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Abstract

Establishment of structural and functional correspondences of human brain that can be 

quantitatively encoded and reproduced across different subjects and populations is one of the key 

issues in brain mapping. As an attempt to address this challenge, our recently developed Dense 

Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system reported 

358 connectional landmarks, each of which possesses consistent DTI-derived white matter fiber 

connection pattern that is reproducible in over 240 healthy brains. However, the DICCCOL system 

can be substantially improved by integrating anatomical and morphological information during 

landmark initialization and optimization procedures. In this paper, we present a novel anatomy-

guided landmark discovery framework that defines and optimizes landmarks via integrating rich 

anatomical, morphological, and fiber connectional information for landmark initialization, group-

wise optimization and prediction, which are formulated and solved as an energy minimization 

problem. The framework finally determined 555 consistent connectional landmarks. Validation 

studies demonstrated that the 555 landmarks are reproducible, predictable, and exhibited 

reasonably accurate anatomical, connectional, and functional correspondences across individuals 

and populations and thus are named anatomy-guided DICCCOL or A-DICCCOL. This A-

DICCCOL system represents common cortical architectures with anatomical, connectional, and 

functional correspondences across different subjects and would potentially provide opportunities 

for various applications in brain science.

Index Terms

Anatomy; cortical landmarks; DTI; fMRI; structural connectivity

I. INTRODUCTION

Establishment of structural and functional correspondences of human brain across different 

subjects and populations is one of the important issues in the brain mapping field. For 

several decades, three major categories of approaches have been largely adopted in the brain 

mapping field to establish the correspondences of brain regions across individuals, and 

remarkable successes have been achieved by those approaches. The first category is brain 

image registration algorithms (e.g., [1]–[9]). In general, brain image registration methods are 

mainly concerned with morphological correspondences across individuals. The second 

category is cortical parcellations (e.g., [10]–[13]). These cortical parcellation approaches 

typically designed certain criteria to define cortical region boundaries with the aim of 

establishing correspondences during parcellation of multiple brains. The third category is 

manual/semiautomatic regions of interests (ROI) analysis (e.g., [14]–[16]). The ROI-based 

correspondence establishment methods are usually suitable for specific application 

scenarios.
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Alternatively, several recent studies attempted to define and discover consistent and common 

brain cortical landmarks with intrinsic structural and functional correspondences across 

different subjects and populations [16]–[21]. In particular, several multimodal DTI/fMRI 

studies [16]–[24] have demonstrated the close relationships between DTI-derived fiber 

connection patterns and brain functions. This provides direct supporting evidence to the 

connectional fingerprint concept [25], which premises that each brain’s cytoarchitectonic 

area has a unique set of extrinsic inputs and outputs that largely determines the functions 

that each brain area performs. Based on these principles, we developed and validated a data-

driven connectional landmark discovery approach dubbed as: Dense Individualized and 

Common Connectivity-based Cortical Landmarks (DICCCOL) in [21], which identified 358 

consistent connectional landmarks. The basic idea was to optimize the localizations of each 

initial DICCCOL landmark in individual brains by maximizing the group-wise consistency 

of their DTI-derived white matter fiber connectivity patterns [21]. Our validation studies 

have demonstrated that the DICCCOLs provide reasonably good intrinsically established 

correspondences across subjects and populations, and these 358 DICCCOLs have been 

released online at http://dicccol.cs.uga.edu.

However, the DICCCOL system reported in [21] merely considers the DTI-derived fiber 

connectivity pattern consistency across different subjects as the metric during landmark 

identification and can be substantially improved by integrating additional meaningful 

anatomical, morphological, and fiber connectional information during the landmark 

identification. Moreover, the landmark initialization for the DICCCOL was merely based on 

randomly sampled grid points in a template brain. Each grid of initialized landmarks in the 

template brain was then registered to other brains via linear registration, and the landmark 

optimization was performed afterward [21]. However, anatomical interindividual variability 

sometimes misleads the process of normalization. For example, in some brains, the central 

fissure stops higher than the usual and misleads the registration of the pre- and postcentral 

gyri. As a consequence, the same corresponding landmark might be misplaced in certain 

brains. This scenario is illustrated in Fig. 1 as an example. Here, we initialized a 

corresponding landmark located on the left precentral gyrus (shown as yellow bubble) in 

three example brains from the template brain via linear registration. It is apparent that the 

landmark initializations for the first two brains were reasonably accurate (roughly located on 

the left precentral gyrus), but the initialization for the third brain was wrong (located on the 

left postcentral gyrus). Therefore, the following landmark optimization procedure would 

have difficulty in finding consistent fiber connection patterns for these inconsistently 

initialized landmarks due to image registration error caused by anatomical interindividual 

variability and would potentially miss this possibly consistent landmark.

In this paper, we substantially improved the identification framework of our original 

DICCCOL system in [21] and introduced the anatomy-guided DICCCOL or A-DICCCOL. 

Our major improvements are: first, instead of randomly sampled grid points in a template 

brain as the initialized landmarks in original DICCCOL system [21], we initialized the 

connectional landmarks on corresponding gyri/sulci under anatomical guidance for each 

brain to improve the accuracy of landmark initialization and thus facilitate the landmark 

optimization and discovery procedure. Second, instead of merely considering the DTI-

derived fiber connection pattern similarity as the metric in the previous DICCCOL system, 
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we added meaningful anatomical, structural connection pattern homogeneity, and spatial 

information during the group-wise landmark optimization procedure. Specifically, in this 

paper, three new constraints including anatomical, structural connection pattern 

homogeneity, and spatial constraints, as well as the previous adopted structural connection 

pattern similarity constraint, were jointly modeled and integrated together to optimize the 

landmark locations within individual brains. Extensive experiments have demonstrated the 

effectiveness and meaningfulness of those newly added constraints in seeking group-wise 

consistent and corresponding connectional landmarks in individual brains. Third, we applied 

the proposed connectional landmark discovery procedures on higher angular resolution 

diffusion imaging (HARDI) data and recently publicly released Human Connectome Project 

(HCP) high-quality DTI data (Q1 release) [26], and via different fiber tracking software 

tools to examine the consistency of the DTI-derived connectional landmarks, which is 

another validation improvement than the previous DICCCOL system. Our proposed 

framework finally identified 555 new and consistent connectional landmarks, called the 

anatomy-guided DICCCOL or A-DICCCOL here. Extensive validations based on DTI, 

HARDI, and fMRI datasets have demonstrated that the 555 landmarks are reproducible, 

predictable, and exhibit reasonably accurate anatomical, connectional, and functional 

correspondences across individuals and populations.

II. DATA ACQUISITION AND PREPROCESSING

In this paper, we used five different multimodal DTI/HARDI/fMRI datasets for 

initialization, optimization, determination, prediction, and validation of A-DICCCOL 

landmarks, as summarized in Table I. In particular, we randomly selected ten subjects with 

DTI data from Dataset #1 as the model brains (see Fig. 2) for landmark initialization and the 

following group-wise optimization and identification. The remaining subjects from Datasets 

#1–#5 were used as the testing brains (see Fig. 2). In brief, Dataset #1 included 23 healthy 

adult students recruited under IRB approval. Working memory [27] task-based fMRI (T-

fMRI) and DTI scans were acquired for these participants at the University of Georgia 

(UGA) Bioimaging Research Center (BIRC) under IRB approval. Dataset #2 included the 

DTI and five T-fMRI scans of 13 healthy young adults recruited at UGA BIRC under IRB 

approval. The scans were performed on a GE 3T Signa MRI system using an eight-channel 

head coil at the UGA BIRC. The five T-fMRI scans were based on in-house verified 

paradigms including emotion [28], empathy [29], fear [29], semantic decision making [30], 

and working memory [27] tasks, which were also detailed in [21]. Dataset #3 included 20 

elderly healthy subjects recruited and scanned at the UGA BIRC under IRB approval. DTI 

dataset was acquired using the same imaging parameters as those in Datasets #1 and #2. 

Dataset #4 included 68 subjects from recently publicly released large-scale HCP high-

quality DTI data (Q1 release) [26]. Dataset #5 included full-brain coverage HARDI images 

acquired from five adult subjects using a Siemens 3T Trio MR Scanner at UNC Chapel Hill 

[31]. The details of acquisition parameters and pre-processing steps of the five datasets are 

referred to supplemental materials and [32], [33].
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III. A-DICCCOL IDENTIFICATION

Fig. 2 summarizes the flowchart of the computational framework for the A-DICCCOL 

identification. In total, there are four major steps as shown by the numbers: landmark 

initialization, landmark optimization, landmark determination, and landmark prediction. 

Details will be covered in the subsequent sections.

A. Landmark Initialization

As mentioned in Section I and detailed in [21], the landmark initialization for our previous 

DICCCOL system was only based on randomly sampled grid points (2056) in a template 

brain. Then, each grid of initialized landmarks in the template brain was registered to other 

subjects using the linear registration algorithm FSL FLIRT [35], and landmark optimization 

was performed afterward [21]. However, the accuracy of landmark initialization across 

different subjects might be affected due to the anatomical interindividual variability, and 

thus, the landmark optimization procedure might be hampered. In this A-DICCCOL 

discovery framework, we refined the landmark initialization procedure by initializing 

corresponding landmark on the same gyrus/sulcus under anatomical guidance across 

different subjects to improve the accuracy of landmark initialization and thus to facilitate the 

landmark optimization and discovery procedure.

Specifically, first, as mentioned in Section II, ten subjects were randomly selected from 

Dataset #1 as the group of model brains (see Fig. 2) for landmark initialization and the 

following group-wise optimization and determination. It is noted that we randomly selected 

one of the ten model brains as the template, and other model brains were linearly registered 

to it so that their global shape differences were removed, and their cortical surfaces were in 

the same space for comparison and landmark initialization. Second, for each model brain, 

the roughly anatomically corresponding landmarks on the cortical surfaces were 

interactively labeled by two experts and further checked by the third expert according to the 

brain template used in the Brain-Voyager Brain Tutor (http://www.brainvoyager.com). 

Specifically, for each clearly identifiable major gyrus/sulcus, a certain number (ranging from 

3–20) of landmarks were selected at cortical surface mesh vertices that are roughly 

distributed evenly along the gyral ridge/sulcal valley [36] and are sufficiently dense to 

ensure the full coverage of the whole gyral ridge/sulcal valley. In total, we interactively 

labeled 594 corresponding landmarks that fully cover the whole major gyral ridge/sulcal 

valley for each of the ten model brains. It should be noted that the number of initialized 

landmarks that fully cover the whole major gyral ridge/sulcal valley (here 594) does not 

affect the following group-wise landmark optimization result, since redundant landmarks are 

automatically merged during the optimization procedure (detailed in Section III-C). It should 

also be noted that our aim was not to accurately locate the anatomical correspondence of 

each landmark due to the highly variability of cortical folding patterns even within the same 

gyrus/sulcus across different subjects. We just enforced the roughly macroanatomical (gyri/

sulci scale) correspondence for the landmarks to improve the accuracy of landmark 

initialization compared to the previous DICCCOL system and further to preserve the same 

anatomical identity of roughly corresponding landmarks during landmark optimization. Fig. 

3(a) and (b) shows the brain template with labeled major gyri/sulci and the initialized 
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landmarks on gyri/sulci of one model brain, respectively. Fig. 3(c) shows all initialized 594 

corresponding landmarks of three example model brains. These landmarks with rough 

anatomical correspondences served as the initial locations for group-wise optimization in the 

next step.

B. Structural Connection Pattern Homogeneity

Our prior studies [14], [18], [24] have demonstrated that the structural connection profile of 

an ROI could be highly nonlinear, that is, a slight change to the location, size, or shape of the 

ROI could significantly alter its DTI-derived fiber connection patterns. Therefore, this high 

nonlinearity could cause uncertainties and instabilities in the discovery of consistent and 

reproducible connectional landmarks. In this paper, we systematically examined the DTI-

derived fiber structural connection pattern linearity/homogeneity of the cortical surface in 

detail.

Specifically, first, for each cortical mesh vertex, we extracted the DTI-derived white matter 

fiber bundles emanating from it to represent its structural connection pattern. Second, we 

used our recently developed trace-map model [18], [37] to quantitatively represent the fiber 

bundles. To be self-contained, the trace-map model projects a fiber bundle into a point 

distribution pattern on the standard surface of a unit sphere. One hundred forty four sample 

points are then set up on the standard sphere surface, and the point density of each sample 

point is calculated. Thus, a trace map is represented as a 144-dimension histogram vector, 

and each dimension is the point density information of a specific sample point. In this way, 

the problem of quantitatively comparing the similarities of fiber bundles is effectively 

converted to comparing the similarities of 144-dimension trace-map vectors [18], [37]. The 

major advantage of the trace-map model is its capability of accurately and compactly 

modeling global fiber shape patterns, while allowing for normal local shape variations [18], 

[37]. Third, for each cortical mesh vertex, we defined its structural connection pattern 

homogeneity as the similarity between its trace map and the trace maps of its morphological 

neighboring vertices (3-ring cortical surface mesh, i.e., about 30 vertices). Specifically, the 

similarity is calculated by the Kendall’s coefficient of concordance [38]. Assume that  is 

the location of vertex j in subject i, and  is the 144-dimension trace map of . 

Assume that there are Q vertices in the neighborhood of , and they are regarded as the 

object q to be ranked. Each of 144 dimensions of trace map is considered as a judge p [38], 

and the number of judges is denoted by P (P = 144). Define object q is given the rank rq,p by 

judge p, and tk is the number of tied ranks in kth of m groups of ties. The Kendall’s 

coefficient of concordance of  is defined as

(1)

The higher the Kendall’s coefficient of concordance value, the more homogeneous the 

structural connection pattern of the vertex.
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We calculated the structural connection pattern homogeneity values by (1) for all vertices of 

ten model brains. As shown in Fig. 4(c) and (d), we can see that there are vertices 

(highlighted by red bubbles) with local maximum of structural connection pattern 

homogeneity within the roughly corresponding cortical regions across different subjects. 

Moreover, we defined the distance of trace maps [21] as

(2)

where tr and tr′ are two 144-dimension trace maps, tri and  are ith elements of tr and tr′, 

and N is the number of trace-map dimensions (N = 144). We found that the structural 

connection patterns among the vertices with local maximum of structural connection pattern 

homogeneity (red bubbles) across the ten model brains have less trace-map distance, i.e., are 

more similar than those among the vertices in the morphological neighborhood (e.g., in the 

1-ring, 3-ring, and 5-ring surface mesh neighborhood, highlighted by yellow, green, and 

purple bubbles, respectively, in Fig. 4(c) and (d) of the vertices with local maximum of 

structural connection pattern homogeneity. More results are in Supplemental Figs. 1 and 2. 

These results suggest that there are local structural connection pattern homogeneity peaks 

within the specific roughly corresponding cortical regions across different subjects, and 

importantly, these peaks exhibit more similar structural connection patterns compared to 

their morphological neighborhood. As illustrated previously, the high nonhomogeneity of 

structural connection profile of a ROI could cause uncertainties and instabilities in the 

discovery of consistent connectional landmarks [14], [18], [24]. Therefore, in this paper, we 

assumed that the identified corresponding connectional landmarks should tend to locate at 

the structural connection pattern homogeneity peaks in its local morphological 

neighborhood for all subjects. Our premise is that those corresponding connectional 

landmarks which locate at the structural connection pattern homogeneity peaks tend to have 

less nonhomogeneity and more reproducibility, in that the cortical regions on which they 

locate have more homogeneous and stable fiber connection patterns, as well as intersubject 

correspondences. We will integrate the structural connection pattern homogeneity 

information, which was not considered in our previous DICCCOL system, into our A-

DICCCOL landmark optimization procedure which will be detailed in the following section.

C. Landmark Optimization

With the availability of initialized cortical landmarks in Section III-A, the next step of 

landmark identification is to perform landmark optimization by searching all possible 

combinations of candidate landmark locations within their local morphological 

neighborhoods in different model brains and seeking the optimal solution with the specific 

constraints. In our previous DICCCOL system, we only considered the DTI-derived fiber 

connection pattern similarity, which was defined as the distance of 144-dimension trace 

maps [21], as the constraint during landmark optimization to seek the optimal solution of 

group-wise fiber connection pattern consistency. In this paper, we substantially improved the 

landmark optimization procedure by adding three new meaningful constraints. First, the 
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corresponding landmarks across different model brains should locate on the same clearly 

identifiable gyrus/sulcus before and after optimization in order to preserve the same 

macroanatomical identity, as discussed in Section III-A. Second, the corresponding 

landmarks should tend to locate at the vertices with local maximum of structural connection 

pattern homogeneity within the morphological neighborhood, as discussed in Section III-B. 

Third, the landmark should move within the morphological neighborhood of its initial 

location with a predefined size during optimization to preserve the globally spatial 

correspondence on the cortical surface [16]. These three new constraints/information, as 

well as the DTI-derived fiber connection pattern similarity constraint adopted in previous 

DICCCOL system [21], were jointly modeled and integrated together to perform landmark 

optimization. The goal is to search all possible combinations of candidate landmark 

locations within their local morphological neighborhoods in different model brains and to 

seek the optimal solution of minimizing the group-wise variance of these four jointly 

modeled profiles.

Specifically, assume that there are M model brains,  is the initialized location (mesh 

vertex) of landmark j in brain i, and  is the candidate location in its morphological 

neighborhood . The maximum principal curvature of  is represented by 

 [13] and it is used as the anatomical constraint.

First, Es(j) is defined as the structural connection pattern similarity constraint to ensure that 

the corresponding landmark j across M model brains have similar structural connection 

pattern, which was also adopted in our previous DICCCOL system [21]

(3)

where  is the 144-dimension vector representing the trace map of  as detailed in 

Section II-D. var(·)is the variance among all trace-map vectors.

Second, EH (j) is defined as the structural connection pattern homogeneity constraint to 

ensure that the corresponding landmark j across M model brains should tend to move toward 

the location with local maximum of structural connection pattern homogeneity within its 

morphological neighborhood  as detailed in Section III-B. After calculating the Kendall’s 

coefficient of concordance  for  based on (1),

(4)
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Third, ED (j) is defined as the landmark spatial constraint to ensure that the landmark j 

moves within  during the optimization procedure to preserve the globally spatial 

correspondence on the cortical surface, which is similar to the spatial constraints used in our 

recent work [16].

(5)

where dist(·) is the Euclidean distance between  and .

Mathematically, the group-wise variance of these four jointly modeled profiles is modeled as 

the energy E that we aim to minimize as follows based on (3)–(5):

(6)

Here, we have weights λ1 + λ2 + λ3 = 1 (λ1,λ2, and λ3 are between 0 and 1). Note that we 

adopted the grid search and tenfold cross validation on ten model brains to find the optimal 

set of weights λ1,λ2, and λ3 which have the least trace-map variance defined in (3) across 

ten model brains for each landmark. Then, we searched all possible combinations of 

candidate landmark locations  within their local morphological neighborhoods  to seek 

the optimal solution of minimizing E(j).

The energy E(j) minimization was solved as follows. For each iteration, by searching the 

whole-space of landmarks candidate locations  in different model brains for one 

corresponding landmark j, we could find an optimal combination of landmark locations that 

minimized E(j). The convergence criterion is that the Euclidean distance of landmark 

locations between two consecutive iterations is less than or equal to ε (ε = 2 mm, since the 

Euclidean distance between two adjacent surface mesh vertices is about 2 mm). Notably, for 

each iteration, if the distance between two neighboring landmarks that are to be optimized is 

less than or equal to a predefined threshold td (td = 2 mm, since the distance between two 

adjacent surface mesh vertices is about 2 mm) across all model brains, we labeled these two 

landmarks as “merged,” randomly discarded one of them in all model brains and only 

optimized the left one in the next iteration. In our implementation, we considered about 30 

candidate locations (3-ring neighborhood) for each initialized landmark. The whole 

algorithm is summarized below.
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Algorithm I

Landmark Optimization.

1: Initialization:  is the manually initialized location of landmark j in subject i, iteration number t = 0.

2: , 

3: t = t + 1, 

4: , 

5: If 

6: repeat 3,4

7: end

D. Landmark Determination and Prediction

To examine and ensure the reproducibility of the identified cortical landmarks, we randomly 

divided the ten model brains equally into two groups and performed landmark optimization 

in Section III-C separately. As a result, two independent groups of optimized corresponding 

connectional landmarks were obtained. Then, for each optimized corresponding landmark in 

all of the ten model brains in two groups, we evaluated its consistency using both 

quantitative (trace-map distance and fiber connection pattern homogeneity values) and 

qualitative (visual inspection) methods similar as in [21] and [16]. In brief, for each 

corresponding landmark, we calculated the trace-map distance defined in (2) between any of 

the two brains within each of the two groups, and the mean trace-map distance of two 

groups were assessed to verify the similarity of the landmark across groups of brains [21]. 

We also assessed the average fiber connection pattern homogeneity values of the landmark 

in all model brains to verify if it increased after optimization. Meanwhile, we used in-house 

large-scale visualization tool [19] to visually confirm that the landmark preserved the same 

anatomical identity after optimization across all model brains. We also checked the fiber 

connection patterns in all model brains of two groups. If the landmark in any of the ten 

model brains has substantially different fiber shape patterns than others according to [21] 

and [16] based on quantitative (trace-map distance and fiber connection pattern homogeneity 

values) or qualitative (visual inspection) measurements, this landmark is discarded. Finally, 

we retained 555 connectional landmarks which exhibit reasonably accurate anatomical and 

connectional consistency across all ten model brains and named these 555 landmarks as A-

DICCCOL. The visualizations of all 555 A-DICCCOL landmarks have been released online 

at http://dicccol.cs.uga.edu.

With the identified 555 A-DICCCOL landmarks, we were motivated to predict all 555 

landmarks in a single subject’s brain to verify the reproducibility and predictability of the A-

DICCCOL landmarks. The prediction of A-DICCCOL landmarks in a testing brain was 

similar as the landmark optimization procedure in the Section III-C. First, the testing brain 
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was linearly registered to the same space of the model brains via FSL FLIRT, and thus, the 

A-DICCCOL landmarks in one of the model brains were roughly initialized in the testing 

brain. Second, the landmark optimization procedure in Section III-C was applied to the 

testing brain based on the optimized A-DICCCOL landmark locations in ten model brains. 

Since we already had the optimized locations of 555 A-DICCCOL landmarks in the ten 

model brains, we kept those optimized landmark locations in all model brains unchanged 

and only optimized those in the testing brain by minimizing the energy E defined in (6) 

across 11 brains (ten model brains and the testing brain). Thus, the landmark prediction 

procedure is fast and efficient. Specifically, assume m1, m2, …, m10 are the ten model brains 

and mn is a testing brain, respectively. The landmark prediction algorithm is summarized 

below. It is clear that even though the performance of the prediction algorithm is dependent 

on the number of candidate locations in  of mn, it can be finished within linear time 

since the locations of A-DICCCOL landmarks of ten model subjects are unchanged. In 

practice, predicting all 555 A-DICCCOL landmarks in a testing brain takes around 30 min 

on a conventional computer at current stage.

Algorithm II

Landmark Prediction.

1: mn is linearly registered to m1 and 555 landmarks in m1 are roughly initialized in  is the initial location of 
landmark j in mn.

2: Construct the new group, including m1, m2, …, m10 and mn. Keep , , … , be unchanged.

3: , 

4:  with least E(j) is the predicted location of landmark j in mn.

IV. RESULTS

The results section includes four sections as follows. Section IV-A demonstrates the 

reproducibility and predictability of the 555 A-DICCCOL landmarks. Section IV-B validates 

the consistency and stability of 555 landmarks based on HARDI data and using different 

fiber tracking software tools. Section IV-C focuses on the functional annotations of A-

DICCCOL landmarks via T-fMRI data. Section IV-D compares the functional annotation 

accuracies by 555 A-DICCCOL landmarks and by image registration algorithms.

A. Reproducibility and Predictability of A-DICCCOL

We optimized and determined 555 consistent and corresponding A-DICCCOL landmarks in 

ten model brains as detailed in Section III-C and III-D and further predicted 555 landmarks 

in all testing brains in Datasets #1–#4 (see Table I) with DTI data (including the publicly 

released large-scale HCP high-quality DTI data (Q1 release) in Dataset #4) to examine the 

reproducibility and predictability of 555 A-DICCCOL landmarks. Fig. 5(a) shows the 

optimized 555 A-DICCCOL landmarks (yellow bubbles) in three model brains. As an 
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example, three of 555 landmarks are randomly selected (highlighted by three enlarged color 

bubbles, respectively) for all model brains to examine their anatomical, structural connection 

pattern similarity, and homogeneity consistency across different subjects in detail. First, Fig. 

5(b) shows the DTI-derived fiber connection patterns of the three example landmarks across 

the three model brains in Fig. 5(a). By visual inspection, the fiber connection patterns of the 

same landmark across three model brains are similar. Quantitatively, the average trace-map 

distance calculated by (2) is 2.08, 2.18, and 2.15 within and across two groups of all ten 

model brains, respectively, which are considered as quite low [18], [21]. Moreover, the 

consistency of fiber structural connection pattern of corresponding landmarks across 

different subjects is significantly improved and shows group-wise consistency after 

landmark optimization than that of initialization, as illustrated in Fig. 6. To illustrate the 

effectiveness of fiber connection patterns, we also performed cortical registration via 

FreeSurfer based on the initialized locations of 555 A-DICCCOL landmarks on the ten 

model brains. In this way, we obtained a new set of 555 landmarks for each brain. Then, for 

each pair of corresponding landmarks based on cortical registration and the A-DICCCOL 

system, we calculated the Euclidean distance between the two landmarks. On average, the 

distance of all 555 landmarks across ten model brains is 1.54 mm, indicating that the 555 A-

DICCCOL landmark locations indeed moved after adding meaningful fiber connection 

patterns constraints than merely anatomical constraints to improve the fiber connection 

correspondence. Second, in Fig. 5(c), the cortical surfaces are color-coded by structural 

connection pattern homogeneity values as illustrated in Section III-B. We can see that after 

landmark optimization, the three landmarks all converged to the locations (highlighted by 

the colored bubbles, respectively) with higher structural connection pattern homogeneity 

values than that of their initial locations (white bubbles), respectively. Supplemental Fig. 3 

shows the mean structural connection pattern homogeneity values of all 555 landmarks in all 

ten model brains before and after optimization. We can see that mean homogeneity value 

increases after landmark optimization. Third, in Fig. 5(d), the cortical surfaces are color-

coded by the maximum principal curvature value to indicate the gyri/sulci identity [13]. We 

can see that after optimization, the locations of three landmarks all maintained the same 

anatomical profiles as their initial locations, respectively. Finally, all of the 555 A-

DICCCOL landmarks were evaluated and confirmed to possess the anatomical, structural 

connection pattern consistency across all model brains. The visualizations of structural 

connection patterns of all 555 A-DICCCOL landmarks have been released online at http://

dicccol.cs.uga.edu.

Moreover, Fig. 5(h) shows the predicted 555 A-DICCCOL landmarks (yellow bubbles) in 

randomly selected three testing brains. The same three of 555 landmarks as in model brains 

[see Fig. 5(a)] are also selected (highlighted by the same three enlarged color bubbles, 

respectively) for the testing brains to examine their anatomical, structural connection pattern 

similarity, and homogeneity consistency across model brains and testing brains in detail. 

First, Fig. 5(e) shows the DTI-derived fiber connection patterns of the same three landmarks 

across the three testing brains in Fig. 5(h). By visual inspection, the fiber connection patterns 

of the same landmark across three testing brains [see Fig. 5(e)] as well as three model brains 

[Fig. 5(b)] are similar. Quantitatively, the average trace-map distance calculated by (2) is 

2.14 within the three testing brains, which is similar as those in model brains and are 
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considered as quite low [18], [21]. Second, in Fig. 5(f), the cortical surfaces are color-coded 

by structural connection pattern homogeneity values. We can see that the predicted three 

landmarks are all at the locations (highlighted by the colored bubbles, respectively) with 

high structural connection pattern homogeneity values in its morphological neighborhood, 

respectively. Note that the initial locations (white bubbles) of landmarks in model brains [see 

Fig. 5(c)] which are used to illustrate the effectiveness of our landmark optimization 

procedure are not shown in the testing brains in Fig. 5(f). Third, in Fig. 5(g), the cortical 

surfaces are color-coded by the maximum principal curvature value to indicate the gyri/sulci 

identity [13]. We can see that the locations of three predicted landmarks all maintained the 

same anatomical profiles as those in model brains [Fig. 5(d)], respectively. Note that the 

initial locations (white bubbles) of landmarks in model brains [see Fig. 5(d)] which are used 

to illustrate the effectiveness of our landmark optimization procedure are not shown in the 

testing brains in Fig. 5(g). Moreover, Fig. 7 shows the fiber structural connection patterns of 

two examples of 555 A-DICCCOL landmarks in both model brains and testing brains of 

Datasets #1–#4 (see Table I) (including the publicly released large-scale HCP high-quality 

DTI data (Q1 release) in Dataset #4), respectively. We can see that the predicted A-

DICCCOL landmarks possess structural connection pattern consistency across model brains 

and different testing brains including the publicly released HCP high-quality DTI data (Q1 

release). More examples are in Supplemental Fig. 4. Finally, all of the 555 predicted A-

DICCCOL landmarks were evaluated and confirmed to possess the structural connection 

pattern consistency across all model brains and about 120 testing brains (see Section II) 

including the publicly released HCP high-quality DTI data (Q1 release), indicating that the 

A-DICCCOL system is reproducible, predictable, and reasonably represents common 

cortical architectures with anatomical and structural connection pattern consistency across 

different subjects and populations.

B. Consistency of Landmarks in HARDI Data and Using Different Fiber Tracking Software 
Tools

In this section, we examined the consistency of 555 DTI-derived A-DICCCOL landmarks in 

HARDI data (Dataset #5 in Table I) because of its superior quality and capability of dealing 

with crossing fibers [39]. Moreover, since our A-DICCCOL landmarks identification 

depends on fiber structural connection patterns which might be affected by different fiber 

tracking strategies and software tools, we adopted five different fiber tracking software 

toolkits or parameter settings which more adequately account for crossing fibers [34] on 

HARDI data to examine the consistency of the 555 A-DICCCOL landmarks. Note that these 

validations were not considered in our previous DICCCOL system [21]. Specifically, first, 

we initialized 555 optimized A-DICCCOL connectional landmarks on all five brains with 

HARDI data by linear registration (FSL FLIRT). Second, five different fiber tracking 

software toolkits or parameter settings (including MRtrix [40] with three parameter settings 

(fiber bundle number is 10 000, 50 000, and 100 000, respectively), MEDINRIA based on q-

ball imaging, and DTIStudio) were adopted to perform streamline fiber tracking on the 

HARDI data, respectively. Third, the landmark optimization procedure in Section III-C was 

applied to the five brains based on different fiber tracking software tools, respectively. Fig. 8 

shows the covisualization of 555 optimized landmarks based on DTI/HARDI data and using 

different fiber tracking software tools, respectively. Quantitatively, we mapped all 555 
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landmarks in ten model brains and five HARDI brains using different fiber tracking software 

tools to the same space via linear transformation and calculated the mean distance of any 

pair of locations for each corresponding landmark. The overall mean distance for all 

landmarks is 4.37 mm, which is relatively small. In conclusion, the 555 A-DICCCOL 

landmarks are reasonably stable and consistent across subjects using DTI/HARDI data and 

different fiber tracking software tools.

C. Functional Annotations of A-DICCCOL

Similarly as in [21], the major objective of performing functional annotations of A-

DICCCOL landmarks in this section is to demonstrate that A-DICCCOL landmarks with 

reasonably consistent anatomical, fiber structural connection pattern similarity, and 

homogeneity consistency also possess corresponding functional localizations. Specifically, 

first, similar to those in [18], [21], and [24], both group-level and individual-level fMRI 

activation peaks were detected by the traditional and well-established general linear model 

(GLM) via FSL FEAT and selected based on the five different task fMRI datasets in Section 

II (working memory, emotion, fear, semantic decision making, and empathy). Second, the 

group-level activation peaks were transformed back to each individual subject’s space using 

the transformations derived from structural registrations via the FSL FLIRT [35]. The 

activation peaks that existed in both the group-wise map and individual map (defined if the 

distances between closest peaks are less than 8 mm) and were generated by the traditional 

and well-established GLM method can be used as the benchmark functional locations for 

each of brain activation maps [21]. Supplemental Fig. 5 shows one example of the group-

level and individual-level fMRI activation peaks derived from the working memory task-

based functional activation maps. In total, we identified 46 functional activation peaks from 

the five task-based functional activation maps. Third, as the 555 A-DICCCOL landmarks 

were identified in the DTI image space, all fMRI-derived functional peaks were mapped to 

the DTI space using the transformations derived from corresponding fMRI to DTI image 

registrations via the FSL FLIRT [24], [35]. Finally, we mapped each corresponding fMRI-

derived functional peak to 555 A-DICCCOL maps via similar methods in [21]. More details 

are in supplemental materials. It is interesting that 46 A-DICCCOL landmarks were 

annotated and consistently colocalized in one or more 46 identified functional activation 

peaks across different subjects and/or populations as shown in Fig. 9. To quantitatively 

evaluate the functional annotation accuracy of the A-DICCCOLs, we measured the 

Euclidean distance between each annotated A-DICCCOL landmark and corresponding 

functional activation peak and reported the results in Fig. 9. Figs. 9(a) and (e) represents the 

results for semantic decision making [see Fig. 9(a)], emotion [see Fig. 9(b)], empathy [see 

Fig. 9(c)], fear [see Fig. 9(d)], and working memory [see Fig. 9(e)] activation map, 

respectively. In each figure, the functional activation peaks are highlighted by white bubbles, 

while the corresponding annotated A-DICCCOL landmarks are highlighted in other colors. 

The mean distance and standard deviation between each pair of functional peak and 

annotated landmark are shown in the histogram. The mean distances for the five functional 

activation maps are 6.27, 5.68, 6.38, 5.91, and 6.33 mm, respectively. Fig. 9(f) shows all of 

the functionally annotated A-DICCCOL landmarks, and the mean distance and standard 

deviation of each activation map are illustrated in the histogram. On average, the distance is 

6.11 mm. The distances of each pair of functional activation peak and annotated A-
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DICCCOL landmark in all subjects are shown in Supplemental Fig. 6. Furthermore, we 

measured the functional annotation accuracy of the same identified functional activation 

peaks by our previous DICCCOL [21] to have a comparison with A-DICCCOL. 

Specifically, for previous DICCCOL, the mean distances for the five task fMRI datasets are 

6.50, 6.12, 5.93, 6.25, and 6.41 mm, respectively. On average, the distance is 6.24 mm. We 

can see that A-DICCCOL has higher functional annotation accuracy than previous 

DICCCOL. Moreover, we compared the mean distance of each functional activation peak of 

all five functional activation maps with the corresponding annotated A-DICCCOL landmark 

before and after optimization and generated by a random perturbation. The results are 6.78, 

6.11, and 7.12 mm, respectively, indicating that in general, our optimized A-DICCCOL 

landmarks have better functional annotation accuracy than the landmarks before 

optimization or generated by a random perturbation. In conclusion, for each of the annotated 

46 A-DICCCOL landmarks, it is reasonably consistently colocalized with a specific 

functional activation peak across most of the subjects, indicating that the A-DICCCOL 

system which has anatomical and structural connection pattern consistency also reasonably 

represents functional correspondences across different subjects and populations.

D. Comparisons With Image Registration Algorithms

We compared the functional annotation accuracies of functional activation peaks by our A-

DICCCOL landmarks and with those by five representative different volumetric/surface 

registration algorithms. For volumetric registration, we adopted four algorithms including 

one linear (FSL FLIRT [35]) and three nonlinear ones (FSL FNIRT [41], ANTS [5], and 

HAMMER [3]). For surface-based registration, we used the FreeSurfer nonlinear algorithm 

[42]. The working memory functional activation map regions [see Fig. 9(e)] were used as the 

benchmark for comparisons here. Specifically, the A-DICCCOL annotation error is defined 

as the mean Euclidean distance between each pair of the annotated A-DICCCOL landmark 

and corresponding functional activation peak. The image registration based annotation error 

is defined as the mean Euclidean distance between the transformed fMRI activation peaks 

from individual brains to the MNI standard space via different registration methods and the 

centers of these multiple brains’ transformed fMRI activation peaks. The detailed results are 

summarized in Supplemental Fig. 7. The average annotation errors in all subjects by the six 

methods (our A-DICCCOL landmarks, FLIRT, FNIRT, ANTS, HAMMER, and FreeSurfer) 

are 6.33, 7.76, 8.01, 7.74, 7.73 and 7.16 mm, respectively. The results show that our A-

DICCCOL landmarks have higher functional annotation accuracy than these five image 

registration algorithms. It should be pointed out that the above compared image registration 

algorithms were designed for anatomical alignments, but not specifically for cortical 

landmark localization. If those image registration algorithms are optimized by taking the 

advantage of multimodal data in the future, their accuracies for landmark localization could 

be better than what was reported in this paper.

V. DISCUSSION AND CONCLUSION

In this paper, we presented a novel approach that identified 555 connectional cortical 

landmarks that turn out to be reproducible, predictable, and exhibit reasonably accurate 

anatomical, fiber connection pattern similarity, and homogeneity consistency across 
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individuals and populations. We initialized the connectional landmarks under anatomical 

guidance, added meaningful anatomical, structural connection pattern homogeneity, and 

spatial information into the following group-wise landmark optimization procedure, and 

applied the proposed connectional landmark discovery procedures on recently publicly 

released large-scale HCP high-quality DTI dataset, as well as HARDI data via different fiber 

tracking software tools to examine the consistency and stability of the DTI-derived 

connectional landmarks. Moreover, a portion of the connectional landmarks were 

functionally annotated by five functional activation maps derived from task fMRI datasets, 

demonstrating the reasonably functional correspondences of our connectional landmarks. 

We named these 555 connectional landmarks, which were generated by different and 

substantially improved strategies and procedures from our previous DICCCOL system [21], 

as anatomy-guided DICCCOL or A-DICCCOL. This A-DICCCOL system can be 

potentially used to report, integrate, transfer, and compare different measurements of the 

structural and functional properties of the brain, e.g., morphological measurements derived 

from structural MRI data and functional measurements derived from resting state fMRI data 

[20].

The presented A-DICCCOL system can be possibly further improved in the following 

directions in the future. First, we co-visualized A-DICCCOL and previous DICCCOL on the 

same brains and found that there are ten landmarks overlapped (Supplemental Fig. 8). Our 

interpretations are: 1) the A-DICCCOLs were interactively initialized along the gyral ridge/

sulcal valley, while the initialization of previous DICCCOL was merely based on randomly 

sampled grid points and did not integrate rich anatomic information as we discussed in 

Section I in detail. In this way, the A-DICCCOL system can discover many landmarks on 

the gyral crowns and sulci fundi, which the previous DICCCOL initialization procedure 

based on linear registration could have possibly missed. 2) There are potentially previous 

DICC-COL landmarks located in the banks between gyral crowns and sulcal fundi that 

cannot be discovered by A-DICCCOL. Since the proposed A-DICCCOL system and our 

previous DICCCOL system use different discovery routines, the spatial localization 

difference between these two sets of landmarks is reasonable. In the future, we can 

potentially integrate parts of the strategies adopted in these two systems together to identify 

more consistent connectional landmarks. We believe that the identified 555 landmarks in A-

DICCCOL are still a portion of all consistent landmarks across human brains. For example, 

the random initialization used in our previous DICCCOL system might be implemented 

prudentially to complement the interactive initialization in our A-DICCCOL system by 

considering landmark initialization positions in the banks in-between the gyral crowns and 

sulcal fundi. In this case, additional consistent connectional landmarks can be possibly 

discovered in cortical regions that A-DICCCOL has not considered. Moreover, there might 

potentially be more consistent cortical landmarks to be identified and discovered in the 

future, if we improve our discovery procedures in other aspects. For instance, an 

improvement we can possibly make is to integrate additional constraints into the 

optimization procedure, e.g., functional homogeneity [43], in the future.

Second, the functional annotations of A-DICCCOL landmarks are still far from being 

comprehensive and systematic. In this work, we used five T-fMRI datasets to explore the 

functional correspondences and annotations of a small portion of these 555 DTI-derived 
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consistent landmarks. Though the preliminary results are encouraging, in the future, more 

specific, large-scale task fMRI datasets should be designed and performed for the purpose of 

functional annotation of our A-DICCCOL landmarks, since the five T-fMRI datasets used in 

this paper were not aiming for functional annotation purpose initially, thus only annotated a 

small subset of all 555 A-DICCCOL landmarks. In addition, we can consider leveraging 

existing rich fMRI literature and existing databases such as the BrainMap data [44] to 

perform functional annotations of the discovered A-DICCCOL landmarks. As a result, the 

functional meanings of the A-DICCCOL landmarks can be then interpreted and applied in 

neuroscience applications. Once the anatomical, DTI-derived fiber structural connection 

pattern, and functional correspondences of the A-DICCCOL landmarks are established 

across individuals and populations, the A-DICCCOL system will offer a general platform to 

examine functional interaction [45] and dynamics [46] of the brain.

This paper has been focused on the presentation of methodologies and validation studies of 

the A-DICCCOL system, and the potential of its application in neuroscience and 

neuroimaging fields will be left to our future studies. For instances, the A-DICCCOL-based 

representation of large-scale reasonably common structural cortical architecture may provide 

opportunities for many basic science and clinical applications such as mapping human brain 

connectomes [21], [47]–[51] and elucidations of possible large-scale connectivity alterations 

in brain diseases [20], [52]–[55]. In short, the A-DICCCOL-based representation of 

reasonably common cortical architecture offers a principled approach and a generic platform 

to share, exchange, integrate, and compare multimodal neuroimaging datasets across 

laboratories, and we predict that public release of our A-DICCCOL system (http://

dicccol.cs.uga.edu) will stimulate and enable various collaborative efforts in brain sciences, 

as well as contributing to data-driven discovery brain imaging studies. For instance, different 

labs and researchers can contribute their multimodal DTI and fMRI datasets to further 

perform functional annotations and validation of those A-DICCCOL landmarks in healthy 

brains and tailor them toward different brain disease populations (e.g., [20]), for the purpose 

of studying functions and dysfunctions of the human brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Initialization of a corresponding DICCCOL landmark located on the left precentral gyrus in 

three example brains via linear registration [21]. The landmark is highlighted by yellow 

bubble. The landmarks highlighted by the white boxes in first two brains are located in the 

left precentral gyrus (highlighted by red), while the landmark highlighted by the black box 

in third brain is located in the left postcentral gyrus (highlighted by green).
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Fig. 2. 
Flowchart of the computational framework for the A-DICCCOL landmark identification. 

Step 1: landmark initialization; Step 2: landmark optimization (four constraints are 

highlighted by the green boxes, respectively); Step 3: landmark determination; Step 4: 

landmark prediction.
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Fig. 3. 
Visualization of initialized landmarks on the model brains. (a) The brain template with 

labeled major gyri, and the corresponding initialized landmarks of one example model brain. 

(b) The brain template with labeled sulci, and the corresponding initialized landmarks of the 

same model brain in (a). Note that the initialized landmarks on corresponding gyri/sulci in 

(a) and (b) are highlighted in the same color with the brain template. (c) All 594 initialized 

landmarks in three example model brains.
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Fig. 4. 
Illustration of structural connection pattern homogeneity. (a) and (b) Initialized landmark 

(highlighted by red bubbles) within roughly corresponding regions (highlighted by black 

boxes) in two model brains. (c) and (d) Zoomed views of the roughly corresponding regions 

within the black boxes in (a) and (b). Cortical regions are color-coded by structural 

connection pattern homogeneity values. The color bar is in the bottom right. The vertices 

with local maximum of homogeneity and other example vertices in the 1-ring, 3-ring and 5-

ring neighborhood are shown in red, yellow, green, and purple bubbles, respectively. The 

fiber shape patterns of the vertices in the left panel are shown in the right panel.
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Fig. 5. 
555 A-DICCCOL landmarks in model brains [see Fig. 5(a)–(d)] and testing brains [see Fig. 

5(e)–(h)], respectively. (a) and (h) Optimized 555 landmarks in three model brains and three 

testing brains, respectively. Three example corresponding A-DICCCOL landmarks 

(highlighted by enlarged color bubbles) are selected for all model brains and testing brains. 

(b) and (e) DTI-derived fiber connection patterns of the three example landmarks across the 

three model brains and three testing brains, respectively. In each figure, each row represents 

a corresponding landmark in three model brains/testing brains. (c) Optimized locations 

(color bubbles) and initial locations (white bubbles) of the three landmarks on the three 

model brains’ cortical surfaces which are color-coded by structural connection pattern 

homogeneity value. Each row represents a corresponding landmark in three model brains. 

The color bar is at the bottom. (d) Optimized locations (color bubbles) and initial locations 

(white bubbles) of the three landmarks on the three model brains’ cortical surfaces which are 

color-coded by the maximal principal curvature value. Each row represents a corresponding 

landmark in three model brains. The color bar is at the bottom. (f) Predicted locations (color 

bubbles) of the three landmarks on the three testing brains’ cortical surfaces which are color-

coded by structural connection pattern homogeneity value. Each row represents a 

corresponding landmark in three testing brains. The color bar is at the top. (g) Predicted 

locations (color bubbles) of the three landmarks on the three testing brains’ cortical surfaces 

which are color-coded by the maximal principal curvature value. Each row represents a 

corresponding landmark in three testing brains. The color bar is at the top.
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Fig. 6. 
One example of 555 A-DICCCOL landmarks. Row 1–3 show the fiber structural connection 

patterns of the same landmark before optimization in four model brains, after optimization 

in four model brains, and in four testing brains, respectively. The landmarks are shown by 

the yellow bubbles.
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Fig. 7. 
(a) and (b) Two examples of 555 A-DICCCOL landmarks in both model brains and testing 

brains of four different datasets (see Table I), respectively. Note that Dataset #4 is the 

publicly released large-scale HCP high-quality DTI data (Q1 release). In each figure, the 

first column shows the fiber structural connection patterns of the same corresponding 

landmark in three example model brains, respectively. The second to fifth rows are the fiber 

structural connection patterns of the same predicted A-DICCCOL landmark in three 

example testing brains of Datasets #1–#4 (see Table I), respectively. The landmarks are 

shown by the yellow bubbles.
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Fig. 8. 
Covisualization of 555 optimized landmarks based on different fiber tracking software tools 

and using HARDI data, respectively. (a) 555 optimized landmarks (orange bubbles) on the 

five model brains based on DTI data and MEDINRIA software. (b) 555 optimized 

landmarks on the five HARDI brains using different fiber tracking software tools are 

highlighted by red, yellow, green, blue, and purple bubbles, respectively.
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Fig. 9. 
Functional annotations of A-DICCCOL landmarks based on 46 fMRI-derived functional 

activation peaks (a) and (e). (a) Semantic decision making, (b) emotion, (c) empathy, (d) 

fear, and (e) working memory activation map, respectively. In each figure, the functional 

activation peaks are highlighted by white bubbles, while the corresponding annotated A-

DICCCOL landmarks are highlighted in other color bubbles. The mean distance and 

standard deviation between each pair of functional activation peak and annotated landmark 

are shown in the histogram in the bottom panel, in which the horizontal axis indexes 

activation peaks and the vertical axis represents the distance (mm). (f) All of the functionally 

annotated landmarks and the mean distance and standard deviation of each functional 

activation map.
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TABLE I

SUMMARY OF FIVE DIFFERENT DATASETS

Datasets No. of Subjects Types Functional Activation Maps Model/Testing Brains

# 1 23 DTI, one T-fMRI scan Working memory 10 out of 23: Model; the others: 
Testing

# 2 13 DTI, five T-fMRI 
scans

Emotion, empathy, fear, semantic decision 
making, working memory

Testing

# 3 20 DTI None Testing

# 4 (HCP) 68 DTI None Testing

# 5 5 HARDI None Testing
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