
Analysis and Optimization of Power

Consumption in the Iterative Solution

of Sparse Linear Systems on Multi-core

and Many-core Platforms

H. Anzt, M. Castillo, J. I. Aliaga, J. C. Fernández,

V. Heuveline, R. Mayo, E. S. Quintana-Ort́ı

No. 2011-05

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association www.emcl.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)



Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

No. 2011-05

Impressum

Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86

76133 Karlsruhe

Germany

KIT – University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.kit.edu



Analysis and Optimization of Power Consumption in the Iterative Solution of

Sparse Linear Systems on Multi-core and Many-core Platforms

Hartwig Anzt, Vincent Heuveline

Institute for Applied and Numerical Mathematics 4

Karlsruhe Institute of Technology

Fritz-Erler-Str. 23, 76133 Karlsruhe, Germany

{hartwig.anzt,vincent.heuveline}@kit.edu

José I. Aliaga, Maribel Castillo, Juan C. Fernández,

Rafael Mayo, Enrique S. Quintana-Ortı́

Depto. de Ingenierı́a y Ciencia de Computadores

Universidad Jaume I

12.071 - Castellón, Spain

{aliaga,castillo,jfernand,mayo,quintana}@icc.uji.es

Abstract—Energy efficiency is a major concern in mod-
ern high-performance-computing. Still, few studies provide a
deep insight into the power consumption of scientific applica-
tions. Especially for algorithms running on hybrid platforms
equipped with hardware accelerators, like graphics processors,
a detailed energy analysis is essential to identify the most costly
parts, and to evaluate possible improvement strategies. In this
paper we analyze the computational and power performance
of iterative linear solvers applied to sparse systems arising in
several scientific applications. We also study the gains yield
by dynamic voltage/frequency scaling (DVFS), and illustrate
that this technique alone cannot to reduce the energy cost to a
considerable amount for iterative linear solvers. We then apply
techniques that set the (multi-core processor in the) host system
to a low-consuming state for the time that the GPU is executing.
Our experiments conclusively reveal how the combination of
these two techniques deliver a notable reduction of energy
consumption without a noticeable impact on computational
performance.

Keywords-Energy Efficiency, Scientific Computing, Sparse
Linear Systems, Iterative Solvers, Power and Performance
Analysis and Optimization, DVFS

I. INTRODUCTION

As we approach the Exascale computing era, the focus

of the scientific computing community increasingly turns

into deriving energy efficient systems, that are able to

tackle applications with low power consumption. The reason

is, that already today, the running costs for energy often

exceed the acquisition cost of a hardware platform [1]. But

the economic issue is not the only problem. Appropriate

infrastructure able to supply this amount of energy is not

always available, and the concerns about an energy crisis and

global warming lead to even another level of consideration.

For these reasons, a significant number of researchers

working on scientific computing, technical engineering and

mathematical modeling have driven their research focus

towards power-aware computing [2], [3]. However, while

the different experts can improve the factors related to the

respective fields they are working in, only the combination

of their competences can lead to considerable improvements:

the hardware has to be optimized with respect to power

consumption, the applications have to be adapted to leverage

this hardware, the implementations have to optimize the

usage of all available hardware resources and distribute the

workload to improve the efficiency, etc.

In this paper, we analyze the iterative solution of sparse

symmetric positive definite (SPD) linear systems. This type

of problems naturally arises in many applications that require

the solution of partial differential equations (PDE) model-

ing physical, chemical or economical processes. Depending

on the specific PDE and the finite element discretization

method, the resulting system exhibits the symmetry and

positive definiteness properties. A well-known example of

an SPD system is the finite difference discretization of a 2D

or 3D Laplace problem; see, e.g., [4]. While direct solvers

can deal with small to medium-sized sparse linear systems,

large-scale systems usually require the use of low-cost itera-

tive solvers based on Krylov Subspace-based methods [5]. If

the coefficient matrices are symmetric and positive definite,

the Conjugate Gradient (CG) method and its preconditioned

variants (PCG), which usually combine a higher robustness

with some performance gain, are especially appealing. The

main contribution of this paper is a practical demonstration

of how the energy consumption of iterative solvers for

SPD linear systems can be reduced considerably by using

hybrid hardware platforms, adapting the solver to the system,

and applying energy-saving techniques like DVFS combined

with a low-consuming state. To achieve this purpose, we split

the paper into the following parts:

1) We first overview the test framework used in our

experiments. This includes a detailed description of

the hardware platform and the measurement setup.

Additionally, we describe the solver types and the

specific linear systems employed in the evaluation.

2) We then perform a detailed analysis of the energy con-

sumption of the different variants of the solver, using

the various hardware components, to determine where

and how energy saving techniques can be applied.

3) DVFS is known to influence the time/energy trade-

off of the solving process [6], [7]. While for CPU-

bounded applications there is usually a linear cor-



relation between time and power consumption, this

may not be true for cases where the memory band-

width is the bottleneck [8]. Here we show that, for

the solution of sparse linear systems (in general, a

memory-bounded application) on hybrid CPU-GPU

platforms, DVFS alone is not sufficient to decrease

the power consumption. On CPUs, lowering the fre-

quency/voltage increases execution time which blurs

energy savings. On the other hand, when the GPU

is employed to execute CUDA kernels, the CPU

performs a busy-wait with little difference between

high/low frequencies from the power consumption

perspective.

4) To avoid the negative consequences of the busy-wait,

we implement a function that puts the CPU to “sleep”

for the time of the GPU kernel call. This is one

possibility that actually turns the system into idle

mode, and leads to a considerable decrease in the

power consumption of the host.

5) To assess the improvements, we apply the different

solver implementations to a variety of SPD linear sys-

tems, obtained from the finite element discretization

of a Laplace problem or available from the University

of Florida matrix collection (UFMC; see http://www.

cise.ufl.edu/research/sparse/matrices/).

6) In the last section we offer a number of conclusions

and a brief overview about open problems that have

to be addressed in the future, to enhance the energy

efficiency of linear solvers further.

II. FRAMEWORK FOR EXPERIMENTS

A. Hardware Platform and Linear Algebra Libraries

All experiments were performed on a platform consisting

of an AMD Opteron 6128 processor with eight cores running

at 2.0 GHz, with 12 MB of shared L3 cache and 24 GB

of RAM. The system is connected via PCIe (16x) to an

NVIDIA Tesla C1060 card (240 processor cores) with 4

GB of GDDR3 global memory. The double-precision peak

performance of the multi-core processor is 64 GFLOPS

(64 ·109 floating-point arithmetic operations per second) and

that of the GPU is 78 GFLOPS. When possible, we invoked

the tuned implementation from Intel MKL (version 11.1)

to perform BLAS-1 operations (e.g., for the dot product,

the axpy, etc.) on the AMD processor. Although MKL

also includes an implementation of the sparse matrix-vector

multiplication (necessary in the CG iteration), we decided to

employ our own plain implementation of this kernel. Inde-

pendent experiments showed the superior parallel efficiency

of our implementation for the specific matrices involved

in the experiments. In order to improve performance, the

compilation of the CPU code was done using the GNU gcc

compiler (version 4.4.3) with the flag -O3, which enables

aggressive optimizations on the AMD multi-core processor.

Table I: Dimensions of the SPD test matrices.
Matrix name Size (n) Nonzeros (nnz)

A318 32,157,432 224,495,280

APACHE2 715,176 4,817,870

AUDIKW 1 943,695 77,651,847

BONES10 914,898 40,878,708

ECOLOGY2 999,999 4,995,991

G3 CIRCUIT 1,585,478 7,660,826

LDOOR 952,203 42,493,817

ND24K 72,000 28,715,634

On the GPU, the BLAS-1 operations were performed

using the respective CUBLAS routines from [9] (version

3.0). NVIDIA nvcc compiler (version 3.2), with an up-

to-date CUDA driver (version 3.2) was employed in the

GPU. A specific kernel for the computation of the sparse

matrix-vector multiplication on the GPU was implemented

following the guidelines suggested in [10].

B. Measurement Setup

Power was measured using an ASIC operating at a fre-

quency of 25 Hz (25 samples per second) and composed

of a number of resistors connected in series with the power

source. This internal power meter was attached to the lines

connecting directly the power supply unit with the GPU

and the motherboard (chipset plus processors), to obtain the

energy consumption of the computing hardware. Samples

from this device were collected in a separate system, so that

they do not affect the performance of the tests. Figure 1

captures the connection between the target platform and the

energy measurement hardware.

C. Linear Systems

We iteratively compute a solution approximation to the

linear system Ax = b, where A is one of the matrices

listed in Table I and b is a vector with all entries equal 1.

The coefficient matrices of the linear system are derived

from a finite difference discretization of the 3D Laplace

problem (example A318) or taken from the UFMC of freely

available matrices arising in scientific applications (all other

cases). For simplicity, in the iterative solver we set the initial

guess to start the iteration process to x0 ≡ 0, despite there

exist sophisticated methods to approximate an optimal initial

solution.

We set the relative residual stopping criterion of the

solvers to ε = 10−10‖r0‖2, where r0 is the initial residual.

As we chose x0 ≡ 0, then r0 = b − Ax0 = b and

ε = 10−10
√

n.

D. Iterative Linear Solver

We employ CG [5] to iteratively solve the different linear

systems. To increase the performance and the robustness of

the solution process, we also implement a preconditioned

variant using a Jacobi preconditioner [5]. Note that, as

this preconditioner only weights the main diagonal, it will



Power
Supply
Unit

GPU

PCI−Express

Motherboard

ComputerUSB

Measurement

Software
Internal

Power Meter

Figure 1: Hardware platform and sampling points.

Table II: Energy Consumption of different implementations

of CG solver for G3 CIRCUIT.
Hardware # iter Time [s] Energy consumption [Wh]

Chipset GPU Total

CPU 1T 21424 1674.45 53.96 - 53.96

CPU 2T 21424 1307.21 45.70 - 45.70

CPU 4T 21424 1076.97 42.18 - 42.18

CPU 8T 21424 1113.34 50.54 - 50.54

GPU 4T 21467 198.43 8.04 3.44 11.48

usually not improve the efficiency of the solution process of

linear systems obtained from a Laplace stencil (e.g., A318).

Furthermore, as the computation of the preconditioner ma-

trix is sequential, it is always performed by the CPU of the

system. Within the iteration process, the difference between

the CG and the Jacobi-PCG is one additional matrix-vector

multiplication involving the preconditioner matrix.

The different implementations of the solver use either the

CPU or the GPU for the sparse matrix-vector product and

BLAS-1 operations.

III. DETAILED POWER CONSUMPTION ANALYSIS

In this first test, we monitor the power consumption of

the different implementations of CG and PCG on CPU and

GPU. To assess the relevance for scientific applications, we

choose the linear system G3 CIRCUIT (see Table I) for this

test, as this example exhibits a moderate dimension and a

complex sparsity pattern.

In Tables II and III we report the results obtained with the

CPU solvers using OpenMP with 1, 2, 4 and 8 threads/cores

(results labelled as “CPU nT” with “n” equal the number of

threads), and compare the execution time (in seconds, s) and

the energy consumption (in Watts-hour, Wh) to those of the

GPU implementations, performing the BLAS-1 operations

and the sparse matrix-vector product on the GPU, and using

a total of 4 CPU threads/cores for the remaining operations

on the CPU (results labelled as “GPU 4T”).

We observe that, for the CG as well as for the precon-

ditioned variant, the GPU implementation outperforms all

CPU solvers by a large factor. This is true for the execution

time as well as for the energy cost; for the latter parameter,

the improvement is smaller, since the power consumption of

both the CPU and GPU have to be taken into account. For

Table III: Energy Consumption of different implementations

of PCG solver for G3 CIRCUIT.
Hardware # iter Time [s] Energy consumption [Wh]

Chipset GPU Total

CPU 1T 4613 601.97 18.94 - 18.94

CPU 2T 4613 417.33 14.22 - 14.22

CPU 4T 4613 348.79 13.31 - 13.31

CPU 8T 4613 362.44 16.25 - 16.25

GPU 4T 4613 46.28 1.89 0.83 2.72

the CG solver, the optimal CPU-based configuration (use of

4 threads) results in more than 5× higher execution time and

about 4× higher energy consumption. For the preconditioned

variant, where the advantage of less iterations is payed off by

an additional matrix-vector multiplication in every iteration

loop, the speedup and energy saving derived from the use

of the GPU as coprocessor are even higher. The optimal

CPU implementation can at most reach 1/7 of the GPU

performance and consumes more than 480% more energy.

Although most scientific codes target clusters with

general-purpose processors, this test validates the assump-

tion that the use of GPUs for elementary kernel operations

may improve the overall performance of parallel scientific

applications. Despite the additional initialization process and

data transfer to the GPU, the high number of computing

cores on a graphics processor compensates these overheads,

and enables the GPU to perform parallel instructions faster

and with higher energy efficiency. The aim of the following

analysis is to extract information on how to further reduce

the energy consumption of the solvers.

IV. DYNAMIC VOLTAGE AND FREQUENCY SCALING

There is a common belief that, for memory-bounded

operations, the power consumption can be reduced by

lowering the frequency/voltage operation of the processor

(enabled in current architectures by DVFS modules). The

next experiment shows that, in general, this is not true for

the solution of sparse linear systems using CPU/GPUs. The

reason is that often the kernel calls to perform an intensive

computation on the GPU set the (CPU) host system in a

busy-wait. In this state, the CPU does not perform any

computations, but exhibits a power consumption even higher

than that of running idle!



Table IV: Energy Consumption of different implementations

of CG solver for A318.
Hardware Freq. Time Power/Energy consumption

Chipset GPU Total
[MHz] [s] [� W ] [� W] [Wh]

CPU 1T 2,000 2059.69 116.78 - 66.81

CPU 1T 800 3400.64 103.50 - 97.75

CPU 2T 2,000 1708.31 120.30 - 57.08

CPU 2T 800 2196.63 105.60 - 64.44

CPU 4T 2,000 1441.78 123.99 - 49.66

CPU 4T 800 1674.62 108.11 - 50.29

CPU 8T 2,000 1395.37 129.33 - 50.13

CPU 8T 800 1481.48 110.46 - 45.45

GPU 2,000 253.22 149.04 61.89 14.84

GPU 800 254.25 138.50 61.45 14.12

For the following tests, we move to the linear system

A318 (see Table I). This choice is motivated by the

measurement device we are using to monitor the power

consumption. In particular, to ensure the ASIC is being able

to accurately sample the power consumption, we need a

large-scale system, so that the time frames of the BLAS-

1 operations and the sparse matrix-vector product are in the

order of the measurement frequency.

Table IV reports the execution time, average power de-

manded by the chipset and GPU (in Watts, � W) and total

energy consumption of the codes when DVFS is employed

to set the operating frequency of the AMD cores to 2.00 GHz

and 800 MHz for the time of the CG solver. Since rescaling

the CPU frequency is on one side only beneficial when

applied to all cores, and introduces some overhead on the

other side, additional rescaling inside the algorithm does not

improve the overall performance. The results show that, for

the CPU-based codes, there is no direct correlation between

computation time and the total energy cost. Reducing the

CPU-frequency using DVFS lowers the power consumption

of the CPU, but since less operations can be conducted per

unit of time, it increases the computation period. In the end,

lowering the frequency not necessarily yields improvement

to the the energy cost. Using more cores reduces the exe-

cution time, but increases the energy consumption. Since

not only the cores are consuming, also the memory and

the chipset demand for some power, whether increasing the

number of cores pays off depends on the application and

the memory bandwidth. Only if the application is CPU-

bounded increasing the number of cores reduces the energy

consumption; for memory-bounded operations this may not

be true in general. On NUMA architectures, like the one

employed in the experiments, using a large number of cores

increases also the memory bandwidth, which may lead to

a different ratio between the memory- and CPU workload.

This effect can be observed when 8 threads are used.

Again, we observe the superiority of the GPU imple-

mentations; for those, using DVFS is beneficial, since the

operations conducted by the CPU are few and do not demand

a high operation frequency.

Furthermore we observe that the graphics card consumes

some power over the PCIe. Although we can not give explicit

numbers for this energy transfer, the specifications do not

allow a higher output than 75 Watts via PCIe [11].

Using the GPU-implementation for this test case, the

improvement gained by using DVFS counts up to at most

5.6% of the total energy consumption. The reason for this

moderate result is that calling a GPU kernel operation sets

the CPU into a busy-wait, a mode where the host system

is waiting for feedback from the kernel, sending steadily

requests to the device. This results in a energy consumption

that equals or is even superior to a system running on full

demand.

V. IDLE-WAIT

The previous section showed that lowering the operation

frequency of the CPU cores does not yield a significant

reduction of power consumption of the host system during

the execution of kernels on the device. The reason for this

is that the busy-wait status is highly energy inefficient. In

this section, we show a possible solution to this problem

which sets the host system to sleep for the time of the kernel

execution. There may exist other more advanced alternatives,

that utilize synchronizing tools provided by the NVIDIA

CUDA toolkit or the respective scientific development kit of

the device. Here, in order to obtain a good trade-off between

the optimization grade and the flexibility of the tool, we

use a simple technique, based on the use of the C/C++

nanosleep() function (see sys/time.h). Specifically,

to optimize the idle-wait to the application, we measure

the execution time of the first kernel call. Since calling

the nanosleep() function also triggers some overhead, we

subtract this overhead plus some threshold. For subsequent

kernel calls, we then set the host system to sleep for this

time frame with the nanosleep().

Figure 2 illustrates the power demand of different energy-

saving techniques applied to the CG solving process of the

linear system A318 during a period of 12.5 secs, chipset-

measurement only. Here, using DVFS to lower the operating

frequency of the CPU cores from 2.0 GHz to 800 MHz (line

labeled as “CG+DVFS”) does not affect the iteration time,

as most of the computations are performed on the GPU.

The results show that with DVFS alone the improvement

is small; the nanosleep() function yields a certain drop

of the power consumption (line “CG+idle-wait”); and the

combination of both techniques improves the performance

further (line “CG+DVFS+idle-wait”).

A. Power-Consumption Tests

In the next tests we employ three GPU-implementations

of the solver:



0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

P
o
w

e
r 

(W
a
tt
s
)

Time

Power usage by CPU

CG
CG+DVFS

CG+idle-wait
CG+DVFS+idle-wait

Figure 2: Power consumption of different energy-saving

techniques applied to the CG-solver, chipset measurement.

Table V: Energy Consumption of different implementations

of the CG solver, chipset + GPU.
matrix energy consumption [Wh] improvement [%]

(i) (ii) (iii) (i)→(ii) (i)→(iii)

A318 14.84 14.12 12.18 5.1 21.8

APACHE2 1.98 1.99 1.82 -0.5 8.8

AUDIKW 1 no convergence - -

BONES10 no convergence - -

ECOLOGY2 2.30 2.27 2.09 -1.3 10.0

G3 CIRCUIT 11.48 11.11 10.10 3.3 13.7

LDOOR no convergence - -

N24K 26.43 25.42 21.17 3.97 24.8

(i) The first implementation is straight-forward, without

DVFS or any other power-saving technique. The CPU

of the host system runs at full speed (2.0 GHz) during

the complete solving process.

(ii) Using DVFS, we scale down the frequency of the

host system to 800 MHz during the operation of the

GPU-accelerated solver. This has the drawback of

slow CPU computations for this part, but since these

computations are minor, this choice seems reasonable.

(iii) Additionally to DVFS we set the host system to sleep

for the time the GPU performs the sparse matrix-

vector multiplication.

Tables V and VI collect the results obtained with the (i)–

(iii) solver implementations, applied to all linear systems

described in Table I, using, respectively, a plain CG solver

and a Jacobi-preconditioned one. We measure the total

energy consumption by adding the energy use of chipset

and GPU. The last two columns in both tables reflect the

improvement in power consumption that can be obtained by

using DVFS and the combination of DVFS and idle-wait.

While for some problems only the preconditioned variant

of the CG solver converges, applying a preconditioner is

Table VI: Energy Consumption of different implementations

of the PCG solver, chipset + GPU.
matrix energy consumption [Wh] improvement [%]

(i) (ii) (iii) (i)→(ii) (i)→(iii)

A318 14.84 14.12 12.18 5.1 21.8

APACHE2 1.75 1.76 1.64 -0.6 6.7

AUDIKW 1 47.98 45.61 38.15 5.2 25.8

BONES10 157.32 150.16 125.78 4.8 25.1

ECOLOGY2 2.51 2.45 2.29 2.4 9.6

G3 CIRCUIT 2.71 2.63 2.38 3.0 13.9

LDOOR 43.22 41.18 34.79 5.0 24.2

N24K 34.62 32.97 27.64 5.0 25.3

not always reasonable. There exist problems where the plain

implementation is superior, but for most systems, adding a

preconditioner improves the performance. At this point, it

is worth mentioning that we only evaluated example A318

without the preconditioner. The reason for this is twofold.

First, applying a Jacobi-preconditioner to this system does

not improve the convergence behaviour. Second, the ad-

ditional memory required for the preconditioner poses a

problem for our system equipped with only 3 GB of GPU-

memory. Overall, these results demonstrate that DVFS alone

renders only small improvement to the power consumption,

and in some cases it even triggers a higher energy cost.

This happens when the time and related energy overhead

triggered by rescaling the CPU frequency exceeds the power

savings.

Applying the combination of DVFS and the idle-wait, we

observe an improvement in the power consumption for all

test-cases. Still we appreciate large differences in the scale

of saving. While for some systems the energy saving is in

the range of 1/4, it only sums up to a few percent for some

others. There exist two main factors determining the energy

savings:

1) The time of the matrix-vector operations conducted

by the GPU dictates whether it is reasonable to sleep

the host system for a considerable time-frame. If the

overhead due to calling the nanosleep() function

exceeds the execution time of the GPU kernel, no

improvement can be obtained. Additionally, the sleep

function takes some time to scale down the energy

consumption of the processor. For the used system, the

average time from highest/lowest energy consumption

to lowest/highest energy consumption approximates

50/74 microseconds.

2) The sparsity pattern of a matrix determines the ratio

between the cost of a sparse matrix-vector product and

a vector operation (BLAS-1). Since for the dimensions

of the systems that were evaluated the execution of

the BLAS-1 kernels on the GPU usually took less

time than the overhead for calling the nanosleep()

function, we set the host system to sleep only for the

sparse matrix-vector product. Hence, the improvement



comes from the GPU kernels conducting the matrix-

vector operations. If these account for a large part of

the overall computation time, we can expect notable

energy savings.

The first point leads to the conclusion that the usage of

DVFS and idle-wait is only reasonable for systems with

expensive matrix-vector products. For other problems, either

the computational cost of solving the linear system is low

or the condition number is very high, leading to a large

number of iterations. In both cases, using the CPU with less

computing cores but working at a higher frequency than the

GPU leads to the acceleration of the solver. Hence, for the

general case where the GPU-implementation of a solver is

superior, the dimension of the system allows an efficient use

of DVFS and idle-wait.

The second point suggests that larger benefits could be

expected from the application of these techniques to the

solution of dense linear systems via iterative methods. Since

the linear problems occurring in scientific computing are

often sparse, and we want to maintain the focus on scien-

tifically relevant problems, we refrain from an analysis of

dense problems at this point.

VI. CONCLUSION

In this paper, we presented and evaluated power-saving

techniques for the solution of sparse linear solvers via itera-

tive methods on hybrid hardware platforms. The parallelism

of the sparse matrix-vector product enables the efficient

usage of GPUs as coprocessor, able to conduct this operation

with considerably high performance, both in execution time

and energy consumption. Dynamic Voltage and Frequency

Scaling can be used to rescale the processor frequency

for the time the device is performing computations, and

potentially lower the energy consumption. However, since

the busy-wait of the host system during the kernel calls sets it

into a state where it still consumes about 80% of full-demand

power, the effects are close-to-negligible. In response to this,

we have shown that using idle-wait for the time of kernel

calls gives considerable improvement to the overall energy

consumption of an application.

Finally, we have provided a set of experimental results

where the power-aware solver framework is applied to

different test matrices that are either derived from finite

difference discretizations or available in the University of

Florida matrix collection. Analyzing the power consumption

of the solvers we realized that the use of GPU-accelerated

HPC-systems combined with power-saving techniques leads

to more reduced energy consumption of all test problems

without impacting the performance.

The challenge for the hardware manufacturers is now to

enable hardware components like GPU to perform DVFS

similar to a CPU, and to develop devices that can be set to

sleep or shut down for the time they are not used.

To face the energy problems that come along when

approaching the Exascale computing era, the software de-

velopers have to continuously optimize their applications

to the target hardware systems. This includes not only

applying power-aware implementations, but also redesigning

the algorithms to enable a higher grade of parallelization,

and a better distribution of the workload on the various

components forming the HPC-systems.

ACKNOWLEDGMENTS

The authors thank M. Dolz, G. Fabregat and V. Roca,

for their technical support with the energy measurement

framework.

The authors from the Universidad Jaume I were supported

by project CICYT TIN2008-06570-C04-01 and FEDER.

REFERENCES

[1] F. Lampe, Green-IT, Virtualisierung und Thin Clients : Mit
neuen IT-Technologien Energieeffizienz erreichen, die Umwelt
schonen und Kosten sparen. Vieweg + Teubner, 2010.

[2] P. Kogge et al, “ExaScale computing study: Technology
challenges in achieving ExaScale systems,” 2008.

[3] J. Dongarra et al, “The international ExaScale software
project roadmap,” Int. J. of High Performance Computing &
Applications, vol. 25, no. 1, 2011.

[4] J. I. Aliaga, M. Bollhöfer, A. F. Martı́n, and E. S. Quintana-
Ortı́, “Exploiting thread-level parallelism in the iterative so-
lution of sparse linear systems,” Parallel Computing, vol. 37,
pp. 183–202, 2011.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2003.

[6] H. Anzt, B. Rocker, and V. Heuveline, “Energy efficiency
of mixed precision iterative refinement methods using hybrid
hardware platforms,” Computer Science - Research and De-
velopment, vol. 25, Issue 3, pp. 141–149, 2010.

[7] H. Anzt, M. Castillo, J. C. Fernández, V. Heuveline, R. Mayo,
E. S. Quintana-Ortı́, and B. Rocker, “Power consumption
of mixed precision in the iterative solution of sparse linear
systems,” EMCL, Karlsruhe Institute of Technology, Tech.
Rep. 11-01, 2011, to appear in HPPAC 2011.

[8] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah,
R. Springer, B. L. Rountree, and M. E. Femal, “Analyzing
the energy-time trade-off in high-performance computing
applications,” IEEE Trans. Parallel Distrib. Syst., vol. 18, pp.
835–848, June 2007.

[9] NVIDIA CUDA CUBLAS Library Programming Guide,
1st ed., NVIDIA Corporation, June 2007.

[10] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, ser. SC ’09. New York,
NY, USA: ACM, 2009, pp. 18:1–18:11.

[11] PCI-SIG, “PCIe x16 Graphics 150W-ATX Spec 1.0,” 2004.



Preprint Series of the Engineering Mathematics and Computing Lab

recent issues

No. 2011-04 Vincent Heuveline, Michael Schick: A local time–dependent Generalized Polynomial

Chaos method for Stochastic Dynamical Systems

No. 2011-03 Vincent Heuveline, Michael Schick: Towards a hybrid numerical method using

Generalized Polynomial Chaos for Stochastic Differential Equations

No. 2011-02 Panagiotis Adamidis, Vincent Heuveline, Florian Wilhelm: A High-Efficient Scalable

Solver for the Global Ocean/Sea-Ice Model MPIOM

No. 2011-01 Hartwig Anzt, Maribel Castillo, Juan C. Fernández, Vincent Heuveline, Rafael Mayo,

Enrique S. Quintana-Ort́ı, Björn Rocker: Power Consumption of Mixed Precision in the

Iterative Solution of Sparse Linear Systems

No. 2010-07 Werner Augustin, Vincent Heuveline, Jan-Philipp Weiss: Convey HC-1 Hybrid Core

Computer – The Potential of FPGAs in Numerical Simulation

No. 2010-06 Hartwig Anzt, Werner Augustin, Martin Baumann, Hendryk Bockelmann,

Thomas Gengenbach, Tobias Hahn, Vincent Heuveline, Eva Ketelaer, Dimitar Lukarski,

Andrea Otzen, Sebastian Ritterbusch, Björn Rocker, Staffan Ronn̊as, Michael Schick,

Chandramowli Subramanian, Jan-Philipp Weiss, Florian Wilhelm: HiFlow3 – A Flexible

and Hardware-Aware Parallel Finite Element Package

No. 2010-05 Martin Baumann, Vincent Heuveline: Evaluation of Different Strategies for

Goal Oriented Adaptivity in CFD – Part I: The Stationary Case

No. 2010-04 Hartwig Anzt, Tobias Hahn, Vincent Heuveline, Björn Rocker: GPU Accelerated

Scientific Computing: Evaluation of the NVIDIA Fermi Architecture; Elementary

Kernels and Linear Solvers

No. 2010-03 Hartwig Anzt, Vincent Heuveline, Björn Rocker: Energy Efficiency of Mixed Precision

Iterative Refinement Methods using Hybrid Hardware Platforms: An Evaluation of

different Solver and Hardware Configurations

No. 2010-02 Hartwig Anzt, Vincent Heuveline, Björn Rocker: Mixed Precision Error Correction

Methods for Linear Systems: Convergence Analysis based on Krylov Subspace Methods

No. 2010-01 Hartwig Anzt, Vincent Heuveline, Björn Rocker: An Error Correction Solver for Linear

Systems: Evaluation of Mixed Precision Implementations

No. 2009-02 Rainer Buchty, Vincent Heuveline, Wolfgang Karl, Jan-Philipp Weiß: A Survey on

Hardware-aware and Heterogeneous Computing on Multicore Processors and

Accelerators

No. 2009-01 Vincent Heuveline, Björn Rocker, Staffan Ronnas: Numerical Simulation on the

SiCortex Supercomputer Platform: a Preliminary Evaluation

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.


