260,039 research outputs found

    Research Questions and Answers

    Get PDF
    RQ1: What is the impact of SSD on buffer management? RQ2: How could we deal with that

    The hard to soft spectral transition in LMXBs - affected by recondensation of gas into an inner disk

    Full text link
    Soft and hard spectral states of X-ray transient sources reflect two modes of accretion, accretion via a geometrically thin, optically thick disk or an advection-dominated accretion flow (ADAF). The luminosity at transition between these two states seems to vary from source to source, or even for the same source during different outbursts, as observed for GX 339-4. We investigate how the existence of an inner weak disk in the hard state affects the transition luminosity. We evaluate the structure of the corona above an outer truncated disk and the resulting disk evaporation rate for different irradiation. In some cases, recent observations of X-ray transients indicate the presence of an inner cool disk during the hard state. Such a disk can remain during quiescence after the last outburst as long as the luminosity does not drop to very low values (10^-4 to 10^-3 of the Eddington luminosity). Consequently, as part of the matter accretes via the inner disk, the hard irradiation is reduced. The hard irradiation is further reduced, occulted and partly reflected by the inner disk. This leads to a hard-soft transition at a lower luminosity if an inner disk exists below the ADAF. This seems to be supported by observations for GX 339-4.Comment: 9 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Frustration of freezing in a two dimensional hard-core fluid due to particle shape anisotropy

    Full text link
    The freezing mechanism suggested for a fluid composed of hard disks [Huerta et al., Phys. Rev. E, 2006, 74, 061106] is used here to probe the fluid-to-solid transition in a hard-dumbbell fluid composed of overlapping hard disks with a variable length between disk centers. Analyzing the trends in the shape of second maximum of the radial distribution function of the planar hard-dumbbell fluid it has been found that the type of transition could be sensitive to the length of hard-dumbbell molecules. From the NpT{NpT} Monte Carlo simulations data we show that if a hard-dumbbell length does not exceed 15% of the disk diameter, the fluid-to-solid transition scenario follows the case of a hard-disk fluid, i.e., the isotropic hard-dumbbell fluid experiences freezing. However, for a hard-dumbbell length larger than 15% of disk diameter, there is evidence that fluid-to-solid transition may change to continuous transition, i.e., such an isotropic hard-dumbbell fluid will avoid freezing.Comment: 9 pages, 7 figure

    Soft X-ray components in the hard state of accreting black holes

    Full text link
    Recent observations of two black hole candidates (GX 339-4 and J1753.5-0127) in the low-hard state (L_X/L_Edd ~ 0.003-0.05) suggest the presence of a cool accretion disk very close to the innermost stable orbit of the black hole. This runs counter to models of the low-hard state in which the cool disk is truncated at a much larger radius. We study the interaction between a moderately truncated disk and a hot inner flow. Ion-bombardment heats the surface of the disk in the overlap region between a two-temperature advection-dominated accretion flow and standard accretion disk, producing a hot (kT_e ~70 keV) layer on the surface of the cool disk. The hard X-ray flux from this layer heats the inner parts of the underlying cool disk, producing a soft X-ray excess. Together with interstellar absorption these effects mimic the thermal spectrum from a disk extending to the last stable orbit. The results show that soft excesses in the low-hard state are a natural feature of truncated disk models.Comment: 12 pages, 8 figures, accepted by Astronomy & Astrophysics, reference added, minor typos correcte

    Magnetic flares in accretion disc coronae and the Spectral States of black hole candidates: the case of GX 339-4

    Get PDF
    We present a model for the different X-ray spectral states displayed by Galactic Black Hole Candidates (GBHC). We discuss the physical and spectral implications for a magnetically structured corona in which magnetic flares result from reconnection of flux tubes rising from the accretion disk by the magnetic buoyancy instability. Using observations of one of the best studied examples, GX339-4, we identify the geometry and the physical conditions characterizing each of these states. We find that, in the Soft state, flaring occurs at small scale heights above the accretion disk. The soft thermal-like spectrum is the result of heating and consequent re-radiation of the hard X-rays produced by such flares. The hard tail is produced by Comptonization of the soft field radiation. Conversely, the hard state is the result of flares triggered high above the underlying accretion disk which produce X-rays via Comptonization of either internal synchrotron radiation or soft disk photons. The spectral characteristics of the different states are naturally accounted for by the choice of geometry: when flares are triggered high above the disk the system is photon-starved, hence the hard Comptonized spectrum of the hard state. Intense flaring close to the disk greatly enhances the soft-photon field with the result that the spectrum softens. We interpret the two states as being related to two different phases of magnetic energy dissipation. In the Soft state, Parker instability in the disk favours the emergence of large numbers of relatively low magnetic field flux tubes. In the hard state, only intense magnetic fields become buoyant. The model can also qualitatively account for the observed short timescale variability and the characteristics of the X-ray reflected component of the hard state.Comment: submitted to MNRAS, Feb. 1998, 10 pages, 3 figures in MNRAS LaTex styl

    The Disk-Wind-Jet Connection in the Black Hole H 1743-322

    Get PDF
    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ksec Chandra/HETGS observation of the black hole candidate H 1743-322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743-322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state-dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.Comment: Accepted for publication in ApJ Letter

    A Model for Spectral States and Their Transition in Cyg X-1

    Full text link
    A new accretion picture based on a small disk surrounding a black hole is developed for the wind-fed source Cyg X-1. The hard and soft spectral states of Cyg X-1 are interpreted in terms of co-spatial two component flows for the innermost region of an accretion disk. The state transitions result from the outward expansion and inward recession of this inner disk for the hard to soft and soft to hard transition respectively. The theoretical framework for state transitions in black hole X-ray binaries with high mass companions involving a change in the inner disk size, thus, differs from systems with low mass companions involving the change in the outer disk size. This fundamental difference stems from the fact that matter captured and supplied to the black hole in wind-fed systems has low specific angular momentum and is hot essentially heated in the bow and spiral shocks, whereas it has high specific angular momentum and is cool in Roche lobe overflow systems. The existence of a weak cool disk around the ISCO region in the hard state allows for the presence of a relativistically broadened Fe K line. The small disk fed by gas condensation forms without an extensive outer disk, precluding thermal instabilities and large outbursts, resulting in the lack of large amplitude outbursts and hysteresis effects in the light curve of high mass black hole X-ray binaries. Their relatively persistent X-ray emission is attributed to their wind-fed nature.Comment: 13 pages, 2 figures. Accepted for publication in Ap

    The Emission from Inner Disk and Corona in the Low and Intermediate Spectral States of Black Hole X-ray Binaries

    Full text link
    Recent observations reveal that a cool disk may survive in the innermost stable circular orbit (ISCO) for some black hole X-ray binaries in the canonical low/hard state. The spectrum is characterized by a power law with a photon index Γ1.52.1\Gamma \sim 1.5-2.1 in the range of 2-10 keV and a weak disk component with temperature of 0.2\sim 0.2 keV. In this work, We revisit the formation of such a cool, optically thick, geometrically thin disk in the most inner region of black hole X-ray binaries at the low/hard state within the context of disk accretion fed by condensation of hot corona. By taking into account the cooling process associated with both Compton and conductive processes in a corona, and the irradiation of the hot corona to the disk, we calculate the structure of the corona. For viscosity parameter α=0.2\alpha=0.2, it's found that the inner disk can exist for accretion rate ranging from M˙0.0060.03M˙Edd\dot M \sim 0.006-0.03 \dot M_{\rm Edd}, over which the electron temperatures of the corona are in the range of 15×109 K1-5\times 10^9\ \rm K producing the hard X-ray emission. We calculate the emergent spectra of the inner disk and corona for different mass accretion rates. The effect of viscosity parameter α\alpha and albedo aa (aa is defined as the energy ratio of reflected radiation from the surface of the thin disk to incident radiation upon it from the corona) to the emergent spectra are also presented. Our model is used to explain the recent observations of GX 339-4 and Cyg X-1, in which the thin disk may exist at ISCO region in the low/hard state at luminosity around a few percent of LEddL_{\rm Edd}. It's found that the observed maximal effective temperature of the thermal component and the hard X-ray photon index Γ\Gamma can be matched well by our model.Comment: Accepted for publication by Ap
    corecore