35,656 research outputs found

    Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    Full text link
    The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please see the online version of the article at http://www.nature.com/natur

    Hair motion simulation

    Get PDF
    Hair motion simulation in computer graphics has been an attraction for many researchers. The application we have developed has been inspired by the related previous work as well as our own efforts in finding useful algorithms to handle this problem. The work we present uses a set of representations, including hair strands, clusters and strips, that are derived from the same underlying base skeleton, where this skeleton is animated by physical, i.e. spring, forces. © Springer-Verlag 2004

    Art Directed Fire-Hair Simulation

    Get PDF
    Fire simulation and hair simulation can be used to create stylized characters and character animation in movies. In this research a system was created whereby fire simulation was guided by hair simulation, which this thesis refers to as Fire-Hair. This simulation system was built inside Houdini, a professional software package widely used in the visual effects industry. The goal of this research was to develop a workflow that utilized velocity field generated by the hair simulation to drive the fire simulation, and to let simulated fire represent the shape and animation of hair strands. This simulation approach is packaged as a digital asset for future use, with all requisite modifiable parameters exposed to artists. About 20 hair strands were simulated to drive the fire simulation. Hair strand shapes were defined by curves created by the artist; these shapes remain modifiable after creation. Velocity fields which follow hair motion are used as a control field to affect the fire simulation. The final result shows both the physical appearance of fire as well as the shape and motion of hair. The approach was applied to several animated characters to verify reliability and ensure it was visually convincing and robust. The simulated results were rendered using the Houdini built-in render tool, Mantra

    Chain Shape Matching for Simulating Complex Hairstyles

    Get PDF
    Animations of hair dynamics greatly enrich the visual attractiveness of human characters. Traditional simulation techniques handle hair as clumps or continuum for efficiency; however, the visual quality is limited because they cannot represent the fine-scale motion of individual hair strands. Although a recent mass-spring approach tackled the problem of simulating the dynamics of every strand of hair, it required a complicated setting of springs and suffered from high computational cost. In this paper, we base the animation of hair on such a fine-scale on Lattice Shape Matching (LSM), which has been successfully used for simulating deformable objects. Our method regards each strand of hair as a chain of particles, and computes geometrically derived forces for the chain based on shape matching. Each chain of particles is simulated as an individual strand of hair. Our method can easily handle complex hairstyles such as curly or afro styles in a numerically stable way. While our method is not physically based, our GPU-based simulator achieves visually plausible animations consisting of several tens of thousands of hair strands at interactive rates

    Two adaptation processes in auditory hair cells together can provide an active amplifier

    Get PDF
    The hair cells of the vertebrate inner ear convert mechanical stimuli to electrical signals. Two adaptation mechanisms are known to modify the ionic current flowing through the transduction channels of the hair bundles: a rapid process involves calcium ions binding to the channels; and a slower adaptation is associated with the movement of myosin motors. We present a mathematical model of the hair cell which demonstrates that the combination of these two mechanisms can produce `self-tuned critical oscillations', i.e. maintain the hair bundle at the threshold of an oscillatory instability. The characteristic frequency depends on the geometry of the bundle and on the calcium dynamics, but is independent of channel kinetics. Poised on the verge of vibrating, the hair bundle acts as an active amplifier. However, if the hair cell is sufficiently perturbed, other dynamical regimes can occur. These include slow relaxation oscillations which resemble the hair bundle motion observed in some experimental preparations.Comment: 13 pages, 6 figures,REVTeX 4, To appear in Biophysical Journa

    Accretion of a Symmetry Breaking Scalar Field by a Schwarzschild Black Hole

    Full text link
    We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.Comment: 16 pages, 5 figure

    A Comprehensive Three-Dimensional Model of the Cochlea

    Get PDF
    The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics.Comment: 22 pages, 5 figure
    • …
    corecore