, which handles timely the data pixel by pixel in order to make the

LCD screen scan line by line in real time. When the surface is edited with the PAMA by

user interactions on the top application, it is necessary to update the relative pixels on the

LCD screen with the data of the changed shape of surface. The temporal parallelism of

Output Data

Input Data

Tasks

Pipelined Parallelism Partitioned Parallelism

Chapter 6 Parallelism Implementation in FPGA-based ES 118

video pipeline supports the shape editing.

6.3 Methodologies of Processing in Parallel

To implement parallelism for an algorithm in a system, the computation decomposition of

the algorithm at the high level has to be done with the decomposition techniques first. After

decomposition, the tasks parsed out by using the techniques have to be mapped onto the

processes that can be executed by the operators available in the system.

 The computation decomposition techniques cannot settle all the issues in parallelism.

For example, in the distribution computation or processing, which is widely used in

database systems, the client computers do their tasks, such as transactions,

independently, and the server end batches up the query tasks from each client into the

database server and processes them in sequence. In this architecture, the tasks of clients

are independent of servers. They cannot be treated simply as the decomposition from an

algorithm.

On the other hand, at the low level, only the computation decompositions are not

enough for parallelism in hardware building. For the hardware building, the

operation-dependent relationships between hardware sub-units can have more influence

on the parallelism in hardware system. Parallelism decomposition thus has to be done

physically and accurately on every bit and every signal at every system clock, rather than

logically and roughly on a group of data in an accepted period of time, as is done at the

high level.

 From the system perspective, co-processors are an alternative option to parallelism.

They can do their tasks independently in parallel while the main processor handles the

main applications. Their tasks are usually a set of physical behaviour or controls rather

than the computation of an algorithm. Therefore, co-processors should be considered in

the parallelism of a hardware system.

6.3.1 Computation Decomposition at High Level

Grama et al (Grama et al 2003) also address a method for parallelism analysis of

computation at the high level. It is called decomposition techniques. It can provide a good

starting point for parallelism analysis in many real computation problems at the high level.

It can be used to analyse and decompose the operations in complex problems, which can

be executed in parallel, by combining one or more decomposition techniques. Though

decomposition techniques may not always bring about the best parallel solution to a

problem, they offer a feasible method for turning a common problem into a parallelism

problem.

Chapter 6 Parallelism Implementation in FPGA-based ES 119

 The basic idea of this method is that a given problem has to be split into computation

sub-steps that can be executed concurrently and independently, and a task-dependency

graph can be defined. This graph can tell which sub-steps in the problem can be executed

concurrently.

6.3.1.1 Four Decomposition Techniques

The decomposition technique has four types: data decomposition, recursive

decomposition, exploratory decomposition, and speculative decomposition.

The data and recursive decomposition techniques can be applied to general problems

whereas the speculative and exploratory decomposition techniques may be used in

specific problems.

6.3.1.2 Data Decomposition

Data decomposition can be used in parallelism decomposition on algorithms that operate

on a large amount of data. It takes place in two steps: data partition and computation task

division. The former is done on the data with their independency; the latter is carried out

according to the results of the former to determine which operations should be done on

each data portion. The operations on one data portion are relatively fixed and similar. Data

decomposition can produce several solutions to a given problem. It has to evaluate among

them on their performance and efficiency before choosing one.

Data decomposition can be done on input, output, and intermediate data of a given

problem. The data decomposition can also conform to the owner-computes rule. It means

that each owner has its own task and data, and all the computation operations of its task

are involved in just its own data. For the input or output data decomposition, the

relationship between owners and tasks in the owner-computes rule can have different

meanings. In input data decomposition, the owner of a portion of input data should be the

owner of the task that performs all the operations on this portion of data and produce

results. In output data decomposition, the owner of a portion of output data should be the

owner of the task that performs all the operations that can produce this portion of output

data.

With intuition, it is most natural to start with output data decomposition because each

individual part of the output of the problem can be processed independently from other

parts of the output. If possible, the operations that are used to yield that part of output

should be independent of those used in processing other parts of the output. Thus, the

computation task division occurs naturally.

For example, it is well-known that matrix operations on large matrixes can be replaced

by the formulation of matrix operations on small block matrixes. The latter can significantly

decrease the cost of computing and the requirement for storage. Another benefit of the

Chapter 6 Parallelism Implementation in FPGA-based ES 120

latter is that the matrix operations on block matrixes can be applied in parallelism

decomposition. This makes matrix operations on large matrixes transform into matrix

operations on several small block matrixes, which can be processed in parallel.

A restriction of output data decomposition is that it can work well only if each output of

the problem can be computed as a function of the input. Sometimes, it is not the case. It is

natural to turn to the input data decomposition to find a solution. If it is found that the input

data of a problem can be divided into independent groups and it induces operations on

each group that can be performed in parallel, this problem is one that can be addressed in

the input data decomposition. The obvious feature of this type of problems is that the

operations of the task performing on each independent group of input data are isolated

from those on other groups of input data. That is, one task is input data independent of

other tasks. For instance, number or alphabet sorting is such a case. Figure 6.2 shows

output and input data decompositions.

Figure 6.2 Output and Input Data Decompositions

Usually, the problems to solve are not ideally suited to output or input data

decomposition. For these problems, the intermediate results may be used for parallelism

decomposition. Intermediate data decomposition suits to problems that need to be

processed in multiple stages and intermediate data to produce the final output. The

intermediate data can be treated as the output data of the operation of an intermediate

stage or the input data of the operation of its subsequent stage. Thus, it can be seen as

the output or input data decomposition of a sub-problem of the original one. It can focus on

looking for the data independence in this sub-problem and carrying out data

decomposition.

In reality, problems do not obviously belong to any single type of output, input or

intermediate data decomposition. We need to look for a solution by combining output,

input and intermediate data decompositions. In some cases, it is possible to gain more

concurrency by using input data decomposition after the output data decomposition. In

other cases, a serial algorithm may not explicitly fit into any type of data decomposition.

Output Data

Input Data

Tasks

Output Data Decomposition Input Data Decomposition

Chapter 6 Parallelism Implementation in FPGA-based ES 121

But when the solution structure of the serial algorithm is reorganised, it may yield the

chance for the intermediate data decomposition. Intermediate data decomposition

requires more exploration and may produce higher parallelism than the output or input

data decomposition.

6.3.1.3 Recursive Decomposition

Recursive decomposition can be expressed as a problem that is first divided into several

independent sub-problems, meaning that there is no data-dependent relationship between

the sub-problems. Each sub-problem is further divided into smaller sub-problems in the

same way as the upper division level. At any division level, the results of all the

sub-problems are combined for the upper level. In the end, all the results at different

division levels are combined at their division levels and finally form the final result at the

top level recursively. Thus, the problem can be treated as a divide-and-conquer problem.

Along with problem division, the solution algorithm to this problem can be split into

sub-sections at different levels as well. At any division level, all the sub-sections can be

executed concurrently. Figure 6.3 shows a task-dependency graph for three division

levels.

Figure 6.3 Task-Dependency Graph for Three Division Levels

6.3.1.4 Exploratory Decomposition

Exploratory decomposition can be used in problems that carry out a search in a space for

solutions. The search process shrinks the space in which the solutions are included.

Therefore, the original search space can be divided into small regions, in each of which

the search process can be done concurrently until the solutions are found.

In some way, exploratory decomposition is similar to data decomposition of number or

alphabet sorting problems. Both of them search in partitioned sets. There are some

differences between them, however. Data decomposition has to be done in the entire set

of acceptable values and the final solution of the problem relies on the results of all the

tasks. Exploratory decomposition can reach the end without waiting for all the tasks to be

finished if all the solutions of the problem are found. Consequently, the way in which the

original search space is partitioned can seriously affect the parallelism performance of

Original
Problem

Sub-problems
at Second Level

Sub-problems
at Third Level

Chapter 6 Parallelism Implementation in FPGA-based ES 122

exploratory decomposition. Poor partitioning means that the parallelism computation may

not be better at speed than its corresponding serial algorithm.

6.3.1.5 Speculative Decomposition

Speculative decomposition can be applied to solving problems that one task has different

branches of operations because its input has different patterns. The input may be the

computation result that is produced by the task just before this one. This dependence

relation means that this task cannot start until the result of the previous task is provided.

Its behaviour is just like the conditional branch statement in high-level languages.

One way to solve this kind of problem is simply to compute all the possible branches of

this task and gain all the possible results without waiting for the last task to yield the

‘condition’ for this task. Therefore, this task can be performed concurrently with other tasks

without waiting. It can speed up the whole processing of the problem. Once the ‘condition’

is produced, the corresponding result of the correct branch of this task can be output to the

next task and the results of other branches become useless and are ignored. It is obvious

that the processing of the incorrect branches is pointless. Thus, speculative

decomposition issues a compromise solution by simply doing the computation of the most

likely conditional branches. It can meet most situations. If one of the non-computing

branches is correct, its relative computation must be made up.

One the basis of the statistics, the overall performance of the speculative decomposition

may not be lower than its counterpart, a serial algorithm. If there are several stages of

speculative decomposition in one problem, their speed-up effect can be enhanced much

more.

If we compare speculative decomposition with exploratory decomposition in detail,

some differences can be discovered.

In speculative decomposition, there is always more work to be done than its

corresponding serial algorithm in order to enlarge the parallelism by pre-performing some

tasks that will not be used in the processing. Speculative decomposition is faster than or

equal to its corresponding serial algorithm. In exploratory decomposition, since the

division of search regions is not unique, it cannot be determined in advance how much the

parallelism can speed up and how much more or less work the parallelism can bring about

than its corresponding serial algorithm.

In speculative decomposition, the possible set of output is known. It is the results for all

the possible conditions. But the input for the correct condition is not known in advance. In

exploratory decomposition, the possible set of input is known, and is the search space.

But the output is unknown in advance, i.e. the portion which will result in the correct output

solution to the search problem.

Chapter 6 Parallelism Implementation in FPGA-based ES 123

6.3.1.6 Mixing Decomposition

The above decomposition techniques can be combined during the application. Often, the

computation for a problem has a structure with multiple stages and these different stages

may have various features that match different decomposition techniques. Thus, it is

necessary to apply different types of decomposition in different stages. Hybrid

decompositions are acceptable.

 This project is a system-level research that includes a hierarchical architecture

composed of a wide variety of problems. Mixed decomposition is adopted.

Since there are many matrix operations in the Mesa-OpenGL for FPGA-based ESs,

input data decomposition is used in dividing a large matrix into small block matrixes. When

an object surface is complicated and has to be represented with a big mesh or grid, its

vertex matrix can be large. Data decomposition in large matrixes can decrease the cost of

computing (especially multiplication) and storage.

As discussed in Section 5.5.1, for surface editing with the PAMA, the edited surface is a

problem at the top level, which can be solved with recursive decomposition. This problem

is first divided into small patches, as shown in Figure 5.5. Each patch is then divided into

two triangles, as shown in Figure 5.6. Each triangle can be processed independently

because its data are independent from those of the others. Thus, the triangles can be

processed in parallel.

6.3.2 Parallelism Mapping at High Level

Decomposition techniques are used to identify the concurrency in a problem and

decompose it into tasks that can be executed in parallel. After decomposition, the tasks

that are parsed out can be mapped onto the processes that can be executed by the

operators available in a specific parallelism system. The mapping includes programming

the tasks of a parallel algorithm or re-programming a serial algorithm with the parallelism

style designated for the specific parallelism system. Except for conforming to the

designated parallelism programming style, the above decomposition can provide a lot of

fundamental parallelism information for the mapping. The behaviour of the tasks and the

interactions between them offers guiding for mapping. The task behaviour can explain

how an operator can process the data portion whereas the interaction behaviour can

indicate how the operator communicates with others.

 A parallelism mapping plot is expected to execute faster than its serial counterpart. Four

features of the tasks significantly affect the parallelism mapping plots.

6.3.2.1 Task Running Time

The amount of time that a task requires to complete is the task running time. As is widely

Chapter 6 Parallelism Implementation in FPGA-based ES 124

known, the inherent serial section that cannot be replaced by parallel tasks places the

most constraint on a parallelism mapping plot. It is ideal for parallelism mapping where all

the tasks in parallel take the same amount of time to complete. That is, all the tasks are

uniform. The parallelism algorithm will be faster than its serial counterpart.

For example, there are several matrix left multiplication in the Mesa-OpenGL for

FPGA-base ES, as shown in Section 5.4.2.7 and Figure 5.4. In these matrix multiplication

problems, the tasks parsed out by the parallelism decomposition can be uniform because

we can determine the sizes of these matrixes in advance.

Since the complexity of parallelism problem can vary, parallelism decomposition cannot

divide every problem into uniform tasks that can be completed in the same amount of time.

For instance, the search problem is a non-uniform one. Some task, like the inherent serial

section, may take more time than other tasks. This kind of task will particularly influence

the effect of the parallelism mapping plot.

For instance, the recursive decomposition of the edited surface, as given in Section

6.3.1.6, cannot be divided into uniform tasks since patches with different shapes are

divided into pairs of different triangles. One triangle can have a different shape and area

from those of others, which can result in different line segments scanned line by line for

each triangle, as shown in Figure 5.7.

6.3.2.2 Knowledge of Task Running Time

If the task running time of a parallelism mapping plot can be estimated, the task running

time is known before the task is executed. This information is useful because it can enable

assessment of how much faster a parallel algorithm can be than a serial algorithm. For

example, in a matrix multiplication problem, the amount of time can be known, derived by

the execution of a small block sub-matrix multiplication and scalar algebraic operations.

This evaluation can help to assess whether or not a parallelism mapping plot is good

enough and whether or not there is room for optimisation.

 In some cases, it cannot be known in advance how long a task takes to execute. For

example, exploratory decomposition for a search problem may mean that we cannot be

sure how many steps to be taken to find the final solution. It depends on every choice

made at each stage. Thus, uncontrolled factors make the task running time unobtainable.

A good judgement cannot be obtained for this problem .

 In this research, it can be known in advance that the running time of the left

multiplication of a 4X1 matrix by a 4X4 matrix can be evaluated. The 4X1 matrix

represents the coordinates of a vertex. The 4X4 matrix can be one of the transformation

matrixes, as shown in Figure 5.4. On the other hand, it cannot be known in advance how

long time it will take to draw a surface. The triangles into which the surface is divided can

Chapter 6 Parallelism Implementation in FPGA-based ES 125

have various shapes and areas.

6.3.2.3 Known Task and Generated Task

There are two types of task. One is the task known before the algorithm starts execution,

called a known task; the other is the task generated during the execution of the algorithm,

referred as a generated task.

 Known tasks usually can be parsed out by data decomposition. Even though recursive

decomposition can generate many sub-tasks by using a task-dependency graph, these

sub-tasks are known before the parallelism algorithm executes. They belong to known

tasks as well.

 Generated tasks may be yielded by decompositions when the parallelism algorithm is

executing. At the high level, decomposition techniques may not lead to an explicit detailed

task-dependency graph that includes the actual tasks. Recursive decomposition may yield

an array of a designated size, but this array can include different number of operators with

different capabilities for different parallelism hardware platforms because a

task-dependency graph may not indicate detailed information about the hardware

platform.

In any case, a generated task should be one that takes a state as its input or its

generation condition. Then the task starts to extend by itself with a predefined number of

stages, such as the scenario in a search problem, and dynamically generates more tasks

to perform the same computation on each of the resulting states until the solution is found

and the algorithm terminates. Whether or not the generated tasks are yielded depends on

the input of an algorithm when being executed.

In this research, the surface drawing is a problem of recursive decomposition. It was

seen in Section 6.3.1.6 that it includes three level tasks, these being the surface on the top,

the patches at the middle level, and the triangles at the lowest level. These tasks are

known tasks. But underling this recursive decomposition are unknown sub-tasks. We

cannot know how many lines should be scanned in each triangle before the surface is

evaluated. The number may change dynamically when the surface is edited with user

interactions.

6.3.2.4 Related Data

In parallelism problems, a large amount of data usually needs to be processed. The

access and movement of a large amount of data can be costly in terms of CPU and

memory space, especially when communications between operators or I/O operations are

required and the overheads become even worse. Therefore, data related to a task and the

size of the data can also affect a parallelism mapping plot.

 Sometimes, tasks have an orderly relationship because of data-dependence. The input

Chapter 6 Parallelism Implementation in FPGA-based ES 126

of the next task is the output of the last one. Whether or not the related data of a task are

available can determine if the task can be performed in parallel with other tasks.

 Related data sizes vary. The size of the input data can be different from that of output as

well. For example, the size of data in a frame buffer is determined by the number of

resolutions and the type of colour pattern. When it is processed with the streaming, the

input of a task for a frame buffer is just one or two pixels. But the output can be a whole

frame buffer. When it is processed by copying a whole image, the input of a task can be

the whole image and its output can be the pixels in a square area of the frame buffer. For a

search problem, the input of a task can be the set of search scopes, and the output of a

task may be just one number in the set.

 In this research, there are various data sizes in the graphics pipeline of OpenGL, as

shown in Figure 5.1. In terms of its geometric pipeline, the vertices of a surface are basic

elements that are processed and are 4X1 matrixes with four coordinates. The coordinates

are fixed-point numbers with 11 bits for the fractional part. Via its fragment pipeline, a

frame buffer with 800 X 480 pixels is stored. Each pixel in the frame buffer is an integral of

32 bits for the RGBA format with four components of red, green, blue and alpha and eight

bits for each component. When the surface is finally displayed on the device screen, the

LCD accepts only the stream of eight bits for each colour element including red, green and

blue. These various data sizes restrict the system parallelism, which results in an orderly

relationship between the geometric and fragment pipelines, and between steps in each

pipeline. Thus, in this project, parallelism decomposition cannot map into the SIMD or

MIMD architecture, but it can map onto the pipelined parallelism discussed in Section

6.2.2 effectively and efficiently. That is why the pipelined parallelism is adopted in the

system of this project.

6.3.3 Expansion on Parallelism Decomposition

In this section, two ways of expanding parallelism decomposition will be discussed. One is

broad expansion, to see a parallel frame in distributed systems with the operators that are

independent computers connected with the particular networking infrastructure, no matter

whether it is wireless or wired, local or internet. The other is extending down to the low

level of the system, the hardware platform, to see how to handle the parallelism among the

hardware units.

 The co-processors usually applied in ESs and FPGA-based systems are also

discussed.

6.3.3.1 Expansion of Parallelism Decomposition to Distributed Systems

Parallelism processing can exist in distributed systems. The distribution computation or

processing is widely used in database systems (Jiang et al 2006, Kallman et al 2008,

Chapter 6 Parallelism Implementation in FPGA-based ES 127

Mohan et al 1986, and Thomson et al 2012). In these systems, each computer does the

same tasks as others but may be located in a remote area. For example, in transaction

processing systems, many clients submit requests for the database service. All the client

computers do transactions in parallel. Each of the client computers executes its

independent transaction separately. Each client machine can be a simple but integral

computer system with its CPU, memory, and operating system.

On the other hand, at the database server end, each query from the clients can be

translated and batched up into finer jobs to be transmitted to the database server to

process. This is just like streaming the tasks from each client into the database server,

which also adopts parallelism technologies.

Heterogeneous distributed systems can provide even more chance of parallelism at the

system level. They can induce not only co-processor architecture but also networking of

various types of computers.

6.3.3.2 Expansion of Parallelism Decomposition to Hardware Building

As mentioned above, at the high level, computation decomposition techniques are based

on the data-dependent relationships between sub-problems. For parallelism problems in

the hardware building, the operation-dependent relationships between sub-units are

another important factor that can influence decomposition. This means that the result of

the previous sub-unit can determine the start of the next sub-unit. For digital circuits, the

result may be a signal transition from high voltage level to low voltage level, or versa, or a

predefined number of system clocks, rather than a meaningful numeral value.

In general, a parallelism hardware platform can be used in one type of problem perfectly

but not in others. Sometimes, the effect of its speedup may not be obvious because the

problems that are processed on the platform may not fit into the operator configuration of

system. Therefore, for a given parallelism hardware platform, applications at the high level

have to think about how to make the best use of the parallelism resources in system.

On the other hand, hardware builders usually face the problems on how to make the

existent hardware units work well together with the parallelism technologies in a flexible

way, rather than in a particular fixed model. The problems to be solved are more detailed,

physical and practical.

In the low level of the system, parallelism decomposition needs to be done physically

and exactly for each bit, each signal, and each system clock, rather than logically and

roughly on a group of data in an accepted period of time. It is a detailed, fine, and accurate

piece of work.

6.3.3.3 Co-processor’s Role in Parallelism Hardware Building

In the typical co-processor architecture, the main applications execute on the main

Chapter 6 Parallelism Implementation in FPGA-based ES 128

processors while the co-processors handle tasks that require a long execution time

(El-Ghazawi et al 2008). Co-processors have designated hardware implementations,

which can be fine-grained architectures: for instance, SIMD, engines, pipelines, or others.

The system can invoke the co-processors to execute the specific tasks.

With ESs and FPGA technologies, it is to be expected that multiply processors exist in a

system, and each of them has a designated assignment in the system in terms of assisting

a host processor to fulfil a number of functions. Some processors may act as apparent or

unobvious co-processors and do their specific tasks automatically without much

intervention of the host processor. When these processors undertake their tasks, the host

processor does not necessarily stop its own task to control and communicate with them.

The host processor may transmit a small set of instructions to a co-processor to launch

it and then do its own main tasks. The co-processor starts doing its pre-designed

assignment automatically. For example, there are co-processors that are designed for

Fast Fourier Transforms (FFTs), two dimensional Discrete Cosine Transforms (2D DCTs),

convolution filters, MPEG-4 main profile visual compositing, image processing, or image

registration (Berekovic et al 2000, Dubois and Mattavelli 2003, Huang et al 2009,

Kalomiros and Lygouras 2007, and MacLean 2005). These co-processors can share the

pre-designated memory space on SRAM or DDR SDRAM banks with the host processor.

The co-processors may send their processing results to the memory, and the host

processor can access them if necessary. Alternatively, the host processor can put the data

in the memory, and a co-processor can use them as input data.

Since co-processors do their tasks without interrupting the host processor’s task, the

co-processors do their tasks in parallel along with the host processor. Even though they

do not share the same large task with the host processor, they have procedures totally

different from those of the host processor, and their structures of hardware units are

different from those of the host processor as well. Co-processors belong to one of the

heterogeneous parallelism architectures.

In this research, the graphics hardware sub-system works independently of the Nios II,

the core processor of the FPGA-based ES. It acts as a co-processor in the ES.

6.4 Parallelism in the Graphics Processing in this Research

For this research, in graphics processing, many operations are applied to individual

objects rather than a 2D range or entire frame buffer. These operations are different and

changeable depending on the objects processed by them. In other words, the proportion

of the data processed by the same group of tasks is small in respect of all the vertices of

the objects in the scene. These operations cannot be done in the same way as the

Chapter 6 Parallelism Implementation in FPGA-based ES 129

processing elements in the SIMD or MIMD architecture in applications of image

processing. Pipelining is a good way to apply to graphics processing because one portion

of vertices can be processed independently from other portions before being written in the

frame buffer. Therefore, much effort is put in pipelining graphics processing in this project.

6.4.1 Pipeline Effect

Before discussing the pipeline effect in graphics processing, let us take a television

assembly line as an example. If the assembly of a television set includes 50 component

units and each of them takes one minute, each television set assembly takes 50 minutes

with a serial assembly line. But if the assembly line is pipelined with ten stages of five units

each, the assembly line can produce a television set every five minutes by overlapping

these ten stages in production. The pipelined assembly line is ten times faster than the

serial one. The pipelining can accelerate the production process.

In a computer system, pipelines are used to improve the instruction execution. The

various function stages, including fetch, schedule, decode, operand fetch, execute, store,

and others, are pipelined and interwoven to be processed at the same time. The reason

behind this is that all the sub-tasks are done in different hardware units of the computer

system, just like different work stations in a factory pipeline. When the pipeline runs for a

while, all the hardware units are filled with their own sub-tasks. The parallel production

style is set up.

After the instructions filled in all stages, different instructions are piped into different

function units and executed each clock cycle in parallel. This can increase the execution

speed and improve the performance of the whole computer system.

Theoretically, the smaller sub-task units are broken down, the bigger the overlaps

between different task units processed at the same time, and the faster the computer

system executes. The largest physical atomic sub-task of instructions is ultimately the

smallest unit that can be divided in the pipeline.

In the LCD controller subsystem of Altera FPGA-based ESs of Cyclone III Version

(Altera 2008b), the display process adopts the pipeline mechanism to match the data

format and timing of frame buffer in the DDR SDRAM memory with the video flow of the

LCD device, as shown in Figure 4.9. The pipelining process makes the video processing

automatic and fast, and achieves high performance. The data format in the frame buffer is

32 bits for each pixel, three bytes for red, green, and blue, respectively, and one byte is

not used. The video flow of the LCD device accepts bytes of red, green and blue, byte by

byte, in sequence.

Chapter 6 Parallelism Implementation in FPGA-based ES 130

6.4.2 Timing and Data Format Matching in Pipelining

Let us give another example. When a tap is turned on to let water run into a container, it

takes some time before the water begins to come out. How much water flows out and how

quickly it does so is dependent on the size of the tap.

In a computer system, the performance of a program running on a computer relies not

only on the speed of the processor but also on the ability of the memory system to transmit

data to the processor. There are two factors that can influence the throughput ability of the

memory system. First, when the processor transfers data from or to the memory, the

memory takes some time before it is ready for reference, that is, the latency of the memory.

Second, the rate at which data can be transferred from or to the memory determines how

fast the data move between the processor and memory. The latter is the bandwidth of the

memory.

The mismatch between the processor and SRAM (or SDRAM) speeds has motivated a

number of architectural innovations in memory system design. As mentioned in Section

2.4.4, one such innovation addresses speed mismatch by placing a smaller and faster

memory between the processor and memory, which is cache.

The differences between the above two examples are that the size of the tap does not

necessarily exactly match that of the container’s mouth, but the size of data bus of the

memory has to be the same as that of the processor. A slow rate of the water flow does

not matter to the container, but a slow transaction speed of the memory system can lower

system performance even though the processor has a high speed.

For hardware devices that do not match, it is obviously unacceptable to control the

devices simply by connecting them together. It is necessary to know how they work first,

then to connect and harness them in the appropriate way.

In the graphics sub-system of Altera FPGA, the data transactions are done between the

frame buffer in the DDR SDRAM memory and the LCD display. At one end of the video

flow is the frame buffer with a 64-bit data bus. At the other end is the data interface of the

LCD display that accepts a flow of three sequential 8-bits. Since it is expected to keep the

video data flow under control, it is necessary to build a precise pipeline that has different

interface sizes at the two ends between the LCD display and the frame buffer, which is

video pipeline. At one end of the pipeline, the size of the bandwidth has to match exactly

the bus of DDR SDRAM memory. At the other end of the pipeline, the size of the

bandwidth fits into the flow for LCD display.

Compared to the Nios II processor, the LCD display is an output device, which is slower

and must be controlled with its abstract registers at its rate and order. The abstract

registers are not common device registers, but function similarly. The flow of data is

Chapter 6 Parallelism Implementation in FPGA-based ES 131

expected to be put into their holders at the appropriate rate.

Figure 6.4 shows the video pipeline applied in Altera LCD controller (Altera 2008b). The

tasks of the video pipeline are to read data from the frame buffer in the DDR SDRAM

memory, transform data format, adjust rhythm, and drive video data signals on the LCD

data bus. For this project, the frame buffer data are generated by the Nios II processor

with the Mesa-OpenGL implementation for the FPGA-based ES platform, discussed in

Chapter 5.

Figure 6.4 Video Pipeline in Altera LCD Controller

 The video pipeline consists of eight parts.

▪ Having been initialised, the SGDMA controller reads pixel colour data from the

frame buffer in the DDR SDRAM memory and passes the data to the remainder

of pipeline without intervention by the Nios II processor. The SGDMA

autonomous operations are controlled by a chain of descriptors. The descriptors

do the data transfer at a speed of 64000 bytes per transfer. In the initialisation,

the descriptors for a whole frame buffer display are prepared. Thus, the SGDMA

controller can process the entire frame buffer and drive the rest of video pipeline

continuously. Since the interface width of the DDR SDRAM memory is 64 bits, it

is more effective for the SGDMA to read 64 bits at a time, which are units for two

pixels.

▪ The Timing Adaptor One is used to make up the difference between the time

length of data latency of the downstream FIFO memory and that of the upstream

SGDMA. The former is one unit of latency; the latter is zero units of latency. They

rely on the FPGA design.

▪ The FIFO memory is an on-chip FIFO memory. It uses the memory resource

inside the FPGA chip. Because of delays and bus contention problems during the

SGDMA’s accessing of the DDR SDRAM memory, the SGDMA may not load the

pixel data in the pipeline timely. On the other hand, the SGDMA usually loads

data more quickly than the rest of video pipeline processes them. The FIFO

FIFO
Memory

Format
Adapter
One

Timing
Adapter
Two

Pixel
Converter

Format
Adapter
Two

SGDMA Timing
Adapter
One

Video
Sync
Generator

Frame
Buffer

LCD Data
Interface

Chapter 6 Parallelism Implementation in FPGA-based ES 132

memory can provide a data buffering for the rest of video pipeline. During the

FPGA design, the FIFO memory is configured to accommodate 128 of 64-bit data

from the upstream Timing Adapter One. One piece of data occupies eight

symbols, eight bits for each symbol. The rate at which the FIFO passes data to

the downstream Timing Adapter Two is one unit of 64 bits per clock cycle. The

FIFO is designed with the Altera Avalon-ST backpressure support, which can

stop the upstream from loading new data in the FIFO when it is full.

▪ The Timing Adapter Two is to make up the difference between the time length of

data latency of the downstream Format Adapter One and that of the upstream

FIFO memory. The former is zero units of latency; the latter is one unit of latency.

They also rely on the FPGA design.

▪ The Format Adapter One is an Altera Avalon-ST data format adapter. It is used to

transform 64-bit data to 32-bit data. Each piece of 64-bit data contains two pixel

colour values as mentioned above. Each pixel RGB value is encoded in 32 bits

by the Mesa-OpenGL implementation for the FPGA-based ES platform.

▪ The Pixel Converter is used to convert 32-bit pixel colour values to the 24-bit LCD

data format. The final bytes in the 32 pixel colour values are intended only for the

bit alignment.

▪ The Format Adapter Two is used to transform a 24-bit pixel RGB value to three

separate 8-bit values because the rest of pipeline requires the red, green, and

blue values of one pixel to be transferred separately in sequence. The Format

Adapter Two accepts one 24-bit pixel data per clock cycle at its input, generates

three 8-bit data, and send out one 8-bit data per clock cycle at its output.

▪ The Video Sync Generator is used to transmit the pixel data to the LCD data

interface. It accepts a stream of pixel data from the upstream of pipeline, which

have been encoded with eight bits of data stream width and three clock cycles

per pixel. The control information that drives the display is added to the input

video data to form the output video data. The Video Sync Generator transmits the

control and colour data signals to the LCD data bus in sequence.

In this context, parallelism constitutes not only the parallel computation but also different

channels and links between different hardware units working collaboratively in parallel in

order to get a synergy of different parts in an entire system.

6.4.3 Co-processor in FPGA-based ES

The video pipeline in Altera FPGA-based ES also works as a co-processor. Since the Nios

II processor does not take much control on the video pipeline after it starts streaming the

Chapter 6 Parallelism Implementation in FPGA-based ES 133

video signals and the video pipeline streams the pixels to the data interface of the LCD

display automatically, the roles of the Nios II and the control driver of video pipeline are a

host processor and co-processor, respectively.

 The Nios II processor and control driver of video pipeline share the frame buffers in one

of two DDR SDRAM memory banks that are on the board of Altera ESDK, Cyclone III

Edition, outside the Cyclone III FPGA chip. They also share the memory space of the

other DDR SDRAM memory bank. Descriptor buffers of the SGDMA in the control driver of

video pipeline are located in the latter’s bank memory space.

At the initialisation stage of the control driver of video pipeline, the system performs a

series of tasks. It allocates the memory space for the frame buffers and descriptor buffers

of the control driver of the video pipeline. It sets the resolution of the frame buffers and the

descriptors for the frame buffers. It clears all the frame buffers. It opens the SGDMA, and

registers the SGDMA callback function. Finally, it starts the control driver of the video

pipeline. Typically, two frame buffers are allocated. One is for the Nios II processor to write

when the other can be displayed by the video pipeline smoothly without interruption. The

former is called the written frame buffer; the latter is the display frame buffer. When the

display frame buffer has been displayed, these two frame buffer swap roles with each

other. The original display frame buffer turns into the current written frame buffer, and the

original written frame buffer is displayed by the video pipeline.

To address the changeable length of frame buffers and descriptor buffers, the memory

is allocated from the heap and accommodates all the required number of frames and

descriptors. All the descriptors form a descriptor chain in order to drive the streaming of

video pipeline automatically.

When setting the descriptor buffers, the system has to calculate the number of bytes

requested by the descriptor storage of a particular display in order to dynamically allocate

the memory and pointers to a new frame at runtime.

During the drawing process for the Mesa-OpenGL applications of surface modelling and

editing with the PAMA, the applications use the commands to call the Mesa-OpenGL

auxiliary functions to make the Nios II processor process the image and write the results

into the written frame buffer. The applications can also make requests for the video

pipeline to display the image on the LCD screen by using a command like glFlush(). Since

the main loop of an application can be executed repeatedly, both actions, i.e. writing one

frame buffer of the Nios II processor and displaying the other frame buffer of the video

pipeline, can be done in parallel.

In addition, FPGAs can have as many hardware kernels for the basic operation as

possible. They are good for applications that use the integer arithmetic, and are

computation-intensive for both spatial and temporal parallelism, albeit without much data

Chapter 6 Parallelism Implementation in FPGA-based ES 134

transfer between the FPGAs and microprocessors. Heavy data transfer may limit the

capability of the spatial and temporal parallelism of FPGAs.

6.5 Chapter Summary

This chapter has categorised traditional parallelism. Even though this project takes a

different view of parallelism, the discussion of traditional parallel computation provides a

standpoint from which to extend it. Features of parallel processing are analysed in detail in

order to achieve an in-depth understanding of parallelism. Two perspectives on

parallelism, the application programmer’s view and hardware builder’s view, and two

styles of parallelism, spatial and temporal, are presented. For methodologies of parallel

processing, four decomposition techniques are studied; then two aspects for parallelism

extension are presented, one for distributed systems for large data processing, and the

other for the low-level hardware building. The role of co-processors in the parallelism is

discussed as well. Finally, the pipeline in the graphics processing and co-processor in this

research are discussed.

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA

From the discussion in Section 2.5, it has been known that the computer graphics is one of

the most active fields in the computer science and technology. It consists of a wide range

of research topics, including computational geometry, display algorithms, object modelling,

rendering, shading, shadowing, solid representation, texture, 2D curve and 3D surface

modelling, and others. 3D surface modelling and editing is one sub-field of the computer

graphics. In this project, a novel algorithm for surface modelling and editing has been

devised and implemented, which is called PAMA (progressive and mixing algorithm). The

detail of PAMA will be discussed in Section 7.2.

In this chapter, in order to maintain the narrative coherence of the main chapters in the

thesis, the discussion of the PAMA is kept concise and it focuses on the applications of the

PAMA on the general-purpose computer platform. The results of the applications of the

PAMA on the FPGA-based ES and the analysis between two group results on the

general-purpose computer and FPGA-based ES will be presented in Chapter 8. The

contents of this chapter include the preliminary, PAMA, surface modelling and editing with

PAMA, different effects of shape parameters, and novel features of PAMA.

The rigorous mathematic exploration of the related theories will be presented in

Appendix. Those include the in-depth discussions on the parametric continuities and

geometric continuities, the geometric properties of Bézier-spline curves and surfaces, the

principle for the construction of control vertices on common boundary curves of

Bézier-spline surfaces with the PAMA, the twists and constructions of corner points of the

patches with the PAMA, and the constructions of inside points with the PAMA, and the

summarisation of the PAMA’s continuities.

Before the discussion of the PAMA, the Beta-spline curves are introduced in Section 7.1

in order to provide a reference to the PAMA because the PAMA is an algorithm for the

modelling and editing of Beta-like-spline surfaces.

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 136

7.1 Preliminary

In Section 2.5, one scheme to connect two cubic Bézier-spline curve sections together

with the 1G and 2G conditions has been introduced. This method is first presented by

Farin (Farin 1982), improved by Boehm (Boehm 1985), and used in Beta-spline curves by

Barsky and DeRose (Barsky and DeRose 1989).

Given two Bézier curves, S(w), []1,0∈w and T(u), []1,0∈u which have the degree of

three with control polygons, [S0, S1, S2, S3] and [T0, T1, T2, T3], respectively. To stitch

them together with constraints of zero-, first-, and second-order geometric continuities, the

following conditions should be matched. For the zero-order geometric continuity (0G), the

beginning of T(u) should be set as the end of S(w),

T0 = S3. (7.1)

For the first-order geometric continuity (1G), the parameter 01 >β is involved. The first

derivative direction at the beginning of T(u) and first derivative direction at the end of S(w)

meet Equation 7.2,

)1()0()1(
1

)1(ST β= (7.2)

where)(3)0(01
)1(TTT −= , and)(3)1(23

)1(SSS −= . From Equations 7.1 and 7.2, T1 can be

deduced from control points, S2 and S3, with Equation 7.3,

)(23131 SSST −+= β . (7.3)

 For the second-order geometric continuity (2G), the parameter 2β is involved. The

second derivative direction at the beginning of T(u) is restricted by the first and second

derivation directions at the end of S(w) as Equation 7.4,

)1()1()0()1(
2

)2(2
1

)2(SST ββ += (7.4)

where)2(6)0(210
)2(TTTT +−= , and)2(6)1(321

)2(SSSS +−= . With Equations 7.1, 7.3, and

7.4, T2 can be deduced from control points, S1, S2, and S3 with Equation 7.5,

321
2

1221
2

11
2

12)12/2()2/22(SSST ++++++−= βββββββ . (7.5)

 Therefore, if Equations 7.1, 7.3, and 7.5 are all met, two curves T(u) and S(w) can be

joined together with the second-order geometrical continuity. As the shape parameters,

01 >β and 2β can be adjusted freely, they provide local control on joined sections of a

curve for interactive shape editing.

 The above is the solution to Beta-spline curve modelling with geometric continuities.

This research has extended it to surface modelling with the freedom of shape changing in

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 137

two parameter directions independently.

7.2 Progressive and Mixing Algorithm, PAMA

The new algorithm is called PAMA. Since the PAMA is created for the surface modelling

and editing with user interactions in real time on the FPGA-based ES platform, there are

two factors that must be considered.

The first factor is that its computation is restrained by the limited computation speed and

storage space, which are 100 MHz of Nios II processor and 2 X 64 MBytes of DDR2

SDRAM, introduced in Chapter 4. The PAMA must be effective and efficient for the

surface modelling and editing via user interactions in real time with a small footprint. Thus,

the PAMA focuses on the constructed surfaces with meshes of less than 64K vertices,

rather than the existent surfaces with larger grids of more than 1M vertices. The latter are

usually taken as benchmarks and processed with the subdivision and deformation

methods in the computer graphics. However, they cannot fit into the surface modelling and

editing with user interactions in real time on the FPGA-based ES platform.

The other factor is that the applications of PAMA include both the modelling and editing

of surfaces. This means that the PAMA can be used to create a surface from scratch with

user interactions and edit it in a flexible way. The users can use the PAMA to create a new

design and then change it in order to accomplish their work creation. For this purpose,

changing the shape of a designed object is a progressive and controllable process. This

progressive and controllable process must be guaranteed with the tools that the PAMA

provides. The tools of PAMA equip users with the controllable methods to manipulate the

shape change of the created object. The measures of the PAMA tools, especially shape

parameters of ,,, 121 vuu βββ and 2uβ , are varied values that represent varied effects of

local shape changes referring to their previous states in the geometric sense, rather than

the accuracy in the arithmetic sense. Thus, in the rest of the discussion in the thesis, the

numbers of values of shape parameters, ,,, 121 vuu βββ and 2uβ , as shown in examples,

have to be treated as their geometric effects.

The PAMA can be used to construct smooth surfaces, open or closed, by stitching

together bi-cubic Bézier-spline patches with local shape controls.

Given four original control points (shown as hollow-circle points in Figure 7.1), PAMA

can be described in three steps,

Step 1 The first blending, to interpolate the first-interpolated points along the u

and v directions with the adjacent original control points, respectively. This step

mixes the adjacent original control points with the Beta constraints in the u and v

directions, respectively. In Figure 7.1, the first-interpolated points, shown as square

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 138

points, sit on the edges formed with original control points.

Step 2 The second blending, to fit the original control points with the

second-interpolated points. This step blends adjacent first-interpolated points by

averaging Beta constraints in the u and v directions. The second-interpolated points,

solid circles shown in Figure 7.1, replace original control points when rendered.

Step 3 The third blending, to interpolate the inside third-interpolated points

inside each patch formed with original control points. This step blends adjacent

first-interpolated points by averaging Beta constraints in the u and v directions. The

third-interpolated points, triangles in Figure 7.1, sit inside the patches formed with

original control points. By now, all the new points are generated to construct one

bi-cubic Bézier-spline patch with local shape control.

Figure 7.1 One Bi-cubic Bézier-Spline Patch Interpolated in the u (Horizontal) and v (Vertical) Directions with
PAMA. Different Types of Points are Represented with Different Shapes in this Figure: Hollow Circles are

Original Control Points; Squares are First-Interpolated Points; Solid Circles are Second-Interpolated Points;
Triangles are Third-Interpolated Points.

 The above described PAMA is just for one patch. The PAMA can be applied to

construct complex surfaces, open or closed, based on original control points that can be

designed initially and adjusted progressively through user interactions. As eight

first-interpolated points and four third-interpolated points are added, each new patch has

twelve more points than the original one. To continue the deduction of mathematic

equations, the patch is put in a global surface and is assumed to be formed with control

polygon, [V(i, j),V(i+1, j),V(i+1, j+1),V(i, j+1)]. The bi-cubic Bézier-spline patches

constructed via the PAMA are shown in Figure 7.2.

In Figure 7.2, as the V(i, j)’s are the original control points, pairs of first-interpolated

points W(3i+1, 3j) and W(3i+2, 3j) along the u direction are formed with the adjacent

original control points, V(i, j) and V(i+1, j). From the algorithm for drawing a cubic 2G

Beta-spline curve proposed by Barsky and DeRose (Barsky and DeRose 1990), the

equation for assessment of W(3i+1, 3j) and W(3i+2, 3j) can be written as Equations 7.6

and 7.7:

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 139

() () ()() () () ()
() () ()jijiji

jiVjijiVjijijiW
uuu

uuu

,1,1,0.1
,1,,,1,10.13,13 2

1

2
1

+⋅+++
+⋅+⋅+⋅++

=+
γβγ
γγβ ; (7.6)

() () () () ()() ()
() () ()jijiji

jiVjijiVjijijiW
uuu

uuu

,1,1,0.1
,1,0.1,,1,13,23 2

1

2
1

+⋅+++
+⋅++⋅+⋅+

=+
γβγ
γγβ (7.7)

where W(l, k) and V(i, j) are vectors with three coordinate values, and ()jiu ,1β , ()jiu ,2β

and ()jiu ,γ are scalars. It is necessary to make variable substitutions,

() ()
() () ()()jijiji

jiji
uuu

u
u ,0.1,0.2,

,0.20.2,
112

1

βββ
βγ

+⋅⋅+
⋅+

= . (7.8)

Figure 7.2 Bi-cubic Bézier-Spline Patches Constructed with PAMA in a Global Surface. The Middle Patch is
Formed with the Original Control Polygon [V(i, j),V(i+1, j),V(i+1, j+1),V(i, j+1)]. After Constructed with PAMA,
the Middle Patch is a Mesh of 16 Interpolated Points, which are, from Bottom to Top and from Left to Right,

[W(3i, 3j),W(3i+1, 3j),W(3i+2, 3j),W(3(i+1), 3j), W(3i, 3j+1),W(3i+1, 3j+1),W(3i+2, 3j+1),W(3(i+1), 3j+1),

W(3i,3j+2),W(3i+1, 3j+2),W(3i+2, 3j+2),W(3(i+1), 3j+2), W(3i, 3(j+1)),W(3i+1, 3(j+1)),W(3i+2, 3(j+1)),

W(3(i+1),3(j+1))]

Pairs of first-interpolated points W(3i, 3j+1) and W(3i, 3j+2) along the v direction are

blended with the adjacent original control points, V(i, j) and V(i, j+1). The equation for

V(i+1, j+1),
W(3(i+1)),3(j+1))

W(3i,3j+1)

W(3i+2,3(j+1))

W(3i+1,3(j+1))

V(i, j+1),
W(3i,3(j+1))

W(3i,3j+2)

V(i, j),
W(3i,3j)

V(i+1, j),
W(3(i+1),3j)

W(3i+1,3j)

W(3i+2,3j)

W(3(i+1),3j+1)

W(3(i+1),3j+2)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 140

evaluation of W(3i, 3j+1) and W(3i, 3j+2) are as Equations 7.9 and 7.10:

() () ()() () () ()
() () ()1,1,,0.1

1,,,1,1,0.113,3 2
1

2
1

+⋅+++
+⋅+⋅+⋅++

=+
jijiji

jiVjijiVjijijiW
vvv

vvv

γβγ
γγβ ; (7.9)

() () () () ()() ()
() () ()1,1,,0.1

1,,0.1,1,1,23,3 2
1

2
1

+⋅+++
+⋅++⋅+⋅+

=+
jijiji

jiVjijiVjijijiW
vvv

vvv

γβγ
γγβ (7.10)

where ()jiv ,1β , ()jiv ,2β and ()jiv ,γ are scalars, and ()jiv ,γ is written as follows

() ()
() () ()()jijiji

jiji
vvv

v
v ,0.1,0.2,

,0.20.2,
112

1

βββ
βγ

+⋅⋅+
⋅+

= .

Second-interpolated points W(3i, 3j) are evaluated by blending adjacent

first-interpolated points W(3i,3(j-1)+2), W(3i,3j+1), W(3(i-1)+2,3j), and W(3i+1,3j) and

averaging Beta constrains along both u and v directions. It is written as follows:

=)3,3(jiW

() () () () () ()
() ()jiji

jiWjiWjijiWjiWji

vu

vu

,,0.2
13,32)1(3,3,3,133,2)1(3,

11

11

ββ
ββ
++

+++−⋅++++−⋅ . (7.11)

The inside third-interpolated points are evaluated by blending adjacent first-interpolated

points and averaging Beta constrains along both u and v directions with a slight variation

to reduce the computational cost. The deduction equations are written as Equations 7.12,

7.13, 7.14, and 7.15,

() ()() () () ()()
() () () +

+⋅+++
++⋅++⋅+⋅++

⋅=++
jijiji

jiWjijiWjijijiW
uuu

uuu

,1,1,0.1
13,13,13,3,1,10.1(

2
1)13,13(2

1

2
1

γβγ
γγβ

() ()() () () ()()
() () ())

1,1,,0.1
13,13,3,131,1,0.1

2
1

2
1

+⋅+++
++⋅++⋅+⋅++

jijiji
jiWjijiWjiji

vvv

vvv

γβγ
γγβ ; (7.12)

=++)23,13(jiW
() ()() () () ()()

() () ()1,11,11,0.1
23,131,23,31,11,10.1(

2
1

2
1

2
1

++⋅+++++
++⋅+++⋅++⋅+++

⋅
jijiji

jiWjijiWjiji

uuu

uuu

γβγ
γγβ

() () () ()() ()()
() () ())

1,1,,0.1
13,13,0.13,131,1,

2
1

2
1

+⋅+++
++⋅+++⋅+⋅+

+
jijiji

jiWjijiWjiji

vvv

vvv

γβγ
γγβ ; (7.13)

() () () ()() ()()
() () ()jijiji

jiWjijiWjijijiW
uuu

uuu

,1,1,0.1
13,13,0.113,3,1,1(

2
1)13,23(2

1

2
1

+⋅+++
++⋅+++⋅+⋅+

⋅=++
γβγ
γγβ

)
)1,1()1,1(),1(0.1

))1(3,23(),1()3,23())1,1()1,1(0.1(
2
1

2
1

++⋅+++++
++⋅+++⋅++⋅+++

+
jijiji

jiWjijiWjiji

vvv

vv

γβγ
γγβ ; (7.14)

and

=++)23,23(jiW

() () () ()() ()()
() () () +

++⋅+++++
++⋅++++⋅++⋅++

⋅
1,11,11,0.1

23,131,0.123,31,11,1(
2
1

2
1

2
1

jijiji
jiWjijiWjiji

uuu

uuu

γβγ
γγβ

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 141

() () () ()() ()()
() () ())

1,11,1,10.1
13,23,10.13,231,11,1

2
1

2
1

++⋅+++++
++⋅++++⋅++⋅++

jijiji
jiWjijiWjiji

vvv

vvv

γβγ
γγβ . (7.15)

In fact, Equations 7.11, 7.12, 7.13, 7.14 and 7.15 are not deduced strictly from the

tensor product of Beta-spline blending functions. The whole tensor product of Beta-spline

blending functions can cause a large computational cost of multiplication applications.

Nonetheless these equations meet the basic demands for parameterisation. The sum of

their basic functions is equal to one. For Equation 7.11, it can be proved by the next

formula,

() ()
() () 1

,,0.2
0.1,0.1,

11

11 =
++

+++
jiji

jiji

vu

vu

ββ
ββ .

By now, all the interpolated points for inside patches have been generated with the

PAMA. For an open surface, points on the boundaries should be constructed with a

slightly adjusted means. Usually, there are three cases for boundary points to be

constructed in a degenerated way since not all the interpolated points in the two

parameter directions are available for their construction. Figure 7.3 shows the case when

the points in just u direction are available for its construction. In this case, the construction

equation of W(3i, 3j) is as follows,

() () ()
()ji

jiWjiWjijiW
u

u

,0.1
3,1332,)1(3,)3,3(

1

1

β
β

+
+++−

= . (7.16)

Figure 7.3 Construction of a Point on the Boundary with Interpolated Points Available in the u Direction.

Figure 7.4 shows the case when the interpolated points in just v direction are available

to support its construction. In this case, the construction equation of W(3i, 3j) is as follows,

() ()() ()
()ji

jiWjiWjijiW
v

v

,0.1
13,321-3,3,)3,3(

1

1

β
β

+
+++

= . (7.17)

W(3i+1,3j)
W(3(i-1)+2,3j) W(3i,3j)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 142

Figure 7.4 Construction of a Point on the Boundary with Interpolated Points Available in the v Direction

If W(3i, 3j) is located on a corner, as shown in Figure 7.5, where the interpolated points

in neither u nor v directions are enough to support its construction. In this case, W(3i, 3j)

retains the value of V(i, j).

Figure 7.5 Construction of a Point on a Corner

7.3 Surface Modelling and Editing with PAMA

When used in the surface modelling and editing, the PAMA can give interactive users the

following tools to shape surfaces. All the shape parameters,),,(),,(),,(211 jijiji uvu βββ and

),(2 jivβ , for each control point, are initialized to 1.0. This initialisation is done in all the

following examples.

▪ Varying Position (VP): The position of a control point, V(i, j), is changed by varying

values of its 3D coordinates. The effect of geometric variation from Figure 7.6(a) to

Figure 7.6(b) is generated with VP.

▪ Varying Beta-u-one (VBU1) and Varying Beta-v-one (VBV1): The former is to

change the),(1 jiuβ parameter of a control point; the latter is to change its

),(1 jivβ parameter. For each control point,),(1 jiuβ and),(1 jivβ can be

W(3i,3j+1)

W(3i,3j)

W(3i,3(j-1)+2)

W(3i,3j)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 143

changed independently. The effect of geometric variation from Figure 7.7(b) to

Figure 7.7(c) is produced with VBV1 by increasing the),(1 jivβ of just the middle

control point at the top of the chair back to 20.0.

▪ Varying Beta-u-two (VBU2) and Varying Beta-v-two (VBV2): The former is to

change the),(2 jiuβ parameter of a control point; the latter is to change its),(2 jivβ

parameter. For each control point,),(2 jiuβ and),(2 jivβ can be also varied

separately. The effect of geometric variation from Figure 7.7(b) to Figure 7.7(d) is

yielded with VBV2 by increasing the),(2 jivβ ’s of three middle control points at the

top of the chair back to 70.0, separately.

▪ Varying Group Position (VGP), Varying Group Beta-u-one (VGBU1), Varying
Group Beta-v-one (VGBV1), Varying Group Beta-u-two (VGBU2) and Varying
Group Beta-v-two (VGBV2): All VP, VBU1, VBV1, VBU2 and VBV2 can be

applied to control points, separately or in groups. Sometimes, manipulations of a

group of control points are uniform. Accordingly, the manipulations can be done in

the same way at the same time. Figures 7.6(c) and 7.6(d) are generated with VGP.

Figure 7.7(b) is created with VGP, and Figure 7.7(d) is reshaped with VGBV2.

▪ Varying Mixing Beta-one (VMB1) and Varying Mixing Beta-two (VMB2): The

former is to vary both VBU1 and VBV1 of a control point simultaneously; the latter

is to change both VBU2 and VBV2 of a control point at the same time. Figures 7.8(c)

and 7.8(d) show the use of VMB2. The differences between VBU1, VBV1 and

VMB1 and between VBU2, VBV2 and VMB2 will be discussed later in Section 7.4.

Figure 7.6 Changing from a Flat Box to a Burning Torch. (a) The Flat Box, Initially Modelled Surface; (b) The

Torch Handle Shaped with VP; (c) Outer Flames Shaped with VGP; (d) Inner Flames Shaped with VGP;
(e) The Burning Torch.

(a)

(b) (c)

(d) (e)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 144

Figure 7.7 Changing from a Flat Board to Chair. (a) The Flat Board, the Initially Modelled Surface; (b) The

Semi-Finished Chair Shaped with VGP; (c) The Deformed Chair Shaped with VBV1 by Increasing βv1(i, j)

of just the Middle Top Control Point on the Chair Back to 20.0; (d) The Completed Chair Reshaped from (b)

with VGBV2 by Increasing βv2(i, j)’s of Three Middle Control Points at the Top of Chair Back to 70.0.

Figure 7.8 Changing of an Imaginary Flying Object. (a) The Imaginary Flying Object; (b) The Flying Object

Reshaped with VBU2 by Increasing only the βu2(i, j) of the Control Point on the Shoulder Marked with a

Red Arrow and with a Notch Left; (c) The Flying Object Reshaped with VMB2 by Increasing βu2(i, j) and

βv2(i, j) of the Same Control Point Together and Without a Notch Left; (d) The Same Fly Object as (c)

Viewed in a Different Angle.

(a)

(b)

(c) (d)

(a)
(b)

(c) (d)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 145

To show the shaping process and geometric effects of different tools carefully, four

more examples are given. Figure 7.9 presents how an ashtray can be created from a flat

board. The flat board is the initial model with necessary control points. The control points

can be determined by users for the design purpose and consist of the points that are

edited with user interactions. Figure 7.9(b) is shaped with VGP from the flat board. Figure

7.9(c) is reshaped from Figure 7.9(b) with VGBU2 or VGBV2 according to which direction,

u or v, the related control points sit along. Among the manipulated control points, eight are

processed with VGBU2 while six processed with VGBV2. Figure 7.9(c) shows the

geometric effect of increasing),(2 jiuβ or),(2 jivβ of these control points to 50.0. Figure

7.9(d) is the completed ashtray viewed from the bottom.

Figure 7.9 Changing from a Flat board to an Ashtray. (a) The Flat Board; (b) The Semi-Finished Ashtray

Created with VGP; (c) The Completed Ashtray Shaped with VGBU2 or VGBV2 by Increasing βu2(i, j) or

βv2(i, j) of Relative Control Points to 50.0; (d) The Completed Ashtray Viewed from the Bottom.

The second example is the construction of a clamshell box, as shown in Figure 7.10.

The construction is started from Figure 7.10(a) by pulling upwards control points along

three sides of a flat board with VGP. Figure 7.10(b) is generated by pulling upwards

control points on the fourth side of the flat board with VGP. By continuing pulling these

control points but in the horizontal direction with VGP, a rough clamshell box is shaped, as

shown in Figure 7.10(c). Then control points along the connection side between the box

body and lid are pulled to their positions with VGP. The connection side is curved, seen in

Figure 7.10(d). Finally, the connection side is straightened with VGBU2. Figure 7.10(e)

shows the geometric effect of increasing),(2 jiuβ ’s of five middle control points to 50.0.

Figure 7.10(f) shows the completed clamshell box viewed from the side.

(a)
(b)

(c) (d)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 146

Figure 7.10 Shaping of a Clamshell Box. (a) A Semi-Finished Box Created with the VGP Operation from a
Flat Board; (b) A Semi-Finished Box with a Half Lid Reshaped with VGP; (c) A Semi-Finished Box with a Lid
Reshaped with VGP; (d) A Semi-Finished Box with a Full Lid Reshaped with VGP; (e) A Finished Clamshell

Box Completed with the VGBU2 Operation by Increasing βu2(i, j)’s of Five Middle Control Points on the
Connection Side Between the Box and Lid to 50.0; (f) The Clamshell Box Viewed from one Side.

The third example is a series of changes from a flat board to a table, a chair and finally a

double chair, as shown in Figure 7.11. It begins with a flat board. The flat board is turned

into a table with VGP by pulling downwards four legs in Figure 7.11(a). The table is

changed into a semi-finished chair with VGP by pulling upwards the chair back in Figure

7.11(b). The chair is completed with VGBV2. Figure 7.11(c) shows the geometric effect of

increasing the),(2 jivβ ’s of three middle control points at the top of the chair back to 50.0.

Finally, the completed chair becomes a double chair with VBV1. Figure 7.11(d) shows the

geometric effect of increasing),(1 jivβ of just the middle control point at the top of the chair

back to 4.0, which is the double chair.

The fourth example is the construction of a loose bud, given in Figure 7.12. The process

starts from Figure 7.12(a) that is a disc with necessary control points. Figure 7.12(b) is

generated with VGP to pull out the relative control points to the proper positions. Figure

7.12(c) is reshaped with VBU1 (or VBV1) separately. It shows the geometric effect of

increasing),(1 jiuβ ’s (or),(1 jivβ ’s) of the related control points to 11.0. Figure 7.12(d) is

generated from Figure 7.12(b) with VMB1. The geometric effect is yielded by increasing

simultaneously),(1 jiuβ ’s and),(1 jivβ ’s of the related control points to 11.0. Figure

7.12(e) is the completed loose bud viewed from the side.

(a)
(b)

(c)

(d)

(e) (f)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 147

Figure 7.11 A Series of Changing from a Flat Board to a Table, a Chair and Finally a Double Chair. (a) A
Table Created with VGP from a Flat Board; (b) The Semi-Finished Chair Reshaped with VGP from the Table;

(c) A Completed Chair Reshaped with VGBV2 by Increasing βv2(i, j)’s of Three Middle Control Points at the

Top of the Chair Back to 50.0; (d) A Completed Double Chair Reshaped with VBV1 by Increasing βv1(i, j) of

the Middle Control Point at the Top of the Chair Back to 4.0.

Figure 7.12 Construction of a Loose Bud. (a) A Disc, the Initially Modelled Surface; (b) The Image Reshaped

with VGP; (c) Image Reshaped from (b) with VBU1 (or VBV1) by Increasing βu1(i, j)’s (or βv1(i, j)’s) of

Relative Control Points to 11.0; (d) Image Reshaped from (b) with VMB1 by Increasing Simultaneously

βu1(i, j)’s and βv1(i, j)’s of Relative Control Points to 11.0; (e) Image of the Completed Loose Bud Viewed

from a Different Angle.

(a)
(b)

(c) (d)

(a)

(b) (c)

(d) (e)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 148

7.4 Different Effects of Shape Parameters

To clearly describe different effects of shape parameters, further operations of the tools

introduced above are discussed in detail.

7.4.1 Skewing in u or v Directions

Skewing in the u and v directions can be done with VBU1 and VBV1, respectively.

Increasing),(1 jiuβ makes the skewing depart from the control point in the u direction

while decreasing),(1 jiuβ has skewing approach to the control point in the u direction.

Increasing and decreasing),(1 jivβ have the same effect in the v direction. Attention

must be paid to keep 0),(1 >jiuβ and 0),(1 >jivβ .

In Figures 7.13 and 7.14, images are different results reshaped from Figure 7.13(a). All

of them are manipulated on the middle control point at the top of the chair back. Figures

7.13(b) and 7.13(d) show the geometric effect of increasing),(1 jiuβ to 6.0, viewed from

the front and back, respectively. Figures 7.13(c) and 7.13(e) show the geometric effect of

the result of decreasing),(1 jiuβ to 0.1, seen from the front and back, respectively.

Figure 7.13 Chair Images Reshaped with VBU1 on the Middle Control Point at the Top of Chair Back. (a) The

Image Reshaped in the Similar Way as Figure 7.7(b); (b) Image Reshaped by Increasing βu1(i, j) of the

Control Point to 6.0 with VBU1; (c) Image Reshaped by Decreasing βu1(i, j) to 0.1 with VBU1; (d) The

Same Chair Image as (b) but Viewed from the Back; (e) The Same Chair Image as (c) but Viewed from the
Back.

Figure 7.14(a) and 7.14(c) show the geometric effect of the same result of increasing

),(1 jivβ to 6.0, viewed from the front and back, respectively. Figures 7.14(b) and 7.14(d)

(a)

(b) (c)

(d) (e)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 149

show the geometric effect of the result of decreasing),(1 jivβ to 0.1, seen from the front

and back, respectively.

Figure 7.14 Chair Images Reshaped from Figure 7.13(a) with VBV1 on the Middle Control Point at the Top of

the Chair Back. (a) The Image Reshaped by Increasing βv1(i, j) of the Control Point to 6.0 with VBV1;

(b) Image Reshaped by Decreasing βv1(i, j) to 0.1 with VBV1; (c) The Same Chair Image as (a) but

Viewed from the Back; (d) The Same Chair Image as (b) but Viewed from the Back.

7.4.2 Tenseness in u or v Directions

The tenseness pulling towards a control point in the u direction is done with VBU2 by

increasing its),(2 jiuβ . The tenseness towards the control point in the v direction is done

by using VBV2 by increasing its),(2 jivβ . The smaller the value of the),(2 jiuβ or

),(2 jivβ is, the more obvious the tenseness change is.

Figures 7.15(a)-(d) show the various geometric effects with different values of),(2 jiuβ .

Values of),(2 jiuβ of the five control points on the connection side between the box and

lid are 1.0, 6.0, 12.0, and 50.0, respectively for Figures 7.15(a), (b), (c) and (d). Figures

7.15(b)-(d) are done with VGBU2 while the box construction is shown in Figure 7.10.

7.4.3 Skewing in Both u and v Directions

Increasing or decreasing),(1 jiuβ and),(1 jivβ together with VMB1 can make the

skewing depart from or approach to a control point in both u and v directions

simultaneously.

(a) (b)

(c) (d)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 150

Figure 7.15 Smoothing the Connection Side of a Clamshell Box by Using VGBU2 with Differentβu2(i, j)

Values. (a) The Image for Five Middle Control Points on Connection Side withβu2(i, j) Value of 1.0;

(b) Image withβu2(i, j) Value of 6.0; (c) Image withβu2(i, j) Value of 12.0; (d) Image withβu2(i, j) Value of

50.0; (e) Image for Completed Clamshell Box Viewed from a Different Angle.

Sometimes, it is necessary to balance the skewing in both u and v directions. Figure

7.16(b) is reshaped from Figure 7.16(a) with just VBU1 (or just VBV1). It shows the

geometric effect of increasing),(1 jiuβ ’s (or),(1 jivβ ’s) of the related control points to 6.0.

Figure 7.16(c) is reshaped from Figure 7.16(a) with VMB1. It also shows the geometric

effect of increasing both),(1 jiuβ ’s and),(1 jivβ ’s of the related control points to 6.0. It

can be seen that varying),(1 jiuβ and),(1 jivβ together makes petals, each of which is

one Bézier-spline patch, more crowded together than varying only),(1 jiuβ (or),(1 jivβ)

does.

7.4.4 Tenseness in Both u and v Directions

Increasing or decreasing),(2 jiuβ and),(2 jivβ together with VMB2 can have the

tenseness pulling towards or pushing away from a control point in both u and v directions

simultaneously.

In some situations, it is not enough to use only VBU2 or VBV2 on a control point. Figure

7.17(b) (or Figure 7.8(b)) is reshaped with VBU2 by increasing only),(2 jiuβ of the

control point on the shoulder marked with a red arrow of Figure 7.17(a) (or Figure 7.8(a)).

There is a notch left, which is marked with the red arrow in Figure 7.17(b). But when VMB2

is used, the surface patch is pulled towards the control point totally without any notch left,

as shown in Figure 7.17(c) (or Figure 7.8(c)).

(a) (b) (c)

(d) (e)

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 151

Figure 7.16 Difference between Geometric Effects of VMB1 and VBU1 (or VBV1). (a) The Loose Bud Shaped

with VGP; (b) Image Reshaped from (a) with VBU1 (or VBV1) by Increasing onlyβu1(i, j)’s (or

βv1(i, j)’s) of Relative Control Points to 6.0; (c) Image Reshaped from (a) with VMB1 by Increasing Both

βu1(i, j)’s andβv1(i, j)’s of Relative Control Points to 6.0.

Figure 7.17 Difference Between Geometric Effects of VMB2 and VBU2. (a) The Imaginary Flying Object;

(b) Image Reshaped from (a) with VBU2 by Increasing onlyβu2(i, j) of the Control Point on the Shoulder

Marked with a Red Arrow and with a Notch Left; (c) Image Reshaped from (a) with VMB2 by Increasing both

βu2(i, j) andβv2(i, j) of the Control Points without any Notch Left.

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 152

7.5 Novel Features of PAMA

The PAMA is a novel algorithm which can be applied, independently, in CAD, CAGD,

computer-aided art creation, and other related fields for surface modelling and editing.

With the PAMA, shape parameters are added to construct surfaces with control points.

The surface shapes can be modified by changing the shape parameters for the design

purpose. PAMA tools are flexible and suitable for practical applications. The features are

outlined below:

▪ Values of position and shape parameters of each control point are controlled

through user interactions. For instance, the user can decide interactively the length

of the torch handle in Figures 7.6 and 7.18. The end points of torch handles in

Figures 7.18 (b) – (g) are moved in the same direction but by different lengths of 4,

8, 16, 36, 41, and 60 units, respectively, from the initial position shown in Figure

7.18(a). In Figures 7.15 and 7.19, the user can decide the smoothness extent of the

connection side of the clamshell box in two parameter directions, u and v. In the u

direction, the curve is straightened smoothly while in the v direction, the sharp fold

is held. Figure 7.19(a) shows the shape fold in the v direction on the connection

side. Figures 7.19(b) – (k) show the different smoothness extents of the connection

side in the u direction, with different),(2 jiuβ values of 0.0, 2.0, 4.0, 6.0, 8.0, 10.0,

14.0, 24.0, 34.0, and 50.0, respectively.

Figure 7.18 Images to Show the Control on the Position of the Control Point at the End of the Torch Handle.
(a) The Initial Position; (b) – (g) Positions Moved by 4, 8, 16, 36, 41, and 60 Units, Respectively, in the Same

Direction.

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 153

Figure 7.19 Images to Show the Control on the Different Smoothness Extents of the Connection Side of the
Clamshell Box. (a) The Shape Fold in the v Direction of the Connection Side; (b) – (k) The Curves in the u

Direction of the Connection Sides Reshaped with Different βu2(i, j) Values of 0.0, 2.0, 4.0, 6.0, 8.0, 10.0,

14.0, 24.0, 34.0, and 50.0, respectively.

▪ The user can adjust the object shape at any time by interweaving different tools.

The sequence of processing steps does not affect the final result if the sum of

application of each used tool is kept uniform in different processes. For example,

Figures 7.20 and 7.21 show two different processing chains to create an ashtray

with the same shape, respectively. Figure 7.20 is the chain that the applications of

VGP are kept first until the four sides are formed, and then the applications of

VGBU2 or VGBV2 are done continually until the shape of ashtray is accomplished.

Figure 7.21 is a different chain from Figure 7.20. The chain in Figure 7.21 is that the

applications of VGP and VGBU2 (or VGBV2) are done four times in turn. The

condition that the same shape of ashtray can be attained in both ways, as shown in

Figures 7.20(h) and 7.21(h), is that the two ways have the same total amounts of

VGP, VGBV2, and VGBV2 applications, respectively, for each of control points.

That is, the sum of varied amount of VGP applications for each of control points of

all the steps of Figure 7.20 is equal to the sum of VGP applications to the same

control point of all the steps of Figure 7.21. The sum of amount of VGBU2 (or

VGBV2) applications for each of control points of all the steps in Figure 7.20 are

equal to one of VGBU2 (or VGBV2) applications for the same point of all the steps

in Figure 7.21.

▪ PAMA tools can help the user accumulate experience and inspiration in the

modelling process. The user can edit the model to satisfy the artistic intuition or

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 154

creative purpose.

▪ The control points can be defined by users. It provides them the freedom to

manipulate the work at the very beginning of designs.

▪ The PAMA can be applied in modelling and editing of open and closed surfaces. In

the examples, Figures 7.7, 7.9 and 7.10 are open surfaces while Figures 7.6, 7.8,

and 7.12 are closed surfaces.

Figure 7.20 A Processing Chain to Create an Ashtray. (a) – (d) Images Reshaped with a List of VGPs;

(e) – (h) Images Reshaped from (d) with a List of VGBU2s or VGBV2s. (h) The Completed Ashtray.

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 155

Figure 7.21 A Different Processing Chain from Figure 7.20 to Create an Ashtray with the Same Shape as

Figure 7.20(h). (a) Image Shaped with VGP; (b) Image Reshaped from (a) with VGBU2 or VGBV2; (c) Image
Reshaped from (b) with VGP; (d) Image Reshaped from (c) with VGBU2 or VGBV2; (e) Image Reshaped
from (d) with VGP; (f) Image Reshaped from (e) with VGBU2 or VGBV2; (g) Image Reshaped from (f) with

VGP; (h) The Completed Ashtray Reshaped from (g) with VGBU2 or VGBV2.

7.6 Chapter Summary

In this chapter, the novel algorithm for surface modelling and editing, PAMA, is presented.

Before the presentation of PAMA, the preliminary is introduced. The PAMA algorithm and

surface modelling and editing with PAMA are introduced. Different effects of shape

parameters are also discussed. Finally, the novel features of PAMA are outlined.

The applications of the PAMA in this chapter are programmed and verified on a general

Chapter 7 Novel Algorithm for Surface Modelling and Editing, PAMA 156

purpose computer environment of the SAMAUNG’s R480 laptop computer. The PAMA is

also ported to the FPGA-based ES that is discussed in the previous chapters. Chapter 8

will detail the results of the PAMA applications on the FPGA-based ES.

Chapter 8 Results of Surface Modelling and Editing with PAMA on

FPGA-based ES

Applications on surface modelling and editing with the PAMA on the general-purpose

computer environment have been presented in Chapter 7. In this chapter, results of

surface modelling and editing with the PAMA on the FPGA-based ES are presented and

analysed.

First, the verification methodology is introduced. Results of the PAMA application on the

FPGA-based ES are given along with the corresponding results on a laptop computer.

Then, graphics applications on the FPGA-base ES are analysed and summarised in order

of system layers from the hardware system up to applications.

8.1 Verification Methodology

Since the solution to graphics applications on the FPGA-based ES presented in this

research is a hybrid one including software and hardware, it is necessary to analyse

applications of surface modelling and editing with the PAMA in the FPGA-based ES from a

system perspective. Each layer in this system from the hardware system to the

applications makes its contribution and has its effect on the results. Thus, the analysis on

results must take all of them into consideration.

In the next section, two groups of results are presented and compared. One group are

the results of surface modelling and editing with the PAMA on the FPGA-based ES. The

other group are the results of surface modelling and editing with the PAMA on the

general-purpose computer – a laptop computer. The latter are generated on a platform

where the hardware system, operating system, and OpenGL implementation have been

verified and wide-accepted before this project and will be detailed in Section 8.3. The

PAMA is mathematically proved in Appendix. The comparison between the above two

groups of results can show the effect of surface modelling and editing with the PAMA on

the FPGA-based ES. Furthermore, the FPGA-based ES and its parallel processing are

verified when the PAMA is applied to the FPGA-based ES platform.

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 158

8.2 Results of PAMA Applications in the FPGA-based ES

With the Mesa-OpenGL implementation, surface modelling and editing with PAMA have

been done in parallel and verified on the FPGA-based ES.

To make comparisons easy and equitable, the following results on the FPGA-based ES

are presented along with the corresponding results on the laptop computer. Two groups of

images are taken with the same resolution, 800 X 480 pixels, and the same black

background when programs of PAMA are executed. The resolution for the result images of

FPGA-based ES is the one of the LCD (shown on the right in Figure 3.4 and in Figure 8.1)

while the resolution for the result images in the laptop computer is that of the window for

the graphics applications running on the laptop.

Since the HAL and operating system of FPGA-base ES do not include the facility of print

screen that operating systems in general-purpose computers usually provide, the images

displayed on the LCD on the FPGA-based ES cannot be printed out with the print screen

facility when programs of PAMA run in the ES. The images for results of the laptop

computer are obtained with the print screen facility of Microsoft Windows. In addition, the

figures for results on the FPGA-based ES are pictures taken of the LCD with a digital

camera of Sony Cyber-shot DSC-P73 when programs of surface modelling and editing are

executed in the FPGA-based ES. Figure 8.1 is a whole picture of table taken of the LCD.

Other figures of the FPGA-base ES in the rest of this chapter are main parts cut from the

original pictures of the LCD in order to facilitate the comparison. Therefore, this technique

distinction between these two groups of figures exists.

Figure 8.1 A Picture of Table Taken of the LCD when Programs of Surface Modelling and Editing with PAMA
Run in the FPGA-based ES.

Figures 8.2(a)-(d) show the changing process of the table and chair on the FPGA-based

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 159

ES. These figures are main parts of pictures taken of the LCD. Figures 8.3(a)-(d) show the

corresponding results of changing process of the table and chair that are done on the

laptop computer, as shown in Figure 7.11. They are printed out with the print screen

facility of Microsoft Windows.

 (a) (b)

 (c) (d)

Figure 8.2 A Series of Changing from a Flat Board to a Table and Chair with PAMA on the FPGA-based ES.
(a) The Flat Board; (b) The Table; (c) The Semi-finished Chair; (d) The Completed Chair.

 (a) (b)

 (c) (d)

Figure 8.3 A Series of Changing from a Flat Board to a Table and Chair with PAMA on the Laptop Computer.
(a) The Flat Board; (b) The Table; (c) The Semi-finished Chair; (d) The Completed Chair.

Figures 8.4(a)-(d) show the changing process of a clamshell box on the FPGA-based

ES. These figures are main parts of pictures taken by the digital camera. Figures 8.5(a)-(d)

show the corresponding results on the laptop computer, which are also shown in Figure

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 160

7.10. The latter are printed out with the print screen facility of Microsoft Windows.

 (a) (b)

 (c) (d)

Figure 8.4 A Series of Changing from a Flat Board to a Clamshell Box with PAMA on the FPGA-based ES.
(a) The Flat Board; (b) The Semi-finished Box with a Half Lid; (c) The Semi-finished Box with a Full Lid;

(d) The Completed Clamshell Box.

 (a) (b)

 (c) (d)
Figure 8.5 A Series of Changing from a Flat Board to a Clamshell Box with PAMA on the Laptop Computer.

(a) The Flat Board; (b) The Semi-finished Box with a Half Lid; (c) The Semi-finished Box with a Full Lid;
(d) The Completed Clamshell Box.

Figures 8.6(a)-(d) show the changing process of a flower bud on the FPGA-based ES.

These figures are main parts of pictures taken with the digital camera. Figures 8.7(a)-(d)

show the corresponding results on the laptop computer, which are also shown in Figure

7.12. The latter are printed out with the print screen facility of Microsoft Windows.

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 161

 (a) (b)

 (c) (d)

Figure 8.6 A Series of Changing from a Flat Box to a Flower Bud with PAMA on the FPGA-based ES.
(a) The Flat Box; (b) The Semi-finished Flower Bud; (c) The Semi-finished Flower Bud Viewed in a Different

Angle; (d) The Completed Flower Bud.

 (a) (b)

 (c) (d)
Figure 8.7 A Series of Changing from a Flat Box to a Flower Bud with PAMA on the Laptop Computer.

(a) The Flat Box; (b) The Semi-finished Flower Bud; (c) The Semi-finished Flower Bud Viewed in a Different
Angle; (d) The Completed Flower Bud.

8.3 Discussions of Graphics Applications on FPGA-based ES

As graphics applications, the programs of surface modelling and editing with the PAMA

are used to verify the entire hybrid ES – FPGA-based ES. As shown in Figure 1.1, this

hybrid ES, from the top down to the bottom, includes the algorithm for surface modelling

and editing (PAMA), Mesa-OpenGL implementation, combination of Mesa-OpenGL to

HAL, and FPGA-based embedded hardware system. Figures 8.1, 8.2, 8.4, and 8.6 are the

test results on this platform.

 In the corresponding environment of general-purpose computer, the hardware system is

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 162

the SAMAUNG’s R480 laptop computer. The operating system is Microsoft Windows 7.

The OpenGL implementation is the one for Microsoft Windows. All of them are verified and

accepted by many researches in academic and industry societies before this project.

Figures 8.3, 8.5, and 8.7 are the results generated on this platform.

Compared with the images printed out on the laptop computer, as shown in Figures 8.3,

8.5 and 8.7, Figures 8.2, 8.4 and 8.6 (of FPGA-based ES) seem to have poorer

performance. However, a comparison of technical specifications between the two

environments in Section 8.3.1 will indicate that the FPGA-based ES achieves the graphics

application goal by balancing the system performance with the computation, storage, and

power costs.

The user interaction for surface editing has been carried out with four on-board buttons

(as shown in Figure 3.8). By pressing buttons, the surface shape can be changed.

The following discussions of graphics applications on the FPGA-based ES are

summarised in order of system layers from the hardware system up to applications of the

PAMA.

8.3.1 Distinction between Two Hardware Systems

Table 8.1 presents a comparison of technical specifications between the two

environments. It can show the very limited resources, memory and processor speed that

the FPGA-based ES has, compared with the laptop computer.

Table 8.1 Comparisons between Environments of Laptop Computer and FPGA-based ES

 Laptop Computer FPGA-based ES

Microprocessor Intel Core i5 CPU M 460 Altera Nios II

Microprocessor Speed 2.53 GHz 100 MHz

Main Memory Space 3.36 GB (4 GB Available) 2 X 64 MB

Display Adapter ATI Mobility Radeon HD

5470 GPU

None

Display Memory 2 GB None

Maximum Resolution (pixels) 2560 X 1600 800 X 480

In Table 8.1, the processor of FPGA-based ES is the Altrea Nios II at the speed of 100

MHz whereas the microprocessor of the laptop computer is the Intel Core i5 CPU M 460 at

the speed of 2.53 GHz. The main memory space in the FPGA-based ES is 2 X 64 MBytes

while that in the laptop computer is 3.36 GBytes. There is a display adapter of ATI Mobility

Radeon HD 5470 GPU in the laptop computer while there is not in the FPGA-based ES.

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 163

There is a memory of 2 GB specified for display in the laptop computer, but there is not in

the FPGA-based ES. The maximum resolution of screen on the laptop computer is 2560 X

1600 pixels while that of the LCD in the FPGA-based ES is 800 X 480 pixels.

8.3.2 Difference between Two OpenGL Implementations

In two environments of the general-purpose computer and FPGA-based ES, except for the

distinctions between their hardware systems and APIs, there is another difference

between them. It is the difference between their OpenGL implementations.

In the general-purpose computer environment, the OpenGL implementation is the

OpenGL for Microsoft Windows Operating System, which has been widely accepted in

Microsoft Windows and popularly applied to the computer graphics.

 In the FPGA-based ES, the Mesa-OpenGL implementation for this platform is first

applied after its development. Thus, the applications of surface modelling and editing with

the PAMA to the general-purpose computer environment are references for the verification

of the entire FPGA-based ES for the surface modelling and editing with the PAMA. From

the perspective of system architecture, the former provide references for not only the

PAMA but also the Mesa-OpenGL implementation on the FPGA-based ES platform.

 For the Mesa-OpenGL implementation, there are three issues that need to be analysed

in detail. They are the texture mapping, fixed point system and graphics processing

bottleneck.

8.3.2.1 Texture Mapping

Compared with Figures 8.3, 8.5 and 8.7, in Figures 8.2, 8.4 and 8.6, the texture mapping

has not provided as good performance as on the laptop computer yet. One reason for this

is that the LCD resolution is lower than needed. Since the surface is divided into many tiny

triangles, each scan line in a triangle often includes just one or two pixels. It results in the

texture pattern being linearly degraded, and many details cannot be mapped in this tiny

range. Another reason is that the transition between the tiny triangles is not so detailed for

a high visual performance. A more effective scheme is needed for antialising.

8.3.2.2 Fixed Point System

The images shown in Figures 8.2, 8.4 and 8.6 give the similar geometric sense and visual

performance as in Figures 8.3, 8.5 and 8.7. It indicates that the accuracy of the fixed point

system can satisfy the computations of the Bézier-spline surface fitting algorithm and

PAMA. In fact, the floating point issue in this project is important and common for FPGA

implementations. Many FPGA systems are less successful in processing applications

based on floating point arithmetic, especially double-precision (El-Ghazawi et al 2008).

The disadvantage of floating point is its heavy usage of FPGA resources. According to the

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 164

study of El-Ghazawi et al (El-Ghazawi et al 2008), integer arithmetic applications can

achieve high performance in fine-grained parallelism under area constraints.

8.3.2.3 Graphics Processing Bottleneck

The graphics processing speed of FPGA-based ES is slower than that of the laptop, in

which all the editing operations can be real time. To modify the object shape on the

FPGA-based ES, it takes around nine seconds for the table and chair and half a minute for

the flower.

In the study of Kuehne et al 2005, they argue that no matter how well a program is

written, one section of the program will always execute more slowly than any of the rest of

the program. The slowest part of the program is called the bottleneck. They also give three

possibilities of bottleneck in an OpenGL implementation, being filling limited, vertex limited,

and application limited.

For this project, the bottleneck is vertex limited and partly application limited. Since the

size of full-screen window on the LCD is only 800 X 480 pixels, it is able to flush and

re-flush all the pixels on the screen in real time continuously for still 3D rendering. Thus,

the bottleneck is not filling limited. If the application is only to display still surfaces rather

than the surface editing, which requires a lot of vertex transformation, the 3D rendering

can be real time. Thus, the bottleneck results partly from applications.

The evaluation of texture mapping and vertex transformation of the triangle strips costs

most of the execution time. The object deformation takes a longer time than real time. It is

about nine seconds, less or more dependent on the complexity of the objects. The triangle

strips are needed when the Bézier-spline surface is drawn. For the example of the table

and chair in Figure 8.2, the triangle strips consist of 42 triangles for each strip, 21 strips for

each Bézier patch, and 49 patches and 43218 triangles in total. As regards the flower

example in Figure 8.6, there are 91 patches and 80262 triangles in total. The object

surfaces are broken down into such a tiny extent that some scanning lines are composed

of just one or two pixels when the triangles are written into the frame buffer.

The evaluation of vertex transformation is limited by the small memory of 2 X 64 MBytes

of the FPGA board of Altera ESs Development Kit, Cyclone III Edition.

8.3.3 Storage and Computing Costs of PAMA

Discussions of the previous chapters have shown that the computer graphics often

requires large storage and computing costs, especially for 3D rendering. In this project,

the hybrid solution with the FPGA-base ES has a restricted storage space, and the shape

editing with user interactions in real time is heavily influenced by the computing cost.

Compared to subdivision and deformation methods discussed in Section 2.5, the PAMA

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 165

can eliminate the large storage requirement and computing cost of intermediate processes

because the interpolated points are generated mainly from the original control points

without intermediate processing.

Compared specifically with the subdivision work by Kazakov (Kazakov 2007) and Bolz

and Schroder (Bolz and Schroder 2002), the PAMA has better performances in terms of

input data, computing cost, and vertex buffer storage, which are detailed as follows:

▪ With the PAMA, the input data include the original control points of the control

mesh while subdivisions include a list of vertices making up the control mesh and a

variable-size list of vertices from its 1-ring neighbourhood.

▪ The PAMA requires 52 multiplications, 18 divisions, and 52 additions per control

patch. Kazakov’s work (Kazakov 2007) requires 123 multiplications and 248+2k

additions per control mesh tessellated to a two-level subdivision, where k is the

valence of the only extraordinary vertex. Bolz and Schroder’s work (Bolz and

Schroder 2002) requires 200+75k multiplications and 175+75k additions. For a

simple recursive application of subdivision rules, given by Kazakov’s work

(Kazakov 2007), it requires 40 multiplications and 89+4k additions per face for

tessellation to a two-level subdivision.

▪ The PAMA requires four times of buffer storage for the interpolated points as that

for the original control points. One- and two-level subdivision meshes require four

and sixteen times of vertex buffer storage as that of a control mesh.

8.4 Chapter Summary

In this chapter, the verification methodology is introduced first. Then, two groups of results

of surface modelling and editing with the PAMA on two environments, which are the

FPGA-based ES and the laptop computer, are presented together. The discussions of

graphics applications on the FPGA-base ES are detailed in order of system layers from

the hardware system up to the applications.

In general, when considering the graphics rendering, speed-up is the first requirement,

which is achieved at a high price of the memory space and processor ability that are

designated specifically for graphics processing, such as, GPU in the laptop. From a

practical standpoint, there are many situations that may limit the speed, such as the ES

applications. FPGAs are highly desirable from an economic perspective given the cost

difference between FPGAs and microprocessors, and they are particularly suitable for

special-purpose systems.

Although the FPGA looks like a low-cost and low-quality solution to the graphics

rendering with OpenGL compared with the general-purpose computer with the high-end

Chapter 8 Results of Surface Modelling and Editing with PAMA on FPGA-based ES 166

GPU, the FPGA does give an alternative option for graphics applications with the low

computation, storage and power costs. For academic researches, a new exploration in a

new direction looks imperfect at the beginning, just like what has been done in this project.

This research, however, presents a new hybrid solution to graphics applications by using

the FPGA platform to draw and edit 3D objects with user interactions.

Chapter 9 Future Work

Since this research involves the FPGA-based ES for graphics applications, Mesa-OpenGL

implementation, parallelism processing, and surface modelling and editing with the PAMA,

the future work is discussed in five aspects. These five aspects are the future work for the

methodology of hybrid design of application-specific ESs with software and hardware

components, FPGA-based ESs, OpenGL implementations, parallelism processing and the

PAMA, respectively.

9.1 Future Work for Methodology of Hybrid Design of Application-specific ESs with
Software and Hardware Components

The hybrid way of solving specified applications with FPGA-based ESs presented in this

thesis is different from those of the separate software and hardware solutions. The future

work for this hybrid scheme is as follows.

▪ This hybrid methodology needs to be advanced and completed so that

application-specific ESs can be designed and implemented with software and

hardware components via a practical process for not only academic researches but

also electronic commodity developments.

▪ System-level verification methods need to be developed and enhanced for the

hybrid design and implementation of application-specific ESs in order to guarantee

that the hybrid design and implementation of an ES meet requirements of its target

applications.

▪ A new mathematic system for this hybrid way of constructing a system for specified

applications needs to be established. The new mathematic system needs to

combine or include the digital and analogue domains so that the hybrid

methodology can have a mathematic foundation to support it.

Chapter 9 Future Work 168

9.2 Future Work for FPGA-based ESs

Since the hybrid scheme needs to consider both software and hardware during design and

implementation of an FPGA-based ES, the conventional environments for design of

separate software and hardware cannot satisfy the requirements of an entire system

design that needs to consider both software and hardware during the process of design

and implementation. To promote this hybrid scheme, the future work needs to be done as

follows.

▪ Maintaining and advancing of design environments for FPGA-base ESs with the

hybrid way need to accumulate more libraries and tools so that the facilities in

these environments can be as available and convenient as those of software

programming.

▪ Developing and advancing of hybrid design environments also need raw recruits to

observe that more opportunities will benefit ESs than software programming if the

potential of ESs can be explored by more researchers and engineers. The lower

popularity and higher speciality of recent ESs can lead to openings for good ES

designers and developers. These can help the ES community grow quickly.

9.3 Future Work for OpenGL Implementations

The standards of OpenGL and OpenGL ES can be implemented in varied hardware

platforms. When they are implemented to realise 3D rendering with user interactions on a

new hardware platform, some tasks must be undertaken. These tasks are listed as

follows.

▪ User interactions need the support of a simple keyboard, which can provide

adequate keys and allow users to manipulate graphics objects flexibly. A touch

screen is an alternative tool of user interactions for portable gadgets, but its device

drivers for 3D rendering must be developed before it functions as an effective input

and output device for user interactions of 3D graphics applications.

▪ High-quality 3D images need the support of an effective antialiasing technique.

This technique needs to produce smooth transition between tiny patches that are

usually used in complex objects’ rendering, such as tiny triangles in Bézier-spline

surface fitting.

▪ High-quality 3D images also need a high-resolution LCD screen (such as 1024 X

512 pixels or more). It needs to display details of complex objects and allow proper

texture mapping.

▪ A hardware solution to an advanced algorithm is required to speed up graphics

Chapter 9 Future Work 169

processing if this algorithm is repeated multiple times during 3D rendering. For

instance, the part of triangle processing and writing in the frame buffer for

Bézier-spline surfaces needs to be transformed to a hardware solution with the

C2H tool of the Altera ESDK. This part needs to be integrated with the

FPGA-based embedded hardware system to accelerate the 3D rendering because

it is at the low layer of the software system, close to the HAL, and repeated many

times during the execution of the PAMA.

9.4 Future Work for Parallel Processing

The pipelines and co-processors need to receive an emphasis in the parallel computing

community because they can effectively speed up computing and processing and help to

enhance the entire performance of a system. They need to gradually become parallelism

mainstreams of the modern parallel theory in order to be widely used by designers during

the process of system design and implementation.

9.5 Future Work for PAMA

As the increasing density of FPGA chips, more complex and higher-quality FPGA devices

than the Altera Cyclone III 3C120F780 adopted by this research are available. They can

provide larger storage space and faster processor units. In this situation, the PAMA needs

to be enhanced in several aspects as follows.

▪ More complex objects (with a grid of 1M vertices) need to be modelled and edited

with the PAMA. An effective technique of manipulating the shape of complex

objects via user interactions needs to be found because a complex object may

have more control points than a simple one. Each of control points has its position

and four shape parameters to be manipulated. When the number of control points

increases, the number of parameters to be changed increase five times as many as

the number of control points. This issue must be handled in an effective way.

▪ The constructions of four inside interpolated points of a Bézier-spline patch with the

PAMA can be changed according to conditions of 0G , 1G ,or 2G . These changes

can produce different geometric effects on the common boundary curves between

patches. Furthermore, they can meet the needs for different design purposes.

▪ An effective scheme for inputting or outputting a large amount of processed data of

vertices of a complex object from or to a file needs to be found. This scheme is

helpful for the situation where the work creation cannot be completed once by a

designer and needs to be refined several times.

Chapter 10 Conclusions

This research has demonstrated an integrated hybrid method for graphics and video

processing by using both hardware and software. Surface modelling and editing with the

PAMA have been carried out and applied to the FPGA-based ES, which has been built in

the hybrid way of hardware and software. For the hybrid method, several facilities have

been established. They are included in four main parts of this research as follows:

▪ The FPGA-based ES offers an alternative solution to graphics and video

processing, which is different from a general-purpose computer platform with

GPUs.

▪ The Mesa-OpenGL implementation for the FPGA-based ES completes not only

specifications of the general OpenGL ES but also additional functions needed for

surface modelling and editing.

▪ The parallel processing of pipelines and co-processors is used to accelerate the

computing and processing of graphics and video;

▪ The novel algorithm for surface modelling and editing, PAMA, has been created

and verified.

Conclusions for this research are summarised in five sections. The first section presents

conclusions for the methodology for hybrid design and implementation of ESs. The other

four sections are used for the conclusions of the above four main parts, respectively.

10.1 Conclusions of Methodology for Hybrid Design and Implementation of ESs

Along with the accomplishment and verification of the goal of this project, the hybrid

method of solving the graphics applications has been validated. As regards this method,

several conclusions can be summarised as follows.

▪ The new design platform and development flow for FPGA-based ES design in the

hybrid way presented in this thesis can provide facilities for designers and

developers of application-specific ESs to implement the system construction for

Chapter 10 Conclusions 171

designated applications in the hybrid way even though the prevailing design

environments have not been developed completely for this method. A set of

techniques for the hybrid system design and construction, which must take both

hardware and software into consideration of the design flow and system

construction, are created. These techniques include the pools of building blocks for

hardware and software, the hierarchy of design process, and the processing order

of the system construction and verification.

▪ The novel hybrid approach offers new solutions to computer graphics applications.

This hybrid methodology can provide an effective and efficient strategy to obtain an

adequate performance of an entire ES with low costs of computing, storage and

power. It can allow designers to treat the design and implementation of ESs from a

system perspective and construct them in a systematic way, rather than from the

conventional partial perspective. In this hybrid way, designers can find a solution

with a proper performance and low costs for target applications.

▪ This hybrid methodology can make good use of the strengths of both hardware and

software. The parallel feature of hardware can be used during the construction of

the hardware system and the complexity and logicality of software can be exploited

during software programming.

▪ The system verification method presented in the thesis can provide a verification

method for the FPGA-based ES design for specified applications. It can use the

completed applications to test whether or not an ES implementation meets

requirements of the targeted applications.

10.2 Conclusions of FPGA-based ES

The FPGA-based ES for graphics applications presented in this thesis offers a new

solution for computer graphics applications. Compared with GPUs, this solution has lower

costs of computing, storage and power, and its lower performance can be enhanced by

replacing relative devices and refining related algorithms. The FPGA-based ES platform

also allows one or several developers to accomplish an entire ES design for specific

applications, which usually needs a team including hardware engineers, device driver

developers and application developers to be accomplished if the conventional ES

development method is taken.

10.3 Conclusions of Mesa-OpenGL Implementation

The Mesa-OpenGL implementation provided in the thesis is established for the

FPGA-base ES. It increases the set of existing implementations of OpenGL ES. Its

Chapter 10 Conclusions 172

addition of Bézier-spline curve and surface algorithms extends the standard specifications

of OpenGL ES. Its fixed point system satisfies the computations of Bézier-spline curve and

surface algorithms and the PAMA. Its small footprint meets the needs of the computing

and storage limitations of FPGA-based ESs.

10.4 Conclusions of Parallel Processing

Rather than the application programmer’s view, the hardware builder’s view taken in this

research provides a proper standpoint from which the parallelism possibility in the hybrid

system construction with software and hardware can be identified accurately and used

effectively. This develops the fine-grained task parallelism in the traditional parallelism that

emphasised the data parallelism of SIMD and MIMD.

Compared with the partitioned parallelism that uses the spatial division of data

processing, the pipelined parallelism employed in this research can fit more into the

FPGA-based ES for the graphics applications. The latter makes the best use of the

temporal division of pipeline and speeds up graphics processing.

The video pipeline of the FPGA-based ES also functions as a co-processor, which can

automatically work without the Nios II processor’s intervention.

10.5 Conclusions of PAMA

The conclusions about the PAMA presented in this thesis can be summarised as follows.

▪ The PAMA has a small footprint that meets the requirements of storage, computing

and power costs of the FPGA-based ES.

▪ It allows users to designate control points of a surface that can be open or closed

for their design purposes. This is necessary for the original creation of work.

▪ It provides tools that users can use to change the shapes of object surfaces freely

by changing independently the position, and four shape parameters of each control

point. These tools can help users accumulate the design experience during surface

modelling and editing.

▪ A global composite surface joined with the PAMA is 0G (and 0C). This results in

the freedom for shape variation by user interactions. It also brings varied shapes of

not only 1G but also 0G . The 0G can offer a sharp fold on a common boundary

curve between two patches whereas the 1G can only provide a smooth transition

crossing two patches.

Appendix Continuities of PAMA

In this appendix, the continuities of the PAMA will be explored.

Since the PAMA is an algorithm that is used to generate a composite surface by joining

bi-cubic Bézier-spline surface patches together with geometric continuities on common

boundary curves, two relevant issues must be investigated before the exploration of

PAMA’s geometric continuities. One is that parametric continuities and geometric

continuities must be ascertained further. The other is that some geometric properties of

Bézier-spline curves and surfaces, which will be used later in the PAMA’s discussion,

must be identified as well.

In this appendix, Sections A.1 discusses parametric continuities and geometric

continuities. From Section A.2 to Section A.6, the geometric properties of Bézier-spline

curves and surfaces will be studied. From Section A.7, the exploration into the PAMA will

proceed. To articulate it, in Section A.7, the principle for the construction of control vertices

on common boundary curves of Bézier-spline surfaces with the PAMA is presented after

the introduction of Beta-spline curves. In Section A.8, the twists and constructions of

corner points of patches with the PAMA are discussed. In Section A.9, the constructions of

inside points with the PAMA are inspected. Finally, Section A.10 is used to summarise

PAMA’s continuities.

In the rest of discussion, Bézier-spline curves and surfaces will be simplified as Bézier

curves and surfaces.

A.1 Parametric Continuities and Geometric Continuities

In the study of Hoschek and Lasser (Hoschek and Lasser 1993), the deductive reasoning

of the parametric continuities and geometric continuities is provided in a mathematical way,

which is palpable for a thorough investigation of these two types of continuities.

 Given two parametric curves, T(u), []10 ,uuu∈ , and S(w), []10 ,www∈ , in

dR (d-dimensional Riemannian space), which meet at a common point () ()10 wSuTP == ,

Appendix 174

we say these two curves meet with the r-order geometric continuity (rG), if there exists an

algebraic curve which meets both curves T(u) and S(w) at P with contact of order r in the

sense that the first r terms in the Taylor series expansions about the point P of the two

given curves and the algebraic curve all agree at P (Hoschek and Lasser 1993).

To compare the Taylor series of T(u) and S(w) with each other, if they are developed

with respect to the same parameter, we can find the derivatives with respect to the same

parameter and derive the conditions of r-order parametric continuities(rC), written as

() () −+ =
10

|| wi

i

ui

i

wS
dw
duT

du
d , where 10 wu = , and i = 0, …, r. (A.1)

 If they join with the parametric continuities with respect to the natural arc length

parametrisation and with the assistance of the chain rule, T(u) and S(w) meet the

conditions of geometric continuities. For the zero-, first-, and second-order geometric

continuities (0G , 1G and 2G), the conditions are written as the following equations,

respectively,

() ()() ()−−+ == 100 wSuwSuT , (A.2a)

() () () ())|(|||
1100

1 −−−+ =












= wwuu wS

dw
dwS

dw
duw

du
duT

du
d β , (A.2b)

and

() () () () () 














+














= −−−−+

10100
||||| 2

2

2

22

2

2

wuwuu wS
dw
duw

du
dwS

dw
duw

du
duT

du
d

() () 





+








= −−

11
|| 22

2
2

1 ww wS
dw
dwS

dw
d ββ , (A.2c)

where ()−− = 01 uww , () −=
0

|1 uuw
du
dβ , and () −=

0
|2

2

2 uuw
du
dβ .

Equation A.2a is the condition of zero-order geometric continuity (0G) of adjoining

parametric curves, Equation A.2b is of first-order (1G), and Equation A.2c is of

second-order (2G), respectively.

Through the above process of deductive reasoning, since the Taylor series expansions

of T(u) and S(w) have remainders, we can say that no matter they meet the r-order

parametric continuities or the r-order geometric continuities, the algebraic curve agrees

with T(u) and S(w) at P in an approximate means.

For surfaces, the study of Hoschek and Lasser (Hoschek and Lasser 1993) states that

Appendix 175

for 1C continuity, the first partial derivatives agree along and across the common

boundary curve between two neighbouring Bézier patches. That study also provides the

lucid mathematical expressions of conditions of geometric continuities of parametric

surfaces. If two parametric surfaces, T(u,v) and S(w,t), meet at a point, () ()twSvuTP ˆ,ˆˆ,ˆ == ,

after the reparametrisation of ()twuu , and ()twvv , , by using the theory of

manifolds, the conditions for the zero-, first- and second-order geometric continuities are

written as

() () ()twStwvtwuTvuT ˆ,ˆ)ˆ,ˆ(),ˆ,ˆ(ˆ,ˆ == , (A.3a)

'
11

' ST Ψ= , (A.3b)

and '
12

''
22

'' SST Ψ+Ψ= , (A.3c)

where)ˆ,ˆ(ˆ twuu = ,)ˆ,ˆ(ˆ twvv = ,
















∂
∂

∂
∂

∂
∂

∂
∂

=Ψ

)ˆ,ˆ()ˆ,ˆ(

)ˆ,ˆ()ˆ,ˆ(

11
||

||

twtw

twtw

t
v

t
u

w
v

w
u

,

























∂
∂
∂∂

∂
∂
∂

∂
∂
∂∂

∂
∂
∂

=Ψ

)ˆ,ˆ(2

2

)ˆ,ˆ(

2

)ˆ,ˆ(2

2

)ˆ,ˆ(2

2

)ˆ,ˆ(

2

)ˆ,ˆ(2

2

22

|

|

|

|

|

|

tw

tw

tw

tw

tw

tw

t
v
tw

v
w

v

t
u
tw

u
w
u

,























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=Ψ

2
)ˆ,ˆ(

)ˆ,ˆ()ˆ,ˆ(

2
)ˆ,ˆ(

)ˆ,ˆ()ˆ,ˆ(

)ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ(

)ˆ,ˆ()ˆ,ˆ(

2
)ˆ,ˆ(

)ˆ,ˆ()ˆ,ˆ(

2
)ˆ,ˆ(

12

)|(

)|)(|(

)|(

)|)(|(2

)|)(|()|)(|(

)|)(|(2

)|(

)|)(|(

)|(

tw

twtw

tw

twtw

twtwtwtw

twtw

tw

twtw

tw

t
v

t
v

w
v

w
v

t
v

t
u

w
v

t
u

t
v

w
u

w
v

w
u

t
u

t
u

w
u

w
u

,

















∂
∂
∂
∂

=
T

v

T
uT ' ,

















∂
∂
∂
∂

=
S

t

S
wS ' ,

























∂
∂
∂∂
∂
∂
∂

=

T
v

T
vu

T
u

T

2

2

2

2

2

'' , and

























∂
∂
∂∂

∂
∂
∂

=

S
t

S
tw

S
w

S

2

2

2

2

2

'' .

Equation A.3a is the condition of 0G of adjoining parametric surfaces, Equation A.3b is

of 1G , and Equation A.3c is of 2G , respectively. The first-order condition has a

straightforward geometric meaning. That is, it is that two adjoining surface patches with
1G have common tangent planes on their common boundary curve. We will discuss it in

detail in Section A.4.

 Since the 22Ψ and 12Ψ have a variety of first- and second-order partial derivatives

and their varied compositions do not have definite geometric meanings, it is difficult to find

a practical way to construct a composite surface that meets the condition of 2G .

Appendix 176

A.2 Geometric Properties of Bézier Curves

In this section, we concentrate on the geometric properties of Bézier curves that we will

apply to the exploration of PAMA’s geometric continuities.

A Bézier curve is formed with a control polygon that is composed of a series of control

points. A Bézier curve of degree n is written in a Bernstein polynomial form as

() (),
0

uBbux n
k

n

k k∑
=

= (A.4)

where 10 ≤≤ u , and () () knkn
k uu

k
n

uB −−







= 1 . Its control polygon is []nbbbb ,...,,, 210 and

3
10 ,...,, Ebbb n ∈ (three-dimensional Euclidean space). We can state some geometric

properties of the Bézier curve.

Property 1. The Bézier curve x(u) of Equation A.4 passes through two control points at

two ends of the curve, which are two endpoints, 0b and nb , of its control polygon.

 The proof of Property 1 is straightforward by replacing the value of parameter u with 0

and 1 in Equation A.4 and having () 00 bx = and () nbx =1 .

Property 2. Both of two lines passing, respectively, through the first two control points,

0b and 1b , and through the last two control points, 1−nb and nb , are tangents of the

Bézier curve x(u) of Equation A.4.

 Proof of Property 2. The derivative of the Bézier curve of Equation A.4 is written as

() ()uBbnux
du
d n

k
n

k k
11

0

−
∑
−

=
∆= , (A.5)

where kkk bbb −=∆ +1 . Two special cases of Equation A.5 are obtained by u = 0 and u = 1

as

() ()010 bbnx
du
d

−= , (A.6)

and

() ()11 −−= nn bbnx
du
d . (A.7)

Equation A.5 shows that the derivative of the Bézier curve is also a Bézier curve. But its

coefficients are not points in 3E . They are differences of points of 3E , or vectors in 3R

(three-dimensional Riemannian space).

Appendix 177

Equation A.6 states that 1b and 0b determine the tangent at u = 0 while Equation A.7

indicates that nb and 1−nb define the tangent at u = 1. Thus Property 2 is proved. □

Then, we attempt to find a tangent at an arbitrary point of the Bézier curve. The de

Casteljau algorithm offers an effective scheme for the Bézier curve computation, which is

a process including multiple repeated steps (Farin 1993, and Hoschek and Lasser 1993).

Figure A.1 shows the process to yield a point on a cubic Bézier curve with the de Casteljau

algorithm.

Figure A.1 Process of Generating a Point on the Cubic Bézier Curve with the de Casteljau Algorithm.
Properties 2 and 3 can be observed. Property 2 is that Two Lines Passing Through Control Points 0 and 1,
and Through Control Points 2 and 3, respectively, are Tangent to the Bézier Curve. Property 3 is that the
Line Passing through the Intermediate Points 0 and 1 at the Second Step (also the Second Last Step) is

Tangent to the Cubic Bézier Curve.

The de Casteljau algorithm can generate the tangent at any point of the Bézier curve.

The number of steps of this algorithm is the number of control points of the Bézier curve

minus one.

Property 3. For a given value of parameter u, the de Casteljau algorithm yields the point

on the Bézier curve of Equation A.4 at the last step and the tangent of the curve at that

point with the difference of two intermediate points that are generated at the second last

step.

Proof of Property 3. The derivative of the Bézier curve of Equation A.4 has been given

by Equation A.5.

With the de Casteljau algorithm, the intermediate de Casteljau points are obtained as

() () () ()uububuub r
k

r
k

r
k

1
1

11 −
+

− +−= , (A.8)

where




−=
=

rnk
nr

,...,1,0
,...,2,1

 , and () kk bub =0 . ()ubn
0 is the point with the parameter value u on

Control point 0

Control point 1 Control point 2

Control point 3

Intermediate point 0
at the first step

Intermediate point 1
at the first step

Intermediate point 2
at the first step

Intermediate point 0
at the second step

Intermediate point 1
at the second step

Curve point at
the last step

Appendix 178

the Bézier curve. ()ubn
0 is generated at the last step of the de Casteljau algorithm and

has the formula as

() () () ()uububuub nnn 1
1

1
00 1 −− +−= . (A.9)

The intermediate de Casteljau points can be written in terms of Bernstein polynomials of

degree r:

() ()uBbub r

i

r
iki

r
k ∑

= +=
0

, (A.10)

where




−=
=

rnk
nr

,...,1,0
,...,2,1

.

Let us inspect two intermediate de Casteljau points at the second last step of the de

Casteljau algorithm, where r = n-1,

() ()uBbub n

i

n
ii

n
∑
−

=

−− =
1

0

11
0 , (A.11)

and

() ()uBbub n

i

n
ii

n
∑
−

=

−
+

− =
1

0

1
1

1
1 . (A.12)

Subtracting Equation A.12 and Equation A.11 and replacing i with k, we can obtain

() () () () () ()uBbbuBbuBbubub n
k

n

k kk
n

i

n
ii

n

i

n
ii

nn 11

0 1
1

0

11

0

1
1

1
0

1
1

−
∑
−

= +∑
−

=

−
∑
−

=

−
+

−− −=−=− . (A.13)

 Compare Equation A.13 with Equation A.5. The difference between them is the multiple,

n. After normalised, they are the same unit vector in 3R . Since Equation A.5 indicates the

tangent of the Bézier curve of Equation A.4, so does Equation A.13. The point,

() ()uxubn =0 , is also a point of this tangent, which is observed in Equation A.9. Therefore,

()ubn 1
0
− and ()ubn 1

1
− determine the tangent passing through the point of ()ubn

0 that can

be any point on the Bézier curve of Equation A.4 as 10 ≤≤ u .

Thus Property 3 is proved. □

The tangents of Properties 2 and 3 for the cubic Bézier curve are shown in Figure A.1.

A.3 Composite Bézier Surfaces

Following the discussion of the PAMA in Chapter 6, we choose one patch of a composite

bi-cubic Bézier surface, which is formed with a control net with four corner vertices, [W(3i,

3j),W(3i, 3(j+1)),W(3(i+1),3(j+1)),W(3(i+1), 3j)], as shown in Figure A.2. The patch consists

of eight points on four boundaries, two on each boundary. There are four points inside the

Appendix 179

patch. The number of overall control vertices of one Bézier patch is sixteen. We stitch

these patches together with the PAMA to form a composite Bézier surface and will

ascertain the geometric continuities of the composite Bézier surface later.

Figure A.2 Control Net of one Patch of the Composite Bi-cubic Bézier Surface, Formed with Four Corner
Control Vertices, [W(3i, 3j), W(3i, 3(j+1)), W(3(i+1), 3(j+1)), W(3(i+1), 3j)].

Let us explore a special case of a Bézier surface (or patch). The tense product form of

the Bézier patch with degree (3, 3) is defined as

() () () (),3,3, 333

0

3

0, vBuBljkiWvux lkk lji ∑
=

∑
=

++= (A.14)

where 1,0 ≤≤ vu , () () kk
k uu

k
uB −−








= 33 1

3
, and () () ll

l vv
l

vB −−







= 33 1

3
.

The patch xi,j(u,v) is a map of the unit square 1,0 ≤≤ vu in the u, v-plane, as shown in

Figure A.3. This unit square is the domain of parameters u and v while the patch xi,j(u,v) is

its range.

To derive the geometric properties of this tense-product Bézier patch, we must analyse

further the construction of Equation A.14. According to Farin 1993, a tense-product Bézier

patch is the locus of a Bézier curve that is moving through space along another Bézier

curve while changing its shape at the same time. Take the Equation A.14 as the example.

The former Bézier curve is a generating curve, which is,

() ()uBbux kk kg
33

0
∑
=

= .

Let each kb traverse another Bézier curve,

() ()vBbvb ll lkk
33

0 ,∑
=

= . (A.15)

W(3i, 3j)

W(3i, 3(j+1)) W(3(i+1), 3(j+1))

W(3(i+1), 3j)

W(3(i+1), 3j+1)

W(3(i+1), 3j+2) W(3i, 3j+2)

W(3i, 3j+1)

W(3i+1, 3(j+1)) W(3i+2, 3(j+1))

W(3i+1, 3j) W(3i+2, 3j)

W(3i+1, 3j+1) W(3i+2, 3j+1)

W(3i+1, 3j+2) W(3i+2, 3j+2)

Appendix 180

We derive the tense-product Bézier patch of Equation A.14 by combining the above two

formulas and replacing with ()ljkiWb lk ++= 3,3, .

Figure A.3 A Patch, xi,j(u, v), of the Composite Bézier Surface and its v-Isoparametric Curves. [W(3i, 3j),

W(3i+1, 3j), W(3i+2, 3j), W(3(i+1), 3j)] are the Control Polygon of the Isoparametric Curve, xi,j(u, 0). [W0,1, W1,1,

W2,1, W3,1] are the Control Polygon of the Isoparametric Curve, xi,j(u, 1/3). [W0,2, W1,2, W2,2, W3,2] are the Control
Polygon of the Isoparametric Curve, xi,j(u, 2/3). [W(3i, 3(j+1)), W(3i+1, 3(j+1)), W(3i+2, 3(j+1)), W(3(i+1),

3(j+1))] are the Control Polygon of the Isoparametric Curve, xi,j(u, 1).

By setting the parameter u or v as a constant in Equation A.14, we obtain a u- or

v-isoparametric curve, respectively. As each of four coefficients of any isoparametric curve

traversing a Bézier curve in the way of Equation A.15, we can obtain an arbitrary

isoparametric curve of the patch of Equation A.14.

In general, we can state the following property.

Property 4. Given a Bézier surface of degree (m, n) in 3E ,

() () ()vBuBbvux n
l

m
k

m

k

n

l lk∑
=

∑
=

=
0 0 ,, , where 1,0 ≤≤ vu , (A.16)

its u- or v-isoparametric curves are Bézier curves.

Proof of Property 4. Set u as a constant, saying c, in Equation A.16. We obtain

() () () () ()vBcBbvBcBbvcx n
l

n

l

m

k

m
klk

n
l

m
k

m

k

n

l lk ∑
=

∑
=

∑
=

∑
=

==
0 0 ,0 0 ,][, . (A.17)

 To make it obvious, we define new coefficients as the bracketed terms as follows

()cBbb m
k

m

k lkl ∑
=

=
0 ,


. (A.18)

Substituting the bracketed terms in Equation A.17 with Equation A.18, we obtain

W(3i, 3(j+1))

W(3i, 3j)

W(3(i+1), 3(j+1))

W(3(i+1), 3j)

W3,2

W2,2 W1,2

W0,2

W3,1

W2,1 W1,1

W0,1 W(3i+2, 3j) W(3i+1, 3j)

W(3i+2, 3(j+1)) W(3i+1, 3(j+1))
xi,j(u, v) xi,j(u, 1)

xi,j(u, 2/3)

xi,j(u, 1/3)

xi,j(u, 0)

Appendix 181

() ()vBbvcx n
l

n

l l∑
=

==
0

,


. (A.19)

New coefficients can be seen as the control points of control polygon,],...,,[10 nbbb


.

Equation A.19 represents an arbitrary u-isoparametric curve of the Bézier surface x(u,v)

and is a Bézier curve with degree n.

Analogously, by setting v as a constant, c, we can obtain a v-isoparametric curve of the

Bézier surface x(u,v) that is a Bézier curve with degree m as the following equation

() ()vBbcux m
k

m

k k∑
=

==
0

,


, (A.20)

where ()cBbb n
l

n

l lkk ∑
=

=
0 ,


. (A.21)

Therefore, Property 4 is true. □

Let us return to the previous bi-cubic Bézier patch case. Four v-isoparametric curves of

the patch, which having the constant values of v, are chosen. With Property 4, we can set

the parameter v to an arbitrary value that]1,0[∈v . Without loss of generality, these values

are assigned as 0, 1/3, 2/3, and 1.0, respectively. The control polygons of these four

isoparmetric curves are computed as follows.

For v=0, the control polygon of the isoparametric Bézier curve xi,j(u,0) is [W(3i,

3j),W(3i+1, 3j),W(3i+2,3j),W(3(i+1), 3j)]. These four points are the control points of the

boundary of the Bézier patch, xi,j(u,v).

For v=1/3, the control polygon of the isoparametric Bézier curve xi,j(u,1/3) consists of

four control points that are intermediate points computed by replacing v with 1/3 in

Equation A.14 and as the follows,

() ()3
13,3 33

01, llk BljkiWW ∑
=

++=

() () () ())1(3,3
27
123,3

9
213,3

9
43,3

27
8

++++++++++= jkiWjkiWjkiWjkiW , (A.22)

where k=0,1, 2,and 3.

For v=2/3, four intermediate points of the control polygon of the isoparametric Bézier

curve xi,j(u,2/3) are computed by

() ()3
23,3 33

02, llk BljkiWW ∑
=

++=

() () () ())1(3,3
27
823,3

9
413,3

9
23,3

27
1

++++++++++= jkiWjkiWjkiWjkiW , (A.23)

where k=0,1, 2,and 3.

Appendix 182

For v=1, the control polygon of the Bézier curve xi,j(u,1) is [W(3i, 3(j+1)),W(3i+1,

3(j+1)),W(3i+2,3(j+1)),W(3(i+1), 3(j+1))]. These four vertices are the control points of the

boundary of the Bézier patch, xi,j(u,v).

These four isoparametric curves are also illustrated in Figure A.3.

In the analogous manner, four u-isoparametric curves of the patch, which are assigned

the parameter u with 0, 1/3, 2/3, and 1.0, respectively, can be obtained as follows.

For u=0, the control polygon of the isoparametric Bézier curve xi,j(0,v) is [W(3i, 3j),W(3i,

3j+1),W(3i,3j+2),W(3i, 3(j+1))].

For u=1/3, the control polygon of the isoparametric Bézier curve xi,j(1/3,v) consists of

four control points that are intermediate points computed by replacing u with 1/3 in

Equation A.14 and these control points are

() ()3
13,3 33

0,1 kkl BljkiWW ∑
=

++=

() () () ()ljiWljiWljiWljiW ++++++++++= 3),1(3
27
13,23

9
23,13

9
43,3

27
8 , (A.24)

where l=0,1, 2,and 3.

For u=2/3, four intermediate points of the control polygon of the isoparametric Bézier

curve xi,j(2/3,v) are computed by

() ()3
23,3 33

0,2 kkl BljkiWW ∑
=

++=

() () () ()ljiWljiWljiWljiW ++++++++++= 3),1(3
27
83,23

9
43,13

9
23,3

27
1 , (A.25)

where l=0,1, 2,and 3.

For u=1, the control polygon of the Bézier curve xi,j(1,v) is [W(3(i+1), 3j),W(3(i+1),

3j+1),W(3(i+1),3j+2),W(3(i+1), 3(j+1))].

A.4 First-order Geometric Continuity of Composite Bézier Surfaces

In this section, we will explore the geometric meaning of composite parametric surfaces

with the common boundary curves of 1G . In the studies of Farin, and Hoschek and Lasser

(Farin 1993, and Hoschek and Lasser 1993), the condition of two adjacent patches with
1G is expressed in a lucid geometric manner as Definition 1, rather than in Equation A.3b.

Definition 1. Two patches with a common boundary curve are called 1G if they have a

continuously varying tangent plane along this boundary curve.

Appendix 183

To investigate the continuities of tangent planes of the points on the common

boundaries, we have to look for the tangent planes at points that sit on the boundary of two

adjoining patches. Without loss of generality, three patches, xi,j(u,v), xi-1,j(u,v), and xi,j-1(u,v),

are chosen, as shown in Figure A.4. They are generated with three control nets, each of

which has four corner control vertices, being [W(3i, 3j), W(3i, 3(j+1)), W(3(i+1), 3(j+1)),

W(3(i+1), 3j)], [W(3(i-1), 3j), W(3(i-1), 3(j+1)), W(3i, 3(j+1)), W(3i, 3j)], and [W(3i, 3(j-1)),

W(3i, 3j), W(3(i+1),3j), W(3(i+1), 3(j-1))], respectively. Their common boundary curves are

Bézier curves, xi,j(u,0) and xi,j(0,v).

Figure A.4 Tangent Planes on Common Boundary Curves of Neighbouring Bézier Patches, xi,j(u, v), xi-1,j(u, v),

and xi,j-1(u, v).

Let us inspect the common boundary, xi,j(u,0). Consider two points on this curve. They

are xi,j(1/3,0) and xi,j(2/3,0). With the properties in Section A.1, we investigate the tangent

planes at these two points on both sides of this common boundary between two Bézier

patches, xi,j(u,v) and xi,j-1(u,v).

With Property 3 and the de Casteljau algorithm, we can obtain two intermediate points

passed through by the line that is tangent to the isoparametric Bézier curve xi,j(u,0) at the

curve point xi,j(1/3,0). The curve point is written as

() () () () ()jiWjiWjiWjiWx ji 3),1(3
27
13,23

9
23,13

9
43,3

27
80,3/1, ++++++= . (A.26)

In the instructive way, the computation process of a point on a bi-cubic Bézier surface

with the de Casteljau algorithm is shown in Figure A.5. In this figure, the two superscripts

of intermediate coefficients b’s represent the order numbers of steps for the de Casteljau

xi,j(u, v)

xi,j-1(u, v)

xi-1,j(u, v)

xi-1,j-1(u, v)

xi,j(u,0)

xi,j(0,v)

20
01b

20
11b

1,1W

2,1Ŵ

2,2Ŵ

1,2W

xi,j(1/3,0)

xi,j(2/3,0)

xi,j(0,1/3)

xi,j(0,2/3)

02
10b

02
11b 02

20b

20
02b 20

12b

02
21b

1,1W

2,1W2.2
~W

1,2
~W

Appendix 184

algorithm, the left superscript one is for the parameter u and the right one for the v; the two

subscripts means the order numbers of intermediate coefficients, the left subscript one is

for the parameter u and the right one for the v.

Figure A.5 illustrates the process that the recursive computation is firstly performed on

the parameter u and then on the parameter v. The upper part can generate four

coefficients of a u-isoparametric curve that the parameter u is set to a constant. If the

computation order is exchanged by being done firstly on v then on u, the computation

result will not be varied. This algorithm provides a scheme to yield an arbitrary

isoparameteric curve as well.

Figure A.5 The de Casteljau Algorithm for Computation of a Point on a Bi-cubic Bézier Surface Consists of
Two Parts. The First Part is the Upper Half that is Used to Compute the Coefficients on the u-Isoparametric

Curves where the Parameter u is Set as a Constant. The Second Part is the Lower Half that is Used to
Compute the Points on the Bi-cubic Bézier Surface. These Two Parts can be Exchanged with Modifications

on Superscripts and Subscripts for First v Then u. In that Way, the Coefficients on the v-Isoparametric
Curves, where the Parameter v is Set as a Constant, are Computed Firstly. In Each Part, the Computing

Process Proceeds from Left to Right by Computing with the Formula at the Right Top of that Part. The Two
Subscripts and Superscripts at the Right-hand Sides of Formulas Have Commas in Between Them just for
Expressions Without any Ambiguity, but They Have the Same Meanings as Ones without Commas in Other

Parts in this Figure and Section.

In Section A.3, we have observed that the control polygon of the isoparametric Bézier

curve xi,j(u,0) is [W(3i, 3j),W(3i+1, 3j),W(3i+2,3j),W(3(i+1), 3j)]. Because we compute the

intermediate points on the curve xi,j(u,0), which is both the boundary and isoparametric

Bézier curve, the process for computation on the parameter v with the de Casteljau

30
0 jb

30
1 jb

30
2 jb

30
3 jb

10
1 jb

10
2 jb

10
0 jb

20
1 jb

20
0 jb

30
0 jb

30
00b

30
01b

30
02b

30
03b

31
00b

31
01b

31
02b

32
00b

33
00b32

01b

1-u

1-u

1-u

1-u

1-u 1-u

u

u

u

u

u u

v

1-v

1-v

1-v

1-v

1-v 1-v
v

v

v

v v

() 3,...,0,1 0,1
,1

0,1
,

0 =+−= −
+

− jubbub r
ji

r
ji

r
ij

() 1,3
1,0

1,3
,0

3
0 1 −

+
− +−= r

j
r
j

r
j vbbvb

Appendix 185

algorithm can be saved. The two intermediate points at the second last step on the

parameter u at the curve point xi,j(1/3,0) are

() () ()jiWjiWjiWb 3,23
9
13,13

9
43,3

9
420

01 ++++= , (A.27)

and

() () ()jiWjiWjiWb 3),1(3
9
13,23

9
43,13

9
420

11 +++++= . (A.28)

Analogously, the curve point xi,j(2/3,0) and its two relevant intermediate points are

written as the follows,

() () () () ()jiWjiWjiWjiWx ji 3),1(3
27
83,23

9
43,13

9
23,3

27
10,3/2, ++++++= , (A.29)

() () ()jiWjiWjiWb 3,23
9
43,13

9
43,3

9
120

02 ++++= , (A.30)

and

() () ()jiWjiWjiWb 3),1(3
9
43,23

9
43,13

9
120

12 +++++= . (A.31)

With Properties 1 and 2 and Equation A.24, on the xi,j(u,v) patch side, we can find

another tangent at the point xi,j(1/3,0) along the v direction, which passes through the

following point,

() () () ()13),1(3
27
113,23

9
213,13

9
413,3

27
8

1,1 ++++++++++= jiWjiWjiWjiWW . (A.32)

With Equation A.25, on the xi,j(u,v) patch side, a tangent at the point xi,j(2/3,0) along the v

direction passes through the following point,

() () () ()13),1(3
27
813,23

9
413,13

9
213,3

27
1

1,2 ++++++++++= jiWjiWjiWjiWW . (A.33)

The xi,j(1/3,0), xi,j(2/3,0), 20
01b , 20

11b , 20
02b , 20

12b , 1,1W and 1,2W are shown in Figure A.4.

On the xi,j-1(u,v) patch side, by using Equations A.24 and A.25 and the Λ mark for

distinguishing from the coefficients on the xi,j(u,v) patch side, the tangents at the point

xi,j-1(1/3,1) and xi,j-1(2/3,1) along the v direction pass, respectively, through the following

points,

() () () ()13),1(3
27
113,23

9
213,13

9
413,3

27
8ˆ

2,1 −++−++−++−= jiWjiWjiWjiWW , (A.34)

and

Appendix 186

() () () ()13),1(3
27
813,23

9
413,13

9
213,3

27
1ˆ

2,2 −++−++−++−= jiWjiWjiWjiWW . (A.35)

 Next let us inspect the common boundary, xi,j(0,v). Consider two points on this curve,

these being xi,j(0,1/3) and xi,j(0,2/3). We investigate tangent planes at these two points on

both sides of the common boundary between two Bézier patches, xi-1,j(u,v) and xi,j(u,v).

With Property 3 and the de Casteljau algorithm, we can obtain two intermediate points

passed through by the line that is tangent to the isoparametric Bézier curve xi,j(0,v) at the

curve point xi,j(0,1/3). The curve point and its two relative intermediate points are

() () () () ())1(3,3
27
123,3

9
213,3

9
43,3

27
83/1,0, ++++++= jiWjiWjiWjiWx ji , (A.36)

() () ()23,3
9
113,3

9
43,3

9
402

10 ++++= jiWjiWjiWb , (A.37)

and

() () ())1(3,3
9
123,3

9
413,3

9
402

11 +++++= jiWjiWjiWb . (A.38)

 Analogously, the curve point xi,j(0,2/3) and its two relevant intermediate points are

() () () () ())1(3,3
27
823,3

9
413,3

9
23,3

27
13/2,0, ++++++= jiWjiWjiWjiWx ji , (A.39)

() () ()23,3
9
413,3

9
43,3

9
102

20 ++++= jiWjiWjiWb , (A.40)

and

() () ())1(3,3
9
423,3

9
413,3

9
102

21 +++++= jiWjiWjiWb . (A.41)

On the xi,j(u,v) patch side, with Equation A.22, we can find another tangent at the point

xi,j(0,1/3) along the u direction, which passes through the following point,

() () () ())1(3,13
27
123,13

9
213,13

9
43,13

27
8

1,1 ++++++++++= jiWjiWjiWjiWW . (A.42)

On the xi,j(u,v) patch side, with Equation A.23, a tangent at the point xi,j(0,2/3) along the u

direction passes through the following point,

() () () ())1(3,13
27
823,13

9
413,13

9
23,13

27
1

2,1 ++++++++++= jiWjiWjiWjiWW . (A.43)

On the xi-1,j(u,v) patch side, with Equations A.22 and A.23 and by using the ~ mark for

distinguishing from the coefficients on the xi,j(u,v) patch side, the tangents at the point

xi-1,j(1,1/3) and xi-1,j(1,2/3) along the u direction pass, respectively, through the following

points,

Appendix 187

() () () ())1(3,13
27
123,13

9
213,13

9
43,13

27
8~

1,2 +−++−++−+−= jiWjiWjiWjiWW , (A.44)

and

() () () ())1(3,13
27
823,13

9
413,13

9
23,13

27
1~

2,2 +−++−++−+−= jiWjiWjiWjiWW . (A.45)

Now, we make four remarks: the plane formed with three points, 1,1W , 20
01b and 20

11b , is

a tangent plane of the xi,j(u,v) patch at the point xi,j(1/3,0) on the common boundary xi,j(u,0);

the plane formed with three points, 1,2W , 20
02b and 20

12b , is a tangent plane of the xi,j(u,v)

patch at the point xi,j(2/3,0) on the common boundary xi,j(u,0); the plane formed with three

points, 2,1Ŵ , 20
01b and 20

11b , is a tangent plane of the xi,j-1(u,v) patch at the point xi,j-1(1/3,1)

on the common boundary xi,j-1(u,1); the plane formed with three points, 2,2Ŵ , 20
02b and 20

12b ,

is a tangent plane of the xi,j-1(u,v) patch at the point xi,j-1(2/3,1) on the common boundary

xi,j-1(u,1). Notice that the xi,j(1/3,0) and xi,j-1(1/3,1) are the same point on the common

boundary, xi,j(u,0) (or xi,j-1(u,1)), and so are the xi,j(2/3,0) and xi,j-1(2/3,1). These tangent

planes are illustrated in Figure A.4.

Analogously, we can make four remarks of tangent planes on the common boundary

xi,j(0,v). The plane formed with three points, 1,1W , 02
10b and 02

11b , is a tangent plane of the

xi,j(u,v) patch at the point xi,j(0,1/3) on the common boundary xi,j(0,v); the plane formed with

three points, 2,1W , 02
20b and 02

21b , is a tangent plane of the xi,j(u,v) patch at the point

xi,j(0,2/3) on the common boundary xi,j(0,v); the plane formed with three points, 1,2
~W , 02

10b

and 02
11b , is a tangent plane of the xi-1,j(u,v) patch at the point xi-1,j(1,1/3) on the common

boundary xi-1,j(1,v); and the plane formed with three points, 2,2
~W , 02

20b and 02
21b , is a

tangent plane of the xi-1,j(u,v) patch at the point xi-1,j(1,2/3) on the common boundary xi-1,j(1,v).

The xi,j(0,1/3) and xi-1,j(1,1/3) are the same point on the common boundary, xi,j(0,v) (or

xi-1,j(1,v)), and so are the xi,j(0,2/3) and xi-1,j(1,2/3). These tangent planes are also shown in

Figure A.4.

In the next section, we will give the proofs for the above remarks. Before proving these

remarks, we require a definition of a tangent plane of a Bézier surface.

A.5 Tangent Planes of a Bézier Surface

According to the study of Dubuluowen et al 2006 (Dubuluowen et al 2006), the tangent

plane of a Bézier surface is expressed as Definition 2.

Appendix 188

Definition 2. Given a Bézier surface of degree (m, n) in 3E ,

() () ()vBuBbvux n
l

m
k

m

k

n

l lk∑
=

∑
=

=
0 0 ,, , where 1,0 ≤≤ vu , (A.46)

its partial derivatives with respect of variates u and v are written as, respectively,

()vux
uu

x ,
∂
∂

=
∂
∂

and

()vux
vv

x ,
∂
∂

=
∂
∂ , both of which are vectors in 3R . An arbitrary tangent vector of the surface

x(u, v) at the point (u, v) is a linear combination of two partial derivative vectors,
u
x
∂
∂ and

v
x
∂
∂ . The subspace of 2R space (two-dimensional Riemannian space) spanned by two

partial derivative vectors,
u
x
∂
∂ and

v
x
∂
∂ , is the tangent plane of the surface x(u, v) at the

point (u, v).

Equations A.16 and A.46 are identical. To copy it in Definition 2 is just for facilitating the

discussion.

In the Bézier curve case, Equation A.5 is the derivative. Analogously, the u-partial

derivative of the Bézier surface in the form of Equation A.46 is computed with a series of

equations as follows (Farin 1993),

() () () () ()vBuBbmvBuBb
u

vux
uu

x n
l

n

l

m

k

n

l

m
klk

n
l

m

k

m
klk∑

=
∑
−

=
∑
=

−
∑
=

∆=




∂
∂

=
∂
∂

=
∂
∂

0

1

0 0

1
,

0,1

0 ,, , (A.47)

where lklklk bbb ,,1,
0,1 −=∆ + and the one of left superscript represents the differential

operation performed only on the first subscripts of control vertices, lkb , . Its v-partial

derivative is computed in the next equation,

() ()vBuBbn
v
x n

l
m

k

n

l

m
klk

1

0

1

0 ,
1,0 −

∑
=

∑
−

=
∆=

∂
∂ , (A.48)

where lklklk bbb ,1,,
1,0 −=∆ + and the one of right superscript means the differential operation

performed only on the second subscripts of lkb , .

Property 5. For a Bézier surface of degree (m, n) in 3E with the form of Equation

A.46, a v-partial derivative of this surface at a point (u,v) is a tangent vector of a

u-isoparametric curve of this surface at this point, and a u-partial derivative of this surface

at the point (u,v) is a tangent vector of its v-isoparametric curve at this point.

Appendix 189

Proof of Property 5. Let us prove the v-partial derivative case. With Property 4 and

Equations A.17 and A.19, a u-isoparametric curve of Equation A.46 (or A.16) is a Bézier

curve with degree n. Thus, Properties 1, 2, and 3 are true for a u-isoparametric curve, and

the de Casteljau algorithm for a Bézier curve is true for a u-isoparametric curve as well. To

facilitate the discussion, we copy Equations A.17 and A.19 here,

() () () () ()vBcBbvBcBbvcx n
l

n

l

m

k

m
klk

n
l

m
k

m

k

n

l lk ∑
=

∑
=

∑
=

∑
=

==
0 0 ,0 0 ,][,

and

() ()vBbvcx n
l

n

l l∑
=

==
0

,


, where ()cBbb m
k

m

k lkl ∑
=

=
0 ,


.

With the de Casteljau algorithm for a Bézier curve and referring to Equation 13 in the

Proof of Property 3, we obtain a tangent of the u-isoparametric curve x(c,v) as follows,

() () () ()vBbbvbvb n
l

n

l ll
nn 11

0 1
1

0
1

1
−

∑
−

= +
−− −=−


,

where the superscript n-1 of 1
1
−nb


 is the order number of the de Casteljau algorithm,

which also means the second last step.

By substituting lb


 and 1+lb


 with Equation A.18, we further obtain the following

equation,

() () () ()vBcBbbvbvb n
l

m
k

n

l

m

k lklk
nn 11

0 0 ,1,
1

0
1

1)(−
∑
−

=
∑
= +

−− −=−


. (A.49)

Let us inspect v-partial derivatives that are obtained with Equation A.48,

() ()vBuBbn
v
x n

l
m

k

n

l

m
klk

1

0

1

0 ,
1,0 −

∑
=

∑
−

=
∆=

∂
∂ , where lklklk bbb ,1,,

1,0 −=∆ + .

When we take v-partial derivatives, we can treat the u parameter as a constant, saying c.

Taking u = c in Equation A.48, compare Equation A.48 to Equation A.49. After normalised,

these two equations represent the same unit vector. Since c is arbitrary, Equation A.48 is

a v-partial derivative of the Bézier surface x(u,v) at the point (u,v) and Equation A.49

indicates the tangent of a u-isoparametric curve of the Bézier surface x(u,v) at this point.

The u-partial derivative case can be proved straightforward by exchanging u and v and

modifying the relative superscripts and subscripts. We will not give details of its proof.

The proof of Property 5 is accomplished. □

Let us return the proof of remarks at the end of Section A.4.

With Definition 2 and Properties 2, 3, 4, and 5, since both the line passing through 20
01b

and 20
11b and line through 1,1W and xi,j(1/3,0) in Figure A.4 are tangents on the xi,j(u,v)

Appendix 190

patch side, the plane formed with three points, 1,1W , 20
01b and 20

11b is a tangent plane of

the xi,j(u,v) patch at the point xi,j(1/3,0) on the common boundary xi,j(u,0). Thus, the first

remark is true. With the similar reasons, the other remarks are true as well. □

To articulate them, we list these remarks palpably.

▪ On the xi,j(u,v) side, the plane formed with three points, 1,1W , 20
01b and 20

11b , is a

tangent plane of the xi,j(u,v) patch at the point xi,j(1/3,0) on the common boundary

xi,j(u,0).

▪ The plane formed with three points, 1,2W , 20
02b and 20

12b , is a tangent plane of the

xi,j(u,v) patch at the point xi,j(2/3,0) on the common boundary xi,j(u,0).

▪ On the xi,j-1(u,v) patch side, the plane formed with three points, 2,1Ŵ , 20
01b and 20

11b ,

is a tangent plane of the xi,j-1(u,v) patch at the point xi,j(1/3,0) on the common

boundary xi,j(u,0).

▪ The plane formed with three points, 2,2Ŵ , 20
02b and 20

12b is a tangent plane of the

xi,j-1(u,v) patch at the point xi,j(2/3,0) on the common boundary xi,j(u,0).

▪ On the xi,j(u,v) side, the plane formed with three points, 1,1W , 02
10b and 02

11b , is a

tangent plane of the xi,j(u,v) patch at the point xi,j(0,1/3) on the common boundary

xi,j(0,v).

▪ The plane formed with three points, 2,1W , 02
20b and 02

21b , is a tangent plane of the

xi,j(u,v) patch at the point xi,j(0,2/3) on the common boundary xi,j(0,v).

▪ On the xi-1,j(u,v) side, the plane formed with three points, 1,2
~W , 02

10b and 02
11b , is a

tangent plane of the xi-1,j(u,v) patch at the point xi,j(0,1/3) on the common boundary

xi,j(0,v).

▪ The plane formed with three points, 2,2
~W , 02

20b and 02
21b , is a tangent plane of the

xi-1,j(u,v) patch at the point xi,j(0,2/3) on the common boundary xi,j(0,v).

A.6 Analysis of First Order Geometric Continuities

To construct a sufficient condition for two adjacent bi-cubic Bézier patches, we refer to the

scheme of Farin (Farin 1993) to construct a sufficient condition for two adjacent triangular

Bézier patches to be 1G . According to Definition 1, a sufficient condition for two adjacent

bi-cubic Bézier patches is that these two patches have the same tangent planes along

their common boundary curve.

Appendix 191

Following the discussion of Section A.5, we have four cases,

▪ For two patches, xi,j(u,v) and xi,j-1(u,v), the condition of the same tangent plane on

the point xi,j(1/3,0) of the common boundary curve xi,j(u,0) is equivalent to that four

points, 1,1W , 2,1Ŵ , 20
01b and 20

11b , are coplanar.

▪ The condition of the same tangent plane on the point xi,j(2/3,0) is equivalent to that

four points, 1,2W , 2,2Ŵ , 20
02b and 20

12b , are coplanar.

▪ For two patches, xi,j(u,v) and xi-1,j(u,v), the condition of the same tangent plane on

the point xi,j(0,1/3) of the common boundary curve xi,j(0,v) is equivalent to that four

points, 1,1W , 1,2
~W , 02

10b and 02
11b , are coplanar.

▪ The condition of the same tangent planes on the point xi,j(0,2/3) is equivalent to that

four points, 2,1W , 2,2
~W , 02

20b and 02
21b , are coplanar.

All the above four cases are shown in Figure A.4.

Take the case of 1,1W , 2,1Ŵ , 20
01b and 20

11b . Let us inspect 20
01b and 20

11b . It has been

observed that points, 20
01b and 20

11b , are collinear with xi,j(1/3,0). Referring to Figure A.4, if

the coplanarity of 1,1W , 2,1Ŵ , 20
01b and 20

11b is held, this means that when a point moving

and crossing the point xi,j(1/3,0) from one patch (such as xi,j-1(u,v)) to another (xi,j(u,v)) along

the v direction, the moving direction keeps in the same tangent plane without change.

Otherwise, the moving direction changes to another tangent plane and the point’s locus

develops a corner when the point crosses the common boundary between patches,

xi,j-1(u,v) and xi,j(u,v). This leads to a fold along the boundary curve xi,j(u,0) when all the

points of a v-isoparametric curve moving from one patch (such as xi,j-1(u,v)) to another

(xi,j(u,v)).

The sufficient condition of the same tangent plane is further equivalent to that numbers

α and θ exist such that

2,11,1
20

11
20
01

ˆ)1()1(WWbb θθαα −+=−+ . (A.50)

 The geometric meaning of Equation A.50 is illustrated in Figure A.6. The line passing

through two points 1,1W and 2,1Ŵ has an intersection (P) with the line passing through

two points 20
01b and 20

11b . The ratio of lengths of two line segments, [1,1W ,P] and [P, 2,1Ŵ] is

θθ :)1(− , and the ratio of lengths of two line segments, [20
01b ,P] and [P, 20

11b] is αα :)1(− .

To inspect the other three cases, [1,2W , 2,2Ŵ , 20
02b , 20

12b], [1,1W , 1,2
~W , 02

10b , 02
11b], and

Appendix 192

[2,1W , 2,2
~W , 02

20b , 02
21b], we should investigate whether or not different pairs of numbers of

α and θ exist to meet the condition that is replaced with the corresponding coefficients

in Equation A.50 for each of them. Furthermore, considering all the points on a common

boundary curve, to meet the condition of first-order geometric continuity, we have to find

pairs of numbers of α and θ for them. The study of Hoschek and Lasser 1993 provides

the special functions for α and θ to create a practical method to construct control

vertices. The authors of Hoschek and Lasser 1993 state that the special choice of the

factors α and θ may cause that free parameters inside patches are not sufficient to

meet all the boundary conditions. For example, if two adjoining patches are distinct in

shape, or if along their common boundary they have very different ‘radii’, the special

choice of factors α and θ can be too restricted to allow a sharp shape change when

points’ crossing the boundary.

Figure A.6 The Geometric Meaning of the Coplanarity of 1,1W , 2,1Ŵ , 20
01b and 20

11b .

In addition, if factors, α and θ , adopt polynomial functions, they can meet the

conditions of higher-order geometric continuities on common boundaries. However, the

authors of Hoschek and Lasser 1993 indicate that raising the polynomial degrees of factor

functions does not really increase the number of available degrees of freedom for the

design purpose.

By substituting 20
01b , 20

11b , 1,1W , and 2,1Ŵ with Equations A.27, A.28, A.32, and A.34 in

Equation A.50, we derive

() () ())3,23
9
13,13

9
43,3

9
4(jiWjiWjiW ++++α

() () ())3),1(3
9
13,23

9
43,13

9
4)(1(jiWjiWjiW +++++−+ α

() () () ())13),1(3
27
113,23

9
213,13

9
413,3

27
8(++++++++++= jiWjiWjiWjiWθ

() () () ())13),1(3
27
113,23

9
213,13

9
413,3

27
8)(1(−++−++−++−−+ jiWjiWjiWjiWθ . (A.51)

20
01b

20
11b

1,1W

2,1Ŵ

P αα−1
θ

θ−1

Appendix 193

 If we tried to make four points, 20
01b , 20

11b , 1,1W , and 2,1Ŵ , coplanar, equation A.51 should

be met rigorously. Even worse, each point along common boundary curves should meet

their own conditions similar to Equation A.51 with replacement of corresponding

coefficients. This is not practical for the design purpose. For this reason, the PAMA does

not follow this condition on purpose. The following sections present the constructions of

control points with the PAMA.

A.7 Construction of Control Points on Common Boundaries with PAMA

Since cubic Bézier curves are parametric curves, with Equations A.2a-c, we can construct

a composite curve with two cubic Bézier curve segments. In Section 6.2 of Chapter 6, we

have discussed conditions of two Bézier curve segments, T(u) and S(w), 1,0 ≤≤ wu ,

meeting 0G , 1G and 2G . The condition for 0G is that the end point of the first segment

meets with the start point of the second segment. That is, these two points have the same

position. The condition for 1G is that these two segments have the same unit tangent

vector at their common point. The condition for 2G is that these two segments have the

same curvature vector at their common point. Referring to Equations A.2a-c, these

conditions are written as the following equations, which are also called Beta constraints

(Barsky and DeRose 1989),

() ()10 ST = , (A.52a)

() ()10 1 S
du
dT

du
d β= , (A.52b)

and

() () ()110 22

2
2

12

2

S
du
dS

du
dT

du
d ββ += . (A.52c)

These three equations can also be written as Equations 7.1, 7.2 and 7.4. With Beta

constraints, these being Equations A.52a-b, and the geometric approach that is presented

by Farin (Farin 1982), improved by Boehm (Boehm 1985), and applied to Beta-spline

curves by Barsky and DeRose (Barsky and DeRose 1989), the control polygons of cubic

Bézier curve segments with shape parameters 1β and 2β can be generated. Given

original control points V(i)’s, a cubic Bézier segment is constructed between each

adjoining pair of V(i) and V(i+1). The control points, W(j)’s, of cubic Bézier curve segments

are written as the following equations,

() () () () () ()
() () ()111

1)111(13 2
1

2
1

++++
+++++

=+
iii

iViiViiiW
γβγ
γγβ , (A.53a)

Appendix 194

() () () () () ()
() () ()111

1)1(1123 2
1

2
1

++++
+++++

=+
iii

iViiViiiW
γβγ
γγβ , (A.53b)

and

() () () ()
()i

iWiWiiW
1

1

1
132)1(33

β
β

+
+++−

= , (A.53c)

where () ()
() () ())1(2

)1(2

112

1

iii
ii

βββ
βγ

++
+

= .

The geometric meaning is illustrated in Figure A.7. [W(3i),W(3i+1),W(3i+2),W(3(i+1))]

are the control polygon of a cubic Bézier segment. The ratio of lengths of three line

segments, [V(i),W(3i+1)], [W(3i+1),W(3i+2)], and [W(3i+2),V(i+1)], is

() () ()11:1: 2
1 ++ iii γβγ . The ratio of lengths of two line segments, [W(3(i-1)+2),W(3i)] and

[W(3i) ,W(3i+1)], is ()i1:1 β .

Following the discussion in Section A.1, we can state that the condition of 2G of

composite surfaces (Equation A.3c) cannot provide a practical design scheme to join two

adjoining parametric surface patches. However, since the isoparametric curves of Bézier

surfaces are Bézier curves, we can let these curves meet 2G by setting the special

conditions on their second-order partial derivatives. Therefore, in the rest of this section,

we will involve in the 2
2

u∂
∂ and 2

2

v∂
∂ , and in the next section, we will discuss the

vu∂∂
∂2

, also called twist.

Figure A.7 Control Polygon of a Cubic Bézier Segment Generated with the Geometric Approach to Meet 2G .

Referring to three Equations A.52a-b, we can write the equations for points on common

boundary curves of two bi-cubic Bézier patches along the u or v direction, respectively.

Along the u direction, they are

() ()vxvx jiji ,1,0 ,1, −= , (A.54a)

V(i)
V(i+1)

W(3i+1) W(3i+2)
W(3(i-1)+2)

W((3i+1)+2)

() ()112
1 ++ ii γβ()iγ : 1 :

()i1β1 :

W(3i) W(3(i+1))

Appendix 195

() () ()vx
u

jivx
u jiuji ,1,,0 ,11, −∂

∂
=

∂
∂ β , (A.54b)

and

() () () () ()vx
u

jivx
u

jivx
u jiujiuji ,1,,1,,0 ,12,12

2
2
1,2

2

−− ∂
∂

+
∂
∂

=
∂
∂ ββ . (A.54c)

Along the v direction, they are

() ()1,0, 1,, uxux jiji −= , (A.55a)

() () ()1,,0, 1,1, ux
v

jiux
v jivji −∂

∂
=

∂
∂ β , (A.55b)

and

() () () () ()1,,1,,0, 1,21,2

2
2
1,2

2

ux
v

jiux
v

jiux
v jivjivji −− ∂

∂
+

∂
∂

=
∂
∂ ββ . (A.55c)

In the similar way as the curve case, with Equations A.54a-b and setting v = 0, we can

generate points on the common boundary, W(3i+1,3j) and W(3i+2,3j), as shown in Figure

A.8 (a),

() () () () () ()
() () ()jijiji

jiVjijiVjijijiW
uuu

uu

,1,1,1
,1,,),1,11(3,13 2

1

2
1

++++
+++++

=+
γβγ
γγβ , (A.56a)

and

() () () () () ()
() () ()jijiji

jiVjijiVjijijiW
uuu

uuu

,1,1,1
,1),1(,,1,13,23 2

1

2
1

++++
+++++

=+
γβγ
γγβ , (A.56b)

where () ()
() () ()),1(,2,

),1(2,
112

1

jijiji
jiji

uuu

u
u βββ

βγ
++

+
= .

Figure A.8 Generation of Points on Common Boundaries of Bézier Patches. (a) For Points Along the u
Direction; (b) For Points Along the v Direction.

xi-1,j(u, v) xi,j(u, v)

xi,j-1(u, v)

xi,j(u, v)

V(i,j) V(i+1,j) V(i-1,j)

V(i-1,j+1) V(i,j+1) V(i+1,j+1)

V(i-1,j-1) V(i,j-1) V(i+1,j-1)

(a) (b)

W(3i+1,3j)

W(3i+2,3j)

W(3i,3j+2)

W(3i,3j+1)

Appendix 196

With Equations A.55a-b and setting u = 0, we can derive points on the common

boundary, W(3i,3j+1) and W(3i,3j+2), as shown in Figure A.8 (b),

() () () () () ()
() () ()1,1,,1

1,,,)1,1,1(13,3 2
1

2
1

++++
+++++

=+
jijiji

jiVjijiVjijijiW
vvv

vv

γβγ
γγβ , (A.56c)

and

() () () () () ()
() () ()1,1,,1

1,),1(,1,1,23,3 2
1

2
1

++++
+++++

=+
jijiji

jiVjijiVjijijiW
vvv

vvv

γβγ
γγβ , (A.56d)

where () ()
() () ()),1(,2,

),1(2,
112

1

jijiji
jiji

vvv

v
v βββ

βγ
++

+
= .

These equations are just part of the scheme used to yield the first-interpolated points

with the PAMA. They have been given in Section 7.3 of Chapter 7. Equations A56a-d are

also Equations 7.6, 7.7, 7.9, and 7.10.

A.8 Twists and Constructions of Corner Points with PAMA

Twists are the mixed partial derivatives,
vu∂∂

∂2

. The twists of the Bézier surface of degree

(m, n) expressed in Equation A.46 can be deduced with Equation A.47 and the following

equations,

() ()[] () () ()vBuBbbmnvBb
v

uBm
u
x

vvu
x m

k

n

l

n
l

m
klklk

n

l

n
llk

m

k

m
k ∑

−

=
∑
−

=

−−
+∑

=
∑
−

=

− ∆−∆=∆
∂
∂

=






∂
∂

∂
∂

=
∂∂

∂ 1

0

1

0

11
,

0,1
1,

0,1

0 ,
0,11

0

1
2

() ()vBuBbmn n
l

m
k

m

k

n

l lk
111

0

1

0 ,
1,1 −−

∑
−

=
∑
−

=
∆= , (A.57)

where lklklklklk bbbbb ,,11,1,1,
1,1 +−−=∆ ++++ . (A.58)

Let us inspect four points in the twist vector lkb ,
1,1∆ , lklklk bbb ,11,1,1 ,, ++++ , and lkb , . If one of

these four points is a corner of a patch, the twist is an important factor for the geometric

property of the composite surface, as shown in Figure A.9. In this figure, W(3i,3j) is the

corner point.

 For each of four patches, xi-1,j-1(u,v), xi-1,j(u,v), xi,j-1(u,v), and xi,j(u,v), W(3i,3j) has different

indices for Equation A.58. Take the xi,j(u,v) as an example. According to Farin 1993, the

geometric interpretation of the twist at the patch corner, W(3i,3j), is the deviation of the

corner subquadrilateral [W(3i,3j), W(3i,3j+1), W(3i+1,3j+1), W(3i+1,3j)] of the control net

from the tangent plane formed with three boundary points, [W(3i,3j), W(3i,3j+1),

W(3i+1,3j)]. The twist vector lkb ,
1,1∆ is a measure for the deviation of the inside point

Appendix 197

(W(3i+1,3j+1)) from the tangent plane at the corner (W(3i,3j)). Analogously, we can write

the twist vectors for four patches, xi-1,j-1(u,v), xi,j-1(u,v), xi-1,j(u,v), and xi,j(u,v) respectively, as

),2)1(3,2)1(3()2)1(3,3()3,2)1(3()3,3()2)1(3,2)1(3(1,1 +−+−++−−+−−=+−+−∆ jiWjiWjiWjiWjiW

)2)1(3,3()2)1(3,13()3,3()3,13()2)1(3,3(1,1 +−++−+−−+=+−∆ jiWjiWjiWjiWjiW ,

)3,2)1(3()3,3()13,2)1(3()13,3()3,2)1(3(1,1 jiWjiWjiWjiWjiW +−+−++−−+=+−∆ ,

and

)3,3()3,13()13,3()13,13()3,3(1,1 jiWjiWjiWjiWjiW ++−+−++=∆ .

Figure A.9 Control Points Related to Twists at Four Patch Corners.

 The 1C patches have the same twist along the common boundary on both sides,

especially the same four twists at the corner (Farin 1993). Therefore, it is restrictive to

have the same twist at the corner for four adjoining patches and for two adjoining patches

along common boundary curves. For this reason, the PAMA does not exert the condition

of the same twists at the corner of four adjoining patches.

In general, control points along both u and v directions have effects on corner points and

should be considered at the same time. Referring to Equation A.53c, the PAMA blends the

effects of control points along u and v directions into one equation with the linear

interpolation, which is written as

() =jiW 3,3

() ()jiji
jiWjiWjijiWjiWji

vu

vu

,,2
)13,3()2)1(3,3(),()3,13()3,2)1(3(),(

11

11

ββ
ββ
++

+++−++++−
. (A.59)

 Equation A.59 is also Equation 7.11 in Chapter 7.

In Section A.7 and Figure A.7, we have discussed the construction of the intersection

xi-1,j(u, v)

xi-1,j-1(u, v) xi,j-1(u, v)

xi,j(u, v)

W(3(i-1)+2,3j)

W(3i+1,3j)

W(3i+1,3j+1)

W(3i+1,3(j-1)+2)

W(3(i-1)+2,3j+1)

W(3(i-1)+2,3(j-1)+2)

W(3i,3j+1)

W(3i,3(j-1)+2)

W(3i,3j)

Appendix 198

(W(3i)) of two Bézier line segments with the method of Frain, Boehm, Barsky and DeRose

(Barsky and DeRose 1989, Boehm 1985, and Farin 1982). To see it clearly, we re-write

Equation A.59 as follows,

() () () +
+

+++−
⋅

++
+

=
),(1

)3,13()3,2)1(3(),(
,,2

),(13,3
1

1

11

1

ji
jiWjiWji

jiji
jijiW

u

u

vu

u

β
β

ββ
β

() ()),(1
)13,3()2)1(3,3(),(

,,2
),(1

1

1

11

1

ji
jiWjiWji

jiji
ji

v

v

vu

v

β
β

ββ
β

+
+++−

⋅
++

+

() () () () ())3,3(~
,,2

),(13,3
,,2

),(1

11

1

11

1 jiW
jiji

jijiW
jiji

ji

vu

v

vu

u ⋅
++

+
+⋅

++
+

=
ββ

β
ββ

β , (A.60)

where ()
),(1

)3,13()3,2)1(3(),(3,3
1

1

ji
jiWjiWjijiW

u

u

β
β

+
+++−

= and

),(1
)13,3()2)1(3,3(),()3,3(~

1

1

ji
jiWjiWjijiW

v

v

β
β

+
+++−

= .

In Equation A.60,)3,3(jiW is constructed along the u direction in the sense of Equation

A.53c since the common boundary curve along the u direction is not only a

v-isoparametric curve but also a Bezier curve.)3,3(~ jiW is constructed along the v

direction in the sense of Equation A.53c because the common boundary curve along the v

direction is both a u-isoparametric curve and Bezier curve. The geometric meaning of

Equation A.60 is shown in Figure A.10. The ratio of lengths of two line segments,

[W(3(i-1)+2,3j),)3,3(jiW], and [)3,3(jiW ,W(3i+1,3j)], is ()jiu ,:1 1β . The ratio of lengths of

two line segments, [W(3i,3(j-1)+2),)3,3(~ jiW] and [)3,3(~ jiW ,W(3i,3j+1)], is ()jiv ,:1 1β . The

ratio of lengths of two line segments, [)3,3(jiW ,W(3i,3j)] and [W(3i,3j),)3,3(~ jiW], is

)),(1(:)),(1(11 jiji uv ββ ++ .

Figure A.10 Geometric Meaning of Equation A.60.

W(3i,3j)
W(3(i-1)+2,3j) W(3i+1,3j)

W(3i,3(j-1)+2)

W(3i,3j+1)
V(i,j)

)3,3(jiW

)3,3(~ jiW

()jiu ,1β

()jiv ,1β

1 :

1 :

Appendix 199

A.9 Constructions of Inside Points with PAMA

In Figure A.2, we can see four inside points in the patch xi,j(u,v) are W(3i+1,3j+1),

W(3i+2,3j+1), W(3i+1,3j+2), and W(3i+2,3j+2). To follow the construction of the

intersection (W(3i)) of two Bézier line segments with the method of Frain, Boehm, Barsky

and DeRose (Barsky and DeRose 1989, Boehm 1985, and Farin 1982), we have to

consider two issues. One issue is that each of these four points should meet the

constraints of geometric continuities on u and v parameters. The other issue is that the

shape parameters, ()jiu ,1β , ()jiv ,1β , ()jiu ,2β , and ()jiv ,2β , should vary along common

boundary curves. Let us analyse these two issues, respectively.

If the first issue was met rigorously, the composite surface would be constructed with

lower shaping freedom because it would be reduced to B-spline surfaces that hold higher

parametric continuities but lower shaping freedom. We have observed that the higher

shaping freedom comes from shape parameters. Thus, in the PAMA, the first issue is dealt

with by blending the variations of points along both u and v directions with the method of

Frain, Boehm, Barsky and DeRose (Barsky and DeRose 1989, Boehm 1985, and Farin

1982) and the bisection interpolation.

If the second issue was met seriously, we should interpolate shape parameters for

points along common boundary curves with shape parameters of original points (V(i,j)),

which would increase the multiplication computations. In the PAMA, shape parameters

that are not available take approximately the values of shape parameters that are

available and nearest to them in the position. For example, shape parameters of W(3i,3j+1)

take the shape parameter values of V(i,j), and those of W(3i+2,3j) take the shape

parameter values of V(i+1,j).

The construction equations of W(3i+1,3j+1), W(3i+2,3j+1), W(3i+1,3j+2), and

W(3i+2,3j+2) with the PAMA are written as

() () ()() () () ()
() () () +

+⋅+++
++⋅++⋅+⋅++

⋅=++
jijiji

jiWjijiWjijijiW
uuu

uuu

,1,1,0.1
13),1(3,13,3,1,10.1(

2
113,13 2

1

2
1

γβγ
γγβ

() ()() () () ()
() () ())

1,1,,0.1
)1(3,13,3,131,1,0.1

2
1

2
1

+⋅+++
++⋅++⋅+⋅++

jijiji
jiWjijiWjiji

vvv

vvv

γβγ
γγβ ; (A.61)

() =++ 23,13 jiW

() ()() () () ()()
() () ()1,11,11,0.1

23,131,23,31,11,10.1(
2
1

2
1

2
1

++⋅+++++
++⋅+++⋅++⋅+++

⋅
jijiji

jiWjijiWjiji

uuu

uuu

γβγ
γγβ

() () () ()() ()()
() () ())

1,1,,0.1
13,13,0.13,131,1,

2
1

2
1

+⋅+++
++⋅+++⋅+⋅+

+
jijiji

jiWjijiWjiji

vvv

vvv

γβγ
γγβ ; (A.62)

() =++ 13,23 jiW

Appendix 200

() () () ()() ()()
() () ()jijiji

jiWjijiWjiji

uuu

uuu

,1,1,0.1
13,13,0.113,3,1,1(

2
1

2
1

2
1

+⋅+++
++⋅+++⋅+⋅+

⋅
γβγ
γγβ

() () () ()
() () ())

1,11,1,10.1
)1(3,23),1(3,23)1,11,10.1(

2
1

2
1

++⋅+++++
++⋅+++⋅++⋅+++

+
jijiji

jiWjijiWjiji

vvv

vvv

γβγ
γγβ ; (A.63)

and

() =++ 23,23 jiW

() () () ()() ()()
() () ()1,11,11,0.1

23,131,0.123,31,11,1(
2
1

2
1

2
1

++⋅+++++
++⋅++++⋅++⋅++

⋅
jijiji

jiWjijiWjiji

uuu

uuu

γβγ
γγβ

() () () ()() ()()
() () ())

1,11,1,10.1
13,23,10.13,231,11,1

2
1

2
1

++⋅+++++
++⋅++++⋅++⋅++

+
jijiji

jiWjijiWjiji

vvv

vvv

γβγ
γγβ . (A.64)

 Equations A.61, A.62, A.63, and A.64 are also Equations 7.12, 7.13, 7.14, and 7.15 in

Chapter 7, respectively.

A.10 Summarising PAMA’s Continuities

Inside a bi-cubic Bézier patch, xi,j(u,v), it is naturally 2C continuous. Thus, we just focus

on the continuities of points on boundaries, which join different patches. Figure A.4

illustrates these neighbouring patches and boundary curves.

A.10.1 For 0G

According to Equation A.3a, along a common boundary curve between two joined patches,

these two patches agree with each other. Thus, the condition of 0C continuity (and also
0G) is met for the global composite surface stitched with the PAMA.

A.10.2 For 1G

According to the analysis in Section A.6, the PAMA does not exert the sufficient condition

of the 1G at all the points along common boundary curves. In this way, it brings the

following advantages,

▪ Four more degrees of freedom are added to the shape variation of surfaces for

design purposes by shape parameters, ()jiu ,1β , ()jiv ,1β , ()jiu ,2β , and ()jiv ,2β .

▪ More types of shapes remain, besides the shapes that the continuous tangent

planes along common boundary curves can provide. For example, the sharp

change across two patches is retained, which can form folds along common

boundary curves. In Figure A.11, the connection side of the clamshell box (marked

with a red arrow) is constructed in this way. Figures A.11a and A.11b show the

Appendix 201

wire-frame and filled-area views of the same box, respectively. The sharp folds

cannot be provided by the 1G surfaces.

Figure A.11 The Sharp Fold along the Connection Side of (a) Wire-frame View and (b) Filled-area View of a
Clamshell Box, Marked with Red Arrows.

A.10.3 For 2G

Following the discussion of Sections A.7-A.9, with the scrupulous construction scheme of

the PAMA, the composite surfaces are maintained in a sense of the approximate 2G

along the u- and v-isoparametric curves. The benefits are that the effects of changing four

shape parameters, ()jiu ,1β , ()jiv ,1β , ()jiu ,2β , and ()jiv ,2β , independently are

distinguishable, which have been introduced in Section 7.4 of Chapter 7. Even better, they

are analogous to their corresponding ones in curve cases. That is, ()jiu ,1β and ()jiv ,1β

have the skewing effect (that is called ‘bias’ in Barsky 1984), and ()jiu ,2β , and ()jiv ,2β

have the tenseness effect (that is called ‘tension’ in Barsky 1984). In addition, these

effects are orientated towards u or v direction, respectively. These are useful for the

design purpose.

A.10.4 For 1C

We have known in Section A.1 that for 1C , the first partial derivatives agree along and

across the common boundary curve between two neighbouring Bézier patches (Hoschek

and Laser 1993).

With Properties 3, 4, and 5, it is straightforward to prove that the first partial derivatives

agree naturally along a common boundary curve between two adjoining Bézier patches

because the common boundary curve is a Bézier curve. They are also met by the PAMA

because the PAMA is used to construct the control net for Bézier patches.

If expressed with formulas, the condition of the first partial derivatives of two adjoining

patches agree across the common curves are written as the following equations. Referring

to Figure A.4, along the u-isoparametric curve, xi,j(0,v), it is

(a) (b)

Appendix 202

() ()vx
u

vx
u jiji ,0,1 ,,1 ∂

∂
=

∂
∂

− ; (A.65a)

along the v-isoparametric curve, xi,j(u,0), it is

() ()0,1, ,1, ux
v

ux
v jiji ∂

∂
=

∂
∂

− . (A.65b)

The PAMA does not place the constraints of the first partial derivatives agreeing across

common boundary curves on control points.

These are the summary for the PAMA’s continuities.

References

Abbasinejad, F., Joshi, P., Grimm, C., Amenta, N., and Simons, L. (2013) Surface patches for 3D
sketching. Proceedings of the 2013 International Symposium on Sketch-Based Interfaces and
Modeling, SBIM’13, pp 53-60.

Altera Corporation (2008a) User Guide for Altera Embedded Systems Development Kit, Cyclone III
Edition. http://www.altera.com. Site accessed on 16 Feb 2013.

Altera Corporation (2008b) AN 527: Implementing an LCD Controller. http://www.altera.com. Site
accessed on 16 Feb 2013.

Altera Corporation (2012) Cyclone III Device Handbook Volume 1-2. http://www.altera.com. Site
accessed on 16 Feb 2013.

Altera Corporation (2013) ACEX 1K and FLEX 10K Data sheets. http://www.altera.com. Site
accessed on 16 Feb 2013.

Amdahl, G. (1967) Validity of the single processor approach to achieving large scale computing
capabilities. Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS’67, ACM, pp 483–485.

Angle, E. and Shreiner, D. (2008) An interactive introduction to OpenGL and OpenGL ES
programming. ACM SIGGRAPH Asia 2008 Courses, Article No 2.

Arden, W.M. (2002) The international technology roadmap for semiconductors – perspectives and
challenges for the next 15 years. Current Opinion in Solid State and Materials Science, 6 (5)
371-377.

Awad, M. (2009) FPGA supercomputing platforms: a survey. Proceedings of International
Conference on the 2009 Field Programmable Logic and Applications, FPL2009, pp 564-568.

Baladron, J., Fasoli, D., and Faugeras, O.D. (2012) Three applications of GPU computing in
neuroscience. Computing in Science & Engineering, 14 (3) 40-47.

Barr, A.H. (1984) Global and local deformations of solid primitives. Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’84, 18 (3) 21-30.

Barsky, B.A. (1984) A description and evaluation of various 3-D models. IEEE Computer Graphics
and Applications, 4 (1) 38-52.

Barsky, B.A. and DeRose, T.D. (1989) Geometric continuity of parametric curves: Three equivalent
characterizations. IEEE Computer Graphics and Applications, 9 (6) 60-68.

Barsky, B.A. and DeRose, T.D. (1990) Geometric continuity of parametric curves: Constructions of
geometrically continuous splines. IEEE Computer Graphics and Applications, 10 (1) 60-68.

Berekovic, M., Pirsch, P., Selinger, T., Wels, K.-I.I., Miro, C., Lafage, A., Heer C., and Ghigo, G.
(2000) Co-processor architecture for MPEG-4 main profile visual compositing. Proceedings of
the 2000 IEEE International Symposium on Circuits and Systems, ISCAS 2000, 2, pp 180-183.

Bernstein, A. J. (1966) Analysis of programs for parallel processing. IEEE Transactions on
Electronic Computers, EC-15 (5) 757–763.

Bliss, F.W. (1980) Interactive computer graphics at Fort Motor Company. Proceedings of the 7th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’80, pp
218-224.

References 204

Boehm, W. (1985) Curvature continuous curves and surfaces. Computer Aided Geometric Design, 2
(4) 313-323.

Bolz, J. and Schroder, P. (2002) Rapid evaluation of Catmull-Clark subdivision surfaces.
Proceedings of the Seventh International Conference on 3D Web Technology, Web3D’02, pp
11-17.

Bonnel, N. and Marteau, P.-F. (2012) LNA: fast protein structural comparison using a Laplacian
characterization of Tertiary structure. IEEE/ACM Transaction on Computational Biology and
Bioinformatics, 9 (5) 1451-1458.

Botsch, M. and Sorkine, O. (2008) On linear variational surface deformation methods. IEEE
Transactions on Visualization and Computer Graphics, 14 (1) 213-230.

Carpinelli, J. D (2002) Computer systems organization and architecture. People’s Posts and
Telecommunications Publishing House, Beijing, China.

Catmull, E. and Clark, J. (1978) Recursively generated B-spline surfaces on arbitrary topological
meshes. Computer Aided Design, 10 (6) 350-355.

Cevik, U. (2004) Design and implementation of an FPGA-based parallel graphics renderer for
displaying CSG surfaces and volumes. Computers and Electrical Engineering, 20 97-117.

Chelton, W.N. and Benaissa, M. (2008) Fast elliptic curve cryptography on FPGA. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 16 (2) 198-205.

Chen, T.-H., Lu, S.-Y., Lin, C.-M., Hsu, W.-K., and Fang, W. (2008) Carbon nanotube arrays on
flexible substrate and their field emission characteristics. Proceedings of the 2008 IEEE 21st
International Conference on Micro Electro Mechanical Systems, MEMS 2008, pp 697-700.

Cheng, F. and Goshtasby, A. (1989) A parallel B-spline surface fitting algorithm. ACM Transactions
on Graphics, 8 (1) 41-50.

Choe, J.W., Nikoozadeh, A., Oralkan, O., and Khuri-Yakub, B.T. (2013) GPU-based real-time
volumetric ultrasound image reconstruction for a ring array. IEEE Transactions on Medical
Imaging, 32(7) 1258-1264.

Chrysos, G., Sotiriades, E., Rousopoulos, C., Dollas, A., Papadopoulos, A., Kirmitzoglou, I.,
Promponas, V., Theocharides, T., Petihakis, G., Lagnel, J., Vavylis, P., and Kotoulas, G. (2012)
Opportunities from the use of FPGAs as platforms for bioinformatics algorithms. Proceedings
of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering, BIBE 2012,
pp 559-565.

Chua, C. and Neumann, U. (2000) Hardware-accelerated free-form deformation. Proceedings of the
2000 ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS 2000, pp
33-39.

Ciletti, M.D. (2004) Advanced Digital Design with the Verilog HDL. Publishing House of Electronics
Industry, Beijing, China.

Clack, B. and Keyser, J. (2013) Physical simulation of an embedded surface mesh involving
deformation and fracture. Proceedings of the 2013 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, I3D’13, pp 189.

Constantinides, G.A. and Nicolici, N. (2011) Guest editors’ introduction: surveying the landscape of
FPGA accelerator research. IEEE Design & Test of Computers, 28 (4) 6-7.

Cunningham, S. (2008) Computer Graphics Programming in OpenGL for Visual Communication.
China Machine Press, Beijing.

Daga, M., Feng, W., and Scogland, T. (2011) Towards accelerating molecular modeling via
multi-scale approximation on a GPU. Proceedings of the 2011 IEEE 1st International
Conference on Computational Advances in Bio and Medical Sciences, ICCABS, pp 75-80.

DeGroat, J.E., Reehal, G., and Nagarjuna, S. (2008) Synthesizing FPGA digital modules for
software defined radio. Proceedings of the 2008 IEEE National Aerospace and Electronics
Conference, NAECON 2008, pp 358-362.

References 205

Deng, C. and Ma W. (2013) A unified interpolatory subdivision scheme for quadrilateral meshes.
ACM Transactions on Graphics, 32 (3) Article No. 23.

Dewitt, D. and Gray, J. (1992) Parallel database systems: the future of high performance database
systems. Communications of the ACM, 35 (6) 85-98.

Doo, D.W.H. and Sabin, M.A. (1978) Behaviour of recursive subdivision surfaces near extraordinary
points. Computer-Aided Design, 10 (6) 356-360.

Dubois, J. and Mattavelli, M. (2003) Embedded co-processor architecture for CMOS based image
acquisition. Proceedings of the 2003 IEEE International Conference on Image Processing,
ICIP 2003, 3, pp II-591-594.

Dubuluowen, B.A., Roweikefu, C.N., and Fumingke, A.T. (2006) Modern Geometry – Methods and
Applications, Part I: The Geometry of Surfaces, Transformation Groups and Fields. High
Education Press, Beijing, China.

Duchamp, T. and Stuetzle, W. (2003) Spline smoothing on surfaces. Journal of Computational and
Graphical Statistics, 12 (2) 354-381.

Efremov, A., Havran, V., and Seidel H. (2005) Robust and numerically stable Bézier clipping method
for ray tracing NURBS surfaces. Proceedings of the 21st Spring Conference on Computer
Graphics, SCCG’05, pp 127-135.

Egashira, A., Satoh, S., Irie, H., and Yoshinaga, T. (2012) Parallel numerical simulation of visual
neurons for analysis of optical illusion. Proceedings of 2012 Third International Conference on
Networking and Computing, ICNC, pp 130-136.

El-Ghazawi, T.A., El-Araby, E., Huang, M., Gaj, K., Kindratenko, V., and Buell, D. (2008) The
promise of high-performance reconfigurable computing. IEEE Computer, 41 (2) 78-85.

Farin, G. (1982) Visually C2 cubic splines. Computer Aided Design, 14 (3) 137-139.

Farin, G. (1993) Curves and Surfaces for Computer Aided Geometric Design, a Practical Guide, 3rd
Ed. Academic Press, Inc. New York.

Ferguson, R.S. (2001) Practical algorithms for 3D computer graphics. A K Peters, Ltd. Natick,
Massachusetts.

Forsey, D.R. and Bartels, R.H. (1988) Hierarchical B-spline refinement. ACM SIGGRAPH Computer
Graphics, 22 (4) 205-212.

Franchini, S., Gentile, A., Sorbello, F., Vassallo, G., and Vitabile, S. (2008) An FPGA
Implementation of a quadruple-based multiplier for 4D Clifford algebra. Proceedings of the 11th
Euromicro Conference on Digital System Design Architectures, Methods and Tools, pp
743-751.

Frisvad, J.R., Christensen, N.J., and Falster, P. (2007) The Aristotelian rainbow: from philosophy to
computer graphics. Proceedings of the 5th International Conference on Computer Graphics and
Interactive Techniques in Australia and Southeast Asia, GRAPHITE’07, pp 119-128.

Gao, L. and Long, T. (2008) Spaceborne digital signal processing system design based on FPGA.
Proceedings of the 2008 Congress on Image and Signal Processing, CISP’08, pp 577-581.

Ghasemzadeh, H., Ostadabbas, S., Guenterberg, E., and Pantelopoulos, A. (2013) Wireless
Medical-embedded systems: a review of signal-processing techniques for classification. IEEE
Sensors Journal, 13 (2) 423-437.

Gorski, P., Golatowski, F., Behnke, R., Fabian, C., Thurow, K., and Timmermann, D. (2010)
Wireless sensor networks in life science applications. Proceedings of 2010 3rd Conference on
Human System Interactions, HSI, pp 594-598.

Grama, A., Gupta, A., Karypis, G., and Kumar, V. (2003) Introduction to Parallel Computing, 2nd Ed.
China Machine Press, Beijing.

Green, P.N. and Edwards, M.D. (2000) Object oriented development method for reconfigurable
embedded systems. IEE Proceedings – Computers and Digital Techniques, 147 (3) 153-158.

References 206

Gustafson, J.L. (1988). Reevaluating Amdahl's Law. Communications of the ACM, 31 (5) 532–533.

Guthe, M., Balazs, A., and Klein, R. (2005) GPU-based trimming and tessellation of NURBS and
T-spline surfaces. Proceedings of the 32nd International Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 2005, pp 1016-1023.

Hagen, H. (1986) Bézier-curves with curvature and torsion continuity. Journal of Mathematics, 16 (3)
629-638.

Hartman, N.W., Connolly, P.E., Gilger, J.W., Bertoline, G.R., and Heisler, J. (2006) Virtual
reality-based spatial skills assessment and its role in computer graphics education.
Proceedings of SIGGRAPH’06 Educators Program, Article No. 46.

Hearn, D., Baker, M.P., and Carithers W.R. (2011) Computer Graphics with OpenGL, 4th Ed.
Pearson Education, Upper Saddle River, New Jersey.

Henzinger, T.A. and Sifakis, J. (2007) The discipline of embedded systems design. Computer, 40
(10) 32-40.

Hohmeyer, M.E. and Barsky, B.A. (1989) Rational continuity: parametric, geometric, and Frenet
Frame continuity of rational curves. ACM Transactions on Graphics, 8 (4) 335-359.

Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., Mcdonald, J., Schweitzer, J., and
Stuetzle, W. (1994) Piecewise smooth surface reconstruction. Proceedings of the 21nd
International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’ 94,
pp 295-302.

Hoschek, J. and Lasser, D. (1993) Fundamentals of Computer Aided Geometric Design. A K Peters,
Ltd. Wellesley, Massachusetts.

House, D.H. (1996) Overview of three-dimensional computer graphics. ACM Computing Surveys,
CSUR, 28 (1) 145-148.

Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L., Teng, S., Bao, H., Guo, B., and Shum, H. (2006)
Subspace gradient domain mesh deformation. ACM Transactions on Graphics, 25 (3)
1126-1134.

Huang, M., Serres, O., El-Ghazawi, T.A., and Newby, G.B. (2009) Parameterized hardware design
on reconfigurable computers: an image registration case study. Proceedings of the 2009 5th
Southern Conference on Programmable Logic, SPL’09, pp 71-76.

Jiang, G., Chen, H., and Yoshihira, K. (2006) Discovering likely invariants of distributed transaction
systems for autonomic system management. Proceedings of IEEE International Conference on
Autonomic Computing, ICAC’06, pp 199-208.

Joe, B. (1990) Knot insertion for Beta-spline curves and surfaces. ACM Transactions on Graphics, 9
(1) 41-45.

Jonker, P. and Vogelbruch, J. (1997) The CC/IPP, and MIMD-SIMD architecture for image
processing and pattern recognition. Proceedings of 1997 Fourth IEEE International Workshop
of Computer Architecture for Machine Perception, CAMP97, pp 33-39.

Kahng, A.B. (2013) Product futures. IEEE Design & Test of Computers, 28 (6) 88-89.

Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., Jones, E.P.C., Madden, S.,
Stonebraker, M., Zhang, Y., Hugg, J., and Abadi, D.J. (2008) H-store: a high-performance,
distributed main memory transaction processing system. Proceedings of the VLDA Endowment,
1 (2) 1496-1499.

Kalomiros, J.A. and Lygouras, J. (2007) A host/co-processor FPGA-based architecture for fast
image processing. Proceedings of IEEE International Workshop on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications, Dortmund, Germany,
September, 2007, pp 373-378.

Karol, G., Aleksandra, F., Agata, J., and Andrzej, R. (2011) Parallel simulation of stochastic denritic
neurons using NVidia GPUs with CUDA C. Proceedings of the 2011 18th International
Conference of Mixed Design of Integrated Circuits and Systems, MIXDES, pp 614-617.

http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html�
http://en.wikipedia.org/wiki/Communications_of_the_ACM�

References 207

Kasik, V. and Chvostkova, Z. (2013) FPGA in technical resources of medical imaging. Proceedings
of 2013 IEEE 11th International Symposium on Applied Machine Intelligence and Informatics,
SAMI 2013, pp 193-196.

Kazakov, M. (2007) Catmull-Clark subdivision for geometry shaders. Proceedings of the 2007 ACM
5th International Conference on Computer Graphics, Virtual Reality, Visualisation and
Interaction in Africa, AFRIGRAPH’07, pp 77-84.

Kelly, M. and Hsu, K. W. (1998) A flexible pipelined image processor. Proceedings of the 1998
Eleventh Annual IEEE International ASIC Conference, pp 325-332.

KHRONOS Group, Connecting Software to Silicon (2013) OpenGL ES Standard.
http://www.khronos.org/opengles/. Site accessed on 16 Feb 2013.

Kilgard, M. (1997) Realizing OpenGL: two implementations of one architecture. Proceedings of 1997
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp 45-55.

Kilgard, M. J. and Akeley, K. (2008) Modern OpenGL: its design and evolution. The 1st ACM
SIGGRAPH Conference and Exhibition in Asia, SIGGROPH Asia 2008 Courses, Article No. 13.

Kim, H., Park, J., Yoon, J., Kim, S., and Kim, L. (2012) A 1mJ/frame unified media application
processor with a 179.7pJ mixed-mode feature extraction engine for embedded 3D-media
contents processing. Proceedings in 2012 IEEE Custom Integrated Circuits Conference, CICC,
pp 1-4.

Kim, J.K., Fessler, J.A. and Zhang, Z. (2012) Forward-projection architecture for fast iterative image
reconstruction in X-ray CT. IEEE Transactions on Signal Processing, 60 (10) 5508-5518.

Konrad, S., Cheng, B.H.C., and Campbell, L.A. (2004) Object analysis patterns for embedded
systems. IEEE Transactions on Software Engineering, 30 (12) 970-992.

Krishnakumar, Y., Prasad, T.D., Kumar, K.V.S., Raju, P., and Kiranmai, B. (2011) Realization of a
parallel operating SIMD-MIMD architecture for image processing application. Proceedings of
IEEE 2011 International Conference on Computer, Communication and Electrical Technology,
ICCCET.2011, pp 98-102.

Krone, M., Bidmon, K., and Ertl, T. (2009) Interactive visualization of molecular surface dynamics.
IEEE Transactions on Visualization and Computer Graphics, 15 (6) 1391-1398.

Kuehne, B., True, T., Commike, A., and Shreiner, D. (2005) Performance OpenGL: platform
independent techniques or “a bunch of good habits that will help the performance of any
OpenGL program”. The 32nd International Conference on Computer Graphics and Interactive
Techniques, SIGGROPH 2005 Courses, Article No. 1.

Lampe, O.D., Viola, I., Reuter, N., and Hauser, H. (2007) Two-level approach to efficient
visualization of protein dynamics. IEEE Transactions on Visualization and Computer Graphics,
13 (6) 1616-1623.

Lawrence, J. and Funkhouser, T. (2003) A painting interface for interactive surface deformations.
Proceedings of 11th Pacific Conference on Computer Graphics and Applications, pp 141-150.

Leon, S.J. (2007) Linear Algebra with Applications. China Machine Press, Beijing, China.

Lin, S., You, F., Luo, X., and Li, Z. (2008) Deducing interpolation subdivision schemes from
approximating subdivision schemes. SIGGRAPH Asia 2008, ACM Transactions on Graphics,
27 (5) Article 146.

Li, X., Liu, B., and Wu, E. (2006) Double projective cylindrical texture mapping on FPGA.
Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its
Applications, VRCIA’06, pp 91-97.

Li, Z., Ma, L., and Tan, W. (2006) Three-dimensional object reconstruction from contour lines.
Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its
Applications, VRCIA’06, pp 319-322.

References 208

Liu, J.-H., Chen, J., Tsai, Y.-C., Tai, Y.-C., and Shih, C.-H. (2012) Supporting audio streaming in
application cloud for embedded systems. Proceedings of the 2012 IEEE 14th International
Conference on High Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems, HPCC-ICESS, pp 1800-1805.

Liu, X., Xu, W., Guan, Y., and Shang, Y. (2009) Trigonometic polynomial uniform B-spline surface
with shape parameter. Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, ICIS’09, pp 1357-1363.

Liu, Y.-K., Yue, Y., Maple, C., Tang, H., and Guo, M. (2009) Comparison between two solutions on
fast Fourier Transform Algorithm: software and hardware. Proceedings of the 15th International
Conference on Automation and Computing, ICAC’09, Luton, the U.K., pp 98-103.

Loop, C.T. and DeRose, T.D. (1989) A multisided generalization of Bézier surfaces. ACM
Transactions on Graphics, 8 (3) 204-234.

Loop, C. and DeRose, T. (1990) Generalized B-spline surfaces of arbitrary topology. ACM
SIGGRAPH Computer Graphics, 24 (4) 347-356.

Loop, C. (1994) Smooth spline surfaces over irregular meshes. Proceedings of the 21nd International
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’ 94, pp 303-310.

Lopez-Ongil, C., Garcia-Valderas, M., Portela-Garcia, M., and Entrena-Arrontes, L. (2005) An
autonomous FPGA-based emulation system for fast fault tolerant evaluation. Proceedings of
2005 International Conference on Field Programmable Logic and Applications, pp 379-402.

Losh, E. (2006) Making things public: democracy and government-funded videogames and virtual
reality simulations. Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames, pp
123-132.

Luebke, D. and Humphreys, G. (2007) How GPUs work. Computer, 40 (2) 96-100.

MacLean, W.J. (2005) An evaluation of the suitability of FPGAs for embedded vision systems.
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR’05, pp 131-137.

Martin, T., Cohen E., and Kirby M. (2008) Volumetric parameterization and trivariate b-spline fitting
using harmonic functions. Proceedings of the 2008 ACM Symposium on Solid and Physical
Modelling, SPM’08, pp 269-280.

Martinez, P. and Chalmers, A. (2004) Using computer graphics in archaeology: a struggle for
educative science or to educate science? Proceedings of SIGGRAPH’04 Educators Program,
pp 35.

Massey, T., Dabiri, F., Jafari, R., Noshadi, H., Brisk, P., Kaiser, W., and Sarrafzadeh, M. (2007)
Towards reconfigurable embedded medical systems. Proceedings of 2007 Joint Workshop on
High Confidence Medical Devices software, and Systems and Medical Device Plug-and-Play
Interoperability, HCMDSS-MDPnP 2007, pp 178-180.

Melnikova, O., Hahanova, I., and Mostovaya, K. (2009) Using multi-FPGA systems for ASIC
prototyping. Proceedings of the 2009 10th International Conference – The Experience of
Designing and Applications of CAD Systems in Microelectronics, CADSM 2009, pp 237-239.

Mohan, C., Lindsay, B., and Obermarck, R. (1986) Transaction management in the R* distributed
database management system. Transactions on Database Systems, 11 (4) 378-396.

Monmasson, E. and Cirstea, M.N. (2007) FPGA design methodology for industrial control systems –
a review. IEEE Transactions on Industrial Electronics, 54 (4) 1824-1842.

Müller, K., Fünfzig, C., Reusche, L., Hansford, D., Farin, G., and Hagen H. (2010) Dinus: double
insertion, nonuniform, stationary subdivision surfaces. ACM Transactions on Graphics, 29 (3)
Article 25.

Müller, K., Reusche, L., and Fellner, D. (2006) Extended subdivision surfaces: building a bridge
between NURBS and Catmull-Clark surfaces. ACM Transactions on Graphics, 25 (2) 268-292.

References 209

Nagendra, C., Owens, R.M., and Irwin, M.J. (1993) Digit systolic algorithms for fine-grain
architectures. Proceedings of the 1993 International Conference on Application-Specific Array
Processors, pp 466-477.

Nahum, D.G. (1996) How can SIGGRAPH be more effective in promoting computer graphics?
(panel). Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH’96, pp 497-498.

Nasri, A.H. (1987) Polyhedral subdivision methods for free-form surfaces. ACM Transactions on
Graphics, 6 (1) 29-73.

Nasri, A.H. and Abbas, A.M. (2002) Lofted Catmull-Clark subdivision surfaces. Proceedings of the
2002 IEEE Geometric Modelling and Processing – Theory and Applications, pp 83-93.

National Instuments Corporation (2007) LabVIEW System Identification Toolkit.
http://www.ni.com/white-paper/3584/en. Site accessed on 16 Feb 2013.

Nickolls, J. and Dally, W.J. (2010) The GPU computing era. Micro, IEEE, 30 (2) 56-69.

Nomoto, S., Kyo, S., and Okazaki, S. (2011) A dynamic SIMD/MIMD mode switching processor for
embedded real-time image recognition systems. Proceedings of the 2011 IEEE Asian Solid
State Circuits Conference, A-SSCC, pp 17-20.

Owens, J.D., Huston, M., Luebke, D., Green, S., Stone, J.E., and Phillips, J.C. (2008) GPU
computing. Proceedings of the IEEE, 96 (5) 879-899.

Pan, Z., Heng, P., and Lau, R.W.H. (2000) Computer graphics around the world: computer graphics
in Hong Kong, ACM SIGGRAPH Computer Graphics, 34 (1) 15-19.

Patashev, T., Abla, G., and Govind, N. (2000) Simulation of hardware support for OpenGL graphics
architecture. Proceedings of the 2000 International Conference on Information Technology:
Coding and Computing, pp 295.

Patney, A., Ebeida, M.S., and Owens, J.D. (2009) Parallel view-dependent tessellation of
Catmull-Clark subdivision surfaces. Proceedings of the 2009 Conference on High Performance
Graphics, HPG’09, pp 99-108.

Paul, B. (2013), The Mesa 3D Graphics Library. http://www.mesa3d.org/intro.html;
ftp://ftp.freedesktop.org/pub/mesa/. Site accessed on 24 Feb 2013.

Perez, P., Gangnet, M., and Blake, A. (2003) Poisson image editing. Proceedings of the 30th
International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2003,
pp 313-318.

Pitas, I. (1993) Parallel Algorithms for Digital Image Processing, Computer Vision and Neural
Networks. Wiley, Chichester, West Sussex, England.

Qasim, S.M., Abbasi, S.A, and Almashary, B. (2009) A review of FPGA-based design methodology
and optimization techniques for efficient hardware realization of computation intensive
algorithms. Proceedings of International Conference of Multimedia, Signal Processing and
Communication Technologies, 2009, IMPACT’09, pp 313-316.

Quarteroni, A., Sacco, R., and Saleri, F. (2006) Numerical Mathematics. Science Press, Beijing,
China.

Ramasubramanian, N., Subramanian, R., and Pande, S. (2002) Automatic compilation of loops to
exploit operator parallelism on configurable arithmetic logic units. IEEE Transactions on
Parallel and Distributed Systems, 13 (1) 45-66.

Repplinger, M., Lӧffler, A., Schug, B., and Slusallek, P. (2009) Extending X3D for distributed
multimedia processing and control. Proceedings of the 14th International Conference on 3D
Web Technology, Web3D’09, pp 61-69.

Rhyne, T.-M. (2008) Visualization and the larger world of computer graphics. Proceedings of the 35th
International Conference and Exhibition on Computer Graphics and Interactive Techniques,
SIGGRAPH 2008 Classes, Article No. 97.

http://www.mesa3d.org/intro.html�

References 210

Saddem, R., Toguyéni, A.K.A., and Tagina, M.M. (2011) Diagnosis of critical embedded systems:
application to the control card of a railway vehicle braking systems. Proceedings of the 2011
IEEE Conference on Automation Science and Engineering, CASE, pp 163-168.

Sathyanarayana, K. and Kumar, G.V.V. (2008) Evolution of computer graphics and its impact on
engineering product development. Proceedings of the Fifth International Conference on
Computer Graphics, Imaging and Visualisation, CGIV’08, pp 32-37.

Schröder, S., Peterson, J.A., Obermaier, H., Kellogg, L.H., Joy, K.I., and Hagen, H. (2012)
Visualization of flow behaviour in earth mantle convection. IEEE Transactions on Visualization
and Computer Graphics, 18 (12) 2198-2207.

Sederberg, T.W. and Parry, S.R. (1986) Free-form deformation of solid geometric models.
Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques
SIGGRAPH’86, 20 (4) pp 151-160.

Sederberg, T.W., Zheng, J., Sewell, D., and Sabin, M. (1998) Non-uniform recursive subdivision
surfaces. Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH’ 98, pp 387-394.

Sederberg, T.W., Zheng, J., Bakenov, A., and Nasri, A. (2003) T-splines and T-NURCCs. ACM
Transactions on Graphics, 22 (3) 477-484.

Si, W. and Guenter B. (2010) Linear-time dynamics for multibody systems with general joint models.
Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
SCA’10, pp 31-37, pp 228.

Siegel, L. J., Kemmerer, F. C., Mueller, P. T. Jr., Smalley, H. E. Jr., and Smith, S. D. (1981) PASM:
A partitionable SIMD/MIMD system for image processing and pattern recognition. IEEE
Transactions on Computers, 30 (12) 934-947.

Smith, G.L. and De La Torre, L. (2006) Techniques to enable FPGA based reconfigurable fault
tolerant space computing. Proceedings of the 2006 IEEE Aerospace Conference,
10.1109/AERO.2006.1655958.

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rossl, C., and Seidel, H.-P. (2004) Laplacian
surface editing. Proceedings of the 2004 Eurographics Symposium on Geometry Processing,
pp 175-184.

Sridharan, K. and Priya, T. K. (2004) A parallel algorithm for constructing reduced visibility graph
and its FPGA implementation. Journal of Systems Architecture, 50, 635-644.

Sumner, R.W., Schmid, J., and Pauly, M. (2007) Embedded deformation for shape manipulation.
ACM Transactions on Graphics, 26 (3) Article 80.

Surducan, V., Surducan, E., Ciupa, R.V., and Roman, M.N. (2010) Embedded system controlling
microwave generators in hyperthermia and diathermy medical devices. Proceedings of 2010
IEEE International Conference on Automation Quality and Testing Robotics, AQTR 2010, pp
1-6.

Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P., ans Abadi, D.J. (2012) Calvin: fast
distributed transactions for partitioned database systems. Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD’12, pp 1-12.

True, T., Grantham, B., Kuehne, B., and Shreiner, D. (2004) Performance OpenGL: platform
independent techniques. Proceedings of the 29th International Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 2004, Course 16.

Turqueti, M.A., Saniie, J., and Oruklu, E. (2010) MEMS acoustic array embedded in an FPGA based
data acquisition and signal processing system. Proceedings of the 2010 53rd IEEE International
Midwest Symposium on Circuits and Systems, MWSCAS 2010, pp 1161-1164.

Underwood, K. (2004) FPGAs vs. CPUs: trends in peak floating-point performance. Proceedings of
the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, pp
171-180.

References 211

Van den Bout, D.E., Morris, J.N., Thomae, D.A., Labrozzi, S., Wingo, S., and Hallman, D. (1992)
AnyBoard: an FPGA-based, reconfigurable system. IEEE Design & Test of Computers, 9 (3)
21-30.

Varghese, R.R. and Tharayil, C.G. (2001) Design, Simulation and Synthesis at an FFT Processor
Using VHDL. Project report of Mar Athanasius College of Engineering, Mahatma Gandhi
University, Kottayam, Kerala.

Vuduc, R.W. and Czechowski, K. (2011) What GPU computing means for high-end systems. Micro,
IEEE, 31 (4) 74-78.

Wang, W., Pottmann, H., and Liu, Y. (2006) Fitting B-spline curves to point clouds by
curvature-based squared distance minimization. ACM Transactions on Graphics, 25 (2)
214–238.

Wang, X. and Ziavras, S.G. (2006) Exploiting mixed-mode parallelism for matrix operations n the
HERA architecture through reconfiguration. Computers and Digital Techniques, IEE
Proceedings, 153 (4) 249-260.

Welch, W. and Witkin, A. (1994) Free-form shape design using triangulated surfaces. Proceedings
of the 21rd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH’94, pp 247-256.

Weyrich, T., Heinzle, S., Aila, T., Fasnacht, D.B., Oetiker, S., and Botsch, M. (2007) A hardware
architecture for surface splatting. ACM Transactions on Graphics, 26 (3) Article 90.

Xiao, S., Lin, H., and Feng, W. (2011) Accelerating protein sequence search in a heterogeneous
computing system. Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium, IPDPS, pp 1212-1222.

Yoo, T.S., Bliss, D., Lowekamp, B.C., Chen, D.T., Murphy, G.E., Narayan, K., Hartnell, L.M., Do, T.,
Subramaniam, S. (2012) Visualizing cells and humans in 3D: biomedical image analysis at
nanometre and meter scales. IEEE Computer Graphics and Applications, 32 (5) 39-49.

Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H. (2004) Mesh editing with
Poisson-based gradient field manipulation. Proceedings of the 29th International Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 2004, pp 644-651.

Yudanov, D. and Reznik, L. (2012) Scalable multi-precision simulation of spiking neural networks on
GPU with OpenCL. Proceedings of 2012 International Joint Conference on Neural Networks,
IJCNN, pp 1-8.

Zave, P. (1982) An operational approach to requirements specification for embedded systems. IEEE
Transactions on Software Engineering, SE-8 (3) 250-269.

List of Publications (2009 to 2013)

Papers published in proceedings of international conferences:

Liu, Y.-K. (2013) A surface model for interactive shape editing. Proceedings of the 2013 International
Conference on Computer Science and Artificial Intelligence, ICCSAI2013, pp 287-291.

Liu, Y.-K., Guo, L.-W., Liu, J.-M., Yue, Y., Maple, C., and Crabbe M.J.C. (2013) An
application-oriented top-down scheme for FPGA-based embedded system design with 3D
graphics applications. Proceedings of the 2013 International Conference on Computer
Sciences and Applications, CSA2013, pp 756-764.

Wang, C.-H., Liu, Y.-K., Guo, L.-W., Yue, Y., and Maple, C. (2011) An on-line distributed induction
motor monitoring system based-on ARM and CAN bus. Proceedings of the 6th International
Symposium on Parallel Computing in Electrical Engineering, PARELEC 2011, pp 185-188.

Zhang, Y.-Q., Liu, Y.-K., and Gao, H.-B. (2011) Study of a scenic spot monitoring system based on
RFID and multi-sensor information fusion technology. Proceedings of 2011 International
Conference on Electronic & Mechanical Engineering and Information Technology, EMEIT 2011,
pp 1739-1742.

Gao, H.-B, Liu, Y.-K., and Guo, L.-W. (2011) Implementation of an embedded induction motor test
and analysis system. Proceedings of 2011 International Conference on Consumer Electronics,
Communications and Networks, CECNet 2011, pp 1328-1331.

Liu, Y.-K., Yue, Y., Maple, C., Tang, H.-W., and Guo, M. (2009) Comparison between two solutions
on fast Fourier Transform Algorithm: software and hardware. Proceedings of the 15th
International Conference on Automation and Computing, ICAC’09, pp 98-103.

Liu, Y.-K., Guo, L.-W., and Huang, C.-R. (2009) Implementation and verification of the Amplitude
Recovery Method algorithm with the faults diagnostic system on induction motors. Conference
Record of 12th International Conference on Electrical Machines and Systems, ICEMS2009,
IEEE Catalogue Number: CFP09081-CDR, DS2G3-1.

Huang, C.-R., Gao, H.-B., Liu, Y.-K., and Pan, W.-Y. (2009) Large-Inertia Temperature Control
based-On Information Fusion. Proceedings of 2009 International Forum on Information
Technology and Applications, IFITA2009, v2, pp 420-423.

Journal Papers:

Liu, Y.-K., Guo, L.-W., Wang, Q.-X., An, G.-Q., Guo, M., and Lian, H. (2010) Application to induction
motor faults diagnosis of the amplitude recovery method combined with FFT. Mechanical
Systems and Signal Processing, Elsevier, 24(8), 2010, 2961-2971.

An, G.-Q., Liu, J.-M., Liu, Y.-K., and Liang, Y.-C. (2012) Diagnosis of broken rotor bar fault in
squirrel-cage motor fed with variable frequency power based on correlation filtering method.
Electric Machines and Control, 3, 2012, 47-50.

An, G.-Q., Liu, J.-M., Guo, L.-W., and Liu, Y.-K. (2011) Diagnosing rotor broken bar fault in motor by
using correlation fundamental component filtering method. Electric Machines and Control, 3,
2011, 69-73.

Contributions 213

Book:

Liu, Y.-K., Yue, Y., and Guo, L,-W. (2011) UNIX Operating System: the development tutorial via
UNIX kernel services. High Education Press, Beijing, and Springer, Heidelberg, Dordrecht,
London, New York.

Presentation:

Liu, Y.-K., (2013) A novel algorithm for surface modelling and morphing, The Fifth BCS Doctoral
Consortium, London, the UK, 16th May 2013.

Papers under review or under preparation:

Liu, Y.-K., et al (2014) Continuities of Progressive and Mixing Algorithm for surface modelling and
editing. Proceedings of the 2014 International Conference on Progress in Informatics and
Computing, PCI-2014, May 2014, Shanghai, China.

Liu, Y.-K., et al (2014) Parallelism in embedded systems. Microprocessors and Microsystems:
Embedded Hardware Design, Elsevier.

Liu, Y.-K., et al (2014) The improvement of Progressive and Mixing Algorithm with its construction
scheme. Computational Geometry, Theory and Applications, Elsevier.

	cover_abstract_contents_yliu
	chapter01_YukunLiu
	chapter02_YukunLiu
	chapter03_YukunLiu
	chapter04_YukunLiu
	chapter05_YukunLiu
	chapter06_YukunLiu
	chapter07_YukunLiu
	chapter08_YukunLiu
	chapter09_YukunLiu
	chapter10_YukunLiu
	appendix_YukunLiu
	Reference_YukunLiu
	list_of_publications_YukunLiu

