
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

2-1-2013

3E: Energy-Efficient Elastic Scheduling for
Independent Tasks in Heterogeneous Computing
Systems
Xiaomin Zhu
National University of Defense Technology

Rong Ge
Marquette University, rong.ge@marquette.edu

Jinguang Sun
Liaoning Technical University

Chuan He
National University of Defense Technology

Accepted version. Journal of Systems and Software, Vol. 86, No. 2 (February 2013): 302-314. DOI. ©
2012 Elsevier Inc. Published by Elsevier Inc. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213089524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1016/j.jss.2012.08.017

Marquette University

e-Publications@Marquette

Mathematics, Statistics and Computer Sciences Faculty Research and
Publications/College of Arts and Sciences

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The
published version may be accessed by following the link in th citation below.

Journal of Systems and Software, Vol. 86, No. 2 (February 2013): 302-314. DOI. This article is © Elsevier
and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier
does not grant permission for this article to be further copied/distributed or hosted elsewhere without
the express permission from Elsevier.

3E: Energy-efficient elastic scheduling for
independent tasks in heterogeneous
computing systems

Xiaomin Zhu
Science and Technology on Information Systems Engineering Laboratory, National University of Defense
Technology, Changsha 410073, PR China
Rong Ge
Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI
Jinguang Sun
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, PR China
Chuan He
Science and Technology on Information Systems Engineering Laboratory, National University of Defense
Technology, Changsha 410073, PR China

https://doi.org/10.1016/j.jss.2012.08.017
http://epublications.marquette.edu/

Abstract
Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to
minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient
scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and
adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time.
In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for
aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous
computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system
workload, and makes trade-offs between energy consumption and user expected finish times. Compared with
other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the
system elasticity.

Keywords
Heterogeneous computing system, Scheduling, Energy-efficient, Elastic, DVFS

1. Introduction
Heterogeneous computing systems constructed by connecting various machines with different

capabilities have been wildly employed for compute-intensive and data-intensive applications in scientific
research and commercial industries (Goller and Leberl, 2009, Zheng et al., 2006, Donoho, 2004). The
employment is mostly attributed to the high processing capability and low cost of commodity-off-the-
shelf hardware components including processors, memory, networks, and storage disks (Xie and Qin, 2008).

Large-scale computing systems consume tremendous amounts of energy, which in turn causes high
energy bills in data centers, raises environmental concerns, and increases system failures. The monetary cost for
energy is very high. For instance, the total energy cost of a single 200 W server (e.g., IBM 1U*300) is $180/year
(Bianchini and Rajamony, 2004). A computing system with thousands of compute nodes or more incurs large
energy bills. The high energy consumption also has negative environmental impacts. It is estimated that 1 kWh
electricity power requires 0.4 kg coal and 4 L water and produces 0.272 kg solid powder, 0.997 kg CO2, and
0.03 kg SO2. Last, high energy consumption results in high temperature that greatly affects the system reliability.
According to the Arrhenius equation, the failure rate of an electronic component doubles for every 10 °C
increased (Feng, 2003). In order to maintain an appropriate operating temperature in data centers, extra energy
will be consumed by the cooling devices and facility.

Dynamic voltage and frequency scaling (DVFS) is an energy saving technology that are enabled on most
contemporary processors (http, in pressa, http, in pressb). With DVFS, a processor can operate at multiple
voltages where each corresponds to a specific clock frequency and processing speeds. Because the energy
consumption of a processor is proportional to voltage squared (Chen et al., 2006), processor's energy
consumption can be significantly reduced by lowering CPU voltage and processing speed.

The motivations of this paper derive from the following three considerations:

• Many applications running on heterogeneous computing systems consist of independent tasks without
dependencies. For example, the tasks submitted to a supercomputer center by different users are
independent (Braun et al., 2001); the partitioned data blocks from signal data in a software radio system
can be considered as independent tasks without precedence relationship (Zhu and Lu, 2008); a
parameter-sweep application consists of a set of independent coarse-grained tasks, and such
applications can be seen in diverse areas such as bioinformatics, operations research, data mining,
business model simulation, massive searches, Monte Carlo simulations, network simulation, electronic
CAD, ecological modeling, fractals calculations, and image manipulation (Fujimoto and Hagihara, 2006).•

• There exist many applications for which users do not have strict requirement in finish time. For these
applications, even though the finish time of a task is a bit later or earlier than its user's expectations,
the task execution is still useful. Take earth observation satellite as an example. The satellite data are

https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/data-intensive-application
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0005
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0015
https://www.sciencedirect.com/topics/computer-science/processing-capability
https://www.sciencedirect.com/topics/computer-science/hardware-components
https://www.sciencedirect.com/topics/computer-science/processor
https://www.sciencedirect.com/topics/computer-science/disk-storage
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0020
https://www.sciencedirect.com/topics/computer-science/environmental-concern
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0025
https://www.sciencedirect.com/topics/computer-science/energy-consumption
https://www.sciencedirect.com/topics/computer-science/high-temperature
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0030
https://www.sciencedirect.com/topics/computer-science/dynamic-voltage-and-frequency-scaling
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0040
https://www.sciencedirect.com/topics/computer-science/clock-frequency
https://www.sciencedirect.com/topics/computer-science/processing-speed
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0045
https://www.sciencedirect.com/topics/computer-science/supercomputers
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0050
https://www.sciencedirect.com/topics/computer-science/software
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0055
https://www.sciencedirect.com/topics/computer-science/bioinformatics
https://www.sciencedirect.com/topics/computer-science/data-mining
https://www.sciencedirect.com/topics/computer-science/monte-carlo-simulation
https://www.sciencedirect.com/topics/computer-science/network-simulation
https://www.sciencedirect.com/topics/computer-science/image-manipulation
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0060
https://www.sciencedirect.com/topics/computer-science/user-expectation
https://www.sciencedirect.com/topics/computer-science/task-execution

firstly processed at a ground data center in one task, then the generated data are analyzed in the next
task for a new electronic reconnaissance. If the first task finishes later than the start time of the second
task, the generated data are still useful for another new task (Wang et al., 2010). In the traditional real-
time computing systems, a task would be rejected if it is unable to finish within its deadline. For non-
real-time applications, only the computing throughput matters while the finish times of single tasks can
be ignored. Thereby, in order to provide high-quality services for users, each user's expectation (e.g.,
expected finish time) should be adequately considered.•

• Emergency tasks and non-emergency tasks show distinct characteristics. The applications that consist of
independent tasks (Xie and Qin, 2008, Doˇgan and Özgüner, 2006, Mehta et al., 2007, Kang and He,
2009) in data centers can be roughly classified into two groups. One group includes applications for
which high performance and short execution time are critical. One example is the processing of image
data obtained by earth observation satellites in emergency such as earthquake, tsunami or military
operations (Wang et al., 2007). In these scenarios, quick response is paramount while energy savings
with possible performance impact are out of the questions. The other group includes applications that
are not in emergency in nature. For these applications, we can exploit system elasticity, i.e., flexibility
and adaptivity with the variety of system workload, in scheduling algorithms to reduce energy use with
no or little impact on meeting user expectations.

Scheduling is an effective approach to achieve high performance and energy efficiency for applications

running on heterogeneous computing systems. However, to the best of our knowledge, most existing energy-
efficient scheduling algorithms do not address both performance and energy cost for non-real-time applications
in heterogeneous computing systems. Motivated by the above arguments, in this work, we attempt to
incorporate the system elasticity and user expectations into energy-efficient scheduling strategies, and to design
and implement a novel energy-efficient elastic scheduling strategy for non-real-time tasks on DVFS-enabled
heterogeneous computing systems. Specifically, our approach firstly strives to satisfy the user expectations by
adjusting the execution voltages of queued tasks and new tasks, and then reduces the system energy
consumption as much as possible.

Contributions: The main contributions of this paper are:

• We construct an energy consumption model that effectively takes advantage of system elasticity and
considers different user expectations in terms of expected finish time.

• On the basis of the novel energy consumption model, we develop an energy-efficient elastic (3E for
short) scheduling strategy for independent tasks in heterogeneous computing systems to make trade-
offs between energy saving and user expectation according to the system workload.

• We demonstrate that, by considering heterogeneous features of multiprocessor computing systems, we
can design an energy-efficient elastic scheduling strategy that significantly improves the scheduling
quality of conventional scheduling strategies for heterogeneous computing systems.

The rest of this paper is organized as follows. In Section 2, we discuss the related work in literature. Section

3 presents the system model, task model, energy consumption model. In Section 4, we describe the 3E strategy
and its main principles. Section 5 presents the experimental results and performance evaluation. Section
6 concludes the paper with a summary and future directions.

2. Related work
Over the last decades, scheduling in distributed computing context has been intensively investigated. As

the optimal scheduling solutions are normally NP-complete (Coffman, 1976), near-optimal solutions
using heuristic techniques are adopted as practical alternatives (Xie and Qin, 2008, Braun et al., 2001, Kim et al.,
2008, Karatza, 2009).

Scheduling can be generally classified into static scheduling and dynamic scheduling according to its
design time. The static scheduling makes scheduling decisions in an off-line planning phase, and is usually used

https://www.sciencedirect.com/topics/computer-science/generated-data
https://www.sciencedirect.com/topics/computer-science/reconnaissance
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0065
https://www.sciencedirect.com/topics/computer-science/real-time-computing
https://www.sciencedirect.com/topics/computer-science/real-time-computing
https://www.sciencedirect.com/topics/computer-science/deadlines
https://www.sciencedirect.com/topics/computer-science/throughput
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0020
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0070
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0075
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0080
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0080
https://www.sciencedirect.com/topics/computer-science/military-operation
https://www.sciencedirect.com/topics/computer-science/military-operation
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0085
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/adaptivity
https://www.sciencedirect.com/topics/computer-science/workload
https://www.sciencedirect.com/topics/computer-science/scheduling-algorithm
https://www.sciencedirect.com/topics/computer-science/effective-approach
https://www.sciencedirect.com/topics/computer-science/energy-efficiency
https://www.sciencedirect.com/topics/computer-science/energy-efficient
https://www.sciencedirect.com/topics/computer-science/energy-efficient
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy
https://www.sciencedirect.com/topics/computer-science/multiprocessors
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#sec0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#sec0015
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#sec0015
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#sec0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#sec0040
https://www.sciencedirect.com/topics/computer-science/experimental-result
https://www.sciencedirect.com/topics/computer-science/performance-evaluation
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#sec0075
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#sec0075
https://www.sciencedirect.com/topics/computer-science/future-direction
https://www.sciencedirect.com/topics/computer-science/distributed-computing
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0090
https://www.sciencedirect.com/topics/computer-science/heuristics
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0020
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0050
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0095
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0095
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0100
https://www.sciencedirect.com/topics/computer-science/planning-phase

to schedule periodic tasks (e.g., Aydin et al., 2004, Mishra et al., 2003, Yu and Prasanna, 2002, Zhu et al., 2003).
The dynamic scheduling is performed in an on-line fashion when tasks arrive at unpredictable intervals, and is
usually applied to aperiodic tasks and the system workload that is not known a priori (e.g., Ge et al., 2005, Hu et
al., 2008, Zong et al., 2011, Hamano et al., 2009, Zikos and Karatza, 2011, Yan et al., 2005, Zhu et al., 2011, Zhu
and Lu, 2009).

Aydin et al. proposed a static solution for periodic tasks to compute the optimal speed at the task level
based on the worst-case workload for each arrival (Aydin et al., 2004). Mishra et al. proposed a static power
management scheme that used the static slack based on the degree of parallelism in a given static
schedule generated from any list scheduling heuristic algorithm (Mishra et al., 2003). Yu et al. investigated an
off-line power-aware allocation policy that was firstly formulated as an extended generalized assignment
problem, and was solved by an extension of a linearization heuristic for a set of independent tasks in a real-time
system consisting of heterogeneous DVS-enabled processing elements (Yu and Prasanna, 2002). Zhu et al.
introduced the concept of slack sharing on multiprocessor systems to reduce energy consumption and proposed
two novel power-aware scheduling algorithmsbased on slack sharing for task sets with and without precedence
constraints executing on multiprocessor systems (Zhu et al., 2003). Additionally, the study in Zhu et al.
(2003) assumed homogeneous processors and frame-based tasks. Tavares et al. proposed a pre-
runtime scheduling method that considered the DVS technique to reduce energy consumption and took the
inter-task relations and runtime overhead into account. In addition, the time Petri nets was employed as a
mathematical basis for precise pre-runtime schedule generation (Tavares et al., 2008). Although
these scheduling schemes are capable of achieving high scheduling quality in terms of energy saving, they
belong to static scheduling and are unable to deal with dynamic environment where the arrival time of a task is
not known.

There is a large body of work in designing dynamic energy-efficient scheduling algorithms for distributed
computing systems. Ge et al. investigated distributed performance-directed DVS scheduling strategies that could
produce significant energy savings without increasing execution time by varying scheduling granularity (Ge et al.,
2005). Nélis et al. proposed two power-aware scheduling algorithms, i.e., an off-line algorithm EDF(k) and an on-
line algorithm MOTE that both addressed sporadic constrained-deadline real-time systems to reduce energy
consumption (Nélis et al., 2008). Hu et al. described an approach to reduce energy consumption by employing
the live migration of virtual machines to transfer load among the identical nodes on a multilayer ring-
based overlay (Hu et al., 2008). Laszewski et al. focused on scheduling virtual machines in a compute cluster
to reduce power consumption by dynamic voltage frequency scaling, i.e., DVFS technique, and presented a
scheduling algorithm to allocate virtual machines in a DVFS-enabled cluster (Laszewski et al., 2009). Liu et al.
developed a cluster-based energy-performance balanced task duplication based clustering scheduling algorithm
EPBTDCS that saved energy by reducing communication energy consumption while assigning parallel tasks to
compute nodes (Liu et al., 2010). Zong et al. proposed two energy-aware duplication-based scheduling
algorithms, namely, energy-aware duplication algorithm EAD and performance-energy balanced duplication
algorithm PEBD with the objective of improving both performance and energy efficiency (Zong et al., 2011).
These schemes were designed for homogeneous computing environments, not suitable for heterogeneous
computing systems with diverse processing elements because a processor with higher processing speed may
consume less energy.

There also exist many previous studies investigating power-aware techniques to reduce energy
consumption on heterogeneous computing systems. For example, Hamano et al. proposed a scheme to improve
energy efficiency by adjusting the schedule based on the acceleration factor for heterogeneous accelerated
clusters (Hamano et al., 2009). Zong et al. studied a scheduling strategy which could conserve energy by
judiciously shrinking communication energy cost when allocating tasks to heterogeneous compute nodes in a
cluster (Zong et al., 2007). Shekar and Izadi addressed the problem of scheduling tasks in a heterogeneous
environment and proposed an algorithm called EDLS that favored low-energy consuming processors by
introducing a cost factor affecting scheduling decisions (Shekar and Izadi, 2010). However, these approaches did
not consider timing requirement.

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0105
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0110
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0115
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0120
https://www.sciencedirect.com/topics/computer-science/workload
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0125
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0140
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0140
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0155
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0160
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0175
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0180
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0200
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0205
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0205
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0105
https://www.sciencedirect.com/topics/computer-science/parallelism
https://www.sciencedirect.com/topics/computer-science/static-schedule
https://www.sciencedirect.com/topics/computer-science/static-schedule
https://www.sciencedirect.com/topics/computer-science/algorithms
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0110
https://www.sciencedirect.com/topics/computer-science/assignment-problem
https://www.sciencedirect.com/topics/computer-science/assignment-problem
https://www.sciencedirect.com/topics/computer-science/real-time-systems
https://www.sciencedirect.com/topics/computer-science/real-time-systems
https://www.sciencedirect.com/topics/computer-science/processing-elements
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0115
https://www.sciencedirect.com/topics/computer-science/multiprocessor-systems
https://www.sciencedirect.com/topics/computer-science/energy-consumption
https://www.sciencedirect.com/topics/computer-science/scheduling-algorithm
https://www.sciencedirect.com/topics/computer-science/precedence-constraint
https://www.sciencedirect.com/topics/computer-science/precedence-constraint
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0120
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0120
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0120
https://www.sciencedirect.com/topics/computer-science/processor
https://www.sciencedirect.com/topics/computer-science/scheduling-method
https://www.sciencedirect.com/topics/computer-science/petri-nets
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0130
https://www.sciencedirect.com/topics/computer-science/scheduling-scheme
https://www.sciencedirect.com/topics/computer-science/dynamic-environment
https://www.sciencedirect.com/topics/computer-science/energy-efficient
https://www.sciencedirect.com/topics/computer-science/distributed-computing-systems
https://www.sciencedirect.com/topics/computer-science/distributed-computing-systems
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy
https://www.sciencedirect.com/topics/computer-science/granularity
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0125
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0125
https://www.sciencedirect.com/topics/computer-science/online-algorithm
https://www.sciencedirect.com/topics/computer-science/online-algorithm
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0135
https://www.sciencedirect.com/topics/computer-science/live-migration
https://www.sciencedirect.com/topics/computer-science/virtual-machines
https://www.sciencedirect.com/topics/computer-science/overlay
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0140
https://www.sciencedirect.com/topics/computer-science/reduce-power-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0145
https://www.sciencedirect.com/topics/computer-science/energy-performance
https://www.sciencedirect.com/topics/computer-science/clustering
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0150
https://www.sciencedirect.com/topics/computer-science/energy-efficiency
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0155
https://www.sciencedirect.com/topics/computer-science/computing-environment
https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/processing-speed
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0160
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0165
https://www.sciencedirect.com/topics/computer-science/scheduling-task
https://www.sciencedirect.com/topics/computer-science/affecting-factor
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0170
https://www.sciencedirect.com/topics/computer-science/timing-requirement

Research in energy-efficient scheduling for real-time tasks in heterogeneous computing systems has
been active. For instance, Zikos and Karatza examined three local resource allocation policies for compute-
intensive jobs with unknown service times based on the shortest queue in a heterogeneous cluster (Zikos and
Karatza, 2011). Yan et al. developed a scheduling algorithm combining DVS and adaptive body biasing to
optimize dynamic power and leakage power consumption jointly for heterogeneous distributed real-
time embedded systems (Yan et al., 2005). Chen et al. presented an energy-efficient real-time task scheduling
policy that aimed at the provision of approximated solutions with worst-case guarantees (Chen et al., 2007).
Hung et al. developed energy-efficient real-time algorithms for the systems equipped with a DVS-enabled
processor and a non-DVS processing element with different energy consumption models (Hung et al., 2006).
Terzopoulos and Karatza investigated the resource scheduling policies based on energy consumption criteria for
a real-time grid system with power-saving capable processors (Terzopoulos and Karatza, 2011). In these real-
time scheduling algorithms, if one task cannot be finished within its deadline, it will be rejected. As a result, for
those tasks with expected finish times but no deadlines, they are not feasible solutions.

In our earlier work (Ge et al., 2005, Zhu et al., 2011, Zhu et al., 2011, Zhu and Lu, 2009, Zhu and Lu,
2009), we have investigated some scheduling strategies on heterogeneous multiprocessor systems. However,
such work did not consider the elastic energy conservation issue and the important case that users have
expected finish time but not strict deadlines for tasks. In this paper, we focus on the problem of elastic
scheduling for independent, aperiodic tasks with users’ expected finish times in heterogeneous computing
systems. Also, we propose a novel scheduling strategy 3E to make trade-offs between the energy conservation
and users’ expected finish times based on the system workload.

3. Mathematical models
In this section, we describe mathematical models used to represent heterogeneous computing systems,

independent tasks, and energy consumptions. For future reference, we sum up the main notation used
throughout this paper in Table 1.

Table 1. Definitions of notation.

Notation Definition
pj The jth compute node in the node set P = {pj, j = 1 … |P|}
ti The ith task in the task set T = {ti, i = 1 … |T|}
ai The arrival time of ti
li The length/size of ti
efti The expected finish time of ti
atij The available time of ti on pj
stij The start time of ti on pj
ftij The finish time of ti on pj
etij The execution time of ti on pj
ttij The transmission time of ti from the scheduler to pj
xij xij is “1” if ti is assigned to pj; otherwise, xij is “0”
oij The execution order of ti on pj

𝑤𝑤𝑖𝑖𝑖𝑖 wij is “1” if ti is waiting in the local queue of pj, and is “0” else
Vj The voltage set of pj
Vjk The kth voltage level of pj
vij The selected voltage of ti on nj, 𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 𝑉𝑉𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑖𝑖𝑖𝑖) The energy consumption rate with supply voltage vij
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 The energy consumed by ti on pj
𝑠𝑠(𝑣𝑣𝑖𝑖𝑖𝑖) The processing speed of pj when using 𝑣𝑣𝑖𝑖𝑖𝑖
𝜏𝜏𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 The idle time of pj

https://www.sciencedirect.com/topics/computer-science/resource-allocation-policy
https://www.sciencedirect.com/topics/computer-science/heterogeneous-cluster
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0175
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0175
https://www.sciencedirect.com/topics/computer-science/dynamic-power
https://www.sciencedirect.com/topics/computer-science/power-consumption
https://www.sciencedirect.com/topics/computer-science/embedded-systems
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0180
https://www.sciencedirect.com/topics/computer-science/scheduling-policy
https://www.sciencedirect.com/topics/computer-science/scheduling-policy
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0185
https://www.sciencedirect.com/topics/computer-science/processing-element
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0190
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0195
https://www.sciencedirect.com/topics/computer-science/real-time-scheduling
https://www.sciencedirect.com/topics/computer-science/real-time-scheduling
https://www.sciencedirect.com/topics/computer-science/deadlines
https://www.sciencedirect.com/topics/computer-science/feasible-solution
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0125
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0200
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0215
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0205
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0210
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0210
https://www.sciencedirect.com/topics/computer-science/heterogeneous-multiprocessor
https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#tbl0005

𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 The transmission energy consumption of ti from scheduler to pj
𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 The transmission energy consumption rate of the link from scheduler to pj

trj The transmission rate of the link between the scheduler and pj
tstij The transmission start time of task ti to pj
rtj The remaining execution time of a running task on pj
𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 The energy consumption rate of a link between the scheduler and pj sitting idle

𝜏𝜏𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 The idle time of link between the scheduler and pj

3.1. Heterogeneous computing model
A heterogeneous computing system in this study is characterized by a set P = {pj, j = 1 … |P|} of compute

nodes that have different processing capabilities. In addition, the interconnection is heterogeneous, i.e.,
the communication cost from the scheduler to the compute nodes varies. The energy-efficientheterogeneous
computing model is depicted in Fig. 1.

Fig. 1. Energy-efficient heterogeneous computing model.

In Fig. 1, the scheduler includes a user expectation controller and a supply voltage controller. They work
together to firstly meet user expected finish times and then explore opportunities for energy savings. There is
also a task queue in the scheduler whereas the tasks scheduling decision has been made but yet modified before
dispatching to the corresponding compute nodes. Each compute node has a local queue where tasks wait for
execution.

When a new task arrives, the scheduler takes two steps to make a scheduling decision. First, it retrieves
the scheduling information of each task in the queue including supply voltage, execution time, and execution
order. Second, it determines the compute node that is able to meet the user's expectation with least energy
consumption. The new task will be enqueued in the scheduler and dequeued to the selected compute note. The
system elasticity lies in that the scheduler can adjust the supply voltages for the tasks in its local queue
according to the system workload. Previous studies do not consider this elasticity and assume the scheduling
decisions that have been made are not subject to modification.

3.2. Task model
The task set is denoted by T = {ti, i = 1 … |T|}, where the tasks are independent of each other. A task

arrives dynamically, and is indivisible and cannot be distributed to multiple compute nodes for concurrent
execution. In addition, there is no communication among tasks. A task is represented by ti = {ai, li, efti}
where ai is the arrival time, li is the task length/size, and efti is the expected finish time. In this work, we neglect
the cost of collecting the information about the queue items as the information size is small. The following
denotations are used to determine the scheduling of task set T on the compute node set P in this paper.

AT = (atij)|T|×|P|: the available time matrix for the task set T on the compute grid P. Element atijrepresents
the available time for task ti on compute node pj.
ST = (stij)|T|×|P|: the start time matrix for the task set T on the compute grid P. Element stij represents the
start time of task ti on compute node pj.
FT = (ftij)|T|×|P|: the finish time matrix for the task set T on the compute grid P. Element ftij represents the
finish time of task ti on compute node pj.

https://www.sciencedirect.com/topics/computer-science/processing-capability
https://www.sciencedirect.com/topics/computer-science/interconnection
https://www.sciencedirect.com/topics/computer-science/communication-cost
https://www.sciencedirect.com/topics/computer-science/energy-efficient
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0005
https://www.sciencedirect.com/topics/computer-science/energy-efficient
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0005
https://www.sciencedirect.com/topics/computer-science/user-expectation
https://www.sciencedirect.com/topics/computer-science/supply-voltage
https://www.sciencedirect.com/topics/computer-science/scheduling-task
https://www.sciencedirect.com/topics/computer-science/execution-order
https://www.sciencedirect.com/topics/computer-science/execution-order
https://www.sciencedirect.com/topics/computer-science/workload
https://www.sciencedirect.com/topics/computer-science/concurrent-execution
https://www.sciencedirect.com/topics/computer-science/concurrent-execution

ET = (etij)|T|×|P|: the execution time matrix. Element etij represents the execution time of task ti on
compute node pj. The values in a row are different because of the heterogeneity in the processing
capabilities of compute nodes.
TT = (ttij)|T|×|P|: the transmission time matrix. Element ttij represents the transmission time of task tifrom
the scheduler to compute node pj.
X = (xij)|T|×|P|: the task allocation matrix. Element xij is “1” if task ti is allocated to compute node pjand is
“0”, otherwise.
O = (oij)|T|×|P|: the execution order matrix. Element oij represents the execution order of task ti on
compute node pj.
𝑊𝑊 = (𝑤𝑤𝑖𝑖𝑖𝑖)|𝑇𝑇|×|𝑃𝑃|: the task waiting matrix. Element wij is “1” if task ti is waiting in the local queue of
compute node pj. Otherwise, wij=0.

3.3. Models of user expectation and energy consumption
The compute nodes in the system are DVFS enabled and the processors are able to operate with

multiple pairs of voltage and frequency. Let ecij be the energy consumption of task ti running on the compute
node pj. ecij is the product of the energy consumption rate ecrj of compute node pj and execution time of task ti.
The energy consumption rate ecrj varies with the supply voltage (Xie and Qin, 2008). Commonly, the energy
consumption rate is also called power of a compute node (Zong et al., 2011). Given k supply voltages for
compute node pj, the voltage set is denoted by Vj = {Vj1, Vj2, …, Vjk}. Without loss of generality, we assume
that Vj1 < Vj2 < … < Vjk. We use vij∈Vj to denote the scheduled supply voltage when task ti runs on compute
node pj. Thus, the energy consumption rate with supply voltage vij can be written as ecr(vij).

The energy consumed by task ti on compute node pj is (Xie and Qin, 2008, Zong et al., 2011):

(1) 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑖𝑖𝑖𝑖) · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 .

Thereby, given a task set T, a compute node set P, an allocation matrix X, a voltage set V, and an
execution time matrix ET, the total energy required to execute all tasks is:

(2) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝐸𝐸) = ∑ |𝑃𝑃|
𝑗𝑗=1 ∑ |𝑇𝑇|

𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ∑ |𝑃𝑃|
𝑗𝑗=1 ∑ |𝑇𝑇|

𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑖𝑖𝑖𝑖) · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,

where etij is the execution time of task ti on compute node pj. It can be calculated as Eq. (3):

(3) 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖
𝑠𝑠(𝑣𝑣𝑖𝑖𝑖𝑖)

,

where 𝑠𝑠(𝑣𝑣𝑖𝑖𝑖𝑖) is the processing speed of compute node pj when using the supply voltage vij to deal with task ti.

Eq. (2) does not include the energy consumption when the compute nodes are idle. In this study, we set
the supply voltage to the lowest level when compute nodes are idle. Thus, the energy consumption rate of
compute node pj at idle is ecr(Vj1). The energy consumed by compute nodes at idle is:

(4) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝐸𝐸) = � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑗𝑗1) · 𝜏𝜏𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
|𝑃𝑃|

𝑗𝑗=1
= � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑗𝑗1)

|𝑃𝑃|

𝑗𝑗=1
· �𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖=1

|𝑇𝑇|
{𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖}−

� 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
|𝑇𝑇|

𝑖𝑖=1
�,

https://www.sciencedirect.com/topics/computer-science/processor
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0020
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0155
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0020
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0155
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0015
https://www.sciencedirect.com/topics/computer-science/processing-speed
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0010

where 𝜏𝜏𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the idle time of compute node pj. It equals the schedule length of pj minus the total execution
time of all tasks assigned to pj. 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1

|𝑇𝑇| {𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖} is the finish time of the last executed task on pj, i.e., the compute
node pj's schedule length.

Combining both dynamic energy and energy during idle time, the node energy consumption of the
heterogeneous computing system is derived from Eq. (2) and Eq. (4) as:

(5) 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝐸𝐸) = 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝐸𝐸) + 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝐸𝐸) =
∑ |𝑃𝑃|
𝑗𝑗=1 � 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑖𝑖𝑗𝑗) · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

|𝑇𝑇|

𝑖𝑖=1
+� 𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑗𝑗1)

|𝑃𝑃|

𝑗𝑗=1
· �𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖=1

|𝑇𝑇|
{𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖}−� 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

|𝑇𝑇|

𝑖𝑖=1
�.

In this study, we also consider the transmission energy consumption of tasks from scheduler to compute

nodes. Due to the heterogeneity of networks, we let 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denote the transmission energy consumption rate
of the link from scheduler to pj. Hence, the transmission energy consumption of ti from scheduler to pj is
measured as below:

(6) 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 · 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 · 𝑙𝑙𝑖𝑖
𝑡𝑡𝑡𝑡𝑗𝑗

,
where trj is the transmission rate of the link between the scheduler and compute node pj.

Given a task set T, a compute node set P, an allocation matrix X, and a transmission time matrix TT, the
transmission energy consumed by transmitting all tasks is:

(7) 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑇𝑇𝑇𝑇) = ∑ |𝑃𝑃|
𝑗𝑗=1 � 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

|𝑇𝑇|

𝑖𝑖=1
= ∑ |𝑃𝑃|

𝑗𝑗=1 � 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
|𝑇𝑇|

𝑖𝑖=1
· 𝑙𝑙𝑖𝑖
𝑡𝑡𝑡𝑡𝑗𝑗

.

Additionally, the energy consumption when a link is idle (i.e., no message needs to be transmitted in a
link) is considered in our energy model. The energy consumption rate of a link between the scheduler and
compute node pj sitting idle is denoted by 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and we obtain the energy consumed by the link when it is
inactive as follows:

(8) 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇) = � 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 · 𝜏𝜏𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
|𝑃𝑃|

𝑗𝑗=1
= � �𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ·

|𝑃𝑃|

𝑗𝑗=1

�𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1

|𝑇𝑇|
{𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖}−� 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖

|𝑇𝑇|

𝑖𝑖=1
��.

where 𝜏𝜏𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the idle time of link between the scheduler and compute node pj.

The link energy consumption can be written as:

(9) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇) = 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑇𝑇𝑇𝑇) + 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇) =

∑ |𝑃𝑃|
𝑗𝑗=1 � 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 · 𝑙𝑙𝑖𝑖

𝑡𝑡𝑡𝑡𝑗𝑗

|𝑇𝑇|

𝑖𝑖=1
+� �𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 · �𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖=1

|𝑇𝑇|
{𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖}−� 𝑥𝑥𝑖𝑖𝑖𝑖 · 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖

|𝑇𝑇|

𝑖𝑖=1
��

|𝑃𝑃|

𝑗𝑗=1

.

Finally, the total energy consumption can be derived from Eqs. (5) and (9) as:

https://www.sciencedirect.com/topics/computer-science/total-execution-time
https://www.sciencedirect.com/topics/computer-science/total-execution-time
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0020
https://www.sciencedirect.com/topics/computer-science/transmission-rate
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0025
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0045

(10) 𝑡𝑡𝑡𝑡𝑡𝑡(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇,𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇) = 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝐸𝐸) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇).

Given a set T of tasks, the assignment should maximize the count of tasks for which the user expectation
is met. Thus, the optimization problem can be formulated as:

(11)

maximize ∑ |𝑃𝑃|
𝑗𝑗=1 ∑ |𝑇𝑇|

𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖

subjectto

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖
∑ |𝑃𝑃|
𝑗𝑗=1 𝑥𝑥𝑖𝑖𝑖𝑖 = 1

1 ≤ 𝑖𝑖 ≤ |𝑇𝑇|
1 ≤ 𝑗𝑗 ≤ |𝑃𝑃|

We would like to emphasize that we weight more on the user expectation than the energy savings in our

scheduling. In other words, the energy savings will be largely built upon the solution space from Eq. (11).
Thereby, the total energy consumption value needs to be minimized, i.e.,

(12)

minimize 𝑡𝑡𝑡𝑡𝑡𝑡(𝑇𝑇,𝑁𝑁,𝑋𝑋,𝑉𝑉,𝐸𝐸𝐸𝐸,𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇)

subjectto

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑉𝑉𝑗𝑗1 ≤ 𝑣𝑣𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉𝑗𝑗𝑗𝑗

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖

� 𝑥𝑥𝑖𝑖𝑖𝑖 = 1
|𝑃𝑃|

𝑗𝑗=1
1 ≤ 𝑖𝑖 ≤ |𝑇𝑇|
1 ≤ 𝑗𝑗 ≤ |𝑃𝑃|

Energy conservation and user expectation (expected finish time) are two conflicting objectives on a

heterogeneous computing system. Minimizing the energy use by a compute node under heavy load could result
in a late finish time for current tasks and unmet user expectations for subsequent tasks. Our energy-efficient
elastic (3E for short) scheduling strategy makes trade-offs between Eqs. (11) and (12) according to the system
workload. When the system is under heavy load, 3E favors user expectations. When the system is under light
load, it favors energy savings by lowering supply voltages within guaranteeing users’ expectations.

4. The energy-efficient elastic 3E scheduling strategy
In this section, we present 3E strategy for independent and aperiodic tasks with user expected finish

time in a heterogeneous computing system. Firstly, we introduce some rules to facilitate the presentation of
our scheduling strategy.

Property 1
A task that cannot be finished before its user expected finish time is still assigned to a compute node for

execution.

(13) ∀𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇, 𝑝𝑝𝑗𝑗 ∈ 𝑃𝑃:𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖or𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 > 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 .

Property 2
A running task cannot be preempted, namely, a running tasks cannot be interrupted during its execution

and a task can be run only after the running task is completed.

https://www.sciencedirect.com/topics/computer-science/optimisation-problem
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0055
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0055
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0060
https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy

(14)
∀𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇:� 𝑥𝑥𝑖𝑖𝑖𝑖 = 1,

|𝑃𝑃|

𝑗𝑗=1
∀𝑡𝑡𝑖𝑖, 𝑡𝑡𝑘𝑘 ∈ 𝑇𝑇,𝑥𝑥𝑖𝑖𝑖𝑖 = 1, [𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘,𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘]∩ [𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖] ≠ Ø:𝑥𝑥𝑘𝑘𝑘𝑘 = 0.

Property 3
For a new task, the lowest supply voltage is firstly attempted. If the lowest supply voltage is unable to

meet user expected finish time, the supply voltage is increased step by step until the user's expected finish time
is met or the supply voltage reaches the highest level.

(15) ∀𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇, 𝑝𝑝𝑗𝑗 ∈ 𝑃𝑃, (∃min{𝑣𝑣𝑖𝑖𝑖𝑖}:𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖)or(𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑗𝑗𝑗𝑗:𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 > 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖).
Property 4

If a new task cannot be finished within its user expected time even with the highest supply voltage, the
supply voltages of tasks that await in the local queue for execution will be adjusted to approach the user's
expected finish time.

Property 4 implies that the finish times and execution times of tasks waiting in a local queue can be
modified, and thus the start times of the following tasks also.

Property 5
The scheduling event is triggered as a new task arrives, i.e., immediate mode is employed.

Now we analyze the available time atij of task ti on compute node pj, which is defined as the arrival time

of ti on pj. atij can be approximated as follows:

(16) 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑙𝑙𝑖𝑖
𝑡𝑡𝑡𝑡𝑗𝑗

,

where tstij is the transmission start time of task ti to compute node pj.

The start time stij of task ti on compute node pj is in one of three options:

(17) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 if� 𝑤𝑤𝑖𝑖𝑖𝑖 · 𝑥𝑥𝑖𝑖𝑖𝑖 = 0and𝑟𝑟𝑗𝑗 = 0

|𝑇𝑇|

𝑖𝑖=1
,

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑗𝑗 if� 𝑤𝑤𝑖𝑖𝑖𝑖 · 𝑥𝑥𝑖𝑖𝑖𝑖 = 0,
|𝑇𝑇|

𝑖𝑖=1

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑗𝑗 +� 𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘𝑜𝑜𝑘𝑘𝑘𝑘<𝑜𝑜𝑖𝑖𝑖𝑖,𝑤𝑤𝑘𝑘𝑘𝑘=1
else.

where rj = 0 denotes no task is running on compute node pj, and rtj represents the remaining execution time of a
running task on pj. ∑|𝑇𝑇|

𝑖𝑖=1 𝑤𝑤𝑖𝑖𝑖𝑖 · 𝑥𝑥𝑖𝑖𝑖𝑖 = 0 denotes that there are no tasks in the local queue of pj.
The finish time of task ti on compute node pj is equal to the sum of the start time stij and ti's execution

time on pj:

(18) 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖.

The 3E scheduling strategy employs the earliest expected finish time first policy placing new and waiting

tasks in a local queue. Thereby, we get the following property.

https://www.sciencedirect.com/topics/computer-science/supply-voltage
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0020
https://www.sciencedirect.com/topics/computer-science/immediates

Property 6
The start times of tasks waiting in a local queue can be modified if a new incoming task requires

increasing the supply voltages of some tasks in the queue.
Assume that ti is the new task placed in the local queue of compute node pj, and tk is the task whose

start time needs to be recalculated.
Case 1: if 𝑜𝑜𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑜𝑜𝑚𝑚𝑚𝑚�𝑤𝑤𝑚𝑚𝑚𝑚 = 1� and okj = oij + 1, then 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘′ = 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖. Fig. 2 illustrates an example of
Case 1.

Fig. 2. An example of Case 1.

Case 2: if 𝑜𝑜𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑜𝑜𝑚𝑚𝑚𝑚|𝑤𝑤𝑚𝑚𝑚𝑚 = 1} and okj > oij + 1, then 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘′ = 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 −� (𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 −
𝑜𝑜𝑚𝑚𝑚𝑚<𝑜𝑜𝑘𝑘𝑘𝑘,𝑜𝑜𝑚𝑚𝑚𝑚≠𝑜𝑜𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚
′). Fig. 3 illustrates an example of Case 2.

Fig. 3. An example of Case 2.

Case 3: if 𝑜𝑜𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑜𝑜𝑚𝑚𝑚𝑚|𝑤𝑤𝑚𝑚𝑚𝑚 = 1}, then 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘′ = 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘. Fig. 4 illustrates an example of Case 3.

Fig. 4. An example of Case 3.

Case 4: if 𝑜𝑜𝑖𝑖𝑖𝑖 ≠ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑜𝑜𝑚𝑚𝑚𝑚|𝑤𝑤𝑚𝑚𝑚𝑚 = 1}, 𝑜𝑜𝑘𝑘𝑘𝑘 ≠ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑜𝑜𝑚𝑚𝑚𝑚|𝑤𝑤𝑚𝑚𝑚𝑚 = 1}, and okj < oij, then 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘′ = 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 −
∑𝑜𝑜𝑚𝑚𝑚𝑚<𝑜𝑜𝑘𝑘𝑘𝑘 (𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚′). Fig. 5 illustrates an example of Case 4.

Fig. 5. An example of Case 4.

Case 5: if 𝑜𝑜𝑖𝑖𝑖𝑖 ≠ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑜𝑜𝑚𝑚𝑚𝑚|𝑤𝑤𝑚𝑚𝑚𝑚 = 1}, 𝑜𝑜𝑘𝑘𝑘𝑘 ≠ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑜𝑜𝑚𝑚𝑚𝑚|𝑤𝑤𝑚𝑚𝑚𝑚 = 1}, and okj > oij, then 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘′ = 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 −
∑𝑜𝑜𝑚𝑚𝑚𝑚<𝑜𝑜𝑘𝑘𝑘𝑘 (𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚′ + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖). Fig. 6 illustrates an example of Case 4.

Fig. 6. An example of Case 5.

Hence, the new finish time 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘′ of a task tk in the local queue of a compute node pj is:

(19) 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘
′ = 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘′ + 𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘′ = 𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘′ + 𝑙𝑙𝑘𝑘

𝑠𝑠(𝑣𝑣𝑘𝑘𝑘𝑘
′)

.
The 3E strategy uses heuristic algorithm. It performs the following operations when a new task arrives.

First, it computes the start and finish times for the task on each compute node at the lowest supply voltage.

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0015
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0025
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0030
https://www.sciencedirect.com/topics/computer-science/heuristic-algorithm

Next, if none of the compute nodes meets the user expectation, it increases the supply voltage gradually until
the new task's finish time is earlier or equal to its user expected finish time. Third, if the highest-level supply
voltage still cannot meet the user expected finish time for the new task, the 3E strategy will examine if it can
increase the supply voltages of the existing tasks in the local queue. If there exists an allocation where both the
adjusted existing tasks and the new task can meet the expected finish times, it sets the allocation. The 3E
chooses the compute node with the smallest sum of node and transmission energy consumption to save energy.

The elasticity of our 3E lies in that it can flexibly adjust scheduling objectives based on the
system workload. When the system is heavily loaded, the 3E strives to guarantee user expectations by increasing
the supply voltages of new tasks and tasks waiting in local queues. In contrast, when the system is lightly loaded,
the 3E is able to aggressively reduce energy consumption while maintaining user expectations.

The pseudocode of 3E scheduling strategy is shown in Algorithm 1.

Algorithm 1
Pseudocode of 3E scheduling strategy

1: for each new task ti do
2: mSelectedNode ← NULL; nMSelectedNode ← NULL; furtherAdjust ← TRUE; energyCons← ∞; meetE

xpectation ← FALSE;
3: for each compute node pj in a heterogeneous computing system do
4: Calculate the transmission energy consumption 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 using Eq. (6);
5: Calculate the start time stij using Eq. (17);
6: vij←Vj1;
7: if stij + etij > efti then
8: adjustPhase1();
9: if furtherAdjust = = TRUE then
10: adjustPhase2();
11: end if
12: if meetExpectation = = FALSE then
13: noMeetExpectation();
14: end if
15: else
16: noNeedAdjust();
17: end if
18: end for
19: ifmSelectedNode ≠ NULL then
20: Allocate ti to mSelectedNode and update scheduling information;
21: else
22: Allocate ti to nMSelectedNode and update scheduling information;
23: end if
24: end for

First, the 3E computes the transmission energy consumption and start time (see Lines 4 and 5, Algorithm

1). Second, it examines if a new task's expected finish time can be met with the lowest supply voltage (see Lines
6 and 7, Algorithm 1). If the initial test is not passed, the 3E calls Function adjustPhase1().

Algorithm 2
Pseudocode of Function adjustPhase1()

1: while 𝑣𝑣𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉𝑗𝑗𝑗𝑗 do
2: Increase one supply voltage level: 𝑣𝑣𝑖𝑖𝑖𝑖′ ← 𝑣𝑣𝑖𝑖𝑖𝑖 + +

https://www.sciencedirect.com/topics/computer-science/user-expectation
https://www.sciencedirect.com/topics/computer-science/energy-consumption
https://www.sciencedirect.com/topics/computer-science/workload
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/topics/computer-science/algorithms
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0030
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0085
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035

3: if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 then
4: furtherAdjust ← FALSE;
5: meetExpectation ← TRUE;
6: Calculate the node energy consumption 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 using Eq. (1);
7: if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then
8: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ← 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛;
9: mSelectedNode ← j;
10: break;
11: end if
12: end if
13: end while

In Function adjustPhase1(), the 3E increases the supply voltage gradually for this new task until its user

expectation is satisfied (lines 2–5, Algorithm 2). Next, the 3E selects the compute node with the least energy
consumption (lines 6–11, Algorithm 2). After the while loop, if the variable furtherAdjust is equal
to TRUE meaning the highest supply voltage cannot meet the user's expectation, the 3E further adjusts the
supply voltage of waiting tasks in the local queue of this compute node, thus, the Function adjustPhase2() is
called.

Algorithm 3
Pseudocode of Function adjustPhase2()

1: for each task tm in the local queue of pj do
2: while 𝑣𝑣𝑚𝑚𝑚𝑚 ≤ 𝑉𝑉𝑗𝑗𝑗𝑗 do
3: Increase one supply voltage level: 𝑣𝑣𝑚𝑚𝑚𝑚

′ = 𝑣𝑣𝑚𝑚𝑚𝑚 + +;
4: Calculate tm's new start time 𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚

′ and execution time 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚
′ ;

5: if 𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚′ + 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚
′ ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚and𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 then

6: meetExpectation ← TRUE;
7: Calculate the new node energy consumption 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +� 𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑤𝑤𝑚𝑚𝑚𝑚=1
;

8: if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then
9: mSelectedNode ← j;
10: end if
11: break;
12: else
13: 𝑣𝑣𝑚𝑚𝑚𝑚

′ = 𝑣𝑣𝑚𝑚𝑚𝑚 − −;
14: break;
15: end if
16: end while
17: end for

For a task in the local queue, the 3E first increases the supply voltage step by step until it reaches the

highest (lines 2 and 3, Algorithm 3). If the increased supply voltage cannot meet the expected finish times for
the new task or the waiting task, the supply voltage is degraded to its pervious value (lines 12 and 13, Algorithm
3). Otherwise, if the new task can be finished within its user expectation (line 6, Algorithm 3), the 3E finds the
compute node with the least energy consumption (lines 7–10, Algorithm 3).

If neither of Function adjustPhase1() and Function adjustPhase2() can set the
variable meetExpectationto be FALSE, which means none of the supply voltage adjustments is able to meet the
new task's expected finish time, the Function noMeetExpectation() is called.

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0005
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0040
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0040
https://www.sciencedirect.com/topics/computer-science/while-loop
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0045
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0045
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0045
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0045
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0045

Algorithm 4
Pseudocode of Function noMeetExpectation()

1: if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑗𝑗𝑗𝑗) ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then
2: nMSelectedNode ← j;
3: end if

In Function noMeetExpectation(), the 3E selects the compute node with the least energy consumption

employing the highest supply voltage for the new task (see lines 1–3, Algorithm 4).
If the lowest supply voltage meets its user's expectation, the 3E calls the Function noNeedAdjust().

Algorithm 5
Pseudocode of Function noNeedAdjust()

1: if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑗𝑗1) ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then
2: mSelectedNode ← j;
3: end if

The node with the least energy consumption is chosen in Function noNeedAdjust() to save energy (lines

1–3, Algorithm 5).
Let us go back to see Algorithm 1. A value of mSelectedNode that is not NULL indicates some compute

nodes can execute the new task within the user expectation using our elastic voltage adjustment policy. In this
case, the 3E allocates the new task to the selected node with the least energy consumption. Otherwise, no
compute nodes can meet the user expected finish time for the new task. In this case, the 3E also selects a node
with the least energy consumption (lines 19–23, Algorithm 1).

The time complexity of 3E depends on the number of compute nodes in a heterogeneous computing
system, the number of tasks, and the number of supply voltage levels.

Theorem 1
The time complexity of scheduling a new task with 3E is O(|P||Q||K|), where |P| is the number of

compute nodes in a heterogeneous computing system, |Q| is the number of tasks in a local queue, and |K| is the
number of supply voltage levels.

Proof
The time complexity of Function adjustPhase1() is O(|K|). Function adjustPhase2() consumes O(|Q||K|) time.
The time complexity of Functions noMeetExpectation() and noNeedAdjust() are O(1). Other lines only
consume O(1). Thus, the time complexity of 3E is calculated as
follows: O(|P|)(O(|K|) + O(|Q||K|) + O(1) + O(1)) = O(|P||Q||K|).□

5. Performance evaluation
In this section, we evaluate the effectiveness of the proposed 3E scheduling strategy. We quantitatively

compare 3E with three other algorithms:
• Greedy energy-efficient (GEE). GEE strives to guarantee user expected and reduce energy

consumptions by adjusting the supply voltage of a newly arrived task. GEE does not adjust the supply
voltage of tasks waiting in local queues of compute nodes.

• Highest voltage energy-efficient (HVEE). HVEE offers the highest supply voltage for each new task and
selects the compute node with the least energy consumption to execute the new task.

• Lowest voltage energy-efficient (LVEE). LVEE provides the lowest supply voltage for each new task and
selects the compute node with the least energy consumption to execute the new task.

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0050
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0055
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/topics/computer-science/time-complexity
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy
https://www.sciencedirect.com/topics/computer-science/algorithms
https://www.sciencedirect.com/topics/computer-science/energy-efficient
https://www.sciencedirect.com/topics/computer-science/energy-consumption
https://www.sciencedirect.com/topics/computer-science/energy-consumption
https://www.sciencedirect.com/topics/computer-science/supply-voltage

We use three performance metrics to evaluate the algorithms.

• Satisfaction rate, the ratio of the number of tasks whose finish time meet their users’ expectations to

the total number of tasks×100%.
• Total energy consumption, the total energy consumption including the node energy consumption and

transmission energy consumption.
• Makespan, the latest task finish time in the task set.

We use normalized total energy consumption in our study, a common practice used in literature (Kim et

al., 2008, Laszewski et al., 2009) and (Liu et al., 2010).

5.1. Simulation method and parameters
Before presenting our experimental results, we present the simulation model as follows: Table

2summarizes the configuration parameters of the simulated heterogeneous computing systems used in our
experiments. The parameters of nodes and links in the heterogeneous computing systems are chosen to
resemble real-world processors.

Table 2. Parameters for simulation studies.

Parameter Value(fixed)–(varied)
Number of compute nodes (32)–(8, 16, 32, 56, 64, 96, 128)
Number of tasks (2048)
minSpeed (kbps) ([250, 450])–([300, 400]), ([250, 450]), ([200, 500])
maxSpeed (kbps) ([900, 1100])–([950, 1050]), ([900, 1100]), ([850, 1150])
bandWidth (kbps) ([1250, 1400])
intervalTime (s) (2.0)–(2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0)
taskSize (kb) ([500, 1000])–([0, 500], [500, 1000], [1000, 1500])
finishTimeBase (s) (2.0)–(2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0)
nodeECR (W) ([14, 100])
transmissionECR (W) ([10, 20])

The voltage levels of all the compute nodes are from 0.9 V to 1.5 V with an increment of 0.1 V.

Corresponding to the lowest and the highest voltages, the lowest and highest power consumptions are 14 W
and 100 W respectively, and the slowest and fastest processing speeds are 350 kbps and 1000 kbps in average,
respectively. The energy consumptions and performances for other voltages are determined by the energy
and performance models.

The parameters and the values used in our simulations are summarized in Table 1.

1) The heterogeneity of the simulated distributed computing system is reflected by the nodes’ processing
speeds and network bandwidths. The minimum processing speed minSpeed corresponding to the lowest
voltage Parameter is normally distributed across the compute nodes, and so are the maximum
processing speed maxSpeed corresponding to the highest voltage level and the transmission
rates bandWidth from the scheduler to different compute nodes.

2) Parameter nodeECR represents a range of node energy consumption rate from the minimal voltage to
the maximal one. Again, transmissionECR is a range of transmission energy consumption rate from the
worst link to the best one. Node energy consumption rate and transmission energy consumption rate
are normally distributed in nodeECR and transmissionECR, respectively. This parameters are similar to
that in Xie and Qin (2008). Additionally, in our experiments, we set the node energy consumption rate

https://www.sciencedirect.com/topics/computer-science/performance-metric
https://www.sciencedirect.com/topics/computer-science/satisfaction-rate
https://www.sciencedirect.com/topics/computer-science/user-expectation
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/topics/computer-science/common-practice
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0095
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0095
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0145
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0150
https://www.sciencedirect.com/topics/computer-science/experimental-result
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#tbl0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#tbl0010
https://www.sciencedirect.com/topics/computer-science/configuration-parameter
https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/real-world
https://www.sciencedirect.com/topics/computer-science/processor
https://www.sciencedirect.com/topics/computer-science/simulation-study
https://www.sciencedirect.com/topics/computer-science/power-consumption
https://www.sciencedirect.com/topics/computer-science/processing-speed
https://www.sciencedirect.com/topics/computer-science/energy-performance
https://www.sciencedirect.com/topics/computer-science/performance-model
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#tbl0005
https://www.sciencedirect.com/topics/computer-science/distributed-computing-systems
https://www.sciencedirect.com/topics/computer-science/network-bandwidth
https://www.sciencedirect.com/topics/computer-science/transmission-rate
https://www.sciencedirect.com/topics/computer-science/transmission-rate
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0020

being idle is a tenth of the node energy consumption rate when active; and the transmission energy
consumption rates being active and idle are equal.

3) We study three task sizes: small, median and large in our simulations, where small size is less than
500 kb, median size is within 500–1000 kb, and large size is within 1000–1500 kb.

4) Parameter finishTimeBase determines whether a task's expected finish time is loose or tight. The
expected finish time efti of task ti in Eq. (20) is designed similar as that in Qin and Jiang (2006),

(20) 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑎𝑎𝑖𝑖 + (1 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) × 𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,

where 𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the longest execution time that can be computed as follows:

(21) 𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑒𝑒𝑖𝑖𝑖𝑖(𝑉𝑉𝑗𝑗1)}.

5) Parameter intervalTime represents the arrival interval between two consecutive tasks. The arrival rate
of tasks is Poisson distribution.

5.2. Scalability
Scalability is an important measure of scheduling strategy for large scale systems. In our experiments,

we examine how the four strategies perform when the count of compute nodes increases from 8 to 128. Fig.
7, Fig. 8, Fig. 9 show satisfaction rate, total energy consumption, and makespan with each strategy.

Fig. 7. Performance impact of the count of compute nodes on satisfaction rate.

Fig. 7 shows that satisfaction rate improves with the increase of compute node count for all strategies.
This is because more nodes provide more computing resources. HVEE always yields higher satisfaction rate than
other strategies as it sets the voltage to the highest level all the time and thus results in less execution times for
tasks and earlier start times. Hence, the likelihood of missing user expected finish time is reduced. In contrast,
LVEE offers the worst satisfaction rate because of employing the lowest voltage level all the time. The 3E
strategy outperforms GEE as it utilizes the information of tasks in the local queues in addition to newly arrived
tasks and adjusts their supply voltage levels when the system is under heavy workload.

Fig. 8 shows how the total energy consumption varies with the count of compute nodes. HVEE achieves
the lowest energy efficiency while LVEE achieves the highest. These results indicate that both baseline schemes
have no elasticity, lacking the capacities to make trade-offs between satisfaction rate and total energy
consumption and to respond to the dynamics of system workload. GEE exhibits the similar trend as 3E, with a
lower total energy consumption at the expense of smaller satisfaction rate. This is explained by the fact that 3E
aggressively enhances the satisfaction rate when the system is heavily loaded. However, the difference between
3E and GEE becomes negligible when the number of compute nodes is larger than 96. Interestingly, the total
energy consumption with 3E decreases when the count of compute nodes increases from 8 to 64. This is
because 3E strives to reduce energy consumption while keeping high satisfaction rate when the system
workload becomes lighter. Additionally, when the count of compute nodes is more than 64, the total energy
consumption with 3E goes up as most of the compute nodes are sitting idle, leading to increasing idle energy
consumption even if the compute nodes are scheduled at the lowest voltage levels.

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0100
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bib0220
https://www.sciencedirect.com/topics/computer-science/scalability
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0040
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0045
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/satisfaction-rate
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0035
https://www.sciencedirect.com/topics/computer-science/computing-resource
https://www.sciencedirect.com/topics/computer-science/earliest-start
https://www.sciencedirect.com/topics/computer-science/supply-voltage-level
https://www.sciencedirect.com/topics/computer-science/workload
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0040
https://www.sciencedirect.com/topics/computer-science/energy-efficiency

Fig. 8. Performance impact on the count of compute nodes in terms of total energy consumption.

Fig. 9 shows that LVEE delivers the worst makespan as a result of deploying the lowest voltage level and
the least energy consumption for tasks. On the contrary, HVEE delivers the best makespan at the expense of
higher energy consumption. With these two strategies, energy consumption and makespan do not compensate
for each other. The results are the consequences of the lack of elasticity in the scheduling strategies in
heterogeneous computing systems. 3E delivers better makespan than GEE when the compute node count is less
than 96. To guarantee higher satisfaction rate when the system is under heavy workload, 3E boosts the supply
voltage levels for some tasks in local queues leading to shorter execution times, whereas GEE lacks the capability
to shorten the execution times of those waiting tasks. Consequently, tasks scheduled by 3E have shorter
execution times with higher throughput compared with GEE. The two strategies exhibit identical makespan
when the number of compute nodes is larger than 96 because the system workload is light enough for both to
schedule tasks with the lowest voltage level.

Fig. 9. Performance impact on the count of compute nodes in terms of makespan.

5.3. Arrival rate
To examine the performance sensitivities of the four strategies to the arrival rate of tasks, in this set of

experiments, we vary the parameter intervalTime from 2 to 16 with increment of 2. Fig. 10, Fig. 11, Fig. 12 plot
the performances of GEE, LVEE, HVEE, and 3E.

Fig. 10. Performance impact of the arrival rate on satisfaction rate.

The first observation drawn from Fig. 10 is that, for all strategies, the satisfaction rate is improved with
the increase of intervalTime. This is because the smaller intervalTime means more frequent tasks arrivals, more
tasks waiting in the local queues, and heavier system workload. Consequently, a newly arrived task has to wait

https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0045
https://www.sciencedirect.com/topics/computer-science/high-throughput
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0050
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0055
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0060
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/satisfaction-rate
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0050

until the tasks with higher orders are finished. The long-time waiting increases the possibility of missing user
expected finish time. With larger intervalTime, the number of waiting tasks in local queues becomes smaller, the
system workload becomes lighter, and a newly arrived task can be started earlier. Again, we observe that HVEE
and LVEE generate the highest and the lowest satisfaction rates, respectively, while 3E performs better than
GEE. We attribute the results to the fact that HVEE and LVEE consistently maintain the highest voltage level and
the lowest voltage level for each new task without flexibility, and 3E is able to adjust the voltage levels of waiting
tasks to improve the satisfaction rate when the system is under heavy workload.

The results reported in Fig. 11 demonstrate that most energy is consumed with HVEE and least energy is
consumed with LVEE. The 3E strategy has unique features. For instance, when the value of
parameter intervalTime varies from 2 to 8, the system workload becomes lighter, 3E dynamically degrades the
supply voltage levels of tasks to reduce energy consumption with the constraint that the user expected finish
times are met. The total energy consumption by a 3E-enabled heterogeneous computing system increases
when intervalTime is larger than 8. This is because the light workload produces more idle time and thus
increasing energy consumption. This phenomenon is more obvious when the node count is large enough.
An interesting observation from Fig. 11 is that GEE performs similarly as 3E and is slightly more energy-efficient
when the intervalTime is larger than 8. However, this is at the expense of satisfaction rate under heavy system
workload.

Fig. 11. Performance impact of the arrival rate on the total energy consumption.

In Fig. 12, we observe that when intervalTime varies from 2 to 16, the makespan under all the four
schemes increase. This is because tasks arrive less frequently if the value of intervalTime increases, thus, tasks
start later and finish later compared with those with smaller intervalTime. Another important observation is that
HVEE generates the best makespan, while LVEE is the opposite. 3E outperforms GEE in terms of makespan when
the intervalTime is less than 8. As the system workload is heavy, 3E trades low energy efficiency for high
satisfaction, leading to shorter execution times of tasks.

Fig. 12. Performance impact of the arrival rate on makespan.

5.4. Expected finish time
This subsection discusses the performance impact of user expected finish times with GEE, LVEE, HVEE,

and 3E. We vary the parameter finishTimeBase from 2 to 16. Fig. 13, Fig. 14, Fig. 15 plot the performances of the
four policies.

https://www.sciencedirect.com/topics/computer-science/reported-result
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0055
https://www.sciencedirect.com/topics/computer-science/interesting-observation
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0055
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0060
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0065
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0070
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0075

Fig. 13. Performance impact of the finishTimeBase on satisfaction rate.

Fig. 14. Performance impact of finishTimeBase on the total energy consumption.

Fig. 15. Performance impact of finishTimeBase on makespan.

We observed from Fig. 13 that with the increase of finishTimeBase and looser constraint for user
expected finish time for tasks, the satisfaction rate with each strategy increases accordingly. As the timing
requirement becomes loose, and tasks can finish late yet still meet user expected finish times. Additionally, Fig.
13 demonstrates that HVEE and LVEE have the highest and the lowest satisfaction rate, respectively. Again, the
satisfaction rate under 3E is better than that under GEE. These results are consistent with what are observed
from Figs. 7 and 10).

Increasing finishTimeBase reflects the system workload becomes lighter. We observe from Fig. 14 that
when the value of finishTimeBase is less than 10, the energy consumption under 3E gradually decreases as a
result of good elasticity. We also observe that when the finishTimeBase is more than 10, the result is consistent
with previous simulations. Although GEE has a similar trend with 3E, it yields lower satisfaction rate than 3E
when the system is heavily loaded. In addition, both HVEE and LVEE are unable to reduce the energy
consumption no matter what the system workload is.

Fig. 15 shows that LVEE has longer makespan than the other schemes because it always uses the lowest
voltage level. HVEE is opposite of LVEE. 3E making better makespan than GEE is because the execution times of
some tasks with 3E are shortened to guarantee high satisfaction rate.

https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/satisfaction-rate
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0065
https://www.sciencedirect.com/topics/computer-science/timing-requirement
https://www.sciencedirect.com/topics/computer-science/timing-requirement
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0065
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0065
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0050
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0070
https://www.sciencedirect.com/topics/computer-science/previous-simulation
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0075

5.5. Task size
In this set of experiments, we evaluate the performance impact of task size. We test three

configurations of task size, as described in Table 1. Fig. 16, Fig. 17, Fig. 18 depict the performances of the four
schemes under small, median, and large task sizes.

Fig. 16. Performance impact of the taskSize on satisfaction rate.

The results in Fig. 16 reveal that when the task size is small, all the strategies are able to provide higher
satisfaction rate because of the shortened tasks’ execution times. For median and large task sizes, the execution
time are longer and the satisfaction rates are smaller. HVEE always offers the highest satisfaction while LVEE
offers the lowest because of the static nature and lack of ability of adjusting voltage levels according to the
system workload. 3E has higher satisfaction rate than GEE as 3E strives to meet the user's expectations at the
cost of energy efficiency when the system is under heavy workload.

Fig. 17 shows that when the taskSize varies from small granularity to large one, the total energy
consumption of a heterogeneous computing system under all the tested methods goes up. This is because the
larger size tasks require longer execution times and thus more energy consumption. HVEE has the highest
energy consumption and LVEE has the lowest energy dissipation, as exhibited in the previous experiments.
Interestingly, when the task size is median or large, the energy consumption with 3E is slightly more than that
with GEE because 3E weights more on the high satisfaction rate when the system is heavy loaded. However,
when the task size is small, 3E and GEE have basically identical energy efficiency.

Fig. 17. Performance impact of the taskSize on total energy consumption.

The makespans of the four strategies shown in Fig. 18 indicate that the elasticity of 3E is good. These
results are consistent with the ones plotted in Figs. 12 and 15.

Fig. 18. Performance impact of the taskSize on makespan.

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#tbl0005
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0080
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0085
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0090
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/satisfaction-rate
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0080
https://www.sciencedirect.com/topics/computer-science/task-execution
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0085
https://www.sciencedirect.com/topics/computer-science/granularity
https://www.sciencedirect.com/topics/computer-science/energy-dissipation
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0090
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0060
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0075
https://www.sciencedirect.com/topics/computer-science/performance-impact

5.6. Compute node heterogeneity levels
The experiments in these subsection focus on the impact of compute node heterogeneity on system

performance. To be specific, we evaluate three node heterogeneity degrees: small heterogeneity, middle
heterogeneity, and large heterogeneity. Fig. 19, Fig. 20, Fig. 21 depict the performances of GEE, LVEE, HVEE, and
3E.

Fig. 19. Performance impact of the compute node heterogeneity on satisfaction rate.

In Fig. 19, we observe that the satisfaction rate of all strategies are boosted with the increase of
compute node heterogeneity. This is mainly because more tasks are allocated to nodes with larger processing
capability and less tasks are allocated to nodes with smaller processing capability. 3E outperforms others except
for HVEE because 3E judiciously adjusts the supply voltages of queuing tasks in local queues. HVEE holds the
highest satisfaction rate at the expense of consuming the most energy.

We observe from Fig. 20 that HVEE and LVEE consistently provide the highest and the lowest energy
consumption, respectively. The reason is same as the explanations in earlier discussion. Fig. 15 also shows that
3E is no more energy-efficient than GEE. 3E gives priority to satisfaction rate although more energy is consumed
when the system is under heavy workload.

Fig. 20. The impact of compute node heterogeneity on total energy consumption.

Fig. 21 shows that the makespan of each strategy slightly increases when the compute node
heterogeneity becomes large. This is because the system workload decreases a little with longer execution time
that is leveraged for energy conservation. Again, 3E has better makespan than GEE due to shorter tasks
execution times and better satisfaction rate under heavy workload.

Fig. 21. The impact of computational node heterogeneity on satisfaction rate.

https://www.sciencedirect.com/topics/computer-science/systems-performance
https://www.sciencedirect.com/topics/computer-science/systems-performance
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0095
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0100
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0105
https://www.sciencedirect.com/topics/computer-science/performance-impact
https://www.sciencedirect.com/topics/computer-science/satisfaction-rate
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0095
https://www.sciencedirect.com/topics/computer-science/processing-capability
https://www.sciencedirect.com/topics/computer-science/processing-capability
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0100
https://www.sciencedirect.com/topics/computer-science/lower-energy-consumption
https://www.sciencedirect.com/topics/computer-science/lower-energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0075
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0105
https://www.sciencedirect.com/topics/computer-science/computational-node
https://www.sciencedirect.com/topics/computer-science/satisfaction-rate

6. Conclusions and future work
In this paper, we have addressed the issue of scheduling and allocating independent tasks

on heterogeneous computing systems to make trade-offs between users’ expectations and energy efficiency.
The proposed energy-efficient elastic (3E) scheduling strategy can efficiently improve the flexibility of
heterogeneous computing systems by adaptively adjusting supply voltages of both new tasks and queued tasks
according to the system workload. We have quantitatively evaluated the effectiveness of 3E strategy in
extensive simulation studies, and the experimental results reveal that 3E outperforms other existing and
baseline strategies due to its elasticity, and is a feasible scheduling strategy in dynamic environments.

Our future studies will focus on two avenues. First, we would like to extend 3E scheduling strategy to
deal with heterogeneous storage systems and second, we intend to modify 3E scheme to handle parallel tasks
on heterogeneous computing systems.

Acknowledgement
This research was supported by the National Natural Science Foundation of China under Grant No. 61104180.

References
Goller and Leberl, 2009 A. Goller, F. Leberl Radar image processing with clusters of computers IEEE Aerospace

and Electronics Systems Magazine, 24 (January (1)) (2009), pp. 18-22
Zheng et al., 2006 K. Zheng, J. Wang, L. Huang, G. Decarreau Open wireless software radio on common PC Proc.

17th Ann. IEEE Int’l Symp. Personal, Indoor and Mobile Radio Communication
(PIMRC’06), September (2006), pp. 1-5

Donoho, 2004 G. Donoho Building a web service to provide real-time stock quotes MCAD Net (February) (2004)
Xie and Qin, 2008 T. Xie, X. Qin An energy-delay tunable task allocation strategy for collaborative applications

in networked embedded systems IEEE Transactions on Computers, 57 (March (3)) (2008), pp. 329-343
Bianchini and Rajamony, 2004 R. Bianchini, R. Rajamony Power and energy management for server systems

Computer, 37 (November (11)) (2004), pp. 68-74
Feng, 2003 W. Feng Making a case for efficient supercomputing ACM Queue, 1 (7) (2003), pp. 54-64
http, in pressa http://www.transmeta.com
http, in pressb http://www.athlon.com
Chen et al., 2006 J. Chen, C. Yang, T. Kuo Slack reclamation for real-time task scheduling over dynamic voltage

scaling multiprocessors Proc. IEEE Int’l Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC’06), June (2006), pp. 358-367

Braun et al., 2001 T.D. Braun, H.J. Siegel, N. Beck, et al. A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing systems Journal of Parallel and
Distributed Computing, 61 (June (6)) (2001), pp. 810-837

Zhu and Lu, 2008 X. Zhu, P. Lu Study of scheduling for processing real-time communication signals on
heterogeneous clusters Proc. 9th Int’l Symp. Parallel Architectures, Algorithms, and Networks (I-
SPAN’08), May (2008), pp. 121-126

Fujimoto and Hagihara, 2006 N. Fujimoto, K. Hagihara A 2-approximation algorithm for scheduling independent
tasks onto a uniform parallel machine and its extension to a computational Grid Proc. the IEEE Int’l
Conf. Cluster Computing (CLUSTER’06) (Sept. 2006), pp. 1-7

Wang et al., 2010 H. Wang, J. Li, W. Huang, D. Qiu Area census-oriented electronic reconnaissance satellites
scheduling technique under uncertain space-frequency domain environments Proc. Int’l Conf.
Electronics and Information Engineering (ICEIE’10), August (2010), pp. 443-448

Doˇgan and Özgüner, 2006 A. Doˇgan, F. Özgüner Scheduling of a meta-task with QoS requirements in
heterogeneous computing systems Journal of Parallel and Distributed Computing, 66 (February
(2)) (2006), pp. 181-196

https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/user-expectation
https://www.sciencedirect.com/topics/computer-science/energy-efficiency
https://www.sciencedirect.com/topics/computer-science/energy-efficient
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy
https://www.sciencedirect.com/topics/computer-science/supply-voltage
https://www.sciencedirect.com/topics/computer-science/workload
https://www.sciencedirect.com/topics/computer-science/simulation-study
https://www.sciencedirect.com/topics/computer-science/experimental-result
https://www.sciencedirect.com/topics/computer-science/dynamic-environment
https://www.sciencedirect.com/topics/computer-science/storage-system
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#gs0005
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0005
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0015
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0020
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0025
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0030
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0035
http://www.transmeta.com/
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0040
http://www.athlon.com/
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0045
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0050
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0055
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0060
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0065
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0070

Mehta et al., 2007 A.M. Mehta, J. Smith, H.J. Siegel, A.A. Maciejewski, A. Jayaseelan, B. Ye Dynamic resource
allocation heuristics that manage tradeoff between makespan and robustness Journal of
Supercomputing, 42 (October (1)) (2007), pp. 33-58

Kang and He, 2009 Q. Kang, H. He A novel discrete differential evolution algoritnm for task scheduling in
heterogeneous computing systems Proc. IEEE Int’l Conf. Systems, Man, and Cybernetics
(SMC’09), October (2009), pp. 5006-5011

Wang et al., 2007 J. Wang, J. Li, Y. Tan Study on heuristic algorithm for dynamic scheduling problem of earth
observing satellites Proc. 8th ACIS Int’l Conf. Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing (SNPD’07), July–August (2007), pp. 9-14

Coffman, 1976 E.G. Coffman Computer and Job-Shop Scheduling Theory John Wiley & Sons (1976)
Kim et al., 2008 J. Kim, H.J. Siegel, A.A. Maciejewski, R. Eigenmann Dynamic resource management in energy

constrained heterogeneous computing systems using voltage scaling IEEE Transactions on Parallel and
Distributed Systems, 19 (November (11)) (2008), pp. 1445-1457

Karatza, 2009 H.D. Karatza Performance of gang scheduling strategies in a parallel system Simulation Modelling
Practice and Theory, 17 (February (2)) (2009), pp. 430-441

Aydin et al., 2004 H. Aydin, R. Melhem, D. Mossé, P. Mejía-Alvarez Power-aware scheduling for periodic real-
time tasks IEEE Transactions on Computers, 53 (May (5)) (2004), pp. 584-600

Mishra et al., 2003 R. Mishra, N. Rastogi, D. Zhu, D. Mossé, R. Melhem Energy aware scheduling for distributed
real-time systems Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS’03), April (2003), pp. 21-
29

Yu and Prasanna, 2002 Y. Yu, V.K. Prasanna Power-aware resource allocation for independent tasks in
heterogeneous real-time systems Proc. 9th Int’l Conf. Parallel and Distributed Systems
(ICPADS’02), December (2002), pp. 341-348

Zhu et al., 2003 D. Zhu, R. Melhem, B.R. Childers Scheduling with dynamic voltage/speed adjustment using
slack reclamation in multiprocessor real-time systems IEEE Transactions on Parallel and Distributed
Systems, 14 (July (7)) (2003), pp. 686-700

Ge et al., 2005 R. Ge, X. Feng, K.W. Cameron Performance-constrained distributed DVS scheduling for scientific
applications on power-aware clusters Proc. ACM/IEEE Conference on Supercomputing
(SC’05), November (2005), pp. 34-44

Tavares et al., 2008 E. Tavares, B. Silva, P. Maciel An environment for measuring and scheduling time-critical
embebbed systems with energy constraints Proc. 6th IEEE Int’l Conf. Software Engineering and Formal
Methods (SEFM’08), November (2008), pp. 291-300

Nélis et al., 2008 V. Nélis, J. Goossens, R. Devillers, D. Milojevic, N. Navet Power-aware real-time scheduling
upon identical multiprocessor platforms Proc. IEEE Int’l Conf. Sensor Networks, Ubiquitous, and
Trustworthy Computing (SUTC’08), June (2008), pp. 209-216

Hu et al., 2008 L. Hu, H. Jin, X. Liao, X. Xiong, H. Liu Magnet: a novel scheduling policy for power reduction in
cluster with virtual machines Proc. IEEE Int’l Conf. Cluster Computing (CLUSTER’08), September (2008),
pp. 13-22

Laszewski et al., 2009 G. Laszewski, L. Wang, A.J. Younge, X. He Power-Aware Scheduling of Virtual Machines in
DVFS-Enabled Clusters Proc. IEEE Int’l Conf. Cluster Computing (CLUSTER’09), August (2009), pp. 1-10

Liu et al., 2010 W. Liu, H. Li, F. Shi Energy-efficient task clustering scheduling on homogeneous clusters Proc.
11th Int’l Conf. Parallel and Distributed Computing, Applications and Technologies
(PDCAT’10), December (2010), pp. 381-385

Zong et al., 2011 Z. Zong, A. Manzanares, X. Ruan, X. Qin EAD and PEBD: two energy-aware duplication
scheduling algorithms for parallel tasks on homogeneous clusters IEEE Transactions on
Computers, 60 (March (3)) (2011), pp. 360-374

Hamano et al., 2009 T. Hamano, T. Endo, S. Matsuoka Power-aware dynamic task scheduling for
heterogeneous accelerated clusters Proc. 4th Workshop on High-Performance, Power-Aware
Computing (HPPAC’09), May(2009), pp. 1-8

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0075
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0080
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0085
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0090
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0095
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0100
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0105
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0110
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0115
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0120
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0125
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0130
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0135
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0140
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0145
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0150
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0155
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0160

Zong et al., 2007 Z. Zong, X. Qin, X. Ruan, K. Bellam Energy-efficient scheduling for parallel applications running
on heterogeneous clusters Proc. Int’l Conf. Parallel Processing (ICPP’07), September (2007), pp. 19-26

Shekar and Izadi, 2010 V. Shekar, B. Izadi Energy aware scheduling for DAG structured applications on
heterogeneous and DVS enabled processors Proc. Int’l Conf. Green Computing
(GREENCOMP’10), August (2010), pp. 495-502

Zikos and Karatza, 2011 S. Zikos, H.D. Karatza Performance and energy aware cluster-level scheduling of
compute-intensive jobs with unknown service times Simulation Modelling Practice and
Theory, 19 (January (1)) (2011), pp. 239-250

Yan et al., 2005 L. Yan, J. Luo, N.K. Jha Joint dynamic voltage scaling and adaptive body biasing for
heterogeneous distributed real-time embedded systems IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(July (7)) (2005), pp. 1030-1041

Chen et al., 2007 J. Chen, C. Yang, T. Kuo, C. Shih Energy-efficient real-time task scheduling in multiprocessor
DVS systems Proc. 12th Asia and South Pacific Design Automation Conf. (ASP-DAC’07), January(2007),
pp. 342-349

Hung et al., 2006 C. Hung, J. Chen, T. Kuo Energy-efficient real-time task scheduling for a DVS system with a
non-DVS processing element Proc. 27th IEEE Int’l Real-Time Systems Symp. (RTSS’06), December (2006),
pp. 303-312

Terzopoulos and Karatza, 2011 G. Terzopoulos, H. Karatza Performance evaluation of a real-time grid system
using power-saving capable processor Journal of Supercomputing (2011), 10.1007/s11227-011-0689-y

Zhu et al., 2011 X. Zhu, X. Qin, M. Qiu QoS-aware fault-tolerant scheduling for real-time tasks on
heterogeneous clusters IEEE Transactions on Computers, 60 (June (6)) (2011), pp. 800-812

Zhu and Lu, 2009 X. Zhu, P. Lu Multi-dimensional scheduling for real-time tasks on heterogeneous clusters
Journal of Computer Science and Technology, 24 (March (3)) (2009), pp. 434-446

Zhu and Lu, 2009 X. Zhu, P. Lu A two-phase scheduling strategy for real-time applications with security
requirements on heterogeneous clusters Computers & Electrical Engineering, 35 (November (6)) (2009),
pp. 980-993

Zhu et al., 2011 J. Zhu, X. Zhu, J. Jiang Improving adaptivity and fairness of processing real-time tasks with QoS
requirements on clusters through dynamic scheduling Information Processing Letters, 111 (June
(12)) (2011), pp. 609-613

Qin and Jiang, 2006 X. Qin, H. Jiang A novel fault-tolerant scheduling algorithm for precedence constrained
tasks in real-time heterogeneous systems Journal of Parallel Computing, 32 (August (5)) (2006),
pp. 331-356

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0165
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0170
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0175
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0180
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0185
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0190
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0195
https://doi.org/10.1007/s11227-011-0689-y
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0200
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0205
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0210
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0215
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#bbib0220

	Marquette University
	e-Publications@Marquette
	2-1-2013

	3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems
	Xiaomin Zhu
	Rong Ge
	Jinguang Sun
	Chuan He

	Abstract
	Keywords
	1. Introduction
	2. Related work
	3. Mathematical models
	3.1. Heterogeneous computing model
	3.2. Task model
	3.3. Models of user expectation and energy consumption

	4. The energy-efficient elastic 3E scheduling strategy
	Property 1
	Property 2
	Property 3
	Property 4
	Property 5
	Property 6
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Algorithm 4
	Algorithm 5
	Theorem 1
	Proof

	5. Performance evaluation
	5.1. Simulation method and parameters
	5.2. Scalability
	5.3. Arrival rate
	5.4. Expected finish time
	5.5. Task size
	5.6. Compute node heterogeneity levels

	6. Conclusions and future work
	Acknowledgement
	References

