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Abstract 
Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to 
minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient 
scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and 
adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. 
In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for 
aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous 
computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system 
workload, and makes trade-offs between energy consumption and user expected finish times. Compared with 
other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the 
system elasticity. 
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1. Introduction 
Heterogeneous computing systems constructed by connecting various machines with different 

capabilities have been wildly employed for compute-intensive and data-intensive applications in scientific 
research and commercial industries (Goller and Leberl, 2009, Zheng et al., 2006, Donoho, 2004). The 
employment is mostly attributed to the high processing capability and low cost of commodity-off-the-
shelf hardware components including processors, memory, networks, and storage disks (Xie and Qin, 2008). 

Large-scale computing systems consume tremendous amounts of energy, which in turn causes high 
energy bills in data centers, raises environmental concerns, and increases system failures. The monetary cost for 
energy is very high. For instance, the total energy cost of a single 200 W server (e.g., IBM 1U*300) is $180/year 
(Bianchini and Rajamony, 2004). A computing system with thousands of compute nodes or more incurs large 
energy bills. The high energy consumption also has negative environmental impacts. It is estimated that 1  kWh 
electricity power requires 0.4 kg coal and 4 L water and produces 0.272 kg solid powder, 0.997 kg CO2, and 
0.03 kg SO2. Last, high energy consumption results in high temperature that greatly affects the system reliability. 
According to the Arrhenius equation, the failure rate of an electronic component doubles for every 10 °C 
increased (Feng, 2003). In order to maintain an appropriate operating temperature in data centers, extra energy 
will be consumed by the cooling devices and facility. 

Dynamic voltage and frequency scaling (DVFS) is an energy saving technology that are enabled on most 
contemporary processors (http, in pressa, http, in pressb). With DVFS, a processor can operate at multiple 
voltages where each corresponds to a specific clock frequency and processing speeds. Because the energy 
consumption of a processor is proportional to voltage squared (Chen et al., 2006), processor's energy 
consumption can be significantly reduced by lowering CPU voltage and processing speed. 
 
The motivations of this paper derive from the following three considerations: 

• Many applications running on heterogeneous computing systems consist of independent tasks without 
dependencies. For example, the tasks submitted to a supercomputer center by different users are 
independent (Braun et al., 2001); the partitioned data blocks from signal data in a software radio system 
can be considered as independent tasks without precedence relationship (Zhu and Lu, 2008); a 
parameter-sweep application consists of a set of independent coarse-grained tasks, and such 
applications can be seen in diverse areas such as bioinformatics, operations research, data mining, 
business model simulation, massive searches, Monte Carlo simulations, network simulation, electronic 
CAD, ecological modeling, fractals calculations, and image manipulation (Fujimoto and Hagihara, 2006).• 

• There exist many applications for which users do not have strict requirement in finish time. For these 
applications, even though the finish time of a task is a bit later or earlier than its user's expectations, 
the task execution is still useful. Take earth observation satellite as an example. The satellite data are 
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firstly processed at a ground data center in one task, then the generated data are analyzed in the next 
task for a new electronic reconnaissance. If the first task finishes later than the start time of the second 
task, the generated data are still useful for another new task (Wang et al., 2010). In the traditional real-
time computing systems, a task would be rejected if it is unable to finish within its deadline. For non-
real-time applications, only the computing throughput matters while the finish times of single tasks can 
be ignored. Thereby, in order to provide high-quality services for users, each user's expectation (e.g., 
expected finish time) should be adequately considered.• 

• Emergency tasks and non-emergency tasks show distinct characteristics. The applications that consist of 
independent tasks (Xie and Qin, 2008, Doˇgan and Özgüner, 2006, Mehta et al., 2007, Kang and He, 
2009) in data centers can be roughly classified into two groups. One group includes applications for 
which high performance and short execution time are critical. One example is the processing of image 
data obtained by earth observation satellites in emergency such as earthquake, tsunami or military 
operations (Wang et al., 2007). In these scenarios, quick response is paramount while energy savings 
with possible performance impact are out of the questions. The other group includes applications that 
are not in emergency in nature. For these applications, we can exploit system elasticity, i.e., flexibility 
and adaptivity with the variety of system workload, in scheduling algorithms to reduce energy use with 
no or little impact on meeting user expectations. 

 
Scheduling is an effective approach to achieve high performance and energy efficiency for applications 

running on heterogeneous computing systems. However, to the best of our knowledge, most existing energy-
efficient scheduling algorithms do not address both performance and energy cost for non-real-time applications 
in heterogeneous computing systems. Motivated by the above arguments, in this work, we attempt to 
incorporate the system elasticity and user expectations into energy-efficient scheduling strategies, and to design 
and implement a novel energy-efficient elastic scheduling strategy for non-real-time tasks on DVFS-enabled 
heterogeneous computing systems. Specifically, our approach firstly strives to satisfy the user expectations by 
adjusting the execution voltages of queued tasks and new tasks, and then reduces the system energy 
consumption as much as possible. 

 
Contributions: The main contributions of this paper are: 

• We construct an energy consumption model that effectively takes advantage of system elasticity and 
considers different user expectations in terms of expected finish time. 

• On the basis of the novel energy consumption model, we develop an energy-efficient elastic (3E for 
short) scheduling strategy for independent tasks in heterogeneous computing systems to make trade-
offs between energy saving and user expectation according to the system workload. 

• We demonstrate that, by considering heterogeneous features of multiprocessor computing systems, we 
can design an energy-efficient elastic scheduling strategy that significantly improves the scheduling 
quality of conventional scheduling strategies for heterogeneous computing systems. 

 
The rest of this paper is organized as follows. In Section 2, we discuss the related work in literature. Section 

3 presents the system model, task model, energy consumption model. In Section 4, we describe the 3E strategy 
and its main principles. Section 5 presents the experimental results and performance evaluation. Section 
6 concludes the paper with a summary and future directions. 

2. Related work 
Over the last decades, scheduling in distributed computing context has been intensively investigated. As 

the optimal scheduling solutions are normally NP-complete (Coffman, 1976), near-optimal solutions 
using heuristic techniques are adopted as practical alternatives (Xie and Qin, 2008, Braun et al., 2001, Kim et al., 
2008, Karatza, 2009). 

Scheduling can be generally classified into static scheduling and dynamic scheduling according to its 
design time. The static scheduling makes scheduling decisions in an off-line planning phase, and is usually used 
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to schedule periodic tasks (e.g., Aydin et al., 2004, Mishra et al., 2003, Yu and Prasanna, 2002, Zhu et al., 2003). 
The dynamic scheduling is performed in an on-line fashion when tasks arrive at unpredictable intervals, and is 
usually applied to aperiodic tasks and the system workload that is not known a priori (e.g., Ge et al., 2005, Hu et 
al., 2008, Zong et al., 2011, Hamano et al., 2009, Zikos and Karatza, 2011, Yan et al., 2005, Zhu et al., 2011, Zhu 
and Lu, 2009). 

Aydin et al. proposed a static solution for periodic tasks to compute the optimal speed at the task level 
based on the worst-case workload for each arrival (Aydin et al., 2004). Mishra et al. proposed a static power 
management scheme that used the static slack based on the degree of parallelism in a given static 
schedule generated from any list scheduling heuristic algorithm (Mishra et al., 2003). Yu et al. investigated an 
off-line power-aware allocation policy that was firstly formulated as an extended generalized assignment 
problem, and was solved by an extension of a linearization heuristic for a set of independent tasks in a real-time 
system consisting of heterogeneous DVS-enabled processing elements (Yu and Prasanna, 2002). Zhu et al. 
introduced the concept of slack sharing on multiprocessor systems to reduce energy consumption and proposed 
two novel power-aware scheduling algorithmsbased on slack sharing for task sets with and without precedence 
constraints executing on multiprocessor systems (Zhu et al., 2003). Additionally, the study in Zhu et al. 
(2003) assumed homogeneous processors and frame-based tasks. Tavares et al. proposed a pre-
runtime scheduling method that considered the DVS technique to reduce energy consumption and took the 
inter-task relations and runtime overhead into account. In addition, the time Petri nets was employed as a 
mathematical basis for precise pre-runtime schedule generation (Tavares et al., 2008). Although 
these scheduling schemes are capable of achieving high scheduling quality in terms of energy saving, they 
belong to static scheduling and are unable to deal with dynamic environment where the arrival time of a task is 
not known. 

There is a large body of work in designing dynamic energy-efficient scheduling algorithms for distributed 
computing systems. Ge et al. investigated distributed performance-directed DVS scheduling strategies that could 
produce significant energy savings without increasing execution time by varying scheduling granularity (Ge et al., 
2005). Nélis et al. proposed two power-aware scheduling algorithms, i.e., an off-line algorithm EDF(k) and an on-
line algorithm MOTE that both addressed sporadic constrained-deadline real-time systems to reduce energy 
consumption (Nélis et al., 2008). Hu et al. described an approach to reduce energy consumption by employing 
the live migration of virtual machines to transfer load among the identical nodes on a multilayer ring-
based overlay (Hu et al., 2008). Laszewski et al. focused on scheduling virtual machines in a compute cluster 
to reduce power consumption by dynamic voltage frequency scaling, i.e., DVFS technique, and presented a 
scheduling algorithm to allocate virtual machines in a DVFS-enabled cluster (Laszewski et al., 2009). Liu et al. 
developed a cluster-based energy-performance balanced task duplication based clustering scheduling algorithm 
EPBTDCS that saved energy by reducing communication energy consumption while assigning parallel tasks to 
compute nodes (Liu et al., 2010). Zong et al. proposed two energy-aware duplication-based scheduling 
algorithms, namely, energy-aware duplication algorithm EAD and performance-energy balanced duplication 
algorithm PEBD with the objective of improving both performance and energy efficiency (Zong et al., 2011). 
These schemes were designed for homogeneous computing environments, not suitable for heterogeneous 
computing systems with diverse processing elements because a processor with higher processing speed may 
consume less energy. 

There also exist many previous studies investigating power-aware techniques to reduce energy 
consumption on heterogeneous computing systems. For example, Hamano et al. proposed a scheme to improve 
energy efficiency by adjusting the schedule based on the acceleration factor for heterogeneous accelerated 
clusters (Hamano et al., 2009). Zong et al. studied a scheduling strategy which could conserve energy by 
judiciously shrinking communication energy cost when allocating tasks to heterogeneous compute nodes in a 
cluster (Zong et al., 2007). Shekar and Izadi addressed the problem of scheduling tasks in a heterogeneous 
environment and proposed an algorithm called EDLS that favored low-energy consuming processors by 
introducing a cost factor affecting scheduling decisions (Shekar and Izadi, 2010). However, these approaches did 
not consider timing requirement. 
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Research in energy-efficient scheduling for real-time tasks in heterogeneous computing systems has 
been active. For instance, Zikos and Karatza examined three local resource allocation policies for compute-
intensive jobs with unknown service times based on the shortest queue in a heterogeneous cluster (Zikos and 
Karatza, 2011). Yan et al. developed a scheduling algorithm combining DVS and adaptive body biasing to 
optimize dynamic power and leakage power consumption jointly for heterogeneous distributed real-
time embedded systems (Yan et al., 2005). Chen et al. presented an energy-efficient real-time task scheduling 
policy that aimed at the provision of approximated solutions with worst-case guarantees (Chen et al., 2007). 
Hung et al. developed energy-efficient real-time algorithms for the systems equipped with a DVS-enabled 
processor and a non-DVS processing element with different energy consumption models (Hung et al., 2006). 
Terzopoulos and Karatza investigated the resource scheduling policies based on energy consumption criteria for 
a real-time grid system with power-saving capable processors (Terzopoulos and Karatza, 2011). In these real-
time scheduling algorithms, if one task cannot be finished within its deadline, it will be rejected. As a result, for 
those tasks with expected finish times but no deadlines, they are not feasible solutions. 

In our earlier work (Ge et al., 2005, Zhu et al., 2011, Zhu et al., 2011, Zhu and Lu, 2009, Zhu and Lu, 
2009), we have investigated some scheduling strategies on heterogeneous multiprocessor systems. However, 
such work did not consider the elastic energy conservation issue and the important case that users have 
expected finish time but not strict deadlines for tasks. In this paper, we focus on the problem of elastic 
scheduling for independent, aperiodic tasks with users’ expected finish times in heterogeneous computing 
systems. Also, we propose a novel scheduling strategy 3E to make trade-offs between the energy conservation 
and users’ expected finish times based on the system workload. 

3. Mathematical models 
In this section, we describe mathematical models used to represent heterogeneous computing systems, 

independent tasks, and energy consumptions. For future reference, we sum up the main notation used 
throughout this paper in Table 1. 
 
Table 1. Definitions of notation. 

Notation Definition 
pj The jth compute node in the node set P = {pj, j = 1 … |P|} 
ti The ith task in the task set T = {ti, i = 1 … |T|} 
ai The arrival time of ti 
li The length/size of ti 
efti The expected finish time of ti 
atij The available time of ti on pj 
stij The start time of ti on pj 
ftij The finish time of ti on pj 
etij The execution time of ti on pj 
ttij The transmission time of ti from the scheduler to pj 
xij xij is “1” if ti is assigned to pj; otherwise, xij is “0” 
oij The execution order of ti on pj 

𝑤𝑤𝑖𝑖𝑖𝑖 wij is “1” if ti is waiting in the local queue of pj, and is “0” else 
Vj The voltage set of pj 
Vjk The kth voltage level of pj 
vij The selected voltage of ti on nj, 𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 𝑉𝑉𝑖𝑖 
𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑖𝑖𝑖𝑖) The energy consumption rate with supply voltage vij 
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 The energy consumed by ti on pj 
𝑠𝑠(𝑣𝑣𝑖𝑖𝑖𝑖) The processing speed of pj when using 𝑣𝑣𝑖𝑖𝑖𝑖  
𝜏𝜏𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛 The idle time of pj 
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𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 The transmission energy consumption of ti from scheduler to pj 
𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 The transmission energy consumption rate of the link from scheduler to pj 

trj The transmission rate of the link between the scheduler and pj 
tstij The transmission start time of task ti to pj 
rtj The remaining execution time of a running task on pj 
𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙−𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛 The energy consumption rate of a link between the scheduler and pj sitting idle 

𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙−𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛 The idle time of link between the scheduler and pj 

3.1. Heterogeneous computing model 
A heterogeneous computing system in this study is characterized by a set P = {pj, j = 1 … |P|} of compute 

nodes that have different processing capabilities. In addition, the interconnection is heterogeneous, i.e., 
the communication cost from the scheduler to the compute nodes varies. The energy-efficientheterogeneous 
computing model is depicted in Fig. 1. 

 

 
Fig. 1. Energy-efficient heterogeneous computing model. 
 

In Fig. 1, the scheduler includes a user expectation controller and a supply voltage controller. They work 
together to firstly meet user expected finish times and then explore opportunities for energy savings. There is 
also a task queue in the scheduler whereas the tasks scheduling decision has been made but yet modified before 
dispatching to the corresponding compute nodes. Each compute node has a local queue where tasks wait for 
execution. 

When a new task arrives, the scheduler takes two steps to make a scheduling decision. First, it retrieves 
the scheduling information of each task in the queue including supply voltage, execution time, and execution 
order. Second, it determines the compute node that is able to meet the user's expectation with least energy 
consumption. The new task will be enqueued in the scheduler and dequeued to the selected compute note. The 
system elasticity lies in that the scheduler can adjust the supply voltages for the tasks in its local queue 
according to the system workload. Previous studies do not consider this elasticity and assume the scheduling 
decisions that have been made are not subject to modification. 

3.2. Task model 
The task set is denoted by T = {ti, i = 1 … |T|}, where the tasks are independent of each other. A task 

arrives dynamically, and is indivisible and cannot be distributed to multiple compute nodes for concurrent 
execution. In addition, there is no communication among tasks. A task is represented by ti = {ai, li, efti} 
where ai is the arrival time, li is the task length/size, and efti is the expected finish time. In this work, we neglect 
the cost of collecting the information about the queue items as the information size is small. The following 
denotations are used to determine the scheduling of task set T on the compute node set P in this paper. 

 
AT = (atij)|T|×|P|: the available time matrix for the task set T on the compute grid P. Element atijrepresents 
the available time for task ti on compute node pj. 
ST = (stij)|T|×|P|: the start time matrix for the task set T on the compute grid P. Element stij represents the 
start time of task ti on compute node pj. 
FT = (ftij)|T|×|P|: the finish time matrix for the task set T on the compute grid P. Element ftij represents the 
finish time of task ti on compute node pj. 
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ET = (etij)|T|×|P|: the execution time matrix. Element etij represents the execution time of task ti on 
compute node pj. The values in a row are different because of the heterogeneity in the processing 
capabilities of compute nodes. 
TT = (ttij)|T|×|P|: the transmission time matrix. Element ttij represents the transmission time of task tifrom 
the scheduler to compute node pj. 
X = (xij)|T|×|P|: the task allocation matrix. Element xij is “1” if task ti is allocated to compute node pjand is 
“0”, otherwise. 
O = (oij)|T|×|P|: the execution order matrix. Element oij represents the execution order of task ti on 
compute node pj. 
𝑊𝑊 = (𝑤𝑤𝑖𝑖𝑖𝑖)|𝑇𝑇|×|𝑃𝑃|: the task waiting matrix. Element wij is “1” if task ti is waiting in the local queue of 
compute node pj. Otherwise, wij=0. 

 

3.3. Models of user expectation and energy consumption 
The compute nodes in the system are DVFS enabled and the processors are able to operate with 

multiple pairs of voltage and frequency. Let ecij be the energy consumption of task ti running on the compute 
node pj. ecij is the product of the energy consumption rate ecrj of compute node pj and execution time of task ti. 
The energy consumption rate ecrj varies with the supply voltage (Xie and Qin, 2008). Commonly, the energy 
consumption rate is also called power of a compute node (Zong et al., 2011). Given k supply voltages for 
compute node pj, the voltage set is denoted by Vj = {Vj1, Vj2, …, Vjk}. Without loss of generality, we assume 
that Vj1 < Vj2 < … < Vjk. We use vij∈Vj to denote the scheduled supply voltage when task ti runs on compute 
node pj. Thus, the energy consumption rate with supply voltage vij can be written as ecr(vij). 
 
The energy consumed by task ti on compute node pj is (Xie and Qin, 2008, Zong et al., 2011): 
 
(1) 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑖𝑖𝑖𝑖) · 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 . 
 

Thereby, given a task set T, a compute node set P, an allocation matrix X, a voltage set V, and an 
execution time matrix ET, the total energy required to execute all tasks is: 

 

(2) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒−𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑣𝑣𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇) = ∑  |𝑃𝑃|
𝑗𝑗=1 ∑  |𝑇𝑇|

𝑎𝑎=1 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 = ∑  |𝑃𝑃|
𝑗𝑗=1 ∑  |𝑇𝑇|

𝑎𝑎=1 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑎𝑎𝑗𝑗) · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗, 
 
where etij is the execution time of task ti on compute node pj. It can be calculated as Eq. (3): 
 

(3) 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗 = 𝑙𝑙𝑎𝑎
𝑠𝑠(𝑣𝑣𝑎𝑎𝑗𝑗)

, 
 
where 𝑠𝑠(𝑣𝑣𝑖𝑖𝑖𝑖) is the processing speed of compute node pj when using the supply voltage vij to deal with task ti. 

Eq. (2) does not include the energy consumption when the compute nodes are idle. In this study, we set 
the supply voltage to the lowest level when compute nodes are idle. Thus, the energy consumption rate of 
compute node pj at idle is ecr(Vj1). The energy consumed by compute nodes at idle is: 
 

(4) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇) = � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑗𝑗1) · 𝜏𝜏𝑗𝑗𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒
|𝑃𝑃|

𝑗𝑗=1
= � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑗𝑗1)

|𝑃𝑃|

𝑗𝑗=1
· �𝑚𝑚𝑎𝑎𝑥𝑥

𝑎𝑎=1

|𝑇𝑇|
{𝑓𝑓𝑒𝑒𝑎𝑎𝑗𝑗}−

� 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗
|𝑇𝑇|

𝑎𝑎=1
�, 
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where 𝜏𝜏𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛 is the idle time of compute node pj. It equals the schedule length of pj minus the total execution 
time of all tasks assigned to pj. 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖=1

|𝑇𝑇| {𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖} is the finish time of the last executed task on pj, i.e., the compute 
node pj's schedule length. 

Combining both dynamic energy and energy during idle time, the node energy consumption of the 
heterogeneous computing system is derived from Eq. (2) and Eq. (4) as: 

 
(5) 𝑝𝑝𝑒𝑒𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇) = 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒−𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑣𝑣𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇) + 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇) =
∑  |𝑃𝑃|
𝑗𝑗=1 � 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣𝑎𝑎𝑗𝑗) · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗

|𝑇𝑇|

𝑎𝑎=1
+� 𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑗𝑗1)

|𝑃𝑃|

𝑗𝑗=1
· �𝑚𝑚𝑎𝑎𝑥𝑥

𝑎𝑎=1

|𝑇𝑇|
{𝑓𝑓𝑒𝑒𝑎𝑎𝑗𝑗}−� 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗

|𝑇𝑇|

𝑎𝑎=1
�. 

 
In this study, we also consider the transmission energy consumption of tasks from scheduler to compute 

nodes. Due to the heterogeneity of networks, we let 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 denote the transmission energy consumption rate 
of the link from scheduler to pj. Hence, the transmission energy consumption of ti from scheduler to pj is 
measured as below: 

 

(6) 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛 · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛 · 𝑙𝑙𝑎𝑎
𝑒𝑒𝑒𝑒𝑗𝑗

, 
where trj is the transmission rate of the link between the scheduler and compute node pj. 

Given a task set T, a compute node set P, an allocation matrix X, and a transmission time matrix TT, the 
transmission energy consumed by transmitting all tasks is: 

 

(7) 𝑒𝑒𝑒𝑒𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑇𝑇𝑇𝑇) = ∑  |𝑃𝑃|
𝑗𝑗=1 � 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛

|𝑇𝑇|

𝑎𝑎=1
= ∑  |𝑃𝑃|

𝑗𝑗=1 � 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛
|𝑇𝑇|

𝑎𝑎=1
· 𝑙𝑙𝑎𝑎
𝑒𝑒𝑒𝑒𝑗𝑗

. 
 

Additionally, the energy consumption when a link is idle (i.e., no message needs to be transmitted in a 
link) is considered in our energy model. The energy consumption rate of a link between the scheduler and 
compute node pj sitting idle is denoted by 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙−𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛 and we obtain the energy consumed by the link when it is 
inactive as follows: 

 

(8) 𝑒𝑒𝑒𝑒𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝑇𝑇,𝑇𝑇𝑇𝑇) = � 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 · 𝜏𝜏𝑗𝑗𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒
|𝑃𝑃|

𝑗𝑗=1
= � �𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 ·
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{𝑎𝑎𝑒𝑒𝑎𝑎𝑗𝑗}−� 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗

|𝑇𝑇|

𝑎𝑎=1
��. 

 
where 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙−𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛 is the idle time of link between the scheduler and compute node pj. 

 
The link energy consumption can be written as: 
 

(9) 𝑙𝑙𝑒𝑒𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝑇𝑇,𝑇𝑇𝑇𝑇) = 𝑒𝑒𝑒𝑒𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑇𝑇𝑇𝑇) + 𝑒𝑒𝑒𝑒𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝑇𝑇,𝑇𝑇𝑇𝑇) =

∑  |𝑃𝑃|
𝑗𝑗=1 � 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛 · 𝑙𝑙𝑎𝑎

𝑒𝑒𝑒𝑒𝑗𝑗

|𝑇𝑇|

𝑎𝑎=1
+� �𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙−𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 · �𝑚𝑚𝑎𝑎𝑥𝑥

𝑎𝑎=1

|𝑇𝑇|
{𝑎𝑎𝑒𝑒𝑎𝑎𝑗𝑗}−� 𝑥𝑥𝑎𝑎𝑗𝑗 · 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗

|𝑇𝑇|

𝑎𝑎=1
��

|𝑃𝑃|

𝑗𝑗=1

. 

 
Finally, the total energy consumption can be derived from Eqs. (5) and (9) as: 

https://www.sciencedirect.com/topics/computer-science/total-execution-time
https://www.sciencedirect.com/topics/computer-science/total-execution-time
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0020
https://www.sciencedirect.com/topics/computer-science/transmission-rate
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0025
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0045


 
(10) 𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇,𝐴𝐴𝑇𝑇,𝑇𝑇𝑇𝑇) = 𝑝𝑝𝑒𝑒𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇) + 𝑙𝑙𝑒𝑒𝑒𝑒(𝑇𝑇,𝑃𝑃,𝑋𝑋,𝐴𝐴𝑇𝑇,𝑇𝑇𝑇𝑇). 
 

Given a set T of tasks, the assignment should maximize the count of tasks for which the user expectation 
is met. Thus, the optimization problem can be formulated as: 

 

(11) 

maximize ∑  |𝑃𝑃|
𝑗𝑗=1 ∑  |𝑇𝑇|

𝑎𝑎=1 𝑥𝑥𝑎𝑎𝑗𝑗

subjectto

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓𝑒𝑒𝑎𝑎𝑗𝑗 ≤ 𝑒𝑒𝑓𝑓𝑒𝑒𝑎𝑎
∑  |𝑃𝑃|
𝑗𝑗=1 𝑥𝑥𝑎𝑎𝑗𝑗 = 1

1 ≤ 𝑎𝑎 ≤ |𝑇𝑇|
1 ≤ 𝑗𝑗 ≤ |𝑃𝑃|

 

 
We would like to emphasize that we weight more on the user expectation than the energy savings in our 

scheduling. In other words, the energy savings will be largely built upon the solution space from Eq. (11). 
Thereby, the total energy consumption value needs to be minimized, i.e., 

 

(12) 

minimize 𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇,𝑁𝑁,𝑋𝑋,𝑉𝑉,𝐸𝐸𝑇𝑇,𝐴𝐴𝑇𝑇,𝑇𝑇𝑇𝑇)

subjectto

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑉𝑉𝑗𝑗1 ≤ 𝑣𝑣𝑎𝑎𝑗𝑗 ≤ 𝑉𝑉𝑗𝑗𝑙𝑙

𝑓𝑓𝑒𝑒𝑎𝑎𝑗𝑗 ≤ 𝑒𝑒𝑓𝑓𝑒𝑒𝑎𝑎

� 𝑥𝑥𝑎𝑎𝑗𝑗 = 1
|𝑃𝑃|

𝑗𝑗=1
1 ≤ 𝑎𝑎 ≤ |𝑇𝑇|
1 ≤ 𝑗𝑗 ≤ |𝑃𝑃|

 

 
Energy conservation and user expectation (expected finish time) are two conflicting objectives on a 

heterogeneous computing system. Minimizing the energy use by a compute node under heavy load could result 
in a late finish time for current tasks and unmet user expectations for subsequent tasks. Our energy-efficient 
elastic (3E for short) scheduling strategy makes trade-offs between Eqs. (11) and (12) according to the system 
workload. When the system is under heavy load, 3E favors user expectations. When the system is under light 
load, it favors energy savings by lowering supply voltages within guaranteeing users’ expectations. 

4. The energy-efficient elastic 3E scheduling strategy 
In this section, we present 3E strategy for independent and aperiodic tasks with user expected finish 

time in a heterogeneous computing system. Firstly, we introduce some rules to facilitate the presentation of 
our scheduling strategy. 

Property 1 
A task that cannot be finished before its user expected finish time is still assigned to a compute node for 

execution. 
 
(13) ∀𝑒𝑒𝑖𝑖 ∈ 𝑇𝑇, 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃:𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖or𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖 > 𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖 . 
 

Property 2 
A running task cannot be preempted, namely, a running tasks cannot be interrupted during its execution 

and a task can be run only after the running task is completed. 

https://www.sciencedirect.com/topics/computer-science/optimisation-problem
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0055
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0055
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0060
https://www.sciencedirect.com/topics/computer-science/heterogeneous-computing-system
https://www.sciencedirect.com/topics/computer-science/scheduling-strategy


 

(14) 
∀𝑒𝑒𝑎𝑎 ∈ 𝑇𝑇:� 𝑥𝑥𝑎𝑎𝑗𝑗 = 1,

|𝑃𝑃|

𝑗𝑗=1
∀𝑒𝑒𝑎𝑎, 𝑒𝑒𝑙𝑙 ∈ 𝑇𝑇,𝑥𝑥𝑎𝑎𝑗𝑗 = 1, [𝑠𝑠𝑒𝑒𝑙𝑙𝑗𝑗,𝑓𝑓𝑒𝑒𝑙𝑙𝑗𝑗]∩ [𝑠𝑠𝑒𝑒𝑎𝑎𝑗𝑗,𝑓𝑓𝑒𝑒𝑎𝑎𝑗𝑗] ≠ Ø:𝑥𝑥𝑙𝑙𝑗𝑗 = 0.

 

 

Property 3 
For a new task, the lowest supply voltage is firstly attempted. If the lowest supply voltage is unable to 

meet user expected finish time, the supply voltage is increased step by step until the user's expected finish time 
is met or the supply voltage reaches the highest level. 
 
(15) ∀𝑒𝑒𝑖𝑖 ∈ 𝑇𝑇, 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃, (∃min{𝑣𝑣𝑖𝑖𝑖𝑖}:𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖)or(𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑙𝑙:𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖 > 𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖). 
Property 4 

If a new task cannot be finished within its user expected time even with the highest supply voltage, the 
supply voltages of tasks that await in the local queue for execution will be adjusted to approach the user's 
expected finish time. 

Property 4 implies that the finish times and execution times of tasks waiting in a local queue can be 
modified, and thus the start times of the following tasks also. 

Property 5 
The scheduling event is triggered as a new task arrives, i.e., immediate mode is employed. 

 
Now we analyze the available time atij of task ti on compute node pj, which is defined as the arrival time 

of ti on pj. atij can be approximated as follows: 
 

(16) 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑗𝑗

, 
 
where tstij is the transmission start time of task ti to compute node pj. 
 

The start time stij of task ti on compute node pj is in one of three options: 
 

(17) 𝑠𝑠𝑒𝑒𝑎𝑎𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑎𝑎𝑒𝑒𝑎𝑎𝑗𝑗 if� 𝑤𝑤𝑎𝑎𝑗𝑗 · 𝑥𝑥𝑎𝑎𝑗𝑗 = 0and𝑒𝑒𝑗𝑗 = 0

|𝑇𝑇|

𝑎𝑎=1
,

𝑎𝑎𝑒𝑒𝑎𝑎𝑗𝑗 + 𝑒𝑒𝑒𝑒𝑗𝑗 if� 𝑤𝑤𝑎𝑎𝑗𝑗 · 𝑥𝑥𝑎𝑎𝑗𝑗 = 0,
|𝑇𝑇|

𝑎𝑎=1

𝑎𝑎𝑒𝑒𝑎𝑎𝑗𝑗 + 𝑒𝑒𝑒𝑒𝑗𝑗 +� 𝑒𝑒𝑒𝑒𝑙𝑙𝑗𝑗𝑛𝑛𝑙𝑙𝑗𝑗<𝑛𝑛𝑎𝑎𝑗𝑗,𝑤𝑤𝑙𝑙𝑗𝑗=1
else.

 

 
where rj = 0 denotes no task is running on compute node pj, and rtj represents the remaining execution time of a 
running task on pj. ∑|𝑇𝑇|

𝑖𝑖=1 𝑤𝑤𝑖𝑖𝑖𝑖 · 𝑥𝑥𝑖𝑖𝑖𝑖 = 0 denotes that there are no tasks in the local queue of pj. 
The finish time of task ti on compute node pj is equal to the sum of the start time stij and ti's execution 

time on pj: 
 

(18) 𝑓𝑓𝑒𝑒𝑎𝑎𝑗𝑗 = 𝑠𝑠𝑒𝑒𝑎𝑎𝑗𝑗 + 𝑒𝑒𝑒𝑒𝑎𝑎𝑗𝑗. 
 
The 3E scheduling strategy employs the earliest expected finish time first policy placing new and waiting 

tasks in a local queue. Thereby, we get the following property. 

https://www.sciencedirect.com/topics/computer-science/supply-voltage
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0020
https://www.sciencedirect.com/topics/computer-science/immediates


Property 6 
The start times of tasks waiting in a local queue can be modified if a new incoming task requires 

increasing the supply voltages of some tasks in the queue. 
Assume that ti is the new task placed in the local queue of compute node pj, and tk is the task whose 

start time needs to be recalculated. 
Case 1: if 𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑛𝑛�𝑛𝑛𝑚𝑚𝑖𝑖�𝑤𝑤𝑚𝑚𝑖𝑖 = 1� and okj = oij + 1, then 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖′ = 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖. Fig. 2 illustrates an example of 
Case 1. 

 
Fig. 2. An example of Case 1. 
 

Case 2: if 𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑛𝑛{𝑛𝑛𝑚𝑚𝑖𝑖|𝑤𝑤𝑚𝑚𝑖𝑖 = 1} and okj > oij + 1, then 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖′ = 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 −� (𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖 −
𝑛𝑛𝑚𝑚𝑗𝑗<𝑛𝑛𝑘𝑘𝑗𝑗,𝑛𝑛𝑚𝑚𝑗𝑗≠𝑛𝑛𝑖𝑖𝑗𝑗

𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖
′ ). Fig. 3 illustrates an example of Case 2. 

 
Fig. 3. An example of Case 2. 
 
Case 3: if 𝑛𝑛𝑙𝑙𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑛𝑛{𝑛𝑛𝑚𝑚𝑖𝑖|𝑤𝑤𝑚𝑚𝑖𝑖 = 1}, then 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖′ = 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖. Fig. 4 illustrates an example of Case 3. 

 
Fig. 4. An example of Case 3. 
 
Case 4: if 𝑛𝑛𝑖𝑖𝑖𝑖 ≠ 𝑚𝑚𝑎𝑎𝑛𝑛{𝑛𝑛𝑚𝑚𝑖𝑖|𝑤𝑤𝑚𝑚𝑖𝑖 = 1}, 𝑛𝑛𝑙𝑙𝑖𝑖 ≠ 𝑚𝑚𝑎𝑎𝑛𝑛{𝑛𝑛𝑚𝑚𝑖𝑖|𝑤𝑤𝑚𝑚𝑖𝑖 = 1}, and okj < oij, then 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖′ = 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖 −
∑𝑛𝑛𝑚𝑚𝑗𝑗<𝑛𝑛𝑘𝑘𝑗𝑗 (𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖′ ). Fig. 5 illustrates an example of Case 4. 

 
Fig. 5. An example of Case 4. 
 
Case 5: if 𝑛𝑛𝑖𝑖𝑖𝑖 ≠ 𝑚𝑚𝑎𝑎𝑛𝑛{𝑛𝑛𝑚𝑚𝑖𝑖|𝑤𝑤𝑚𝑚𝑖𝑖 = 1}, 𝑛𝑛𝑙𝑙𝑖𝑖 ≠ 𝑚𝑚𝑎𝑎𝑛𝑛{𝑛𝑛𝑚𝑚𝑖𝑖|𝑤𝑤𝑚𝑚𝑖𝑖 = 1}, and okj > oij, then 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖′ = 𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖 −
∑𝑛𝑛𝑚𝑚𝑗𝑗<𝑛𝑛𝑘𝑘𝑗𝑗 (𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖′ + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖). Fig. 6 illustrates an example of Case 4. 

 
Fig. 6. An example of Case 5. 
 

Hence, the new finish time 𝑓𝑓𝑒𝑒𝑙𝑙𝑖𝑖′  of a task tk in the local queue of a compute node pj is: 
 

(19) 𝑓𝑓𝑒𝑒𝑙𝑙𝑗𝑗
′ = 𝑠𝑠𝑒𝑒𝑙𝑙𝑗𝑗′ + 𝑒𝑒𝑒𝑒𝑙𝑙𝑗𝑗′ = 𝑠𝑠𝑒𝑒𝑙𝑙𝑗𝑗′ + 𝑙𝑙𝑙𝑙

𝑠𝑠(𝑣𝑣𝑙𝑙𝑗𝑗
′ )

. 
The 3E strategy uses heuristic algorithm. It performs the following operations when a new task arrives. 

First, it computes the start and finish times for the task on each compute node at the lowest supply voltage. 

https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0010
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0015
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0020
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0025
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#fig0030
https://www.sciencedirect.com/topics/computer-science/heuristic-algorithm


Next, if none of the compute nodes meets the user expectation, it increases the supply voltage gradually until 
the new task's finish time is earlier or equal to its user expected finish time. Third, if the highest-level supply 
voltage still cannot meet the user expected finish time for the new task, the 3E strategy will examine if it can 
increase the supply voltages of the existing tasks in the local queue. If there exists an allocation where both the 
adjusted existing tasks and the new task can meet the expected finish times, it sets the allocation. The 3E 
chooses the compute node with the smallest sum of node and transmission energy consumption to save energy. 

The elasticity of our 3E lies in that it can flexibly adjust scheduling objectives based on the 
system workload. When the system is heavily loaded, the 3E strives to guarantee user expectations by increasing 
the supply voltages of new tasks and tasks waiting in local queues. In contrast, when the system is lightly loaded, 
the 3E is able to aggressively reduce energy consumption while maintaining user expectations. 

The pseudocode of 3E scheduling strategy is shown in Algorithm 1. 
 

Algorithm 1 
Pseudocode of 3E scheduling strategy 

1: for each new task ti do 
2:   mSelectedNode ← NULL; nMSelectedNode ← NULL; furtherAdjust ← TRUE; energyCons← ∞; meetE

xpectation ← FALSE; 
3:   for each compute node pj in a heterogeneous computing system do 
4:  Calculate the transmission energy consumption 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 using Eq. (6); 
5:  Calculate the start time stij using Eq. (17); 
6:  vij←Vj1; 
7:  if stij + etij > efti then 
8:    adjustPhase1(); 
9:    if furtherAdjust = = TRUE then 
10:   adjustPhase2(); 
11:    end if 
12:    if meetExpectation = = FALSE then 
13:   noMeetExpectation(); 
14:    end if 
15:  else 
16:    noNeedAdjust(); 
17:  end if 
18:   end for 
19:   ifmSelectedNode ≠ NULL then 
20:  Allocate ti to mSelectedNode and update scheduling information; 
21:   else 
22:  Allocate ti to nMSelectedNode and update scheduling information; 
23:   end if 
24: end for   

 
First, the 3E computes the transmission energy consumption and start time (see Lines 4 and 5, Algorithm 

1). Second, it examines if a new task's expected finish time can be met with the lowest supply voltage (see Lines 
6 and 7, Algorithm 1). If the initial test is not passed, the 3E calls Function adjustPhase1(). 

 

Algorithm 2 
Pseudocode of Function adjustPhase1() 

1: while 𝑣𝑣𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉𝑖𝑖𝑙𝑙 do 
2:   Increase one supply voltage level: 𝑣𝑣𝑖𝑖𝑖𝑖′ ← 𝑣𝑣𝑖𝑖𝑖𝑖 + + 

https://www.sciencedirect.com/topics/computer-science/user-expectation
https://www.sciencedirect.com/topics/computer-science/energy-consumption
https://www.sciencedirect.com/topics/computer-science/workload
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/topics/computer-science/algorithms
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0030
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#eq0085
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035
https://www.sciencedirect.com/science/article/pii/S0164121212002336?via%3Dihub#enun0035


3:   if 𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ ≤ 𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖 then 
4:  furtherAdjust ← FALSE; 
5:  meetExpectation ← TRUE; 
6:  Calculate the node energy consumption 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 using Eq. (1); 
7:  if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑠𝑠 then 
8:    𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑠𝑠 ← 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛; 
9:    mSelectedNode ← j; 
10:    break; 
11:  end if 
12:   end if 
13: end while   

 
In Function adjustPhase1(), the 3E increases the supply voltage gradually for this new task until its user 

expectation is satisfied (lines 2–5, Algorithm 2). Next, the 3E selects the compute node with the least energy 
consumption (lines 6–11, Algorithm 2). After the while loop, if the variable furtherAdjust is equal 
to TRUE meaning the highest supply voltage cannot meet the user's expectation, the 3E further adjusts the 
supply voltage of waiting tasks in the local queue of this compute node, thus, the Function adjustPhase2() is 
called. 

 

Algorithm 3 
Pseudocode of Function adjustPhase2() 

1: for each task tm in the local queue of pj do 
2:   while 𝑣𝑣𝑚𝑚𝑖𝑖 ≤ 𝑉𝑉𝑖𝑖𝑙𝑙 do 
3:  Increase one supply voltage level: 𝑣𝑣𝑚𝑚𝑖𝑖

′ = 𝑣𝑣𝑚𝑚𝑖𝑖 + +; 
4:  Calculate tm's new start time 𝑠𝑠𝑒𝑒𝑚𝑚𝑖𝑖

′  and execution time 𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖
′ ; 

5:  if 𝑠𝑠𝑒𝑒𝑚𝑚𝑖𝑖′ + 𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖
′ ≤ 𝑒𝑒𝑓𝑓𝑒𝑒𝑚𝑚and𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖′ + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖 then 

6:    meetExpectation ← TRUE; 
7:    Calculate the new node energy consumption 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +� 𝑒𝑒𝑒𝑒𝑙𝑙𝑖𝑖′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑤𝑤𝑚𝑚𝑗𝑗=1
; 

8:    if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖 ≤ 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑠𝑠 then 
9:   mSelectedNode ← j; 
10:    end if 
11:    break; 
12:  else 
13:    𝑣𝑣𝑚𝑚𝑖𝑖

′ = 𝑣𝑣𝑚𝑚𝑖𝑖 − −; 
14:    break; 
15:  end if 
16:   end while 
17: end for   

 
For a task in the local queue, the 3E first increases the supply voltage step by step until it reaches the 

highest (lines 2 and 3, Algorithm 3). If the increased supply voltage cannot meet the expected finish times for 
the new task or the waiting task, the supply voltage is degraded to its pervious value (lines 12 and 13, Algorithm 
3). Otherwise, if the new task can be finished within its user expectation (line 6, Algorithm 3), the 3E finds the 
compute node with the least energy consumption (lines 7–10, Algorithm 3). 

If neither of Function adjustPhase1() and Function adjustPhase2() can set the 
variable meetExpectationto be FALSE, which means none of the supply voltage adjustments is able to meet the 
new task's expected finish time, the Function noMeetExpectation() is called. 
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Algorithm 4 
Pseudocode of Function noMeetExpectation() 

1: if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑙𝑙) ≤ 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑠𝑠 then 
2:   nMSelectedNode ← j; 
3: end if   

 
In Function noMeetExpectation(), the 3E selects the compute node with the least energy consumption 

employing the highest supply voltage for the new task (see lines 1–3, Algorithm 4). 
If the lowest supply voltage meets its user's expectation, the 3E calls the Function noNeedAdjust(). 
 

Algorithm 5 
Pseudocode of Function noNeedAdjust() 

1: if 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖1) ≤ 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑠𝑠 then 
2:   mSelectedNode ← j; 
3: end if   

 
The node with the least energy consumption is chosen in Function noNeedAdjust() to save energy (lines 

1–3, Algorithm 5). 
Let us go back to see Algorithm 1. A value of mSelectedNode that is not NULL indicates some compute 

nodes can execute the new task within the user expectation using our elastic voltage adjustment policy. In this 
case, the 3E allocates the new task to the selected node with the least energy consumption. Otherwise, no 
compute nodes can meet the user expected finish time for the new task. In this case, the 3E also selects a node 
with the least energy consumption (lines 19–23, Algorithm 1). 

The time complexity of 3E depends on the number of compute nodes in a heterogeneous computing 
system, the number of tasks, and the number of supply voltage levels. 

 

Theorem 1 
The time complexity of scheduling a new task with 3E is O(|P||Q||K|), where |P| is the number of 

compute nodes in a heterogeneous computing system, |Q| is the number of tasks in a local queue, and |K| is the 
number of supply voltage levels. 

 

Proof 
The time complexity of Function adjustPhase1() is O(|K|). Function adjustPhase2() consumes O(|Q||K|) time. 
The time complexity of Functions noMeetExpectation() and noNeedAdjust() are O(1). Other lines only 
consume O(1). Thus, the time complexity of 3E is calculated as 
follows: O(|P|)(O(|K|) + O(|Q||K|) + O(1) + O(1)) = O(|P||Q||K|).□ 

5. Performance evaluation 
In this section, we evaluate the effectiveness of the proposed 3E scheduling strategy. We quantitatively 

compare 3E with three other algorithms: 
• Greedy energy-efficient (GEE). GEE strives to guarantee user expected and reduce energy 

consumptions by adjusting the supply voltage of a newly arrived task. GEE does not adjust the supply 
voltage of tasks waiting in local queues of compute nodes. 

• Highest voltage energy-efficient (HVEE). HVEE offers the highest supply voltage for each new task and 
selects the compute node with the least energy consumption to execute the new task. 

• Lowest voltage energy-efficient (LVEE). LVEE provides the lowest supply voltage for each new task and 
selects the compute node with the least energy consumption to execute the new task. 
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We use three performance metrics to evaluate the algorithms. 

 
• Satisfaction rate, the ratio of the number of tasks whose finish time meet their users’ expectations to 

the total number of tasks×100%. 
• Total energy consumption, the total energy consumption including the node energy consumption and 

transmission energy consumption. 
• Makespan, the latest task finish time in the task set. 

 
We use normalized total energy consumption in our study, a common practice used in literature (Kim et 

al., 2008, Laszewski et al., 2009) and (Liu et al., 2010). 
 

5.1. Simulation method and parameters 
Before presenting our experimental results, we present the simulation model as follows: Table 

2summarizes the configuration parameters of the simulated heterogeneous computing systems used in our 
experiments. The parameters of nodes and links in the heterogeneous computing systems are chosen to 
resemble real-world processors. 

 
Table 2. Parameters for simulation studies. 

Parameter Value(fixed)–(varied) 
Number of compute nodes (32)–(8, 16, 32, 56, 64, 96, 128) 
Number of tasks (2048) 
minSpeed (kbps) ([250, 450])–([300, 400]), ([250, 450]), ([200, 500]) 
maxSpeed (kbps) ([900, 1100])–([950, 1050]), ([900, 1100]), ([850, 1150]) 
bandWidth (kbps) ([1250, 1400]) 
intervalTime (s) (2.0)–(2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0) 
taskSize (kb) ([500, 1000])–([0, 500], [500, 1000], [1000, 1500]) 
finishTimeBase (s) (2.0)–(2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0) 
nodeECR (W) ([14, 100]) 
transmissionECR (W) ([10, 20]) 

 
The voltage levels of all the compute nodes are from 0.9 V to 1.5 V with an increment of 0.1 V. 

Corresponding to the lowest and the highest voltages, the lowest and highest power consumptions are 14 W 
and 100 W respectively, and the slowest and fastest processing speeds are 350 kbps and 1000 kbps in average, 
respectively. The energy consumptions and performances for other voltages are determined by the energy 
and performance models. 

The parameters and the values used in our simulations are summarized in Table 1. 
 

1) The heterogeneity of the simulated distributed computing system is reflected by the nodes’ processing 
speeds and network bandwidths. The minimum processing speed minSpeed corresponding to the lowest 
voltage Parameter is normally distributed across the compute nodes, and so are the maximum 
processing speed maxSpeed corresponding to the highest voltage level and the transmission 
rates bandWidth from the scheduler to different compute nodes. 

2) Parameter nodeECR represents a range of node energy consumption rate from the minimal voltage to 
the maximal one. Again, transmissionECR is a range of transmission energy consumption rate from the 
worst link to the best one. Node energy consumption rate and transmission energy consumption rate 
are normally distributed in nodeECR and transmissionECR, respectively. This parameters are similar to 
that in Xie and Qin (2008). Additionally, in our experiments, we set the node energy consumption rate 
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being idle is a tenth of the node energy consumption rate when active; and the transmission energy 
consumption rates being active and idle are equal. 

3) We study three task sizes: small, median and large in our simulations, where small size is less than 
500 kb, median size is within 500–1000 kb, and large size is within 1000–1500 kb. 

4) Parameter finishTimeBase determines whether a task's expected finish time is loose or tight. The 
expected finish time efti of task ti in Eq. (20) is designed similar as that in Qin and Jiang (2006), 
 
(20) 𝑒𝑒𝑓𝑓𝑒𝑒𝑎𝑎 = 𝑎𝑎𝑎𝑎 + (1 + 𝑓𝑓𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠ℎ𝑇𝑇𝑎𝑎𝑚𝑚𝑒𝑒𝑇𝑇𝑎𝑎𝑠𝑠𝑒𝑒) × 𝑒𝑒𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥, 
 
where 𝑒𝑒𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚 is the longest execution time that can be computed as follows: 
 
(21) 𝑒𝑒𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑒𝑒𝑎𝑎𝑗𝑗(𝑉𝑉𝑗𝑗1)}. 
 

5) Parameter intervalTime represents the arrival interval between two consecutive tasks. The arrival rate 
of tasks is Poisson distribution. 

5.2. Scalability 
Scalability is an important measure of scheduling strategy for large scale systems. In our experiments, 

we examine how the four strategies perform when the count of compute nodes increases from 8 to 128. Fig. 
7, Fig. 8, Fig. 9 show satisfaction rate, total energy consumption, and makespan with each strategy. 

 

 
Fig. 7. Performance impact of the count of compute nodes on satisfaction rate. 
 

Fig. 7 shows that satisfaction rate improves with the increase of compute node count for all strategies. 
This is because more nodes provide more computing resources. HVEE always yields higher satisfaction rate than 
other strategies as it sets the voltage to the highest level all the time and thus results in less execution times for 
tasks and earlier start times. Hence, the likelihood of missing user expected finish time is reduced. In contrast, 
LVEE offers the worst satisfaction rate because of employing the lowest voltage level all the time. The 3E 
strategy outperforms GEE as it utilizes the information of tasks in the local queues in addition to newly arrived 
tasks and adjusts their supply voltage levels when the system is under heavy workload. 

Fig. 8 shows how the total energy consumption varies with the count of compute nodes. HVEE achieves 
the lowest energy efficiency while LVEE achieves the highest. These results indicate that both baseline schemes 
have no elasticity, lacking the capacities to make trade-offs between satisfaction rate and total energy 
consumption and to respond to the dynamics of system workload. GEE exhibits the similar trend as 3E, with a 
lower total energy consumption at the expense of smaller satisfaction rate. This is explained by the fact that 3E 
aggressively enhances the satisfaction rate when the system is heavily loaded. However, the difference between 
3E and GEE becomes negligible when the number of compute nodes is larger than 96. Interestingly, the total 
energy consumption with 3E decreases when the count of compute nodes increases from 8 to 64. This is 
because 3E strives to reduce energy consumption while keeping high satisfaction rate when the system 
workload becomes lighter. Additionally, when the count of compute nodes is more than 64, the total energy 
consumption with 3E goes up as most of the compute nodes are sitting idle, leading to increasing idle energy 
consumption even if the compute nodes are scheduled at the lowest voltage levels. 
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Fig. 8. Performance impact on the count of compute nodes in terms of total energy consumption. 
 

Fig. 9 shows that LVEE delivers the worst makespan as a result of deploying the lowest voltage level and 
the least energy consumption for tasks. On the contrary, HVEE delivers the best makespan at the expense of 
higher energy consumption. With these two strategies, energy consumption and makespan do not compensate 
for each other. The results are the consequences of the lack of elasticity in the scheduling strategies in 
heterogeneous computing systems. 3E delivers better makespan than GEE when the compute node count is less 
than 96. To guarantee higher satisfaction rate when the system is under heavy workload, 3E boosts the supply 
voltage levels for some tasks in local queues leading to shorter execution times, whereas GEE lacks the capability 
to shorten the execution times of those waiting tasks. Consequently, tasks scheduled by 3E have shorter 
execution times with higher throughput compared with GEE. The two strategies exhibit identical makespan 
when the number of compute nodes is larger than 96 because the system workload is light enough for both to 
schedule tasks with the lowest voltage level. 

 
Fig. 9. Performance impact on the count of compute nodes in terms of makespan. 
 

5.3. Arrival rate 
To examine the performance sensitivities of the four strategies to the arrival rate of tasks, in this set of 

experiments, we vary the parameter intervalTime from 2 to 16 with increment of 2. Fig. 10, Fig. 11, Fig. 12 plot 
the performances of GEE, LVEE, HVEE, and 3E. 

 
Fig. 10. Performance impact of the arrival rate on satisfaction rate. 
 

The first observation drawn from Fig. 10 is that, for all strategies, the satisfaction rate is improved with 
the increase of intervalTime. This is because the smaller intervalTime means more frequent tasks arrivals, more 
tasks waiting in the local queues, and heavier system workload. Consequently, a newly arrived task has to wait 
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until the tasks with higher orders are finished. The long-time waiting increases the possibility of missing user 
expected finish time. With larger intervalTime, the number of waiting tasks in local queues becomes smaller, the 
system workload becomes lighter, and a newly arrived task can be started earlier. Again, we observe that HVEE 
and LVEE generate the highest and the lowest satisfaction rates, respectively, while 3E performs better than 
GEE. We attribute the results to the fact that HVEE and LVEE consistently maintain the highest voltage level and 
the lowest voltage level for each new task without flexibility, and 3E is able to adjust the voltage levels of waiting 
tasks to improve the satisfaction rate when the system is under heavy workload. 

The results reported in Fig. 11 demonstrate that most energy is consumed with HVEE and least energy is 
consumed with LVEE. The 3E strategy has unique features. For instance, when the value of 
parameter intervalTime varies from 2 to 8, the system workload becomes lighter, 3E dynamically degrades the 
supply voltage levels of tasks to reduce energy consumption with the constraint that the user expected finish 
times are met. The total energy consumption by a 3E-enabled heterogeneous computing system increases 
when intervalTime is larger than 8. This is because the light workload produces more idle time and thus 
increasing energy consumption. This phenomenon is more obvious when the node count is large enough. 
An interesting observation from Fig. 11 is that GEE performs similarly as 3E and is slightly more energy-efficient 
when the intervalTime is larger than 8. However, this is at the expense of satisfaction rate under heavy system 
workload. 

 
Fig. 11. Performance impact of the arrival rate on the total energy consumption. 
 

In Fig. 12, we observe that when intervalTime varies from 2 to 16, the makespan under all the four 
schemes increase. This is because tasks arrive less frequently if the value of intervalTime increases, thus, tasks 
start later and finish later compared with those with smaller intervalTime. Another important observation is that 
HVEE generates the best makespan, while LVEE is the opposite. 3E outperforms GEE in terms of makespan when 
the intervalTime is less than 8. As the system workload is heavy, 3E trades low energy efficiency for high 
satisfaction, leading to shorter execution times of tasks. 

 
Fig. 12. Performance impact of the arrival rate on makespan. 
 

5.4. Expected finish time 
This subsection discusses the performance impact of user expected finish times with GEE, LVEE, HVEE, 

and 3E. We vary the parameter finishTimeBase from 2 to 16. Fig. 13, Fig. 14, Fig. 15 plot the performances of the 
four policies. 
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Fig. 13. Performance impact of the finishTimeBase on satisfaction rate. 
 

 
Fig. 14. Performance impact of finishTimeBase on the total energy consumption. 
 

 
Fig. 15. Performance impact of finishTimeBase on makespan. 
 

We observed from Fig. 13 that with the increase of finishTimeBase and looser constraint for user 
expected finish time for tasks, the satisfaction rate with each strategy increases accordingly. As the timing 
requirement becomes loose, and tasks can finish late yet still meet user expected finish times. Additionally, Fig. 
13 demonstrates that HVEE and LVEE have the highest and the lowest satisfaction rate, respectively. Again, the 
satisfaction rate under 3E is better than that under GEE. These results are consistent with what are observed 
from Figs. 7 and 10). 

Increasing finishTimeBase reflects the system workload becomes lighter. We observe from Fig. 14 that 
when the value of finishTimeBase is less than 10, the energy consumption under 3E gradually decreases as a 
result of good elasticity. We also observe that when the finishTimeBase is more than 10, the result is consistent 
with previous simulations. Although GEE has a similar trend with 3E, it yields lower satisfaction rate than 3E 
when the system is heavily loaded. In addition, both HVEE and LVEE are unable to reduce the energy 
consumption no matter what the system workload is. 

Fig. 15 shows that LVEE has longer makespan than the other schemes because it always uses the lowest 
voltage level. HVEE is opposite of LVEE. 3E making better makespan than GEE is because the execution times of 
some tasks with 3E are shortened to guarantee high satisfaction rate. 
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5.5. Task size 
In this set of experiments, we evaluate the performance impact of task size. We test three 

configurations of task size, as described in Table 1. Fig. 16, Fig. 17, Fig. 18 depict the performances of the four 
schemes under small, median, and large task sizes. 

 
Fig. 16. Performance impact of the taskSize on satisfaction rate. 
  

The results in Fig. 16 reveal that when the task size is small, all the strategies are able to provide higher 
satisfaction rate because of the shortened tasks’ execution times. For median and large task sizes, the execution 
time are longer and the satisfaction rates are smaller. HVEE always offers the highest satisfaction while LVEE 
offers the lowest because of the static nature and lack of ability of adjusting voltage levels according to the 
system workload. 3E has higher satisfaction rate than GEE as 3E strives to meet the user's expectations at the 
cost of energy efficiency when the system is under heavy workload. 

Fig. 17 shows that when the taskSize varies from small granularity to large one, the total energy 
consumption of a heterogeneous computing system under all the tested methods goes up. This is because the 
larger size tasks require longer execution times and thus more energy consumption. HVEE has the highest 
energy consumption and LVEE has the lowest energy dissipation, as exhibited in the previous experiments. 
Interestingly, when the task size is median or large, the energy consumption with 3E is slightly more than that 
with GEE because 3E weights more on the high satisfaction rate when the system is heavy loaded. However, 
when the task size is small, 3E and GEE have basically identical energy efficiency. 

 
Fig. 17. Performance impact of the taskSize on total energy consumption. 
 

The makespans of the four strategies shown in Fig. 18 indicate that the elasticity of 3E is good. These 
results are consistent with the ones plotted in Figs. 12 and 15. 

 
Fig. 18. Performance impact of the taskSize on makespan. 
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5.6. Compute node heterogeneity levels 
The experiments in these subsection focus on the impact of compute node heterogeneity on system 

performance. To be specific, we evaluate three node heterogeneity degrees: small heterogeneity, middle 
heterogeneity, and large heterogeneity. Fig. 19, Fig. 20, Fig. 21 depict the performances of GEE, LVEE, HVEE, and 
3E. 

 
Fig. 19. Performance impact of the compute node heterogeneity on satisfaction rate. 
 

In Fig. 19, we observe that the satisfaction rate of all strategies are boosted with the increase of 
compute node heterogeneity. This is mainly because more tasks are allocated to nodes with larger processing 
capability and less tasks are allocated to nodes with smaller processing capability. 3E outperforms others except 
for HVEE because 3E judiciously adjusts the supply voltages of queuing tasks in local queues. HVEE holds the 
highest satisfaction rate at the expense of consuming the most energy. 

We observe from Fig. 20 that HVEE and LVEE consistently provide the highest and the lowest energy 
consumption, respectively. The reason is same as the explanations in earlier discussion. Fig. 15 also shows that 
3E is no more energy-efficient than GEE. 3E gives priority to satisfaction rate although more energy is consumed 
when the system is under heavy workload. 

 
Fig. 20. The impact of compute node heterogeneity on total energy consumption. 
 

Fig. 21 shows that the makespan of each strategy slightly increases when the compute node 
heterogeneity becomes large. This is because the system workload decreases a little with longer execution time 
that is leveraged for energy conservation. Again, 3E has better makespan than GEE due to shorter tasks 
execution times and better satisfaction rate under heavy workload. 

 
Fig. 21. The impact of computational node heterogeneity on satisfaction rate. 
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6. Conclusions and future work 
In this paper, we have addressed the issue of scheduling and allocating independent tasks 

on heterogeneous computing systems to make trade-offs between users’ expectations and energy efficiency. 
The proposed energy-efficient elastic (3E) scheduling strategy can efficiently improve the flexibility of 
heterogeneous computing systems by adaptively adjusting supply voltages of both new tasks and queued tasks 
according to the system workload. We have quantitatively evaluated the effectiveness of 3E strategy in 
extensive simulation studies, and the experimental results reveal that 3E outperforms other existing and 
baseline strategies due to its elasticity, and is a feasible scheduling strategy in dynamic environments. 

Our future studies will focus on two avenues. First, we would like to extend 3E scheduling strategy to 
deal with heterogeneous storage systems and second, we intend to modify 3E scheme to handle parallel tasks 
on heterogeneous computing systems. 
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