121 research outputs found

    Abnormal connectional fingerprint in schizophrenia: a novel network analysis of diffusion tensor imaging data

    Get PDF
    The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal–frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder

    Anatomy-Guided Dense Individualized and Common Connectivity-Based Cortical Landmarks (A-DICCCOL)

    Get PDF
    Establishment of structural and functional correspondences of human brain that can be quantitatively encoded and reproduced across different subjects and populations is one of the key issues in brain mapping. As an attempt to address this challenge, our recently developed Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system reported 358 connectional landmarks, each of which possesses consistent DTI-derived white matter fiber connection pattern that is reproducible in over 240 healthy brains. However, the DICCCOL system can be substantially improved by integrating anatomical and morphological information during landmark initialization and optimization procedures. In this paper, we present a novel anatomy-guided landmark discovery framework that defines and optimizes landmarks via integrating rich anatomical, morphological, and fiber connectional information for landmark initialization, group-wise optimization and prediction, which are formulated and solved as an energy minimization problem. The framework finally determined 555 consistent connectional landmarks. Validation studies demonstrated that the 555 landmarks are reproducible, predictable, and exhibited reasonably accurate anatomical, connectional, and functional correspondences across individuals and populations and thus are named anatomy-guided DICCCOL or A-DICCCOL. This A-DICCCOL system represents common cortical architectures with anatomical, connectional, and functional correspondences across different subjects and would potentially provide opportunities for various applications in brain science

    The human mediodorsal thalamus: Organization, connectivity, and function

    Get PDF
    The human mediodorsal thalamic nucleus (MD) is crucial for higher cognitive functions, while the fine anatomical organization of the MD and the function of each subregion remain elusive. In this study, using high-resolution data provided by the Human Connectome Project, an anatomical connectivity-based method was adopted to unveil the topographic organization of the MD. Four fine-grained subregions were identified in each hemisphere, including the medial (MDm), central (MDc), dorsal (MDd), and lateral (MDl), which recapitulated previous cytoarchitectonic boundaries from histological studies. The subsequent connectivity analysis of the subregions also demonstrated distinct anatomical and functional connectivity patterns, especially with the prefrontal cortex. To further evaluate the function of MD subregions, partial least squares analysis was performed to examine the relationship between different prefrontal-subregion connectivity and behavioral measures in 1012 subjects. The results showed subregion-specific involvement in a range of cognitive functions. Specifically, the MDm predominantly subserved emotional-cognition domains, while the MDl was involved in multiple cognitive functions especially cognitive flexibility and inhibition. The MDc and MDd were correlated with fluid intelligence, processing speed, and emotional cognition. In conclusion, our work provides new insights into the anatomical and functional organization of the MD and highlights the various roles of the prefrontal-thalamic circuitry in human cognition

    Mapping changes of in vivo connectivity patterns in the human mediodorsal thalamus: correlations with higher cognitive and executive functions

    Get PDF
    The mediodorsal thalamic nucleus is recognized as an association hub mediating interconnections with mainly the prefrontal cortex. Tracer studies in primates and in vivo diffusion tensor tractography findings in both humans and monkeys confirm its role in relaying networks that connect to the dorsolateral prefrontal, orbitofrontal, frontal medial and cingulate cortex. Our study was designed to use in vivo probabilistic tractography to describe the pathways emerging from or projecting to the mediodorsal nucleus; moreover, to use such information to automatically define subdivisions based on the divergence of remote structural connections. Diffusion tensor MR imaging data of 156 subjects were utilized to perform connectivity-based segmentation of the mediodorsal nucleus by employing a k-means clustering algorithm. Two domains were revealed (medial and lateral) that are separated from each other by a sagittally oriented plane. For each subject, general assessment of cognitive performance by means of the Wechsler Abbreviated Scale of Intelligence and measures of Delis-Kaplan Executive Function System (D-KEFS) test was utilized. Inter-subject variability in terms of connectivity-based cluster sizes was discovered and the relative sizes of the lateral mediodorsal domain correlated with the individuals' performance in the D-KEFS Sorting test (r = 0.232, p = 0.004). Our results show that the connectivity-based parcellation technique applied to the mediodorsal thalamic nucleus delivers a single subject level descriptor of connectional topography; furthermore, we revealed a possible weak interaction between executive performance and the size of the thalamic area from which pathways converge to the lateral prefrontal corte

    Cortical Cartography: Mapping Functional Areas Across the Human Brain with Resting State Functional Connectivity MRI

    Get PDF
    Human behavior and cognition are largely supported by the cerebral cortex, a structure organized at many physical scales ranging from individual neurons up to distributed systems of multiple interconnected “functional areas”. Each functional area possesses a unique combination of inputs, outputs, and internal structure, and is thought to make a distinct contribution to information processing. Thus, the study of each area\u27s normal function, developmental trajectory, and modified responses following loss or injury may greatly enhance our understanding of cognition. Indeed, one of the: often unsaid) overarching goals of functional neuroimaging is to use differential activity between conditions to identify specific information processing operations reflected in these functional areas. Unfortunately, delineating a complete collection of functional areas in any mammal, let alone non-invasively in humans, is not straightforward and currently incomplete. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity: rs-fcMRI), are especially promising as a way to delineate functional areas since they localize differences in patterns of correlated activity across large expanses of cortex. Presented here is the exploration, development, initial application, and first order validation of rs-fcMRI mapping, the non-invasive delineation of putative functional areas and boundaries across the cortical surface in individual humans using rs-fcMRI. rs-fcMRI ‘contour’ maps can be created in individual subjects which delineate sharp transitions and stable locations in correlation patterns. Several of the strongest and most resilient of these features can be consistently detected both across time within subject, are comparable across subject, independent cohort, and scanner, and appear to represent known functional-anatomical divisions. An initial validation of rs-fcMRI mapping against task-related activity, finds consistency with task-related fMRI results for two separate tasks in two groups of subjects, as well as in individual data. These results provide a proof-of-concept for using rs-fcMRI mapping to describe a putative distribution of functional areas and boundaries within single individuals, as well as to potentially improve functional neuroimaging studies in basic, translational, and clinical settings through the independent delineation of functional areas that can be compared across subjects, groups, and studies

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    The effects of hippocampal lesions on MRI measures of structural and functional connectivity.

    Get PDF
    Focal lesions can affect connectivity between distal brain regions (connectional diaschisis) and impact the graph-theoretic properties of major brain networks (connectomic diaschisis). Given its unique anatomy and diverse range of functions, the hippocampus has been claimed to be a critical "hub" in brain networks. We investigated the effects of hippocampal lesions on structural and functional connectivity in six patients with amnesia, using a range of magnetic resonance imaging (MRI) analyses. Neuropsychological assessment revealed marked episodic memory impairment and generally intact performance across other cognitive domains. The hippocampus was the only brain structure exhibiting reduced grey-matter volume that was consistent across patients, and the fornix was the only major white-matter tract to show altered structural connectivity according to both diffusion metrics. Nonetheless, functional MRI revealed both increases and decreases in functional connectivity. Analysis at the level of regions within the default-mode network revealed reduced functional connectivity, including between nonhippocampal regions (connectional diaschisis). Analysis at the level of functional networks revealed reduced connectivity between thalamic and precuneus networks, but increased connectivity between the default-mode network and frontal executive network. The overall functional connectome showed evidence of increased functional segregation in patients (connectomic diaschisis). Together, these results point to dynamic reorganization following hippocampal lesions, with both decreased and increased functional connectivity involving limbic-diencephalic structures and larger-scale networks. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.Medical Research Council (Grant ID: MC-A060-5PR10); Biotechnology and Biological Sciences Research Council (Grant ID: BB/L02263X/1); Netherlands Organization for Scientific ResearchThis is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/hipo.2262

    DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks

    Get PDF
    Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity–based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work
    • 

    corecore