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A B S T R A C T

In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal
brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network
(CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch down-
sampling path, which enables the network to encode information from multiple modalities separately. Multi-scale
feature fusion blocks are proposed to combine feature maps from different modalities at different stages of the
network. Then, multi-scale feature upsampling blocks are introduced to upsize combined feature maps to leverage
information from lesion shape and location. We trained and tested the proposed model using orthogonal plane
orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is
evaluated on two different datasets: a private dataset including 37 MS patients and a publicly available dataset
known as the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients.
Considering the ISBI challenge, at the time of submission, our method was amongst the top performing solutions.
On the private dataset, using the same array of performance metrics as in the ISBI challenge, the proposed
approach shows high improvements in MS lesion segmentation compared with other publicly available tools.
1. Introduction

Multiple sclerosis (MS) is a chronic, autoimmune and demyelinating
disease of the central nervous system causing lesions in the brain tissues,
notably in white matter (WM) (Steinman, 1996). Nowadays, magnetic
resonance imaging (MRI) scans are the most common solution to visu-
alize these kind of abnormalities owing to their sensitivity to detect WM
damage (Compston and Coles, 2008).

Precise segmentation of MS lesions is an important task for under-
standing and characterizing the progression of the disease (Rolak, 2003).
To this aim, both manual and automated methods are used to compute
the total number of lesions and total lesion volume. Although manual
segmentation is considered the gold standard (Simon et al., 2006), this
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method is a challenging task as delineation of 3-dimensional (3D) in-
formation from MRI modalities is time-consuming, tedious and prone to
intra- and inter-observer variability (Sweeney et al., 2013). This moti-
vates machine learning (ML) experts to develop automated lesion seg-
mentation techniques, which can be orders of magnitude faster and
immune to expert bias.

Among automatedmethods, supervisedML algorithms can learn from
previously labeled training data and provide high performance in MS
lesion segmentation. More specifically, traditional supervised ML
methods rely on hand-crafted or low-level features. For instance, Cabezas
et al. (2014) exploited a set of features, including intensity channels
(fluid-attenuated inversion-recovery (FLAIR), proton density-weighted
(PDw), T1-weighted (T1w), and T2-weighted (T2w)), probabilistic
aliano di Tecnologia (IIT), Genoa, Italy..
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tissue atlases (WM, grey matter (GM), and cerebrospinal fluid (CSF)), a
map of outliers with respect to these atlases (Schmidt et al., 2012), and a
set of low-level contextual features. A Gentleboost algorithm (Friedman
et al., 2000) was then used with these features to segment multiple
sclerosis lesions through a voxel by voxel classification.

During the last decade, deep learning methods, especially convolu-
tional neural networks (CNNs) (LeCun et al., 1998), have demonstrated
outstanding performance in biomedical image analysis. Unlike tradi-
tional supervised ML algorithms, these methods can learn by themselves
how to design features directly from data during the training procedure
(LeCun et al., 2015). They provided state-of-the-art results in different
problems such as segmentation of neuronal structures (Ronneberger
et al., 2015), retinal blood vessel extraction (Liskowski and Krawiec,
2016), cell classification (Han et al., 2016), brain extraction (Kleesiek
et al., 2016), brain tumor (Havaei et al., 2017), tissue (Moeskops et al.,
2016), and MS lesion segmentation (Valverde et al., 2017).

In particular, CNN-based biomedical image segmentation methods
can be categorized into two different groups: patch-based and image-
based methods. In patch-based methods, a moving window scans the
image generating a local representation for each pixel/voxel. Then, a
CNN is trained using all extracted patches, classifying the central pixel/
voxel of each patch as a healthy or unhealthy region. These methods are
frequently used in biomedical image analysis since they considerably
increase the amount of training samples. However, they suffer of an
increased training time due to repeated computations over the over-
lapping features of the sliding window. Moreover, they neglect the in-
formation over the global structure because of the small size of patches
(Tseng et al., 2017).

On the contrary, image-based approaches process the entire image
exploiting the global structure information (Tseng et al., 2017; Brosch
et al., 2016). These methods can be further categorized into two groups
according to the processing of the data: slice-based segmentation of 3D
data (Tseng et al., 2017) and 3D-based segmentation (Brosch et al.,
2016).

In slice-based segmentation methods, each 3D image is converted to
its 2D slices, which are then processed individually. Subsequently, the
segmented slices are concatenated together to reconstruct the 3D vol-
ume. However, in almost all proposed pipelines based on this approach,
the segmentation is not accurate, most likely because the method ignores
part of the contextual information (Tseng et al., 2017).

In 3D-based segmentation, a CNN with 3D kernels is used for
extracting meaningful information directly from the original 3D image.
The main significant disadvantage of these methods is related to the
training procedure, which usually fits a large number of parameters with
a high risk of overfitting in the presence of small datasets. Unfortunately,
this is a quite common situation in biomedical applications (Brosch et al.,
2016). To overcome this problem, recently, 3D cross-hair convolution
has been proposed (Liu et al., 2017; Tetteh et al., 2018), where three 2D
filters are defined for each of the three orientations around a voxel (each
one is a plane orthogonal to X, Y, or Z axis). Then, the sum of the result of
the three convolutions is assigned to the central voxel. The most
important advantage of the proposed idea is the reduced number of pa-
rameters, which makes training faster than a standard 3D convolution.
However, compared to standard 2D convolution (slice-based), still, there
are three times more parameters for each layer, which increases the
chance of overfitting in small datasets.

1.1. Related works

The literature offers some methods based on CNNs for MS lesion
segmentation. For example, Vaidya et al. (2015) proposed a shallow 3D
patch-based CNN using the idea of sparse convolution (Li et al., 2014) for
effective training. Moreover, they added a post-processing stage, which
increased the segmentation performance by applying a WM mask to the
output predictions. Ghafoorian and Platel (2015) developed a deep CNN
based on 2D patches in order to increase the number of the training
2

samples and avoid the overfitting problems of 3D-based approaches.
Similarly, in (Birenbaum and Greenspan, 2016), multiple 2D patch-based
CNNs have been designed to take advantage of the common information
within longitudinal data. Valverde et al. (2017) proposed a pipeline
relying on a cascade of two 3D patch-based CNNs. They trained the first
network using all extracted patches, and the second network was used to
refine the training procedure utilizingmisclassified samples from the first
network. Roy et al. (2018) proposed a 2D patch-based CNN including two
pathways. They used different MRI modalities as input for each pathway
and the outputs were concatenated to create a membership function for
lesions. Recently, Hashemi et al. (2018) proposed a method relying on a
3D patch-based CNN using the idea of a densely connected network. They
also developed an asymmetric loss function for dealing with highly un-
balanced data. Despite the fact that all the proposed patch-based tech-
niques have good segmentation performance, they suffer from lacking
global structural information. This means that global structure of the
brain and the absolute location of lesions are not exploited during the
segmentation.

In contrast, Brosch et al. (2016) developed a whole-brain segmenta-
tion method using a 3D CNN. They used single shortcut connection be-
tween the coarsest and the finest layers of the network, which enables the
network to concatenate the features from the deepest layer to the shal-
lowest layer in order to learn information about the structure and orga-
nization of MS lesions. However, they did not exploit middle-level
features, which have been shown to have a considerable impact on the
segmentation performance (Ronneberger et al., 2015).

1.2. Contributions

In this paper, we propose a novel deep learning architecture for
automatic MS lesion segmentation consisting of a multi-branch 2D con-
volutional encoder-decoder network. In this study, we concentrated on
whole-brain slice-based segmentation in order to prevent both the
overfitting present in 3D-based segmentation (Brosch et al., 2016) and
the lack of global structure information in patch-based methods (Gha-
foorian et al., 2017; Valverde et al., 2017; Roy et al., 2018). We designed
an end-to-end encoder-decoder network including a multi-branch
downsampling path as the encoder, a multi-scale feature fusion and the
multi-scale upsampling blocks as the decoder.

In the encoder, each branch is assigned to a specific MRI modality in
order to take advantage of each modality individually. During the
decoding stage of the network, different scales of the encoded attributes
related to each modality, from the coarsest to the finest, including the
middle-level attributes, were combined together and upconvolved
gradually to get fine details (more contextual information) of the lesion
shape. Moreover, we used three different (orthogonal) planes for each 3D
modality as an input to the network to better exploit the contextual in-
formation in all directions. In summary, the main contributions in this
work are:

� A whole-brain slice-based approach to exploit the overall structural
information, combined with a multi-plane strategy to take advantage
of full contextual information.

� A multi-level feature fusion and upsampling approach to exploit
contextual information at multiple scales.

� The evaluation of different versions of the proposed model so as to
find the most performant combination of MRI modalities for MS
lesion segmentation.

� The demonstration of top performance on two different datasets.

2. Material

In order to evaluate the performance of the proposed method for MS
lesion segmentation, two different datasets were used: the publicly
available ISBI 2015 Longitudinal MS Lesion Segmentation Challenge
dataset (Carass et al., 2017) (denoted as the ISBI dataset), and an
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in-house dataset from the neuroimaging research unit (NRU) in Milan
(denoted as the NRU dataset).

2.1. ISBI 2015 Longitudinal MS lesion segmentation challenge

The ISBI dataset included 19 subjects divided into two sets, 5 subjects
in the training set and 14 subjects in the test set. Each subject had
different time-points, ranging from 4 to 6. For each time-point, T1w,
T2w, PDw, and FLAIR image modalities were provided. The volumes
were composed of 182 slices with FOV¼ 182� 256 and 1-mm cubic
voxel resolution. All images available were already segmented manually
by two different raters, therefore representing two ground truth lesion
masks. For all 5 training images, lesion masks were made publicly
available. For the remaining 14 subjects in the test set, there was no
publicly available ground truth. The performance evaluation of the
proposed method over the test dataset was done through an online ser-
vice by submitting the binary masks to the challenge1 website (Carass
et al., 2017).

2.2. Neuroimaging research unit

The NRU dataset was collected by a research team from Ospedale San
Raffaele, Milan, Italy.

It consisted of 37 MS patients (22 females and 15 males) with mean
age 44:6� 12:2 years. The patient clinical phenotypes were 24 relapsing
remitting MS, 3 primary progressive MS and 10 secondary progressive
MS. The mean Expanded Disability status Scale (EDSS) was 3:3� 2, the
mean disease duration was 13:1� 8:7 years and the mean lesion load
was 6:2� 5:7 ml. The dataset was acquired on a 3.0 T Philips Ingenia CX
scanner (Philips Medical Systems) with standardized procedures for
subjects positioning.

The following sequences were collected: Sagittal 3D FLAIR sequence,
FOV¼ 256� 256, pixel size¼ 1� 1mm, 192 slices, 1-mm thick; Sagittal
3D T2w turbo spin echo (TSE) sequence, FOV¼ 256� 256, pixel
size¼ 1� 1mm, 192 slices, 1-mm thick; Sagittal 3D high resolution T1w,
FOV¼ 256� 256, pixel size¼ 1� 1mm, 204 slices, 1-mm thick.

For the validation of the NRU dataset, two different readers, with
more than 5 years of experience in manual T2 hyperintense MS lesion
segmentation performed the lesion delineation blinded to each other's
results. We estimated the agreement between the two expert raters by
using the Dice similarity coefficient (DSC) as a measure of the degree of
overlap between the segmentations, and we found a mean DSC of 0.87.
Differently from ISBI dataset, the two masks created by the two expert
raters were used to generate a high quality “gold standard” mask by the
intersection of the two binary masks from the two raters, which was used
for all experiments with this dataset. This was to follow the common
clinical practice of considering a single consensus mask between raters,
which was particularly justified in our case due to the high DSC value
between the two raters.

2.2.1. Ethical statement
Approval was received from the local ethical standards committee on

human experimentation; written informed consent was obtained from all
subjects prior to study participation.

3. Method

3.1. Data preprocessing

From the ISBI dataset, we selected the preprocessed version of the
images available online at the challenge website. All images were already
skull-stripped using Brain Extraction Tool (BET) (Smith, 2002), rigidly
registered to the 1mm3 MNI-ICBM152 template (Oishi et al., 2008) using
1 http://iacl.ece.jhu.edu/index.php/MSChallenge.
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FMRIB's Linear Image Registration tool (FLIRT) (Jenkinson and Smith,
2001; Jenkinson et al., 2002) and N3 intensity normalized (Sled et al.,
1998).

In the NRU dataset, all sagittal acquisitions were reoriented in axial
plane and the exceeding portion of the neck was removed. T1w and T2w
sequences were realigned to the FLAIRMRI using FLIRT and brain tissues
were separated from non-brain tissues using BET on FLAIR volumes. The
resulting brain mask was then used on both registered T1w and T2w
images to extract brain tissues. Finally, all images were rigidly registered
to a 1mm3 MNI-ICBM152 template using FLIRT to obtain volumes of size
(182� 218� 182) and then N3 intensity normalized.

3.2. Network architecture

In this work, we propose a 2D end-to-end convolutional network
based on the residual network (ResNet) (He et al., 2016). The core idea of
ResNet is the use of identity shortcut connections, which allows for both
preventing gradient vanishing and reducing computational complexity.
Thanks to these benefits, ResNets have shown outstanding performance
in computer vision problems, specifically in image recognition task (He
et al., 2016).

We modified ResNet50 (version with 50 layers) to work as a pixel-
level segmentation network. This has been obtained by changing the
last prediction layer with other blocks and a dense pixel-level prediction
layer inspired by the idea of the fully convolutional network (FCN) (Long
et al., 2015). To exploit the MRI multi-modality analysis, we built a
pipeline of parallel ResNets without weights sharing. Moreover, a
multi-modal feature fusion block (MMFF) and a multi-scale feature
upsampling block (MSFU) were proposed to combine and upsample the
features from different modalities and different resolutions, respectively.

In the following Sections, we first describe how the input features
were generated by decomposing 3D data into 2D images. Then, we
describe the proposed network architecture in details and the training
procedure. Finally, we introduce the multi-plane reconstruction block,
which defines how we combined the 2D binary slices of the network
output to match the original 3D data.

3.2.1. Input features preparation
For each MRI volume (and each modality), three different plane

orientations (axial, coronal and sagittal) were considered in order to
generate 2D slices along x, y, and z axes. Since the size of each slice
depends on the orientation (axial¼ 182� 218, coronal¼ 182� 182,
sagittal¼ 218� 182), they were zero-padded (centering the brain) to
obtain equal size (218� 218) for each plane orientation. This procedure
was applied to all three modalities. Fig. 1 illustrates the described pro-
cedure using FLAIR, T1w, and T2wmodalities. This approach is similar to
the one proposed in (Roth et al., 2014), where they used a 2.5D repre-
sentation of 3D data.

3.2.2. Network architecture details
The proposed model essentially integrates multiple ResNets with

other blocks to handle multi-modality and multi-resolution approaches,
respectively. As can be seen in Fig. 2, the proposed network includes
three main parts: downsampling networks, multi-modal feature fusion
using MMFF blocks, and multi-scale upsampling using MSFU blocks.

In the downsampling stage, multiple parallel ResNets (without
weights sharing) are used for extracting multi-resolution features, with
each ResNet associated to one specific modality (in our experiments, we
used FLAIR, T1w, and T2w). In the original ResNet50 architecture, the
first layer is composed of a 7� 7 convolutional layer with stride 2 to
downsample the input by an order of 2. Then, a 3� 3 max pooling layer
with stride 2 is applied to further downsample the input followed by a
bottleneck block without downsampling. Subsequently, three other
bottleneck blocks are applied, each one followed by a downsampling
convolutional layer with stride 2.

Therefore, ResNet50 can be organized into five blocks according to

http://iacl.ece.jhu.edu/index.php/MSChallenge


Fig. 1. Input features preparation. For each subject, three MRI modalities
(FLAIR, T1w, and T2w) were considered. 2D slices related to the orthogonal
views of the brain (axial, coronal and sagittal planes) were extracted from each
modality. Since the size of extracted slices was different with respect to the
plane orientations (axial¼ 182� 218, coronal¼ 182� 182, sagittal¼ 218�
182), all slices were zero-padded while centering the brain so to obtain all slices
with the same size (218� 218), no matter their orientation.
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the resolution of the generated feature maps (109� 109, 54� 54, 27�
27, 14� 14, and 7� 7). Thanks to this organization, we can take
advantage of the multi-resolution. Features with the same resolution
Fig. 2. General overview of the proposed method. Input data is prepared as describe
described by slices (C is the total number of the slices along axial, coronal, and sagitta
in input by slices, and the model generates the corresponding segmented slices. The
without weight sharing, each branch for one modality (in this Figure, we used three m
blocks according to the resolution of the representations. For example, the first block
used to fuse the representations with the same resolution from different modalities. Fi
responsible for upsampling the low-resolution representations and for combining th
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from different modalities are combined using MMFF blocks as illustrated
in Fig. 3(a). Each MMFF block includes 1� 1 convolutions to reduce the
number of feature maps (halving them), followed by 3� 3 convolutions
for adaptation. A simple concatenation layer is then used to combine the
features from different modalities.

In the upsampling stage, MSFU blocks fuse the multi-resolution rep-
resentations and gradually upsize them back to the original resolution of
the input image. Fig. 3(b) illustrates the proposed MSFU block consisting
of a 1� 1 convolutional layer to reduce the number of feature maps
(halving them) and an upconvolutional layer with 2� 2 kernel size and a
stride of 2, transforming low-resolution feature maps to higher resolution
maps. Then, a concatenation layer is used to combine the two sets of
feature maps, followed by a 1� 1 convolutional layer to reduce the
number of feature maps (halving them) and a 3� 3 convolutional layer
for adaptation.

After the last MSFU block, a soft-max layer of size 2 is used to generate
the output probability maps of the lesions. In our experiments the
probabilistic maps were thresholded at 0.5 to generate binary classifi-
cation for each pixel (lesion vs. non-lesion). It is important to mention
that in all proposed blocks before each convolutional and upconvolu-
tional layer, we use a batch normalization layer (Ioffe and Szegedy,
2015) followed by a rectifier linear unit activation function (Nair and
Hinton, 2010). Size and number of feature maps in the input and output
of all convolutional layers are kept the same.
d in Section 3.2.1, where volumes for each modality (FLAIR, T1w, and T2w) are
l orientations, and 218� 218 is their size after zero-padding). Data is presented
downsampling part of the network (blue blocks) includes three parallel ResNets
odalities: FLAIR, T1w, and T2w). Each ResNet can be considered composed by 5
denotes 64 representations with resolution 109� 109. Then, MMFF blocks are

nally, the output of MMFF blocks is presented as input to MSFU blocks, which are
em with high-resolution representations.



Fig. 3. Building blocks of the proposed network. a) MMFF block is used to combine representations from different modalities (FLAIR, T1w, and T2w) at the same
resolution. b) MSFU block is used to upsample low-resolution features and combine them with higher-resolution features.
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3.2.3. Implementation details
The proposed model was implemented in Python language2 using

Keras3 (Chollet et al., 2015) with Tensorflow4 (Abadi et al., 2015)
backend. All experiments were done on a Nvidia GTX Titan X GPU. Our
multi-branch slice-based network was trained end-to-end. In order to
train the proposed CNN, we created a training set including the 2D slices
from all three orthogonal views of the brain, as described in Section
3.2.1. Then, to limit extremely unbalanced data and omit uninformative
samples, a training subset was determined by selecting only slices con-
taining at least one pixel labeled as lesion. Considering that for each
subject in the ISBI dataset, there were 4–6 recordings, the number of
slices selected per subject ranged approximately from 1500 to 2000. In
the NRU dataset, the number of slices ranged approximately from 150 to
300 per subject.

To optimize the network weights and early stopping criterion, the
created training set was divided into training, and validation subsets,
depending on the experiments described in the following Section (In all
experiments, the split was performed on the subject base, to simulate a
real clinical condition). We trained our network using the Adam opti-
mizer (Kingma and Ba, 2014) with an initial learning rate of 0.0001
multiplied by 0.95 every 400 steps. The size of mini-batches was fixed at
15 and each mini-batch included random slices from different orthogonal
views. The maximum number of training epochs was fixed to 1000 for all
experiments, well beyond the average converging rate. Fig. 5 illustrates
an example of performance evolution during training of the network in
terms of mean DSC (refer to 4.1 for details). Indeed, a performance
plateau was systematically observed over all experiments before 1000
epochs. The best model was then selected according to the validation set.
In the case shown on Fig. 5, the best performance was obtained at epoch
810. The training computation time for 1000 epochs was approximately
36 h.

Regarding the network initialization, in the downsampling branches,
we used ResNet50 pre-trained on ImageNet and all other blocks (MMFFs
and MSFUs) were randomly initialized from a Gaussian distribution with
zero mean and standard deviation equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðaþ bÞp

where a and b are
respectively the number of input and output units in the weight tensor. It
is worth noticing that we did not use parameter sharing in parallel
ResNets. The soft Dice Loss function (DL) was used to train the proposed
network:
2 https://www.python.org.
3 https://keras.io.
4 https://www.tensorflow.org.
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DL ¼ 1� 2
PN

i gipiPN 2
PN 2

(1)

i gi þ i pi

where pi 2 ½0;…;1� is the predicted value of the soft-max layer and gi is
the ground truth binary value for each pixel i.

We slightly modified the original soft dice loss (Milletari et al., 2016)
by replacing (-Dice) with (1-Dice) for visualization purposes. Indeed, the
new equation returns positive values in the range ½0;…;1�. This change
does not impact the optimization.

3.2.4. 3D binary image reconstruction
Output binary slices of the network are concatenated to form a 3D

volume matching the original data. In order to reconstruct the 3D image
from the output binary 2D slices, we proposed a multi-planes recon-
struction (MPR) block. Feeding each 2D slice to the network, we get as
output the associated 2D binary lesion classification map. Since each
original modality is duplicated three times in the input, once for each
slice orientation (coronal, axial, sagittal), concatenating the binary lesion
maps belonging to the same orientation results in three 3D lesion clas-
sification maps. To obtain a single lesion segmentation volume, these
three lesion maps are combined via majority voting (the most frequent
lesion classification are selected) as illustrated in Fig. 4. To justify the
choice of majority voting instead of other label fusion methods, refer to
Appendix B.
3.3. Data and code availability statement

The NRU dataset is a private clinical dataset and can not be made
publicly available due to confidentiality. The code will be made available
to anyone contacting the corresponding authors.

4. Experiments

4.1. Evaluation metrics

The following measures were used to evaluate and compare our
model with other state-of-the-art methods.

� Dice Similarity Coefficient:

DSC ¼ 2TP
FN þ FP þ 2TP

(2)

where TP, FN and FP indicate the true positive, false negative and false
positive voxels, respectively.

https://www.python.org
https://keras.io
https://www.tensorflow.org


Fig. 4. The MPR block produces a 3D volumetric binary map by combining the 2D output binary maps of the network. First, the output 2D binary maps associated to
each plane orientation (axial, coronal, and sagittal) are concatenated to create three 3D binary maps. Then, a majority vote is applied to obtain a single lesion
segmentation volume.

Fig. 5. Example of DSC metric dynamics (eq. (2)) during training on ISBI
dataset. Experimentally, we found that a performance plateau was systemati-
cally reached before 1000 training epochs. To avoid overfitting, the best model
was selected according to the validation set performance. In this specific
experiment (training: subjects 1 to 4, validation: subject 5), the best model was
selected based at epoch 810, which corresponded to the performance peak on
validation set.
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� Lesion-wise True Positive Rate:

LTPR ¼ LTP
RL

(3)

where LTP denotes the number of lesions in the reference segmentation
that overlap with a lesion in the output segmentation (at least one voxel
overlap), and RL is the total number of lesions in the reference
segmentation.

� Lesion-wise False Positive Rate:

LFPR ¼ LFP
PL

(4)

where LFP denotes the number of lesions in the output segmentation that
6

do not overlap with a lesion in the reference segmentation and PL is the
total number of lesions in the produced segmentation.

� Average Symmetric Surface Distance:

SD ¼ 1��Ngt

��þ ��Ns

�� �
 X

x2Ngt

min
y2Ns

dðx; yÞ þ
X
x2Ns

min
y2Ngt

dðx; yÞ
!

(5)

where Ns and Ngt are the set of voxels in the contour of the automatic and
manual annotation masks, respectively. dðx; yÞ is the Euclidean distance
(quantified in millimetres) between voxel x and y.

� Hausdorff Distance:

HD ¼ max
�
max
x2Ngt

min
y2Ns

dðx; yÞ;max
x2Ns

min
y2Ngt

dðx; yÞ
�

(6)

As described in (Carass et al., 2017), the ISBI challenge website
provides a report on the submitted test set including some measures such
as:

� Positive Prediction Value:

PPV ¼ TP
TP þ FP

(7)

� Absolute Volume Difference:

VD ¼
��TPs � TPgt

��
TPgt

(8)

where TPs and TPgt reveal the total number of the segmented lesion
voxels in the output and manual annotations masks, respectively.

� Overall evaluation score:

SC ¼ 1
jRj �jSj �

X
R;S

�
DSC
8

þ PPV
8

þ 1� LFPR
4

þ LTPR
4

þ Cor
4

�
(9)



5 http://iacl.ece.jhu.edu/index.php/MSChallenge.
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where S is the set of all subjects, R is the set of all raters and Cor is the
Pearson's correlation coefficient of the volumes.

4.2. Experiments on the ISBI dataset

To evaluate the performance of the proposed method on the ISBI
dataset, two different experiments were performed according to the
availability of the ground truth.

Since the ground truth was available only for the training set, in the
first experiment, we ignored the official ISBI test set. We only considered
data with available ground truth (training set with 5 subjects) as
mentioned in (Brosch et al., 2016). To obtain a fair result, we tested our
approach with a nested leave-one-subject-out cross-validation (3 subjects
for training, 1 subject for validation and 1 subject for testing - refer to
Appendix A for more details). To evaluate the stability of the model, this
experiment was performed evaluating separately our method on the two
sets of masks provided by the two raters.

In the second experiment, the performance of the proposed method
was evaluated on the official ISBI test set (with 14 subjects), for which the
ground truth was not available, using the challenge web service. We
trained our model doing a leave-one-subject-out cross-validation on the
whole training set with 5 subjects (4 subjects for training and 1 subject
for validation - refer to Appendix A for more details). We executed the
ensemble of 5 trained models on the official ISBI test set and the final
prediction was generated with a majority voting over the ensemble. The
3D output binary lesion maps were then submitted to the challenge
website for evaluation.

4.3. Experiment on the NRU dataset

To test the robustness of the proposed model, we performed two
experiments using the NRU dataset including 37 subjects. In the first
experiment, we implemented a nested 4-fold cross-validation over the
whole dataset (21 subjects for training, 7 subjects for validation and 9
subjects for testing - refer to A for more details). Since for each test fold
we had an ensemble of four nested trainedmodels, the prediction on each
test fold was obtained as a majority vote of the corresponding ensemble.
To justify the use of majority voting instead of other label fusion
methods, we repeated the same experiment using different volume ag-
gregation methods (refer to Appendix B for more details).

For comparison, we tested three different publicly available MS lesion
segmentation software: OASIS (Automated Statistic Inference for Seg-
mentation) (Sweeney et al., 2013), TOADS (Topology reserving Anatomy
Driven Segmentation) (Shiee et al., 2010), and LST (Lesion Segmentation
Toolbox)(Schmidt et al., 2012). OASIS generates the segmentation
exploiting information from FLAIR, T1w, and T2wmodalities, and it only
requires a single thresholding parameter, which was optimized to obtain
the best DSC. TOADS does not need parameter tuning and it only requires
FLAIR and T1w modalities for segmentation. Similarly, LST works with
FLAIR and T1w modalities only. However, it needs a single thresholding
parameter that initializes the lesion segmentation. This parameter was
optimized to get the best DSC in this experiment.

We also tested the standard 2D U-Net (Ronneberger et al., 2015),
repeating the training protocol described in Appendix A. Indeed, we used
the same training set as described in Section 3.2.1 and 3.2.3, with the
difference that 2D slices from all modalities were aggregated in multiple
channels. This network was trained using the Adam optimizer (Kingma
and Ba, 2014) with an initial learning rate of 0.0001 multiplied by 0.9
every 800 steps. For the sake of comparison, optimization was performed
on the soft Dice Loss function (eq. (1)) (Milletari et al., 2016). To get the
3D volume from output binary slices of the network, we used the pro-
posed MPR block as described in Section 3.2.4.

Differences in performance metrics between our method and each of
the 4 other methods were statistically evaluated with resampling. For a
given method M and metric C, resampling was performed by randomly
assigning for each subject the sign of the difference in C between method
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M and our method in 10 million samples. The test was two-sided and
corrected for multiple comparisons with Holm's method (28 comparisons
in total with 7 metrics assessed for the 4 methods to compare ours with).
The alpha significance threshold level was set to 0.05.

As outlined in Section 2.2, while for the ISBI dataset, we evaluated
our method on two separate sets of masks, one for each rater, in the NRU
dataset, we considered the manual consensus segmentation as a more
robust gold standard against which to validate the proposed method.
Nevertheless, to evaluate the stability of the model trained with the gold
standard labeling, we also tested it separately on the two sets of masks
(refer to Appendix C for more details).

In the second experiment, to investigate the importance of each single
modality in MS lesion segmentation, we evaluated our model with
various combinations of modalities. This means that the model was
adapted in the number of parallel branches in the downsampling
network. In this experiment, we randomly split the corresponding dataset
into fixed training (21 subjects), validation (7 subjects) and test (9 sub-
jects) sets.

Single-branch (SB): In a single-branch version of the proposed
model, we used a single ResNet as the downsampling part of the network.
Attributes from different levels of the single-branch were supplied to the
MMFF blocks. In this version of our model, each MMFF block had single
input since there was only one downsampling branch. Therefore, MMFF
blocks included a 1� 1 convolutional layer followed by a 3� 3 con-
volutional layer. We trained and tested the single-branch version of our
proposed network with each modality separately and also with a com-
bination of all modalities as a multi-channel input.

Multi-branch (MB): The multi-branch version of the proposed model
used multiple parallel ResNets in the downsampling network without
weights sharing. In this experiment, we used two-branch and three-
branch versions, which were trained and tested using two modalities
and three modalities, respectively. We trained and tested the mentioned
models with all possible combination of modalities (two-branches:
[FLAIR, T1w], [FLAIR, T2w], [T1w, T2w] and three-branches: [FLAIR,
T1w, T2w]).

5. Results

5.1. ISBI dataset

In the first experiment, we evaluated our model using three measures:
DSC, LTPR, and LFPR to make our results comparable to those obtained in
(Brosch et al., 2016; Maier and Handels, 2015; Aslani et al., 2019).
Table 1 summarizes the results of the first experiment when comparing
our model with previously proposed methods. The table shows the mean
DSC, LTPR, and LFPR. As can be seen in that table, our method out-
performed other methods in terms of DSC and LFPR, while the highest
LTPR was achieved by our recently published method (Aslani et al.,
2019). Fig. 6 shows the segmentation outputs of the proposed method for
subject 2 (with high lesion load) and subject 3 (with low lesion load)
compared to both ground truth annotations (rater 1 and rater 2).

In the second experiment, the official ISBI test set was used. Indeed,
all 3D binary output masks computed on the test set were submitted to
the ISBI website. Several measures were calculated online by the chal-
lenge website. Table 2 shows the results on all measures reported as a
mean across raters. At the time of the submission, our method had an
overall evaluation score of 92.12 on the official ISBI challenge web ser-
vice,5 making it amongst the top-ranked methods with a published paper
or a technical report.

5.2. NRU dataset

Table 3 reports the results of the first experiment on NRU dataset

http://iacl.ece.jhu.edu/index.php/MSChallenge


Table 1
Comparison of our method with other state-of-the-art methods in the first ISBI dataset experiment (in this experiment, only images with available ground truth were
considered). GT1 and GT2 denote the corresponding model was trained using annotation provided by rater 1 and rater 2 as ground truth, respectively (the model was
trained using GT1 and tested using both GT1 and GT2 and vice versa). Mean values of DSC, LTPR, and LFPR for different methods are shown. Values in bold and italic
refer to the first-best and second-best values of the corresponding metrics, respectively.

Method Rater 1 Rater 2

DSC LTPR LFPR DSC LTPR LFPR

Rater 1 – – – 0.7320 0.6450 0.1740
Rater 2 0.7320 0.8260 0.3550 – – –

Maier and Handels (2015) (GT1) 0.7000 0.5333 0.4888 0.6555 0.3777 0.4444
Maier and Handels (2015) (GT2) 0.7000 0.5555 0.4888 0.6555 0.3888 0.4333
Brosch et al. (2016) (GT1) 0.6844 0.7455 0.5455 0.6444 0.6333 0.5288
Brosch et al. (2016) (GT2) 0.6833 0.7833 0.6455 0.6588 0.6933 0.6199
Aslani et al. (2019) (GT1) 0.6980 0.7460 0.4820 0.6510 0.6410 0.4506
Aslani et al. (2019) (GT2) 0.6940 0.7840 0.4970 0.6640 0.6950 0.4420
Ours (GT1) 0.7649 0.6697 0.1202 0.6989 0.5356 0.1227
Ours (GT2) 0.7646 0.7002 0.2022 0.7128 0.5723 0.1896

Fig. 6. Output segmentation results of the proposed method on two subjects of the ISBI dataset compared to ground truth annotations provided by rater 1 and rater 2.
From left to right, the first three columns are related to subject 2 with high lesion load and reported DSC values of 0.8135 and 0.8555 for rater 1 and rater 2,
respectively. Columns 4 to 6 are related to the subject 3 with low lesion load and reported DSC values of 0.7739 and 0.7644 for rater 1 and rater 2, respectively. On all
images, true positives, false negatives, and false positives are colored in red, green and blue, respectively.
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showing the mean values of DSC, LFPR, LTPR, PPV, VD, SD and HD. It
summarizes how our method performed compared to others. As shown in
the table, our method achieved the best results with respect to DSC, PPV,
LFPR, VD, SD and HD measures while showing a good trade-off between
LTPR and LFPR, comparable to the best results of the other methods.

Fig. 7 features boxplots of the DSC, LFPR, LTPR, PPV, VD, SD and HD
evaluation metrics obtained from the different methods and summarized
in Table 3. This Figure shows statistically significant differences between
model performances for most metrics and methods when compared to
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ours, after multiple comparison correction with the conservative Holm's
method. The output segmentation of all methods applied to a random
subject (with medium lesion load) can be seen with different plane ori-
entations in Fig. 8.

Fig. 9 depicts the relationship between the volumes of all ground
truth lesions and the corresponding estimated size for each evaluated
method (one datapoint per lesion). With a qualitative evaluation, it can
be seen that TOADS and OASIS methods tend to overestimate lesion
volumes as many lesions are above the dashed black line, i.e., many



Table 2
Results related to the top-ranked methods (with published papers or technical reports) evaluated on the official ISBI test set and reported on the ISBI challenge website.
SC, DSC, PPV, LTPR, LFPR, and VD are mean values across the raters. For detailed information about the metrics, refer to Section 4.1. Values in bold and italic refer to the
metrics with the first-best and second-best performances, respectively.

Method SC DSC PPV LTPR LFPR VD

Hashemi et al. (2018) 92.48 0.5841 0.9207 0.4135 0.0866 0.4972
Ours 92.12 0.6114 0.8992 0.4103 0.1393 0.4537
Andermatt et al. (2017) 92.07 0.6298 0.8446 0.4870 0.2013 0.4045
Valverde et al. (2017) 91.33 0.6304 0.7866 0.3669 0.1529 0.3384
Maier and Handels (2015) 90.28 0.6050 0.7746 0.3672 0.2657 0.3653
Birenbaum and Greenspan (2016) 90.07 0.6271 0.7889 0.5678 0.4975 0.3522
Aslani et al. (2019) 89.85 0.4864 0.7402 0.3034 0.1708 0.4768
Deshpande et al. (2015) 89.81 0.5960 0.7348 0.4083 0.3075 0.3762
Jain et al. (2015) 88.74 0.5560 0.7300 0.3225 0.3742 0.3746
Sudre et al. (2015) 87.38 0.5226 0.6690 0.4941 0.6776 0.3837
Tomas-Fernandez and Warfield (2015) 87.01 0.4317 0.6973 0.2101 0.4115 0.5109
Ghafoorian et al. (2017) 86.92 0.5009 0.5491 0.4288 0.5765 0.5707

Table 3
Results related to the first NRU dataset experiment. Mean values of DSC, PPV, LTPR, LFPR, VD, SD and HDwere measured for different methods. Values in bold and italic
indicate the first-best and second-best results.

Method DSC PPV LTPR LFPR VD SD HD

TOADS (Shiee et al., 2010) 0.5241 0.5965 0.4608 0.6277 0.4659 5.4392 13.60
LST (Schmidt et al., 2012) 0.3022 0.5193 0.1460 0.3844 0.6966 7.0919 14.35
OASIS (Sweeney et al., 2013) 0.4193 0.3483 0.3755 0.4143 2.0588 3.5888 18.33
U-NET (Ronneberger et al., 2015) 0.6316 0.7748 0.3091 0.2267 0.3486 3.9373 9.235
OURS 0.6655 0.8032 0.4465 0.0842 0.3372 2.5751 6.728
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lesions are estimated larger than they really are. On the contrary, LST
method tends to underestimate the lesion sizes. U-Net and our method,
on the contrary, produced lesions with size more comparable to the
ground truth. However, with a quantitative analysis, our model produced
the slope closest to unity (0.9027) together with the highest Pearson
correlation coefficient (0.75), meaning our model provided the stronger
global agreement between estimated and ground truth lesion volumes
(note that a better agreement between lesion volumes does not mean the
segmented and ground truth lesions better overlap – the amount of
overlap was measured with the DSC).

Table 4 shows the performance of the proposed model with respect to
different combinations of modalities in the second experiment. The SB
version of the proposed model used with one modality had noticeably
better performance in almost all measures when using FLAIR modality.
However, all modalities carry relevant information as better performance
in most metrics was obtained when using a combination of modalities. In
MB versions of the model, all possible two-branch and three-branch
versions were considered. As shown in Table 4, two-branch versions
including FLAIR modality showed a general better performance than the
single-branch version using single modality. This emphasizes the
importance of using FLAIR modality together with others (T1w and
T2w). However, overall, a combination of all modalities in the three-
branch version of the model showed the best general performance
compared to the other versions of the network.

6. Discussion and conclusions

In this work, we have designed an automated pipeline for MS lesion
segmentation from multi-modal MRI data. The proposed model is a deep
end-to-end 2D CNN consisting of a multi-branch downsampling network,
MSFF blocks fusing the features from different modalities at different
stages of the network, and MSFU blocks combining and upsampling
multi-scale features.

When having insufficient training data in deep learning based ap-
proaches, which is very common in themedical domain, transfer learning
has demonstrated to be an adequate solution (Chen et al., 2015, 2016;
Hoo-Chang et al., 2016). Not only it helps boosting the performance of
the network but also it significantly reduces overfitting. Therefore, we
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used the parallel ResNet50s pre-trained on ImageNet as a multi-branch
downsampling network while the other layers in MMFF and MSFU
blocks were randomly initialized from a Gaussian distribution. We then
fine-tuned the whole network on the given MS lesion segmentation task.

In brain image segmentation, a combination of MRI modalities
overcomes the limitations of single modality approaches, allowing the
models to provide more accurate segmentations (Kleesiek et al., 2016;
Moeskops et al., 2016; Aslani et al., 2019). Unlike previously proposed
deep networks (Brosch et al., 2016; Aslani et al., 2019), which stacked all
modalities together as a single input, we designed a network with several
downsampling branches, one branch for each individual modality. We
believe that stacking all modalities together as a single input to a network
is not an optimal solution since during the downsampling procedure, the
details specific to the most informative modalities can vanish when
mixed with less informative modalities. On the contrary, the
multi-branch approach allows the network to abstract higher-level fea-
tures at different granularities specific to each modality. Independently
of the ground truth used for training and testing the model, results in
Table 1 confirm our claim showing that a network with separate
branches generated more accurate segmentations (e.g., DSC¼ 0.7649)
than single-branch networks with all modalities stacked, as proposed by
Brosch et al. (2016) (e.g., DSC¼ 0.6844) and Aslani et al. (2019) (e.g.,
DSC¼ 0.6980). Indeed, the mentioned methods (single-branch) gener-
ally obtained higher LTPR values (e.g., 0.7455 and 0.7460) than
multi-branch (e.g., 0.6697). However, they also obtained very high LFPR
values showing a significant overestimation of lesion volumes. The pro-
posed method, instead, showed the best trade-off between LTPR and
LFPR.

When examining the influence of different modalities, results in
Table 4 demonstratesin Table 4 demonstrated that the most important
modality for that the most important modality for MS lesion segmenta-
tion was FLAIR (DSC>0.65). This is likely due to the fact that FLAIR
sequences benefit from CSF signal suppression and hence provide a
higher image contrast between MS lesions and the surrounding normal
appearing WM. Using all modalities together in a SB network (by
concatenating them as single multi-channel input) and in a MB network
(each modality as single input to each branch) showed good segmenta-
tion performance. This could be due to the combination of modalities



Fig. 7. Boxplots showing the performance of tested models with all measures on NRU dataset. Among all methods, the proposed one had the best trade-off between
the lesion-wise true positive rate and lesion-wise false positive rate, while having the best mean value for dice similarity coefficient, positive prediction value, absolute
volume differences, mean surface distance and hausdorff distance. Statistically significant differences between our method and the others were assessed using
resampling statistics with multiple comparison correction. The significance threshold was set as α ¼ 0:05. p-values were annotated as follows: ’*’ for p < 0:05, ’**’ for
p < 0:005, ’***’ for p < 0:0005, and ’n.s.’ for non-significant values.
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helping the algorithm identifying additional information regarding the
location of lesions. However, supporting our claim that stacking all
modalities together as a single input to the network is not an optimal
solution, top performance, indeed, was obtained in most measures with
the MB network when using all available modalities, as can be seen in
Table 4.

In deep CNNs, attributes from different layers include different in-
formation. Coarse layers are related to high-level semantic information
(category specific), and shallow layers are related to low-level spatial
information (appearance specific) (Long et al., 2015), while middle layer
attributes have shown a significant impact on segmentation performance
(Ronneberger et al., 2015). Combining these multi-level attributes from
the different stages of the network makes the representation richer than
10
using single-level attributes, like in the CNN based method proposed by
Brosch et al. (2016), where a single shortcut connection between the
deepest and the shallowest layers was used. Our model, instead, includes
several shortcut connections between all layers of the network, in order
to combine multi-scale features from different stages of the network as
inspired by U-Net architecture (Ronneberger et al., 2015). The results
shown in Table 1 suggest that the combination of multi-level features
during the upsampling procedure helps the network exploiting more
contextual information associated to the lesions. This could explain why
the performance of our proposed model (DSC¼ 0.7649) is higher than
the method proposed by Brosch et al. (2016) (DSC¼ 0.6844).

Patch-based CNNs suffer from lacking spatial information about the
lesions because of the patch size limitation. To deal with this problem, we



Fig. 8. Output segmentation results of the different methods for one subject with medium lesion load from the NRU dataset compared with ground truth annotation.
Reported DSC values for TOADS, OASIS, LST, U-Net and our proposed method for this subject are 0.7110, 0.4266, 0.6505, 0.7290 and 0.7759, respectively. On all
images, true positives, false negatives, and false positives are colored in red, green and blue, respectively.
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proposed a whole-brain slice-based approach. Compared with patch-
based methods (Valverde et al., 2017; Ghafoorian et al., 2017), we
have shown that our model has better performance for most measures, as
seen in Table 2. Although the CNN proposed by Valverde et al. (2017)
had the highest DSC value among all, our method showed better per-
formance regarding the LTPR and LFPR, which indicates that our model
is robust in identifying the correct location of lesions. The method pro-
posed by Birenbaum and Greenspan (2016) has been optimized to have
the highest LTPR. However, their method showed significantly lower
performance in LFPR. Compared with this method, our method has better
trade-off between LTPR and LFPR.

As mentioned in (Carass et al., 2017), manual delineation of MS le-
sions from MRI modalities is prone to intra- and inter-observer vari-
ability, which explains the relatively low DSC between two experts
delineating the same lesions (�0.73 for ISBI data as shown in Table 1).
Automated methods are therefore expected to have a maximum perfor-
mance in the same order of magnitude when comparing their generated
segmentation with the rater's one. Accordingly, it is important to notice
that, our model obtained a performance (DSC) close to the experts
agreement, as can be seen in Table 1.

The proposed method also has some limitations. We observed that the
proposed pipeline is slightly slow in segmenting a 3D image since seg-
menting whole-brain slices takes a longer time compared to other CNN-
based approaches (Roy et al., 2018). The time required to segment a 3D
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image is proportional to the size of the image and is based on the
computational cost of three sequential steps: input features preparation
3.2.1, slice-level segmentation 3.2.2, and 3D image reconstruction 3.2.4.
In both the ISBI and NRU datasets, the average time for segmenting an
input image with our model, including all 3 steps, was approximately
90 s.

A still open problem in MS lesion segmentation task is the identifi-
cation of cortical and subcortical lesions. To this aim, we plan to use other
MRImodalities such as double inversion recovery (DIR) sequences for the
identification of cortical lesions, which benefits of the signal suppression
from both CSF and WM. Moreover, we believe that introducing infor-
mation from the tissue class could help improve the network identifying
cortical, subcortical and white matter lesions. Therefore, we think that
would be very promising to design a multi-task network for segmenting
different parts of brain including different tissue types (WM, GM, CSF)
and different types of MS lesions (including cortical lesions).

Since the assessment of the disease burden from MRI of MS patients
requires the quantification of the volume of hyperintense lesions on T2-
weighted images, the final goal of the method proposed was to obtain an
automatic and robust MS lesion segmentation tool. This will be partic-
ularly useful to facilitate scaling advanced MS analysis based on myelin
imaging (Dayan et al., 2017) or multi-modal characterization of white
matter tracts (Dayan et al., 2016) to large datasets. The long term goal,
more generally, is the translation of this automatic method into a clinical



Fig. 9. Comparison of the lesion volumes produced by manual and automatic segmentation on the NRU dataset with different methods. Each point is associated with a
single lesion. Colored (solid) lines indicate the correlation between manual and segmented lesion volumes. Black (dotted) lines indicate the ideal regression line. Slope,
intercept, and Pearson's linear correlation (all with p ≪ 0:001) between manual and estimated masks can also be seen for different methods.

Table 4
The proposed model was tested with different combinations of the three modalities in the second NRU dataset experiment. SB and MB denote the single-branch and
multi-branch versions of the proposed model, respectively. Mean values of DSC, PPV, LTPR, LFPR, VD, SD and HD were measured for different methods. Values in bold
and italic indicate the first-best and second-best values.

Method Set of Modalities DSC PPV LTPR LFPR VD SD HD

SB FLAIR 0.6531 0.5995 0.6037 0.2090 0.3034 1.892 9.815
T1w 0.5143 0.5994 0.3769 0.2738 0.3077 4.956 8.201
T2w 0.5672 0.5898 0.4204 0.2735 0.1598 4.733 9.389
FLAIR, T1w, T2w 0.6712 0.6029 0.6095 0.2080 0.2944 1.602 9.989

MB FLAIR, T1w 0.6624 0.6109 0.6235 0.2102 0.2740 1.727 9.526
FLAIR, T2w 0.6630 0.6021 0.6511 0.2073 0.3093 1.705 9.622
T1w, T2w 0.5929 0.6102 0.4623 0.2309 0.1960 4.408 9.004
FLAIR, T1w, T2w 0.7067 0.6844 0.6136 0.1284 0.1488 1.577 8.368
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tool. However, to be fully ready for clinical applications, the method
should be also validated on healthy subjects and in a longitudinal
framework. The test on healthy subjects needs to be done to evaluate the
amount of false positives generated by any approach on healthy brain
scans. The experiments in a longitudinal framework are useful to assess
the model reliability and capability to identify new, enlarged and stable
lesions. Moreover, still exploiting ISBI dataset, which includes longitu-
dinal data, we could focus on leveraging this information to boost the
performance of segmentation.
12
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Appendix A. Evaluation Protocols

This appendix includes 3 tables that describe the training procedures in details related to Sections 4.2 and 4.3.
Table A1 and Table A2 give detailed information about how we implemented training procedure on the ISBI dataset for the first and second ex-

periments. Table A3 describes the first and second experiments. Table A3 describes the nested 4-fold cross-validation training procedure applied on the
NRU dataset in the first experiment.
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Table A.1

This table shows the implementation of first experiment in Sec-
tion 4.2. In this experiment, we evaluated our model using the
ISBI dataset with available ground truth (training set with 5
subjects). We implemented a nested leave-one-subject-out cross-
validation (3 subjects for training, 1 subject for validation, and 1
subject for testing). The numbers indicate the subject identifier.

Training Validation Testing
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1,2,3
 4
 5

1,2,4
 3
 5

1,3,4
 2
 5

2,3,4
 1
 5

1,2,3
 5
 4

1,2,5
 3
 4

1,3,5
 2
 4

2,3,5
 1
 4

1,2,4
 5
 3

1,2,5
 4
 3

1,4,5
 2
 3

2,4,5
 1
 3

1,3,4
 5
 2

1,3,5
 4
 2

1,4,5
 3
 2

3,4,5
 1
 2

2,3,4
 5
 1

2,3,5
 4
 1

2,4,5
 3
 1

3,4,5
 2
 1
Table A.2
This table shows the implementation of the second experiment in
Section 4.2. In this experiment, our model was evaluated using
official ISBI test set including 14 subjects without publicly available
ground truth. We trained our model doing a leave-one-subject-out
cross-validation on whole training set (4 subject for training, 1 sub-
ject for validation, and 14 subject for testing). The numbers indicate
the subject identifier.

Training Validation Testing
1,2,3,4
 5
 ISBI test set

1,2,3,5
 4
 ISBI test set

1,2,4,5
 3
 ISBI test set

1,3,4,5
 2
 ISBI test set

2,3,4,5
 1
 ISBI test set
Table A.3
This table gives detailed information regarding the training procedure for the first
experiment in Section 4.3. In this experiment, we implemented a nested 4-fold cross-
validation over the whole NRU dataset including 37 subjects. [A-B @ C-D] denotes
subjects A to B and C to D.

Training Validation Testing
[17–37]
 [10–16]
 [1–9]

[10–16 @ 24–37]
 [17–23]
 [1–9]

[10–23 @ 31–37]
 [24–30]
 [1–9]

[10–30 @ 31–37]
 [31–37]
 [1–9]

[8–9 @ 19–37]
 [1–7]
 [10–18]

[1–7 @ 24–37]
 [8–9 @ 19–23]
 [10–18]

[1–9 @ 19–23 @ 31–37]
 [24–30]
 [10–18]

[1–9 @ 19–30]
 [31–37]
 [10–18]

[8–18 @ 28–37]
 [1–7]
 [19–27]

[1–7 @ 15–18 @ 27–37]
 [8–14]
 [19–27]

[1–14 @ 31–37]
 [15–18 @ 28–30]
 [19–27]

[1–18 @ 28–30]
 [31–37]
 [19–27]

[8–37]
 [1–7]
 [28–37]

[1–7 @ 15–27]
 [8–14]
 [28–37]

[1–14 @ 22–27]
 [15–21]
 [28–37]

[1–21]
 [22–27]
 [28–37]
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Appendix B. Labels Aggregation

In order to aggregate the outcomes of ensembles of labeling, beyond majority voting, we tested alternative well known label fusion methods.
Specifically, we repeated the first experiment on NRU dataset as described in Section 4.2 substituting the majority vote framework with averaging and
STAPLE (Simultaneous Truth and Performance Level) (Warfield et al., 2004) methods, used to aggregate both the output volumes of the three plane
orientations and the output volumes of the different models during cross-validation. Table B1 indicates the performance of each method. Overall,
majority voting had better performance than other methods. Therefore, we selected this method for all experiments.
Table B.1

This table shows the results of the first experiment on the NRU dataset using our model as described in Section 4.2. We implemented the same experiment using different
methods for fusing output volumes (whenmerging the outputs from each plane orientation, and also whenmerging the outputs of models from different cross-validation
folds). Mean values of DSC, PPV, LTPR, LFPR, VD, SD and HD were measured for each method. Values in bold and italic indicate the first-best and second-best results.

Method DSC PPV LTPR LFPR VD SD HD
14
Majority Voting
 0.6655
 0.8032
 0.4465
 0.0842
 0.3372
 2.575
 6.728

Averaging
 0.5883
 0.8391
 0.3220
 0.0788
 0.4625
 3.216
 8.503

STAPLE (Warfield et al., 2004)
 0.6632
 0.7184
 0.3989
 0.0802
 0.3883
 2.330
 8.629
Appendix C. Rater Evaluation on NRU Dataset

In the first NRU dataset experiment, beyond verifying the quality of the proposed model on the ground truth generated from the consensus of two
experts, we also compared the performance with the ground truth from each individual experts. The rationale behind the experiment was to assess the
consistency of the system across raters. Table C1 shows the corresponding results. As expected from the high consensus between the masks provided by
the two raters (as mentioned in Section 2.2), our trained model using the gold standard mask (derived from the two raters' masks) showed comparable
results when evaluated with either raters’ masks or the consensus mask as ground truth.
Table C.1

This table indicates the performance of our trained model in the NRU dataset first experiment when using different ground truth masks as testing. Mean values of DSC,
PPV, LTPR, LFPR, VD, SD and HD were measured for each method. Values in bold and italic indicate the first-best and second-best results.

Method DSC PPV LTPR LFPR VD SD HD
Rater1
 0.6827
 0.8010
 0.5039
 0.0977
 0.3727
 2.085
 6.704

Rater2
 0.6607
 0.7784
 0.4458
 0.0860
 0.3638
 2.511
 7.009

Gold Standard (Consensus Mask)
 0.6655
 0.8032
 0.4465
 0.0842
 0.3372
 2.575
 6.728
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