45,353 research outputs found

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists

    Unconstrained Face Detection and Open-Set Face Recognition Challenge

    Full text link
    Face detection and recognition benchmarks have shifted toward more difficult environments. The challenge presented in this paper addresses the next step in the direction of automatic detection and identification of people from outdoor surveillance cameras. While face detection has shown remarkable success in images collected from the web, surveillance cameras include more diverse occlusions, poses, weather conditions and image blur. Although face verification or closed-set face identification have surpassed human capabilities on some datasets, open-set identification is much more complex as it needs to reject both unknown identities and false accepts from the face detector. We show that unconstrained face detection can approach high detection rates albeit with moderate false accept rates. By contrast, open-set face recognition is currently weak and requires much more attention.Comment: This is an ERRATA version of the paper originally presented at the International Joint Conference on Biometrics. Due to a bug in our evaluation code, the results of the participants changed. The final conclusion, however, is still the sam

    Weakly-supervised learning of visual relations

    Full text link
    This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject, predicate, object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject, object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-the-art results on the visual relationship dataset significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset

    Weakly-supervised learning of visual relations

    Get PDF
    This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject, predicate, object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject, object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-the-art results on the visual relationship dataset significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset

    High-level feature detection from video in TRECVid: a 5-year retrospective of achievements

    Get PDF
    Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can achieve large-scale, fast and reliable high-level feature detection on video

    Multi-branch Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation

    Get PDF
    In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode information from multiple modalities separately. Multi-scale feature fusion blocks are proposed to combine feature maps from different modalities at different stages of the network. Then, multi-scale feature upsampling blocks are introduced to upsize combined feature maps to leverage information from lesion shape and location. We trained and tested the proposed model using orthogonal plane orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is evaluated on two different datasets: a private dataset including 37 MS patients and a publicly available dataset known as the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients. Considering the ISBI challenge, at the time of submission, our method was amongst the top performing solutions. On the private dataset, using the same array of performance metrics as in the ISBI challenge, the proposed approach shows high improvements in MS lesion segmentation compared with other publicly available tools.Comment: This paper has been accepted for publication in NeuroImag
    corecore