38 research outputs found

    Nutrition during pregnancy and lactation: New evidence for the vertical transmission of extra virgin olive oil phenolic compounds in rats

    Get PDF
    Maternal breast milk provides the newborn with passive immunity and stimulates the maturation of the infant immune system. The aim of the present study was to evaluate the vertical transmission of phenolic compounds and their metabolites to offspring in rats fed with extra virgin olive oil (EVOO) during pregnancy and lactation. For this purpose, plasma and lactic serum from dams and plasma from offspring were analyzed by LC-ESI-LTQ-Orbitrap-MS. Both enzymatic and microbial metabolites of hydroxytyrosol and tyrosol were detected in dam plasma and lactic serum. In addition, significant levels of phenolic compounds and their metabolites were found in offspring plasma. The concentration and number of hydroxytyrosol derivatives was higher than those of tyrosol and the microbial metabolites were found in the highest concentration. The observed vertical transmission of EVOO phenolic compounds, whose health benefits are widely reported, provides further support for the importance of the maternal diet during pregnancy and lactation

    Synthesis and Characterization of Imide Containing Hybrid Epoxy Resin with Improved Mechanical and Thermal Properties

    Get PDF
    Phosphorous containing amine, tripropyldiamine phosphine oxide (TPDAP), and hybrid monomer 4-(N-phthalimidophenyl) glycidylether (PPGE) were synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis (EDX). PPGE was incorporated in bisphenol A epoxy resin (BPA) in various concentrations (5% to 20%), based on a weight percentage of BPA resin. Curing was carried out with the stoichiometric amount of TPDAP and 1,3-propanediamine (PDA) to result in cross-link network. Various mechanical, chemical, thermal, and flame retardant properties of modified and unmodified epoxy resin were studied. The coatings obtained with the addition of PPGE were found to have improved properties as compared with those of the unmodified resin. Coatings with 15% loading of PPGE showed improved flame retardant and mechanical properties with stable thermal behaviour

    Automatic Loop Kernel Analysis and Performance Modeling With Kerncraft

    Full text link
    Analytic performance models are essential for understanding the performance characteristics of loop kernels, which consume a major part of CPU cycles in computational science. Starting from a validated performance model one can infer the relevant hardware bottlenecks and promising optimization opportunities. Unfortunately, analytic performance modeling is often tedious even for experienced developers since it requires in-depth knowledge about the hardware and how it interacts with the software. We present the "Kerncraft" tool, which eases the construction of analytic performance models for streaming kernels and stencil loop nests. Starting from the loop source code, the problem size, and a description of the underlying hardware, Kerncraft can ideally predict the single-core performance and scaling behavior of loops on multicore processors using the Roofline or the Execution-Cache-Memory (ECM) model. We describe the operating principles of Kerncraft with its capabilities and limitations, and we show how it may be used to quickly gain insights by accelerated analytic modeling.Comment: 11 pages, 4 figures, 8 listing

    Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications

    Get PDF
    Energy efficiency is becoming increasingly important for computing systems, in particular for large scale HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy-performance model, and derive a number of energy saving strategies which can be easily adopted on recent high-end HPC systems for generic applications

    3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems

    Get PDF
    Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system workload, and makes trade-offs between energy consumption and user expected finish times. Compared with other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the system elasticity

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    A Survey of Research on Power Management Techniques for High Performance Systems

    Get PDF
    This paper surveys the research on power management techniques for high performance systems. These include both commercial high performance clusters and scientific high performance computing (HPC) systems. Power consumption has rapidly risen to an intolerable scale. This results in both high operating costs and high failure rates so it is now a major cause for concern. It is imposed new challenges to the development of high performance systems. In this paper, we first review the basic mechanisms that underlie power management techniques. Then we survey two fundamental techniques for power management: metrics and profiling. After that, we review the research for the two major types of high performance systems: commercial clusters and supercomputers. Based on this, we discuss the new opportunities and problems presented by the recent adoption of virtualization techniques, and again we present the most recent research on this. Finally, we summarise and discuss future research directions
    corecore