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Summary. *Successful and effective content-based access to digitalvideo requires fast, ac-
curate and scalable methods to determine the video content automatically. A variety of con-
temporary approaches to this rely on text taken from speech within the video, or on matching
one video frame against others using low-level characteristics like colour, texture, or shapes,
or on determining and matching objects appearing within thevideo. Possibly the most impor-
tant technique, however, is one which determines the presence or absence of a high-level or
semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands
of such semantic features we can support many kinds of content-based video navigation. Criti-
cally however, this depends on being able to determine whether each feature is or is not present
in a video clip. The last 5 years have seen much progress in thedevelopment of techniques
to determine the presence of semantic features within video. This progress can be tracked in
the annual TRECVid benchmarking activity where dozens of research groups measure the ef-
fectiveness of their techniques on common data and using an open, metrics-based approach.
In this chapter we summarise the work done on the TRECVid high-level feature task, show-
ing the progress made year-on-year. This provides a fairly comprehensive statement on where
the state-of-the-art is regarding this important task, notjust for one research group or for one
approach, but across the spectrum. We then use this past and on-going work as a basis for
highlighting the trends that are emerging in this area, and the questions which remain to be
addressed before we can achieve large-scale, fast and reliable high-level feature detection on
video.4
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1 Introduction

Searching for relevant video fragments in a large collection of video clips is a much harder
task than searching textual collections. A user’s information need is more easily represented
as a textual description in natural language using high-level concepts that directly relate to
the user’s ontology which relates terminology to real worldobjects and events. Even though
raw video clips lack textual descriptions, low-level signal processing techniques can however
describe them in terms of color histograms, textures etc. The fact that there exists a mismatch
between the low-level interpretation of video frames and the representation of an information
need as expressed by a user is called the “semantic gap” [20].

Up to this point in time, video archives have overcome the semantic gap and can facilitate
search by manual indexing of video productions, which is a very costly approach. The meta-
data produced this way often lacks descriptions at the shot level, making retrieval of relevant
fragments at the shot level a time-consuming effort. Even ifrelevant video productions have
been found, they have to be watched completely in order to narrow down the search selection
to the relevant shots.

A promising approach to make search in video archives more efficient and effective is to
develop automatic indexing techniques that produce descriptions at a higher semantic level
that is better attuned to matching information needs. Such indexing techniques produce de-
scriptions using a fixed vocabulary of so-calledhigh-level features also referred to assemantic
concepts. Typical examples of high-level features are objects such as ‘car’, persons such as
‘Madeline Albright’, scenes such as ‘sky’ or events like ‘airplane takeoff’. These descrip-
tors are named high-level features to make a clear distinction with low-level features such
as colour, texture and shape. Low-level features are used asinputs for the detection of high-
level features. In turn (and this is the main reason why they are called features), the high-level
features can be used as features by a higher level interpretation module, combining different
high-level features in a compositional fashion, e.g. ‘car AND fire’.

Semantic concept indexing has been one of the objects of study of the TRECVid bench-
marking evaluation campaign. More background about TRECVid is presented in Sections 2
and 3 of this chapter. Section 4 subsequently discusses the principal results and trends in the
five iterations of the high-level feature detection task organized in each year during the period
2002-2006.

High-level feature detectors are usually built by traininga classifier (often a support vec-
tor machine) on labeled training data. However, developingdetectors with a high accuracy
is challenging, since the number of positive training examples is usually rather small, so the
classifier has to deal with class imbalance. There is also a large variation in example frames
and the human labeling contains errors. From a development point of view, it is a challenge to
find scalable methods that exploit multiple layers of rich representations and to develop fusion
configurations that are automatically optimized for individual concepts. If the accuracy of such
a detector is sufficiently high, it can be of tremendous help for a search task, especially if rele-
vant concepts exist for the particular search query. For example, the performance of the query
“Find two visible tennis players” benefits from using the high-level feature “tennis game”.
Of course the size of the concept lexicon and the granularityof the ontology it represents are
seminal for the applicability of concept indexing for search. Over the last few years, the lex-
icon size of state-of-the-art systems for content based video access has grown from several
tens to several hundreds and there is evidence that high-level features indeed improve search
effectiveness and thus help to bridge the semantic gap.
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However, there are several open research problems linked tousing automatic semantic
concept annotation for video search. Experience from five years of benchmarking high-level
feature detectors at TRECVid has raised several issues. We mention a few here:

• The choice of a proper lexicon depends on the video collection and the envisaged queries,
and no automatic strategy exists to assist in constructing such a lexicon.

• The accuracy of a substantial number of concepts is too poor to be helpful.
• The stability of the accuracy of concept detectors when moving from one collection to

another has not been established yet.

Section 5 will discuss these and other open issues in some more detail and formulate an out-
look on how to benchmark concept indexing techniques in the coming years.

2 Benchmarking Evaluation Campaigns, TREC, and TRECVid

The Text Retrieval Conference (TREC) initiative began in 1991 as a reaction to small collec-
tion sizes used in experimental information retrieval (IR)at that time, and the need for a more
co-ordinated evaluation among researchers. TREC is run by the National Institute of Stan-
dards and Technology (NIST). It set out initially to benchmark the ad hoc search and retrieval
operation on text documents and over the intervening decadeand a half spawned over a dozen
IR-related tasks including cross-language IR, filtering, IR from web data, interactive IR, high
accuracy IR, IR from blog data, novelty detection in IR, IR from video data, IR from enter-
prise data, IR from genomic data, from legal data, from spam data, question-answering and
others. 2007 was the 16th TREC evaluation and over a hundred research groups participated.
One of the evaluation campaigns which started as a track within TREC but spawned off as an
independent activity after 2 years is the video data track, known as TRECVid, and the subject
of this paper.

The operation of TREC and all its tracks was established fromthe start and has followed
the same formula which is basically:

• Acquire data and distribute it to participants;
• Formulate a set of search topics and release these to participants simultaneously and en

bloc;
• Allow up to 4 weeks of query processing by participants and accept submissions of the

top-1000 ranked documents per search topic, from each participant;
• Pool submissions to eliminate duplicates and use manual assessors to make binary rele-

vance judgments;
• Calculate Precision, Recall and other derived measures forsubmitted runs and distribute

results;
• Host workshop to compare results;

The approach in TREC has always been metrics-based — focusing on evaluation of search
performance — with measurement typically being some variants of Precision and Recall.

Following the success of TREC and its many tracks, many similar evaluation campaigns
have been launched in the information retrieval domain. In particular, in the video/image area
there are evaluation campaigns for basic video/image analysis as well as for retrieval. In all
cases these are not competitions with “winners” and “losers” but they are more correctly ti-
tled “evaluation campaigns” where interested parties can benchmark their techniques against
others and normally they culminate in a workshop where results are presented and discussed.
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TRECVid is one such evaluation campaign and we shall see details of that in section 3, but
first we shall look briefly at evaluations related to video processing.

ETISEO (Evaluation du Traitement et de l’Interprétation de Séquences Vidéo) [3] was an
evaluation campaign that ran in 2005 and 2006. The aim was to evaluate vision techniques for
video surveillance applications and it focussed on the treatment and interpretation of videos
involving pedestrians and (or) vehicles, indoors or outdoors, obtained from fixed cameras.
The video data used was single and multi-view surveillance of areas like airports, car parks,
corridors and subways. The ground truth consisted of manualannotations and classifications
of persons, vehicles and groups, and the tasks were detection, localization, classification and
tracking of physical objects, and event recognition.

The PETS campaign (Performance Evaluation of Tracking & Surveillance) [6] is in its
10th year in 2007 and is funded by the European Union through the FP6 project ISCAPS (In-
tegrated Surveillance of Crowded Areas for Public Security). PETS evaluates object detection
and tracking for video surveillance, and its evaluation is also metrics based. Data in PETS
is multi-view/multi-camera surveillance video using up to4 cameras and the task is event
detection for events such as luggage being left in public places.

The AMI (Augmented Multi-Party Interaction) project [2], funded by the European
Union, targets computer enhanced multi-modal interaction, including the analysis of video
recordings taken from multiple cameras, in the context of meetings. The project coordinates
an evaluation campaign where tasks include 2D multi-persontracking, head tracking, head
pose estimation and an estimation of the focus-of-attention (FoA) in meetings as being either
a table, documents, a screen, or other people in the meeting.This is based on video analysis
of people in the meeting and what is the focus of their gaze.

ARGOS [9] is another evaluation campaign for video content analysis tools. The set of
tasks under evaluation have a lot of overlap with the TRECVidtasks and include shot bound
detection, camera motion detection, person identification, video OCR and story boundary de-
tection. The corpus of video used by ARGOS includes broadcast TV news, scientific docu-
mentaries and surveillance video.

Although even these evaluation campaigns in the video domain span multiple domains
and genres as well as multiple applications, some of which are information retrieval, they
have several things in common, including the following:

• they are all very metrics-based with agreed evaluation procedures and data formats;
• they are all primarily system evaluations rather than user evaluations;
• they are all open in terms of participation and make their results, and some also their data,

available to others;
• they are all have manual self-annotation of ground truth or centralized assessment of

pooled results;
• they all coordinate large volunteer efforts, many with little sponsorship funding;
• they all have growing participation;
• they all have contributed to raising the profile of their application and of evaluation cam-

paigns in general;

What we can conclude from the level of activity in evaluationcampaigns such as the above,
and the TRECVid campaign which we will cover in the next section, is that they are established
within their research communities as the means to carry out comparative evaluations.
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3 The TRECVid Benchmarking Evaluation Campaign

The TREC Video Retrieval Evaluations began on a small scale in 2001 as one of the many
variations on standard text IR evaluations hatched within the larger TREC effort. The mo-
tivation was an interest in expanding the notion of “information” in IR beyond text and the
observation that it was difficult to compare research results in video retrieval because there
was no common basis (data, tasks, or measures) for scientificcomparison. TRECVid’s two
goals reflected the relatively young nature of the field at thetime it started, namely promotion
of research and progress in video retrieval and in how to usefully benchmark performance.
In both areas TRECVid has often opted for freedom for participants in the search for effec-
tive approaches over control aimed at finality of results. This is believed appropriate given the
difficulty of the research problems addressed and the current maturity of systems.

TRECVid can be compared with more constrained evaluations using larger-scale testing
as in the Face Recognition Grand Challenge (FRGC) [1] and in the context of benchmark-
ing evaluation campaigns it is interesting to compare thosein IR and image/video processing
mentioned above, with such a “grand challenge”. The FRGC is built on the conclusion that
there exist “three main contenders for improvements in facerecognition” and on the defini-
tion of 5 specific conjectures to be tested. FRGC shares with TRECVid an emphasis on large
data sets, shared tasks (experiments) so results are comparable, and shared input/output for-
mats. But FRGC differs from TRECVid in that FRGC works with much more data and tests
(complete ground truth is given by process of capturing data), more controlled data, focus on
a single task, only non-interactive systems, and evaluation only in terms of verification and
false accept rates. This makes it quite different from TRECVid.

The annual TRECVid cycle begins more than a year before the target workshop as NIST
works with the sponsors to secure the video to be used and outlines associated tasks and mea-
sures. These are presented for discussion at the November workshop a year before they are to
be used. They need to reflect interests of the sponsors as wellas enough researchers to attract
a critical mass of participants. With input from participants and sponsors, a set of guidelines
is created and a call for participation is sent out by early February. The various sorts of data
required are prepared for distribution in the spring and early summer. Researchers develop
their systems, run them on the test data, and submit the output for manual and automatic eval-
uation at NIST starting in August. Results of the evaluations are returned to the participants in
September and October. Participants then write up their work and discuss it at the workshop in
mid-November – what worked, what didn’t work, and why. The emphasis in this is on learning
by exploring. Final analysis and description of the work is completed in the months following
the workshop and often include results of new or corrected experiments and discussion at the
workshop. Many of the workshop papers are starting points for peer-reviewed publications,
with a noticable effect on the scientific programme of multimedia conferences. Over the last
few years, about 50 publications per year were reporting theuse of a TRECVid test collection.

The TRECVid tasks which have been evaluated are shot boundary detection, detection of
concepts or high-level features within shots, automatic detection of story bounds in broad-
cast TV news, three kinds of search (automatic, manual and interactive) and automatic video
summarisation. In this chapter we gather together the work done and the contributions of the
TRECVid high-level feature detection task since it startedin 2002. We analyse its impact and
we enlist what we believe to be the outstanding challenges and likely developments.
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4 The TRECVid high-level Feature Detection Task

In this section we present a year-on-year summary of each of the first 5 iterations of TRECVid
in terms of the feature detection task, tracking the development of the task and of system
approaches over the years. Before we do that, however, we describe the overall task definition
and the evaluation measures we used.

High-level feature extraction, important in its own right and a promising basis for search,
was added at the urging of participants in 2002. The featurestested have ranged over objects,
people, and events with varying degrees of complexity that make some features very similar
to topic text descriptions. Features have mostly been chosen with an eye to their likely use in
search. Unlike search topics, feature definitions are knownin advance of testing and contain
only a short text description.

The TRECVid standard for correctness in annotation of feature training data and judging
of system output is that of a human – so that examples which arevery difficult for systems
due to small size, occlusion, etc., are included in the training data and systems that can detect
these examples get credit for them – as should be the case in a real system. This differs from
some evaluations (e.g. FRGC) in which only a subset of examples that meet specified criteria
are considered in the test. We want the TRECVid test collections to be useful long after the
workshop and year in which they are created and even if systems improve dramatically.

Since in video there is no visual correlate of the word as an easily recognizable, reusable
semantic feature, one of the primary hypotheses being examined in TRECVid is the idea that,
given enough reusable feature detectors, such features might play something like the role
words do in text IR. Of course, many additional problems - such as how to decide (automati-
cally) which features to use in executing a given query – remain to be solved [7].

The task definition for high-level feature detection is as follows: given a collection of
video, a set of high-level features and a common set of shot boundaries, return for each feature
the list of the top video shots from the collection, ranked according to the highest probability of
the shot containing the feature. In the initial year of TRECVid, the list was set to 1,000 though
we later set the size of the submitted list to 2,000. Each participating group was allowed to
submit multiple “runs”, where each run was a variant of the technique they had developed for
feature extraction.

One of the basic goals of TRECVid is to allow each group to compare the effectiveness
of its algorithms on a given test set. This goal is more fundamental than the ability to compare
two groups’ systems or to measure the improvement of systemsover time – even though the
latter two capabilities are highly desirable.

A feature is defined as being present in the shot if it is present for at least 1 frame, so
there is no concept of a feature being present for only part ofa shot and the presence of each
feature is assumed to be binary. Each of the submitted runs for each of the features from each
of the participating groups were then pooled, duplicates removed, and the pool of shots was
manually assessed for the presence/absence of the feature.Assuming the presence of a feature
in a shot to be binary is a simplification adopted because of the benefits it afforded in pooling
the results and in approximating recall and this was continued in all iterations of TRECVid.

When assessing the results of feature detection we employ the widely usedtrec eval soft-
ware to calculate standard information retrieval measures. Because in the initial years of the
evaluation not all groups submitted results for all features, we calculated and presented the av-
erage precision for each feature for each group, rather thanaggregating performance measures
at the group or run levels. That changed in 2006.

One interesting aspect of the feature detection task was theprovision of development data
which could be used by participating groups to train their feature detection systems. The goal
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was to have groups train their systems on a common training dataset as that would afford
more direct comparisons of systems and approaches rather than comparisons of the quality
and amount of training data used. To that end we defined and provided sets of training data
and encouraged participating groups to use this data for training their systems. In the latter
years this training data consisted of manually annotated shots provided as part of large-scale
community-based video annotation activities, an aspect ofTRECVid which really allowed the
benchmark to focus on system approaches rather than data availability.

4.1 TRECVid 2002

TRECVid 2002 was the second year of the TRECVid activity and at that time the evaluation
was still one of the “tracks” of TREC [19]. One of the lessons we learned from the first year, in
2001, was that there is more to searching than the search taskand that the automatic detection
of some kind of semantic features was a necessary pre-requisite to any kind of quality retrieval.
With that in mind we decided to include a task on automatic feature detection for shots and to
schedule the submission deadline for this in such a way that the outputs of the feature detection
task could be used by participants in the search task. At minimum, this would allow a group
which was taking part in both feature detection and search touse the output of their own
feature detectors in running their own search task. However, such is the spirit of co-operation
in TRECVid that it became the norm that everybody’s feature detection submissions are made
available to every group taking part in the search task. Thisprovides a great boost for the
smaller groups or groups who wish to concentrate on the search task rather than on feature
detection.

In 2002 we defined 10 features to be used, shown in column 1 of Table 4.1 with the feature
number in parentheses, and these were suggested in on-line discussions among TRECVid
participants. The video data in that year was taken from the Internet Archive and Open Video
projects and slightly over 5 hours (1,848 shots in total) were used as test data for the feature
detection task. The nature of the video was documentary and educational broadcast video.
Common shot boundaries were provided by one of the participants and 9 groups of the 17
total participants in TRECVid 2002 submitted a total of 15 runs for assessment, and each was
fully assessed manually for the presence of each of the 10 features.

Figure 1 presents the performance of runs which are at the median or above, submitted by
participating groups, for each feature. Included as a dotted line in this figure is the baseline
for a random feature detector. There is an artificial upper limit on average precision for some
features (8 and 9) caused by the fact that groups submitted a maximum of 1,000 shots and
these features have more (1,382 and 1,221 respectively) features than could be identified in a
single 1,000-shot submission. From this graph we can see that the performance on some fea-
tures includingspeech (8), instrumental sound (9) andoutdoors (1), is OK, while the absolute
performance levels of others is poor, and none are great.

Summarising the approaches taken in 2002, we can say that they broadly fall into two
approaches. The first of these was to hand-label shots for theoccurrence of each of the features,
to automatically extract low-level characteristics like colour, texture, motion, etc. from these
shots, and then to train some automatic classifier like a support vector machine to recognise
the high-level features from the low-level features. The second approach taken in 2002 was
to exploit feature-specific characteristics and to use a face-recogniser to recognise faces, to
use audio characteristics to recognise speech occurrence,etc. Of the two approaches, the first
is the one which is scalable to large numbers of features and the one which has grown in
importance since 2002. One other characteristic of the early feature detection approaches is
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that all approaches treated the detection of each feature asindependent, something which has
changed recently.
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2002 2003 2004 2005 2006
Outdoors (1) — — — Outdoors (8)
Indoors (2) Indoors (11) — — —

Face (3) — — — Face (19)
People (4) People (13) People walk/run (35) People walk/run (38) Person (20)

Walking/Running (24)
People-Marching (35)

Crowd (18) Government-Leader (21)
Corporate-Leader (22)

Police/Security (23) Military personnel (24)
Cityscape (5) Building (14) — Building (42) Building (9) Urban (16)
Landscape (6) — — Mountain (44) Mountain (12)

Text Overlay (7) — — — —
Speech (8) Female Speech (18) — — —

Instrumental Sound (9) — — — —
Monologue (10) News subject monologue (21) — — —

— News subject face (12) — — —
— Road (15) Road (37) — Road (13)
— Vegetation (16) — — Vegetation (11)
— Animal (17) — — Animal (26)
— Car/truck/bus (19) Train (31) Car (47) Car (30) Bus (31) Truck (32)
— Aircraft (20) Airplane takeoff (34) — Airplane (29)
— Non-studio (22) — — Studio (7)
— Sports (23) Basket score (33) Sports (46) Sports (1)
— Weather news (24) — — Weather news (3)
— Zoom in (25) — — —
— Physical violence (26) Physical violence (36) — —
— Madeleine Albright (27) Madeleine Albright (29) — —
— — Boats/ships (28) — Boat/Ship (33)
— — Bill Clinton (30) — —
— — Beach (32) Waterscape/Waterfront (43) Waterscape/Waterfront (17)
— — — Explosion/Fire (39) Explosion/Fire (36)
— — — Map (40) Maps (38) Charts (39)
— — — U.S. Flag (41) US flag (28)
— — — Prisoner (45) Prisoner (25)
— — — — Sky (14)
— — — — Snow (15)
— — — — Entertainment (2)
— — — — Desert (10)
— — — — Computer/TV-screen (27)
— — — — Natural-Disaster (37)

Table 1. Features Used in Various TRECVid campaigns. (Note that features were re-numbered starting at 1 in the 2006 TRECVid campaign.)
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Fig. 1. Performance of high-level Feature Detection In TRECVid 2002

4.2 TRECVid 2003

In 2003, TRECVid branched out on its own and was not a track within the TREC framework,
reflecting the importance that the activity was already having on the research field [18]. The
track defined a set of 17 features to be detected, shown in the second column of Table 4.1,
again with the feature numbers in parentheses. Some of thesefeatures were repeated from the
previous year e.g.indoors (11) andpeople (13), some were close variants such ascityscape
(5) moving tobuilding (14) andspeech (8) moving tofemale speech (18), and the rest were
completely new. Of these new ones, some were predicted as being very difficult, such as
physical violence (26) while others we could expect to be easier, such asweather news (24).
As in the previous year, evaluation was based on the average precision of each feature in each
submitted run, and participants were asked to submit a list of up to 2,000 shots containing
each of the features. The rest of the task was the same as in 2002.

The data used for feature detection in 2003 consisted of broadcast TV news from ABC,
CNN and C-Span, and contained many advertisements and fast-moving shots associated with
the news, as well much studio footage of anchorpersons. A total of 60 hours (32,318 shots)
were used for the evaluation, a big step-up in size, and 10 groups submitted a total of 60 runs
which were pooled and only partially assessed because of thelarge ramp-up in submissions
and data volume from the data used in 2002.

Figure 2 shows the performance of the top 10 runs submitted for each of the 17 features.
What is important in Figure 2 is not which group or which run led to the best performance, but
the values of those best-performing runs for each feature. We can see that for some features
like weather news (24) andsporting event (23) the best performance was excellent, that for
many of the features the performance was mediocre, and that for some such asnon-studio
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Fig. 2. Performance of Top-10 high-level Feature Detections per Feature in TRECVid 2003

setting (22) andphysical violence (26) performance was quite poor. Figure 2 also shows the
median performance across all 60 submitted runs.

One of the notable things about the 2003 evaluation was the introduction of a collabora-
tive annotation of the training data allowing most of the participating groups to use the same
training data. This activity was led by IBM Research and involved personnel from 23 groups
volunteering to manually annotate some portion of the 60 hours of training data with 133 la-
bels or semantic features [11]. Having this shared common training data, now with common
annotations, allowed more groups to develop generic feature detection methods, for example
using automatic machine learning techniques such as support vector machines. Also provided
to the TRECVid organisers, and the participants, was the output of an automatic speech recog-
nition system applied to both the training and test data, a facility which many groups used in
developing their systems.

The main lesson learned from 2003 was that we could comfortably ramp up to 60 hours
of test data and that there were enough groups able to complete the task on that volume of data
to make it worthwhile. Also learned was the value of having a shared training dataset, in our
case a shared annotation of video using semantic features.
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4.3 TRECVid 2004

In 2004 the TRECVid feature detection task [10] used the samedata source as in 2003 in
order to minimise start-up costs for participants and to allow some stability for participants in
completing the task. The track defined defined a set of 10 features to be detected, shown in
the third column of Table 4.1 with the feature numbers in parentheses. Some of these features
were repeated, e.g.Road (37), some were variations such asAirplane takeoff (34) instead of
Aircraft (20), and others were new e.g.Boats/ships (28) andBill Clinton (30). Evaluation was
the same as in 2003, based on average precision per feature calculated from submissions of up
to 2,000 shots using a common shot boundary. Speech transcripts were also provided for the
collection of 60 hours (33,367 shots) of broadcast TV news from the same TV sources as in
2003 used in the evaluation of feature detection. Training data provided to participants, who
were encouraged to use this common training data, comprisedthe development data used in
2003, which had been annotated manually as part of a common annotation activity, and the
submitted and evaluated runs from 2003.

Pooling of submitted runs was carried out differently to previous years. Each submitted
run was divided into strata of depth 25 and the depth of the pools which were assessed manu-
ally, for each feature, varied according to the number of true shots found for that feature. This
allowed us to spread the scarce resource of assessor time more evenly among the features to
be assessed, in accordance with the “rate” at which shots truly containing each feature were
found.

Fig. 3. Performance of Top-10 high-level Feature Detections per Feature in TRECVid 2004

A total of 83 runs were submitted by 12 groups who completed the feature detection task
in 2004 and Figure 3 shows the performance of the top 10 runs submitted from among those 83
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runs, for each feature across all submitted runs. Figure 3 also shows the median performance
for each feature. Results across different features once again varied greatly in their mean and
top performances.Madeleine Albright (29) in particular shows wide variability in detection
performance whileBasketball score (33) stands out with high scores. The latter feature was
designed to be difficult (i.e. involving a scoring event), but turned out to be easy, since most
basketball shots shown in news shows involve a score, so detection of basketball shots, for
which discriminative textual features can be used, is sufficient.

Having some features common across the years allows direct comparison of approaches
over time and we can see that the best run forMadeleine Albright (27/29) improved, while
Road (15/37) andPhysical violence (26/36) were about the same. For the rest of the features
used in 2004 taken as a whole they were more difficult than those used in 2003. The features
occurred also more rare in the collection, the average rate of true shots per 1,000 test shots
was 13 in 2004 versus 21 in 2003. However, an analysis of average precision versus number
of true shots did not show a correlation.

Half of the 12 participating groups completed submissions for all 10 features, showing
an increasing trend towards generic or feature-neutral approaches, which did have strong per-
formance in terms of effectiveness. Most of the approaches taken by the groups addressed
ways of combining or fusing the output of low-level feature analysis on the shots. Some used
support vector machines, others used other approaches, such as Gaussian mixture models, etc.

4.4 TRECVid 2005

The search task in TRECVid in the years prior to 2005 had allowed a strong dependence on
the automatic speech recognition provided to participantsto evolve. In an attempt to move
participating groups away from this dependency and to forcegreater concentration on exploit-
ing the visual and audio aspects of video for video retrieval, TRECVid 2005 [16] introduced
a new source of video data where the text was errorful and unreliable. Once again, as in 2003
and 2004, we used broadcast TV news but this time it was taken from English- Arabic- and
Chinese-language sources, broadcast in November 2004. Foreach language we acquired auto-
matic speech recognition output and for the non-English sources we provided machine trans-
lation into English. We again provided common shot boundaries, and common keyframes that
groups could work with. The data used in the feature detection task consisted of 40 hours
(45,765 shots), indicating a much higher shot change rate inthe video than previously. Even
though the genre of video was the same as previously, broadcast TV news, groups felt a need
for a new source of training data for feature detection and another collaborative annotation of
39 features was completed [24], with 24 groups participating in the annotation activity using
annotation tools donated by IBM Research and by Carnegie Mellon University. Almost all
submitted runs (nearly 80%) used this training data alone.

The feature detection task used 10 features, selected by theorganisers from an early ver-
sion of the LSCOM (Large-Scale Concept Ontology for Multimedia) ontology which had been
under construction specifically for broadcast TV news [13].These are shown in the fourth col-
umn of Table 4.1 and included repeated, new and variation features. Evaluation metrics were
the same as previously, though for this year all submissionsfor each feature were pooled and
evaluated to a depth of 250 shots, requiring a total of 76,116individual shot judgments.

Twenty-two groups completed the feature detection task in 2005 (a near doubling over
the previous year) and they submitted a total of 110 runs, almost all of which contained sub-
missions for each of the 10 features and Figure 4 shows the performance of the top 10 runs
submitted for each feature. From that graph we can see that the scores for features are higher
than in 2004, despite the fact that there are new data sources, and errorful text from speech
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Fig. 4. Performance of Top-10 high-level Feature Detections per Feature in TRECVid 2005

recognition and machine translation. The sole feature thatwas common to both 2004 and
2005 (People walking/running (35/38)) showed the same level of performance for the top-
performing runs across the two years, though we cannot read too much into that because of
the different data sources. The techniques used by participating groups continued to show the
emergence of fusion methods, and some addressed the selection and combination of specific
low-level visual features (colour, texture, etc.) for different semantic features.

4.5 TRECVid 2006

The fifth and final year of this retrospective on TRECVid feature detection [17] used the same
data sources as in the previous year, broadcast TV news in three languages namely English
(NBC, CNN and MSNBC), Arabic (LBC and HURRA) and Chinese (CCTV4. PHOENIX and
NTDTV), taken from the same period in time. However one difference from the previous year
was that the feature detection task was run on almost 150 hours of video or 79,484 individual
shots. This represented a large step up in size.

In TRECVid 2006, participants were required to submit results for all 39 individual fea-
tures defined by the LSCOM workshop as “LSCOM-Lite”, rather than some self-selected sub-
set thereof. This was intended to further promote the use of generic means of training feature
detectors. Of these 39 features, the number to be evaluated manually was at first kept small
(10) so as to make the assessment manageable in this iteration of TRECVid. However, work by
Yilmaz and Aslam [25] had resulted in methods for estimatingstandard system performance
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measures using relatively small samples of the usual judgment sets so that larger numbers
of features could be evaluated using the same amount of judging effort. Using the TRECVid
2005 high-level feature task results, an analysis of the newestimate for average precision —
inferred average precision (infAP) — at various levels of judgment sampling (80%, 60%, 40%
and 20%) showed very good estimation of average precision interms of actual values of the
measures. Thus we decided to use this approach in evaluatingfeature detection performance
in TRECVid 2006 using a 50% sample of the usual feature task judgment set and this allowed
us to judge 20 features from each group rather than the 10 initially planned. For each feature,
all submissions down to a depth of at least 100, and 145 on average, were added to the pools
from which a 50% sample was judged.

Participants in the evaluation were given access to the MediaMill challenge data which
included 101 low-level features as well as estimated 101 MediaMill high-level concept occur-
rences in the 2005 and 2006 test data, plus the manual annotations on the development data
for 449 features taken from the fuller LSCOM ontology which had also been provided in the
previous year as training data. That meant that there was a total of 159 hours of annotated
training/development data for those who needed it ! As usualwe also provided common shot
boundaries and common keyframes for groups to work on. Throughout the previous iterations
of the feature detection task most groups had come to depend on the keyframe as the shot
representative and had applied their feature detection techniques to the keyframe rather than
the whole shot. As we know, the definition of a feature occurrence in a shot is that the feature
can occuranywhere in the shot, and participants take something of a risk by working on the
keyframe only. In 2006, however, 8 of the 30 teams completingthe task looked at more than
just the keyframe in deciding whether a feature was present in the shot, and this is a useful
development which we expect to see continued.

The TRECVid feature detection task in 2006 resulted in 30 groups submitting a total of
125 runs and the top 10 runs for each of the 20 features that were evaluated are shown in
Figure 5. Of these submitted runs, support vector machines are still the dominant classifier
with robust results. Good systems were those which combinedrepresentations at multiple
granularities (local, regional, global) with use of salient point representations gaining ground.
Good systems also combined various types of features (colour, texture, shape, edges, acoustic,
face, text). Many interesting multi-modal and concept fusion experiments were carried out and
multi-concept fusion still seems of limited use, perhaps because there are not enough concepts
that support each other in the relatively small set of 39 usedin 2006.

4.6 Data

Data is the element of the evaluation with the fewest degreesof freedom. While one can rumi-
nate about ideal test collections, in practice when organising resources for a large evaluation
like TRECVid one more often takes what one can get – if it can atall be useful – and acqui-
sition of video data from content providers has always been difficult in TRECVid. TRECVid
has formally evaluated systems against produced video and in 2005 and 2006 has explored
tasks against unproduced, raw video as well.

Produced video

¿From the 11 hours of video about NIST used for a feasibility test in 2001, TRECVid moved in
2002 to 73 hours of vintage video mainly from the Internet Archive [4] – a real collection still
needing a search engine to find video for re-use. Participants downloaded the data themselves.
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Fig. 5. Performance of Top-10 high-level Feature Detections per Evaluated Feature in
TRECVid 2006

Then in 2003 TRECVid began working on broadcast TV news videofrom a narrow time
interval – a new genre, much more consistent in its production values than the earlier data,
and larger in size. Data set sizes made it necessary to ship the video on hard drives – a method
that has worked well with the exception of one year in which groups with older versions of
the Windows operating system could could not access drives of the size used.



TRECVid Feature Detection 17

Another important change was the shift to two-year cycles. Within the same genre enough
data was secured so that training and test data could be provided in the first year, with the
training data annotated and re-used in the second year during which only new test data would
be provided. This reduced the overhead of system builders adapting to new video, reduced
the overhead of training data annotation and maximized its use, and removed a “new genre”
factor from influencing results in the second year of the cycle. TRECVid 2006 completed the
second such two-year cycle. Test/training data amounts (inhours) have grown as follows: 2003
(66/67), 2004 (70/0), 2005 (85/85), 2006 (158/0). The videoin 2003-2004 was from English-
speaking sources. In 2005 and 2006 Chinese- and Arabic-speaking sources were added to the
mix. Automatic machine translation was used to get English text from Chinese and Arabic
speech.

We have learned that broadcast news video has special characteristics with consequences
for the evaluation and systems used to detect features. It ishighly produced, dominated by
talking heads, and contains lots of duplicate or near duplicate material. Highly produced news
video exhibits production conventions that systems will learn but with negative consequences
when detectors learned on one news source are applied to another with different production
conventions. This a real problem which systems need to confront and makes it important that
the training data come from multiple sources. There are 8 different sources and 11 different
programs in the 2006 test data and a significant number of testdata sources did not occur in
the training data.

Much of broadcast TV news footage is visually uninformativeas the main information is
contained in the reporter’s or anchorperson’s speech. Thismakes the TRECVid search task
more difficult because the topics ask forvideo of objects, people, events, etc.not information
about them. Video of a reporter talking about person X does not by itself satisfy a topic asking
for video of person X. The search task is designed this way because it models one of two work
situations. One is a searcher looking at open source video, interested in objects, people, events,
etc. that are visible but not the subject the speech track, inthe unintended visual information
content about people, infrastructure, etc. The other situation is a video producer looking for
clips to “re-purpose”. The original intent often reflected in the speech track is irrelevant. Of
course, the speech track (or text from speech) can be very helpful in finding the right neigh-
borhood for browsing and finding the video requested by some topics. But even when speech
about X is accompanied by video of X they tend to be offset in time.

Highly produced news video also exhibits lots of duplicate or near duplicate segments
due to repeated commercials, stock footage, previews of coming segments, standard intro and
exit graphics, etc. Measuring the frequency of various sorts of duplicates or near duplicates
is an unresolved research issue, as is assessing the distorting effect they may have on basic
measures such as precision and recall.

4.7 Measurements

The TRECVid community has not spent significant amounts of time debating the pros and
cons of various measures of effectiveness as applied to the feature detection task. Instead
we have profited by battles fought long ago in the text IR community. While the choice of a
single number (average precision or inferred average precision) to describe generalized system
performance is as useful (e.g., for optimization, results graphs) as it is restrictive, TRECVid
continues the TREC tradition of providing various additional views of system effectiveness
for their diagnostic value and better fit for specific applications and analyses.

For feature extraction TRECVid adopted the family of precision- and recall-based mea-
sures for system effectiveness that have become standard within the TREC (text) retrieval
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community. Additional measures of user characteristics, behavior, and satisfaction developed
by the TREC interactive search track over several years wereadopted for use by interactive
video search systems.

5 Discussion: achievements and future directions

The importance of feature detection as a task has grown over the years. The number of groups
working on features benchmarking increased over the years from 9, 10, 12 and 22 to 30 in
2006. Now more groups participate in high-level feature task than in the search task. In the
first few years, the potential use of concept detectors for search was only a hypothesis, and
it was unclear whether a generic approach to building concept detectors would be feasible. A
number of recent studies did specifically study this hypothesis. Indeed, experiments show that
there is a clear positive correlation between search performance and the number of available
high-level concept detectors[21]; experiments also suggest a benefit of combining multiple
detectors[15, 21]. Concepts can mutually reinforce each other (i.e. a concept detector can
fruitfully exploit the output of other detectors for related concepts). The targeted effort to
design a concept ontology for broadcast news, LSCOM [5], hasalso been very influential,
since it created the possibility to use the semantic relations between concepts for the search
task. The impact of the use of concepts on search performancedepends on the accuracy of
their corresponding detectors. A recent simulation study shows that even the use of many low
accuracy detectors can improve search results substantially, provided the lexicon consists of
several thousand concepts [8]. It is important to realize though that designing and evaluating
concept ontologies is still an open research problem. LSCOMhas been designed for broadcast
news. Other video genres such as home video, drama or surveillance video require alternative
ontologies. An example is the recently announced ontology for home video [12], with a focus
on family life and travel scenes.

Five years of feature detection benchmarking have resultedin a certain consolidation
with regards to the main architecture/approach for building semantic concept detectors. Most
TRECVid systems have from the beginning treated feature detection as a supervised pattern
classification task based on one key frame for each shot. Theyhave been converging on generic
learning schemes over handcrafted detector construction as the desire to increase the set of fea-
tures to a hundred and an order of magnitude beyond [5] has grown and scalability of learning
scheme becomes critical. The TRECVid 2006 feature task recognized this by requiring sub-
missions for 39 features of which 10 were evaluated.

Naphade and Smith [14] surveyed successful approaches for detection of semantic fea-
tures used in TRECVid systems and abstracted a common processing pipeline including fea-
ture extraction, feature-based modeling (using e.g., Gaussian mixture models, support vector
machines, hidden Markov models, and fuzzy K-nearest neighbors), feature-specific aggrega-
tion, cross-feature and cross-media aggregation, cross-concept aggregation, and rule-based
filtering. This pipeline may accommodate automatic feature-specific variations [22]. They
documented over two dozen different algorithms used in the various processing stages and
note a correlation between number of positive training examples and best precision at 100.

Snoek et al. [23] identified a common architecture for TRECVid feature extraction sys-
tems and experimental variations including unimodal versus multimodal content analysis and
early versus late fusion. They also point out some of the implications of the choices made and
cite evidence that different features may require different approaches.

Beyond the above generalizations, conclusions about relative effectiveness of various
combinations of techniques are generally possible only in the context of a particular group’s
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experiments as described in their site reports in the TRECVid proceedings. In 2005, groups
found evidence for the value of local over global fusion, multilingual over monolingual runs,
multiple over single text sources (Carnegie Mellon University), parts-based object representa-
tion (Columbia University), various fusion techniques across features and learning approaches
(IBM), automatically learned feature-specific combinations of content, style, and context anal-
ysis, and a larger (101) feature set (University of Amsterdam).

Still, each year the question is faced of how the community asa whole can learn from
100+ experiments. Tradition has always been to minimize control over the structure of the ex-
periments for individual sites. Now approaches are consolidating, and it may become more at-
tractive to control more factors in the experimental setting in order to make submissions more
comparable across sites. One way to facilitate meta-analysis of experiment results across sites
is to classify systems based on an ontology of experimental choices that has been constructed
for the design of a concept detector architecture. A preliminary classification scheme was used
for a post hoc classification of runs during TRECVid 2006 [17]. A more principled submis-
sion metadata annotation effort is underway for TRECVid 2007. A more rigorous way to focus
(part of) the attention of the entire TRECVid on a particularresearch question is to include one
or more required runs, that have to meet a particular condition e.g. use of a particular dataset
for training, or are limited to visual only information. Another option would be to settle on an
agreed (baseline) architecture and set of components in order to reduce the number of factors
affecting results. So far, TRECVid has focused on facilitating a benchmark infrastructure for
within-site experiments, and a gradual change towards support for across site comparisons to
facilitate meta-studies of important well-defined research hypotheses is contemplated in order
to enable the quantification of the relative utility of the many techniques that are studied in the
high-level feature task.

The basics of the high-level feature benchmark have only changed gradually over the
years. It is important to provide the community with a stableforum, which enables the mea-
surements of year to year increments. Still, every year somesmall changes are introduced
to increase the effectiveness and generalizability of the experiments, while maximizing the
impact of the limited assessment time. The choice of features itself has always been difficult,
since the test collection needs enough positive examples present, but not too many. The feature
choice has always been balanced across several categories (person, object, event). Especially
the definition of event features have been refined in order to stimulate work on the analysis
of complete shots rather than keyframes. For TRECVid, 8 groups did analyze more than just
one keyframe per shot. In the broadcast news domain, shots are fairly short, for longer shots,
it might make sense to annotate the presence of a feature at the frame level.

A recurring question is whether the performance of high-level feature detection is im-
proving over the years. This cannot be answered, since the dataset changes every year, even
if some features remain in the task. In order to make such a comparison we would at least
need to have a reference system run on both test datasets to gauge the difference in the test
data. In addition the use of average precision is sometimes questioned. The advantage of mean
average precision is that it is a stable measure, which cannot be said about precision oriented
measures such as precision@10. The high-level feature detection task in itself is an example
of an intrinsic evaluation, where the performance is measured with respect to a ground truth.
Features are important for search. But how can features effectively be used by users during a
search task,and do we deal with varying accuracies of detectors ? There are many important
aspects related to the actual use of concept detectors for search that are not measured by the
current task.

Looking ahead, there are still many open issues and challenges before large scale concept
detection is well understood. We mention a few:
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• What are the limits on the generalizability of detectors, i.e., how reusable are the detec-
tors, and how can we measure this in an affordable way given the further constraint that
changing data sets is expensive ?

• What are the issues in moving from one video genre to another video genre — can it be
done ?

• What are the necessary sizes for a training set for HLF machine learning ? What is the
necessary accuracy for manual annotation of development data ?

• Are there issues of execution speed for HLF detection, especially if we want to scale up
to very large-sized archives. Can we do this on-the-fly, at search time ?

In summary, the TRECVid high-level feature detection task has realized an important
testbed for concept detection architectures that have proven to be an important performance
enhancing component in video search systems. By maintaining a balance between stability
and gradual refinements in the experimental set-up, this task has allowed the community to
make increments in scale and (although harder to measure) detector effectiveness. Future ex-
periments should be more focused on quantifying the robustness of the technology, how well
can detectors be applied in different domains, and on bettercomparability of the experiments
across sites and across collections in order to answer community-wide high-level research
questions.
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