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Abstract 

There has recently been a significant increase in academic interest in the field of type-2 fuzzy sets 

and systems. Type-2 fuzzy systems offer the ability to model and reason with uncertain concepts. 

When faced with uncertainties type-2 fuzzy systems should, theoretically, give an increase in 

performance over type-l fuzzy systems. However, the computational complexity of generalised 

type-2 fuzzy systems is significantly higher than type-l systems. A direct consequence of this 

is that, prior to this thesis, generalised type-2 fuzzy logic has not yet been applied in a time 

critical domain, such as control. Control applications are the main application area of type-l 

fuzzy systems with the literature reporting many successes in this area. Clearly the computational 

complexity oftype-2 fuzzy logic is holding the field back. 

This restriction on the development oftype-2 fuzzy systems is tackled in this research. This thesis 

presents the novel approach of defining fuzzy sets as geometric objects - geometric fuzzy sets. The 

logical operations for geometric fuzzy sets are defined as geometric manipulations of these sets. 

This novel geometric approach is applied to type-I, type-2 interval and generalised type-2 fuzzy 

sets and systems. The major contribution of this research is the reduction in the computational 

complexity of type-2 fuzzy logic that results from the application of the geometric approach. 

This reduction in computational complexity is so substantial that generalised type-2 fuzzy logic 

has, for the first time, been successfully applied to a control problem - mobile robot navigation. A 

detailed comparison between the performance of the generalised type-2 fuzzy controller and the 

performance of the type-l and type-2 interval controllers is given. The results indicate that the 

generalised type-2 fuzzy logic controller outperforms the other robot controllers. This outcome 

suggests that generalised type-2 fuzzy systems can offer an improved performance over type-l and 

type-2 interval systems. 
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Chapter 1 

Introduction 

This thesis reports the results of research into type-2 fuzzy logic systems. In particular, it is 

concerned with the problem of the computational complexity of such systems. This problem has, 

to date, prevented the application of type-2 fuzzy systems to real applications. This research 

proposes a novel solution to this problem using geometric models. The new geometric approach 

to fuzzy logic, it is argued in this thesis, is a significant contribution to the field of fuzzy logic. 

This Chapter sets out the main issues that surround this research. The reasons why type-2 fuzzy 

methods can give better models than type-l fuzzy methods for certain concepts are discussed. 

Issues surrounding the use of discrete fuzzy sets in computer implementations of fuzzy systems 

are considered and the reasons why the computational complexity of type-2 fuzzy systems is such 

a substantial problem are identified. All of these points are revisited in the main body of the 

thesis. As the argument of this thesis unfolds, it becomes possible to enrich the points made in this 

Chapter with technical arguments and worked examples. The aims and objectives of this research 

are stated in the research hypothesis. The organisation of the remainder of the thesis is also given. 

1.1 Fuzzy Logic Systems 

Fuzzy logic systems have had significant successes over the past 40 years (Seising 2005). How­

ever, recently the ability of type-l fuzzy sets to model uncertain concepts has come under close 

scrutiny. This has led researchers to propose the use of richer fuzzy models, type-2 fuzzy sets. 

1.1.1 Type-l Fuzzy Logic Systems 

Real world decisions are taken based on vague knowledge that cannot be modelled by crisp sets 

(Klir and Folger 1998). The sharp boundaries of crisp sets limit the descriptive power of such a 

model. Consider the example of the crisp set long books. In this example let the set long books 
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be defined as a book containing over 799 pages. According to this crisp definition a 820 page is 

a long book, so is 1020 page book. This definition seems perfectly adequate. Experts agree that 

both of these books are long. The flaw in this method of knowledge representation is the fact that 

although both books are long, one book is longer than the other. This fact is not being captured by 

the set long books, as this cannot be modelled by a crisp set However, in many cases decisions are 

made based on such facts. 

"A sharp, unambiguous distinction exists between the members and nonmembers 

of the class or category represented by the crisp set. Many of the collections and 

categories we commonly employ, however (for instance, in natural language), such as 

the classes of tall people, expensive cars, highly contagious diseases, numbers much 

greater than 1, or sunny days, do not exhibit this characteristic." 

From Klir and Folger (1988) page 3 

Type-l fuzzy sets do not dichotomise assertions into binary, true or false categories. Fuzzy sets 

have graduated boundaries, memberships of such sets can be partial. According to the crisp set, 

a book containing 799 pages is not a long book, although one containing 800 pages is a long 

book. The addition of a single page has changed the classification of a book from not a long 

book to being a long book. The addition of a single page has made a significant change to the 

classification of the length of the book. Fuzzy classifications and assertions are not simply true 

or false but are true to a degree. Reworking the previous example, let the set of long books now 

be a type-l fuzzy set. Type-l fuzzy sets have graduated boundaries. One consequence of this is 

that the law of the excluded middle, A U...,A = X, is broken. This means that a 799 page and a 

800 page book can both be members and non-members of the class long books. This is because 

fuzzy sets measure membership as a matter of degree. This allows type-l fuzzy sets to be more 

expressive than crisp sets, that is fuzzy sets are capable of modelling facts that crisp sets. Let the 

820 page book be a long book to a degree of 0.8. Let the 1020 page book be a long book to a 

degree of 0.95. Both books are long books, however, the 1020 page book is longer than the 820 

page book. This fact that could not be modelled by a crisp set, is now being captured by a fuzzy 

set. The concept of a long book is a vague concept that cannot be modelled by the crisp set long 

books. This example demonstrates how a vague concept can be modelled by the fuzzy set long 

books. Fuzzy logic systems provide the means for reasoning and making decisions based on the 

crisp facts available and the knowledge encoded in fuzzy sets and rules. An improvement in the 

decision making process results from fuzzy sets modelling the vague nature of concepts. 

"The key idea of fuzziness comes from the multivalued logic of the 1920s: Every­

thing is a matter of degree. A statement of fact like "The sky is blue" or "The angle 
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is small" or "e = mc2" does not have a binary truth value. It has a vague or "fuzzy" 

truth value between 0 and I." 

From Kosko (1995) page 4 

Type-l fuzzy logic systems extend the crisp logical operations 'and', 'or' and 'implies' in order to 

process fuzzy production rules. The rules in a fuzzy system only fire to a degree. This propagates 

the vagueness of the concepts through the inferencing process. Type-l fuzzy logic systems, incor­

porating vague concepts, have been successful in a variety of contexts. However, the applications 

reported in the literature are predominantly in the area of control systems. 

Type-l fuzzy sets, although an improvement over the crisp model, do not capture every aspect of 

the decision making process (John I 999a). Concepts in the decision making process are not only 

vague, they are also uncertain. Throughout this thesis a distinction is made between the concepts 

of vagueness and uncertainty. 

• A concept is considered vague if that concept cannot be adequately defined by crisp bound­

aries, and 

• a concept is considered to be uncertain if the boundaries of that concept are themselves 

vague i.e., the knowledge about a concept is itself vague. 

The fact that a book of 820 pages is 0.8 a long book requires a completely accurate model of the 

concept of a long book. There are a variety of reasons why such a model is not realistic. A group 

of experts may disagree about what constitutes a long book. The definition of a concept may vary 

under certain environmental conditions. The opinion of an expert may change over time. To model 

uncertainty, the vagueness of knowledge, in fuzzy sets requires the fuzzy set model to be extended. 

1.1.2 Type-2 Fuzzy Logic Systems 

The model of the decision making process needs to take account of the vagueness of the concepts 

being reasoned with and the uncertainty associated with these concepts. Type-l fuzzy sets require 

that concepts are defined using crisp (not vague) measurements. The boundaries of the concepts 

are vague, however, the membership of a particular element is crisp. In the earlier example the 

820 page book was defined to be 0.8 a long book. This means that a 820 page book has a crisp 

membership grade of 0.8 in the type-l fuzzy set long book. This crisp measure of set membership 

does not encapsulate any notion of uncertainty. The membership functions of type-l fuzzy sets 

are based on the numerical and linguistic knowledge of the system. Such information may suffer 
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from uncertainties. To model uncertainty the membership function of a fuzzy set needs to express 

the vagueness of the conceptual knowledge that the set is modelling. 

"We conclude that increased fuzziness in a description means increased ability to 

handle inexact information in a logically correct manner" 

Risdal (1981) page 385 

Type-2 fuzzy sets capture this increased fuzziness. Like type-1 fuzzy sets, the boundaries of type-

2 fuzzy sets are graduated. This means that type-2 fuzzy sets can model vague concepts. The 

membership grade of a particular element in a type-2 fuzzy set is measured as a vague number, 

expressed as a type-l fuzzy set. Thus, the boundaries of type-2 fuzzy set are not only graduated 

but are also vague. Type-2 fuzzy sets not only model the vagueness of a concept but the vagueness 

of the knowledge about the concept - the uncertainty. Returning for a final time to the example 

of long books. Using type-2 fuzzy sets the 820 page book would be about 0.8 a long book and 

1020 page book about 0.95 a long book. The set membership itself is now vague and is therefore 

modelled by a type-1 fuzzy set. 

1.1.3 Generalised and Interval Type-2 Fuzzy Sets 

There are two distinct classes of type-2 fuzzy set that can be easily confused with one another. 

Generalised type-2 fuzzy sets (John 1998a, 1998b, 1999a, 1999b, Karnik and Mendel 1998a, 

1998b) are type-2 fuzzy sets where the membership grade is given by a type-l fuzzy set. This is the 

class of type-2 fuzzy sets that this thesis is mainly concerned with. Whenever this research refers 

to type-2 fuzzy sets, it is generalised type-2 fuzzy sets that are being referred to. Early literature 

in the field also used this convention. Type-2 interval fuzzy sets (Tiirk~en 1993a, 1993b, Liang 

and Mendel 2000b) are type-2 fuzzy sets where the membership grade is given by a crisp interval 

set. Recently, the type-2 literature has often used the term type-2 fuzzy sets when discussing type-

2 interval fuzzy sets. This maybe due to the recent literature predominantly discussing type-2 

interval fuzzy methods. To avoid confusion, in this thesis the term 'interval' will always be used 

when referring to type-2 interval fuzzy sets. 

1.1.4 Summary 

Type-2 fuzzy sets offer a richer, fuller, more expressive method for describing a concept. However, 

type-2 fuzzy sets are also far more complex than type-l fuzzy sets. Correspondingly, any decision 

making process that uses type-2 fuzzy sets is more complex. It is the view of the author that 
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the level of computational complexity of type-2 fuzzy logic systems has to date held back the 

development of such systems. This is the central point that this thesis seeks to address. 

1.2 Computer Implementations of Fuzzy Logic Systems 

To make best use of fuzzy systems they must be implemented on computer hardware or software, 

allowing fast, autonomous execution. However, there can be a fundamental disparity between a 

theoretical fuzzy set and the computer model of that fuzzy set. Fuzzy sets, of all types, will of­

ten be defined over a continuous domain such as height, distance, voltage, etc. Each point in the 

domain of a fuzzy set has a corresponding membership grade in that fuzzy set. For continuous 

fuzzy sets there are an infinite number of points in the domain, and therefore, an infinite number 

of membership grades. Infinite concepts cannot be directly implemented in computer memory and 

processing architectures, requiring other solutions to be found. To overcome this problem, it is 

standard practice to discretise continuous fuzzy sets when implementing a computer model. Dis­

cretisation takes a given set of points from the domain of the fuzzy set and maps these points to the 

respective membership grades in the fuzzy set. This gives a finite fuzzy set model which can be 

easily modelled in computer software and hardware. This ease of implementation comes at a cost. 

Whenever a continuous function is discretised, information about that function is lost. This hap­

pens to the membership functions of continuous fuzzy sets whenever such sets are implemented in 

a computer. Consider the example fuzzy set Middle Aged depicted in Figure 1.1 (a). Discretising 

the domain of this set at ten equidistant points gives the fuzzy set Middle Aged depicted in Figure 

1.1 (b). The information lost through this discretisation process is depicted in Figure 1.1 (c). 

(a) 
11 
1 

O+-L-----------~ o age 

(b) 

~ 
(c) 

~ 

O+---~UUUUUUUUUL_ 

age 0 age 

Fig. 1.1. (a) The Continuous Fuzzy Set Middle Aged. (b) The Discrete Fuzzy Set Middle Aged. (c) The Information 
About The Fuzzy Set Middle Aged Which is Lost Through Discretisation. 

Under certain circumstances it is possible to retrieve some of this lost information. For example, 

it is possible to linearly interpolate between consecutive points in the domain of a set. In some 

cases this will give the correct membership grade, in some cases, particularly near apex points, it 

will not. As the inferencing process continues, the discrete sets undergo more processing, linear 

interpolation will become less and less accurate. The geometric approach proposed in this thesis 
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allows fuzzy sets to be modelled over continuous domains. By modelling fuzzy sets over continu­

ous domains it may be possible to reduce and, in certain cases, eliminate this loss of information. 

1.3 The Computational Problems of Type-2 Fuzzy Logic 

Type-l fuzzy systems are all based on a 2-dimensional set model, mapping the elements of the 

set to values between zero and one. Type-2 fuzzy sets depart from this 2-dimensional model. The 

type-2 fuzzy set model is a 3-dimensional set model. Type-2 fuzzy sets map domain elements 

to a function that maps values between zero and one to a second set of values between zero and 

one. This third dimension gives type-2 fuzzy sets the expressive power needed to model uncer­

tainty. However, this extra dimension has a serious impact on the computational complexity of 

such systems. Typically, the amount of computation it takes for a type-2 fuzzy logic system to 

arrive at a decision is significantly greater than that of crisp or type-l fuzzy logic systems. No 

general comparison has yet been made between the complexity of these approaches, due to the 

number of variables that effect system complexity. In this thesis, however, theoretical and em­

pirical comparisons are used to illustrate the relative complexity of various fuzzy approaches in 

specific examples. 

To date, no applications of generalised type-2 fuzzy logic in a time critical domain such as control 

or signal processing have been reported. One of the main applications areas of type-l fuzzy logic is 

control systems. The author's view is that the fact that no applications of generalised type-2 fuzzy 

logic have been reported in control suggests that the computational problems of such systems are 

holding back practical applications of the theory. 

1.3.1 Logical Operations 

The extra dimension oftype-2 fuzzy sets increases the amount of computation required to perform 

a logical operation. Logical operations on crisp sets are trivial and can be represented with truth 

tables. Type-l fuzzy sets use the t-norm and t-conorm set of functions to perform logical oper­

ations. T-norms and t-conorms are functions that conform to certain properties as described by 

Mizumoto and Tanaka (1981). Dubois and Prade (1981) and Karnik and Mendel (1998). Accord­

ing to Mendel (2001 a), the most commonly used t-norms are the minimum and algebraic product 

and the most commonly used t-conorm is maximum. Logical operations on type-l fuzzy sets are 

performed by finding the minimum and maximum (and other t-norms and t-conorms) of two val­

ues between zero and one. The logical operations on type-2 fuzzy sets are far more complex. The 

membership grade of a type-2 fuzzy set is a function. To logically combine two such functions ev-
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ery mapping in one function must be logically combined with every mapping in the other function. 

This results in large number of functional mappings, many of which are redundant. These redun­

dant mappings must be identified and removed. These operations are significantly more complex 

than computing a binary truth or performing a single t-norm or t-conorm operations. 

1.3.2 Output Processing 

Fuzzy logic systems are often required to express a decision as a crisp result. However, the de­

cision arrived at by the fuzzy system is expressed as a fuzzy set. To convert a fuzzy set to a 

crisp decision requires the process known as defuzzification. Type-l defuzzifiers are not trivial, 

however, the amount of computation required does not prohibit real-time execution. As with the 

logical operations, the addition of a third dimension results in increased complexity in the output 

processing of a type-2 fuzzy system. Type-2 defuzzifiers require a far large amount of computa­

tion that type-l defuzzifiers to give a crisp decision. Acquiring a crisp result from a type-2 fuzzy 

set is a two stage process. First the set must be type-reduced. Type-reduction (Kamik and Mendel 

1998c, 2001a) takes a type-2 fuzzy set and produces a type-l fuzzy set that represents the cen­

troid of that set. This type-reduced fuzzy set can then be defuzzified, resulting in a crisp decision. 

Type-reduction finds every possible type-l fuzzy set that could lie inside the vague boundaries of 

the type-2 fuzzy set. This is usually a very large number of sets. Each of these type-l fuzzy sets 

is then defuzzified. This defuzzification of a large number of type-l fuzzy sets is what causes the 

explosion in computational cost. Each of these defuzzified values is then mapped to a membership 

grade in the type-reduced set. Redundant mappings must then be removed before the type-reduced 

set can be defuzzified. Type-reduction is clearly a complex operation. 

1.3.3 Summary 

Type-2 fuzzy sets offer the ability to model and reason with uncertain concepts. Many real-world 

problems contain inherent uncertainties and may benefit from the type-2 fuzzy approach. How­

ever, type-2 fuzzy systems have a level of computational complexity that is significantly higher 

than type-l and type-2 interval fuzzy systems. The aim of this thesis is to reduce the computa­

tional complexity of the 3-dimensional fuzzy logic operations by using techniques developed in 

computational geometry. If the computational problems of type-2 fuzzy logic can be overcome 

then this would be a significant result for the field of fuzzy logic. These points are set out formally 

in the research hypothesis. 
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1.4 Research Hypothesis 

The research hypothesis addressed in this thesis can be stated as: 

"Type-2 fuzzy logic systems offer a great deal in terms of modelling uncertain concepts and 

inferencing under uncertain conditions. However, the computational complexity oftype-2 fuzzy 

logic is arresting the research and development of such systems. Geometric methods can resolve 

these computational problems making it possible for type-2 fuzzy logic to be applied in a time 

critical domain such as control." 

As will be shown (in Chapter 2) there has recently been a significant growth in the number of 

papers on the subject of type-2 fuzzy logic being published. A majority of these publications, 

indeed all the publications on time critical applications, are only concerned with type-2 interval 

fuzzy logic. Type-2 interval fuzzy logic is computational simpler than type-2 but has a reduced 

capacity for modelling uncertainty. There is potential for generalised type-2 fuzzy systems to 

outperform type-2 interval systems under conditions where uncertainties are high. This potential 

can only be achieved when the computational problems oftype-2 fuzzy logic have been resolved. 

To address the issue of complexity more efficient representations and operators are needed. Com­

putational geometry offers an ideal solution with well defined methods for manipulating 2 and 3 

dimensional objects efficiently. The main issue addressed in this thesis is how to model fuzzy sets 

as geometric objects and how to manipulate such objects to define logical operations. The research 

reported here (in Chapters 3 and 4) provides a complete, novel geometric model of type-I, type-2 

interval and generalised type-2 fuzzy logic. 

As the argument in this thesis develops it becomes clear (in Chapter 5) that the computational 

complexity of type-2 fuzzy logic can be reduced so significantly that control applications are 

possible. Furthermore it is demonstrated that type-2 fuzzy logic can give an improved performance 

in such an application. 

1.5 Structure of the Thesis 

The remainder of this thesis is structured in the following way: 

• Chapter 2 describes the literature on type-2 fuzzy logic. A comprehensive set of fundamen­

tal definitions, representations and operators is compiled. These definitions and operators 

are critically reviewed. Previous work on improving the efficiency of type-2 fuzzy systems 

is discussed. A brief description of type-2 interval fuzzy logic is given. The relative merits 
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of generalised type-2 and type-2 interval systems are discussed. An overview of the histor­

ical development of type-2 fuzzy logic is given, demonstrating the necessity and timeliness 

of this work. 

• Chapter 3 presents the novel geometric approach to type-l fuzzy logic systems. The limited 

existing work that relates to the geometric approach is discussed and critically reviewed. 

The geometric methods that are required to define geometric fuzzy logic are given and 

are explored with examples. Geometric type-l fuzzy sets and systems are defined using 

2-dimensional geometric methods. Some issues with the use of discrete fuzzy sets are dis­

cussed . 

• Chapter 4 presents novel geometric approach to type-2 interval and type-2 fuzzy logic sys­

tems. These methods build upon those presented in Chapter 3. A geometric alternative 

to type-reduction is given for both types of geometric type-2 fuzzy set. The notion of hy­

bridised type-2 fuzzy systems, part discrete and part geometric, is discussed. New methods 

for converting between discrete and geometric type-2 fuzzy sets and vice-versa are given. 

This Chapter presents substantial novel theoretical work in the field of type-2 fuzzy logic 

that forms the core of this thesis. 

• Chapter 5 gives the materials, methods and results from a set of experiments designed to 

compare the performance of discrete and geometric type-I, type-2 interval and type-2 fuzzy 

logic controllers for a mobile robot. The task to be performed by the robot and the design of 

the controllers is discussed. A preliminary study is reported which gives the computational 

performance, in terms of execution speed, of the various discrete and geometric type-2 fuzzy 

system components. These results are used to design the configuration of two hybrid type-2 

fuzzy logic controllers. The design of the experiments is given, with particular attention 

being paid to the methods of statistical analysis that will be applied to the results. The 

results from the experiments are given and it is concluded that a hybrid type-2 fuzzy logic 

controller gave a strong performance, at least equal to the other technologies. 

• Chapter 6 provides the conclusion to the thesis, stating what has been achieved and the 

importance of these achievements. Opportunities for further research on the theory and 

application of geometric fuzzy logic are discussed. 
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Chapter 2 

Type-2 Fuzzy Logic Systems 

The previous Chapter defined the scope and the goals of this thesis. This Chapter presents the 

field type-2 fuzzy sets and systems. The work presented in this Chapter is needed for the novel 

geometric approach to fuzzy systems, presented in the following Chapter, to be understood. 

Type-2 fuzzy sets and logic provide a mathematically rigorous methodology for reasoning with 

uncertain terms. Type-2 fuzzy logic is an extension of type-l fuzzy logic, itself an extension 

of crisp logic. Klir and Folger (1988) noted that crisp or classical sets dichotomize elements 

into members and non-members, leaving no ambiguity in the knowledge captured by the set. 

In crisp logic all logical propositions must be either true or false, black or white, zero or one. 

Everyday human reasoning, using natural language, does not appear to employ such clear cut 

categories (Zadeh 1996). Consider how humans think and reason about age. It is often the case 

that a given persons age is known as a crisp fact. Decisions may be taken based on that crisp 

knowledge. However the decision making process may not be crisp in nature and may take into 

account additional vague or uncertain knowledge. In some situations the reasoning and outcomes 

must be crisp, for example when a person is driving a car they must be legally old enough to drive 

that car. In this example a crisp set legally old enough to drive is sufficient. In other situations it 

may be advantageous to allow some ambiguity into the reasoning process. For example, when an 

insurance company calculates the motor insurance premium for a driver, the age of the driver will 

be very important in calculating the risk associated with that driver. If the driver is young the risk 

of that driver making a claim will be higher. Once again this piece of inferencing uses the crisp 

knowledge of driver age, however the set young may be better defined as a fuzzy rather than a 

crisp set. To illustrate this point let the crisp set young be the set depicted in Figure 2.1 (a). Figure 

2.1 (a) depicts the function, called the membership function, that describes the crisp set young. Let 

the fuzzy set young, also characterised by a membership function, be the set depicted in Figure 

2.1 (b). Consider how two people, one aged 25 years old and one aged 30 years old, could be 

reasoned about in a decision making system. A person who is 30 years old is young and their car 

insurance premium should reflect this. A person who is 25 years old is also young and their car 
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Fig. 2.1. (a) The Crisp Set Young. (b) The Type-I Fuzzy Set Young. (c) The Type-2 Fuzzy Set YOllng. 

insurance premium should reflect this. However, the 25 year old is younger than the 30 year old 

and this should be reflected in both their premiums. This is the vague notion that Klir and Folger 

discussed, illustrated by a practical example. The crisp set young is not able to capture the fact 

that two people may both be young, but one person is younger than the other one. By allowing 

some ambiguity and/or some vagueness into the set model, such assertions are not only possible 

but sensible. Type-l fuzzy logic allows these vague notions to be captured, modelled and reasoned 

with mathematically. 

Type-l fuzzy logic provides a robust paradigm for computing with vague concepts and partial 

truths and partial set memberships. However, type-l fuzzy methods cannot incorporate uncertainty 

into the set model. To explore this point further return to the example of motor car insurance risk 

and age. A persons age is an absolute fact, a crisp number that has no uncertainty associated with 

it. This does not mean that there is no uncertainty in this example. If this person is 27 years old they 

may be young. A group of experts on motor insurance risk could no doubt agree on this fact. It may 

be more difficult however to get a group of experts to agree to what degree this person is young. 

If the experts do not agree on a single crisp number for the degree of youngness, there is some 

vagueness associated with the experts knowledge, then young can be regarded as an uncertain term. 

The modelling of this inter-expert variation is further explored by Mendel (Karnik, Mendel & 

Liang 1999, Mendel 1999). Mendel produced a survey with sixteen labels including 'a bit', 'some' 

and 'a moderate amount'. Respondents (in this case US engineering undergraduate students) were 

asked to assign a range to each of the labels. With each label a boundary of uncertainty was 

identi fled from the standard deviations of the responses. This boundary represents the linguistic 

uncertainty associated with the label. The range of three labels 'a bit', 'some' and 'a moderate 

amount' are depicted in Figure 2.2. The continuous lines depict the meaning of the label and 

dashed lines depict the linguistic uncertainty associated with that label. Mendel draws an analogy 

between this measure of linguistic uncertainty and the standard deviation of a measured random 

variable. 

"When we work in the province of probability, we find it useful and important 
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Fig. 2.2 . The Linguistic Labels ' a bit', 'some' and ' a moderate amount' . Adapted from Mendel (2001 a). 

to distinguish between the mean and the standard deviation, so why should less be 

expected of us when we work with linguistic uncertainties?" 

From Mendel 1999 

Place this in the context of the motor vehicle insurance example; why should the opinion of our 

experts be disregarded by only taking a combined measure of their opinions? Mendel believes 

it is better to use a fuzzy set model that reflects the range of opinions expressed by the experts. 

The fuzzy model needs to capture linguistic uncertainty and Mendel states that to do so requires 

type-2 fuzzy sets and logic. The author disagrees with this point. Type-2 fuzzy sets can model 

some aspects of linguistic uncertainty, but by no means offer a complete computational model of 

a word. 

Type-2 fuzzy sets were proposed by Zadeh (1975a,1975b,1975c) as a method for defining the 

membership grades of fuzzy sets such as young with linguistic terms such as low, medium and 

high. Zadeh suggests that measuring fuzzy membership grades in this way may allow experts to 

better understand the terms used. However, Mendel's work on survey based fuzzy sets suggests 

that experts can easily transfer their knowledge to arbitrary scales when given a specific context 

and set of terms. Whether a particular membership grade is a label with a context specific term 

such a high or a scale based term such as about 0.9 the type-2 fuzzy set model still captures the 

associated linguistic uncertainty. Each membership grade, regardless of the label, gives a pos­

sibilistic distribution of the membership grade of a particular point in a domain of a set. This 

fuzzy measure that captures the vagueness of the knowledge modelled by the fuzzy set, the uncer­

tainty surrounding the knowledge. This is the mechanism by which type-2 fuzzy sets capture the 

uncertain nature of a concept. 

Type-2 fuzzy systems overcome the problem of inter-expert vagueness, where a group of experts 

may not agree on a specific point by modelling set membership with fuzzy numbers. Another form 

of uncertainty, intra-expert variation, when a single expert may disagree with their own previous 

conclusion cannot be obviously modelled by type-2 fuzzy sets. To model this variation in decision 
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making over time Garibaldi et at (Ozen & Garibaldi 2004, Garibaldi, Musikasuwan & Ozen 2005) 

proposed non-stationary fuzzy systems. Such systems are effectively type-l fuzzy systems where 

the membership functions are subject to variation over time. The exact nature of this variation 

such as random distributions, normal distributions or variation within an interval and the level of 

this variation are dependent on the specific system. The result is a fuzzy system that behaves in 

a correct manner with the fine detail of the decision making process varying over time. It may 

be that type-2 fuzzy systems model the range of decisions that a non-stationary system is capable 

of producing, however a type-2 fuzzy system will always be deterministic and therefore cannot 

model the non-deterministic nature of intra-expert variation. 

Both inter-expert and intra-expert uncertainty can be viewed as semantic uncertainty, uncertainty 

about the meanings of the fuzzy sets. This is not the only source of uncertainty that real world 

systems have to deal with. Mendel (200 1 b) identified four sources of uncertainty: 

• Uncertainty about the meanings of words that are used in the rules; 

• Uncertainty about the consequent that is used in a rule; 

• Uncertainty about the measurements that activate the FLS, and 

• Uncertainty about the data that is used to tune the parameters of a FLS. 

The first two of these points are concerned with semantic uncertainty. The final two are concerned 

with noise from sensors, whether during system execution or when data was collected for training 

the system. Noise from various sources creates uncertainty about the inputs going into such sys­

tems. Take the example of a washing machine (Takagi 1994, Kosko 1997) where a fuzzy system 

is used to decide which wash programme should be used. One of the factors considered when 

making such a decision is the soiling level of the clothes. Measuring the degree of soiling of an 

entire load of washing to a high level of precision is a challenging task. One method is to measure 

the turbidity of the water used during the initial rinse. There are many sources of uncertainty in­

volved in taking such a measurement, such as particulates responding differently to the sensor or 

larger particulates obscuring smaller ones. In essence these are engineering problems. However, 

when such problems cannot be overcome or the cost of overcoming them is disproportionate to the 

advantage gained, a system that can cope with such noise based uncertainties will be very useful. 
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"First, computing with words· is a necessity when the available information is not 

precise enough to justify the use of numbers. And second, computing with words is 

advantageous when there is a tolerance for imprecision, uncertainty and partial truth 

that can be exploited to achieve tractability, robustness, low cost solution and better 

rapport with reality." 

From Zadeh (1997) page l03 

Both type-l and type-2 fuzzy systems help overcome sensory noise as they both allow small 

changes in measurements to only have a small change on the logical value of an input. This leads 

to smoother control surfaces than crisp systems based on a comparable number of sets. From 

a theoretical point of view type-2 fuzzy systems should be better than type-l systems at coping 

with noisy operating conditions. This statement is based on the fact that type-2 fuzzy sets use 

type-l fuzzy sets to model membership values. A control surface represents an approximation of 

a non-linear function (Kosko 1997). A type-2 fuzzy set will, in effect increase the resolution of 

this function approximation, giving a high resolution, a smoother, control surface. This assertion 

is tested empirically in Chapter 5 of this thesis. 

This Section has demonstrated that real world problems often have to be solved in the face of 

large uncertainties. Type-2 fuzzy logic models and takes decisions with these uncertain terms. 

Type-l fuzzy logic only models the vague nature of a concept and not the uncertainty associated 

with it. The following Section of this Chapter, Section 2.1, discusses type-2 fuzzy sets. Section 

2.2 describes the logical methods used to make decisions based on type-2 fuzzy sets. Section 4.1 

gives some novel work that increases the usefulness of type-2 fuzzy logic. Section 3.4 discusses 

the additional problems of discretising type-2 fuzzy sets that are based on a continuous domain. 

Section 2.3 describes the widely used subset of type-2 fuzzy logic, type-2 interval fuzzy logic. 

Section 2.4 describes how the field of type-2 fuzzy logic has developed over the past 30 years. 

Finally, Section 2.5 discusses the outcomes of this Chapter and how the work presented here 

relates to the rest of this thesis. 

2.1 Type-2 Fuzzy Sets 

The previous Section discussed the motivation and rationale behind the development of type-2 

fuzzy methods. This Section provides definitions and representations of type-2 fuzzy sets. These 

will be built upon later in this Chapter when type-2 fuzzy logic is discussed. 

• Zadeh claims that fuzzy logic is part of a wider notion of computing with words, see Zadeh 1996. 
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2.1.1 Type-n Fuzzy Sets 

This thesis is primarily concerned with the development of fast and efficient methods for defining 

type-2 fuzzy logic operations by taking a geometric approach. The discussion oftype-2 fuzzy sys­

tems would not be complete without a brief digression into type-n fuzzy systems. The introduction 

to this Chapter discussed the use of crisp sets in logic systems. In some applications where there 

is no uncertainty and no vagueness associated with the information contained in a logic system it 

is right and proper that a crisp system be used. Type-l fuzzy systems are an extension of crisp 

systems, which are sometimes called type-O fuzzy systems. When there is some vagueness about 

the concepts being modelled in a logic system type-l fuzzy methods should then be employed. 

When there is some vagueness surrounding the knowledge of the concepts being modelled, the 

concepts are uncertain, then type-2 fuzzy logic provides a methodology for modelling this uncer­

tainty. These three fuzzy technologies, type-O, type-l and type-2, all have well defined methods 

and operations. There is no theoretical reason why fuzzy technologies should stop at type-2. To 

this end type-n fuzzy sets (Zadeh 1975a) are defined below: 

Definition 2.1 A fuzzy subset of type-O over a universe X is an element oj X. A fuzzy subset oj 

type-n over universe X is characterised by a membership function whose domain X is mapped to 

aJuzzy subset of type n - lover the real interval [0,1]. 

Adapted from Zadeh (197 5a) 

This recursive definition gives the possibility of n dimensional fuzzy sets. To date the highest 

order of fuzzy set to be explored in any detail is the type-2 fuzzy set. As dimensions are added to 

the fuzzy set nature of the fuzzy set model is changed. 

• Type-O fuzzy sets model concepts defined with crisp numerical boundaries; 

• type-l fuzzy sets model concepts defined with vague boundaries; 

• type-2 fuzzy sets model concepts defined with uncertain boundaries, and 

• type-3 fuzzy sets take this one stage further. Each element belongs to a degree given by a 

type-2 fuzzy number. There is uncertainty surrounding the measurement ofthe membership 

grade of each element. This can be viewed a piece of knowledge where the measurement of 

the vagueness of that knowledge is itself vague. 

This description suggests that type-3 fuzzy systems may well be useful in some applications where 

the subject knowledge is highly uncertain. However, no operations currently exist for type-3 

systems and the performance problems encountered with type-2 systems would be significantly 
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more challenging. For this reason this research focuses on exploiting the useful type-2 methods 

but does not dismiss the potential of type-3 or even higher type methods in certain applications. 

This Section has discussed the context of type-n fuzzy sets that type-2 fuzzy sets and logic are 

defined in. This brief insight shows type-2 methods as a developmental step rather than an endpoint 

in fuzzy system development. The following Section discusses the widely accepted definition of 

type-2 fuzzy sets put forward by Mendel and John (2002). 

2.1.2 The Mendel and John Definition 

Zadeh proposed the idea ofa type-2 fuzzy set in a trilogy of papers (1975a, 1975b, 1975c). Basic 

operations were defined at this point but have since been expanded by Mizumoto and Tanaka (1976 

and 1982), Dubois and Prade (1980 and 1982), Karnik et af (1999, 2001a, 2001 b) and Mendel and 

John (2002). The definition of a type-2 fuzzy set given by Mendel and John is now widely used 

across the literature. 

Definition 2.2 A type-2 fuzzy set, denoted A, is characterised by a type-2 membership function 

P7t(x, u), where x E X and u E Jx ~ [0,1]' i.e., 

A = {((x,u),,u;:;(x, u)) I Vx EX, Vu E Jx ~ [0, In (2.1) 

in which 0 ~ ,u;:;(x,u) ~ 1, X is the domain of the fuzzy set and Jx is the domain o/the secondary 

membership function at x. A can also be expressed as 

(2.2) 

where J J denotes union over a/l admissible x and u. For discrete universes of discourse J is 
replaced by L. 

From Mendel and John (2002) 

A type-l fuzzy set is a co Hection of ordered pairs of domain elements mapped to their membership 

grades. The Mendel and John definition extends the type-l definition, modelling a type-2 fuzzy set 

as a collection of nested ordered pairs. The primary ordered pair is the same as the type-! ordered 

pair, domain elements mapped to their respective primary membership grades. The secondary 

ordered pair maps this primary ordered pair to a secondary membership grade which measures the 

possibility that the ordered pair belongs to the type-2 fuzzy set. According to the Mendel and John 

definition, the membership function of type-2 fuzzy set maps such primary ordered pairs to their 
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respective membership grades. A Venn diagram depicting the relationship between the terms in 

the fuzzy set is given in Figure 2.3. 

Type-2 Fuzzy Sets 

Fig. 2.3. A Venn Diagram ofthe Relationship between the Terms in a Type-2 Fuzzy Set According to the Mendel and 
John (2002) Definition. 

This definition does not view the membership grade oftype-2 fuzzy set as a fuzzy number between 

zero and one. For that, the vertical slice representation, also given by Mendel and John, is used. 

2.1.3 The Vertical Slice Definition 

The vertical slice definition views the membership grade at each point in a type-2 fuzzy set as a 

type-l fuzzy number bounded by the interval [0,1]. 

Definition 2.3 At each value o/x, such that x E X, in the type-2/uzzy set A. i.e., J.lA(x) maps to a 

secondary membership function f(x), which map values in [0, I) to values in (0, I]. Let the domain 

o/the secondary membership function denoted by Jx then; 

A = r [ r fx(U)/u1 Ix 
}XEX JUEJx 

(2.3) 

Where Jx ~ [0,1], x EX, u E [0,1] andfx(u) E [0,1]. 

Adapted from Mendel And John (2002) 

A Venn diagram depicting the vertical slice representation of a type-2 fuzzy set A is given in Fig­

ure 2.4. The vertical slice definition of a type-2 fuzzy set requires some additional terminology 

to be defined. A secondary membership function of a type-2 fuzzy set:4, the membership grade 

at a given point x, is a type-l fuzzy number bounded by the interval (0,1] given by J.lA(x). The 

domain of a secondary membership function is called the primary membership, Jx being the pri­

mary membership of ,uA (x) , where Jx ~ (0,1]. The amplitude at a specific point u in a secondary 
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Type-2 Fuzzy Sets 

Fig. 2.4. A Venn Diagram of the Relationship between the Terms in a Type-2 Fuzzy Set According to the Vertical Slice 
Definition. 

membership grade is called the secondary grade which is given by ,uA(x,u). This terminology will 

be used throughout the rest of this thesis. 

The vertical slice definition results in the membership function of a type-2 fuzzy set having two 

interpretations, one giving secondary membership functions and one giving secondary grades. The 

membership grade of a type-2 fuzzy set A at a point x is given below. 

,uA(X) = r fx(u)ju 
iUEJxr;{o,1] 

(2.4) 

where x E X andfx is the secondary membership function atx. Throughout this thesis this definition 

will be called upon as it is very useful when defining logical operations for type-2 fuzzy sets. The 

membership grade, the secondary grade, of a type-2 fuzzy set A at a point u at the domain point x 

is given below. 

J.lA(X, u) = fx(u} ; fx = IJ;'(x) (2.5) 

In Coupland and John (2005b), the author showed that these two interpretations can be combined 

into a single definition by allowing the membership function of a type-2 fuzzy set to be a curried 

function. A curried function is a function where the result of that function is itself a function. In 

the case of a membership function of a type-2 fuzzy set, currying produces a membership function 

that takes the domain element as an argument and returns the secondary membership function 

associated with that point. This is no different from definition 2.2 except that this function may be 

partially applied. 

2.1.4 The Representation Theorem 

The two definitions of a type-2 fuzzy set provided here offer alternative models of the equivalent 

membership function of a type-2 fuzzy set. The representation theorem (Mendel & John 2002) 

uses a completely different underlying model of what constitutes a type-2 fuzzy set. The repre-
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sentation theorem states that a type-2 fuzzy set can be decomposed into a collection of type-2 

embedded sets. The benefit of using the representation theorem is that operations can be derived 

directly from type-l fuzzy methods without the use of the extension principle (see Section 2.2.1). 

The downside is that for any useful type-2 fuzzy set the number of embedded sets needed to 

represent that set is very large. 

Definition 2.4 For discrete universes of discourse X and U, an embedded type-2 set Ae has N 

elements, where Ae contains exactly one elementfrom JXI ,JX2'··· ,JXN ' namely UI ,u2,··· ,UN, each 

with its associated secondary grade, namely /xl (U) )'/x2 (U2), ... '/xN(UN), i.e., 

N 

Ae = Llrx;(uj)/Ui]/Xj Uj E Jx; ~ U = [0,1] (2.6) 
i=1 

Where Aie is the /h embedded set in A and Mj is the number of points in the domain of the i'h 
secondary membership function of A. Set Ae is embedded in A, and, there are a (otaft ofn~j Mi. 

Adaptedfrom Mendel and John (2002) 

A discrete type-2 fuzzy set A can be represented as the union of its type-2 embedded sets, i.e, 

where 

n 

A = LAie 
j:j 

N 

n= ITMj 
j=1 

(2.7) 

(2.8) 

The representation theorem allows operations for type-2 fuzzy sets to be defined without the need 

of the extension principle. The major disadvantage of doing this (as noted by Mendel and John) is 

that such operations are terribly inefficient and contain an enonnous amount of redundancy. One 

area where the representation theorem has proven to be practically useful is in the definition of 

arithmetic operators for type-2 fuzzy numbers (Coupland & John 2003). Consider the two type-2 

tFor continuous type-2 fuzzy sets, there are an uncountable number of embedded type-2 fuzzy sets, and this concept 
is not very useful. 
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fuzzy numbers ab-;;;;t 3 and ab;;;;t 12 enumerated below. 

About 3 = 

About 12 = 

(1/0+0.6/0.1 +0.3/0.2) /1+ 

(0.1/0.3 + 0.6/0.4 + 1/0.5 + 0.7/0.6 + 0.2/0.7) /2+ 

(l/l) /3+ 

(0.1/0.3 +0.6/0.4 + 1/0.5 + 0.7/0.6 + 0.2/0.7) /4+ 

(1/0+0.6/0.1+0.3/0.2) /5 

(1/0+0.8/0.1 +0.4/0.2+0.2/0.3 +0.1/0.4) /10+ 

(0.2/0.5+1/0.6+0.4/0.7) /11+ 

(1/1) /12+ 

(0.2/0.5 + 1/0.6 + 0.4/0.7) /13+ 

(1/0+0.8/0.1 +0.4/0.2+0.2/0.3 +0.1/0.4) /14 

In order to add these two type-2 fuzzy numbers together every embedded set in about 3 has to be 

added to every embedded set in about 12 as stated below: 

225225 . . 

About 3 +Ab;;;t 12 = L LAbout ie +Ab;;;;t l2~ 
j=1 ;=1 

The addition ofthe first embedded sets of Abo-ut 3 and About 12 is given below: 

-I 
About 3e 

- 1 
About 12e 

- 1 
About 15e 

= (1/0)/1 + (0.1/0.3)/2 + (1/1)/3 + (0.1/0.3)/4 + (1/0)/5 

= (1/0)/10+ (0.2/0.5)/11 + (1/1)/12+ (0.2/0.5)/13 + (1/0)/14 

= (1/0)/11 + (0.2/0)/12+ (0.1/0.3)/13+ {0.2/0.5)/14+ {1/1)/15 

+ (0.2/0.5)/16+ (0.1/0.3)/17 + (0.2/0)/18 + (1/0)/19 

(2.9) 

Once all 255 embedded sets have been added in this way, the union of all these sets is taken. This 
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results in a final type-2 fuzzy number which is given below: 

about 15 = 

(1.0/0.0 + 0.6/0.1 + 0.3/0.2) 

(1.0/0.0 + 0.8/0.1 + 0.4/0.2 + 0.2/0.3 + 0.1/0.4) 

(0.2/0.3 + 0.6/0.4 + 1.0/0.5 + 0.7/0.6 + 0.2/0.7) 

(1.0/0.5 + 1.0/0.6 + 0.4/0.7) 

(1.0/1.0) 

(1.0/0.5 + 1.0/0.6 +0.4/0.7) 

(0.2/0.3 + 0.6/0.4 + 1.0/0.5 + 0.7/0.6 + 0.2/0.7) 

(1.0/0.0 + 0.8/0.1 + 0.4/0.2 + 0.2/0.3 + 0.1/0.4) 

(1.0/0.0 +0.6/0.1 +0.3/0.2) 

/11+ 

/12+ 

/13+ 

/14+ 

/15+ 

/16+ 

/17+ 

/18+ 

/19 

This example demonstrates that the representation theorem is useful for the definition of fuzzy 

arithmetic but also highlights the large redundancies that are inherent in this approach. 

2.1.5 Discussion 

This Section has explored three definitions oftype-2 fuzzy sets. Both the Mendel and John defini­

tion and the vertical slice definition give type-2 fuzzy sets as 3-dimensional entities. The Mendel 

and John definition is a simple extension of type-l fuzzy sets. Each point in the domain of the 

set has a membership grade between zero and one, this membership grade then has an associated 

degree of possibility, also measured as a number between zero and one. So, the Mendel and John 

definition allows a single point in the domain of a type-2 fuzzy set to have a number of associated 

membership grades. The vertical slice definition maps each point in the domain of a type-2 fuzzy 

set to a single secondary membership function, a type-1 fuzzy number bounded by the interval 

[0,1]. These two definitions give two notational methods for describing exactly the same thing. 

Both are equally valid and the decision to use one or the other should be based on notational con­

venience. In this thesis the vertical slice definition is used as it provides the simplest notation when 

defining type-2 fuzzy logic operations. 

The representation theorem is quite separate from the other definitions. The representation the­

orem models each type-2 fuzzy set as a collection of simpler embedded type-2 fuzzy sets. This 

deconstruction of a type-2 set into a number of constituent parts allows operations to be defined 

using type- 1 fuzzy methods. Such definitions are easy to follow and have the advantage of making 

type-2 fuzzy logic widely accessible to type-1 fuzzy practitioners. The major drawback with the 

representation theorem is the large number of embedded type-2 sets required to model a type-2 

fuzzy set. The following example illustrates this point. Consider the two type-2 fuzzy sets A and 
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(a) (b) 

Crisp Outputs 

Inputs Outputs Inputs 
Type-Reduced 
Set (type-I) 

Fig. 2.5. (a) A Type-l Fuzzy Logic System. (b) A Type-2 Fuzzy Logic System. 

B. A has 8 discrete points in the primary domain, with the domain of each secondary membership 

function having 5 discrete points. B has 7 discrete points in the primary domain, with the domain 

of each secondary membership function having 6 discrete points. The number of embedded type-

2 fuzzy sets required to model A and Bare 390625 and 279936, respectively. To find A and B 
requires 1.0935 x lOll type-1 fuzzy 'and' operations to be performed. This example demonstrates 

that the representation theorem is rarely useful in a practical context due to the large number of 

embedded sets required to model a type-2 fuzzy set, nevertheless, they are useful theoretically. 

This Section has given a mathematical description of a type-2 fuzzy set. The following Section 

describes type-2 fuzzy logic systems. Such systems allow logical inferences to be made using 

type-2 fuzzy sets. 

2.2 Type-2 Fuzzy Logic Systems 

Having arrived at a set of definitions for type-2 fuzzy sets the logical operations needed to make 

decisions based on such sets will now be explored. Throughout this thesis only Mamdani (1974, 

1977) fuzzy systems are discussed. The geometric methods discussed in the next Chapter are 

only defined for Mamdani type systems. Rules in a Mamdani system are direct extensions of 

crisp production rules with fuzzy sets forming the antecedent and consequent. The other widely 

reported type of fuzzy system is the TSK model (Takagi & Sugeno 1985, Sugeno & Kang 1988). 

TSK systems utilise rules that have functions in the consequent, not fuzzy sets. Currently, only 

Mamdani rules have a geometric interpretation and that is why only this type of fuzzy system 

is discussed here. For a discussion on type-2 TSK based systems see John (2000) and Mendel 

(2001 b). 

The architecture ofa type-2 fuzzy system is a direct extension ofa type-l fuzzy system. A type-1 

fuzzy system consists of four components: fuzzifier, inference engine, rule base and defuzzifier, 

see Figure 2.5(a). A type-2 fuzzy logic system has an additional component, the type reducer, see 

Figure 2.5(b). The rules in a type-2 system (Kamik & Mendel 1998a) take the same IF-THEN 

form as type-1 rules. Type-2 fuzzy rules have type-2 fuzzy sets in the antecedent and consequent. 

A type-2 fuzzy rule Ri maps n inputs of the input space Xl x X2 X .•• X Xn to the output space Y, 
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i.e., 

Ri = IF XI is F\ and X2 is F~ and ... Xn is Fh THEN y is Gi 

From Karnik and Mendel (1998a) 

where XI ... Xn are crisp inputs to the system, y is the crisp output from the system, F~ to F'j the 

antecedent type-2 fuzzy sets of the rule and Gi is the type-2 fuzzy consequent set of the rule. Any 

of the 'and' operators in the rule Ri could be replaced with an 'or' operator. The 'and' operation 

is performed by the meet (n) operation and the 'or' operation by the join (U). The implication 

operation is generally taken to be perfonned by the meet operation although other operations could 

be used. For example, Kamik and Mendel (1998b) suggest that a scaling operation could used as 

an alternative. Whether implication uses the meet or a scaling operation, the result of a type-2 

fuzzy inferencing process is still a type-2 fuzzy set. Most applications require a crisp output to be 

derived from this resultant type-2 fuzzy set. This is because the decision being taken based on the 

result of fuzzy system are usually crisp in nature, tum right, tum left, class A, class B, etc. To arrive 

at a crisp output the type-2 fuzzy set must be type-reduced before it can be defuzzified. Before 

discussing the inferencing operations, the method used to define these operations, the extension 

principle, is given. 

2.2.1 The Extension Principle 

The extension principle was introduced by Zadeh (1975a,1975b,1975c) in the same set of papers 

that type-2 fuzzy sets were first presented. Initially all the logical operations for type-2 fuzzy sets 

were defined using the extension principle. The representation theorem also makes it possible to 

define these operations from the type-l fuzzy equivalents. 

Definition 2.5 The extension principle for fuzzy sets is in essence a basic identity which allows 

the domain of the definition of a mapping or a relation to be extended from points in U to fuzzy 

subsets of U. More specifically, suppose that f is a mapping from U to V, and A is a fUzzy subset 

of U expressed as 

(2.10) 

Then the extension principle asserts that 

(2.11 ) 

Thus, the image of A under f can be deducedfrom the knowledge of the images oful, ... , U2 under 

f. 
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From Zadeh (J975b) 

The extension principle allows any function defined for a crisp set to be extended for a type-l 

fuzzy set. Furthermore, the extension principle allows any function defined for a type-l set to be 

extended for a type-2 fuzzy set. The join and meet operations were derived by Zadeh with the use 

of the extension principle. This Section has discussed the methods used to define the operations 

used in type-2 fuzzy inferencing. Each of the inferencing stages of a type-2 fuzzy logic system 

will now be discussed in tum. 

2.2.2 Fuzzification 

Fuzzification is the process of finding the membership grade of a given input in a given fuzzy set. 

For discrete systems this is a trivial process which takes a crisp input value and returns a secondary 

membership function. For the continuous case either linear interpolation or function application 

is used to calculate the value of a membership grade. The membership grade of the inputs must 

be taken for every type-2 fuzzy set in the antecedent of every rule in the rule base. Once these 

membership grades, which are secondary membership functions, have been found they can be 

logically connected to form the rule antecedent values. 

2.2.3 Combination of Antecedents 

The secondary membership functions given by the fuzzifier have to be logically combined to form 

rule antecedents. The logical connectives, the 'or' and 'and' of type-2 fuzzy sets were given by 

Zadeh (l975b). Mizumoto and Tanaka (1976) renamed these operations the 'join' and 'meet' and 

were the first to look at the properties of these operations. M izumoto and Tanaka( 1981), along 

with Dubois and Prade (1980), also discuss the use of different t-norm and t-conorm operators. 

Kamik and Mendel(2001b) defined more computational efficient methods for calculating the join 

and meet of secondary membership functions that are normal and convex. A fuzzy membership 

function is said to be normal is it contains at least one point with a value of 1. A fuzzy membership 

function is said to be convex if it only contains one apex point, that is one peak. 

The join (u) operation finds the conjunction of two secondary membership functions ,uA(x) and 

,uii(x), Let JlA(x) = I.;'! \ CI.;/v; and let ,uii(x) = I.f=\ ~j/Wj. The conjunction of ,uA(x) and ,ujj(x) is 

given by 
M N 

,uAuii(x) = L L(C1.;*~j)/(v; VWj) 
;=\j=\ 

(2.12) 

Adapted from Mizumoto and Tanaka (1981) 
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(a) _ =f --=g (b) . . (c) -- = Jom -- = meet 
1 
-- = join -- = meet 

o~--~----~----~ O~--~----~----~ O~--L-----~----~ 

o o 1 o 
Fig. 2.6. (a) The Secondary Membership Functions f and g. (b) The Join and Meet off and g Under the Minimum 
T-norm. (c) The Join and Meet off and g under the Product T-norm. 

where V is the t-cononn, generally taken to be maximum and * is a t-nonn such as minimum or 

product. 

The meet (n) operation finds the disjunction of two secondary membership functions I'A(X) and 

I'JJex). The disjunction of I'A(x) and I'JJ(x) is given by 

M N 

I'Anjj(x) = LL(a.i*~j)/eVi*Wj) (2.13) 
i=lj=l 

Adapted from Mizumoto and Tanaka (1981) 

where again * is at-norm. 

The join and meet operations perform differently under product and minimum t-nonns. Consider 

the two secondary membership functions I and g depicted in Figure 2.6(a). The join and meet 

ofl and g under the minimum t-nonn is depicted in Figure 2.6(b). The join and meet off and g 

under the product t-nonn is depicted in Figure 2.6(c). Observe in Figure 2.6(c) that the resultant 

secondary membership functions are curved. If the product t-nonn is used when perfonning the 

join and meet on piecewise-linear function, the resultant functions may not be piecewise linear. 

This characteristic is part of the reason why the geometric model of join and meet given in the 

following Chapter do not make use of the product t-nonn. A geometric interpretation of the 

product t-nonn is more complex than that of the minimum and as such has yet to be developed. 

Throughout this thesis the computational overheads that come with type-2 fuzzy logic are dis­

cussed. The origins of some of these issues can now be identified. The basic logical operations 

are far more complex than the type-l equivalent. Assume that t-nonns and t-cononns require an 

equal amount of processing resource t, then cost of finding the 'and' or 'or' of two discrete type-l 

fuzzy sets at a point x is t. The cost of finding the 'and' or 'or' of two discrete type-2 fuzzy sets at 
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a point x is 2MNt, where M and N are the number of discrete points in the domain of the respective 

secondary memberships. Karnik and Mendel (200 1 b) give methods to reduce this overhead signifi­

cantly. These methods rely on the secondary membership functions being both normal and convex. 

If the condition of normality and convexity are not met then incorrect results are produced. These 

optimisations are achieved by defining the join and meet under both minimum and product t-norm 

for a single point in the domain of the resultant secondary membership functions. The optimised 

join and meet operations (Karnik & Mendel2001b) are now given. Let there be n convex, normal, 

type-l real fuzzy sets FI, ... ,Fn characterized by membership functions/I, ... ,In, respectively. 

Let VI, V2, .. ·, Vn be real numbers such that VI ::; V2 ::; ... Vn and/I (VI) = h(V2) = ... = /n(vn) = 1. 

Then restricting the t-conorm to maximum (V) and the t-norm to minimum (1\) gives, 

and 

a < VI, 

Vk ::; a < Vk+l, 1 ::; k ::; n - I, 

a 2: Vn 

a < VI, 

Vk ::; a < Vk+ I, 1 ::; k ::; n - 1, 

a 2: Vn 

(2.14) 

(2.15) 

From Karnik and Mendel (2001 b) 

These definitions significantly reduce the computational cost of the join and meet operations. The 

reduction in computational cost is achieved by reducing the number of times the domain of the 

sets have to be traversed to one. Prior to this definition the number of times that the domain of 

each secondary membership function had to be traversed was equal to the number of points in 

other secondary membership function it is being combined with. Novel extensions to the Karnik 

and Mendel optimisations which reduce the limitations of these operations are explored in Section 

4.1. This work underpins the geometric definition of join and meet given in the next Chapter. 

The join for a single point under the product t-nonn can be expressed as 

(2.16) 

From Karnik and Mendel (200Ib) 

The meet under the product t-norm can also be expressed for a single point. However, this requires 

a supremum operation, needing iterations over several terms and does not result in the same re­

duction in computation obtained for the other operations. Let Ji and Ii be two normal and convex 
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secondary membership functions. Let 8, v and w be points in the domain ofJi nfz. To find the 

membership of grade ofa in/! n/2: 

• find all the pairs {v, w} such that vw = a; 

• take the product of grades at v and w. Where there is more than one pair that gives the value 

e take the pair whose membership grade gives the higher product value, and 

• the possible pairs {v, w} that can give the value a are {v, a/v} or {a/w, w} for a =1= 0 and 

{v,O} or {O,w} for8=O. 

This gives the following: 

(2.17) 

From Karnik and Mendel (2001 b) 

where sup is the supremum operation. The join and meet operations given in this Section are 

the basic logical building blocks that are used extensively in the other stages of the type-2 fuzzy 

inferencing process. The join and meet give methods for logically combining the antecedent values 

in type-2 fuzzy rules. These antecedent values can then be used when calculating the value of a 

rule consequent, i.e. when perfonning the type-2 fuzzy implication operation. 

2.2.4 Implication 

Prior to the implication stage of the inferencing process the antecedent value of each rule has been 

calculated. The implication of the antecedent to the rule consequent of each rule must now be 

found. This is done by finding the meet of the antecedent with every point in the consequent type-

2 fuzzy set. Let the antecedent value be ,uA(X!) n ,un (X2) and the consequent be C over the domain 

Y. The value of ,uA(X\) n J.lB(X2) :::} C is given below. 

(2.18) 

This Section has given the type-2 fuzzy implication operation, based on the meet operation. Once 

the value of each rule consequent has been found these consequent sets can be combined to give a 

final inferred type-2 fuzzy set. 
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2.2.5 Combination of Consequent Sets 

Each rule will produce an inferred consequent type-2 fuzzy set. To combine these sets the 'or' 

operation, the join operation, is applied at every point in the domain of the sets. Let c~nsequent 

sets be C" C2, . .. , en and the final combined set be P, all over domain X. The value of F is given 

below. 

(2.19) 

This operation results in a single type-2 fuzzy set which represents the decision of the fuzzy logic 

system. A crisp output must now be derived which is representative of this final fuzzy set. 

2.2.6 Output Processing 

Most fuzzy logic systems deployed in the real world will be required to use crisp numbers for 

inputs and to express the output decisions as crisp numbers. This requires methods for taking a 

fuzzy set and finding a crisp value that is representative of that set. In type-2 fuzzy logic systems 

this is currently performed by the type-reducer and defuzzifier during the output processing stage. 

Type-reduction (Kamik & Mendel 1998b, Kamik & Mendel 2001a) is a method that allows for 

the computation of a type-l fuzzy set that gives an aggregated representation of the possible cen­

troids of a type-2 fuzzy set. Here the generalised centroid (GC) is given as this will be used for 

comparative purposes in following chapters. 

The generalised centroid (Kamik & Mendel2001a) finds every possible embedded type-2 fuzzy 

set that could represent the type-2 fuzzy set. A pairing is then made between the centroid of each 

possible embedded set and the uncertainty associated with that embedded set resulting in a type-l 

fuzzy set. This type-reduced (from type-2 to type-I) fuzzy set gives a distribution of the possible 

centroids of the type-2 fuzzy set and the uncertainty associated with each of them. This type-l 

fuzzy set can then be defuzzified to give a crisp answer. 

Definition 2.6 The generalized centroid (GC) gives a possiblistic distribution of the centroids of 

a type-2 fuzzy set. Let A be a discrete type-2 fuzzy set with L discrete points in its domain. Let n 

be the number of embedded type-2 sets required to represent A using the representation theorem 

as given by equation 2.B. The generalised centroid of A may be given as 

(2.20) 

where IJ'A i (Xj, Uj), Xj and Uj follow from the definition of a type-2 embedded set given in equation 
• 
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2.8 and *j=lllA~ (Xj, Uj) is the t-norm of all values of J.lA~ (Xj, Uj) from 1 to L. 

Adapted from Karnik and Mendel (2001a) 

Clearly the computational cost of the type-reduction operation is very large. Karnik and Mendel 

(200la) noted the potential for concurrent computation of all the embedded sets simultaneously. 

However, parallel processing capacity is neither inexpensive nor widely available. Karnik and 

Mendel also give a set of methods that approximate type-reduction for certain classes of set, al­

though these have not been widely taken up. Greenfield et al (2005) proposed the sampling de­

fuzzification method as a way of reducing the computational complexity of type-reduction. The 

sampling defuzzifier selects a predetermined number of embedded sets at random and uses this 

subset of the total number of embedded sets to calculate the centroid. The sampling method con­

sistently gives results that are close to the actual centroid whilst massively reducing the amount 

of computation needed to find the centroid of a type-2 fuzzy set. The sampling method is to date 

the only approach which attempts to reduce the computational complexity of the type-reduction 

of a generalised type-2 fuzzy set. The novel geometric approach presented in the following Chap­

ter also reduces the computational complexity of type-reduction. The significant decrease in the 

computational cost of type-reduction that results from the novel geometric approach is one of the 

main achievements of this thesis. Unlike the sampling method, the geometric approach is not an 

approximation of the centroid but a geometric interpretation of the centroid. During the develop­

ment of the sampling method, the author of this thesis has provided input to Greenfield's research 

leading to joint authorship of Greenfield et al (2005), with a journal article on this currently in 

preparation. 

The following Section presents some novel work by the author which extends the Karnik and 

Mendel optimised join and meet operations. These novel extensions widen the applicability of 

these operations to include both normal and, for the first time, non-normal secondary membership 

functions. 

Type-2 fuzzy logic provides a method of encapsulating uncertainty into computerised, mathemat­

ical systems. The computational overheads inherent in type-2 methods make fast decision making 

very difficult. Type-2 interval fuzzy logic systems provide a useful compromise between the speed 

of type-l fuzzy systems and the modelling power of type-2 fuzzy systems. The following Section 

discusses an efficient and widely adopted subset oftype-2 fuzzy logic, type-2 interval fuzzy logic. 
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Fig. 2.7. (a) The Type-2 Interval Fuzzy Set A. (b) The Membership Grade of a Point x in A. 

2.3 Type-2 Interval Fuzzy Logic 

Type-2 interval fuzzy systems were first presented by Zadeh (1975b) under the term interval­

valued fuzzy sets. Zadeh's original definition relied on the concept of an a-cut. The definition 

given here is an adaptation of the definition of a type-2 fuzzy set given in definition 2.2. 

Definition 2.7 A type-2 interval fuzzy set, denoted A, is characterised by a type-2 interval mem­

bership function JiA(x, u), where x E X and u E Jx ~ [0, I], i.e., 

A = {((x ,u),J.IA(x,u)) I x E X,u E Jx ~ [0, In (2.21) 

in which IJA(x, u) E {O, I}, X is the domain of the fuzzy set and Jx is the domain of the secondary 

membership function at x. 

Such a set A is depicted in Figure 2.7(a). Since all points in each of the secondary membership 

functions are at unity, each secondary can be represented as an interval set, hence the name type-2 

interval set. An interval set A contains two elements a lower bound denoted 4 and an upper bound 

denoted A, so that A = [&.,A]. All points between these bounds arc implicit elements of the set. 

By restricting the secondary membership functions to only being interval sets a great deal of the 

computational redundancy in typc-2 methods can be eliminated. Essentially, the third dimension 

ofa type-2 interval fuzzy can be ignored for computational purposes as all points in that dimension 

have an equal value. Liang and Mendel(2000b) proposed the notion of representing a type-2 

interval set as two type-l membership functions, specifically the upper and lower bounds of the 

footprint of uncertainty of that set. 

Definition 2.8 The Footprint of Uncertainty (FOU) (Liang & Mendel 2000b) of a type-2 fuzzy set 

consists of a bounded region thai is the union of all the primary membership grades in that set. 
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Let A be a type-2Juzzy set over X. The FOU oJA is given below: 

FOU(A) = L (x,Jx ) (2.22) 
xEX 

where Jx is the domain oj the secondary membership function at x. 

From Mendel and John (2002) 

Mendel and John noted that the FOU is a useful concept since it gives an easily understood two­

dimensional description of the spacial distribution and the level of the uncertainty captured by a 

general type-2 fuzzy set. For a type-2 interval set this notion can be extended since the FOU of 

such a set gives a complete description of that set. Liang and Mendel exploit this by representing 

the region covered by the FOU with two type-2 membership functions, an upper and a lower 

bound i.e., 

A = 1 (i l/U) 
xEX UE[t!A(xl' #A(x1l 

(2.23) 

where ti(x) and J.L:::i(x) denote the value of x in the lower and upper membership functions respec­

tively. Figure 2. 7(b) depicts the membership grade of such a set A and a point x. 

The logical operations for inferencing can also be given in terms of upper and lower membership 

functions. The meet of two type-2 interval fuzzy sets A and B at a point x is given below. 

(2.24) 

From Liang and Mendel (2000b) 

Where * is the product or minimum t-norm. The join can be given in a similar way, as below. 

(2.25) 

From Liang and Mendel (2000b) 

where V is a t-conorm, generally taken to be the maximum. These operations are depicted in 

Figure 2.8(b) and (c). 

This Section has shown how the efficient representations oftype-2 interval fuzzy sets can eliminate 

massive redundancies in the logical operations. Karnik and Mendel's work, and the novel work 

presented in Section 4.1, show how this can also be done for general type-2 logic, albeit with 

the imposition of some restrictions. Unlike generalised type-2 fuzzy sets, an efficient solution 

has been found to the problem of type-reducing a type-2 interval fuzzy set. The iterative method 
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t t AUB t An B 

Fig. 2.8. (a) The Type-2 Interval Fuzzy Sets A and B. (b) The Type-2 Interval Fuzzy Set i nB. (c) The Type-2 Interval 

Fuzzy Set A U B. 

provides a highly efficient way of finding the centroid of a type-2 interval set and the uncertainty 

propagated through system that is associated with that set. The iterative method is discussed in the 

next Section. 

2.3.1 Type-Reduction: The Iterative Method 

The Karnik-Mendel (2001a) iterative method provides a computational efficient way of type­

reducing type-2 interval fuzzy sets. Type reducing a type-2 interval fuzzy set C produces an 

interval set C. This set is the distribution of the possible centroids of the set C. The midpoint of 

C gives the final defuzzified value of the set. The endpoints of the set [C" Cr ] give the range of 

possible points where the centroid of C could lie taking into account the uncertainty in the system 

(Karnik & Mendel 1998c). The iterative method provides an optimised method for finding these 

endpoints. 

In this thesis only the centroid type-reducer is discussed. This is because this is the only defuzzifier 

with a direct geometric interpretation and as such, will be the focus of later discussion on type­

reduction. The generalised centroid of a type-2 interval fuzzy set A over the domain X is given 

below. 

(2.26) 

From Mendel (2001a) 

where JXN is the secondary membership grade at N in the secondary membership function Jx and 

x E X. The type-reduced set C only needs two endpoints to define it, C, and Cr . Each of these 

points come from the centroid values of a set that is embedded in A . The iterative method exploits 

the properties of the centroid operation to find these two sets with a relatively low amount of 

computational effort. 
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Fig. 2.9 . (a) The Type-2 Interval Fuzzy Set A. (b) The Embedded Set A;f. (c) The Embedded Set A;'. 

Consider the type-2 interval fuzzy set A depicted in Figure 2.8(a). For each point in the domain of 

A there are a range of values that each embedded set can take. The type-reduced interval will be 

given by the sets with the highest and the lowest centroids. The centroid is in essence a weighted 

area. As such, the set with the lowest centroid will have as much area as possible towards the 

left and as little as possible on the right. Karnik and Mendel found that such a set takes all its 

points from the upper bound up to a crossover point and then takes all its points from the lower 

bound. The task of finding the set with the lowest centroid then becomes the problem of finding 

this crossover point. The procedure for doing this , the iterative method, is given below. 

1. Set the embedded set A~ to take all points from the lower bound. 

2. Find the domain point p that is closest to the centroid e of A~. 

3. Assign a value of ~A(x) for all values of x in A~ that are less than or equal to p . Assign a 

value of !!:ii (x) for all values of x in A~ that are greater than p . 

4. Find the domain point p' that is closest to the centroid e of A~. 

5. Repeat steps 2-4 until p = p' . 

The final value of e gives the lower point in C, C/. If there are L discrete points in the domain of 

A~ then this procedure can take at most L iterations. Figure 2.8 (b) depicts the embedded setA;'!, 

the centroid of which gives the value Ct. 

Finding the maximum value Cr uses a similar procedure. Step I takes all points from the upper 

bound. Step 3 sets all points up to p from the lower bound and all points after and including p 

from the upper bound. Figure 2.8 (c) depicts the embedded set A;r, the centroid of which gives 

the value Cr. The two procedures may be run in parallel. Each will converge in at most L steps, 

although in most cases convergence will be achieved before this number of iterations, usually only 

taking two to three iterations. This represents a massive improvement in computational speed over 

the generalised centroid. 
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The iterative method (Karnik & Mende1200la) provides a fast and efficient means of finding the 

centroid of a type-2 interval fuzzy set. Such efficiencies have not been obtained for type-reducing 

type-2 fuzzy sets. Some authors (Wu & Mendel 2001, Wu & Tan 2005) have focused on further 

increases in computational speed using mathematical approximations or evolving type-reducers 

using genetic algorithms. Melgarejo et at (2004a, 2004b) have been working towards a full hard­

ware implementation of a type-2 interval fuzzy system. These theoretical advances have for the 

first time allowed type-2 interval fuzzy logic to be used in control applications. This represents 

a significant step forward for type-2 technologies, giving applicability to an area where type-l 

methods have proved very successful, control systems. This is one of the main areas fuelling the 

current burst in type-2 fuzzy research. However, a majority of the recent publications, particularly 

applications led research, has been limited to type-2 interval systems only. To date no control 

applications have been reported that use full type-2 methods. The motivation behind this thesis 

is to provide computational efficient method for type-2 fuzzy inferencing so that applications led 

research can take advantage ofthe richer model of uncertainty that is offered by generalised type-2 

fuzzy logic. 

This Section has given a technical description of the Kamik-Mendel iterative method and dis­

cussed the impact this method has had on the development and adoption of type-2 fuzzy logic. 

The following Section broadens this discussion to all aspects of type-2 interval fuzzy logic. 

2.3.2 Discussion 

Type-2 interval fuzzy logic systems are a halfway house, a compromise between the modelling 

capabilities of type-2 fuzzy logic and the applicability of type-! systems. The operations are ef­

ficient, with few redundancies. The iterative method otTers the ability to calculate the defuzzified 

value of a set with a comparatively small computational effort. For these reasons interval technolo­

gies are currently filling the void left by the computational problems associated with generalised 

type-2 fuzzy logic. The increased modelling power of interval over type-l systems has been prac­

tically demonstrated in several applications, for examples see (Mendel 2001 a, Liang & Mendel 

2001, Hagras 2004, Figueroa et at 2005). In this thesis type-2 interval systems are viewed as a 

compromise. Type-2 fuzzy sets model the vagueness of a particular set membership. Type-2 in­

terval fuzzy sets require that this vagueness is represented with a uniform distribution. Effectively, 

type-2 interval fuzzy sets model set membership grades as crisp sets rather than crisp values. It 

remains to be seen to what degree, if at all, a type-2 system can outperform an interval system. 

Certainly the type-2 set model provides a much richer model of uncertainty. Common sense sug­

gests that the better the model of uncertainty, the better a system will perform in an uncertain 

environment. The later chapters of this work attempt to answer this question by comparing the 
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relative performance of a generalised type-2 system against a type-l and an interval system. 

This Section has discussed type-2 interval fuzzy logic. This form of fuzzy logic provides a greater 

model of uncertainty than type-l methods without the associated computational cost of type-2 

methods. Interval systems do not however have the same capability for modelling uncertainty. 

The next Section discusses the historical development of type-2 fuzzy logic. 

2.4 The Historical Development of Type-2 Fuzzy Logic 

Type-2 fuzzy logic is a growing research topic. Figure 2.10 illustrates the growth in academic 

activity in the field since its inception. In this Section the main themes reported in literature are 

discussed in a historical context. The aim of this Section is to illustrate the position of this thesis in 

the field of type-2 fuzzy logic. Figure 2.11 depicts a time line showing the historical development 

of type-2 methods. Each block on the time line relates to a paragraph presented in this Section. 

50 

45 

40 

~ 35 
o 

.~ 

.~ 30 
]j 
:J 

0... 25 --o 
Iii 20 
.0 

E 
~ 15 

10 

5 

o In n .... 

Number of Type-2 Fuzzy Logic Publications Over Time 

-
f-..-

-
-

f-- f- I-~ 

~ f..--

f- ~ 

-

m- e--

.... n n n ..., .., n r'I n .... n ... n n 

Year 

Fig. 2.10. The Number of Type-2 Related Publications Over Time. Source: www.type2fuzzylogic.org/publications/ 
accessed 0 I /0312006. 

35 



..., 
~. 

~ 

:> 
-l 
Ef 
n 
t"' 
5' 
n 
0 
n 
'0 

a' 
5' 

[JQ 

e-
n 
::x:: ;;. 

w 0 0\ :I. 
n e-
O 
n 
< n 
0-
'0 
3 
n a 
0 ..., 
~ 
n 
N ..., 
a:: 
N 
N 
'< 

b 
<1:1 ;=;. 

2.4.1 
Type-2 Fuzzy 
Sets Appear 

/2.4.8 Computing with Words App~ars 

2.4.2 Type-2 Interval Fuzzy Sets are 

Promoted 

2.4.4 Type-2 Fuzzy 
Logic Systems 
are Fully Defined 

2.4.9 Control 
Applications 

2.4.5 The First Type-2 
Textbook Appears 

r------ I I I I I I I I I I I _ul 
1975 1985 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

2.4.3 Type 

Reduction is Defined 
2.4.6 
Representation 

Theorem 

2.4.7 Computational 
Complexity 

12.4.10 Medical Applications 

1 2.4.11 Signal Processing 



2.4.1 Type-2 Fuzzy Sets Appear 

Type-2 fuzzy sets were first defined and discussed in a trilogy of papers by Zadeh (1975a, 1975b, 

1975c). These papers concentrated on the notion ofa fuzzy set where the memberships grades of a 

fuzzy set are measured with linguistic terms such as low, medium and high. Logical connectives for 

such sets were also given, although the terms join and meet were not used. Zadeh only explored the 

use of the minimum and maximum operators t-norm and t-conorm when investigating the logical 

operations. Mizumoto and Tanaka (1976,1981) and Dubois and Prade (1980) both studied the 

logical connectives of what became known as secondary membership functions. Mizumoto and 

Tanaka were the first to use the terms join and meet for these logical connectives. Both Dubois and 

Prade and Mizumoto and Tanaka studied the join and meet under a variety oft-norm and t-conorm 

operators. 

2.4.2 Type-2 Interval Fuzzy Sets are Promoted 

Turksen (1993a, 1993b, 1995), Schwartz (1985) and Klir and Folger (1988) promoted the use 

of type-2 fuzzy sets, at that time called interval valued or IV fuzzy sets. Schwartz believes that 

type-2 interval fuzzy sets should be employed when the linguistic uncertainty of a term cannot be 

sufficiently modelled by the type-l methods. Klir and Folger advocate the use of IV fuzzy sets 

when the membership functions of type-l fuzzy sets could not be agreed upon. These arguments 

were explored in greater detail by Mendel (1999). Turksen put forward a collection oflogical con­

nectives for type-2 interval fuzzy sets noting that the expressive power oftype-2 fuzzy reasoning 

lies in the ability to retain the uncertainty throughout the inferencing process. 

2.4.3 Type-reduction is Defined 

Kamik and Mendel (1998a, 1998c, 2001a) defined type-reduction by applying the extension prin­

ciple to a variety of type-I defuzzifiers. The notion of an output processing stage of a type-2 fuzzy 

system was developed in these papers. 

2.4.4 Type-2 Fuzzy Logic Systems are Fully Defined 

Kamik and Mendel (1998a, 200 I a) gave a complete description of the fuzzy inferencing pro­

cess. This allowed work on the application of type-2 fuzzy logic to proceed. Around this time 

John published a series of review papers (1998a, 1998b, 1999a, 1999b) on type-2 fuzzy sys­

tems. Early applications of the technology also began to appear (John 1996, John, Innocent & 

Barnes 1998, Kamik & Mendel 1999). As Figure 2.10 demonstrates, the recent growth in type-2 

fuzzy publications began around this time. 
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2.4.5 The First Textbook on the Subject of Type-2 Fuzzy Logic Appears 

Following the consolidation of the definitions and existing literature by John and Karnik and 

Mendel, the field was opened up to a wider potential audience with the publication of the first 

type-2 textbook. Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions 

was written by Mendel and published in 2001 (Mendel 200lb). This textbook references a great 

deal of the work on type-2 fuzzy logic that had been published to date, bringing together many of 

Mendel's earlier publications. 

2.4.6 The Representation Theorem is Defined 

Mendel and John (2002) gave the representation theorem of type-2 fuzzy sets. By representing a 

type-2 fuzzy set as a collection of simpler type-2 embedded sets it is possible to define operations 

of type-2 fuzzy sets without the use of the extension principle. The motivation behind this work 

was that by eliminating the need to learn about the extension principle, the field would be more 

accessible to type-l fuzzy practitioners. However, the representation theorem has its own learning 

curve, and is not significantly simpler to understand than the extension principle. One of the 

outcomes of the representation theorem has been the definition of arithmetic operators for type-2 

fuzzy numbers (Coupland & John 2003). 

2.4.7 Issues of Computational Complexity Begin to be Explored 

The complexity of join and meet operations and type-reduction of a type-2 fuzzy set limit the appli­

cability oftype-2 methods. Although type-2 interval sets are simpler, type-reduction is still a prob­

lem, due to inherent complexity and redundancies. The iterative method (Karnik & Mendel 200 I a) 

and the Wu-Mendel (2001,2002) approximation were developed to make the type-reduction of 

type-2 interval fuzzy sets more efficient. This has led to the majority of the publications in the 

field of type-2 only discussing type-2 interval methods. Indeed, many authors refer to type-2 in­

terval fuzzy set as type-2 fuzzy sets and add the qualifying term 'generalised' when discussing 

actual type-2 fuzzy sets. The computational problems of join and meet were effectively resolved 

by Kamik and Mendel (2001a), with the novel work given in Section 4.1 extending that work to 

include non-normal secondaries. This work is also discussed by the author, along with some as­

pects of the geometric approach in (Coupland & John 2004a, Coupland & John 2004b, Coupland 

& John 2005b, Coupland & John 2006b, Coupland & John 2oo5a). Greenfield et al (2005) give an 

efficient method for approximating the the type-reduced set of a type-2 fuzzy set using a stochastic 

approach. The work presented in this thesis clearly falls into this area oftype-2 research, although 

the approach being taken here is wholly different to any reported in the literature. 
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2.4.8 Computing with Words Appears 

Zadeh (1996, 1999) made the claim that fuzzy logic, approximately at least, equates to computing 

with words (CWW). In CWW numbers are replaced with words not only when reasoning, but also 

when solving calculations. Zadeh's examples use fuzzy granules to model words. A fuzzy granule 

is actually the FOU ofa type-2 interval fuzzy set. Both Mendel (2001a, 2003) and Turksen (2002) 

point out that CWW requires type-2 fuzzy sets, both opting to use the simpler type-2 interval 

representations. Mendel (1999) re-emphasised this point by demonstrating that human models of 

words as obtained through a survey require at least interval representations. Again, the author's 

opinion is that type-2 fuzzy logic does not constitute computing with words. Type-2 fuzzy sets 

can model concepts that are uncertain. Linguistic terms are uncertain but also may contain other 

characteristics, such as contextual dependence, that fuzzy logic bears no relation to. 

2.4.9 Control Applications 

With the iterative method and the Wu-Mendel approximation allowing fast execution of type-2 

fuzzy systems, control applications began to emerge. Melin and Castillo (2003, 2004) used type-2 

interval systems in the context of plant control. Hagras (2004) demonstrated that a type-2 interval 

fuzzy logic controller could outperfonn a type-l fuzzy controller under large uncertainties. Wu 

and Tan (2004) applied type-2 interval systems to the control of a complex multi-variable liquid 

level process. Figueroa et al (2005) used a type-2 interval control for non-autonomous robots 

in the context of a robot football game. The author has perfonned a comprehensive study of 

both general and type-2 interval fuzzy controllers for an autonomous mobile robot. These studies 

are presented in Chapter 5 of this thesis and in Coupland (2006a) and in a journal article that 

is currently being prepared. Doctor et al (2004,2005) used a type-2 interval system to model 

and adapt to the behaviour of people in an intelligent dormitory room. Lynch et al (2005) are 

continuing to build a type-2 interval control system for large marine diesel engines. Melgarejo et 

at (2004) have developed a limited hardware implementation of a type-2 interval controller. 

2.4.10 Medical Applications 

Medical applications are one of the few areas where a generalised type-2 fuzzy logic has been 

used in preference to type-2 interval fuzzy logic. This is largely because such systems do not 

require fast execution times but do contain large uncertainties. John et at (1998, 2000) used a 

type-2 fuzzy system for the pre-processing of tibia radiographic images. Garibaldi et at (1997, 

2003) have done extensive work on assessing the health of a new born baby using knowledge of 

acid-base balance in the blood from the umbilical cord. Innocent and John (2004) proposed the 
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use of fuzzy cognitive maps to aid the differential diagnosis of confusable diseases and suggest 

that type-2 cognitive maps may yield improved results. Di Lascio et al (2005) also used type-2 

fuzzy sets to model differential diagnosis of diseases, modelling the compatibility of the symptom 

to a disease as a linguistic term. John et al (2001a,2001b) used type-2 fuzzy sets to model the 

perception of clinical opinions of nursing staff as linguistic terms. 

2.4.11 Signal Processing 

Signal processing, like control, has to date only used type-2 interval methods. Liang and Mendel 

(2000a) implemented a fuzzy adaptive filter for the equalization of non-linear time-varying chan­

nels. Mitchell (2005) defined a similarity measure for use with type-2 fuzzy sets which was 

used in a radiographic image classifier. Karnik and Mendel (1999) used a type-2 interval system 

to predict the next value in a chaotic time series. Musikasuwan et al (2004) investigated how 

the learning capabilities of type-! and type-2 interval systems differ according to the number of 

learning parameters used. Both systems were designed to to predict a Mackey-Glass time series. 

2.4.12 Summary 

This Section has given the major developments that have taken place in the field of type-2 fuzzy 

logic and places them in a historical context. This helps to highlight the motivation of this thesis 

and show how the work presented here contributes to the field of type-2 fuzzy logic in a timely 

fashion. Type-2 literature has become predominately concerned with type-2 interval methods. 

The likely reason for this is the elimination of the computational problems for type-2 interval 

methods. This thesis seeks to overcome the computational problems of type-2 fuzzy logic so that 

the advantages associated with these methods can be fully exploited by practitioners. 

2.5 Discussion 

This Chapter has demonstrated how type-2 fuzzy sets model uncertainty as vagueness about a 

piece of knowledge. The degree to which any element belongs to a type-2 fuzzy set can be vague, 

as described by a fuzzy number. This is the means by which type-2 fuzzy sets capture and model 

uncertainty. Type-2 fuzzy logic retains this model of uncertainty throughout the inferencing pro­

cess. The logical operators, join and meet, preserve this uncertainty when finding the conjunction 

and disjunction of two type-2 fuzzy sets and when finding the result of an implication operation. 

Type-reduction, extended from defuzzification, also uses the uncertainty captured by a type-2 

fuzzy set. Type-reduction aggregates the uncertainty, finding the centroid of every possible type-l 
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fuzzy set embedded within the type-2 set and calculating the possibility of that centroid. This 

process results in a type-reduced set, a type-l fuzzy number that gives a vague measure of the 

centroid. 

Type-2 interval methods also model uncertainty as a vagueness of knowledge, but with a much 

lower computational cost. Type-2 interval methods are limited in that it is only possible to model 

the vagueness ofa piece of knowledge with a uniform distribution. This approach may reduce the 

modelling capability of type-2 interval fuzzy sets, but it also allows for computationally efficient 

representations and logical operations. The conjunction and disjunction of two type-2 interval 

fuzzy set is far simpler to calculate than the generalised type-2 equivalent. The type-reduction 

process is also less complex than that of generalised type-2 fuzzy sets. The iterative method gives 

an efficient way of calculating the type-reduced interval, essentially by performing an optimised 

search for the endpoints of the type-reduced set. The iterative method, although not guaranteed 

to, often converges in only two or three iterations. With these methods a type-2 interval fuzzy 

system can have a far lower computational cost than a type-2 fuzzy system and not a great deal 

larger than a type-l fuzzy system. Type-l fuzzy sets however, cannot model uncertainty. The 

degree to which an element belongs to a type-l fuzzy set is crisp, the inferencing process from 

fuzzification to defuzzification is crisp. Type-l fuzzy sets capture and model vagueness but cannot 

model uncertainty. This should mean that both type-2 interval and type-2 fuzzy system outperform 

the equivalent type-l fuzzy system under uncertain conditions. 

The ability of type-2 fuzzy logic to model uncertainty is being exploited in a growing number of 

applications. To date, all applications that have required fast execution, such as control or signal 

processing have only utilised type-2 interval methods. This is a significant limitation. Although the 

type-2 logical operators have been made more efficient, type-reduction still remains a significant 

barrier to the adoption of type-2 methods. Novel methods, techniques or models that significantly 

increase in the execution speed of type-2 fuzzy systems are required. When type-2 interval sys­

tems have been compared to equivalent type-l systems, the type-2 interval systems often give a 

better performance, particularly when uncertainties are present. Since generalised type-2 fuzzy 

sets offer an improved model of uncertainty it is reasonable to expect that a type-2 fuzzy logic 

system will show the ability to outperform both type-l and type-2 interval fuzzy system under 

large uncertainties. This point will be explored in Chapter 5 of this thesis. 

The following Chapter describes the novel geometric approach to fuzzy logic. The geometric 

approach to fuzzy logic forms the theoretical core of this thesis. Applying geometric models and 

methods to fuzzy logic results in significant performance differences with discrete systems. In the 

case oftype-2 fuzzy logic, significant improvements can be made for execution speed. 
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Chapter 3 

Type-l Geometric Fuzzy Logic Systems 

This Chapter presents the novel geometric approach to fuzzy logic systems. The geometric ap­

proach models fuzzy sets as geometric objects. Algorithms, selected from the field of computa­

tional geometry, are used to define the logical operations of these geometric fuzzy sets. 

The vast majority of applications of fuzzy logic use a rule base based approach, referred to as a 

fuzzy logic system (FLS). A FLS uses fuzzy logic in combination with a set of fuzzy rules to ar­

rive at a conclusion based on one or more premise. A FLS usually consists of an input processor, 

a rule base, an inference engine and an output processor. Inputs are fed into the input proces­

sor or fuzzifier, the inference engine using the fuzzy rule base reasons with the fuzzified inputs, 

a final fuzzy set is arrived at before an output is calculated by the output processor and fed out 

from the system. Figure 3.1 depicts a type-n FLS where the defuzzifier could use further output 

processing, including type-reduction and may output measures of uncertainty in conjunction with 

crisp numbers. Fuzzy systems are usually computerised, residing in software or on specialised 

Rule Base 

Fuzzifier Defuzzifier 
Inputs (Input (Output 

Processor) Processor) 
Outputs 

I Inference 1 
Engine 

Fig. 3.1. A Type-n Fuzzy Logic System. 

hardware. This work concentrates on Mamdani (1977) fuzzy logic as this type of fuzzy logic is a 

direct extension of crisp production rules and is widely used in the literature. Mamdani systems 

are simple to model geometrically as the main components of such systems are fuzzy sets, t-norms 

and t-conorms. This Chapter defines geometric interpretations ofthese three system components, 
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making it possible to define the novel geometric fuzzy logic operations. The rules in a Mamdani 

fuzzy system use fuzzy sets in their antecedent and their consequent. The consequent of each 

rule in the rule base must be either be aggregated or combined with a disjunction operation. This 

Chapter discusses the techniques and methods required to model Mamdani fuzzy logic systems 

of type-I, type-2 interval and type-2 geometrically. These geometric systems offer an alternative 

approach to fuzzy logic which some system developers may find advantageous. This Chapter de­

scribes the reasons why geometric fuzzy systems are limited to only utilising the minimum t-norm 

and maximum t-conorm, which will be a problem for some applications. It is demonstrated that 

the geometric approach offers an increase in accuracy of fuzzy set models over discrete systems, 

giving more efficient representations. Geometric interval defuzzification is shown to have a pre­

dictable level of computation, as opposed to the iterative type reduction method which only offers 

a predictable upper limit of computation. Other advantages and disadvantages of the geometric 

approach will be discussed in this Chapter. 

This Chapter is subdivided into five main sections. Section 3.1 describes the small amount of 

previous work by other authors that relates directly to this Chapter. Section 3.2 gives geometric 

techniques, equations and algorithms that will be useful throughout the remainder of this Chap­

ter. Much of the work in this Section is well understood including long established techniques 

from computational geometry although some of the 3-dimensional techniques are at the cutting 

edge of this field. Section 3.3 gives a complete geometric model of a type-l FLS. This model 

offers an alternative technique for implementing type-l fuzzy systems. It is shown that type-l 

geometric fuzzy systems can be more accurate than discrete systems, but do suffer from increased 

complexity. This Section also lays the foundations for the next two sections. Section 4.2 presents 

a complete geometric model of an interval type-2 FLS. The work presented in this Section is a 

direct extension of the geometric type-l FLS. This Section also presents a geometric alternative to 

type-reduction for geometric interval fuzzy sets. Section 4.3 presents a complete geometric model 

ofa type-2 FLS. This model utilises the 3-dimensional work presented in Section 3.2 to extend the 

geometric models presented in sections 3.3 and 4.2 to give a complete geometric model of type-2 

fuzzy logic. This Section extends the geometric defuzzifier for a type-2 fuzzy set. This has a 

significant impact on the computational cost oftype-2 FLS. Section 4.4 discusses the potential of 

type-2 FLS that are hybrids of discrete and geometric systems in maximising the performance of 

type-2 FLS. Techniques for transforming between the two models are given. The final part of this 

Chapter, Section 4.5 discusses and summarises the work presented in this Chapter and describes 

the impact of this work on the field oftype-2 fuzzy logic. 

43 



3.1 Piecewise Linear Functions 

This Section describes other work that has taken a geometric approach to modelling fuzzy sets or 

fuzzy inferencing. The use of piecewise linear membership functions along with approaches to 

reasoning with fuzzy sets based on such functions and the impact that such models have on the 

accuracy of fuzzy systems are all discussed. The later sections of this Chapter describe novel work 

that gives a complete geometric description of type-I, interval and type-2 fuzzy logic. The work 

presented in the Section underpins the novel work later in this Chapter. 

Piecewise linear functions are widely used when modelling membership functions in fuzzy sys­

tems. This type of function is defined below. 

Definition 3.1 A Piecewise linear function (PLF) is a series of ordered vertices that are connected 

by line segments to form a function over a continuous domain. This function is linear in all but a 

finite set of points. For a PLF to model afuzzy set A over the domain X the y component of all the 

vertices must in the interval [0, 1] i.e., 

JJA : X -4 [0,1] (3.1 ) 

The membership grade JJA for any particular value of x is given by 

{ 
° ; x ~ Xl or Xn ~ X 

,uA(X) = Yi ; X =Xi 
+ x-x' (y ) Yi ~ Hl-Yi ;Xi<X<Xi+! 

(3.2) 

where Xo and Xn are, respectively, the x-component of the first and last vertices of A. For conve­

nience a PLF will also be denoted by a set of vertices, i.e., 

A = {(Xl ,YI), (X2,Y2), ... , (Xn,Yn) I Xi E X,Yi E [0,1 LXi < Xi+ 1, Vi} (3.3) 

Where Xi is the X component or domain value of the i'h vertex and Yi is the Y component or range 

value of the i'h vertex. 

The type-l fuzzy set A is depicted in Figure 3.2. The membership function of A is a piecewise 

linear function consisting of the vertices (XO,yo), (XI ,YI), (X2,Y2) and (X3,Y3). Like discrete mem­

bership functions PLF cannot model a curved function with complete accuracy. Most systems only 

use PLF during the fuzzification inferencing stage after which the functions are discretised to allow 

inferencing to be perfonned. The goal of the geometric fuzzy systems presented in this Chapter is 

to remove the need for discretisation. The consequences of discretisation are now discussed. 
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x (X3 ,Y3) 

Fig. 3.2. The Fuzzy Set A Represented by a Piecewise Linear Membership Function. 

3.1.1 The Effect of Discretisation 

Discretisation is the process which takes a fuzzy set over a continuous domain and places it on a 

discrete domain. Whenever a (non-geometric) fuzzy system is deployed on computer hardware or 

software, the fuzzy scts used in that system must be discretised. A discrete fuzzy set comprises of 

a set of points from the domain of a fuzzy set, each with a respective membership grade. These 

pairings are usual1y ordered by domain point value and are general1y equal1y spaced across the 

domain, although this is not a formal requirement. The accuracy of such sets in modelling a 

given function is dependent on the number of points in the set and the level of approximation 

given by these points. The system devcloper decides how the fuzzy sets in a particular system arc 

discretised as to fit the hardware and performance specifications of the system. Many fuzzy sets 

are defined over a continuous domain. Whenever such a fuzzy set is discretised information about 

the membership function of that fuzzy set is lost. Examples given in this Chapter demonstrate 

that, for piecewise linear membership functions, the geometric approach eliminates this loss of 

information. 

Two typical discretisation options are now explored, demonstrating how the accuracy of fuzzy 

systems can be effected by discretisation. The intersection of the sets in the following examples is 

performed using the minimum I-norm and the centroid values are calculated with the centre of area 

defuzzifier. One approach would be to discretise the domain of a fuzzy set into a given constant 

number of points. Figure 3.3(a) depicts the intersection of two sets discretised in such a way using 

20 discrete points. Another method of discretisation is to ensure the discrete points in the set 

separated by a predefined distance from a predetermined origin. The intersection of two such sets 

is depicted in Figure 3.3(b) where the seperation distance between each discrete point is 0.5 and 

the origin is O. Whichever method is chosen discretisation wil1 have an impact on the accuracy 

of the set model. Figure 3.3(c) depicts the intersection of the two original membership functions 

that have been discretised in Figures 3.3 (a) and (b). Thc resultant sets depicted in Figures 3.3 

(a) and (b) contain errors caused purely by discretising the sets. To quantify this error in these 
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Fig. 3.3. The Effect of Discretisation of a Fuzzy Set on Accuracy of the Set Model. 

examples the centroid of the resultant PLF fuzzy set depicted in Figures 3.3 (b) is compared to the 

centroid of the other two resultant sets. The centroids are given in Table 3.1. The percentage error 

is calculated as a percentage of the support of the fuzzy set A / capB depicted in Figure 3 .3 (c). 

The differences in the errors for the discretisation methods do not reflect the accuracy of either 

method. These results only hold for this particular example. The errors shown serve to illustrate 

the point that the discretisation process causes errors in the fuzzy inferencing process which can be 

avoided with the use of piecewise linear membership functions. Furthermore these errors could be 

compounded through subsequent inferencing. These examples only show one simple rule. Over 

Set Centroid Error % Error 
Resultant Set from Figure 3.3(a) 0.5113 0.004562 0.88% 
Resultant Set from Figure 3.3(b) 0.491756 0.024106 4.7% 
Resultant Set from Figure 3.3(c) 0.515862 0 0% 

Table 3.1. A Comparison of The Centroid Values of Three Fuzzy Sets using Different Discretisation Methods. 
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an entire rule base these errors, the loss of information about the fuzzy sets, would compound and 

therefore increase. One of the motivating factors for proposing geometric fuzzy systems is that 

such errors are eliminated from the inferencing process. PLF do however have some modelling 

limitations that are common to discrete fuzzy set models. Neither of these models can capture 

a curved function with total accuracy. However both discrete and PLF membership function can 

approximate any curve with the same level of accuracy. The following Section describes previous 

work producing fuzzy systems that use PLF during the inferencing process. 

3.1.2 Fuzzy Reasoning with Continuous Membership Functions 

Previous work on reasoning with PLF has been based on implementations in functional program­

ming languages. Van den Broek (1997, 1999) reported the implementation of various fuzzy im­

plication operators in the functional programming language Miranda. In that work PLF were used 

to give the membership functions of the fuzzy sets. Each linear portion of a membership function 

can then be manipulated as a linear function. The code used to implement the implication opera­

tors exploits functional programming techniques and so does not relate directly to the algorithmic 

solutions presented later on in this Chapter although analogies may be drawn. Van den Broek rep­

resents each PLF as an ordered list of 2-dimensional points. When performing a Mamdani style 

implication one PLF A models the normalised A, a second PLF B models the antecedent value 

across the [0,1] interval. All the points where A and B intersect are found prior to resolving the 

main function. The method for finding these intersection points exploits the functional technique 

of lazy evaluation (Thompson 1999) and so has no algorithmic equivalent. The main function is 

resolved by recursively pattern matching portions of A with the intersection points with B to find 

the minimum of A and B. This technique can be viewed as a functional implementation of the 

type-l implication operator presented later in this Chapter. 

The major drawback with Van den Broek's work is the reliance on functional programming. The 

techniques used to implement the fuzzy systems are based around a computational method for 

which there is no current hardware implementation. The deployment of the fuzzy methods sug­

gested by Van den Broek would require significant hardware resources, most probably a full per­

sonal computer. This may be the reason why Van den Broek only defines a limited subset of 

fuzzy operations and has not proposed a complete fuzzy system. Van den Broek's approach to 

modelling fuzzy operations as the manipulation of linear functions is important. The novel geo­

metric approach presented in this Chapter is based on a similar notion of defining fuzzy operations 

as the manipulation of geometric figures. Such manipulations are defined algorithmically and 

can therefore be implemented on standard hardware. The (2-dimensional) geometric approach 

still manipulates piecewise linear functions, but uses algorithmic geometric operations to perform 
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them. In this sense the geometric approach extends Van den Broek's work by manipulating PLF 

as geometric figures rather than linear functions. 

This Section has shown that the membership functions of fuzzy sets can be approximated by a 

piecewise linear functions. A method for fuzzifying this type of membership function has been 

given. It has been shown that this limited use of these models can improve the accuracy of a fuzzy 

logic system over a discrete system. The following Section describes the fundamental geometric 

methods required to extend the use of PLF to the entire inferencing process, thereby improving 

accuracy. These geometric techniques underpin the definitions of geometric fuzzy logic given later 

in this Chapter. 

3.2 Geometry Primer 

This Section gives the necessary mathematical grounding needed for geometric fuzzy logic sys­

tems to be defined. This Section begins with 2-dimensional operations from geometry and com­

puter graphics, moving on to more complicated 3-dimensional methods. The techniques presented 

here are fundamental to geometric fuzzy logic systems. The need for these techniques was identi­

fied from initially working with fuzzy sets with piecewise linear functions. Algorithms to geomet­

rically manipulate piecewise linear functions identified in the computational geometry literature 

were then exploited to define geometric fuzzy logic. 

3.2.1 Geometric Interpretations of T-norms and T-conorms 

Fuzzy logic makes extensive use of the t-norm and t-conorm operators. This Section describes how 

two of the operators minimum and maximum have direct geometric interpretation. The product 

and bounded sum operators are shown to not yet have a direct geometric interpretation. 

Consider the two linear functions a and b depicted in Figure 3.4(a). The functions a and b can 

be easily represented in a geometric model as line segments. Geometric fuzzy operations on 

these line segments will then apply t-norms and t-conorms to these line segments. Figure 3.4(b) 

depicts the application of the minimum and product t-norms to the functions a and b. Figure 3.4(c) 

depicts the application of the maximum and bounded sum t-conorms to the functions a and b. The 

result from the product t-norm is a curve and can therefore only be approximated by a series line 

segments. The bounded sum of a and b could be given by a number of line segments, in this case 

two. However the properties of these line segments would be reasonably complicated to derive. 

The minimum and maximum of a and b can always be given by one or two line segments. The 

properties of these line segments are given by the vertices of the original line segment and if they 
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(a) (b) (c) 

_~a --=b -- =aminb -- =ab -- ~amaxb-- = Imina+b 

Fig. 3.4. (a) Two Linear Functions a and b. (b) T-norms of a and b. (c) T-conorms of a and b. 

intersect, the point where they intersect. To summarise: 

• the product t-norm, as yet, has no geometric representation; 

• it may be possible to represent bounded sum geometrically, and 

• minimum and maximum both have simple geometric interpretations. 

The most widely used operators arc minimum, maximum and product. Although the product has 

no current geometric interpretation, both minimum and maximum can be employed by geometric 

fuzzy logic systems. Throughout the remainder of this thesis the geometric approach will be 

limited to using the minimum t-norm and the maximum t-conorm. The following Section describes 

the parametric description of a line which is used to find the points where two line segments 

intersect. 

3.2.2 The Parametric Description of A 2-Dimensional Line 

The parametric equation of a straight line is useful for finding points where lines intersect. The 

work given here underpins the clipping techniques presented later on in this Chapter. 

Any point (xa.,J'a.) along a line L with respect to parameter t is given by the two equations below. 

Xu =XI +t(X2 -XI) 

Ya. = YI + t(Y2 - Yl) 

(3.4) 

(3.5) 

Where the start point of L is (XI ,Yl) and the end point is (X2,Y2). If 0 ~ t ~ 1 then the point (xa,Ya) 

not only lies on the line L but lies on the segment (Xl ,YI) - (X2,Y2). An example line L is depicted 

in Figure 3.5(a). 

Consider the two lines and segments La, from (XI ,YI) to (X2 ,Y2) and Lb, from (X3 ,Y3) to (X4 ,Y4) 

depicted in Figure J.S(b). It can be verified whether these two inter~ect or not by testing whether 
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there exists a point (xa,Ya) which satisfies the parametric equation of both of the lines. Let fa and 

tb be parameters on the respective lines La and Lb that give the point (xa,Ya) such that 

Xa = XI + ta(X2 - XI) = X3 + tb(X4 - X3) 

Ya = YI + ta(y2 - YI) = Y3 + tb(Y4 - Y3) 

These simultaneous equations can be solved with respect to fa and fb as given below. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

From Bourke (1989) 

!fO ~ fa ~ 1 and 0 ~ fb ~ 1 then (xa,ya.) is given by equations 3.6 and 3.7. Bourke (1989) noted 

that when the denominator of the two equations is zero then the lines must be parallel and when 

both the numerator and the denominator are zero the lines are coincident. Therefore equations 3.8 

and 3.9 can be used to test whether two given line segments intersect. Once a value for t has been 

calculated equations 3.6 and 3.7 can then be used to give the position of this intersecting point. 

Calculating the point where two line segments intersect allows one line segment to be clipped 

against another. These geometric clipping operations give geometric interpretations of t-norm and 

t-conorm operations discussed in the previous sections. Clipping is the process of the removing 

portions geometric objects that overlapped or lie outside a given boundary. In graphical processes 

it is essential to be able to clip one polygon against another, for example if, in a scene, a tree is in 

front a house the polygons associated with the house must be clipped to the polygons associated 

with the tree. This process is sometimes called hidden surface removal. In terms of fuzzy logic, 

if the tree and house were fuzzy sets then the removed hidden surface represents the fuzzy 'and' 

operation. Figures 3.6 (a), (b) and (c) depict this analogy. The following Section describes efficient 

techniques for finding the intersection points amongst a collection of line segments. 

3.2.3 The Bentley-Ottmann Plane Sweep Algorithm 

Geometric clipping operations are used to define geometric fuzzy operations later in this Chapter. 

When performing such an operation it is often necessary to test for intersection points amongst 

a large collection of line segments. The simplest solution, the brute force method, simply tests 

whether each line segment in one polygon intersects with any of the line segments in the collection. 

If there are a total of N line segments with k intersections then the execution cost will be O(N2). 

In the interests of performance a more efficient method was devised, the Bentley-Ottmann (1979) 
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Fig. 3.5. The Intersections Points of Two Parametric Lines. (a) The Parametric Description ora Line (lJ) Finding the 
Intersection Point of Two Lines. 
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Fig. 3.6. A Clipping Operation Performed by a Pipeline Graphics Process . (a) A Graphical Model (b) That Model 
Clipped and Rasterised (c) The Fuzzy Equivalent 

plane sweep algorithm has an execution cost of O(NlogN + klogN). In essence the plane sweep 

algorithm moves a virtual vertical line across the x-dimension only testing for line intersections 

between lines whose start point has been past but whose end point has not. All points to the left of 

the line have been solved and the points immediately to the right of the line are about to be solved. 

The name plane sweep comes from the notion of a plane sweeping across the segments checking 

for intersection points immediately in front of it. 

Consider the collection of line segments S that is depicted in Figure 3.7. To perform the plane 

sweep algorithm on S it is necessary to keep track of certain information in some data structures. 

All the points fror.) all the segments will be held in x-dimensional order in a queue called the event 

queue. This queue ensures that the vertices are processed from left to right, giving the sweeping 

notion to the algorithm. When an intersection point is found it is also added, in the correct place, 

to this queue. The next action to be taken is dependent on the contents of the head of Llis queue; 

intersection points are processed differently from other vertices. Another queue R will hold the 

points that arc currently being processed in order of the y-dimension. This queue, R, only holds 

vertices that are relevant to the intersection test, reducing the number of. necessary tests. The 
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Fig. 3.7. The Collection of Line Segments S. 

output intersection points will be stored in another list l. The pseudo code algorithm is given in 

Algorithm 3.1. 

Algorithm 3.1 The Bentley-Ottmann Plane Sweep Algorithm. 
• Inputs: list of segments S; 

• Populate Q with start and end points from all segments in S; 

• ensure these are ordered by x values; 

• for each point p in Q: 

o if p is a start point of a segment s then: 

• if s intersects with any of the segments in R then insert the intersection points into 
Q and I and sort Q; 

o else if p is an end point of a s segment s then: 

• remove s from R; 

o else if p is an intersection point of segments sand t then: 

• swap the position of sand t in R; 

• check the upper segment for an intersection with the segment above it in R; 

• check the lower segment for an intersection with the segment below it in R; 

• add any intersection points to Q and I. 

• Outputs: list of segments Q; 

An example will now be given to illustrate the plane-sweep algorithm. Consider the three line 

segments A, Band C depicted in Figure 3.7. A visual inspection of Figure 3.7 shows there are two 

intersection points I) and h to be identified by the algorithm. The algorithm will now be worked 

through using these three segments to demonstrate how It and h are identified. The notation As 

and Ae is used to denote the respective start and end points of segment A. 

Initialisation Step: 

Q = {As,Bs,Cs,Be,Ae,Ce}' R = n. 1= n· 
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Iteration 1: 

Q = {As,Bs, Cs,Be,Ae, Ce}. R = {A}. 1= n. No intersection test possible. 

Iteration 2: 

Q = {As, Bs,IJ, Cs,Be,Ae, Ce}. R = {B,A}. 1= {h}. Test if B and A intersect. h identified. 

Iteration 3: 

Q = {As,Bs, It, Cs,Be,Ae, Ce}. R = {A,B}. I = {It}. No further intersection tests necessary. 

Iteration 4: 

Q = {As, Bs,h, Cs/z,Be,Ae,Ce}. R = {C,A,B}. I = {It ,h}. Test if A and C intersect. h is identi­

fied. Test whether Band C intersect. No intersection found. 

Iteration 5: 

Q = {As,Bs,I], Cs, I;z,Be,A e, Ce}. R = {A, C,B}. I = {II ,h}. No further intersection tests neces­

sary. 

Iteration 6: 

Q = {As,Bs'!l, Cs,/z,Be,Ae, Ce}. R = {A, C}. 1= {h '!2}. No further intersection tests necessary. 

Iteration 7: 

Q = {As,Bs,h,Cs,h,Be,Ae,Ce}' R = {C}. 1= {Il,h}. No intersection test possible. 

Iteration 8: 

Q = {As,Bs'!] , Cs,h,Be,Ae, Ce}. R = n. I = {II ,h}. No intersection test possibl~. 

This Section has given an efficient technique for identifying intersection points in a collection of 

2-dimensional line segments. The next Section utilises this technique to provide manipulation 

operations for geometric primitives. These operations are later used to define fuzzy operations for 

geometric fuzzy sets. 

3.2.4 Weiler-Atherton Clipping 

In the field of computer graphics it often necessary to remove the intersecting areas from 1'..,,0 

or more of polygons. Consider the example of a computational model of a 3-dimcnsioual scene 

having to be drawn or visualised in only 2-dimensions. Such an example is given in Figure 3.8, 

where the scene consists of a rectangle and a triangle. For the scene to be correctly drawn in 2-

dimensions the area of the triangle that is obscured by the rectangle must be removed or clipped. 

There are a number of clipping algorithms (Cyrus & Beck 1978, Foley & Van Dam 1982, Suther­

land & Hodgman 1974) each with strengths and weaknesses in differing applications areas. Later 

in this Chapter the geometric models of fuzzy sets based on straight line segments are explored. 

When defining the geometric conjunction and disjunction of two geometric fuzzy sets a clipping 

algorithm that works efficiently with vertices and line segment models will be required. The algo-
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rithm widely used in such clipping applications is the Weiler-Atherton (1977) clipping algorithm 

given in Algorithm 3.2. 

Algorithm 3.2 The Weiler-Atherton Clipping Algorithm. 

• Inputs: lists of segments clip, subject; 

• Ensure all vertices including intersection points in both the subject and clip polygons are 
ordered clockwise; 

• begin at the first point in the subject polygon; 

• until one of the vertices all ready processed is reached: 

o follow the subject polygon in clockwise order until an entering intersection point is 
come upon. This is the first vertex to be added to the clipped area A; 

o continue following the subject polygon clipping vertices as they are encountered until 
an exiting intersection is encountered; 

o follow the clip polygon in clockwise order from the exiting intersection until another 
intersection found then switch back to the following the subject polygon; 

• if all points in the subject polygon have not been traversed then repeat this process beginning 
at the last point that was processed . 

• Outputs: lists of segments clip, subject and A; 

An example of Weiler-Atherton clipping will now be worked through. Consider the two polygons 

depicted in Figure 3.9. In this example the triangle A,B, C is being clipped against the rectangle 

a,b,c,d. This is the same situation as the example from Figure 3.8. The rectangle is in front the 

triangle in the viewing plane. The portion of the triangle that is being obscured by the rectangle 

must therefore be removed for the scene to render correctly. The triangle is referred to as the 

subject polygon and the rectangle is referred to as the clip polygon. The subject polygon is always 

clipped against the clip polygon. Before clipping can be performed all points where the two 

polygons intersect must be found. The Bentley-Ottmann plane-sweep algorithm can be used for 

this. In our example the intersection points are denoted 1 and 2. Intersection points can either be 

entering or exiting intersection points. An entering intersection point is one that is encountered 

immediately before an area covered by both polygons is reached. An exiting intersection point is 

one that is encountered as such an area is exited. In our example the vertex 1 is an entering point 

and the vertex 2 is an exiting point. The algorithm is now applied to this example. 

The example depicted in Figure 3.9(a) will now be worked through. 

• Create a vertex list for each polygon ensuring clockwise ordering: 
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Sccne Model 

(a) 

Clipped Scene 

Fig. 3.8. An Example ofa Polygon Clipping. 

2a C 

l~d 
(b) 

Rasterised Scene 

(c) 
Fig. 3.9. (II) A 2-Dimensional Depiction of the Triangle and Rectangle Scene in Figure 3.8. (b) The Clipped Area of 
(a) After Weiler-Atherton Clipping. (c) The Rasterised Scene after Weiler-Atherton Clipping. 

o subjectlist = A, I , 2,B,C; 

o cliplist = a,b,2,c, d, 1; 

• begin iterating through the subject list starting with vertex A ; 

• begin processing: 

o found entering intersection point I. 1 added to output list. Continue tnwersins subject 

list; 

o found exiting intersection point 2. 2 added to output list. Switch to following clip list; 

o found point c. c added to output list. Continue traversing clip list; 

o found point d. d added to output list. Continue traversing clip list; 

o found previously visited point 1; 
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• all vertices in the subject polygon have not yet been traversed so continue algorithm from 

point 2; 

o found point B. Continue traversing subject list; 

o found point C. Continue traversing subject list; 

o found previously visited point A; 

• all vertices in the subject polygon have been traversed so the algorithm terminates; 

• output list = ] ,2,c,d; 

• rectangle = a,b,c,d, and; 

• former triangle =A,I,d,c,2,B,C. 

Figure 3.9(b) depicts the area clipped, the output list in the example above and Figure 3.9(c) 

depicts the result from the clipping operation, the rectangle and former triangle lists. 

The Weiler-Atherton clipping algorithm works directly with geometric primitives, namely vertices 

and line segments. Later this Chapter describes how this method can be used to give to the logical 

operators for type-l geometric fuzzy sets based on such geometric primitives. The following 

Section describes the calculation of the centroid of a polygon made up of vertices and segments. 

3.2.5 The Centroid of a Polygon. 

A crucial step in fuzzy inferencing is defuzzification, where a fuzzy set which has been output from 

a fuzzy inferencing process is transformed back into a crisp number. One method for performing 

this transformation from a fuzzy set to a crisp number is to calculate the centroid of the fuzzy 

set. The centroid is the x-component of the centre of the area encompassed by the fuzzy set. This 

Section presents a geometric approach to calculating the centre of this area when the membership 

of a fuzzy set is a PLF. 

As demonstrated in Section 3.1 the membership function of a fuzzy set can be given as a piecewise 

linear function. Connecting the ends of the PLF with a line segment (xn,Yn)(XO,yO) results in a 

polygon that is equal to the area encompassed by the fuzzy set. The centroid of a polygon (Bashein 

& Detmer 1994, Bourke 1988) can be calculated by deconstructing the polygon into a collection of 

triangles. Each of these triangles has one vertex at (0,0) with the other two vertices taking values 

in order from one of the line segments that fomls the polygon. This means a polygon with n 

vertices can be broken down into n triangles. The centroid of the polygon is the weighted average 

of the area and centre of these triangles. Consider the polygon PI depicted in Figure 3.1 O(a). This 
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polygon has 4 vertices and can therefore be broken down into 4 triangles 1\ to 14 as depicted in 

Figures 3.1 O(b) to 3.1 O( e) where the dotted lines depict P \. Note that the triangles II, 12 and 13 all 

encompass an area that lies outside the polygon PI . The sum of these areas from II to 13 is equal 

to the entire area of the triangle 14. Since a signed value for the area is taken for each triangle these 

overlapping areas will cancel out. This is because the sign of area of 14 will be the opposite to all 

the other triangles. 

(0,0) 

(d) 

(a) 

(xO ,YO) 

.' 

(c) 

(0,0) 

(e) 

Fig. 3.10. Calculating thc Centroid of Polygon PI using Constituent Triangles II to 14 . 

The signed area of a triangle is given by the half of the eross product of two of the edge vectors. 

The eentre of a triangle is the sum of the vertices divided by three. The area of 11 is therefore 

(3.10) 

Since all the triangles from the polygon PI contain the vertex (0,0) the area A of any triangle ti is 
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given by 
A(ti) = XiYi+l -Xi+lYi 

2 

An assumption is made that the polygon starts and ends at the same vertex (XO,yo). 

component of the centre or centroid C of the triangle ti is given by 

The x-component of the centroid C of a polygon P is given by 

c = I,7:d A(ti)C(ti) 

L7:d A(ti) 

(3.11 ) 

The x-

(3.12) 

(3.13) 

Where n is the number of vertices that make up P, A(ti) and C(tl) are given by equations 3.11 and 

3.12 respectively. Substituting equations 3.11 and 3.12 into equation 3.13 gives 

c = I,7:d (Xi + Xi+I) (XiYi+l - Xi+lYi) 

3 (L7:d XiYi+l -Xi+IYi) 
(3.14) 

This method for finding the x-component of the centroid of a polygon will inform the discussion on 

defuzzification of a geometric fuzzy set later in this Chapter. Having discussed ways ofmodclling 

and manipulating 2-dimensional geometric objects, the following Section discusses 3-dimensional 

models. Such models will be utilised later on in this Chapter when type-2 geometric fuzzy sets 

and systems are explored. 

3.2.6 Surface Modelling Using a Triangulated Mesh 

In the proceeding Chapter type-2 fuzzy sets were discussed. It was de~onstrated that type-2 

fuzzy sets require a 3-dimensional model. To geometrically describe such objects a method for 

modelling a 3-dimensional surface must be found. A simple solution would be to extend our 

parametric line models to include a third dimension. A surface could then be modelled as a 

collection of connected polygons. Surface clipping algorithms, analogous to the line clipping 

algorithms, could then be defined. However, as will be seen in the next Section, for surface 

intersections to be calculated easily, each of the polygons would have to lie on a plane. This means 

either placing a constraint on the polygons that they must all be planar or restricting the number 

of vertices in the polygons to be three, i.e. only use triangles as a triangle must by definition 

always lie on a plane. This work only uses triangles to model3-Dimensional surfaces. This makes 

the surfaces dipping algorithms employed later in this Chapter a great deal simpler and also less 
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Fig. 3.11. Three Approximations ofa Spherical Surface Using 8, 32 and 512 Triangular Facets. 

computational expensive. 

Any non planar surface can then be approximated using a mesh of connected 3-dimcnsional trian­

gles. The level of approximation i.e., the error in the surface model is dependent on the number 

of triangles used. This is analogous to using a collection of 2-dimensional line segments to a,­

proximate any 2-dimensional curve. Consider the examples given in Figures 3.11 (a), (b) and (c). 

Each figure depicts an approximation of a spherical surface as modelled by a triangulated mesh. 

The Figures 3.11 (a), (b) and (c) use 8, 32 and 512 triangles respectively to model the surface 

of a sphere. The number of triangles used to model a particular surface in a system is a choice 

made by the system developer. A balance must be struck between the model accuracy and the 

computational resources needed to process the model in a timely fashion. 

Triangular facet meshes provide a method for modelling, with some degree of approximation, 

any arbitrary 3-dimensional surface. This method will be exploited later on in this Chapter when 

geometric models oftype-2 fuzzy sets are discussed. The advantage of only using facets consisting 

of three vertices i.e.' triangles is that each facet must be planar. In the following Section a method 

for finding the points where two 3-dimensional triangles intersect is given. This method exploits 

planar nature of triangles to find thes~ intersection points. 

3.2.7 Guigllc and Devilters Triangle-Triangle Overlap Test 

Triangle meshes provide a method for modelling any 3-dimellsional surface. If the smface of a 

type-2 fuzzy set is to be modelled using a triangular mesh then ways of defining logical operations 

on such meshes will need to be found. This is likely to involve a method of calculating any points 

where two triangles intersect so that one triangle can be clipped against the other. The ability to 

clip triangles is fundamental to finding the highest (maximum) and lowest (minimum) possible 

surface Of two meshes. This is explored in more detail in Section 4.3.2.3 where the conjunction 

and disjunction of two type-2 fuzzy sets is discussed. The Guigue and Devillcrs triangle-triangle 
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overlap test (Guigue & Devillers 2003), an extension of Mollers intersection test (Moller 1997), 

provides a method for testing for and calculating any points where two triangles intersect. This 

method is summarised in Algorithm 3.3. 

Algorithm 3.3 The Guigue and Devillers Triangle-Triangle Overlap Test. 

• Inputs: triangles II and 12 defined by their vertices PI, QI ,RI ,P2,Q2 and R2; 

• Let the two triangles being tested be II and 12 lying on the planes 7t1 and 1t2 respectively; 

• check whether II lies entirely in a half space of 7t2. If so triangles cannot intersect so exit 
algorithm; 

• check whether 12 lies entirely in a half space of 7t1. If so triangles cannot intersect so exit 
algorithm; 

• check that 7t1 t= 1t2· If 7t\ = 1t2 then the triangles both lie on the same plane and can be 
processed using 2-dimensional methods; 

• rotate both triangles into canonical form; 

• test for overlapping intersection points. If no points from either triangle overlap then the 
triangles do not intersect so exit the algorithm, and 

• calculate the intersection points II and lz of the triangles. 

• Outputs: points II and h 

The method is now explored in greater detail. Consider the two triangles II with vertices PI, QI 

and RI, and 12 with vertices P2, Qz and R2 on the respective planes 1t1 and 1t2 depicted in Figure 

3.12. The alg01~ithm begins by testing whether II intersects with 7t2 and whether 12 intersects with 

7t1· This is done by comparing the distance from each vertex to the plane of the opposing triangle. 

First take the distances from PI, QI and R, to the plane 1t2, denoted dPI, dql and drl. When the 

signs of dPI, dq, and drl are compared three distinct situations can be identified. If all three have 

the same sign, then tl lies in one of the half spaces of 1t2. If all three are zero then the tl and 12 

lie on the same plane and can therefore by handled using 2-dimensional methods. If one of the 

distanceshas a different sign then II intersects the plane 7tz and the algorithm continues. The same 

is done for the distances dP2, dq2 and dr2. If one of the distances has a different sign then the 

algorithm continues as each triangle must intersect the plane of the opposing triangle. The next 

stage involves rotating the vertices of each triangle in such a way that PI lies on the opposite side 

of 1t2 than QI and RI and P2 lies on the opposite side of 7t1 than q2 and R2. Also Pz, Q2 and R2 

are ordered counter clockwise with respect to PI and PI, QI and RI are ordered counter clockwise 

with respect to P2. This is the vertex ordering depicted in Figure 3.12. The line I depicts the line 
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Fig. 3.12. Intersecting Triangles and The Planes in Which They Lie. Adapted from Guigul! and Devitlcrs (2003). 

where the planes 7t1 and 1t2 intersect. There must now be a point along each of vectors PlrJI , pi'h , 
P2C/2 find P2r2 that intersects the line I. These points are denoted 1, J , K and L rcsp'!ctively. A 

series of boolean operations then finds the order of 1, J, K and L along I. lfthis ordering confirms 

that the triangles do intersect then intersection points are calculated. In the case of II and 12 the 

points follow the ordering I , J, K and L giving the intersection points K and J. The calculations to 

give the points J and K are given below. 

(3 .15) 

J _ P _ (;: _ - ) (PI - P2) "~ 
- I \1'1 P2 (;: _)_ 

\1'1 - ql · n2 
(3 .16) 

Where 111 and ;6 are the nOm'lais to the respective planes 1t1 and 1t2, . is the dot product of two 

\'ectors and PI is the position vector of PI · This algorithm provides a mcthod for testing for and 

calculating the intersection points of two triangles in 3-dimensions. The use of a series of single 

geometric tests to ascertain the way the two triangles are interacting simplifies the intersection 

point calculation and reduces the possibility of errors from floating point caiculations. 

The current and preceding sections of this Chapter have explored the geometric mocels and al­

gorithms that underpin geometric fuzzy logic. The remainder of this Chapter presents the novel 

geometric approach to fuzzy systems. This work forms the theoretical core of thi s thesis. 
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3.3· Geometric Type-! Fuzzy Logic Systems 

Type-l fuzzy systems are used in a wide range of application areas. Current discrete models are 

robust and efficient, if not always perfectly accurate. In this Section a geometric model of a type-l 

FLS is defined. This offers an alternative, more accurate method of implementing type-l fuzzy 

logic systems. This also represents a first step toward geometric models of interval type-2 and 

type-2 fuzzy logic systems. Most of the work in the preceding sections of this Chapter has been 

revised or reworked from other sources. The remained of this Chapter defines the novel geometric 

approach to type-l fuzzy systems. The geometric approach to type-l fuzzy systems was presented 

by the author in Coupland and John (2004b). 

3.3.1 Geometric Type-l Fuzzy Sets 

Fundamental to any method of fuzzy reasoning is the representation of a fuzzy set. The geometric 

fuzzy reasoning approach explored in this work is built on a fuzzy set model consisting of geomet­

ric primitives, vertices and line segments. Any fuzzy set is defined by its membership function. A 

geometric type-l fuzzy set is defined as a type-l fuzzy set with a membership function that is a 

piecewise linear function. 

Definition 3.2 A type-] geometric fuzzy set is characterised by a membership function consisting 

of a series of order vertices connected by line segments to form a function over a continuous 

domain. Each vertex of a fuzzy set A over the domain X consists of a value x such that x E X and 

a value y such that y E [0,1 J i.e., 

(3.17) 

Three example type-l geometric fuzzy sets are depicted in Figure 3.13. The Figures 3.13 (a), (b) 

and (c) respectively depict a triangular fuzzy set, a trapezoidal fuzzy set and an approximation of 

a Gaussian fuzzy set. The Gaussian fuzzy set depicted in Figures 3.13 (c) is approximated with 

nine vertices. 

Definition 3.2 states that a geometric fuzzy set is characterised by a membership function that is 

a piecewise linear function. In Section 3.1 it was shown that all type-l fuzzy sets can be approx­

imated by a PLF. The point of departure for geometric type-l fuzzy sets is that they must always 

be characterised by a PLF. The following Section draws upon the geometric methods given earlier 

in this Chapter to define the various operations needed for inferences to be made using geometric 

fuzzy sets. 
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Fig. 3.13. (a) A Triangular Fuzzy Set, (b) A Trapezoidal Fuzzy Set and (e) An Approximation of a Gaussian FU7ZY 
Set. 

3.3.2 Geometric Type-l Fuzzy Inferencing 

Fuzzy logic systems (sec Figure 3.1.) are essentially rule based logic systems where the rules arc 

fuzzy, that is, each rule fires to a fuzzy degree. The antecedent of a type-l fuzzy rule has a value 

in [0, 1]. The consequent of each rule is one or more type-l fuzzy sets. The combination of the 

rule consequents is a type-l fuzzy set and must therefore be defuzzified if crisp output value is to 

be output. 

3.3.2.1 Fuzzificntion 

Fuzzification is the process of finding to what degree a particular value x belongs to a given fuzzy 

set A. The membership function of a geometric fuzzy set is a PLF, as such there are three possible 

situations that C011ld occur when fuzzifying x in A. The value x could be outside the bounds of the 

fuzzy set, in which case x has a membership of zero in A. Should x be equal to a x-component of 

one of the vertices that make up A then the membership ofx in A is the y-component of that Yeltex. 

When x lies between two vertices from A the membership of x in A is fOl.lnd by linear interpolation 

between the two vertices. More formally l!,e membership grade I'A for any particular va!uc of x in 

a geometric fuzzy set A is given by: 

{ 

0 ; x ~ Xl or Xn ~ X 

)i" (X) = Yi ; X = Xi 

Y ·+.2::::3.Lf·,·+ I - y ·) . \C ' <X<X' t I Xi+ I - X, VI / , . /. /+ 

(3.18) 

where xO, Xi and XII are, respectively, the x-component of the first, i1h and last vertex and Yi is the 

y component of the jlh vertex. This is identical to equation 3.2 presented in the earlier discussion 

of piecewise linear functions. Each input is fuzzified in one or more fllzzy set as defined by the 

rules in the rule base. The antecedent of each rule may have a number of fllzzified values that are 

combined to give the antecedent ·value, the rules firing strength. Since this combination involves 

crisp numbers and not fuzzy sets the geometric model has no impact on this part of the inferencing 
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process. As with discrete fuzzy systems the conjunction of two fuzzified values is given with a 

t-norm and the disjunction with a t-conorm. This firing strength is then passed to the inference 

engine of the geometric type-l fuzzy logic system for the calculation and combination of the rule 

consequents. 

3.3.2.2 Implication 

Implication is the process of calculating the value of a consequent in a given fuzzy rule according 

the firing strength of that rule. Consider the fuzzy rule, where the firing strength ex. = J1A (a) * J1B (b): 

IF a is A AND b is B THEN g is G 

In a discrete fuzzy system the implication operation would involve taking a t-norm of the firing 

strength a. and the membership grade of the consequent fuzzy set G at every point in G. As dis­

cussed earlier, the geometric model cannot model any (-norm, only the minimum. The geometric 

implication operation involves finding the minimum of a crisp number ex. and a PLF G at every 

point in G. To perform this operation a geometric model of ex. must first be constructed. The value 

of ex. across the domain of G can be modelled by a line segmentJs which will now be defined. 

Let the first and the last vertices of the consequent fuzzy set G be denoted by (XO ,Yo) and (xn ,Yn) 

respectively. Let the start point ofJs be (xo - 0, a) and the end point offs be (xn + 0, a.) , where 

o is some positive number which is small with respect to Xn - Xo. The line segmentJs has a Y­

component equal to a at value of x across G. Such a segmentfs is depicted in Figure 3.14 (a) with 

a consequent fuzzy set G. The geometric implication offs on G could then be given applying the 

(a) 
I 

fs 

o 
H 

a. ... ---+------~..----;-: 

(b) 
1 

,...-------....... ......... . 

Fig. 3. 14 . (a) The Consequent Fuzzy Set G and the Line Segmentfi·. (b) The Result 'oris => G. 

Weiler-Atherton clipping algorithm to the geometric primitives Js and G. However, sinee fs is a 

perfectly horizontal line segment a simpler operation can be given. This geometric type-l implica­

tion operation is given in Algorithm 3.4. This algorithm clips every line in G against a y value ex., 

giving the minimum of JIG and a at every point in G. The reason that the Weiler-Atherton clipping 
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Algorithm 3.4 The Geometric Type-l Implication Operation. 
• Inputs: antecedent value a. and the geometric fuzzy set G; 

• Let a be the computed antecedent value of a rule R. Let the consequent fuzzy set G of rule 

R be defined the vertices (XI,yt} .. · (xn,Yn); 

• for every value of i between 0 and n - 1 let the line segment (Xi,Yi)(Xi+1 ,Yi+l) be replaced 

by: 

o the segment (Xi,Yi), (Xi+1 ,YHd whenYi andYHl are both less than ex; 

o the segment (Xi, ex), (XH1, ex) when both Yi and Yi+l are greater than a.; 

o the two line segments (Xi ,Yi)(Xa , a) and (xa, a.)(XHI' a) whenYi is less than a andYHI 
is greater than ex, where 

(3.19) 

o the two line segments (Xi,a.)(Xa,ex) and (xa,a.)(Xi+I,Yi+l) whenYi is greatcr than ex 
and )'i+ I is less than a, where Xa is given by equation 3.19 . 

• Outputs: the geometric fuzzy set a. => G; 

algorithm is not needed for this operation is that alpha is a constant value limiting the ways in 

which G andfs can interact. The y-component of any intersection point ofJs and G will always be 

a. This reduces computation of the intersection points and the computation required to test of an 

intersect point. Any line segment in G can only intersect Js if a. is between)li and )li+ 1. Because 

of this it is sensible to use an simplified algorithm based on Weiler-Atherton clipping provided by 

Algorithm 3.4. 

The example implication given in Figure 3.14 (a) is now worked through . 

• The consequent fuzzy set G consists of three vertices (Xl ,)'1), (X2,Y2) and (X3,Y3); 

• in the first segment YI is less than a. and)l2 is greater than a.. Therefore the two line segments 

(XI ,YI )(xa, ex) and (xa, ex)(X2' ex) arc output. where 
l . 

(3.20) 

• in the second segment Y2 is greater than a and)'3 is less than a. The two line segments 

(x2,a)(xb,a) and (xb,a)(x3,)l3) are output, where 

(3.21) 
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The output from this algorithm is the PLF fs => G depicted in Figure 3.14 (b). This Section has 

given a geometric interpretation of the type-l fuzzy implication operation. The next Section gives 

a geometric model of the fuzzy 'or' operation. 

3.3.2.3 Combination of Rule Consequents 

Once each rule has fired all the implied consequent fuzzy sets have to be combined in some way. 

If computational resource is a limiting factor then it is possible to defuzzify each consequent and 

aggregate the results. Generally however, all the consequents are combined using the 'or' operator. 

This involves taking the t-conorm of the membership grades of all the consequents at each point in 

the domain. As discussed earlier, the only t-conorm that currently has a geometric interpretation 

is maximum. The Weiler-Atherton clipping algorithm gives the line segments that describe the 

minimum of all points across two PLFs. This algorithm can be easily modified to give the line 

segments that describe the maximum of all points across two PLFs. The modified Weiler-Atherton 

clipping algorithm is given in Algorithm 3.5. 

Consider the two geometric fuzzy sets A and B depicted in Figures 3.15 (a) and (b). The application 

of the modified Weiler-Atherton clipping algorithm to these two fuzzy sets is now given. 

• ensure vertices are correctly ordered; 

• ensure PLF are in order A then B by x-component of they first vertex, and they are; 

• test that A and B are not disjoint, and they are not; 

• use the plane sweep algorithm to find any intersection points. Points ;1 and h are identified; 

• subject PLF: v, i\, X, y, i2, z; 

• clip PLF: a, b, i" ;2, c, d; 

• begin iterations: 

o follow clip PLf. Append a to C; 

o follow clip PLF. Append b to C; 

o intersection point found. Append i\ to C. Switch to subject PLF; 

o follow subject PLF. Append x to C; 

o follow subject PLF. Append y to C; 

o intersection point found. Append i2 to C. Switch to clip PLF; 

o follow clip PLF. Append c to C; 
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Algorithm 3.5 The Modified Weiler-Atherton Clipping Algorithm. 

• Inputs: piecewise-linear functions A and B; 

• Ensure all vertices in both A and B are ordered by their x-component; 

• let A be the PLF with the start vertex with the lowest x-component and B be the other PLF; 

• if the first vertex in B has an x-component that is greater than the x-component of the last 
vertex in A i.e. they are disjoint, then concatenate A and B to give C, output this result and 
exit the algorithm; 

• use the, Bentley-Ottmann plane sweep algorithm to identify all intersection points of A and 
B. lfno intersection points are found then let C = A and exit the algorithm; 

• let the subject PLF be B with any intersection points included in order; 

• let the clip PLF be A with any intersection points included in order; 

• begin at the first point in the clip polygon, append this point to C; 

• until all the last vertex in A or B is reached: 

o follow the clip PLF in order adding points to C, until an intersection point is come 
upon,and 

o follow the subject PLF in order adding points to C, until an intersection point is come 
upon then switch back to the clip PLF. 

• Outputs: the piecewise-linear function C; 

o follow clip PLF. Append d to C; 

• last vertex in A has been reached so algorithm terminates, and 

• C:=: a, b, it, x, y, i2, c, d. 

The output from this example is depicted in Figure 3 .15 (c) where the output geometric fuzzy set 

is labelled A or B. This output A or B is a composite geometric fuzzy set that has been arrived 

at through a geometric fuzzy inferencing process. This fuzzy set represents the decision made by 

the system based on the knowledge encoded in the fuzzy rules and inputs given to the system, 

The final stage in the geometric fuzzy inferencing process is defuzziticatio!\ which arrives at a 

crisp value which is representative of ' the final fuzzy set. The following Section describes t.1)c 

defuzzification of a geometric type-l fulZY set. 
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Fig. 3.15 . (a) The Geometric Fuzzy Set A. (b) The Geometric Fuzzy Set B. (c) The Geometric Fuzzy Set A OR B. 

3.3.2.4 Defuzzification 

This final processing stage takes an inferred geometric fuzzy set and calculates a crisp value that 

is representative of this fuzzy set. The defuzzified value of a geometric fuzzy set C is the centre 

of the area (COA) of the C, denoted COAc. The centroid ofa polygon given in Section 3.2.5 can 

be used to find the COA of C. C is a PLF to transform it into a closed polygon the endpoints of 

the PLF must be connect with a line segment. This is done be appended an extra vertex to the end 

of C, the value of which equals the first vertex in C. This transforms C from a piecewise linear 

function into a closed polygon. The polygon COA method can then used find the cenh'e of area of 

this closed polygon. The defuzzified value, the centroid of C is given by 

COAc = L7= 1(Xi~Xi+ l)(XiYi+ l - Xi+1Yi) 

3(Li=lXiYi+l - Xi+1Yi) 
(3.22) 

Adapted from Bourke (1988) 

This Section has given a geometric equivalent to the discrete centre of area defuzzifier. This is 

the final component needed to have a complete geometric model of type- I fuzzy logic. The next 

Section discuss issues that sUlTound the use of discrete fuzzy sets. 

3.4 Issues Surrounding Discretisation 

Typically a fuzzy system that is deployed on either computer hardware or software wi II use discrete 

fuzzy sets. This is due to the way the fuzzy sets are represented in the computers memory. Fuzzy 

sets are typically represented as a number of discrete point with operations manipUlating this 

discrete points algorithmically. 

The level of discretisation decides the level of accuracy of the set model and amount of processing 
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resources it takes to execute a fuzzy system. The relationship between the level of discretisation in 

a type-l fuzzy system and the execution speed is linear. The more complex relationship between 

type-2 fuzzy systems and discretisation is explored in this Section, however more work in is before 

firm recommendations about discretisation levels can be given. 

The optimised join and meet operations reduce the computational problems of these operations 

when using the minimum and maximum t-nonn and t-cononn and convex secondary member­

ship functions. These operations are used throughout the inferencing process up to the output 

processing stage. A type-2 system that confonns to the imposed constraints will therefore be 

computationally efficient up to the point of type-reduction. Type-reduction has a high compu­

tational expense which increases significantly as the number of discrete points in the set being 

type-reduced increase. Type-reduction requires that all the type-2 embedded sets that are needed 

to model a type-2 fuzzy set be enumerated and processed. The number of embedded sets required 

increases as the number of points in the type-2 fuzzy set increase. Figure 3.16 plots the number of 

embedded sets required to model a type-2 fuzzy set that has between zero and ten points along the 

domain of the primary and secondary membership functions. The z-axis, the number of embedded 

sets, in Figure 3.16 is logarithmic. The novel extensions to the Kamik and Mendel optimised join 

and meet allow fast type-2 inferencing with the minimum t-nonn. Type-reduction, in particular 

the explosion in the number of embedded sets, prior to this thesis, was the remaining obstacle to 

the implementation of fast and efficient type-2 fuzzy logic systems. With the advent 'of geometric 

type-2 fllzzy systems, presented for the first time in this thesis, this remaining obstacle to efficient 

implementation of a type-2 fuzzy logic system has been overcome. 

Discretisation also impacts on the accuracy of the set model. This is also true of type-l fuzzy 

sets. However, the computational problems presented above demonstrate that systems that have 

fuzzy sets with large levels of discretisation will require a large amount of processing when type­

reduced. This is likely to have the effect on many system developers of using fewer discrete points 

than would be used in a type-l system, reducing computation but also leading to a reduction in 

accuracy. Consider the type-2 fuzzy set A depicted in Figure 3.17(a). A is a non-symmetrical 

type,2 fuzzy set over a continuous domain with both primary and secondary membership. func­

tions taking a triangular shape. If A is to be used in a real system then the widely accepted practice 

is to diseretise both the primary and secondary membership functions of A. Consider two possi­

ble discrete versions of A. Firstly A3, which has three discrete points in the domain of both the 

primary and secondary membership functions. Secondly A6, which has six discrete points in the - -
primary and secondary membership functions. The discrete sets A3 and A6 are depicted in Figure 

3.17(b) and Figure 3.17(c) respectively. These Figures show that the triangular shape of the sec­

ondary membership functions is preserved at both levels of discretisation. However, the level of 

discretisation in A3 is so coarse that the primary membership function isno longer triangular. The 
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Fig. 3.16. Number of Embedded Sets Required to Model Type-2 Fuzzy Set of Primary and Secondary Discretisation 
Level Between Zero and Ten. 
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Fig. 3.17. ~ The Type-2 Fuzzy Set A w~h Triangular Primary and Secondary Membership Functions. (b) The Type-2 
Fuzzy Set A3. (c) The Type-2 Fuzzy Set A6 

primary membership function of A6 has retained the triangular fonn. The computational cost of 

type-reducing the sets is significantly different. The number of embedded type-2 sets that have to 

be enumerated in order to calculate a type-reduced set from A3 is 27. The number of embedded 

sets required to find the centroid of A6 is 46656. In this simple case quadrupling the number of 

discrete points has led to an increase of over 1700 times the amount of computation that is required 

to arrive at a type-reduced set. The final defuzzified values, the centroids of the type-reduced sets 

are also significantly different. The centroid of A3 is 1.375 and the centroid A6 i!; 1.55714. This 

difference of 0.18214 represents 9% of the support oftype-2 fuzzy set A. 

This Section has explored the relationship between computational expense and the level of dis­

cretisation in type-2 fuzzy systems. The examples given also demonstrate that if discretisation 

levels are kept low then the accuracy of the set model can be adversely effected. 
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3.5 Discussion 

This Chapter has presented a complete geometric model of a type-l Mamdani style fuzzy logic 

system. This approach is novel, bringing together existing geometric operations and applying 

them to piecewise linear membership functions. The use of geometry to define logical operators 

brings about the following restrictions on geometric fuzzy logic. 

• The membership functions in all the fuzzy sets must be piecewise linear functions; 

• the implication operation must use the minimum t-norm, and 

• the 'or' operation must use the maximum t-conorm. 

The use of a PLF is not a significant restriction since many approaches already use some kind 

of linear function definition of a fuzzy set prior to discretisation. The restriction to the use of 

minimum (-norm when performing implication may be a slight restriction. Many engineering 

applications use the product rather than the minimum as the product results in a smoother control 

surface. The restriction on the 'or' operation is less important as the maximum is used in majority 

of fuzzy systems. 

The underlying motivation behind the type-I geometric model is to inform the interval and type-2 

models. However the type-l geometric fuzzy model has some important outcomes. The type­

I geometric model directly relates to the type-l discrete model. Transforming between the tv.'o 

models is trivial. The geometric and discrete defuzzifiers produce equivalent results. This means 

that any variability between the two systems is wholly due to differences in set caused by dis­

cretisation. For piecewise linear membership functions the geometric fuzzy model is completely 

accurate. Discrete fuzzy models arc never completely accurate, although the error level in a given 

application may not be significant in that particular system. This is useful since many popular 

classes of membership function such as triangular, trapezoidal and shoulder are piecewise linear 

functions. Other functio.ns that are not piecewise linear, such as Gaussian, may also. ben.efit from 

geometric modelling. An example of this was given by Coupland and John (2004) where a ge­

ometric model o.f a Z function was compared to a discrete model. The discrete and geometric 

fuzzy sets are reproduced in Figures 3.18(a) and 3.18(b) respectively. Both models had six points 

and the geometric model was shown to a give better degree of accuracy than the discrete model. 

The accuracy test was performed by comparing the centroid of the two sets with the centroid of 

a discrete version of those sets with one hundred discretisations. The results from Coupland and 

John (2004) are reproduced in table 3.2 

However neither this result nor the example given Section 3.1.1 take into. account the computa­

tional complexity of the geometric system. The main advantage of the type-! discrete model is that 
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Representation Centroid (3 s.f.) Actual Centroid (3 s.f.) 

Discrete 1.70 1.73 
Geometric 1.72 1.73 

Table 3.2. A Comparison of the Centroids of the Discrete and Geometric Fuzzy Set Representations. From Coupland 

and John (2<)P4). J.I 

I 1 
Theoretical 

-Actual 
Theoretical 

- Actual 

o~--~--~--~--~--~ O;----r--~--~r---.-~~ 
o 2 3 4 5 o 2 3 4 5 

Fig. 3.18. (a) A Discrete Z Fuzzy Set. (b) A Geometric Z Fuzzy Set. From Coupland and John (2004). 

has a very low computational burden. This is due to a simple model of the sets for which logical 

operators can be easily defined. The geometric model is more complex and requires more compli­

cated algorithms to perfOlID logical operations. A discrete set may require many more points than 

a geometric set to achieve the same level of accuracy. However to perform a logical operation each 

point in the discrete set requires relatively little computation compared to each point in a geometric 

fuzzy set where the logical operations are more elaborate. This leaves the system developer with 

a choice to balance the level accuracy with the ease and the amount of computation required. For 

some geometric type-l fuzzy logic systems may provide an ideal solution. For others the existing 

discrete model may be perfectly adequate. 

This Chapter also discussed problems associated with using discrete fuzzy sets. The problems of 

computational complexity are significantly more important from type-2 fuzzy sets The operations 

on type-2 fuzzy sets are derived lIsing the extension principle. This is what causes the computa­

tional complexity of the type-2 operations to be so high. Consider t!-te example of a binary opera­

tion E9 with a computational cost c. Let there be two type-l fuzzy sets A and B, and two equivalent 

type-2 fuzzy sets A and B. The computational cost of A ffi B at a single point x is c. Applying the 

extension principle to CD results in much larger computational cost. The cost of A ffi B at the same 

poir.tx is (c+ /)mn, where t is the cost of a t-norm operator, m is the number of points in J'A'(x) and 

11 is the number of points in J.IB{x). This example applies to any binary operator, including 'and' 
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and 'or'. Work by Kamik and Mendel and the novel work reported in Section 4.1 significantly re­

duce the computational burden of the join and meet operations. Type-reduction however, remains 

a significant barrier to the use of type-2 fuzzy logic in real world systems. Greenfield et al have 

given a method for type-reduction which can have a far lower computational burden. This method 

is however, non-deterministic and the accuracy of the method is, to some degree, dependent on 

chance. 

The following Chapter defines the geometric model of type-2 fuzzy logic. This model directly 

extends the type-l model presented in this Section. Geometric models of both type-2 interval and 

generalised type-2 fuzzy sets and systems are given. 
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Chapter 4 

Type-2 Geometric Fuzzy Logic Systems 

This Chapter presents the novel geometric approach to type-2 fuzzy logic systems. The method 

presented here builds directly on the those presented in the previous Chapter. The first part of 

this Chapter presents the geometric approach to type-2 interval systems before moving on to 

generalised geometric type-2 fuzzy systems. The research presented in this Chapter forms the 

theoretical core of the thesis. 

4.1 New Work on Join and Meet 

The Kamik and Mendel (2001b) definitions for the join and meet operations require that the sec­

ondary membership functions being processed are both normal and convex. However, type-2 

fuzzy sets can contain secondary membership functions that are non-normal. A non-normal fuzzy 

set is one that does not contain a single element with a membership grade of one. Consider the 

type-2 fuzzy set A with triangular primary and secondary memberships depicted in Figure 4.1. It 

is quite possible that the first and last secondary memberships in such a set will be non-normal, as 

they are with A. The issue of convexity is less of a problem. A secondary membership function 

can be thought of as a type-l fuzzy number in [0, I], such as about 0.34. Thus, it is difficult to 

see why a non-convex secondary membership function would be used to describe a type-2 mem­

bership grade. A non-convex secondary would represent a number like about 0.14 or about 0.42. 

This suggests a more fundamental issue with representation of the concept with a single set. It 

may be that two or more sets are required to model that concept. This is a separate issue from 

the argument presented by Garibaldi et af (2004) who advocate the use of non-convex member­

ship functions in specific applications. The use of non-convex primary membership functions is in 

line with Garibaldi et al. It is only the use of non-convex secondary membership functions which 

causes the optimised join and meet operations to fail. 

For these reasons novel optimised methods for the join and meet of non-normal secondary mem-
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Fig. 4.1. The Type-2 Fuzzy Set A with Non-Normal Secondary Membership Functions. 

bership functions are now presented. These methods extend those presented by Karnik and Mendel 

(200lb). As with Karnik and Mendel these methods require that the possible operators must be 

limited to the minimum t-norm and maximum t-conorm. This work has been published by the 

author in a number of places (Coupland & John 2004a, Coupland & John 2005b, Coupland & 

John 2006b). Consider the two convex, but possibly non-normal secondary membership functions 

!iA(x) and !iBex) . Firstly the join for a single point 0 will be given. 

For every pair of points (v, w), such that J1A ( v) i= 0 and I1B (w) =1= 0, take the maximum of v and w 

and the minimum of their membership grades, so that (vV w) ~ (J1A(x, v) A ,us (x, w)) E J.iAus(x). 
When more than one pair of points (v, w) have the same maximum values take the pair with 

the maximum membership grade i.e, that is take the union . For any value a such that a E [0,1] 

and 0 t--+ J1AuB (x, 0) E 'uAUB (x), the set of all possible pairs (v, w) that can give 0 as a result is 

{(v , w) I v E (-00, a]A wE (-00, OJ}. The value of 'uAUB(x, 0) is given below: 

J1Aus(X, 0) = ( sup 'uA(X,V)A ,Us(X,O))V( sup I1B(X,W)A'uA(X,O)) (4.1) 
VE( - oo,9j WE( - 00,9J 

where sUPx E [0,1] denotes the supremum operation over the points in [0,1].0 is broken into three 

ranges: 0 < \)1 , '\)1 ~ 0 < '\)2 and 0 2: '\)2 . The point of departure from (Karnik & Mendel 2001 b) is 

that J.iA(x, '\)1) and ,us (x, '\)2) may not necessarily equal unity. Since both J1A(x) and J.IB(x) are convex 

when 0 < '\)1, SUPvE( -00,9J ,uA'(X' v) = 'uA'(X, 0) and SUPwE( -oo,eJ J.IB(x, 0) = 'us (x, 0). Substituting these 

values into 4.1 gives: 

(4 .2) 
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which reduces to: 
(4.3) 

When \)1 ~ e < \)2, SUPVE( -00,9]' .LJA(X, v) = ,u:4(X, \)1) and SUPWE(-00,9] ,uB(x, e) = ,uB(x, e). Substi­

tuting these values into 4.1 gives 

(4.4) 

Since A(x, \)1) ~ A(x, e) this can be rewritten as: 

(4.5) 

When \)2 ~ e, SUPVE(_oo,9],u:4(X,v) = .LJA(X,\)I) and sUPWE(-oo,9j,un(X,e) = ,un(x,\)I). Substituting 

these values into 4.1 gives: 

(4.6) 

Since P,4(X,\)I) > P,4(x,e) and ,uB(x,\)2) > ,un(x,e) this can be rewritten as (for demonstration of 

this see Appendix A): 

(4.7) 

Putting equations 4.3, 4.5 and 4.7 together gives a final efficient method for finding the join of two 

non-normal, convex secondary membership functions: 

u < \)1, 

\)1 $ U < '\)2, 

u ~ \)2. 

(4.8) 

A similar progression can be made for the meet of two secondary membership functions. Again, 

the available t-norms and t-conorms are limited to minimum and maximum. The meet of two 

secondary membership functions ,uA(x) and ,us(x) for a single point a will now be given. 

For every pair of points (v, w), such that J.lA (v) "# 0 and ,uB (w) "# 0, take the maximum of v and w 

and the minimum of their membership grades, so that (vV w) 1-* (J.lA(x, v) A,LIB(x, w» E J.lAnB(x). 

When more than one pair of points (v, w) have the same maximum values take the pair with 

the higher membership grade i.e., take the union. For any value e such that e E [0, lJ and e 1-* 

,uAns(x, e) E ,uA'ns(x), the set of all possible pairs (v, w) that can give e as a result is {(v, w) I v E 
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[e, 00) "W E [e, 00 n. This gives the following: 

,uAnjj(x,8) = ( sup ,uA(x, v)" PB(x, 8)) V ( sup ,uJj(x, w) /\ PA(x, 8)) (4.9) 
liE [a,oo) wE [a,oo) 

Again 8 is broken down into the same three ranges: 8 < U \ , U \ ~ 8 < U2 and 8 ~ U2. When 8 < U I, 

sUPliE[a,oo) PA(x, v) = PA(x, ud and SUPW E[9,oo) pjj(x, 8) = Pjj(x, U2). Substituting these values into 

4.9 gives: 
(4.10) 

Since ,uA(x, u\) > ,uA(x, 8) and Pjj(x, U2) > ,llJj(x, 8) this can be rearranged as (demonstration of this 

of this is similar to that given in Appendix A: 

(4.11) 

When Ul ~ 8 < U2, sUPvE[a,oo) PA(x, v) = PA(x, 8) and SUPwE[9,oo) Pii(x, 8) = PB(x, U2). Substituting 
these values into 4.9 gives: 

(4.12) 

Since PB(x, U2) ~ ,ujj(x,e) which can be rewritten as: 

(4.13) 

when U2 ~ 8, SUPvE[9,oo) PA(x, v) = PA(x,8) and SUPwE!9,oo) ,uB(x, 8) = ,uB(x,8). Substituting these 
values into 4.9 gives: 

(4.14) 

which reduces to: 

(4.15) 

Putting equations 4.11, 4.13 and 4.15 together gives a final efficient method for finding the meet 

of two non-normal, convex secondary membership functions: 

_ _ _ { (~A(X,U)VPjj(x,U))"(PA(X,U\)",uB(X,U2))' 
,uAnB(x,e) - ,uA(X, 14) "PB(X,'02), 

,uA(X, 14) "PB(x,u), 

u<U\, 

U\ ~ 14 < U2, 

14 ~U2. 

(4.16) 

Equations 4.8 and 4.16 give an optimised method for performing the join and meet for non-normal 

secondary membership functions. Such methods will be practically useful, removing the require-
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ment for normality, which many secondary memberships of discrete type-2 fuzzy sets fail to meet. 

Expressions to compare the relative computational costs of novel join and meet operations with 

the other operations are now given. Earlier the computational cost of the non-optimised join and 

meet operations at a point x was given as 2MNt where M and N are the cardinality of the two 

secondary membership functions and t is the cost of a t-norm or t-conorm. To express the cost of 

the optimised techniques some additional terms need to be introduced. Let #A be the cardinality 

ofa setA and the domain ofa setA be given by DOM A. Letp be the preprocessing cost of finding 

apex points VI and V2. Let a be the number of points in the secondary membership functions after 

V2. Finally, let ~ be the number of points in the secondary membership functions before VI. The 

computational cost of the optimised join operation can now be given as: 

COSTjoin = (#(DOM IJA UDOM JJlJ) - a) t + 3ta + p (4.17) 

Similarly the computational cost of the optimised meet operation can be given as: 

COST meet = (#(DOM IJA UDOM J1B) - ~ ) t + 3t~ + P (4.18) 

The optimised join and meet reduce the computational cost by removing redundancies in the op­

erations. The optimised join and meet only iterate over the combined domain of the secondary 

membership functions once. The standard join and meet iterate over this domain a number of 

times. 

Both methods have advantages and disadvantages. The relative computational speed of the two is 

compared empirically in Chapter 5. The non-optimised methods have unchanging, easily calcu­

lated computational cost, and therefore a predictable, consistent execution speed. The optimised 

methods are likely to be faster, although the actual speed will depend on the form of secondary 

membership functions being processed. In some cases where it is useful to be able to know the 

execution speed beforehand, such as a slow but real-time system, the non-optimised methods may 

represent a better choice. However, generally speaking, the optimised method will be faster, and 

therefore more useful in the development of practical applications. 

This Section has given novel extensions to the optimised join and meet which allow those opera­

tions to be conducted on non-normal secondary membership functions. This is enables the use of 

these methods in real world applications. The following Section defines geometric type-2 interval 

fuzzy systems. 
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4.2 Geometric Type-2 Interval Fuzzy Logic Systems 

Type-2 interval fuzzy systems have been shown to outperform type-l systems in a number of 

applications (Hagras 2004, Karnik & Mendel 1999, Liang & Mendel 2000a, Liang & Mendel 

200 I), giving smoother, more robust, more correct control performance, increased classification 

levels or improve predictive ability. This may be because interval type-2 fuzzy sets increase the 

capacity of a fuzzy models to handle uncertainty. 

This Section introduces the geometric type-2 interval fuzzy sets and systems. Like the type­

I geometriC fuzzy set the geometric interval model provides increased accuracy. A geometric 

defuzzification algorithm is provided which eliminates the need for type-reduction. The following 

Section gives the definition of a geometric type-2 interval fuzzy set. This work was presented by 

the author in Coupland and John (2005a). 

4.2.1 Geometric Type-2 Interval Fuzzy Sets 

To begin handling uncertainty in a geometric fuzzy system a fuzzy set that provides some model of 

uncertainty is needed. The simplest discrete fuzzy set that models uncertainty is the type-2 interval 

fuzzy set. As was seen in the previous Chapter, type-2 interval fuzzy sets model uncertainty with 

a uniform distribution. Type-2 interval fuzzy logic systems only need to model the end points of 

the interval sets as upper and lower membership functions. The geometric type-2 interval fuzzy 

set models the upper and lower membership functions as piecewise linear functions. 

Definition 4.1 A geometric interva~ type-2 fuzzy set A is characterised by two membership func­

tions, upper and lower denoted by A and J respectively. Each membership function consists of a 

series of ordered vertices of length n connected by line segments to form a function over a contin­

uous domain. Every vertex (x,y) or (X,y) from either of the functions of the fuzzy set A over the 

continuous domain X consists of a value x such that x E X and a y value such that y E [0, 1], i.e. 

J = {(XI ,YI), (X2,Y2), ... , (Xn,Yn) I Xi E X,y; E [0, l]'x; < XHI Vi E [1,n]) 

A = {(XI,YI), (X2,Y2),"" (xn,Yn) I Xi EX, VYi E [0,1]' VXi < XHI} 

(4.19) 

(4.20) 

(4.21) 

Where (Xi,Yi) is the ith vertex from the PLF that represents the upper membership function of A 

and (Xi,Yi) is the ith vertex from the PLF that represents the lower membership function ofA. 

Two example geometric interval type-2 fuzzy sets are given in Figures 4.2 (a) and (b). Figure 4.2 

(a) depicts a triangular set with uncertain endpoints. Figure 4.2 (b) depicts a Gaussian set with 
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Fig. 4.2. (a) A Triangular Geometric Interval Fuzzy Set. (b) A Gaussian Geometric Interval Fuzzy Set. 

an uncertain standard deviation using nine vertices in each of the upper and lower membership 

functions. 

Definition 4.1 states that a geometric interval type-2 fuzzy set is defined by upper and lower 

membership functions that are piecewise linear. In effect upper and lower membership functions 

of such sets can each be viewed as geometric type-l fuzzy sets. In the next Section the logical 

operations needed for inferencing to be perfonned with geometric interval type-2 fuzzy sets are 

defined. The analogy with geometric type-l fuzzy sets are exploited when giving these operations. 

4.2.2 Geometric Type-2 Interval Fuzzy Inferencing 

Geometric type-2 interval fuzzy inferening is a direct extension of geometric type-l fuzzy infer­

encing. An interval type-2 fuzzy set can be modelled as two independent type-l fuzzy sets. These 

two type-l sets represent the upper and lower bound of the interval type-2 set. Geometric interval 

type-2 FLS can be modelled by two geometric type-l FLS. The logical operators for a geometric 

type-2 interval fuzzy set can be derived from the geometric type-I operations on these upper and 

lower bound type- I fuzzy sets . 

4.2.2.1 Fuzzification 

Fuzzification finds the value of the membership grade of a given input in a fuzzy set. The value 

of a point in an type-2 interval set is a crisp interval set, given by the end points of that crisp set. 

With a geometric type-2 interval fuzzy set these end points are found by taking the membership 

grade of the input in the upper and lower bounds. The membership grade of a geometric type-2 
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Fig. 4.3. The Membership Grade ora Point x in the Geometric Interval Fuzzy SetA. 

interval fuzzy set at a pointx in the setA is given by [IlA(x) , ~(x)] where _ A 

and 

{ 

0 ; x ~ ~ or Xn ~ x 

fJA(x) = Yj ; x =Xj 
- x-x; 

~+ ~(yj+ l - Yj) ; Xj < x < Xi+ l 

{ 

0 

~(x) = Yi 
A - + x-X; - -Yj X; t l -x; (jii+ l - Yi) 

; x ~ XI or Xn ~ X 

; X=Xj 

; Xi < x < Xj+ l 

(4.22) 

(4 .23) 

From Coupland and John (2005a) 

Figure 4.3 depicts the value of lJ1A (X),~(x)] in an example geometric type-2 interval fuzzy setA. _ A 

Having found the value of a membership grade of a point in a geometric type-2 interval fuzzy set, 

the next stage is to combine one or more of these values with logical operators. 

4.2.2.2 Combination of Antecedents 

The logical combination of antecedents in a geometric type-2 interval fuzzy rule is identical to the 

non-geometric case. The conjunction of two interval sets [1l;;; (x),,LI=;(x)] [J1B(x) , ~(x)]is given by _ A _ B 

the meet (n) operation from (Mendel 2001b). 

(4 .24) 

Where * is a t-norm, usually the minimum or the product. The disjunction of two interval sets 

[J1A(x) ,.w;(x)] [J1B(x),~(x)]is given by the join (U) operation also from (Mendel 2001 b). _ A _ 8 

(4.25) 
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Fig. 4.4. (a) The Consequent Interval Type-2 Fuzzy Set G and the Line Segments~ and]S. (b) The Result ofjs =? G. 

Where. is a t-conorm usually the maximum. Like geometric type-l fuzzy logic this is the only 

processing stage where a choice oft-norms and t-conorms is available. All other processing stages 

require that only minimum and maximum are used. Once the value of the rule antecedent has been 

calculated, the implication of this value on a given consequent must be found . 

4.2.2.3 Implication 

Each geometric interval fuzzy rule has an antecedent value [a, ~l with a lower (a) and upper (~) 

value and a consequent with corresponding upper and lower membership functions jiG and J1"7.. _ _ G 

To calculate the implied rule consequent [a, ~l => G two type-l fuzzy implications operations are 

performed concurrently. The lower bound of [a, ~l => G is calculated by finding type-l geometric 

fuzzy implication of a on JiQ' The upper bound is given by the type-l geometric fuzzy implication 

of ~ on JlG. Let ~ be a line segment (xo - 0, <X) (xn + 0, a) and let Js be a line segment (xo -

O , ~)(xn + O , ~). The geometric type-I implication algorithm can then by applied to~ and Ji"Q. to 

give Jir. - G and to Js and J.o/.G- to give Jifi G' The two geometric type- l fuzzy sets J.lr.- G and ~ 
J~ S'* _ JS'* fs,*G 

combine to give the geometric type-2 interval fuzzy setfs => G. An example implication operation 

is depicted in Figure 4.4. Once all the consequent sets have been calculated they must be combined 

to give a final geometric type-2 interval fuzzy set which can be defuzzified. 

4.2.2.4 Combinati.on of Consequents 

To combine two or more consequents the disjunction is taken. Geometric type-l fuzzy systems use 

the modified Weiler-Atherton clipping algorithm for this. Geometric type-2 interval systems use 

the modified Weiler-Atherton algorithm to give the disjunction of upper and lower membership 
- -

functions independently. Let there be two geometric type-2 interval fuzzy sets A and B. The 

disjunction of the two i lJB has upper and lower membership functions A UB and A UB. The 
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o~~--------~-

Fig. 4.5. (a) The Geometric Interval JlEe-2 Fuzzy Set A. (b) The Geometric Interval Type-2 Fuzzy Set B. (c) The 
Geometric Interval Type-2 Fuzzy Set AU B. 

upper membership AuB is given ~y app~ing the modified Weiler-Atherton clipping algorithm to 

the upper membership functions A and B. The lower membership A UB is given by applying the 

modified Weiler-Atherton clipping algorithm to the lower membership functions J and n,. Figure 

4.5 depicts the disjunction of two example sets A and B. Once the consequent sets have all been 

combined to final resultant set, that set must be defuzzified. 

4.2.2.5 Defuzzification 

Output processors in discrete type-2 interval fuzzy logic systems typically use the type-reduction 

method to arrive at an interval set. This interval set represents the spread of possibilities of the 

crisp output value. The centre of this interval set is normally used to give the final crisp output 

value. The type-reduction procedure may be derived by applying the extension principle to type-l 

defuzzification algorithms. 

Type-reduction cannot be directly applied to geometric systems. Type-reduction, whether using 

the iterative method or not, finds two embedded sets that have the lowest and highest defuzzified 

values. Since there are an infinite number of embedded sets in a geometric type-2 interval fuzzy 

set the search for the two with the highest and lowest defuzzified values would be infinite. One 

solution to this problem is to discretise the final combined consequent set and type-reduce it, 

however the computational expense of type-reduction would be a significant impairment on such 

a system. The novel solution suggested in this thesis is to extend the geometric type-l defuzzier 

defined in Section 3.3.2.4. 

A geometric type-2 interval fuzzy set can be thought of as a closed, non self-intersecting polygon. 

The polygon is formed by ordering the membership function vertices (XO ,yo) , (Xl ,yl), ... , (Xn ,Yn), 

(Xn ,Yn), (Xn - I ,Yn- I ), ... , (xo ,yo) . The polygon centroid algori thm given by equation 3.13 can be 

used to give the centroid of the geometric type-2 interval fuzzy set without the need for type-
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reduction. This geometric algorithm also has a discrete equivalent given by equation 4.26. 

L~O:UA(Xi)Xi + Li=o~(Xi)Xi 
c- -

A - L'=O,uA(Xi) + Li=o~(xj) 
(4.26) 

Adapted from Coupland and John (2006b) 

where m and n are respectively the number of discrete points in the upper and lower membership 

functions of the discrete type-2 interval fuzzy set A. This equation is the first use of the geometric 

approach in defining a discrete fuzzy operation. The usefulness of the novel discrete operation is 

explored in more detail by Coupland and John (2006). 

4.2.3 Discussion 

This Section has given the details of geometric type-2 interval fuzzy logic sets and systems. The 

geometric model exploits the fact that an interval set is defined by upper and lower boundary 

points. In effect the upper and lower boundaries are each modelled independently by geometric 

type-l fuzzy sets. These two boundaries remain independent until the defuzzification stage. This 

means the boundary sets can be processed concurrently. Increasing the scope for parallel process­

ing gives the potential for increased hardware execution speeds. The type-2 interval geometric 

fuzzy model is constrained by the same three limitations as the type-l geometric fuzzy model, 

these are: 

• The upper and lower membership functions must be piecewise linear; 

• the implication operator must use the minimum t-norm, and 

• the 'or' operator must use the maximum t-conorm. 

As with the type-l geometric model, these do not represent significant restrictions. 

The output processing for geometric type-2 interval fuzzy systems represents a completely dif­

ferent approach from discrete systems. Type-reduction is derived from type-l methods using the 

extension principle and has a high computational cost, however, the iterative method greatly re­

duces the redundancy in this technique and hence the computational cost. Although the iterative 

method is fast, the amount of computation needed is not known before the algorithm is performed. 

This contrasts with the geometric defuzzifier where the amount of computation is a directly pro­

portional to the number of vertices in the membership functions. Again this feature may prove 

to be advantageous for hardware implementation. One of the advantages to using type-reduction 

is that the result gives a measure of the uncertainty propagated through the system, an interval 
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Metric Geometric Defuzzifier Iterative Method Type-Reduction 

Computational Cost Low. Low to medium. High. 
Known beforehand. Upper boundary Known beforehand. 

known beforehand. 
Uncertainty Measure None. Interval set. Interval set. 

Table 4.1. A Summary of the Differing Qualities of Type-Reduction and Geometric Defuzzification 

possibility distribution of the defuzzified value. Since this is a uniform distribution the interval 

set end points can be thought of as the boundaries of the uncertainty associated with the result. A 

drawback of the geometric defuzzifier is that it gives no measure or indication of the amount of 

uncertainty that has come through the system - a single defuzzified value is all that is produced. 

How much of a limitation this is will depend on the application area. In a decision making sys­

tem such as a credit rating application or a medical diagnosis system, knowledge of uncertainty is 

likely to be of significant benefit. For control applications uncertainty distributions are likely to 

be of little use as only a single defuzzified value can be utilised by the actuators. These points are 

summarised in Table 4.1. 

The geometric defuzzifier represents a significant departure from the type-reduction approach. 

Type-reduction is based on the notion that there is a single type-l fuzzy system that under perfect 

conditions (with zero uncertainty present in the inputs, outputs or knowledge of the system) would 

perform exactly the same as a type-2 fuzzy system. The membership functions of fuzzy sets in 

this single type-l fuzzy system are assumed to be between the lower and upper boundaries of the 

interval sets. The guiding principle behind this method is that without uncertainty a type-2 system 

performs as a type-l system would: 

"When all sources of uncertainty disappear, a type-2 FLS must reduce to a com­

parable type-l FLS." 

(MendeI2001b) Page 11 

Geometric type-2 interval fuzzy systems break a literal interpretation Mendel's fundamental de­

sign requirement. When uncertainty is zero the upper and lower bounds of an type-2 interval 

fuzzy set are identical. When this happens the geometric defuzzifier will not work. The geometric 

defuzzifier finds the centroid of the polygon formed by the upper and lower bounds of the set. 

If the upper and lower bounds are identical then this polygon has no area and therefore has no 

centroid. This breaks a literal interpretation of Mendel's design requirement. When the upper 

and lower bounds of a type-2 interval fuzzy set are identical the centroid is given by applying the 

type-l geometric defuzzifier to either the upper or lower boundary. A more liberal interpretation 

of Mendel's principle may consider this to approach to meet this design requirement. This liberal 

interpretation of Mendel's principle may be read: 
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"When all sources of uncertainty disappear, type-l methods should be applied in 

the place of the type-2 methods." 

The geometric defuzzifier also produces some unexpected results where compared directly to type­

reduction. The end points of the type-reduced interval of uncertainty correspond to two embedded 

type-l fuzzy sets contained in the type-2 interval fuzzy set. The two embedded sets used to cal­

culate these end~ints tend not to be characteristic of the set being defuzzified. Consider the two 

embedded sets F'ft and F'fr depicted in Figures 4.6(a) and (b). These are the two embedded sets 

(a) (b) (c) 

f f ~ 
F 

7 7 7 
~ c -Fig. 4.6. (a) The Embedded Set /' il . (b) The Embedded Set Fe'. (c) The Type-2 Interval Fuzzy Sel F. 

used to calculate the centroid of the type-2 interval fuzzy set F depicted in Figure 4.6(c) . The 

set F has a clear triangular form. Neither embedded set used to calculate the type-reduced set 

share this triangular form. The linguistic meaning of the embedded sets would therefore be quite 

different from the linguistic meaning of F. The geometric approach does not consider these two 

embedded type-l fuzzy sets when calculating the centroid. The geometric approach considers the 

entire area encompassed by the upper and lower bounds. This can lead to the geometric centroid 

of a geometric set lying outside the interval of uncertainty of the discrete equivalent. Consider the - - -type-2 interval fuzzy sets A, Band C depicted in Figures 4.7 (a), (b) and (c) respectively. The sets 

A and B represent typical outputs from a type-2 interval fuzzy logic system. The set C represents 

an unlikely but theoretically possible interval set. Table 4.2 gives the type-reduced, geometric 

and discrete centroids of these three sets. The discrete centroid is given by equation 4.26. Type­

reduction was performed on the discrete set where each set was discretised along the domain at 

intervals of 0.5 beginning at 0.5. The geometric centroid of the more typical sets falls close to 

the type-reduced centroid as does the discrete centroid. The geometric centroid of C is not only 

significantly different from the type-reduced centroid but falls outside the type-reduced interval of 

uncertainty. This may cause some developers to reject the geometric defuzzifier, however the crit­

icisms of the type-reduction given in this Section should also be taken into account. The discrete 

centroid of C also falls outside the interval of uncertainty. The discrete centroid is greater then 

the interval whereas the geometric is below. This is surprising since the discrete centroid is based 

on the geometric operation. The geometric defuzzifier is fast, predictable and makes use of all 

the information used to describe an type-2 interval fuzzy set. These qualities make the geometric 
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Set 

A 
B 
C 

(a) 

J1 
1 

TR Interval TR Centroid Geometric Centroid Discrete Centroid 

[1. 72,2.35] 2.03 2.10 2.01 

[1.76,2.19] l.98 l.94 2.05 

[l.4, l.56] 1.48 0.96 1.68 -TR Type·reduced. 

Table 4.2. A Comparison of the Defuzzified Values orA, Ii and C. 

1.5 

(b) 

J1 
1 

(c) 

f.1 
1 

: X 0 OLL-,;-....;ll\--.;.z-.;...-.;...-.;>.- 0 ll..-I--~.;...-.;...-.;J.I-.;..--

2.5 3 0.5 I 1.5 2.5:\ X 0 0:5 1.5 2 2.5 3 X 

- - -Fig. 4.7. Three Geometric Interval Type-2 Fuzzy Sets (a) A, (b) B and (c) C. 

defuzzifier a useful operation. 

This Section has given a complete description of a geometric type-2 interval fuzzy logic system, 

the differences between the geometric and discrete operations have been explored. The next Sec­

tion discusses geometric type-2 fuzzy logic sets and systems. 

4.3 Geometric Type-2 Fuzzy Logic Systems 

This Section builds on the previous two sections, utilising the 3-dimensional geometry discussed 

earlier to give a complete geometric model ofa type-2 FLS. Of particular interest is the type-2 ge­

ometric defuzzifier. This operation significantly reduces the computational cost of defuzzification 

of a type-2 fuzzy set, considerably decreasing the overall computational cost of a type-2 FLS. The 

work presented in this Section represents a major contribution to the field of type-2 fuzzy logic. 

To this end, De Montfort University have applied to the UK patent office for a patent protecting 

the intellectual property rights of the work given in this Section. A copy of the patent application 

is provided on the supplementary materials CD provided with this thesis. 
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Fig. 4.8. The Type-2 Fuzzy Set A. 

4.3.1 Geometric Type-2 Fuzzy Sets 

A discrete type-2 fuzzy set is made up of a number of points in 3-dimensional space. Each point 

in the domain (x-dimension) of a type-2 fuzzy set has an associated secondary membership func­

tion. This secondary membership function maps primary membership grades (y-dimension) to 

secondary membership grades (z-dimension). Both primary and secondary grades take a value in 

between zero and one. When a type-2 fuzzy set is discretised a number of points from a three 

dimensional surface are used to approximate that surface. Consider the example type-2 fuzzy set 

A depicted in Figure 4.8 which consists of nine discrete points. The three dimensional surface 

from which A was discretised is depicted in Figure 4.9. 

Geometric type-2 fuzzy sets also approximate the 3-dimensional surface of a type-2 fuzzy set. 

Recall from Section 3.2.6 that any 3-dimensional surface can be approximated by a mesh of con­

nected triangles. Geometric type-2 fuzzy sets approximate type-2 fuzzy sets as triangular meshes. 

The 3-dimensional surface is separated into two parts, an upper and a lower surface. Each of these 

are modelled independently as upper and lower triangular meshes. The point where the upper and 

lower surfaces meet are the apex points from each of the secondary memberships. This is done to 

simplify the logical operations that will be defined in later Sections of this Chapter. 

Definition 4.2 A geometric type-2 fuzzy set consists of two surfaces. an upper surface (A) and a 

lower surface (&. Each surface is modelled by a mesh of triangular facets each consisting of three 

3-dimensional vertices in a counter clockwise order, i.e., 

(4.27) 
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o 

Fig. 4.9. The Surface of the Type-2 Fuzzy Set A. 

where 

d. = {(PI , ql , rl) , (P2, q2, r2),"" (Pn , qn ,rn)} --- --- --- (4.28) 

and 
A = {(pj' ,qT,f\), (P2,q2,r2), . . . , (Pn ,qn ,rn)) (4.29) 

where pj = (pj.x ,PjY,Pj.z). qj = (qj.x,qjy,qj .z) and rj = (rj.x, rjy , rj.z) such that p;.x ,qj.x,rj .x EX. 

Pj .y,qjy,rj .y, pj .z, qj.z,rj.z E [0, 1J and \(ql - PI ) x (rl - PI )\ > O. 

An example geometric fuzzy set A is depicted in Figure 4.10. Both the upper and lower surface of 

A contain four triangular facets . The greater the number of facets used for the approximation the 

closer the approximation is to the actual surface. 

4.3.2 Geometric Type-2 Fuzzy Logic 

A geometric type-2 FLS has the same processing stages as any other FLS, fuzzification, combi­

nation of antecedents, implication, combination of consequents and defuzzification. Each of these 

will now be discussed in turn . 

4.3.2.1 Fuzzification 

The first stage in fuzzy inferencing is to find the membership grades of the inputs in the respective 

fuzzy sets. The membership grade of a type-2 fuzzy set is a type-1 fuzzy number with a domain 
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Fig. 4.10. The Geometric Type-2 Fuzzy Set A. 

which falls within the interval [0,1] . The membership grade of a geometric type-2 fuzzy set is a 

geometric type-1 fuzzy number with a domain which falls within the interval [0, I], a geometric 

secondary membership function. To find this value a cross section is taken, a vertical slice through 

the upper and lower surface of the geometric type-2 fuzzy set. The lower surface of the set gives 

the left hand side and the upper surface gives the right hand side of the secondary membership 

function. The vertices in a geometric secondary arc stored in two lists, one storing all points to 

the left of, and including, the apex point and one storing all points to the right of, and including, 

the apex point. This definition assumes that the secondary memberships are always convex. This 

allows the join and meet operations to be more easily defined. Limiting secondary memberships 

to be convex is not a significant limitation. As discussed in Chapter 2, it is difficult to envisage a 

context where a non-convex secondary membership function would be useful. 

Triangles, in 3-dimensions, can be thought of being bounded by a cubic volume. Let each tri­

angle in a type-2 fuzzy set by enclosed by a bounding cube defined by the two vertices I and 

r where 1= (min(p.x ,q.x,r.x) , min(p.y,q.y,r.y), min(p.z, q.z,r.z)) and r = (max(p.x,q.x,r.x), 

max(p.y,q.y,r.y), max(p.z, q.z,r.z)). The bounding cube gives simple cubic description of the 

3-dimensional area that the triangle lies in. For any geometric entity to interact with a triangle at 

least some part of the entity must lie inside that triangle's bounding cube. A triangle and its bound­

ing cube is depicted in Figure 4. ll(a). If the given domain value x falls outside this bounding cube 

for a particular triangle f then f does not contribute to the membership grade. If x E [/.x, r.x] then 

x must lie within the bounds of two of the three line segments. Once these two segments have 

been identified their parametric description is used to find the corresponding y and z values. These 
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Fig. 4.11 . (a) A Triangle and Bounding cube. (b) The Membership of x in a Triangle. 

values on a 3-dimensional co-ordinate system are then transferred to a 2-dimensional co-ordinate 

system that is used when describing the a secondary membership function. The values obtained 

from the y-axis on the 3D model become values on the x-axis on the 2D model. The values ob­

tained from the z-axis on the 3D model become values on the y-axis on the 2D model. All the 

triangles in the both surfaces are processed in this way. The resultant vertices form the secondary 

membership functions. Vertices identified in the lower surface form the left side vertices the sec­

ondary membership function . Vertices identified in the upper surface form the right side vertices 

the secondary membership function. It is important that secondary membership functions contain 

no vertical line segment. If any vertical segments are identified then the line should be altered 

very slightly so it is no longer exactly vertical. The algorithms that are applied to the member­

ship functions will fail if the function contains vertical lines. Figure 4.11 (b) depicts the segment 

formed by finding the vertices that lie on a triangle ' s edges a given point x. Figure 4.l2 depicts this 

process when performed on an entire geometric type-2 fuzzy set. Algorithm 4.1 gives a formal 

definition of the fuzzification algorithm for a geometric type-2 fuzzy set that has been explored in 

this Section. The result of this algorithm is a geometric secondary membership function . The next 

Section describes how two geometric secondary memberships can be logically combined. 
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Algorithm 4.1 The Fuzzification Algorithm for a Geometric Type-2 Fuzzy Set. 
• Inputs: domain value x, geometric type-2 fuzzy A the bounding vertices I and r; 

• For every triangle in the lower surface of A test whether I.x < x < r.x. If so, append two vertices 

(XI ,YI) and (X2 ,Y2) to the list of vertices L where: 

o ifp.x<xandp.x<min(q.x,r.x): 

• if x < min(q.x,r.x): 
o XI =p.y+ /.x-!p~x(r.y-p'Y)'YI =p.z+ r~;!p~x(r.z-p.z); 

o X2 =p.y+ qX;!;.x(q.y-p.Y),Y2 = p.z+ t;!;.x(q·z-p.z); 
• else if q.x < r.x: 

o XI =p.y+ r~-!p~x(r,y-p'Y)'YI =p.z+ /x!:p~(r.z-p.z); 

o X2 =q.y+ /.x-!!~~(r.y-q'Y)'Y2 = q.z+ rX;_~~x(r.z-q.z); 
• else if r.x < q.x: 

o XI =p.y+ :;!p~x(q.Y-P'Y)'YI =p.z+ qX;!pXx(q.z-p.z); 

o X2 = q.y+ :;!!~x.x (r.y - q.y), Y2 = q.z + :;!!;.x (r.z - q.z); 

o if q.x < x and q.x < min(p.x,r.x): 

• if X < min(p.x,r.x): 
o XI =q.y+ /.x-!!~~(r.y-q'Y)'YI =q.z+ r~;!!~~x(r.z-q.z); 

o X2 = q.y + ;;!!;.x (p.y - q.y), Y2 = q.z + ;;!!:x (p.z - q.z); 
• else if p.x < r.x: 

o XI = q.y + /.x-!!;.x (r.y - q.y), YI = q.z + r~;!!;.x (r.z - q.z); 

o X2 =p.y+ :.x!:px.x(r.y-p'Y),Y2 =p.z+ r~;!:x(r.z-p.z); 
• else ifr.x <p.x: 

o XI = q.y + ;;!!~x.x (p.y - q.y), YI = q.z + pX.x-!!;.x (p.z - q.z); 

o X2 =r.y+ pX.x-:':x(p·y-r'Y),Y2 =p.z+ p~;!~~x(p.z-r.z); 

o if r.x < X and r.x < min(p.x,q.x): 

• if X < min(p.x,q.x): 

o XI =r.y+ ;;!.:.x(p.y-r.y),YI =r.z+ ;;!.:x(p.z-r.z); 

o X2 = r.y+ ;;!.:.x(q.y - r·y),Y2 = r.z+ qX;:::.x(q.z - r.z); 
• else ifp.x < r.x: 

o XI = r.y+ :;!.~x.x(q.y- r'Y),YI = r.z+ t;:':.x(q.z- r.z); 

o X2 = r.y + x-!..x (p.y - r.y), Y2 = r.z + ..!::!.L (p.z - r.z)· p.x r.X p.x-r.x' 
• else ifr.x <p.x: 

o XI = r.y+ ;;!.:.x(p.y -r·y),Y1 = r.z+ pX;!.:x(p.z- r.z); 

o X2 = q.y+ p:!!;.x(P.y - q'Y),Y2 = q.z+ pX.x?::X(p.z -q.z); 

• sort the output vertices by X and remove duplicates. This gives the left side of the output, and 

• repeat this for the upper surface of A. This gives the right side of the output. 

• Outputs: list of vertices L; 
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Fig. 4.12. The Membership Grade of x in the Geometric Type-2 Fuzzy Set A. 

4.3.2.2 Combination of Antecedents 

The antecedent of a geometric type-2 fuzzy rule is a geometric secondary membership function. 

The logical connectives for such functions can be given by extending the type-1 fuzzy logical op­

erations. As Section 3.3.2 explained the conjunction of two geometric type-! fuzzy sets is given by 

the application of Weiler-Atherton clipping algorithm and the disjunction by the modified Weiler­

Atherton clipping algorithm. The conjunction or meet and disjunction or join of two secondary 

memberships can also be found using the modified and unmodified Weiler-Atherton clipping al­

gorithms. In both operations the left and right vertex lists are processed independently and can 

therefore be processed in parallel. The meet is given by applying the modified Weiler-atherton 

clipping algorithm to the left and right lists independently. The join is given by applying the 

Weiler-Atherton clipping algorithm to the left and right lists independently. Figurc 4.13(a) depicts 

two geometric secondary memberships A and B. The join of A and B is depicted in Figure 4. 13 (b) 

and the meet in Figure 4.13(c). The relationship bctween the geometric join and meet and the 

discrete join and meet operations is now explored. 

Firstly, consider the meet operation. Section 4.1 showed that the meet of the secondary member­

ships can be simplified when only using the minimum t-nonn and maximum t-conorm. As was 

shown earlier, the geometric model only uses minimum and maximum since it is based on the 

optimised method. Recall from equation 4.9 that, for computational purposes, the domain of the 

resultant secondary membership function is split into three portions - before either apex, between 

apexes and after both apexes. However, geometric secondary memberships are split into two por-
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Fig. 4.13 . (a) The Geometric Secondary Membership Functions A and B. (b) The Join of A and B. (c) The Meet of A 

and B. 

tions - before and after the apex point. This difference in the models can be resolved, as explained 

below. 

The application of the Weiler-Atherton and modified Weiler-Atherton clipping algorithms to the 

left and right side vertex lists yields different results: 

• Applying Weiler-Atherton clipping to the left side «(x,y) ,(a, b)) gives line segments that 

describe the minimum values across the left side of the geometric secondary membership 

function, giving (a, i\ ,y) . 

• Applying Weiler-Atherton clipping to the right side «(b , c) ,(y, z)) gives line segments that 

describe the maximum values across the right side of the geometric secondary membership 

function, giving (y ,h ,c) . 

• Applying modified Weiler-Atherton clipping to the left side «(x,y),(a , b)) gives line seg­

ments that describe the maximum values across the left side of the geometric secondary 

membership function, giving (x, i\ , b) . 

• Applying modified Weiler-Atherton clipping to the right side «(b,c),(y ,z)) gives line seg­

ments that describe the minimum values across the right side of the geometric secondary 

membership function, giving (b , i2'Z). 

In Figure 4.13 the apex points are band y. 

The meet operation requires that the maximum of the two secondary membership functions is 

taken up to the first apex point. This result is given by applying the modified Weiler-Atherton 

clipping algorithm to the left side vertex list. The meet requires that the minimum of the two 

secondary membership functions is taken after the second apex point. This result is given by 
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applying the modified Weiler-Atherton clipping algorithm to the right side vertex list. This also 

gives the maximum values between the two apex points as required by the meet operation. 

The join algorithm can be explained in much the same way. The join operation given by equation 

4.1 splits the domain into the same three portions, before either apex, between the apexes and 

after both apexes. The join operation requires that the minimum of the two secondary membership 

functions is taken up to the first apex point. This result is given by applying the Weiler-Atherton 

clipping algorithm to the left side vertex list. This also gives the minimum values between the 

two apex points as required by the join operation. The join requires that the maximum of the 

two secondary membership functions is taken after the second apex point. This result is given by 

applying the Weiler-Atherton clipping algorithm to the right side vertex list. 

Once the antecedent values have been calculated their implication in the consequent must be found. 

This is explored in the next Section. 

4.3.2.3 Implication 

The geometric type-l implication operation given in Section 3.2 works by clipping one collection 

of line segments against the other. The geometric type-2 clipping operation works in an analogous 

way by clipping one surface against another. The consequent set already consists of two surfaces, 

an upper and a lower. An example consequent C is depicted in Figure 4.15. The surfaces against 

which C will be clipped are derived from the rule antecedent, a geometric secondary membership 

function. The antecedent has two lists of vertices, left and right. The left list is extruded across the 

domain to form the lower surface and the right is extruded to give the upper surface. This extrusion 

is performed as follows. Let ~ be a small distance in terms of the domain of C. Let the extrusion 

start point be the x value of the first point in C - ~ denoted min .x. The end point of the extrusion 

is the x value of the last point in C + 5 denoted max.x. For each pair of adjacent vertices in the 

antecedent (XI ,YI), (X2,Y2) form two triangles tt and f2. Where tl = ((min.x,xl ,YI), (min.x,x2,Y2), 

(max.x,xI ,YI) and t2 = ((min.x,xI ,YI), (max.x,xI ,YI), (max.x,x2,Y2». If the original antecedent 

pair are from the left list then t\ and t2 are added to the lower surface otherwise they are added to 

the upper surface. Figure 4.14 depicts an example extruded antecedent A. 

The next step in the implication process is to clip the respective surfaces against one another. Four 

clipping operations are performed independently, these are: 

• the lower antecedent against the lower consequent; 

• the lower consequent against the lower antecedent; 

• the upper antecedent against the upper consequent, and 
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Fig. 4.14. The Extruded Antecedent A. 
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Fig. 4.16. The Final Output from a Geometric Type-2 Fuzzy System. 
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Fig. 4.17. The Four Clipped Surfaces. 
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Fig. 4.18. A Clipped Triangle and the Resultant Triangles 1\, 12 and 13· 

• the upper consequent against the upper antecedent. 

To perform the clipping operations the novel surface clipping algorithm is used. The surface 

clipping algorithm is given in Algorithm 4.2. This algorithm works by finding the minimum of 

the two surfaces. This is done by testing whether a triangle is below other triangles which is 

done by measuring vertex to plane distances. When triangles are found to intersect the minimum 

possible surface that can be constructed from the intersecting triangles must be found . Once the 

four surface clipping operations have been performed then the results from all four operation must 

be merged to give a final resultant geometric type-2 fuzzy set. Figure 4.17 depicts the result of the 

four clipping operation of A => C. Figure 4.16 depicts the final result of A => C. 

This geometric implication operation extends the geometric meet operation given in the previous 

Section. The membership grade at a single point in a geometric type-2 fuzzy set is a geometric 

secondary membership function. For the moment let us only consider the lower surface of the set 

and therefore only consider the left side of the geometric secondary membership functions. For 

a single secondary membership the meet for the left side would be given by the application of 

the modified Weiler-Atherton clipping algorithm. This algorithm essentially finds the minimum 

of the two left side functions. The surface clipping algorithm performs exactly the same task but 

with a 3-dimensional surface rather than a 2-dimensional line. Consider the two surfaces each 

made up of two triangles depicted in Figure 4.19(a). The dashed and dotted lines depict four 

possible secondary membership functions contained within in these two surfaces. Figure 4 .19(b) 

depicts the meet of these two surfaces. The dashed lines depict the result of the meet of the 

four secondary membership functions . The surface clipping algorithm has in essence performed 

the meet on every possible secondary membership function contained within these surfaces. This 
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Algorithm 4.2 The Surface Clipping Algorithm 
• Inputs: the surfaces subject and clip. clip is the surface that is being clipped against. 

• Let there also be two lists of triangles - currentsubject, currentclip. These lists hold triangles 
where intersections are possible; 

• order all triangles in both the surfaces by min.x; 

• until off both the surfaces subject and clip: 

o take a triangle t from the head of subject or clip, whichever has the lower value of 
min.x; 

o add t to respective current list; 

o check whether any triangles can be removed from current lists i.e, check whether the 
max.x value for that triangle is less than the minx of t; 

o if t is from subject: 

• if t is below all triangles in the clip list, then append t to clipped, and; 

• if t intersects with any of the triangles in the clip list then area below the intersec­
tion line must be output: 

o If only one vertex is below the intersection line then only one triangle is out­
put. This triangle consist of that vertex and the end points of the triangle 
intersection line. 

o If two vertices lie below the intersection line the two triangles need to be 
added. One triangle consists the intersection line endpoints and one of the 
vertices. The other triangle consists of one of the intersection line vertices 
and the vertices that are below the intersection line. 

o If either of the intersection line endpoints is inside t then t must be replaced 
by triangles that cover the area of t that did not intersect. 

Figure 4.18 depicts two intersecting triangles and the resultant triangles t1 and 12 which 
are appended to clipped and t is replace by 13 in the respective lists. 

• Outputs: the surface clipped; 
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Fig. 4.19. (a) Two Surfaces. (b) The Minimum of those Two Surfaces. 

methods works by considering each individual2-dimensional secondary membership to be a single 

point on a 3-dimensional surface. The surface clipping algorithm extends the 2-dimensional line 

clipping algorithm into a 3-dimensional surface clipping algorithm allowing an entire surface to 

be calculated in one single process . 

Once all the implied consequents from all the rules have been calculated they must be combined 

into a final geometric type-2 fuzzy set. This is explored in the next Section of this Chapter. 

4.3.2.4 Combination of Consequents 

Once all the rules have fired the rule consequents, which are geometric type-2 fuzzy sets, are 

then combined with the 'or' operator. The implication operation given in the previous Section 

essentially combined an extruded antecedent with a consequent using the 'and' operator. The 'or' 

operator works in a similar way using four independent surface clipping operations to arrive at a 

result. Consider the two geometric type-2 fuzzy sets A and B depicted in Figure 4.21. To find 

A -;;; B the following surface clipping operations are needed: 

• The upper surface of A against the upper surface of B; 

• the upper surface of B against the upper surface of A; 

• the lower surface of A against the lower surface of B, and 

• the lower surface of B against the lower surface of A. 
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Fig. 4.20. A Clipped Triangle and the Resultant Triangles II and ' 2· 
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Fig. 4.21. The Geometric Type-2 Fuzzy Sets A and B. 

x 

The implication operation used the surface clipping algorithm to give the meet across the surface 

of the geometric fuzzy sets. The disjunction operation requires the surface clipping algorithm to 

give the join across the surface of the geometric fuzzy sets. To achieve this, the surface clipping 

algorithm must be modified as it has to return the maximum of two given surfaces. The modified 

algorithm tests whether the triangles are above other triangles and when triangles intersect the 

highest possible surface is given. This modified surface clipping algorithm is given in 4.3. 

The modified algorithm essentially finds the maximum of two 3-dimensional surfaces. This is 

analogous to the modified Weiler-Atherton clipping algorithm finding the maximum of two PLF. 

By applying this algorithm to the left and right surfaces of two geometric type-2 fuzzy sets the 

intersection, the join, is obtained for every point in the fuzzy set. The application of the modified 
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Algorithm 4.3 The Modified Surface Clipping Algorithm 
• Inputs: the surfaces subject and clip. clip is the surface that is being clipped against. 

• Let there also be two lists of triangles - currentsubject, currentclip. These lists hold triangles 
where intersections are possible; 

• order all triangles in both the surfaces by min.x; 

• until offboth the surfaces subject and clip: 

o take a triangle t from the head of subject or clip, whichever has the lower value of 
min.x; 

o add t to respective current list; 

o check whether any triangles can be removed from current lists i.e, check whether the 
max.x value for that triangle is less than the min.x of t; 

o if t is from the subject polygon; 

• if t is above all triangles in the clip list, then append t to clipped, and; 

• if t intersects with any of the triangles in the clip list then area above the intersec­
tion line must be output. 

o If only one vertex is above the intersection line then only one triangle is out­
put. This triangle consists of that vertex and the end points of the triangle 
intersection line. 

o If two vertices lie above the intersection line the two triangles need to be 
added. One triangle consists the intersection line endpoints and one of the 
vertices. The other triangle consists of one of the intersection line vertices 
and the vertices that are above the intersection line. 

o If either of the intersection line endpoints is inside I then I must be replaced 
by triangles that cover the area of t that did not intersect. 

Figure 4.20 depicts two intersecting triangles and the resultant triangle 11 which is 
appended to clipped and t is replace by t2 in the respective lists. 

• Outputs: the surface clipped; 
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Fig. 4.22. The Type-2 Geometric Fuzzy Set A or B. 

clipping algorithm to the four clipping operation stated above yields four new surfaces. These 

four resultant surfaces are depicted in Figure 4.23. To arrive at final resultant set AorB these four 

surfaces are merged into two surfaces, one upper and one lower. This final inferred set is depicted 

in Figure 4.22. The final stage in the fuzzy system is to arrive at a representative crisp value by 

defuzzifying the final composite fuzzy set. 

4.3.2.5 Defuzzification 

In order to arrive at a final crisp value discrete type-2 fuzzy sets must be type-reduced. This 

inferencing stage requires a large amount of computational resources. One of the main motivations 

behind the geometric approach is to eliminate a great deal of this computational load. This Section 

describes how a geometric defuzzifier can eliminate the need for type-reduction and in doing so 

reduce computational load. 

Geometric type-2 interval systems are defuzzified by finding the centre of the polygonal area that 

represents that set. Geometric type-2 fuzzy sets are represented by 3-dimensional volumes rather 

than a 2-dimensional area. In order to defuzzify a geometric type-2 fuzzy set the x component of 

the centre of this volume must be calculated. To do this the complete 3-dimensional volume that 

represents a geometric type-2 fuzzy set must be modelled. The upper and lower surfaces contain 

all the 3-dimensional information needed to model a fuzzy set. However, these surfaces do not 

directly model the set's entire volume. The volume must be a closed space formed by geometric 

surfaces. There are three 2-dimensional areas that must be added to the upper and lower surfaces 

to form this volume: 

• The back face, the FOU the fuzzy set, polygon a; 
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Fig. 4.23. The Four Surface Clipping Operations that give A -;;;: B. 
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Fig. 4 .23. The Four Surface Clipping Operations that give AO;: B. 
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Fig. 4.24. (a) A Geometric Type-2 Fuzzy Set A. (b) The Additional Surfaces Needed to Defuzzify A. 

• The footprint over the x - z space, polygon b, and; 

• Any gap between the upper and lower surfaces along the x - y plane at z value of 1, for 

example when trapezoidal secondary memberships are used, polygon c. 

Figure 4.24(a) depicts the surfaces of a geometric type-2 fuzzy set F. Figure 4.24(b) depicts the 

2-dimensional polygons a, band c required to create a closed volume for defuzzification. The 

area and centroid of the a, band c can all be calculated using two dimensional methods as given 

in Section 3.2. The overall centroid of a geometric fuzzy set F is given as a weighted average of 

the centroid of each triangle in F and the polygons a, band c against the area of each triangle in 

F and the polygons a, band c. The x component of the centroid of each triangle t in F is given by 

equation 4.30 where the vertices tare P, Q and R. The signed area of each triangle is given by half 

the determinant of the cross product of the two edge vectors of the triangle as given by equation 

4.31. 

C 
_ P.x + Q.x + R.x 

( -
3 

A _ (Q.x - P.x)(R.y - P.y) - (Qy - P.y)(R.x - Py) 
( - 2 

Equation 4.32 gives the centroid of a geometric type-2 fuzzy set F. 

(4.30) 

(4.31) 

(4.32) 

This method is identical to the one used by Bourke (1988) when calculating the centroid of a 

3-dimensional object. By using the value given by equation 4.32 as the centroid, it is no longer 
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necessary to use type-reduction to defuzzify a type-2 fuzzy set, significantly reducing computa­

tional cost. 

4.3.3 Discussion 

This Section has presented a complete, new, geometric model of a type-2 fuzzy logic system. This 

model has built upon the geometric models of type-l and type-2 interval systems presented earlier 

in this Chapter. The geometric model of a type-2 fuzzy set is the comer stone of geometric type-2 

systems. Geometric type-2 fuzzy sets model the surface of a type-2 fuzzy set with two triangular 

meshes. This allows type-2 logical operations to be defined using the geometric knowledge of 

triangles presented at the start of this Chapter. A novel surface clipping algorithm has been pre­

sented. This algorithm extends the Weiler-Atherton clipping algorithm which clips line segments 

to allow the clipping of triangular mesh surfaces. As with the other geometric models presented 

in this Chapter some restrictions are placed on the operators that may be used, these are; 

• Membership functions must be modelled by two triangular mesh surfaces; 

• Secondary membership functions must be modelled by two piecewise linear functions; 

• The only t-norm that can be used is the minimum, and 

• The only t-conorm that can be used is the maximum. 

Like the type-2 interval geometric model the geometric type-2 fuzzy logic systems do not conform 

to Mendel's design principle that when uncertainties disappear the system behaves like a type-l 

system. If no uncertainties are present the volume of the surfaces modelling the fuzzy sets will be 

zero. The secondary membership grades in such set will be a vertical line from a single point. Then 

the geometric model will fail to correctly find the join or the meet of such secondary memberships. 

One of the underlying assumptions of the geometric model is that no two points in a secondary 

membership function have an equal x value. If this assumption is not met then it is possible that 

the Weiler-Atherton clipping algorithm will reverse the order of the two vertices with the equal x 

values corrupting the set model. 

Defining a type-2 fuzzy set in terms of surfaces disconnects the definition from the discrete version 

which is based on discrete points. Unlike the geometric definitions of type-! and type-2 interval 

fuzzy sets the membership grade of a geometric type-2 fuzzy set is not given by an equation but 

instead is the result of an algorithm. The 'and' and 'or' operations are also given by algorithms, 

although the defuzzifier is given by a simple equation. This algebraic separation from discrete 
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methods may make the geometric model less accessible to existing type-2 practitioners. The com­

plexity of the 3-dimensional operations in the type-2 geometric model also represents a significant 

learning burden making the model less appealing for systems developers. 

Like the type-2 interval geometric model the type-2 geometric model uses a direct defuzzification 

algorithm eliminating the need for type-reduction. The type-2 interval iterative method signif­

icantly reduces the computational burden of type-reduction. There is no equivalent method for 

type-2 type-reduction. This means that type-reduction for type-2 fuzzy system is a computation­

ally significant burden. Thus, the geometric defuzzifier significantly reduces the computational 

burden of type-2 fuzzy logic by eliminating the need for type-reduction. This reduction in com­

putation comes at a price. The geometric defuzzifier produces no measure of the uncertainty that 

has been propagated through the system. For control applications this will not be significant. 

This Section has given a complete description of a geometric type-2 fuzzy logic systems. Such 

systems have the potential to give the improved performance of a type-2 fuzzy system but with a 

greatly reduced computational burden. The next Section discusses the potential for hybridisation 

of discrete and geometric type-2 system to give the lowest possible computational burden. 

4.4 Hybridised Type-2 Fuzzy Logic Systems 

Rather than using either the discrete or geometric model it may be computational expedient to 

produce a hybridised system which uses the most efficient components from each model. A hybrid 

type-2 fuzzy system uses the most efficient inferencing component from the geometric and discrete 

models, resulting in a computational minimal system. The system is computationally minimal in 

the sense that the amount of computation required is the lowest possible with the methods that 

have been defined to date. This Section discusses such a system. 

The discrete and geometric model of a type-2 fuzzy set are completely inter-transformable. This 

means it is possible to take any geometric type-2 fuzzy set and transform it into a discrete type-

2 fuzzy set. Similarly it is possible to take any discrete type-2 fuzzy set and transform it into a 

geometric type-2 fuzzy set. These transformation procedures make it possible to build a hybridised 

discrete/geometric fuzzy system from a set of components that can be 'plugged' together to form 

a complete and functioning system. The configuration of the components for a particular system 

will depend on the requirements for that system. If computational speed is the top priority then 

the geometric defuzzifier will be used. If the measure of the uncertainty propagated through the 

system is important then the discrete defuzzifier will be used. The two operations that transform 

discrete type-2 fuzzy sets to geometric ones and vice versa are now explored. 
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4.4.1 Discrete to Geometric Transform 

A discrete type-2 fuzzy set consists of a number of discrete domain points each with an associated 

discrete secondary membership function . In order to transform such sets into geometric sets the 

apex point of each of the secondary memberships must be found . Let the function M(x) map each 

point in the domain to the index number of the apex point in the secondary membership function at 

x and N(x) map each point in the domain to the cardinality of the secondary membership function. 

The upper surface of the geometric set is given by equation 4.33. 

_ n- I M(x,) 

Ii = U U trt~ (4.33) 
i= lj= N(xl) 

where 

(4.34) 

and 

(4.35) 

where n is the number of points in the domain of the discrete type-2 fuzzy set A. tl and 12 are 

triangles which form the resultant surface. At every point in discrete set, the next point in both 

the primary and secondary domains are identified along with a another point which is adjacent to 

both of these two identified points. These four points are then used to define two triangles which 

describe the surface that covers these points. Consider Figure 4.25(a) which depicts a simple 

discrete type-2 fuzzy set. Figure 4.25(b) depicts two triangles that are used to connect four of the 

points in the upper surface as described in equation 4.33. 

(a) p(X) I (b) )J(X) I (c) )J(X) I 

x x x 
Fig. 4.25. (a) A Simple Discrete Type-2 Fuzzy Set. (b) The Geometric Transformation of Four Points from the Upper 
Surface. (c) The Geometric Transformation of Four Points from the Lower Surface. 

The lower surface is constructed in exactly the same way. Let the function T(x) map each point in 

the domain to the number of points in the secondary membership function at x. The lower surface 
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of the geometric set is given by equation 4.36. 

n- J M(Xj) 

4= U U tyt~ (4.36) 
;=1 j=O 

where 
(4.37) 

and 
(4.38) 

Figure 4.25(c) depicts two triangles that describe the surface of four points from the discrete fuzzy 

set depicted in Figure 4.25(a). These two equations define how any discrete type-2 fuzzy set can 

be transformed into a geometric type-2 fuzzy set. 

4.4.2 Geometric to Discrete Transform 

The transformation from a geometric type-2 fuzzy set to a discrete one is quite straightforward. 

As with any discrete type-2 fuzzy set the number of points m in the discrete primary domain must 

be decided upon. For each of these discrete domain points the number of points n in the domain of 

the secondary membership function must be decided upon. The resulting fuzzy can then be given 

by equation 4.39. 
~ m n 

A= LL,uA(x;,Uj); XEX, UEJx (4.39) 
i=Oj=O 

where X is the domain of the set, Jx is the domain of the secondary membership function .LlA(x) 

and ,uA(x) is membership grade of the geometric type-2 fuzzy set A at x. This equation makes it 

possible to transform any geometric type-2 fuzzy set into a discrete one once the discretisation 

levels have been decided upon. 

4.4.3 The Hybridised Inferencing Process 

There are five processing stages any fuzzy logic system: 

• Fuzzification; 

• combination of antecedents; 

• implication; 

• combination of consequents, and 
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• defuzzification. 

It is possible to transform between the geometric and discrete model at any of these processing 

stages. This means for any particular application the overall computational cost of a hybridised 

type-2 system may be minimised by transforming from one model to the other at one or more 

of the processing stages. For example, say for a specific application, the discrete model has the 

lowest computational cost up to the defuzzification stage. Type-reduction however, has a higher 

computational cost than geometric defuzzification, for this application. At this point a single final 

composite fuzzy set as been reached which represents the decision output from the system. This 

set can easily be transformed into a geometric type-2 fuzzy set and geometrically defuzzified. 

This represents a hybridisation of the discrete and geometric model to achieve the lowest possible 

computational cost of the system. 

This Section has provided the techniques to enable transformations between discrete and geomet­

ric type-2 fuzzy sets. This allows hybridised type-2 FLS to be constructed. 

4.5 Discussion 

This Chapter has explored the geometric model of Mamdani FLS of type-2 interval and gener­

alised type-2. These models, together with the type-l geometric model presented in the previous 

Chapter, represent useful additions to developer choice, offering different levels of accuracy and 

execution speed to existing technologies. However, the significant outcomes of this work are the 

type-2 defuzzifiers, both type-2 interval and type-2. The increases in execution speed provided 

by these methods (which will be seen in the next Chapter) improve the applicability of type-2 

fuzzy technology. The iterative method enables fast execution of type-2 interval systems. The 

disadvantages of this method have been explored here. The geometric defuzzifier has the advan­

tage over the iterative method of have a pre-calculable level of computation, which is important 

for hardware implementation. The geometric defuzzifier also has a far lower computational cost 

than the standard type-reduction method. The geometric defuzzifier for type-2 fuzzy sets makes 

a significant contribution to type-2 fuzzy systems. The computational cost of type-reduction is 

massively higher than the cost of geometric defuzzification. The next Chapter demonstrates this 

advantage being exploited in a practical application. Each of the three geometric models is now 

discussed in turn. 

The type-2 interval geometric model is based on the type-l geometric model presented in the pre­

vious Chapter. As such the inferencing system provides the same high level of accuracy up to 

the point of defuzzification. This is where the geometric type-2 interval model departs signifi­

cantly from the discrete type-2 interval model. Type-reduction is eliminated and replaced with 
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the geometric centroid of the set which is extended from the type-l definition. Doing this raises 

issues the Mendel's design principle, which have been noted, however, the model still extends the 

type-l centroid defuzzifier. The geometric defuzzifier provides low and consistent execution cost. 

The execution cost of type-reduction may be low, but this cannot be guaranteed. Type-reduction 

arrives at a result by using the two most extreme embedded sets, everything else is ignored. The 

geometric defuzzifier takes account of the entire set. To summarise, the discrete and geometric 

type-2 interval model perform in a very similar fashion up to the point of defuzzification where 

the geometric model exploits a geometric solution to reduce computational cost. 

The type-2 geometric model departs entirely from the discrete model. The type-2 geometric model 

uses 3-dimensional geometry to provide logical operations over a continuous domain. This is a 

significant departure from the discrete approach which deals with each point in the domain sepa­

rately. The computation involved in the 3-dimensional geometry is complex and may well be more 

computationally expensive than the optimized discrete methods. The discrete model however re­

quires the computationally problematic type-reduction operation. It was shown that hybridised 

systems may be built that use the fastest parts of discrete and geometric type-2 inferencing, min­

imising computation. The type-2 geometric defuzzifier also break Mendel's design principle but 

is extended from type-l and type-2 interval defuzzifiers. To summarise, the geometric type-2 

model is significantly different from the discrete model, and instead is based on 3-dimensional 

geometry. This geometry is complex although the geometric defuzzifier is far more efficient than 

type-reduction. Hybridised systems take the most efficient components from each model to give a 

system with minimal computational cost. The reduction in computational complexity that results 

from use of novel methods presented in this Chapter is a major contribution to the field oftype-2 

fuzzy logic. A far wider set of applications of type-2 fuzzy logic can now be developed. The next 

Chapter investigates the deployment and performance of such a system. A geometric type-2 fuzzy 

logic controller for a mobile robot. 
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Chapter 5 

Fuzzy Mobile Robot Controllers - An Investiga­

tion 

The previous Chapter gave a complete theoretical description of geometric fuzzy logic. This 

Chapter describes the design and implementation of a number of fuzzy logic controllers (FLCs) 

for mobile robot navigation. A total of six controllers were built, all of which were adapted from 

an initial discrete type-l FLC. The other controllers that are also presented in this Chapter are a 

geometric type-l, discrete and geometric type-2 interval and two hybrid type-2 controllers. The 

testing regime that these software based controller were subjected to is presented in Appendix C. 

This Chapter presents the design of, and the results from, an experiment which compares these six 

controllers. Each of the controllers will be numbered so that each controller can be referred to by 

name or number. 

• Controller 1 is the discrete type-l controller; 

• Controller 2 is the geometric type-l controller; 

• Controller 3 is the discrete type-2 interval controller; 

• Controller 4 is the geometric type-2 interval controller; 

• Controller 5 is the hybrid type-2 controller with configuration HI, and 

• Controller 6 is the hybrid type-2 controller with configuration H2. 

The configuration of the hybcidised type-2 controllers is explored in Section 5.3. The following 

Section discusses the task to be performed by all the controllers. 

5.1 Task Selection 

The motivation behind type-2 geometric fuzzy logic is to enable the application of type-2 fuzzy 
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logic to a wider range of problems. There are currently no reported systems (except Coupland et al 

(2006) which reports this experiment) where generalised type-2 fuzzy logic has been applied to a 

control application. This Chapter describes the first such application which has been made possible 

with the introduction of geometric type-2 fuzzy logic. As discussed in Chapter 2, type-2 fuzzy 

logic systems should be able to cope with the uncertainties inherent in control applications. To best 

evaluate geometric type-2 fuzzy logic in a control application a difficult mobile robot navigation 

problem was designed. Type-2 interval fuzzy logic has already been applied to such an application 

by Hagras (Hagras 2004). This study demonstrated improved performance in navigation tasks 

when using type-2 interval rules rather than type-l under environmental uncertainties. One of the 

limitations of this study was that the robot only performed eight runs and therefore, it is difficult 

to state the significance, if any, of this performance improvement. However, the Hagras study 

demonstrated that mobile robot navigation is a useful application area for exploring the potential 

oftype-2 fuzzy logic in control applications. 

The task of mobile robot navigation represents a significant challenge for a type-2 FLC. The 

control system has to operate in real time on limited hardware resources. The definition of real time 

and the level of available resources is dependent on the specific robotic platform. The environment 

which the robot has to operate in is challenging. The sensors on the robot are operating in the real 

world and are prone to noise and error. For example the accuracy of a sonar sensor is likely to 

be reduced the further away an object is. Background noise in the environment may also effect 

the sonar reading. The level of traction between the wheels and the floor depends on the type of 

flooring, type pressures and the speed at which the wheels are moving. 

The task to be completed by the FLC in this Chapter is to navigate a mobile robot around the 

curved edge of a wall like obstacle maintaining a distance of 0.5 metres between the centre of the 

robot and the obstacle at all times. A diagram of the robot, the obstacle and the ideal path that the 

robot should follow around the obstacle is given in Figure 5.1. The initial position of the robot 

puts the obstacle at a right angle to the left wheel of the robot. The initial distance between the 

obstacle and the centre of the robot is set at 0.5 metres. The robot is facing the correct direction to 

begin navigation of the obstacle. This start position places the robot just below the start point of 

the ideal path that should be taken by the robot around the obstacle. Once the centre of the robot 

crosses the dotted start line tracking begins. Once the centre of the robot crosses the dotted finish 

line tracking stops. The task of the FLC is essentially to minimise the deviation from the ideal 

path between the start and finish lines. The environment was static, that is the environment did not 

contain any moving objects. The reason for using a static environment is to aid the repeatability 

of the experiments. By its very nature a dynamic environment is nearly impossible to replicate. 

The system was deployed on the commercially available pioneer 2 robot (depicted in Fig 5.2) built 
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Obstacle Robot 

Fig. 5.1. Mobile Robot and Obstacle. 

by ActivMedia*. The robot has an on board personal computer which the software based FLC was 

implemented on. This PC links to a microcontroller which is directly connected to the sensors 

and actuators. An array of eight sonar sensors each with a range of 3 metres provides sensory 

capability. Two independently driven wheels give mobility to the robot. The ARIA software 

library supplied with the robot provides a variety of methods for pre-processing the sonar input 

values and a variety of motor driving methods. This allows for the reduction in the number of 

inputs into the FLC which may reduce the rule base size. The FLC developed for this work had 

four inputs, dl, 91, d2 and 92: 

• The angle 91 is the angle to the closest object detected by all eight sensors. 91 is given as a 

value between - 1100 and 1100
; 

• the angle 92 is the angle to the closest object detected by the middle four sensors. 92 takes 

a value between - 400 and 400
; 

• the distance dl is the distance to the nearest object detected by all eight sensors, and 

• the distance d2 is the distance to the nearest object detected by the middle sensors. 

The only output from the system is the change in direction (Oh) of the heading of robot. Since only 

the direction of the robot is being altered the speed of the robot is kept constant at 0.1 ms- I. The 

robot travels at this speed when moving in a straight line. However, when turning a component of 

this speed is taken up as rotational velocity. The robot is always moving forwards and can never 

go backwards. 

Using the Pioneer 2 robot brings some additional challenges. The sonar configuration on this 

model of robot only provides sensory ability to the front of the robot. The rear of the robot has no 

• ActivMedia Robotics, 19 Columbia Drive, Amherst, NH 0303, USA. Website: www.mobilerobots.com. 
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Fig. 5.2. The Pioneer 2 Mobile Robot. 
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Fig. 5.3. Three Possible Positions of the Robot. 
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sensory capability. This causes additional difficulties when trying to maintain a constant distance 

to a wall. If the robot is facing away from the wall there is no way of the robot perceiving the walls 

existence. If the robot is actually facing the wall the sonar readings may still be incorrect. Consider 

the three robot positions relative to a wall depicted in Figures 5.3 (a), (b) and (c) where the dotted 

lines depict the shortest distance from wall to robot. In Figure 5.3 (a) the robot is following the 

path of the wall correctly. In Figure 5.3 (b) the robot has turned to face the wall. In both cases the 

sonar sensors are able to give a correct distance and angle from the robot to the wall. In Figure 5.3 

( c) the robot is moving away from the wall. The sonar sensors are not able to sense the portion of 

the robot that is closest to the wall. The robot senses that the distance to the wall is longer than the 

actual distance to the wall and senses that the angle to the closest point on the wall is more acute 

than they actual angle. These erroneous readings would be fed into the FLC and erroneous actions 

taken. 
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The Aria software library provided with the robot requires that control commands are executed 

within a tenth to a quarter of a second window. This is the definition of real time for this robot, 

command execution within a quarter of a second or the robot operations will shutdown. This is 

quite a low requirement by control standards. It is however a significant challenge to perform 

type-2 fuzzy inferencing on limited hardware within a quarter of a second. 

5.2 Controller Design 

The previous Section described the task to be performed by a FLC deployed on a robot. This 

Section presents the design and rationale for the architecture of the FLC. 

The process of designing a FLC involves making a number of choices and decisions as well as 

producing a rule base. These choices include which rule type to use, which form of operators 

to use, the level of set discretisation and the defuzzification method. Many of these choices are 

informed by the task being undertaken, the information available about this task and the available 

hardware and software. Throughout this thesis only Mamdani rules have been discussed. The 

geometric approach presented in the previous currently only models Mamdani style rules. For this 

reason, this rule type was used exclusively in all the FLCs presented in this Chapter. The geometric 

approach also requires that the only t-norms and t-conorms that can be used are minimum and 

maximum. All the controllers presented in this Section used minimum and maximum operators 

for t-norms and t-conorms. The centre of area defuzzification method was used for all controllers. 

There are a variety of methods available for constructing the rule base for the FLC. Sugeno and 

Nishida (1985) suggest four methods for deriving rule bases: 

1. The operator's experience; 

2. The control engineer's knowledge; 

3. Fuzzy modelling of the operator's control actions, and 

4. Fuzzy modelling of the process. 

Sugeno and Nishida advocate the use of the third option for a robot navigation task using TSK 

rules. Their example involved recording data from the sensors on the robot and recording the 

matching control actions begin taken by a human operator. A learning algorithm was then used 

to tune a TSK rules base (Mamdani rules could also be used) which modelled the actions of 

the human operator. This method could not have been used in conjunction with the geometric 

approach since learning algorithms are yet to be developed for such systems. The fourth option, 
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fuzzy modelling of the process, requires a mathematical model of the process which can be built 

upon. No such model is available for this task so this method was not used. Basing the fuzzy 

system on the knowledge of a control engineer was not considered an appropriate approach either. 

This would require either eliciting knowledge from a control engineer or having an existing crisp 

system (probably PID) on which to base the fuzzy system. Since neither were available this 

approach could not have been taken. The final option is to base the system on the experience 

of a robot operator. Experience of how to drive the robot around the obstacle was gained by the 

author. A joystick was connected to the robot over a wireless network. This joystick was then 

used to manoeuvre the robot around the obstacle. This process was repeated until the author was 

competent at driving the robot around the obstacle. The rules were based on this experience of 

driving the robot around the obstacle manually with a joystick. 

The FLC also used an idea from control theory, the change in error over time, the derivative Oe. 
This added an element of proportionality to the controller (Reznik 1997). To obtain the value of Oe 

the gradient of a best fit line placed through the last four error measurements e, where e = 500 - dl 

was taken. Taking Oe is useful as it gives a measure of whether the robot is moving toward the 

ideal path or away from it. This is particularly useful with this configuration of pioneer robots 

as they do not have any sonar sensors at the rear to detect whether the robot is moving toward 

or away from an object. The FLC only implements one behaviour with a single rule base rather 

than fusing two or more smaller, simpler behaviours. This decision was taken on the basis that the 

robot only has one task to perform, edge following. Other behaviours are implicit in that task. An 

example of an implicit behaviour is obstacle avoidance. When following the edge of the obstacle 

it is important not to drive into the obstacle and must therefore avoid it. By following an edge at a 

set distance, the robot is implicitly not crashing into that edge. 

The overall structure of the FLC is depicted in Figure 5.4. The fuzzifier, inference engine and 

defuzzification components vary with the fuzzy technology being used, i.e. discrete, geometric or 

hybrid. All the controllers present here have identical rules. The fuzzy sets used in the rules varied 

depending on the controller: 

• Discrete FLCs (controllers 1 and 3) used discrete fuzzy sets; 

• geometric FLCs (controllers 2 and 4)used geometric fuzzy sets; 

• type-l FLCs (controllers 1 and 2) used type-l fuzzy sets; 

• type-2 interval (controllers 3 and 4) FLCs systems used type-2 interval fuzzy sets, and 

• hybrid FLCs (controllers 5 and 6) used discrete and hybrid type-2 fuzzy sets; 
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Fig. 5.4. The Structure of the FLC. 

IF 91 IS left AND dl IS near THEN oh IS right 
IF 9) IS left AND dl IS correct THEN Oh IS no change 
IF 9t IS left AND d) IS far THEN Oh IS left 
IF 91 IS hard left AND d l ISfar THEN Oh IS hard left 
IF d) IS very for THEN Oh IS left 

t------oh 

IF 9) IS left AND d) IS far AND Oe is negative THEN Oh IS no change 
IF 9) IS slight left AND d) IS correct THEN Bh IS right 
IF 9) IS slight left AND dl IS near THEN Oh IS hard right 
IF 92 IS centre AND d2 ISfar THEN oh IS right 
IF 92 IS centre AND d2 IS correct THEN oh IS hard right 
IF 92 IS centre AND d2 IS near or very near THEN oh IS hard hard right 
IF 92 IS right AND d2 IS near or very near THEN Oh IS hard hard right 

Table 5.1. Rule Base for the Edge Following Behaviour. 

The rule base created for the edge following behaviour is given in table 5.1. Three distinct func­

tions are contained within these rules: 

1. When too far from the edge tum toward the edge. 

2. When too close to the edge tum away from the edge. 

3. When directly facing the wall tum to the right. 

These tasks combine to give the single behaviour of edge following. 

The simplicity of the rule base, the low number of rules, lends itself to type-2 FLC implementation 

where the computation levels are a critical factor. For systems where the size of the rule base is a 

problem Hagras (2004) suggests using a hierarchical behavioural architecture to optimize the rule 

base. The most trivial way to reduce the computational expense of any rule based system is to use 

fewer rules. A hierarchical architecture was not used as the rule bases were already small and the 

FLC only implemented a single behaviour. 

The perfonnance of the FLCs being designed here were all compared with one another. To make 

the rule bases comparable the membership functions of all the fuzzy sets were extended from an 

initial type-l fuzzy rule base. The type-l rules were based on human knowledge about the task 
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Fig. 5.5. Initial Ten Paths Recorded Using the Simulator. 

gained from manually controlling of the robot. The rules were then tuned by hand with the use 

of a robot simulator. The control system was run on the simulator. The parameter of the rules 

were then adjusted, using an iterative, trial and error approach. This process continued until the 

controller gave satisfactory and robust perfonnance. Figure 5.5 depicts the tracked path of the 

simulated robot using the discrete type-l FLC over ten runs. This figure shows the FLC is capable 

is perfonning the task repeatedly, providing sufficient performance to allow experiments to be 

conducted using this FLC. 

The type-2 interval and type-2 rule bases were defined by substituting the fuzzy sets in the type-

1 rule base with type-2 interval and type-2 fuzzy sets. To arrive at the type-2 interval sets the 

membership functions of the type-l fuzzy sets were widened to incorporate a level of uncertainty: 

• The degree and position of widening was again tuned with the use of the simulator . 

• The lower and upper bounds were set symmetrically around the type-l functions. 

The type-2 membership functions were based on a combination of the type-l and type-2 interval 

fuzzy sets: 

• The interval sets gave the FOUs of the type-2 sets. 

• These gave the supports for the secondary membership functions. 

• Each secondary was defined as a triangular membership function. 

• The start and end points ofthe triangles were set as the lower and upper bounds of the type-2 

interval fuzzy sets. 

• The apex point of each secondary was set as the membership grade from the type-l fuzzy 

sets. 
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For illustrative purposes an example type-l fuzzy set straight ahead is given Figure 5.6, the inter­

val version of straight ahead is given in Figure 5.7 where the dotted is the membership function 

of the equivalent type-l fuzzy set. The type-2 version of straight ahead is depicted in Figure 5.8. 

Appendix B gives complete descriptions of all the fuzzy sets employed in all the FLCs presented 

in this Chapter. 

The type-l and the interval FLC both use a standard Mamdani architecture. In order to achieve the 

best possible performance from the type-2 systems the fastest FLC components must be selected 

giving a hybrid type-2 FLC. The process of selecting these components is presented in the next 

Section. 

5.3 Offline Timing of Type-2 Fuzzy System Components 

This section is only concerned with components used in hybrid fuzzy controllers numbered 5 and 

6. When designing a hybrid type-2 fuzzy system the computational speed of each component 

should be tested. The fastest configuration of discrete and geometric components can then be used 

in the hybrid system. In this Section the execution speed of geometric and discrete type-2 fuzzy 

system components is compared. This comparison informs the design of two hybrid type-2 FLC 

whose execution speed is also given. The fastest type-2 systems components are combined in two 

hybrid type-2 fuzzy systems, controllers 5 and 6, which are experimentally analysed later in this 

Chapter. 

The execution speed for a given problem of the five components of a discrete and a geometric 

type-2 fuzzy system are compared. These five components are: 

• The fuzzifier; 

• Antecedent combination; 

• Rule implication; 

• Consequent combination, and 

• The defuzzifier. 

The domain of the discrete fuzzy sets chosen for this experiment contained ten discrete points. 

Each secondary membership contains five discrete points. This gives a reasonably low but usable 

level of discretisation. The discrete implementation of a type-2 fuzzy logic system limits the 

possible level of discretisation. The maximum number of embedded sets it is possible to enumerate 

is 2,147,483,647. This is largest number it is possible to represent with a unsigned int data type in 
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Fig. 5.6. The Type-I Fuzzy Set straight ahead. 
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Fig. 5.7. The Type-2 Interval Fuzzy Set straight ahead. 
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Fig. 5.8. The Generalised Type-2 Fuzzy Set straight ahead. 
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Discrete Geometric HI H2 
Fuzzification 8.23 x 102 3.S9x 103 8.12x102 1.93 X 103 

Combination of Antecedents 9.48x101 3.33xl03 9.11 x 10\ 5.46x 102 

Implication 8.94x 10.! 7.42 x 10'1 8.74xl0l 1.25 x 10'1 

Combination of Consequents 3.22x 103 8.88x 10'1 3.52 x 103 4.11 x 10j 

Defuzzification 1.30x 10K 1.72 x 103 5.81xl0l 2.67x 10:4 
Total 1.30xlOtl 1.72 x 10' S.88x 103 1.94 x 10'1 

Table 5.2. The Mean Timings (in microseconds) of Fuzzy System Components Over 30 Runs. Given to 3 s.f. 

C++, the language of the Aria software library. This limit the size of data structure used to hold 

the enumerated embedded sets. Ideally, the discretisation levels would have been 25 and 25, the 

same as the fuzzy sets in the controllers. However this would require 1.78 x 1034 embedded sets to 

be enumerated. This was well beyond the data structure limit. A lower level needed to be chosen. 

Discretisation levels of 10 and 10 would require 5.00 x 109 embedded sets to be enumerated, again 

above the imposed limit. The discretisation level of 10 and 5 were settled upon as they require 

9,765,625 embedded sets to be enumerated. This is a realistically large number, but is however 

within the data structure limit. 

The discrete system used the optimized join and meet operations presented in Section 4.1. Both 

systems used the rule base given in the previous Section. Each component ofthe system was timed 

over a single inference operation. This was repeated thirty times to demonstrate repeatability. The 

following inputs used when timing each system: 

• d1 =577; 

• 91 = 84; 

• d2 = 954, and 

A fixed value of -0.86 was used for oe, the derivative element of the controller. These values are 

typical of the inputs that would be given by the sensors on the robot, ensuring that some of the 

rules fire. 

The mean timed values over the thirty experiments for the discrete and the geometric fuzzy com­

ponents are given (to 2 decimal places) in Table 5.2. The coefficient of variance for these times is 

given in Table 5.3. 

These results show a clear difference between the two approaches. Apart from the defuzzification 

stage the discrete fuzzy system is significantly faster than the geometric fuzzy system. The time 
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Discrete Geometric HI H2 
Fuzzification 0.05 0.02 0.03 0.01 

Combination of Antecedents 0.06 0.09 0.05 0.03 
Implication 0.03 0.12 0.01 0.01 

Combination of Consequents 0.10 0.02 0.02 0.02 
Defuzzification 0.01 0.07 0.02 0.01 

Table 5.3. The Coefficient of Variance for the Times Given in Table 5.2. Given to 2 d.p. 
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Fig. 5.9. The Structure of the Hybridised Type-2 FLC HI. 
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taken for defuzzification in the discrete system is 99.9% of the overall time taken by the discrete 

system. It is this defuzzification stage that makes the geometric system significantly faster overall 

despite all the other components in the geometric system being significantly slower than their 
discrete counterparts. 

These findings suggest an obvious hybridised system (H 1) which consists of all discrete compo­

nents up to the defuzzification stage. At this point the single, final composite discrete fuzzy set is 

transformed into a geometric fuzzy set using the methods presented in Section 4.4. This geomet­

ric fuzzy set is then defuzzified using the geometric defuzzifier. The structure of the HI system is 

depicted in Figure 5.9. 

The 3-dimensional geometric operations being performed by the geometric system are complex 

and require a large number of floating point calculations to be performed. The second hybridised 

system (H2) attempts to improve on the performance the geometric system by eliminating the 

3-dimensional geometric operations and replacing them with 2-dimensional ones. This is done 

by replacing all components, except the defuzzifier in the geometric system, with hybrid compo­

nents. The sets are all hybrid sets which have discrete domains identical to the discrete set but 

have geometric secondary membership functions. The architecture of this system is identical to 

the discrete system. The difference between H2 and a discrete system is that the join and meet 

operations are geometric as defined in Section 4.3.2.2. This type of fuzzy system was presented 

by the author in Coupland and John(2005a) where it was called a partially discrete fuzzy system. 

In that publication this configuration of hybrid type-2 fuzzy system was shown to be significantly 
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faster at performing the join and meet than the standard approach. The system was, however, not 

as fast as the operations given in Section 4.1. Before defuzzification can be performed the final 

composite hybrid type-2 fuzzy set must be transformed into a geometric fuzzy set. The discrete to 

geometric transform presented in Section 4.4.1 is used to do this. Although the secondary mem­

bership functions in this system are geometric, they are defined by a collection of discrete points, 

a piecewise linear function. As such applying the discrete to geometric transform to such set gives 

a geometric type-2 fuzzy set. The architecture of the type-2 FLC H2 is depicted in Figure 5.l0. 

This Section compared the computational speed of discrete and geometric components of a type-

2 fuzzy system. These results of this comparison were used to inform the design of two hybrid 

FLC HI and H2. The following Section presents the design of an experiment which compares the 

control performance of these two FLCs with type-l and type-2 interval FLCs. 

5.4 Experiment Design 

The previous sections have presented the design of six FLCs. In this Section an experiment to 

compare the performance of these controllers is designed. Great care has been taken to ensure that 

the results can be effectively analysed with statistical methods. 

5.4.1 Tracking the Robots Position 

To get meaningful results about the ability of a robot to navigate around the curved obstacle, 

knowledge of the path the robot took around the obstacle is needed. In order to track the position 

of the robot a camera was mounted directly above the obstacle. The camera fed a VGA signal to 

a computer via a frame grabber card. A piece of software was developed that could identify the 

X,Y co-ordinates of the brightest pixel in each frame. A red light emitting diode was placed on 

the top of the robot at its centre point. This experimental setup is depicted in Figure 5.11. The 

Experiments were conducted in a darkened laboratory. The pixel that corresponded to the location 

of the LED was consistently identified as the brightest pixel in the frame. This established that the 
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tracking system could consistently identify the position of the robot as a x,y co-ordinate within the 

camera frame. The software only begins recording the tracked position of the robot once it moves 

past the start line and finishes recording the path once the robot moves passed the finish line. 

Fig. 5.11. Experimental Setup for Robot Path Capture. 

(n order to find the position of the robot relative to a path the position of the ideal path within the 

camera frame had to be found. To do this the ideal path that should be taken by the robot was 

scribed on the laboratory floor. The robot was moved manually around this path whilst tracking 

the position of the robot. This manually gathered data is used to represent the position of the ideal 

path in the camera frame . Gathering the ideal path and the experimental data in the same way 

meant that any errors due to any optical effects from the camera would be minimised. This gives 

a method for tracking the position of the robot relative to an ideal path. The drawback with taking 

this approach is that the results are only relative as accurate distance measurements in metres 

cannot be guaranteed. As such the raw data is only useful for this particular experiment, although 

comparable results are useful for later studies. The Ragras study did calculate the error level with 

absolute distances. This was achieved by attaching a pen to the robot which allowed the robot to 

scribe the path taken on the laboratory floor. The drawback with this technique is the potential for 

errors when drawing the path and measuring the drawn path. Also the amount of work involved in 

measuring a single path is not helpful when a large number of experimental runs to be performed. 
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The technique employed in this work only suffers from optical effects from the camera lens which 

were identical for all runs and the ideal path. The software tracking system makes path analysis 

far simpler for a large number of experimental runs. 

The deviation from the ideal path, the error e of the position ofthe robot at point P, is the shortest 

distance between the ideal path and the point P in a straight line. To find the point on the ideal 

path closest to P an expanding circle technique was used. A circle with a radius of zero is placed 

at P. The radius of the circle is increased until a point on the circle intersects with a point on the 

ideal path. The radius of the circle at this point is the error e in the position of the robot relative to 

the ideal path. This technique is depicted in Figure 5.12. 

5.4.2 Statistical Methods and Data Analysis 

The purpose of conducting these experiments is to show any statistically significant difference 

between the performance of the six controllers and where any differences lie. Each experimental 

run gives a number of discrete data points which make up the path of the robot over the individual 

run. Each of these data points has an associated error, the amount of deviation from the ideal path. 

For each run the square root of the mean of the square ofthe error associated with each data point, 

the RMSE is taken. This gives a single measure of the FLC performance for that particular run. 

The variation in the RMSE gives a measure of the consistency of controller performance. So, the 

following two metrics were used to assess the properties of the control performances: 

• RMSE. The ability to follow the ideal path . 

• the standard deviation of RMSE. The consistency of the paths taken. 

To investigate the significance of performance differences between the FLC, it was intended that an 

analysis of variance (ANOVA) would be performed on the results from a number of experimental 
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runs. The Bonferroni procedure was used to calculate the number of experimental runs that are 

required. Applying this technique allowed the type-l error rate to be controlled in a multiple 

comparison ANOVA. To do this the following pieces of information must be known, the acceptable 

error rates and the expected standard deviation amongst the samples. Standard error rates of 

5% for type-l error and 10% for type-2 error are to be used for the anaylsis. A statistically 

significant difference between the controllers shows a performance increase which is repeatable 

approximately 95% of the time. An initial set of 20 experimental runs were conducted using the 

type-l FLC. The standard deviation of the RMSE amongst these 20 runs was 0.98. Equation 5.1 is 

used to determine the sample size n required for the experimental results to be significant. 

(5.1) 

From (Ott & Longnecker. 2001) page 14 

Where Za and Z~ are the type-l and type-2 error levels respectively, 0' is the standard deviation 

within the samples and E is error resolution. Using standard statistical tables Za./2 was determined 

to be 2.67 and Z~ to be 1.28. The standard deviation of the RMSE from the initial 20 runs gave the 

value for sigma of 0.98. E has a value of I since that is the highest possible resolution, a single 

pixel. This gives a rounded value for n of29. Each experiment was repeated 50 times. This number 

was chosen as its comfortably above the threshold of 29 suggested by the Bonferroni procedure. 

Fifty repetitions allows the experiments to be conducted over a short time period, minimizing the 

effect of variations in experimental conditions. 

5.4.3 Reducing Experimental Error 

All measurements taken during experiments are subject to errors. This Section describes the mea­

sures that were taken to minimise such errors and to minimise the effect of confounding variables 

when conducting the robot navigation experiments. 

To minimize any performance variation due to battery drainage each controller was run in turn. 

The first seven experimental runs were run in the following order: 

• Discrete type-I; 

• Geometric type-I; 

• Discrete type-2 interval; 

• Geometric type-2 interval; 

• Type-2 HI, and 
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• Type-2 H2. 

This order continued until each controller had performed fifty runs. As mentioned earlier the 

laboratory was blacked out to optimise the performance of the path tracking system. At the end 

of each run the recorded path was visually checked for any obvious outlying data points. Runs 

containing outlying points would suggest a failure in the tracking system and would have been 

repeated. However, no outlying data points occurred, suggesting the tracking system was robust. 

Before each run took place the robot was placed carefully in the start position. The floor was 

marked to ensure that the robot began in the same position and was facing the same direction for 

every run. This meant the initial x,y coordinate position and heading of the robot were the same 

for every experimental run. The experiments were conducted over two consecutive days. The 

first 150 experiments were conducted on the first day and the remaining 150 on the second. The 

batteries that power the robot were recharged between these two sessions. 

5.5 Results 

5.5.1 Experimental Data 

The path each robot FLC took around the obstacle was tracked fifty times. These tracked paths 

are depicted in Figures 5.13(a) to 5.13(t). The error for each point in this tracked path relative 

to an ideal path was calculated. The RMSE for each tracked run around the obstacle was then 

calculated. The mean, median, standard deviation and coefficient of variance over the fifty runs 

was then calculated for each robot FLC. These results are given in table 5.4. Each tracked path 

is made up of a number of discrete points. An approximate complete path may be plotted by 

connecting all the discrete points in one path together in the order in which they were sampled. 

These approximate complete paths are depicted in Figures 5.14(a) to 5.14(t). All of tracked paths 

are reproduced in a larger size in Appendix D. 

Robot FLC Mean Error Median Error St Dev of Error Co Var of Error 
Type-l Discrete l3.5852 13.4185 1.0995 0.0809 

Type-l Geometric 14.8254 15.3726 2.4173 0.1631 
Interval Discrete 12.5394 11.9779 2.0543 0.1638 

Interval Geometric 10.1399 9.6363 1.8744 0.1848 
Type-2 HI 9.8171 9.7783 1.0185 0.1038 
Type-2 H2 14.2515 14.3913 2.7969 0.1963 

Table 5.4. The Mean, Median, Standard Deviation and Coefficient of Variance of Error for the Six Robot FLC Over 
Fifty Runs. All numbers quoted to 4 d.p. 
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Fig. s.n. The Raw Tracked Paths of the Robot FLCs. 

5.5.2 Statistical Analysis 

The first step in the analysis of the data is to test for the null hypothesis whether or not there 

are significant differences in the ability of the controllers to follow the ideal path. To do this a 

parametric statistic such as the F statistic can be used to confirm or reject the null hypothesis. 

Parametric statistics assume that the data being analysed displays certain characteristics. In the 

case of the F statistic it is assumed that all the populations have equal standard deviations and that 

each population has a normal distribution of values. Before performing such a test it is always wise 

to test these assumptions. To test normality a histogram of the results from each FLC was plotted, 

these are depicted in Figures 5.15 to 5.17 along with curves representing normal distributions. It 

is clear from these Figures that the results do not show a normal distribution. The distributions are 

not all skewed in a particular direction which would allow a data transformation to give normally 

distributed results. The other assumption to be tested is the equality of the variances amongst 

the six FLC. From the results given in table S.4 it is clear that the variances are not equal. As a 
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Fig. 5.14. The Tracked Paths ofthe Robot FLCs. 

further measure the hypothesis that all variances are equal was tested. Using Levene's test with 

95% confidence intervals a p-value of < 0.0005 was calculated showing compelling evidence to 

reject the hypothesis that all variances are equal. The values of the standard deviation for the six 

FLC's along with the confidence intervals are depicted in Figure 5.18. 

Since the assumptions of normality and equality of variance have both failed it would not have 

been sensible to proceed with an analysis of variance. Instead a non-parametric statistic, the 

Kruskal-Wallis test, was used to test the null hypothesis. There is some disagreement about the 

assumptions that are required for the Krukal-Wallis test. Some (Ott & Longnecker. 2001) feel that 

although normal distributions are not necessary, the distributions should all have the same form. 

Others (Ostle & Malone 1988) are satisfied that the Kruskal-Wallis test holds for any data set 

where the results are independent. The Kruskal-Wallis procedure assess whether there is evidence 

to confirm or reject the null hypothesis ho in favour of the alternative hypothesis ha: 
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Fig. 5.15. llistogram of (a) The Results from the Discrete Type-I FLC and (b) The Results from the Geometric Type-I 
FLC both with Normal Curves. 

(D) 

18 

16 

I~ 

12 

i 1: 

8 10 

Interval Type-2 Discrete 

1~ 16 18 
RMSE 

(b) Interval Type-2 Geometric 
12 

10 

i 6 

0~6~--~T8-L--~1~0~--L,12~--~I~~-L~~ 

RMSE 

Fig. 5.16. Histogram of (a) The Results from the Discrete Type-2 Interval FLC and (b) The Results from the Geometric 
l'ypc-2 Interval FLC both with Normal Curves. 

(D) Typa-Z HI 

18 

16 

I~ 

12 

i 1: 
6 

7 8 9 10 11 12 

RMSE 

(b) 

8 

6 

J: 
3 

10 

Typa-Z H2 

12 H 
RMSE 

16 18 20 
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Fig. 5.18. Variances of the Six FLC with 95% Confidence Intervals. 

There are no differences between the medians of the RMSE from the six FLC, i.e. all six 

FLC performed equally. 

• ha: -(u) = P2 = J.I3 = 114 = I1s = 116) 

There is a difference between the medians of the RMSE from the six FLC, i.e. at least one 

of the FLC gave a differing performance. 

Where, in this experiment #) ... 6 are the mean error values of the six FLCs. 

The Kruskal-Wallis test ranks each experimental run by its RMSE value. The test statistic H is 

calculated based on the sum of these ranks. The value of H for the result from the six FLC was 

185.95 to two decimal places, compared to a critical value of 11.07. This gave a p value which is 

< 0.0005. The null hypothesis can therefore be rejected and it may be stated that there is some 

difference in the performance of the six controllers. The Kruskal-Wallis test ranked each run of 

the robot by the RMSE value of that run. All the ranking positions of each controller are plotted 

in Figure 5.19. The mean rank of each controller is given in Table 5.5. Each line across Figure 

5.19 depicts the rankings of the runs from a different controller. The highest rank, 1, is placed on 

the left of the Figure. The lowest rank, 300, is placed on the right of the Figure. The distribution 

of the ranking places of each controller can be seen. 

The Kruskal-Wallis test has led to the null hypothesis being rejected. The test showed that there 
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Fig. 5.19. The Rank Position of Each Run of Each FLC. 

RobotFLC Mean Rank 
Type-l Discrete 193.54 

Type-l Geometric 223.70 
Interval Discrete 149.94 

Interval Geometric 73.62 
Type-2 HI 60.22 
Type-2 H2 201.98 

250 

Table 5.5. The Mean Rank of each of the Robot FLC Over Fifty Runs. All numbers quoted to 2 d.p. 

Controller 1 2 3 4 5 6 
1 - - - - - -
2 0.0005 - - - - -
3 0.8120 0.0005 - - - -
4 0.0005 0.0005 0.0005 - - -
5 0.0005 0.0005 0.0005 0.6172 - -
6 0.0166 0.0030 0.0557 0.0005 0.0005 -

Table 5.6. Pairwise Mann-Whitney Tests for The Six Controllers. All numbers quoted to 4 d.p. 
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are significant differences between the controllers and the rankings suggest where some of these 

difference(s) may lay. To further illuminate the differences between the six controller pairwise 

comparisons were made using the Mann-Whitney test on the RMSE values with a confidence 

level of95%. Results of these comparisons are given in Table 5.6. The comparisons mostly show 

differences between the controllers. Four comparisons show no differences: 

• Controller 1 showed no significant difference to controller 3; 

• controller 2 showed no significant difference to controller 4; 

• controller 3 showed no significant difference to controller 6, and 

• controller 4 showed no significant difference to controller S. 

Caution must be taken when commenting on these pairwise results. Each test has a confidence 

level of 95%, however, if several test results are put together the error will accumulate, dropping 

below the 5% of the orginal tests. 

5.5.3 Commentary on the Results 

When discussing the findings of the experiment described in this Chapter there are two sources of 

information that are assessed and the findings compared: 

• Statistical analysis of the data, and 

• The visual information about the FLC paths. 

This allows for the comparison of the outcomes of the statistical analysis with the visual assess­

ment of the paths. Where the two agree the findings are reinforced. If little or no agreement is 

found the doubts must be cast on the analytical method. 

The Kruskal-Wallis test showed that there are significant differences between the performances 

of the six controllers. This is also shown by the paths the robot followed. Since the results did 

not meet the requirements for a parametric analysis of variance the statistical analysis cannot say 

definitively where these differences are. However, the mean, median and variance statistics for 

each FLC given in Table S.4, the ranking distributions depicted in Figure 5.19 and the pairwise 

Mann-Whitney test do give information as to where the differences are amongst the controllers: 

• The type-2 HI and type-2 interval geometric FLC outperformed the other controllers . 

• The type-2 interval discrete appeared to outperform the remaining three FLC but did not 

match the performance of its geometric counterpart. 
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• The type-l discrete controller outperformed both the type-2 H2 and type-l geometric FLC 

which had little performance difference to differentiate between them. 

These observed performance differences cannot be said to be statistically significant but are still 

important if not measurable. In terms of variation of performance over the fifty runs, the type-2 HI 

FLC had the lowest standard deviation closely followed by the discrete type-l FLC. The other four 

FLC showed similar amount of variation. Figure 5.18 shows these standard deviation results with 

95% confidence intervals. This shows that the type-2 HI FLC has significantly lower standard 

deviation than all the other FLC apart from the discrete type-l FLC. 

A visual assessment of the paths depicted in Figures D.7 to D.12 yields the following conclusions: 

• The type-2 HI and discrete type-2 interval FLC followed the smoothest and most consistent 

paths. 

• The type-2 H2 FLC also followed smooth paths but with less consistency. 

• The discrete type-l FLC paths showed some jagged paths but with a core of smooth consis­

tent paths. 

• The geometric type-l and geometric type-2 interval FLC paths show similar jagged paths 

but with a greater dispersal of smooth paths. 

Both methods of assessment show that the type-2 H2 and the geometric type-2 FLCs gave the 

best performance. The paths of the type-2 H2 FLC were very smooth. This is not reflected in the 

error measurements of the paths. The discrete type-l FLC showed a good performance in both 

assessment methods. 

The conclusion that is drawn from the experiment presented in this Chapter is that type-2 HI and 

the geometric type-2 interval FLC gave the best performance. The type-2 was expected to perform 

well, however it is not clear why only the HI FLC gave the best performance and not the H2 

configuration. The only real difference between the two hybrids is how the final geometric type-2 

fuzzy set is constructed from the combined rule consequents. This seems to give this unexpected 

difference in performance. In a similar way the geometric type-2 interval FLC outperformed the 

discrete type-2 interval FLC. The discrete type-2 FLC used type reduction where as the geometric 

system used the geometric defuzzifier. This accounts for the difference in performance. However, 

the conclusion that the geometric defuzzifier always outperforms type reduction cannot be drawn. 

It may be that the geometric defuzzifier gave a better performance in this particular experiment as 

it is based on the same principle as the type-l discrete defuzzifier where type-reduction is found 

with the use of the extension principle. Since the rule base is extended from a discrete type-l 
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system, it may be that the geometric interval system, with characteristics that are more closely 

matched to the original system gave a better performance. Recall that the original type-! rules 

were tuned by hand. It may be possible to tune the interval rules for use with type reduction and 

reverse this performance difference. This is also true for the consistency figures of the controllers. 

The type-2 HI and the discrete type-l FLC gave the most consistent performance. However the 

interval system may give a more consistent performance if the rules were tuned in a different way. 

From these discussions it is fair to state that the type-2 HI FLC gave the best overall performance 

showing low error and consistency of the paths taken. This is demonstrated both statistically and 

by a visual inspection of the FLC paths. This is a significant finding since it shows that a type-2 

fuzzy system can outperform a type-2 interval system. The discussion of uncertainty and type-2 

fuzzy logic presented in Chapter 2 suggested that this should be the case. The results presented 

here confirm this. 

5.6 Discussion 

This Chapter has described six fuzzy logic controllers for a mobile robot, two of which used 

geometric type-2 fuzzy logic. To the author's knowledge these are the first FLC to utilise general 

type-2 fuzzy logic. It is the geometric approach presented in the previous Chapter that has made 

this possible. Prior to this thesis, the amount of computation required to type-reduce a type-2 set 

would have meant that this application, which has to execute every quarter of second, was not 

possible. This is demonstrated by the timings given in Section 5.3. 

An experiment has been presented which was designed to compare the type-2 FLC against com­

parable type-l and type-2 interval geometric and discrete controllers. In this experiment one of 

the hybrid type-2 FLC performed the task more consistently and with less error that the other 

controllers. 

The Hagras study showed similar results to the experiment presented in this Chapter. Hagras 

focused on the impact of hierarchical controllers and the difference between robot performance 

in an indoor laboratory compared to being outside on a paved area. The Hagras study did look 

at the performance of a type-l FLC compared to a type-2 interval FLC in following the edge of 

an irregular wall at a distance of 0.35 metres under indoor conditions. The performance of each 

controller was measured over 8 experimental runs. The type-l FLC had a mean deviation from 

the ideal path of 0.020 metres, with a standard deviation of 0.9. The type-2 interval had a mean 

deviation from the ideal path of 0.016 metres, with a standard deviation of 1.2. These figures 

for standard deviation broadly fit with the results from this study. The path deviation cannot be 
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compared as this study did not use absolute distance measurement when calculating error from an 

ideal path. However the fact that the standard deviation figures are similar suggests that the studies 

are finding the same results, showing a degree of repeatability. 

The experiments were designed to allow an analysis of variance (ANOVA) with multiple compar­

isons to be performed on the results to show where any significant differences are in the controller 

performances are. The results did not allow an ANOVA to be performed so a non-parametric 

substitute was used, the Kruskal-Wallis test. The ANOVA could not be performed as the results 

showed differences in standard deviation and the distributions were not normal and could not be 

transformed. Some difference in variance of results was expected, but to lesser degree than ac­

tually happened. These non-normal distributions were surprising. With fifty experimental runs 

being performed it was expected that the results would follow a normal distribution. It may be that 

the nature of the task makes normal distributions of results less likely. For example, here is only 

a small area between the obstacle and ideal path for errors to occur. There is a much larger area 

outside the ideal path where errors could occur. It may also be the case that the rule base is focused 

on controlling the robot around the ideal path area and does not provide tight enough control once 

the robot moves away from this area. Both of these factors suggest the results may be skewed to 

one side or the other. However, the results did not show a uniform skew to either side and so the 

form of the distributions remains unexplained. 

This Chapter has presented an experiment designed to assess the performance of a number of 

mobile robot controllers. The experiment demonstrated that a type-2 FLC can outperform other 

fuzzy controllers. The next Chapter draws together the key points from this work and analyses the 

importance of this work to the field of fuzzy logic. 
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Chapter 6 

Conclusions and Discussion 

This Chapter concludes the thesis by summarising the key points and outcomes of the research. A 

discussion of directions for future work on geometric fuzzy systems is discussed. 

The main outcome of this thesis is the geometric approach to type-2 fuzzy systems. The geometric 

approach presented in thesis has allowed the first type-2 fuzzy logic controller to be built. This 

is a significant step for type-2 fuzzy logic. Furthermore this first type-2 fuzzy logic controller 

has been compared to type-l and type-2 interval controllers. The geometric approach makes this 

comparison possible. The research is also assessed against the research hypothesis that was stated 

in Chapter 1 as: 

"Type-2 fuzzy logic systems offer a great deal in terms of modelling uncertain concepts and 

inferencing under uncertain conditions. However, the computational complexity of type-2 fuzzy 

logic is arresting the research and development of such systems. Geometric methods can resolve 

these computational problems making it possible for type-2 fuzzy logic to be applied in a time 

critical domain such as control." 

This Chapter summarises the arguments presented throughout this thesis that directly relate to this 

hypothesis. The central arguments supporting the research hypothesis, which will be expanded 

upon, are: 

(i) Geometric Fuzzy Sets Improve Accuracy. It is argued in this thesis that the use of dis­

crete fuzzy sets results in a loss of information about the fuzzy set resulting in inaccuracies 

throughout the inferencing process. Geometric fuzzy sets can model fuzzy sets over a con­

tinuous domain, removing the need for discretisation and therefore increasing accuracy. 

Examples and discussion of these examples argue this point. 

(ii) Geometric TYpe-2 Fuzzy Logic Systems are Computational Efficient. It is argued in this 

thesis that the complexity of type-2 fuzzy sets results from defining operations with use of 
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the extension principle. The extension principle is not applicable to geometric type-2 fuzzy 

systems. Operations are instead defined by modelling the third dimension of the type-2 sets 

as a third geometric dimension. This results in a significant reduction in the computational 

complexity of type-2 fuzzy systems. 

(iii) Hybridised Type-2 Fuzzy Logic Systems Require Minimal Computation. Experiments re­

ported in this thesis suggest that the most efficient form of type-2 fuzzy systems are hy­

bridised type-2 fuzzy systems. Prior to this thesis, no examples of generalised type-2 fuzzy 

logic control appear in the literature. 

(iv) Hybrid Type-2 Fuzzy Logic Control is Possible. In this thesis the design of two hybrid type-2 

fuzzy logic controllers is described. The performance of these controllers were subsequently 

evaluated. 

(v) Hybrid Type-2 Fuzzy Logic Can Outperform Other Fuzzy Technologies. Experimental data, 

both visual and statistical, reported in this thesis suggests that a hybrid type-2 fuzzy logic 

controller gave a smoother and more consistent performance in the task of edge following. 

Each of these points will now be explored in greater detail. 

6.1 Geometric Fuzzy Sets Improve Accuracy 

Prior to this work, fuzzy logic systems, deployed on either hardware or software, have had to use 

discrete fuzzy sets. It may be the case that the concepts being modelled by the sets have a naturally 

discrete domain. Often, however, such sets are based over a continuous domain. Discretising a 

fuzzy set over a continuous domain results in a loss of information about the form of the set. In­

accuracies are introduced to the set model before any inferencing has been performed. During in­

ferencing these errors are compounded. A worked example, presented in Chapter 3, demonstrates 

this loss of information and inaccuracies that result from discretisation. This loss of information 

can be significant. The worked example showed an inaccuracy equivalent to approximately 4.7% 

of the support of the fuzzy set. This represents a significant error. 

Geometric fuzzy sets do not require discretisation, therefore offer more accurate representations of 

fuzzy membership functions. For membership functions that do not contain any curved elements, 

i.e. piecewise linear membership functions, a type-l geometric fuzzy set offers a completely 

accurate representation. Geometric type-2 interval fuzzy sets also offer a completely accurate rep­

resentation when both the upper and lower membership functions are piecewise linear. Geometric 

type-2 interval and type-l fuzzy sets can also improve the accuracy of the representation of mem­

bership functions that are not piecewise linear. This is illustrated by a worked example in Chapter 

139 



3. Errors that occur when a set is discretised are compounded during the inferencing process. 

Using the geometric model helps reduce such errors. For example, when discrete fuzzy sets are 

combined, the areas between the discrete points can be incorrectly calculated. Geometric fuzzy 

sets have no discrete points, therefore, such inaccuracies cannot occur. This point is illustrated by 

Figure 3.3 of this thesis. 

The accuracy issues identified for discrete type-l fuzzy sets are magnified in discrete type-2 fuzzy 

sets. Increasing the number of points in a discrete type-2 fuzzy set has a significant impact on 

computational complexity of a type-2 fuzzy system. In particular, the computational cost of type­

reduction increases significantly as the number of discrete points in a type-2 fuzzy set increases. 

This relationship is explored in detail in Chapter 2 of this thesis. There is an significant computa­

tional gain to be made from using less points in a discrete type-2 fuzzy set. Reducing the number 

of points in a discrete set has a serious impact on the accuracy of the representation of that set. 

In the example in Chapter 2 two discrete type-2 fuzzy sets are given which are both modelling an 

identical continuous fuzzy set. One set contains three discrete points in the primary and secondary 

domains. The other set contains six discrete points in the primary and secondary domains. The 

computational cost of type-reducing the two sets varies by a factor of over 1700. The difference 

between the defuzzified values of the two sets is approximately equal to 9% of the support of the 

fuzzy sets. 

The concept of accuracy is more complicated for geometric type-2 fuzzy sets. Analogous to the 

20 concept of a piecewise linear function is the 30 concept of a planar surface. A planar surface 

is a 3-dimensional surface that is constructed from a series of smaller surfaces, each of which lie 

entirely on a single plane. If the membership function of a type-2 fuzzy set is a planar surface 

then a geometric type-2 fuzzy set can represent that membership function with complete accuracy. 

For non-planar surfaces geometric type-2 fuzzy sets offer an approximation of that surface. The 

accuracy of the geometric model cannot be directly compared with that of the discrete model for 

type-2 fuzzy sets. This is because the aim of the type-reduction operation is to achieve a different 

goal to the geometric defuzzifier. 

6.2 Geometric Type-2 Fuzzy Logic Systems are Computational Effi­
cient 

There are two aspects oftype-2 fuzzy logic that are responsible for the computational problems of 

type-2 fuzzy logic, inferencing (join and meet) and type-reduction. 

• Inferencing. The join and meet operations are the building blocks of three aspects of the 

type-2 fuzzy inferencing process, combination of antecedents, implication and the combi-
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nation of consequents. The efficiency of these two operations determines the efficiency 

of the inferencing process. The optimised join and meet operations given in Section 4.1 

give computationally efficient definitions for these operations. The join and meet opera­

tions for geometric type-2 fuzzy sets are geometric interpretations of these efficient opera­

tions. The geometric type-2 implication and combination of consequent operations provide 

3-dimensional geometric interpretations of these efficient operations. 

• Type-Reduction. As the number of points in a discrete type-2 fuzzy set increase the amount 

of computation required to type-reduce that set increases significantly. The growth in com­

putational complexity for the geometric defuzzifier is much less of an issue than with type­

reduction. The computational cost of the geometric defuzzifier grows in a linear fashion 

with the number of triangular facets used to model the surface. It is the output processing 

stage of type-2 fuzzy logic where the geometric approach gives huge reductions in compu­

tational complexity. This point was emphasised in Section 5.3 where type-reduction was 

shown to take 99.9% of the overall inferencing time of an example discrete type-2 fuzzy 

logic system. 

The argument presented in this thesis is that geometric type-2 fuzzy system are computationally 

efficient. Most of the efficiency gain over discrete systems stems from the type-2 geometric de­

fuzzifier. 

6.3 Hybridised Type-2 Fuzzy Logic Systems Require Minimal Com­

putation 

The research hypothesis states that geometric methods can be used to overcome the computational 

problems oftype-2 fuzzy logic. This does not necessarily mean that using only geometric methods 

will achieve the best possible reduction in computational complexity. Hybridised type-2 fuzzy 

logic presented in Chapter 4 allows the most efficient aspects of discrete and geometric type-

2 fuzzy logic to be combined in one system. By defining operations to transform between the 

discrete and geometric representations it is possible to select the component configuration, given 

the current definitions, with the minimum computational requirements for a particular application. 

An example of the design an optimal hybridised type-2 fuzzy system is presented in Chapter 5 

of this thesis. Each of the possible discrete and geometric system components is tested under 

simulated conditions. The execution speed of each component was measured under controlled 

conditions. The system configuration with the lowest possible execution speed was then selected. 

This process resulted in a computationally optimal type-2 fuzzy logic system. It is argued in this 
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thesis that hybrid type-2 fuzzy logic results in a system requiring the minimum computation since 

the most efficient system components can be selected and combined. 

6.4 Hybrid Type-2 Fuzzy Logic Control is Possible 

Prior to this thesis there were no reported examples of generalised type-2 fuzzy logic being applied 

to a control problem. The argument presented throughout this thesis is that the computational 

complexity of discrete type-2 fuzzy systems renders them unsuitable for such applications. Having 

demonstrated that hybrid type-2 fuzzy systems require minimal computation, the application of 

such systems to a control problem was then investigated. 

Type-2 fuzzy sets model uncertain concepts. If type-2 systems are to be applied in the control 

domain it is only sensible that the application chosen has inherent uncertainties. The problem of 

mobile robot control was identified as an application containing the necessary uncertainties. The 

robotic platform chosen for the controller was the Pioneer 2 robot. The real-time constraint for 

this platform requires a control action to be calculated every 250 milliseconds. This means that the 

sensor readings have to be taken, passed to the FLC, reasoned with, a decision taken and the deci­

sion actioned by the robot once every quarter of a second. Achieving such execution speeds with 

a discrete type-2 fuzzy system would require hardware resources far beyond the embedded PC on 

the Pioneer 2 robots. The type-reduction operation of the sets used in the controllers would require 

8.88 x 1034 embedded sets to be enumerated. The hybrid approach offers minimal computation, 

however, the ability to perform the required computation in under a quarter of a second on the 

available hardware was not known until the systems were implemented. Once implemented it be­

came clear that these time constraints present no problems to the hybrid controllers. Experiments 

(reported in Chapter 5) were conducted using two hybrid fuzzy logic robot controllers supporting 

the argument that hybrid type-2 fuzzy logic can indeed be applied to a control problem. 

6.5 Hybrid Type-2 Fuzzy Logic Can Outperform Other Fuzzy Tech­
nologies 

Type-2 fuzzy logic models and reasons with uncertain concepts. Such a system should therefore 

improve the decision making process under uncertain conditions. The application area of mobile 

robotics meets this criteria. In Chapter 5 an experiment was designed to compare the results of 

type-2, type-2 interval and type-! fuzzy logic controllers of various configurations. The result 

of the this experiment show the hybrid type-2 fuzzy logic controller HI gave the best control 

performance of those that were tested. This result was borne out by both a visual inspection of 
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the paths the robot controllers took and a statistical analysis of those paths. The investigation 

that forms Chapter 5 of this thesis supports the conclusion that a hybrid type-2 fuzzy system can 

outperform its fuzzy counterparts. 

6.6 Further Work 

This thesis has presented the novel geometric approach to fuzzy logic systems. This study has 

given rise to a number of areas where further work in this field is warranted. 

• The geometric approach is currently limited to modelling fuzzy operations based on the 

minimum and maximum t-norm and t-conorm. The approach may be more widely accepted 

by practitioners if operations based on other operators had a geometric interpretation. In 

particular a geometric model of the product t-norm would be useful as this t-norm is often 

applied in the control domain. 

• More studies should be conducted into the performance of geometric fuzzy systems. The 

study presented in this thesis shows the type-2 fuzzy systems can outperform type-l and 

type-2 interval systems. This study demonstrated an improved control performance of a 

mobile robot controller over the other systems. The conditions and factors that facilitate this 

performance improvement should be studied . 

• The geometric defuzzification and type-reduction offer two completely different approaches 

to output processing in a type-2 fuzzy logic system. The characteristics of these two tech­

niques should be studied. This may inform the design and use of these techniques . 

• This thesis reports the software implementation of a type-2 fuzzy logic controller. This 

is a major development in the field of type-2 fuzzy logic. The possibility of a hardware 

implementation of a type-2 fuzzy system is now apparent. Such a development would enable 

type-2 fuzzy logic systems to be a applied to a wider range of applications, particularly in 

the field of control. 

• Currently there are no methods for finding the optimal levels of discretisation for typc-2 

fuzzy sets. There is a particular problem with type-2 fuzzy sets as they have a primary 

and a secondary domain. Methods for determining the optimal levels in both domains for a 

particular application would be very useful. 
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6.7 Summary 

This thesis is concerned with the definition and application of geometric fuzzy logic systems. 

Throughout the thesis it has been argued that the process of discretising fuzzy sets leads to inac­

curacies in the set model and the inferencing process. Geometric fuzzy sets, which do not require 

discretisation have been proposed. The set model and inferencing process of such system is com­

pletely accurate for non-curved membership functions. The major contribution of this work has 

been the use of geometry in reducing the computational complexity of type-2 fuzzy logic. The 

novel geometric type-2 fuzzy logic methods have allowed, for the first time, generalised type-2 

fuzzy logic to be applied to a control problem. The results show that type-2 fuzzy logic can out­

perform both type-l and type-2 interval fuzzy logic. This result is a promising outcome for the 

field of type-2 fuzzy logic. 
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Appendix A 

Proofs 

A.I Demonstration That Equation 4.6 = Equation 4.7 

This Section demonstrates that 

is equivalent to 

(A. I) 

(A.2) 

To demonstrate this fact let the four values ,lJA(x, '\)1), ,lJA(x, 9), ps(x, '\)2) and Pl1(x, 9) each take a 

distinct value from the set {0.4, 0.6, 0.8, I}. This will give all possible permutations of the terms in 

equations concerned. These permutations are given in Table A.I where JlA(X, '\)1) = i, !iBex, 9) = j, 

p,4(x,9) = k and !iBex, '\)2) = 1. Because PA(X, 'U.) ~ PA(x,9) and Jljj(x, 'U2) ~ Jl8(x,9) only case 

where these two facts are true need to be taken in to account. Table A.I shows that for every tuple 

of values for which these facts hold Equations 4.6 and 4.7 are equivalent. 
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A B C D 
i j k 1 (i Aj) V (k A I) (j v k) A (i A /) i> k&l > j A=B C=}D 
1 0.8 0.6 0.4 0.8 0.4 0 0 1 
1 0.8 0.4 0.6 0.8 0.6 0 0 1 

1 0.6 0.8 0.4 0.6 0.4 0 0 1 
1 0.6 0.4 0.8 0.6 0.6 1 1 1 

1 0.4 0.8 0.6 0.6 0.6 1 1 1 
1 0.4 0.6 0.8 0.6 0.6 1 1 1 

0.8 1 0.6 0.4 0.8 0.4 0 0 1 
0.8 1 0.4 0.6 0.8 0.6 0 0 1 
0.8 0.6 1 0.4 0.6 0.4 0 0 1 
0.8 0.6 0.4 1 0.6 0.6 1 1 1 
0.8 0.4 1 0.6 0.6 0.6 0 1 1 
0.8 0.4 0.6 1 0.6 0.6 1 1 1 
0.6 1 0.8 0.4 0.6 0.4 0 0 1 
0.6 1 0.4 0.8 0.6 0.6 0 1 1 
0.6 0.8 1 0.4 0.6 0.4 0 0 1 
0.6 0.8 0.4 1 0.6 0.6 1 1 1 
0.6 0.4 1 0.8 0.8 0.6 0 0 1 
0.6 0.4 0.8 1 0.8 0.6 0 0 1 
0.4 1 0.8 0.6 0.6 0.4 0 0 1 
0.4 1 0.6 0.8 0.6 0.4 0 0 1 
0.4 0.8 1 0.6 0.6 0.4 0 0 1 
0.4 0.8 0.6 1 0.6 0.4 0 0 1 
0.4 0.6 1 0.8 0.8 0.4 0 0 1 
0.4 0.6 0.8 1 0.8 0.4 0 0 1 

Table A.I. All Possible Permutations of the Term in Equations 4.6 and 4.7. 

154 



Appendix B 

The Fuzzy Sets Employed in the Fuzzy logic 

Controllers 
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B.2 Type-l Geometric FLC 
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Fig. 804. The Geometric Type-I Fuzzy Sets Very Near, Near, Correct, Far and Very Far. 
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Fig. 0.5. The Geometric Type-I Fuzzy Sets Hard Left, Left, Straight Ahead, Right and Hard Right. 
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Fig. B.7. The Discrete Type-2 Interval Fuzzy Sets Very Near, Near, Correct, Far and Very Far. 
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B.4 Type-2 Interval Geometric FLC 
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Fig. B.I0. The Geometric Type-2 Interval Fuzzy Sets Very Near, Near, Correct, Far and Very Far. 
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Fig. B.II. The Geometric Type-2 Interval Fuzzy Sets Hard Left, Left, Straight Ahead, Right and Hard Right. 
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B.5 Type-2 HI FLC 
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B.6 Type-2 H2 FLC 
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Fig. B.16. The Ilybrid Type-2 Fuzzy Sets Very Near, Near, Correct, Far and Very Far. 
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Fig. B.17 . The I Iybrid Type-2 Fuzzy Sets Hard Left, Left, Straight Ahead, Right and Hard Right. 

10 
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Appendix C 

Software Testing 

C.I Testing Strategy 

The black box (Myers79) testing methodology was be applied to each of the FLC used in chapter 

5. This was chosen over white box testing as performing white box testing would require specifi­

cations of every function in all the code and resources don't allow this. 

Each part of the inferencing process in each system will be tested using a set of equivalence classes. 

For testing purposes each inferencing system will be broken down into the following parts: 

1. Building the sets 

2. Taking a membership grade 

3. AND/OR of that membership grade 

4. Implication 

5. Combination of implied sets with the OR 

6. Defuzzification 

C.2 Type-! Discrete System Testing 

C.2.l Building the Sets 

Figure C.1 depicts a comparison between a discrete type-1 fuzzy sets produced by the software 
and the discrete type-l set that should have been produced. 
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(b) (c) 

~ ~ I I I 
I 1 

a 1 II 
x 

Fig. C. I. Bui lding a Discrete Type- I Fuzzy Set (a) Theoretical Set (b) Actual Set (c) Comparison 

C.2.2 Taking a membership grade 

Case Expected Result Actual Result 

x < s a 0.000000 

x = 0.2(x mod 0 X != 0) 0.4375 0.437500 

x = 0.2163636(x mod 0 X = 0) 0.4886363 0.488636 

x > c a 0.000000 

C.2.3 AND/OR of that membership grade 

Case Expected AND Expected OR Actual AND Actual OR 

0 - 0.1 a 0.1 0.000000 0.100000 

0.1 - 0 a 0.1 0.000000 0.100000 

1 - 0.1 0 1 0.000000 1.000000 

0.1 - 1 0 1 0.000000 1.000000 

0.9 - 0.1 0.1 0.9 0.100000 0.900000 

0.1 - 0.9 0.1 0.9 0.100000 0.900000 

C.2.4 Implication 

Figure C.2 depicts a comparison between an implied discrete type-l fuzzy sets produced by the 

software and the implied discrete type-I set that should have been produced. 

C.2.S Combination of Implied Sets with the OR 

Figure C.3 depicts a comparison between a discrete type-l fuzzy set which results from the com­

bination of two discrete type- l fuzzy sets produced by the software and the discrete type-l set that 
should have been produced. 
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Fig. C.2. Implication on a Discrete Type-I Fuzzy Set (a) Theoretical Set (b) Actual Set (c) Comparison 
(a) (b) (c) 

~ ~ ~ 

x 0'-----

Fig. C.3 . Combination of Implied Discrete Type-I Fuzzy Sets with the OR (a) Set A (b) Set B (c) A or B 

C.2.6 Defuzzification 

eOA of AorB 

Expected answer: 0.570760887857714 

Actual answer 0.570761 

C.2.7 Result 

The type-l discrete system has been tested and is correct. 

C.3 Type-l Geometric System Testing 

C.3.1 Building the sets 

Figure C.5 depicts a comparison between a geometric type-I fuzzy set produced by the software 

and the geometric type-l set that should have been produced. 
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Fig. C.4. Combination of Implied Discrete Type- l Fuzzy sets with the OR (a) Set A (b) Set B (c) A or B 
(a) (b) (c) 

~ ~ ~ 

o'-'-----~ O'-'-----~ o '-'-------lX~ 

Fig. C.S. Building a Geometric Type- I Fuzzy set (a) Expected Set (b) Actual Set (c) Comparison 

C.3.2 Taking a membership grade 

Case Expected Result Actual Result 

x <s 0 0.000000 

x = 0.2 (s < x < e) 0.4375 0.437500 

x > e 0 0.000000 

C.3.3 AND/OR of that membership grade 

Case Expected AND Expected OR Actual AND Actual OR 

0 - 0.1 0 0.1 0.000000 0.100000 

0.1 - 0 0 0.1 0.000000 0 .100000 

1 - 0.1 0 1 0.000000 1.000000 

0.1 - 1 0 1 0.000000 1.000000 

0.9 - 0.1 0.1 0.9 0.100000 0.900000 

0.1 - 0.9 0.1 0.9 0.100000 0 .900000 
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C.3.4 Implication 

Figure C.6 depicts a comparison between an implied geometric type-l fuzzy set produced by the 

software and the implied geometric type-l set that should have been produced. 
(a) (b) (c) 

~ ~ ~ 

o '-'-----~':': o L..L.-____ ~ o L..L.-____ ~ 

X 

Fig. C.6. Performing Implication on a Geometric Type-l Fuzzy Set (a) Expected Set (b) Actual Set (c) Comparison 

C.3.S Combination of implied Sets with the OR 

Figures C.7 and C.8 depict the results of two combinations of implied geometric type-l fuzzy sets. 

(a) (b) 
(c) 

~ ~ 

o ~---"-----=-=X o '--'-_1--_I...-....l-_ 

X 

Fig. C.7. Combination of Implied Geometric Type-l Fuzzy Sets with the OR - Disjoint Sets (a) A (b) B (c) A or B 
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(a) (b) 
(c) 

~ ~ 

o I.-L.----~X o ......... -----~ 

Fig. C.8. Combination of Implied Geometric Type-l Fuzzy Sets with the OR - Non-Disjoint Sets (a) A (b) B (c) A or 
B 

C.3.6 Defuzzification 

eOA of AorB 

Expected answer: 0.57228855721393 

Actual answer 0.572289 

C.3.7 Result 

The type-l geometric fuzzy system has been tested and shown to be correct. 

C.4 Type-2 Interval Discrete System Testing 

C.4.1 Building the Sets 

Figure C.9 depicts a comparison between the discrete type-2 interval fuzzy set produced by the 

software and the discrete typc-2 interval set that should have bfSJ1 produced. 
(a) (b) 

~ ~ ~ 

III 
I II 

I II 
O'------~x 

1 1 
1 
1 

Fig. C.9. Building a Discrete Type-2 Interval Fuzzy Set (a) Theoretical Set (b) Actual Set (c) Comparison 
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C.4.2 Taking a membership grade 

'Case Expected Result Actual Result 

x = 0.0 (x < upper s) [0,0] [0.000000,0.000000] 

x = 0.1 (upper s < x < lower s) [0.784091,0.587412] [0.784091 ,0.587412] 

x = 0.3 10909 [0.966,0.766] [0.966667,0.766667] 

(lower s < x < lower e AND x mod 0 X = 0) 

x = O.4 [0.966,0.766] [0 .966667, 0.766667] 

(lower s < x < lower e AND x mod 0 X != 0) 

x = 0.9 (lower e < x < upper e) [1.'33,0] [0.133333 ,0.000000] 

x = 1.0 (x > upper e) [0,0] [0.000000,0.000000] 

C.4.3 AND/OR of that membership grade 

Expected Expected 

Case AND OR Actual AND Actual OR 

[0 .2,0.3] - [0.4,0.5] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

[0.2,0.4] - [0.3,0.5] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

[0.2,0.5] - [0.3,0.4] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

[0.3,0.4] - [0.2,0.5] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

[0.3,0.5] - [0.2,0.4] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

C.4.4 Implication 

Figure C.I 0 depicts a comparison between the implied discrete type-2 interval fuzzy set produced 

by the software and the implied discrete type-2 interval set tha~&}1ould have been produced. 
(a) (b) 

~ 1111111111 ~ 1111111111 ~ 
1111111111 1111111111 
1111111111 1111111111 
1111111111 1111111111 
1111111111 1111111111 
1111111111 1111111111 

1111111 11 1 \11111\ 11 
I I II II I \ 1 

I I I" I II I I 
II I I II 1 

1111111111 
1111111111 
1111111111 
1111111111 
1 I I I I I I I 1 I 
1111111111 
I I I 

I 
I 

Fig. C. lO. Performing Implication on a Discrete Type-2 Interval Fuzzy Set (a) Theoretical Set (b) Actual Set (c) 
Comparison 
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C.4.S Combination of implied Sets with the OR 

Figures C.II and C.12 depict the results of two combinations of implied discrete type-2 interval 

fuzzy sets. 
(a) 

~ 
(b) 

~ 

(c) 

Fig. C.II. Combination ofImplied Discrete Typc-2 Interval Fuzzy Sets with the OR - Disjoint Sets (a) Theoretical Set 
(b) Actual Set (c) Comparison 

(a) (b) 
(c) 

~ ~ ~ 

II 1\ 

I I I I r'\ : \ I I I 1.1 I I I 
o '--'-----...L....:-:

X 
o '------"""-' ........ = 

X 0 
X 

Fig. C.12. Combination of Implied Discrete Type-I Fuzzy Sets with the OR - Non-Disjoint Sets (a) Theoretical Set (b) 
Actual Sct (c) Comparison 
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C.4.6 Defuzzification 

COA of A orB 

Expected Type-Reduced Set [0.442761532606134,0.610163833080078] 

Actual Type-Reduced Set [0.442762,0.610164] 

Expected Answer 0.526462682843106 

Actual Answer 0.526463 

C.4.7 Result 

The discrete type-2 interval system has been tested and is correct. 

c.s Type-2 Interval Geometric System Testing 

C.S.1 Building the Sets 

Figure C.13 depicts a comparison between the geometric type-2 interval fuzzy set produced by the 

software and the geometric type-2 interval set that should havq:eren produced. 
(a) (b) 

~ ~ ~ 

ou...L----~ 
oL...L..L ____ ~ 

X 

Fig. C.13. Building a Geometric Type-2 Interval Fuzzy Set (a) Expected Set (b) Actual Set (c) Comparison 

C.S.2 Taking a membership grade 

Case Expected Result Actual Result 
x = 0.0 (x < upper s) [0,0] [0.000000,0.000000] 

x = 0.1 (upper s < x < lower s) [0.125,0] [0.125000,0.000000] 

x = 0.4 (lower s < x < lower e) [0.966,0.766] [0.966667,0.766667] 

x = 0.9 (lower e < x < upper e) [1 ::n,O] [0.133333,0.000000] 

x = 1.0 (x> upper e) [0,0] [0.000000,0.000000] 
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C.S.3 AND/OR of that membership grade 

Expected Expected 

Case AND OR Actual AND Actual OR 

[0.2,0.3] - [0.4,0.5] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

[0.2,0.4] - [003,0.5] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] (0.400000,0.500000] 

[0.2,0.5] - [0.3,0.4] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

[0.3,0.4] - [0.2,0.5] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

[0.3,0.5] - [0.2,0.4] [0.2,0.3] [0.4,0.5] [0.200000,0.300000] [0.400000,0.500000] 

C.S.4 Implication 

Figure C.l4 depicts a comparison between the implied geometric type-2 interval fuzzy set pro­

duced by the software and the implied geometric type-2 interval set that should have been pro-

~~. ~ 
(a) (b) 

~ ~ ~ 

o~----~ o '-'-"----~ o ........... ----.,;~ 

Fig. C.14. Performing Implication on a Geometric Type-2 Interval Fuzzy Set (a) Expected Set (b) Actual Set (c) 
Comparison 

C.S.S Combination of Implied Sets with the OR 

Figures C.l5 and C.l6 depict a comparison between a discrete type-! fuzzy set which results from 

the combination of two discrete type-! fuzzy sets produced by the software and the discrete type-l 

set that should have been produced. 
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x 
o L..-___ L-L.......L...J.. 

Fig. C.l S. Combination of Implied Geometric Type-2 Interval Fuzzy Sets with the OR - Disjoint Sets (a) Expected Set 
(b) Actual Set (c) Comparison ( C ) 

(a) (b) 

~ ~ ~ 

o u....'--___ ~~ 

Fig. C.16. Combination oflmplied Geometric Type-2 Interval Fuzzy Sets with the OR - Non-Disjoint Sets (a) Expected 
Set (b) Actual Set (c) Comparison 

C.S.6 Defuzzification 

COA of A orB 

Expected Answer 0.547204461448106 

Actual Answer 0.547205 

C.S.7 Result 

The geometric type-2 interval system has been test and is correct. 

C.6 Type-2 Discrete System Testing 

C.6.1 Building the Sets 

Figure C.17 depicts a comparison between the discrete type-2 fuzzy set produced by the software 

and the discrete type-2 set that should have been produced. 
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(a) 

I1(X, u) 
I 

I1(X) 
1 

(b) 

I1(X ,U) 
I 

J1(X) 
I 

(c) 

J1(X,U) 
1 

J1(X) 
I 

Fig. C.I? Building a Discrete Type-2 Fuzzy Set (a) Expected Set (b) Actual Set (c) Comparison 

C.6.2 Taking a membership grade 

Case Expected Result Actual Result 

x<s Null Null 

x = 0.5(x mod 0 X != 0) Figure C.19 (a) Figure C.19 (b) 

x = 0.545455(x mod 0 X == 0) Figure C.IS (a) Figure C.IS (b) 

x>e Null Null 

(b) 

~ 

0~1~ 
X 

Fig. C.IS. Taking a Membership Grade of A Discrete Type-2 Geometric Fuzzy Set I (a) x = 0.545455 (x mod delta X 
= 0) Expect result (b) x = 0.545455 (x mod delta X = 0) Actual result 

C.6.3 AND/OR of that membership grade 

Figures C.20 and C.21 depict a comparison between the secondary membership functions that 

should have been produced by the system and the actual functions given by the system. 

C.6.4 Implication 

Figure C.22 depicts a comparison between the implied discrete type-2 fuzzy set produced by the 

software and the implied discrete type-2 set that should have been produced. 
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(a) (b) 
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OU-l..1..Io..L_--~x o L..L..A....&.."'-L-.----X~ 

Fig. C.19. Taking a Membership Grade of A Discrete Type-2 Geometric Fuzzy Set II (a) x = 0.5 (x mod delta X != 0) 
Expected result (b) x = 0.5 (x mod delta X != 0) Actual result 

(b) (c) 

) ) 

O~-"""'.L----x= 

Fig. C.20. The Join and Meet Operations ofa Discrete Type-2 Fuzzy Set I (a) Sets (b) Join (c) Meet 

C.6.S Combination of implied Sets with the OR 

Figures C.23 and C.24 depict a comparison between a discrete type-2 fuzzy set which results from 

the combination of two discrete type-2 fuzzy sets produced by the software and the discrete type-2 

set that should have been produced. 

C.6.6 Defuzzification 

Figure C.24 depict a comparison between the first 100 embedded sets that should have been enu­

merated from a discrete type-2 set and the actual embedded sets given by the system. 

C.6.7 Result 

The discrete type-2 system has been tested and is correct. 
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(a) (b) (c) 

~ ~ '1 

o "--Iu.&.U----
X
= 

Fig. C.2l. The Join and Meet Operations of a Discrete Type-2 Fuzzy Set II (a) Sets (b) Join (c) Meet 

W M 00 M ~ M 

.u(x,u) 
1 

1 1 1 

.u(x,u) 
1 

J.l(x,u) 
1 

Fig. C.22. Performing Implication on a Discrete Type-2 Fuzzy Set (a) Expected Set (b) Actual Set (c) Comparison 

C.7 Type-2 Hybrid 1 System Testing 

Figure C.25 depicts a comparison between the discrete type-2 fuzzy set produced by the software 

and the discrete type-2 set that should have been produced. 

C.7.1 Building the Sets 

C.7.2 Taking a membership grade 

Case Expected Result Actual Result 

x<s Null Null 

x = 0.5(x mod a x != 0) Figure C.27 (a) Figure C.27 (b) 

x = 0.545455(x mod 6 X == 0) Figure C.26 (a) Figure C.26 (b) 

x>e Null Null 

C.7.3 AND/OR of that membership grade 

Figures C.28 and C.29 depict a comparison between the secondary membership functions that 

should have been produced by the system and the actual functions given by the system. 
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(a) 

,u(x, u) 
1 

p(x) 
1 

(b) 

,u(x,u) 
1 

p(x) 
1 

(c) p(x) 
1 

Fig. C.23. Combination ofImplied Discrete Type-2 Interval Fuzzy Sets with the OR (a) Set A (b) Set B (c) A or B 

(a) ,u(x) (b) ,u(x) 
1 1 

Fig. C.24. Enumeration of the First One Hundred Embedded Sets(a) Expected Embedded Sets (b) Actual Embedded 
Sets 

C.7.4 Implication 

Figure C.30 depicts a comparison between the implied discrete type-2 fuzzy set produced by the 

software and the implied discrete type-2 set that should have been produced. 

C.7.S Combination of implied Sets with the OR 

Figures C.31 and C.32 depict a comparison between a discrete type-2 fuzzy set which results from 

the combination of two discrete type-2 fuzzy sets produced by the software and the discrete type-2 

set that should have been produced. 
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(a) p(x) 
1 

(b) p(x) 
1 

(c) p(x) 
1 

p(x, u) 
1 

p(x,u) 
1 

p(x,u) 
1 

Fig. C.25. Building a Hybrid Type-2 Fuzzy Set (a) Expected Set (b) Actual Set (c) Comparison 

(a) (b) 

~ ~ 

o '-'-_-J.-_-~X o '-'---J.----
X
= 

Fig. C.26. Taking a Membership Grade of A Hybrid Type-2 Fuzzy Set I (a) x = 0.545455 (x mod delta X = 0) Expect 
result (b) x = 0.545455 (x mod delta X = 0) Actual result 

C.7.6 Defuzzification 

Figure C.32 depicts a comparison between the hybrid to geometric transform that should have 

been produced by the system the the transform that actually was produced. 

C.7.7 Result 

The hybrid type-2 system has been tested and is correct. 
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(a) 

,ul 

o I....-~----X~ 

(b) 

~ 

o L..---'-----X= 

Fig. C.2? Taking a Membership Grade of A Hybrid Type-2 Fuzzy Set II (a) x = O.S (x mod delta X != 0) Expected 
result (b) x = 0.5 (x mod delta X \= 0) Actual result 

(a) (b) (c) 

~ A ~ ~ 
1\ 

I \ 
I \ 

I \ , 
\ I 
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I \ 

0 o -------II----X= 

Fig. C.28. The Join and Meet Operations of a Hybrid Type-2 Fuzzy Set I (a) Sets (b) join (c) meet 
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x 

(b) 
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(c) 
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Fig. C.29. The Join and Meet Operations of a Hybrid Type-2 Fuzzy Set II (a) Sets (b) join (e) meet 
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(a) 

JJ(X,u) 
1 

(a) 

JJ(X,u) 
I 

(b) 

JJ(X, u) 
1 

JJ(X) 
1 

(c) 

JJ(X,u) 
1 

JJ(X) 
1 

Fig. CJO. Perfonning Implication on a Hybrid Type-2 Fuzzy Set(a) Expected Set (b) Actual Set (c) Comparison 

(a) 

JJ(X) 
1 

(b) 

JJ(X,u) 
1 

JJ(X) 
1 

(c) JJ(X) 
1 

Fig. C.31. Combination of Implied Hybrid Type-2 Fuzzy Sets with the OR (a) A (b) B (c) A or B 

/I(X) 
1 

(b) /I(X) 
1 

Fig. CJ2. Hybrid to Geometric Transfonnation (a) Expected (b) Actual 
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Appendix D 

Paths Taken by the Robot 
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Fig. D.I. The Raw Tracked Paths of the Discrete Type-l Robot FLC. 
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Fig. D.2. The Raw Tracked Paths of the Geometric Type-l Robot FLC. 
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Fig. 0.3. The Raw Tracked Paths of the Discrete Type-2 Interval Robot FLC. 
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Fig. D.4. The Raw Tracked Paths of the Geometric Type-2 Robot FLC. 
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Fig. 0.5. The Raw Tracked Paths of the Type-2 HI Robot FLC. 
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Fig. D.6. The Raw Tracked Paths of the lYPe-2 H2 Robot FLC. 

188 



Fig. 0.7. The Tracked Paths of the Discrete Type-l Robot FLC. 
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Fig. 0.8. The Tracked Paths of the Geometric Type-l Robot FLC. 
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Fig. 0.9. The Tracked Paths of the Discrete Type-2 Interval Robot FLC. 
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Fig. D.10. The Tracked Paths of the Geometric Type-2 Robot FLC. 
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Fig. 0.11. The Tracked Paths of the Type-2 HI Robot FLC. 
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Fig. 0.12. The Tracked Paths of the Type-2 H2 Robot FLC. 
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'Proc. FUZZ-IEEE 2004', Budapest, Hungary, pp. 959 - 964. 

Coupland, S. & John, R. (2004), Fuzzy Logic and Computational Geometry, in 'Proc. RASC 
2004', Nottingham, England, pp. 3 - 8. 
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