1,017 research outputs found

    Experimental application of Takagi-Sugeno observers and controllers in a nonlinear electromechanical system

    Full text link
    [EN] In this paper, a systematic methodology to design fuzzy Takagi-Sugeno observers and controllers will be used to estimate the angular positions and speeds, as well as to stabilise an experimental mechanical system with 3 degrees of freedom (fixed quadrotor). Takagi-Sugeno observers and controllers are compared to observers and controllers based on the linearized model, both designed with the same optimization criteria and design parameters. Experimental results confirm that Takagi-Sugeno models and observers behave similarly to linear ones around the linearization point, but have a better performance over a larger operating range, as intuitively expected.The work of Zs. Lendek was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-RU-TE-2011-3-0043, contract number 74/05.10.2011. Spanish authors are grateful to grants DPI2011-27845-C02-01 (A. Sala), DPI2011-27845-C02-02 (R. Sanchis), DPI2011-28507-C02-01 (P. Garcia) from Spanish Government, and PROMETEOII/2013/004 (A. Sala, P. Garcia) from Generalitat Valenciana.Lendek, Z.; Sala, A.; García Gil, PJ.; Sanchis Llopis, R. (2013). Experimental application of Takagi-Sugeno observers and controllers in a nonlinear electromechanical system. Control Engineering and Applied Informatics. 15(4):3-14. http://hdl.handle.net/10251/150453S31415

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Geometric Fuzzy Logic Systems

    Get PDF
    There has recently been a significant increase in academic interest in the field oftype-2 fuzzy sets and systems. Type-2 fuzzy systems offer the ability to model and reason with uncertain concepts. When faced with uncertainties type-2 fuzzy systems should, theoretically, give an increase in performance over type-l fuzzy systems. However, the computational complexity of generalised type-2 fuzzy systems is significantly higher than type-l systems. A direct consequence of this is that, prior to this thesis, generalised type-2 fuzzy logic has not yet been applied in a time critical domain, such as control. Control applications are the main application area of type-l fuzzy systems with the literature reporting many successes in this area. Clearly the computational complexity oftype-2 fuzzy logic is holding the field back. This restriction on the development oftype-2 fuzzy systems is tackled in this research. This thesis presents the novel approach ofdefining fuzzy sets as geometric objects - geometric fuzzy sets. The logical operations for geometric fuzzy sets are defined as geometric manipulations of these sets. This novel geometric approach is applied to type-I, type-2 interval and generalised type-2 fuzzy sets and systems. The major contribution of this research is the reduction in the computational complexity oftype-2 fuzzy logic that results from the application of the geometric approach. This reduction in computational complexity is so substantial that generalised type-2 fuzzy logic has, for the first time, been successfully applied to a control problem - mobile robot navigation. A detailed comparison between the performance of the generalised type-2 fuzzy controller and the performance of the type-l and type-2 interval controllers is given. The results indicate that the generalised type-2 fuzzy logic controller outperforms the other robot controllers. This outcome suggests that generalised type-2 fuzzy systems can offer an improved performance over type-l and type-2 interval systems

    Fuzzy Sets, Fuzzy Logic and Their Applications 2020

    Get PDF
    The present book contains the 24 total articles accepted and published in the Special Issue “Fuzzy Sets, Fuzzy Logic and Their Applications, 2020” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of fuzzy sets and systems of fuzzy logic and their extensions/generalizations. These topics include, among others, elements from fuzzy graphs; fuzzy numbers; fuzzy equations; fuzzy linear spaces; intuitionistic fuzzy sets; soft sets; type-2 fuzzy sets, bipolar fuzzy sets, plithogenic sets, fuzzy decision making, fuzzy governance, fuzzy models in mathematics of finance, a philosophical treatise on the connection of the scientific reasoning with fuzzy logic, etc. It is hoped that the book will be interesting and useful for those working in the area of fuzzy sets, fuzzy systems and fuzzy logic, as well as for those with the proper mathematical background and willing to become familiar with recent advances in fuzzy mathematics, which has become prevalent in almost all sectors of the human life and activity

    Novel control design and strategy for load frequency control in restructured power systems

    Get PDF
    In restructured electric power systems, a number of generation companies and independent power producers compete in the energy market to make a profit. Furthermore, a new marketplace for ancillary services is established, providing an additional profit opportunity for those power suppliers. These services are essential since they help support the transmission of power from energy sources to loads, and maintain reliable operation of the overall system. This dissertation addresses regulation , a major ancillary service also known as the load frequency control (LFC) problem, and presents novel control designs and strategies for the LFC in restructured power systems.;A power system is an interconnection of control areas, which are operated according to control performance standards established by the North American Electric Reliability Council (NERC). LFC is a necessary mechanism in each control area because it maintains a balance between power demand and power generation while assuring compliance with NERC standards.;This dissertation first develops three new control designs that yield effective and robust load frequency control actions. All controllers developed here require only local measurements. The first control design is based on decoupling each area thru modeling of the interconnection effects of other control areas. The second control design relies on the robust H infinity theory in terms of linear matrix inequalities (LMIs). The third control design is achieved by the collaboration between genetic algorithms (GAs) and LMIs. The first two control designs result in high-order dynamic controllers. The third design requires only a simple proportional-integral (PI) controller while yielding control performance as good as those resulting from the previous two designs. Consequently, the third control design is the most preferable due to its simplicity and suitability for industry practice. Furthermore, a stability analysis method based on perturbation theory of eigenvalues is developed to assess the stability of the entire power system being equipped by the proposed controllers.;Second, to comply with NERC standards, two LFC strategies are developed to direct LFC\u27s actions. One strategy employs fuzzy logic to mimic a skillful operator\u27s actions so that all decisions are made efficiently. The other strategy treats the compliance with NERC standards as constraints while minimizing the operational and maintenance costs associated with LFC actions. Three new indices are introduced to assess economic benefits from the strategy compared to the conventional methods. Simulation is performed to demonstrate performances of all proposed methods and strategies

    Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level

    Get PDF
    Wind turbine pitch misalignments provoke aerodynamic asymmetries which cause severe damage to the turbine. Hence, it is of interest to develop fault tolerant strategies to cope with pitch misalignments. Fault tolerant strategies require the information regarding the diagnosis and the estimation of the faults. However, most existing works focus only on open-loop misalignment diagnosis and do not provide robust fault estimates. In this work, we present a novel strategy to both estimate and diagnose pitch misalignments. The proposed strategy is developed at a wind farm level and it exploits altogether the information provided by the temporal and spatial relations of the turbines in the farm. Fault estimation is first addressed with a closed-loop switched observer. This observer is robust against disturbances and it adapts to the varying conditions along the wind turbine operation range. Fault diagnosis is then achieved via statistical-based decision mechanisms with adaptive thresholds. Both the observer and the decision mechanisms are designed to guarantee the desired performance. Introducing some restrictions over the number of simultaneous faulty turbines in the farm, the proposed approach is ameliorated via a bank of the aforementioned observers and decision mechanisms. Finally, the strategies are tested using a well-known wind farm benchmark

    Design and development of prognostic and health management system for fly-by-wire primary flight control

    Get PDF
    Electro-Hydraulic Servo Actuators (EHSA) is the principal technology used for primary flight control in new aircrafts and legacy platforms. The development of Prognostic and Health Management technologies and their application to EHSA systems is of great interest in both the aerospace industry and the air fleet operators. This Ph.D. thesis is the results of research activity focused on the development of a PHM system for servovalve of fly-by-wire primary flight EHSA. One of the key features of the research is the implementation of a PHM system without the addition of new sensors, taking advantage of sensing and information already available. This choice allows extending the PHM capability to the EHSAs of legacy platforms and not only to new aircrafts. The enabling technologies borrow from the area of Bayesian estimation theory and specifically particle filtering and the information acquired from EHSA during pre-flight check is processed by appropriate algorithms in order to obtain relevant features, detect the degradation and estimate the Remaining Useful Life (RUL). The results are evaluated through appropriate metrics in order to assess the performance and effectiveness of the implemented PHM system. The major objective of this contribution is to develop an innovative fault diagnosis and failure prognosis framework for critical aircraft components that integrates effectively mathematically rigorous and validated signal processing, feature extraction, diagnostic and prognostic algorithms with novel uncertainty representation and management tools in a platform that is computationally efficient and ready to be transitioned on-board an aircraft
    corecore