15 research outputs found

    Nivat-Theorem and Logic for Weighted Pushdown Automata on Infinite Words

    Get PDF

    26. Theorietag Automaten und Formale Sprachen 23. Jahrestagung Logik in der Informatik: Tagungsband

    Get PDF
    Der Theorietag ist die Jahrestagung der Fachgruppe Automaten und Formale Sprachen der Gesellschaft für Informatik und fand erstmals 1991 in Magdeburg statt. Seit dem Jahr 1996 wird der Theorietag von einem eintägigen Workshop mit eingeladenen Vorträgen begleitet. Die Jahrestagung der Fachgruppe Logik in der Informatik der Gesellschaft für Informatik fand erstmals 1993 in Leipzig statt. Im Laufe beider Jahrestagungen finden auch die jährliche Fachgruppensitzungen statt. In diesem Jahr wird der Theorietag der Fachgruppe Automaten und Formale Sprachen erstmalig zusammen mit der Jahrestagung der Fachgruppe Logik in der Informatik abgehalten. Organisiert wurde die gemeinsame Veranstaltung von der Arbeitsgruppe Zuverlässige Systeme des Instituts für Informatik an der Christian-Albrechts-Universität Kiel vom 4. bis 7. Oktober im Tagungshotel Tannenfelde bei Neumünster. Während des Tre↵ens wird ein Workshop für alle Interessierten statt finden. In Tannenfelde werden • Christoph Löding (Aachen) • Tomás Masopust (Dresden) • Henning Schnoor (Kiel) • Nicole Schweikardt (Berlin) • Georg Zetzsche (Paris) eingeladene Vorträge zu ihrer aktuellen Arbeit halten. Darüber hinaus werden 26 Vorträge von Teilnehmern und Teilnehmerinnen gehalten, 17 auf dem Theorietag Automaten und formale Sprachen und neun auf der Jahrestagung Logik in der Informatik. Der vorliegende Band enthält Kurzfassungen aller Beiträge. Wir danken der Gesellschaft für Informatik, der Christian-Albrechts-Universität zu Kiel und dem Tagungshotel Tannenfelde für die Unterstützung dieses Theorietags. Ein besonderer Dank geht an das Organisationsteam: Maike Bradler, Philipp Sieweck, Joel Day. Kiel, Oktober 2016 Florin Manea, Dirk Nowotka und Thomas Wilk

    Acta Cybernetica : Volume 23. Number 1.

    Get PDF

    A formalisation of the theory of context-free languages in higher order logic

    No full text
    We present a formalisation of the theory of context-free languages using the HOL4 theorem prover. The formalisation of this theory is not only interesting in its own right, but also gives insight into the kind of manipulations required to port a pen-and-paper proof to a theorem prover. The mechanisation proves to be an ideal case study of how intuitive textbook proofs can blow up in size and complexity, and how details from the textbook can change during formalisation. The mechanised theory provides the groundwork for our subsequent results about SLR parser generation. The theorems, even though well-established in the field, are interesting for the way they have to be “reproven” in a theorem prover. Proofs must be recast to be concrete enough for the prover: patching deductive gaps which are relatively easily grasped in a text proof, but beyond the automatic capabilities of contemporary tools. The library of proofs, techniques and notations developed here provides a basis from which further work on verified language theory can proceed at a quickened pace. We have mechanised classical results involving context-free grammars and pushdown automata. These include but are not limited to the equivalence between those two formalisms, the normalisation of CFGs, and the pumping lemma for proving a language is not context-free. As an application of this theory, we describe the verification of SLR parsing. Among the various properties proven about the parser we show, in particular, soundness: if the parser results in a parse tree on a given input, then the parse tree is valid with respect to the grammar, and the leaves of the parse tree match the input; and completeness: if the input belongs in the language of the grammar then the parser constructs the correct parse tree for the input with respect to the grammar. In addition, we develop a version of the algorithm that is executable by automatic translation from HOL to SML. This alternative version of the algorithm requires some interesting termination proofs. We conclude with a discussion of the issues we faced while mechanising pen-and-paper proofs. Carefully written formal proofs are regarded as rigorous for the audience they target. But when such proofs are implemented in a theorem prover, the level of detail required increases dramatically. We provide a discussion and a broad categorisation of the causes that give rise to this

    Acta Cybernetica : Volume 17. Number 4.

    Get PDF

    Greibach Normal Form for omega-Algebraic Systems and Weighted Simple omega-Pushdown Automata

    No full text

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic
    corecore