
Volume 17 Number 4

ACTA
CYBERNETICA

Editor-in-Chief: János Csin'k (Hungary)

Managing Editor: Zoltán Kato (Hungary)

Assistant to the Managing Editor: Boglárka Tó

Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Stephen L. Bloom (USA)
Hans L. Bodlaender (The Netherlands)
Wilfried Brauer (Germany)
Lothar Budach (Germany)
Horst Bunke (Switzerland)
Bruno Courcelle (France)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Esik (Hungary)
Zoltán Fülöp (Hungary)

(Hungary)

Ferenc Gécseg (Hungary)

Íozef Gruska (Slovakia)

Salázs Imrehl(Hungary)
Helmut Jürgensen (Canada)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Paun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2006

A C T A C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the
time it takes to locate qualified reviewers. Usually, a review process takes 6 months to
be completed. There are no page charges. Fifty reprints are supplied for each article
published.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

• title of the paper

o author name(s) and affiliation

e name, address and email of the corresponding author

» An abstract clearly stating the nature and significance of the paper. Abstracts must
not include mathematical expressions or bibliographic references.

References should appear in a separate bibliography at the end of the paper, with
items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in I^T^X format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, € 4 0 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher.- Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: + 3 6 62 546 396, Fax: + 3 6 62 546 397, Email: actaQinf .u-szeged.hu

W e b access. The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage ht tp : / /www. inf .u - szeged .hu /actacybernet ica / .

http://www.inf.u-szeged.hu/actacybernetica/

Editorial

In Memoriam Balázs Imreh (1945-2006)

On 8 August 2006, Acta Cybernetica lost one of its Editors. Balázs Imreh
passed away that day at the age of 61.

Dr. Imreh was born in Szekszárd, Hungary.
He received the MS degree from the University
of Szeged (SZTE), formerly József Attila Uni-
versity, Szeged, Hungary in 1968 and the Candi-
date of Mathematical Sciences degree from the
Hungarian Academy of Sciences in 1983. He
joined the faculty of SZTE in 1969 and served as
Head of the Institute of Informatics from 1991 to
1998. He also held positions as Head of the De-
partment of Foundations of Computer Science
and Head of the Department of Applied Infor-
matics. He obtained the Habilitation degree in
2002.

During his service at the University, he was
actively involved in both research and educa-
tion. He wrote 4 textbooks on operations re-

search and published more than 70 scientific papers in the fields of automata theory
and operations research.

He was a member of the Institute for Operations Research and the Management.
Sciences (INFORMS), János Bolyai Mathematical Society, John von Neumann
Computer Society, Hungarian Operational Research Society, and the Committee
of Computer Science of the Hungarian Academy of Sciences.

Dr. Imreh served as Editor of Acta Cybernetica since 1996. His death is a great
loss to all of us.

Zoltán Kato János Csirik
Managing Editor Editor-in-Chief

661

/

E D I T O R I A L B O A R D

Editor-in-Chief: Jänos Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
csi ri k@i nf. u-szeged. hu

Managing Editor: Zoltan Kato
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
kato@inf.u-szeged.hu

Guest Editor:

Zoltán Ésik
Department of Foundations of Computer Science
University of Szeged, Szeged, Hungary
alexinOinf: u-szeged. hu

Assistant to the Managing Editor:

Boglárka Tóth
Research Group on Artificial Intelligence
University of Szeged, Szeged, Hungary
boglarka@inf.u-szeged.hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Stephen L. B loom
Computer Science Department
Stevens Institute of Technology
New Jersey, USA
bloom@cs.stevens-tech.edu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Wilfried Brauer
Institut für Informatik
Technische Universität München'
Garching bei München, Germany
brauer@informatik.tu-muenchen.de

Lothar Budach
Department of Computer Science
University of Potsdam
Potsdam, Germany
lbudach@haiti.cs.uni-potsdam.de

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Bruno Courcelle
LaBRI
Talence Cedex, France
courcell@labri.u-bordeaux.fr

mailto:kato@inf.u-szeged.hu
mailto:boglarka@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:bloom@cs.stevens-tech.edu
mailto:hansb@cs.uu.nl
mailto:brauer@informatik.tu-muenchen.de
mailto:lbudach@haiti.cs.uni-potsdam.de
mailto:bunke@iam.unibe.ch
mailto:courcell@labri.u-bordeaux.fr

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

Bálint Dömölki
IQSOFT
Budapest, Hungary
domolki@iqsoft.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
f u lop@i nf. u-szeged. h u

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@inf.u-szeged.hu

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Balázs Imreh
Department of Applied Informatics
University of Szeged
Szeged, Hungary
imreh@inf.u-szeged.hu

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Päun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd' University
Budapest, Hungary
prekopa@cs.eite.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
vogler@inf.tu-dresden.de

Gerhard J. W o eginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

mailto:demetrovics@sztaki.hu
mailto:domolki@iqsoft.hu
mailto:gecseg@inf.u-szeged.hu
mailto:gruska@savba.sk
mailto:imreh@inf.u-szeged.hu
mailto:helmut@csd.uwo.ca
mailto:Alica.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.eite.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:vogler@inf.tu-dresden.de
mailto:gwoegi@win.tue.nl

Preface

The AFL (Automata and Formal Languages) conference series was initiated by
Prof. István Peak (1936-1989). He organized the AFL conferences in 1980, 1982,
1984, 1986 and 1988, and started the organization of AFL'90. These conferences
were all held in the hills around Salgótarján. In 1986 and 1988, the title of the con-
ference was Automata, Languages and Programming Systems. Since the untimely
death of Prof. István Peák in 1989, the AFL conferences have been organized in
every third year. In 1993 and 1996, two more "Salgótarján conferences" took place.
The last two conferences of the series were held in Vasszécsény (1999) and Debrecen
(2002).

The 11th International Conference on Automata and Formal Languages, AFL 2005
took place in Dobogókő located at a distance of 30 kilometers from the center of
Budapest in the Pilis mountains.

Topics of interest included grammars, acceptors and transducers for strings, trees,
graphs, arrays, etc., algebraic theories for automata and languages, combinatorial
properties of words and languages, formal power series, decision problems, effi-
cient algorithms for automata and languages, relations of automata and language
theory to computational complexity theory logic, picture description and analysis
using automata theoretic tools, DNA computing, quantum computing, cryptogra-
phy, automata and languages in relation to concurrency.

This issue of Acta Cybernetica contains the full version of 9 papers presented at
the conference. All of them have been refereed according to the usual standards of
the journal. I would like to thank all authors of the papers of this journal issue and
all those who have contributed to the success of AFL 2005, including the members
of the conference committees, all speakers and participants, and everybody who
submitted a paper, or took part in the evaluation of the submissions.

Kyoto, October 2006

Zoltán Esik

663

î

J

Acta Cybernetica 17 (2006) 665-684.

Finite State Evaluation of Logical Formulas :
Jevons' Approach (1870) and Contemporary

Description

Paul Amblard*

Abstract
In this paper, we describe a formal language for a class of logical expres-

sions. We then present a Finite State Machine for recognition and evaluation
of this language. The main interest of the language is its historical character-
istic. This language invented by the British scholar W . Stanley JEVONS in
1865 is probably the earliest language in which expressions were evaluated by
a Finite State Machine. The two outstanding contributions were the use of
machinery to evaluate formulas and the evaluation of formulas with variables
by several parallel evaluations with constants. The contribution of this paper
is to present this ancient evaluation process in a contemporary framework, .
i.e. formal languages and finite state automata. The design of an evaluator
is given in great detail.

Introduction and Related Works

The history of calculating machines is well known. Pascal and Babbage built ma-
chines that are considered as the mechanical ancestors of today's computers. But
computers do not only compute numbers, they can also perform symbolic evalu-
ations. At a certain level of abstraction, we may consider mechanisms based on
logical choices i f . . . then . . . , or i f . . . then . . . e lse . . . as the necessary
complements of strictly arithmetic operations.

The first mechanical machine making these choices to " perform the logical
inference " was designed by William Stanley JEVONS in 1865 and published in
1870 ([14]). He had been a student of De Morgan. He was at that time becoming a
professor of Logic (and of Political Economy) at the Owens College of Manchester.
Figure 1 shows Jevons' activity time w.r.t other well-known British logicians.

His work has often been presented in the same terms as in the original paper:
logical evaluation [1, 5, 6, 16]. Burris' paper [5] gives interesting details about
Jevons' logic and about his machine. But none of these papers establishes relations

•TIMA-CMP Lab. University of Grenoble, 46 Av. Felix Viallet, 38031 Grenoble CEDEX,
France, E-mail: Paul.Amblard8imag.fr

665

666 Paul Amblard

1800 1820 J840 1860 1880 1900 1810 1830 1850 1870 1890
A. De Morgan (1806 1871)
G. Boole (1815 1864)
J.S. Mill (1806 1873)

C. Dodgson (L Carroll) (1832 1898)
JEVONS (1835 1882) - d -

Figure 1: British logicians period. Jevons' time devoted to his machine is circled.

between Jevons' work and automata formalization. The only relations between
Jevons' work and automata appear in Shepherdson's paper [19]. Unfortunately,
after saying And the key of the success of the whole endeavour was the discovery of
a 'context free' algorithm which allowed the input proposition to be processed from
left to right one symbol at a time, the author did not explore in detail this 'context
free algorithm'. He could certainly have discovered that it is in fact simpler than
context free: no stack is used in this mechanical machine. However the paper is
of great interest to us: Shepherdson describes the relations between the machine
and the theory of Jevons, and he gives the drawings of the machine. A hardware
implementation of this automaton by a V.L.S.I circuit had been studied in [2]. The
present paper extends the presentation of [3].

In this paper we propose a description of Jevons' work in the framework of
formal languages and automata. We shall see that Jevons can be considered as
the inventor of Finite State transducers and evaluators. He also invented an an-
cestor in parallelism: input data are distributed (with modifications) to different
"processors" running the same evaluation process, some kind of Single Instruction
Multiple Data.

The paper is organized as follows: the first part describes a set of logical ex-
pressions. They constitute Jevons' formal language. The process of recognition is
also described. The evaluation of this language is described in the second part. It
is based on the Finite State paradigm. This part presents our technique and the
technique used by Jevons himself to evaluate the formulas. It will then be possible
in the third part to show that Jevons' evaluation, completed by syntactic analysis
of formulas, meets our expectations. We shall give some details about the method
used to obtain evaluation, based on composition of automata.

In the paper some quotations from Jevons' presentation [14] will appear in this
form. The number is the reference of the paragraph in the original text.

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 667

1 Jevons' Language

1.1 Pseudo-natural Language
Jevons dealt with logical formulas organized as

iron is metal AND metal is not-wood

The goal being obviously to deduce that

iron is not.wood

If we maintain Jevons' terminology, in the sentence iron is metal iron is a "sub-
ject", is is the "copula" and metal is an "attribute". The copula is obviously an
implication.

He also allowed disjunctions of conjunctions both in the subject part and in the
attribute part. This conjunction is denoted by and. Disjunction is denoted by or.

Jevons' language contained conjunctions of sentences. This conjunction is de-
noted by AND.

He could then write formulas like

iron and heavy is metal AND heavy or metal is not-wood AND wood is not-metal or
not-iron

1.2 Formal Language Implemented by Jevons
In his formal language, Jevons used four variables A, B, C and D, and their respec-
tive complements a, b, c and d instead of natural language names (iron, metal,..)
so the previous sentences become

A is B AND B is d

Obviously, the conclusion remains :

A is d

Jevons also made explicit the distinction between a variable appearing in an at-
tribute part or in a subject part. Conjunctions of variables were denoted by simple
concatenation, where

A sD sb s

simply denotes "A and D and not B" when this appears in a subject.
Similarly A aD ab a appears in an attribute.
The disjunction was the inclusive OR. Let us remember that Boole used at this

time the exclusive OR and that he and Jevons exchanged arguments about this
choice. The generalization of inclusive OR is also a contribution from Jevons. The
disjunction had also the distinction between subject and attribute giving + s and
+ o -

The conjunction between sentences was an AND and was written as a "Full-
Stop" . This AND is syntactically different from the and between variables.

668 Paul Amblard

The language of correct expressions is described by Jevons but he did not give
any formal description of it. Formal grammars were only invented 80 years later.
Similarly automata were not already known with the contemporary meaning. The
word already existed in Homer's Iliad (ch. 5, v. 749 and ch. 2, v. 408) but the reality
is not the same. It refers to things (The gates of heavens) or people (Menelas)
moving by themselves.

The photo of the keyboard on Jevons' machine is available from the website of
the Museum of the History of Science in Oxford. Due to its aspect, many descrip-
tions present it as the "Logical Piano" (www.mhs.ox.ac.uk/images/index.htm
then search for Jevons).

36
The key board of the instrument is shown in fig. [..], where are seen two sets of
term or letter keys, marked A, a, B, b, C, c, D, d, separated by a key marked
COPULA—Is. The letter keys on the left belong to the subject of a proposition,
those on the right to the predicate, and on either side just beyond the letter keys
is a Conjunction key, appropriated to the disjunctive conjunction or, according as
it occurs in the subject or predicate. The last key on the right hand is marked
FULL STOP, and is to be pressed at the end of each proposition, where the full
stop is properly placed. On the extreme left, lastly, is a key marked FINIS, which
is used to terminate one problem and prepare the machine for a new one.

Example and transcription of Jevons' language in this paper

"ASDS ORs aaCs is c0B0 Full-Stop B s is DA ORa A ac a Full-Stop" represent the for-
mula nowadays written in standard logic as (AAD V aAC => cAB) A (B => D V AAc)
(We could also write -> A instead of a). In this paper we shall use the following
form : ASDS asCs caBa • Bs => Da +a Aaca •.

We take the conventions

, Q>S 1 Bg) J C s , Cs, Ds, ds are the variables in a subject part,
Aa, aa, Ba, ba, Ca, c0, Da, da are the variables in an attribute part,
+ 3 and + a are the disjunctions, in subject and attribute part,
=> is the IMPLIES named "is" by Jevons,
• is the AND between sentences named "Full-stop" by Jevons.

Jevons added a key Finis which was simply a "reset" key. We do not use it because
it simply forces the machine into the initial state.

Jevons' language can then be described by the grammar of figure 2. The vo-
cabulary is Vr-

V T = {As, a3, Bs, bs, Cs, cs, Ds, ds, +5, Aa, aa, Ba, ba, Ca, ca, Da, da, +a, • }

The grammar is described by noting that a problem is a sentence or a sentence
followed by a problem, a sentence is a subject followed by an attribute, and so
on. In the grammar, we use Vars (resp. Vara) for any variable in a subject (resp.
attribute).

http://www.mhs.ox.ac.uk/images/index.htm

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 669

Problem —> Sentence / Sentence Problem
Sentence - > Subject => Attribute •
Subject —» Product^ / Products +s Subject

Attribute —» Producta / Producta + a Attribute
Products -> Vars / Vars Products
Producta —> Vara / Vara Producta

Figure 2: Grammar of Jevons' language

Another form of grammar is as follows :
Intermediate vocabulary is Vjv = { J, K, L, M, N }. The axiom is J. The rules

are :

J Vars K
K —> Var5 K / + s J / => L
L -> Vara M
M -> Vara M / + a L / . N
N - » Var, K / e

Let us note, as a comment, that a variable can be repeated any number of
times in a product without changing the meaning. We could then think about an
asynchronous automaton as in ([13]) but this property is not true for other symbols.
We should have to admit "strange" expressions such as l s =>• => 0a

Another comment is about redundancy between the indication subject-attribute
and the correct alternation of the separators • and

The finite state recognizer of the language is represented by Automaton SA in
figure 3.

2 Evaluation of Formulas

The main contribution of Jevons concerns evaluation of the aforesaid logical formu-
las. His method was obviously not explicitely based on Finite State Transducers,
but, as we shall see, all the ideas were already present. His method was based on
two levels: the first one consists of the evaluation of a formula containing variables
by implementing several evaluations of formulas containing only constants (true 1,
false 0). The second level is indeed a Finite State Evaluation process. The combi-
nation of the two levels could be described as a Single Instruction Multiple Data
machine.

670 Paul Amblard

Figure 3: SA : Syntax Analyser. Recognition of Jevons' formulas. J is initial state,
N is final state. The "dead" state is hidden. All transitions not described lead to
this hidden state.

2.1 From Variables to Constants
Jevons considered evaluation of formulas with 4 logical variables A, B, C, D. To
perform this evaluation, he considered 16 situations, corresponding to the 16 lines
of a (nowadays) classic truth table. Truth tables were already known in 1870, in
some forms, mainly presented by Leibniz. Jevons used truth tables under the name
of logical abecedarium.

20
Problems involving four distinct terms would similarly require a series of sixteen
conceivable combinations, and if five or six terms enter, there will be thirty-two
or sixty-four of such combinations. These series of combinations appear to hold a

o o
position in logical science at least as important as that of the multiplication table
in arithmetic or the coefficients of the binomial theorem in the higher parts of
mathematics. I propose to call any such complete series of combinations a Logical
Abecedarium...

To evaluate a formula with N variables, Jevons simply evaluates 2N formulas
with constants. Each individual evaluator is labelled by a name representing a line
in the truth table. Line ABCD represents the line where both A, B, C, D are true,
line AbCd represents the line where A and C are true and B and D are false, and
so on.

Jevons designed his machine with such a mechanism that evaluation of

ASDS +3 a3C3 =$> caBa • B3 => Da +a Aaca •

is implemented by evaluating

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 671

l s l s + 3 O s l a => 0 o l a • l s => l a + a l o 0 o • o n line A B C D
1S0S 0S1S =» 0ala • lg => 0o +a lo0a • on line ABCd
l s l s + s OsOs l o l o • Is => la + a l a U • On line A B c D

and so on.
The fact that these 16 evaluations could be done in parallel was more obvious at
that time. Jevons was not disturbed by the sequential activities scheme introduced
by modern computers under the Von Neumann paradigm.

The Logical Abacus was devised [..] and was constructed by placing the combi-
nations of the abecedarium upon separate moveable slips of wood, which can

o
then be easily classified, selected and arranged according to the conditions of the
problem.

The mechanism moving the different slips of wood was slightly different for each
line of the Abecedarium. So we see that the standard problem SAT, known to be
NP-coniplete, was first solved by a system responding in constant time (in fact in
time 0, the answer is given immediately at the end of the formula) but exponential
in number of processors.

In Jevons' machine, however, the energy for activating the 16 evaluators was
simply given by the user pressing the key of a keyboard. This energy limited the
parallelism degree of the system.

2.2 Evaluation of Formulas with Constants

From a timed sequence of inputs (actions on mechanic keys) the Jevons' machine
delivered, after each input, a result giving a temporary evaluation of the formula.
This result contains 16 evaluations, on the 16 lines. The result of one basic evalu-
ation is simply true or fa lse . By giving these 16 results, the machine gives in a
certain way the valuation which makes the formula true. At some pre-established
instants, this evaluation is in adequation with the expected result. We may choose
to consider results only after an AND (represented by a • , separating sentences).
We shall consider two techniques of evaluations: ours is based on an extension of
the syntactic acceptor, then we shall give Jevons' proposal.

2.2.1 Our evaluation, based on syntactic recognition

We can give a value to any problem by the function Val. It gives a boolean result,
based on the boolean values of the basic "Bo" atoms and the laws of boolean
algebra. "Bo" stands for a boolean, 1 or 0. The description of Val is related to the
grammar given in figure 2.

672 Paul Amblard

Figure 4: SE : Syntax-based Evaluation. States Kpl and KpO are represented twice
to make the figure easier to read. Ntr has the same successors as the initial state
Jinit. In Ntr the expression evaluates to true, in Nfa, it evaluates to f a l s e

Val (Pr) = Val (Sent) ; Val (Pr) = Val (Sent) AND Val (Pr)
Val (Sent) = NOT Val (Sub) OR Val (Attr)
Val (Sub) = Val (Pros) ; Val (Sub) = Val (Pros) OR Val (Sub)
Val (Attr) = Val (Proa) ; Val (Attr) = Val (Proa) OR Val (Attr)
Val (Pros) = Val (Bos) ; Val (Pro5) = Val (Bos) AND Val (Pros)
Val (Proa) = Val (Boa) ; Val (PrOa) = Val (Boa) AND Val (Proa)

We have extended the recognition automaton by considering the values of the
interesting booleans evaluated in the machine. They are

- the current conjunction (or Product) of variables,
- the current disjunction (or Sum) of conjunctions, (and we must remember

the subject Sum and the attribute Sum)
- these two sums give the value of the current sentence, by x => y = ->x V y

- the current value of the conjunction (product) of sentences.

A further section (3.2) will describe the process to obtain this automaton. Let

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 673

us summarize the correspondence between the states of the syntactic recognizer
(figure 3) and the states of our evaluator (figure 4) :

• In state J, either the subject is already certainly true after a first true product
in a sum (state JS1), or the subject is not already certainly true (state Jinit).

• In state K, if the subject was already true, it remains (state KSl). If the
subject is not yet true, either the current product is true (state Kpl) or the
current product is f a l s e (state KpO).

• In state L, either the subject was true (state LSI) or the sentence is already
certainly true (state Ltr). This occurs either when the subject is f a l s e or
when the subject is true and the attribute is already certainly true.

• In state M, if the sentence is already certainly true, it remains (state Mtr).
In the other case, (the subject was certainly true and the attribute is not
already certainly true), either the current product of the attribute is f a l s e
(state MpO) or this product is true (state Mpl).

• In state N, just after a the sentence is evaluated and the product of all the
sentences is generated. When it has been f a l s e once (state Nfa), it remains
false. If all the previous sentences have been true (state Ntr), evaluation
goes on.

2.2.2 Jevons' evaluation

The goal of the present paper is not to present the method proposed by Jevons
and its relations to "inductive" logic. This is done in ([6], [16] and [19]). It can
also be understood from the original text. The basics is principally that we are
interested in a prefix of expression. This prefix is a previous sentence, terminated
by a followed by a premise. Then any line in the truth table can be classified
in one of four categories with respect to the given prefix. (Line excluded by the
premise, Line included and consistent with the premise, Line inconsistent with the
premise, Line inconsistent with the previous sentence). These four situations can
be modeled by four states.

We may consider how Jevons himself would have described the four states of
one automaton (part 39) and the transitions due to action of the key "Full stop"
(part 41).

39
It is now necessary to explain that each rod has four possible positions fully
indicated in the figs. [-]. The first of these positions is the neutral or initial
position Q. The second position is that into which a rod is thrown by a subject
key ; the third position lies in the opposite direction, and is that into which a
rod is thrown by a predicate key. The fourth position lies one half inch beyond
the third. The four positions evidently correspond to the four classes into which
combinations were classified in the previous part of the paper [|

674 Paul Amblard

Figure 5: JE : Jevons' Evaluation : Reconstructed Jevons' automaton for evalua-
tion. In state PI, the formula is true, in state P4, it is fa l se . Bo is one of the
booleans, 0 or 1.

His four positions are our four states PI, P2, P3 and P4 appearing in figure 5.

41

The full-stop key being now pressed has a double effect. It acts [on the pins and
rods of the machine] These pins we may distinguish as the a and /3 pins, the a
pin being the uppermost. While a rod is in the first position the lever [] has no
effect ; but if the rod be lowered | inch into the second position, the lever will
cause the rod to return to the first position by means of the a pin ; but if the
rod be raised into the third position, the (3 pin will come into gear, and the rod
will be pushed i inch further into the fourth position.

Part 41 clearly describes a part of the transition function succ for the same
input •, and the four states.

succ(Pl, •) = PI ; succ(P2, •) = PI ; succ(P3, •) = P4 ;

From these different explanations, we could infer the 4 state machine given by
figure 5. In PI, the sentence is true. In P4, the sentence is fa l se .

It is possible to follow the evaluation according to Jevons' technique on two
tables: in these tables the initial state is PI. After a given input (first line), the
new state is given under this input (second line).

For a formula giving a true result :

03 = > 0o +„ Oa la • 0S0S + s la0a = > lQ0a •
2 2 2 2 2 2 1 2 2 1 1 2 2 2 2 1

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 675

and similarly for a f a l s e result :

~0l = > lg +g OgOg » Osla 131S = > OgOg *
2 2 2 2 2 2 1 2 2 1 1 1 1 3 3 4

3 Jevons' Evaluation Coupled with Syntactic
Recognition

Jevons did not verify the syntax of the formula entered on the keyboard. He was
probably the only user of the machine in his courses of Logic. There were probably
no syntax errors in his inputs! We have tried to compose evaluation and recognition
by computing product automata. We used two evaluators: Jevons' one, of course,
and an evaluator obtained by composing more basic evaluators.

3.1 Equivalence between two Evaluations
There are different definitions of the product automaton. We take the one of
([12], pp 134-137). The product computes the AND of the two composed automata.
When we deal with recognition, it corresponds to intersection of languages. Here
the interpretation is different, but AND is possible because the evaluator delivers a
boolean (the value of the formula) and the recognizer can also be described with
such a boolean output. If we name SA the syntactic analyser of figure 3 and JE
the Jevons' evaluator of figure 5 the product SA x JE gives SE, the automaton of
figure 4. (The correspondence between states is given by the Cartesian product of
states in figure 6).

This composition is an interesting result. We can consider it as a validation of
our syntactical evaluation method.

To enter more deeply into Jevons' technique, the reader may draw surrounding
shapes on figure 4.

- One shape labelled P3 around states JS1, KS1, MpO;
- One shape labelled PI around Jinit, Kpl, LSI, Mpl, Ntr;
- One shape labelled P2 around KpO, Ltr and Mtr.

The next section will give details about the design of SE.

3.2 Evaluation by Composition of Basic Evaluators
We have tried without success to obtain Jevons' automaton JE by composition of
more basic understandable automata. We only obtained a composition evaluating
correct formulas in the same way as Jevons' method (JE). We obtained CE our com-
posed evaluator (figure 12), JE and CE are not equivalent. The (wrong) expression
0S • does not give the same values in the two processes. If we compose them by the
Syntax Analyser SA, the products SA x JE and SA x CE are equivalents. In both
cases we obtain SE, the automaton of figure 4.

676 Paul Amblard

, . syntax
evaluation J K L M N

PI Jinit Kpl LSI Mpl Ntr
P2 KpO Ltr Mtr
P3 JS1 KS1 MpO
P4 Nfa Nfa Nfa Nfa Nfa

Figure 6: Correspondence of states between the automaton of composite Syn-
tax_Evaluation (fig. 4 SE) and the product of the Syntax Analyser (fig. 3 SA) by
the Jevons' Evaluation automaton (fig. 5 JE)

Where does CE come from ? CE is the result of composing 5 automata. The
organization of composition is given by figure 7. The composition has been com-
puted with LUSTRE environment described in the next subsection. In the same
way, the equivalences have been checked with this tool.

Automaton PROD (figure 8) is a Moore automaton, it receives all the inputs and
delivers the product's value P.

Automaton SUM (figure 9) is a Mealy automaton, it receives symbols
(+ a , + s i =>•) •) and the value P delivered by PROD. It delivers the sum of products
value S.

Automata SUBJ (figure 10) and ATTR receive symbols (=>, •) and the value S of
the sum of products. They deliver (respectively) the values Su and At of subject
and attribute part. They are Mealy automata. SUBJ takes the value of S into
account when => occurs. In a symétrie way, ATTR deals with S when • occurs.

• Automaton EXPR (figure 11) is a Mealy automaton. It receives symbols (=>, •)
and the values of Su and At. It delivers the global value Ex of Jevons' expression.

1 All these automata have two states as we could expect from boolean evaluators.

3.3 The Language Lustre and the Environment

The language LUSTRE has been designed in the '80s for real-time programming [10,
11]. The present description contains only some basic points useful to understand
the composition made with the automata. The same approach is used for the
environment. The use of LUSTRE in education is described in [4].

3.3 .1 B o o l e a n LUSTRE

Boolean LUSTRE has only one type : boolean. The boolean operations (not, and,
or and xor) are defined in boolean LUSTRE. Two timed operators (pre and — >)
allow us to deal with unitary delay and initialization. The synchronous hypothesis
is that the automata update their states at the same clock ticks.

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 677

Figure 7: Composition of 5 basic automata to obtain an evaluator. It is inspired
by the organization of a sequential circuit. Each input symbol is considered as a
"wire", true or false at any instant. One and only one of these wires is true at any
instant. These combinations represent the occurences of one symbol. P, S, Su and
At are internal variables. The circuit would be a synchronous one, the clock being
common.

Figure 8: PROD : Evaluation of products. In state Prl, the product P is 1, in state
PrO, the value is 0. The product is reset at 1 when a separator (=>, +) occurs
and this product becomes 0 only when a 0 boolean occurs.

678 Paul Amblard

P.{=> or • or + 4 , O) / S = 0 + s,a/S = 1

() P• +.,a /S = 1

^ S m o V ^ " ^

(\ = W S = 1

P.(=> or .) / S = 1

Figure 9: SUM : Evaluation of sum S, from the values of the products. P stands
for (Product is 1) and P for (Product is 0). Booleans are not taken into account,
updating only occurs on separator occurences.

other/5u = l other/Su = 0

Q ^ .S/Su = 0

.S/Su = 1

Figure 10: SUBJ : Evaluation of subjects Su from the value of the sum S. Updating
occurs when => occurs. Subject's value then receives the value of the sum S.

other any symbol

Figure 11: EXPR : Evaluation of a Jevons' expression Ex from Subject and At-
tribute's values. An expression remains true until occurence of a • when the
current implication is fa lse , i.e. the current subject Su is true and the current
attribute At is fa lse .

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 679

Bos a , + s ,o

always

Figure 12: CE : Composed Evaluation. Evaluator obtained by combining PROD,
SUM, SUB J, ATTR, EXPR. In state V4, the expression is conclusively false. In states
VI and V6, it is true.

3.3.2 Basic descriptions of automata

Boolean LUSTRE makes it possible to describe finite automata in many different
styles :

• The automaton can simply be described by a classical set of states, a descrip-
tion of the transition function and the description of the output function.
This automaton may be deterministic or not, complete or not.

• We must introduce a comment about our mode of description of language
recognizers. The only type being boolean, we cannot have a vocabulary
based on characters. We solve this problem by introducing a set of boolean
inputs such as {a, b, c, d}. We need to avoid the problem of 16 possible values
of these four booleans. We use assert constructs to constrain one and only
one amongst {a, b, c, d} to be true at any time.

• The general use of automata in formal languages studies distinguishes accep-
tor states and not_acceptor ones. This is obviously equivalent to having a
boolean output defined in {0, 1} for each state. If we deal with more general
automata, with not-simply boolean outputs, we may use the same approach.
We then declare as many booleans as useful outputs.

• If the global automaton is not known, we can give properties of the automaton.
This method is powerful but no systematic rules can be given. We may

680 Paul Amblard

experiment if the properties are adequate or not. Example of property is For
any transition due to input symbol X, a state and its successor never give the
same output. Experimentations could be simulation or formal proofs.

• When we deal with the synchronous sequential digital circuits, the description
can easily be given in boolean LUSTRE. Logical gates are described by the
operators. If we want to be close to the implementation we may describe
nand or nor gates. Flip-flops are described by the timed operators.

• A systematic method of description of a regular grammar exists in boolean
LUSTRE but there are restrictions on the form of the grammar: if A and B are
non-terminal symbols and if x is a terminal, rules must be expressed in one
of the two forms where we recognize initialization and unitary delay: A —» e
or A —» B . x

• A translator exists from a language allowing to describe regular expressions.
This tool is described in [18].

3.3.3 Combinations of automata

Boolean LUSTRE allows to combine objects as it is the case in general LUSTRE.
Different combinations of objects are possible :

• A very common case is that two automata Al , A2 are defined by LUSTRE
nodes N1, N2 with the same inputs (inp). Both boolean LUSTRE nodes deliver
one boolean output. A boolean operator OP allows us to define a new node
as
N3 (inp) = N1 (inp) OP N2 (inp). It creates a composed automaton A3. The
language L3 recognized by A3 is a function of languages LI and L2 recognized
by Al and A2. It also corresponds to the introduction of a logical gate on
the two output signals of the two circuits.
Correspondence between gates and language operations are obvious: not gate
gives the complementary language, and gate gives the intersection of lan-
guages. ([12], p 135).
not xor gate is particular. If two automata have always the same output, the
composed automaton delivers always the output true. This corresponds to
computing the equivalence of two automata! It is used to prove equivalence
between two descriptions of automata that are assumed to be equivalent.
(Similarly a => operator is used to test inclusion of languages.)

• It is also possible to do cross-coupling of two nodes: some inputs of a node
are outputs of the other one or vice-versa. It is very common in circuits. We
must not include combinational loops.

• Any serial or parallel composition of automata may be described. An example
appears in figure 7.

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 681

Figure 13: Simulation in Lustre. Zs represents 0S, imp represents pr is the
current value of the product. The input sequence begins with 0S => l a •. The
time slices are represented on the bottom line.

3.3.4 Environment and uses

The environment is available ([22]) under Solaris or Linux. Three tools are used in
our work. ,

• The LUSTRE simulator allows to visualize the behaviour of the given object.
The results are given in textual form or in timing diagrams form. This is par-
ticularly standard in digital circuits simulation. Figure 13 shows a simulation
result of an evaluation. One character (represented by a boolean, true when
occuring) is represented by one line of the oscilloscope.

• The LUSTRE combiner jninimizer computes the finite state machine described
in input. The result of this compilation is a full definition: (list of states, list
of all transitions). The result automaton is complete, deterministic and min-
imal. Obviously if we described a complete deterministic minimal automaton

682 •Pau] Amblard

as input, the compilation is only a state renaming ! It is particularly useful
in composing automata. Obviously we must remain aware that the combina-
torial explosion is possible.

• We use the Lesar tool in a particular case: for automata with only one boolean
output, such as recognizers, Lesar computes if this output is always true. If
it is not the case, Lesar gives a counterexample. This counterexample is very
interesting when we test automata equivalence.

4 Conclusions
Obviously the contribution made by Jevons was an important step in the mecha-
nization of Logic. The first machine devoted to artificial intelligence was his. The
fact that syntactical aspects were not covered is easy to understand. But it is very
pleasant to discover, by simple techniques, that his method could have been cou-
pled with Finite State recognition. The present paper introduced the details about
possibilities of such a composition with LUSTRE environment.

Part 46 of the original text opens a new problem: due to mechanical implemen-
tation, it was possible to press several keys simultaneously. Do we have to change
automata theory to take such a feature into account?

46
When several of the letter keys on the subject side only or the predicate side only
are pressed in succession, the effect is to select the combinations possessing all the
letters marked on the keys. Thus if the keys A, B, C be pressed there will remain
in the abecedarium only the combinations A B C D and A B C d ; .and if the key o
D be now pressed, the latter combination will disappear, and A B C D will alone
remain. The effect will be exactly the same whatever the order in which the keys
are pressed, and if they be pressed simultaneously there will be no difference in
the result.

Acknowledgements
The drawing of automata used Latex packages made by Paul Gastin. The contri-
bution of Lustre developers was obviously necessary.

References
[1] S.G. Akl, Professor Jevons and his Logical Machine, The Australian Computer

Bulletin, June 1981, pp 28-30.

[2] P. Amblard, A VLSI Implementation of the Earliest Specialized Logical Com-
puter : the Jevons' Machine, 4th International Workshop Mixed Design of in-
tegrated circuits and systems, Poznan, Poland, Mixdes97, June 1997, pp 55-66.

Finite State Evaluation of Logical Formulas : Jevons' Approach (1870) and ... 683

[3] P. Amblard, The Earliest Formal Language and its Associated Finite State Eval-
uation Automaton : Jevons' Machine, 11th International conference Automata
and Formal Languages, Dobogókő, Hungary, May 2005, pp 59-68.

[4] P. Amblard Using Lustre in Practical Educational Activities : Digital Circuits
Design, Formal Languages, ETAPS Workshop : Synchronous Language Appli-
cations Programming, SLAP 05 Edinburgh, April 2005.

[5] G.H. Buck, S.M. Munka, W. Stanley Jevons, Allan Marquand, and the Origin
of Digital Computing, IEEE Annals of the History of Computing, Vol 21, No 4,
October-December 1999, pp 21-27.

[6] S.N. Burris, Contributions of the Logicians, part 1 From Richard Whately to
William Stanley Jevons, on-line : www.thoralf.uwaterloo.ca/

[7] I. Casltes, Vice President's note, Newsletter of the Academy of
the Social Sciences in Australia, Vol 17, No 3, 1998, pp 5-12; .
www.assa.edu.au/publications/Dialogue/dial31998.pdf

[8] M. Gardner, Logic Machines, Scientific American, March 1952, pp 68-73.

[9] M. Gardner, Logic Machines and Diagrams, McGraw-hill 1958, and The
Harvester Press, Brighton, 1983

[10] N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer
Academic Pub., 1993

[11] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, The Synchronous Data-
flow Programming Language Lustre, Proceedings of the IEEE, September 1991,
pp 1305-1320.

[12] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata The-
ory, Languages and Computation, Addison Wesley, 2001.

[13] B. Imreh, Some Remarks on Asynchronous Automata, Conference DLT 2002,
Lect. Notes in Comp. Science No 2450, pp 290-296.

[14] William Stanley Jevons, On the Mechanical Performance of Inference, Philo-
sophical Transactions of the Royal Society, London, 1870, pp 497-518. Available
on-line : tima-cmp.imag.fr/~amblard/JEVONS/jevons-public.pdf

[15] W. S. Jevons, Papers and Correspondence, (ed : R.D. Collison Black and
Rosamond Kőnekamp), Vol 3, (correspondence 1863-1872), MacMillan Press,
(London), 1977, pp 69-76.

[16] W. Mays, D. P. Henry, Jevons and Logic, Mind, Vol LXII, 1953, T. Nelson &
sons, Edinburgh, pp 484-505.

[17] E. F. Moore, Gedanken-experiments on Sequential Machines in Automata
studies, (Ed : C. Shannon, J. McCarthy) Princeton University Press, 1956,
pp 129-153.

http://www.thoralf.uwaterloo.ca/
http://www.assa.edu.au/publications/Dialogue/dial31998.pdf

684 Paul Amblard

[18] P. Raymond, Recognizing Regular Expressions by means of Dataflows Net-
works, 23rd International Colloquium on Automata, Languages, and Program-
ming, (ICALP'96) Paderborn, Germany, July 1996, LNCS 1099.

[19] J.C. Shepherdson, W. S. Jevons: his Logical Machine and Work on Induction
and Boolean Algebra, Machine Intelligence 15, Oxford, July 1995, pp 489-505.

[20] Dictionnary of National Biography, vol XXIX, Smith, Elder and co, Lon-
don, 1892, pp 374-378.

[21] Sequential Machines, Selected papers, Ed : E. F. Moore, Addison-
Wesley, 1964.

[22] Web-site: www-verimag.imag.fr/SYNCHRONE

Acta Cybernetica 17 (2006) 685-700.

Parallel Communicating Watson-Crick Automata
Systems

Elena Czeizler* and Eugen Czeizler*

Abstract

Watson-Crick automata are finite state automata working on double-
stranded tapes, introduced to investigate the potential of DNA molecules
for computing. In this paper we introduce the concept of parallel communi-
cating Watson-Crick automata systems. It consists of several Watson-Crick
finite automata parsing independently the same input and exchanging infor-
mation on request, by communicating states to each other. We investigate
the computational power of these systems and prove that they are more pow-
erful than classical Watson-Crick finite automata, but still accepting at most
context-sensitive languages. Moreover, if the complementarity relation is in-
jective, then we obtain that this inclusion is strict. For the general case, we
also give some closure properties, as well as a characterization of recursively
enumerable languages based on these systems.

1 Introduction
Watson-Crick finite automata, introduced in [5], are a counterpart of finite au-
tomata working on double stranded sequences. As suggested by the name, these
automata are mainly inspired from molecular computing and are intended as a
formalization of DNA manipulation. The two strands of the input are separately
scanned from left to right by read only heads controlled by a common state. The
characters on the corresponding positions from the two strands are linked by a com-
plementarity relation, inspired from the Watson-Crick complementarity of DNA nu-
cleotides. Several variants of these automata were investigated in [11, 12, 13, 15],
see also [14] for a comprehensive presentation.

Distributed computations play a major role in modern computer science; mul-
tiprocessor computers, distributed data bases, computer networks, etc., introduced
notions such as distribution, parallelism, and communication. The theory of gram-
mar and automata systems was developed as a mathematical model for distributed
and parallel computations.

'Department of Mathematics, University of Turku and Turku Centre for Computer Science,
Turku 20520, Finland, E-mail: e lena .cze iz ler f lutu . f i , euczei8utu.f i

685

686. Elena Czeizler and Eugen Czeizler

An automata system is a set of automata working together on the same input,
according to a well specified protocol, in order to accept one language. There are
two basic classes of automata systems: sequential and parallel.

The sequential class is represented by cooperating distributed automata systems.
Here, all components work on a common input tape and at each step only one
automaton is active. An example of such systems is the cooperating distributed
push-doum automata system, introduced and studied in [3].

A parallel communicating automata system is a construct consisting of several
automata working synchronously, each on its own input tape, and communicating
on request. Special query states are provided, each of them pointing to exactly
one component of the system. When a component i of the system reaches a query
state Kj, the current state of the component j will be communicated to i and the
computation continues. There are two important classifications of parallel commu-
nicating systems concerning the communication graph and the returning feature.
An automata system is called centralized if only one component, the master, may in-
troduce query states, and non-centralized otherwise. An automata system is called
returning if after communicating, a component resumes the computation from its
initial state, and non-returning if it remains in its current state. There are several
papers in the literature investigating this class of systems. For example, parallel
communicating push-down automata systems communicating by stacks were in-
troduced in [2] and parallel communicating automata systems communicating by
states were introduced in [10], see also [9] for a survey.

Cooperating distributed Watson-Crick automata systems were investigated in
[1], where it was proved that distribution does not bring any change in the ac-
ceptance power of Watson-Crick finite automata, except for the case of one state
automata, i.e. stateless Watson-Crick automata.

In this paper we introduce the notion of parallel communicating Watson-Crick
automata system as a set of Watson-Crick finite automata working independently
on their own input tape and communicating states on request. We consider only
non-centralized and non-returning systems. Although every component has its own
double-stranded tape, the input is the same on all of them. At the beginning, all
components are in their initial states and start parsing synchronously the input
from left to right. The communication between components is done using query
states as described before for general parallel communicating automata systems.
An input is accepted by the system if all components are in final states when they
completely parsed the tape. Moreover, if one of thfe'components stops Before the
others, the system halts and rejects the input. Hence, in order to accept, the
components either finish at the same time or wait for each other at the end of the
computation.

Combining the notions of Watson-Crick automata and parallel communicating
systems comes naturally due to the new developments in DNA manipulation tech-
niques. While classical Watson-Crick finite automata use just one of the essential
features of DNA, i.e. the Watson-Crick complementarity, the systems introduced
here open new possibilities in exploiting also the massive parallelism of DNA com-
putations.

Parallel Communicating Watson-Crick Automata Systems 687

The structure of the paper is as follows. In Section 2 we fix our terminology
and introduce some basic notions and results. Section 3 is devoted to the com-
putational power of these systems. We start by giving an example of a parallel
communicating Watson-Crick automata system proving that the accepting power
is enhanced. We also prove that the languages accepted by these systems are at
most context-sensitive. Moreover, if the complementarity relation is injective, as in
the case of DNA nucleotides, then one letter-languages accepted by these systems
are regular. In Section 4 we investigate some closure properties. We also give a
characterization of recursively enumerable languages based on these systems. In
Section 5 we present some open problems.

2 Preliminaries

In this section we give basic definitions and some already known results we need
later on. We start by considering the classical Watson-Crick finite automata intro-
duced in [5] and then define the parallel communicating version. We assume that
the reader is familiar with the fundamental concepts from formal languages and
automata theory. For more details we refer to [7], [14], and [16].

For a finite set Q, let card(Q) and 2® denote the cardinality and the power set
of Q, respectively. Let V be a finite alphabet. We denote by V* the set of all finite
words over V, by A the empty word, and by V+ the set of all nonempty finite words
over V, V+ — V*\{A}. For w € V* we denote by the length of w.

Given two alphabets V and U, we define a morphism as a function h : V U*,
extended to h : V* —> U* by h(A) = A and h(w\w2) = h(w\)h(w2), for W\,W2 € V*.
If h(a) ^ A for each a G V, then we say that h is a A-free morphism. We define
a projection associated to the alphabet V as the morphism pry : (V U U)* —* V*
such that pry (a) = a for all a € V and pry (a) = A otherwise. For two morphisms
hi, h,2 • V* —> U*, we define the equality set of hi, h.2 as:

EQ(hu h2) = {w£r| /iiH = h2(w)}.

Let now p C V x V be a symmetric relation, called the Watson-Crick comple-
mentarity relation on V. As suggested by the name, this relation is biologically
inspired by the Watson-Crick complementarity of nucleotides in the double stranded
DNA molecule. We say that p is injective if any a e V has a unique complemen-
tary symbol b £ V with (a, b) € p. In accordance with the representation of DNA

fV*\
molecules, viewed as two strings written one over the other, we write I J instead

of V* x V* and an element (1^1,^2) £ V* x V* as (W l].
\w2J

'VI
We denote

WKP(V) is ca]
V

= {[J] I a, b € V, (a, b) £ p} and WKP(V) . The set

led the Watson-Crick domain associated to V and p. An element

688. Elena Czeizler and Eugen Czeizler

ai" 0.2 a„
V M. bn.

W2

€ WKP(V) can be also written in a more compact form as

, where wi = aia2 • • • an and W2 = • • bn.

(w 1
The essential difference between [) and

KW2
w\
W2

W\
is that (*) is just an

w2,
w i
tl>2

implies that the strings alternative notation for the pair (wi,w2), whereas
w\ and W2 have the same length and the corresponding letters are connected by
the complementarity relation.

A Watson-Crick finite automaton is a 6-tuple M = (V, p,Q,qo,F,5), where:

• V is the (input) alphabet,

• p C.V xV is the complementarity relation,

• Q is a finite set of states,

• qo € Q is the initial state,

• F C Q is the set of final states,

• S : Q x ^ ^ —> is a mapping, called the transition function, such that

(W l)) ® o n ly f°r finitely many triples (q,wi,w2) & Q x V* x V*.
\w2 J

We can replace the transition function with rewriting rules, by using

s' instead of s' e S(s, (Wl)).
\w2J

Wl
W2

Wl
W2

We define transitions in a Watson-Crick finite automaton as follows. For
Vi

we write (
^lUi^i
V2U2W2

G WKP{V) and s,s' € Q

V1 s I 1 1 (W l
,v2j \U2j 1^2

Ui

V l T 1 W ™ 1
V2) \U2J \W2

if and only if s' 6 S(s,). If we denote by the reflexive and transitive
\u2 J

closure of =>, then the language accepted by a Watson-Crick automaton is:

L(M) = {ti>i eT| q0
Wl . * Wl

Qo =>
W2_ W2_

s, with s € F, W2£ V*,

and Wl
W2

G WKP(V)}.

Parallel Communicating Watson-Crick Automata Systems 689

Hence, a word wi is accepted by M if starting from the initial state, after parsing
the whole input we are in a final state.

Let us continue now by defining parallel communicating Watson- Crick automata
systems.

A parallel communicating Watson-Crick automata system of degree n, denoted
by PCWK(n), is an (n + 3)-tuple

A = (V,p,Ai,A2,...,An;K)',

where

• V is the input alphabet;

• p is the complementarity relation;

• Ai — (V,p,Qi,qi,Fi,6i), 1 < i < n, are Watson-Crick finite automata, where
the sets Qi are not necessarily disjoint;

• K = {K\,K2,.. -, Kn) C U"= 1<5i is the set of query states.

The automata A\,A2,... ,An are called the components of the system A. Note
that any Watson-Crick finite automaton can be viewed as a parallel communicating
Watson-Crick automata system of degree 1.

A configuration of a parallel communicating Watson-Crick automata system is
a 2n-tuple (si, I 1] , $2, I I , . . . , sm f 1 " I) where Si is the current state of the

\vij \v2J \vnJ

component i and (1 I is the part of the input word which has not been read yet
\viJ

by the component i, for all 1 < i < n. We define a binary relation h on the set of
all configurations by setting

if and only if one of the following two conditions holds:

. tfn{SllS2,...,sn}=0. - Gi) ("0*811(1 r<e5i(s< 'Gi)) '
i < n;

for all 1 < i < n such that Si = Kji and Sji £ K we have r

for all the other 1 < I < n we have r; = si. In this case (U
\v

all 1 < i < n.

= Sjit whereas

for

If we denote by h* the reflexive and transitive closure of (-, then the language
recognized by a parallel communicating Watson-Crick automata system A is

690. Elena Czeizler and Eugen Czeizler

defined as:

L(A) = {«» ! G V * | (Q l ,

(« l .

W\ Wi Wi
,92, , • • -, 9nj W2_ .w2. W2

A' A' A'
A ,S2, A

,..., sn,
A), s» G Fi, 1 < i < n}.

Intuitively, the language accepted by such a system consists of all words w\ such
W\ that in every component we reach a final state after reading all input
w 2

In the next section we study the connection between the family of languages
accepted by parallel communicating Watson-Crick automata systems and the class
of context-sensitive languages. For doing this we use a special type of automata
characterizing this class of languages.

Linearly bounded automata are a special class of Turing machines which have
two extra symbols in their input alphabet, say # and $, called the left and right
end-markers, respectively. The automaton can neither overwrite these markers nor
move left or right from them. Hence, this type of automata uses only a limited
amount of tape. Similarly, k-head linearly bounded automata are a special class of
fc-tape Turing machines which use only limited amount of each tape. On each step
the k heads move independently, according to the state of the automaton and the
symbol read on each individual tape.

The following two results are well known in the literature, see for example [6]
and [7] .

Theorem 1. L C V* is a context-sensitive language if and only if it is accepted
by a linearly bounded automaton.

We say that an automaton A is of space complexity S(n) if, for every accepted
input of length n there is some accepting computation in which at most S(n) tape-
cells are parsed by any read-write head.

Theorem 2. If a language L is accepted by a k-tape Turing machine of space
complexity S(n), then L is accepted by some one-tape Turing machine of the same
space compleocity.

The following lemma comes as a direct consequence of the previous two results
and will be used in. our future considerations.

Lemma 3. A language L is context-sensitive if and only if it is accepted by a
k-head linearly bounded automaton.

3 Computational power
Let us start by giving an example of a language accepted by a parallel communi-
cating Watson-Crick automata system of degree 3.

Parallel Communicating Watson-Crick Automata Systems 691

5liqu{t)
¿1(7-1, (f)

¿1(7-2, (f)

*<r „ Q ,

¿1(7-3,

¿1(7-4, Q)

¿ l f a ,

¿1(7-5,

¿ i (/ i ,

¿2(92, (*)) = 92 ¿3(93, (*)) = 93
¿2(92,)) = Pi
¿2(pi, (^ J) = Pl
¿2(Pl, J) =P2
¿2 (P2 , Q j) = P 2 ¿3(S2, = S2

¿2 (P2 , # b P3

¿2 (P3 , (^)) = P 4

¿2(P4, (^ J) = P 4

¿ 2 (/ 2 , (^)) = /2

¿3(S2,

¿2ÎP3, (*)) = P 3 ¿ 3 ^ 3 ,

= 91

= 7-1

= 7-1

= 7-2

~ 7*2

= 7-3

= 7-3

= 7-4

= 7-4

= 7*5

= 7-5

= /l
= f l

with x £ {a, 6}, y, z £ {a, £>,.#, A}

Table 1: The transition functions of Example 4

¿3(93, ^ J) = «1
s i

S2

S3

S3

<53(s3) (^ J) = / 3

S3(h,(yz)) = fz

Example 4. Let .4 = ({a, b, #}, p, -<4i, A2, A3,0), where p is the identity relation,
i.e., p = {(a,a), (b, b), (# , #) } , = ({a, b, #},p, {qurur2,r3,r4, r5, /1} , , { / x } ,
¿1), ^2 = ({a , 6, # } ,P , {92,Pi,P2',P3,P4,/2},92,{/2},52), and A3 = ({a,6,
{ 9 3 , si, s2, S 3 , / 3 } , (73 , { / 3 } , ¿ 3) . The transition functions of the three components
are defined in Table 1.

The system works as follows. The first component verifies that the input is of

the form „ „ „ „ „ with Wi £ {a, b}+ for all 1 < i < 6, and
_ 101 #W2 #W3 #W4 #W5 #W6 J

moreover = wq. Simultaneously the second and the third component impose
the constraints w2 = 105 and w3 — w^, respectively. Thus, the language accepted
by A is L = {wi#w2#w3#w3#w2#wi | w!,w2,w3 £ {a, 6}*}.

On the other hand, it was proved in [18] that the language L cannot be accepted
by a 2-head finite automaton. Since Watson-Crick automata are equivalent with
2-head finite automata, see [14], we have the following result.

Theorem 5. Parallel communicating Watson-Crick automata systems are more
powerful than Watson-Crick finite automata.

692. Elena Czeizler and Eugen Czeizler

= f n r a n v i . i i . 2 f V = flo for anv x. v G V

Table 2: The transition functions of Example 6

Next, let us illustrate the communication between components by considering a
parallel communicating Watson-Crick automata system accepting the non context-
free language L = {ww# \ w € V+}, where # ^ V and |V| > 2.

Example 6. Let A = (V U { # } , p, Ai,A2, K) be a parallel communicating
Watson-Crick automata system where p = { (a,a) | a G V } U { (# , #) } ,
K = {KUK2}, A! = (V U {# } ,P ,Qi ,91 , {?/,} ,(5i), and A2 = (V U { # } , p ,
Q2,92, { i / 2 }>h) - The sets of states are Qi = {91,93,9/1,-^2} U {9j | x € V}
and Q2 = {92,93,9/1,9/2,^1} U {qx | x € V} , while the transition functions are
defined in Table 2.

The first component finds the middle of the input word, by placing the two
reading heads one at the end and the other in the middle of the input word. In
parallel, to preserve the synchronization, the second component moves one reading
head to the end of the input while the other one remains unmoved. At the same
time we also check that the input has odd length. Then, by using communication
between components we check letter by letter that the input is indeed of the form

A natural question regarding these systems is the relation between the languages
they accept and the family of context-sensitive languages.

We first need a generalization of a result already known for Watson-Crick finite
automata, see [14].

Lemma 7. Every parallel communicating Watson-Crick automata system is equi-
valent with a system where in every component we have only rules of the form

Proof. Let A = (V, p, A\,..., An, K) be a parallel communicating Watson-Crick
automata system with n components, where Ai = (V, p, Qi,qi,Fi,6i) for all 1 <
i < n. Let us first index by unique labels all transitions from all components and

Parallel Communicating Watson-Crick Automata Systems 693

define the constant m = maxttwA + I1U2I I s I 1) —» [1) s' is a production in
\W2j \w2J

one of the components of the system}.
We construct a parallel communicating Watson-Crick automata system A' =

(V,p,A[,...,A'n,K), where A[= (V, p, Q[, qt, Fi,ô[) are obtained from Ai as fol-
lows.

(W\ .. .wv\ I W\ ... wp \ . . , , , ., , • Lets ! — I • , . s , with wi , . . . ,wp ,w\,. . . ,w„, G V be a
^[...w'^J y p

transition rule from Ai, indexed with the unique label j. Then, in A!i we introduce
m new states rj , r^,..., r^ and the following transitions:

- (T) —

Thus, any transition from Ai is replaced in A!i by m + 1 transitions of the form
requested by the lemma. Also, since this construction preserves the synchronization
between components, the system A' recognizes the same language as A but with
linear time delay. •

Theorem 8. The family of languages accepted by parallel communicating Watson-
Crick automata systems is included in the family of context-sensitive languages.

Proof. We can assume without loss of generality, that all components of the par-
allel communicating Watson-Crick automata system have only rules of the form
described in Lemma 7. Then, for any such system A of degree n we can construct a
2n-tape linearly bounded automaton M which recognizes the same language. Each
2p + i tape, with 0 < p < n — 1 and 1 < i < 2, simulates the i-th tape of the
(p + l)-th component of A. All the states in M, except the final one, encode infor-
mation about the states of all n components of system A. At each computational
step, we read a character on each tape and either move the reading head one step
to the right or remain on the same position, according to the evolution of system A.
For query steps, we just modify the information encoded in the state, i.e., we enter
a new state in M , whereas the input and positions of the reading heads remain
unchanged. The final state of M is reached only from states encoding the infor-
mation that all components of system A are in final states and all the 2n reading
heads are positioned on the right end marker.

From this construction we obtain that automaton M. accepts the same language
as system A. Hence, from Lemma 3, we obtain that L(A) is a context-sensitive
language. •

694. Elena Czeizler and Eugen Czeizler

So far we considered only the general case where the complementarity relation
p has no restrictions, except for symmetry. However, in [17] the case of an injective
complementarity relation inspired by the real Watson-Crick complementarity of
DNA nucleotides was discussed. For the rest of this section we restrict ourselves
to this particular case. In order to investigate the computational power of these
systems, we relate them to k-head automata, as they were defined in [10].

A k-head automaton is a 6-tuple M = {k, Q, V, f, qo, F) where Q is the set of
states, V is the input alphabet, / : Q x (KU{A})'C —> 2Q is the transition function,
qo is the initial state, and F C Q is the set of final states. Any computation starts
in the initial state and with all the reading heads on the leftmost character of the
input. Then, for any transition q € f(s,ai,a2,. • • ,a,k) and all 1 < i < k, the i-th
head reads a* from the input tape and the automaton passes from state s into state
q. A word w is accepted if after finitely many moves the automaton enters a final
state, the input being completely read by all heads. In all the other cases the input
word is rejected.

Theorem 9. Any language recognized by a parallel communicating Watson-Crick
automata system of degree n, with injective complementarity relation, can be also
recognized by a 2n-head automaton.

Proof. For the clarity of the proof, we consider only systems of degree 2, whereas
the reasoning remains the same for the general case.

Let A = (V,p,AltA2,K) be a parallel communicating Watson-Crick automata
system of degree 2, accepting the language L C V*, where A\ = (V,p, Qi,qi,Fi,5i),
A2 = (V, p,Q2,q2,F2,62), and K = {Ki,K2}. Since the relation p is injective, we
can take it to be the identity relation; thus all components have on both tapes the
same word w S V*. Also, by Lemma 7 we can suppose that in every component

we have only rules of the form s (Wl) —> (Wl) s', with \w\w2\ < 1.
\w2J \w2J

Let us construct now a 4-head automaton M = (4,Q,V, f,qo, F) where Q =
Ql x Qi, qo — (91,92), F = Fi x F2, and the transition function / is as follows:

• f((p,q),wi,w2,w3,w4) = (pi,9I) whenever p,q <£ K, 6i(p, (m)) = px, and \w2J

¿ 2 (9 , (W 3)) = 9il \w4J

. f((K2,q),\,\,\,\) = (q,q)-

. f((p,K1),\,\,\,\) = (p,p).

At any step the automaton M simulates the corresponding moves of the two
Wl components of A. If the components are not in a query state and they read

\w2

and ^ respectively from the input tape, with \wiw2\ < 1 and \w2,w4\ < 1,

then in M each head reads w\,w2,w$, and W4, respectively, and it enters into the

Parallel Communicating Watson-Crick Automata Systems 695

corresponding state. Otherwise, i.e., we are in a state (K 2 , s) or (s,K\), we just
simulate the query by entering state (s, s) and leaving the input unchanged. Since
a word is accepted by M. only if it is in a final state when all the reading heads
have finished parsing the input, then w e L(A) implies w € L(M) and hence
L(A) C L(M).

Let now w be a word accepted by M.. Prom the construction of the transition
function / , each computational step in M. can be translated into a computational

run step in A when we consider the input . Moreover after the final computational
LIUJ

step, all 4 heads of M. have completely read the input and the automaton is in a final
state. This implies that at the same step both components of system A are in final
states, while their reading heads from the lower and from the upper strands have
completely parsed the input. So, we have w € L(A) and hence L(M) C L(A). •

Observation. The equivalence between Watson-Crick automata and 2-head au-
tomata is proved in [14] regardless of the structure of the complementarity relation
using a similar construction as above. In their case, the second head of the 2-head
automaton "guesses" the complement of the character read from the input tape, and
simulates the corresponding move from the Watson-Crick automaton. However, in
our proof, the injectivity of the complementarity relation plays an important role.
If the complementarity relation would not be injective, then for all positions i of
the input word, several reading heads would have to guess exactly the same com-
plement but at different time steps. However, by definition this constraint cannot
be imposed. Hence, the injectivity of the complementarity relation is a necessary
condition in Theorem 9.

It is known from [10] that fc-head automata are equivalent with parallel finite
automata systems with k components and communicating by states. Moreover, it
is proved in [8] that the languages accepted by multihead nondeterministic push-
down automata satisfy the semilinearity property. Hence, parallel finite automata
systems communicating by states accept only semilinear languages. Since any semi-
linear language over an one-letter alphabet is regular, we have the following result.

Corollary 10. Every one-letter language accepted by a parallel communicating
Watson-Crick automata system with injective complementarity relation is regular.

Recently, it was proved in [4] that on one-letter alphabets, parallel communi-
cating Watson-Crick automata system with non-injective complementarity relation
accept also some non-regular languages, e.g. L = {an | n > 2}.

4 Closure properties
In this section we consider some closure properties of the family of languages ac-
cepted by parallel communicating Watson-Crick automata systems. Prom now on,
V is the input alphabet and # £ V is a special character not included in it; let
V' = VU {# }• We also extend the complementarity relation by adding (# , #) £ p.

696. Elena Czeizler and Eugen Czeizler

Theorem 11. Let Li,L2 CV* be two languages accepted by some parallel commu-
nicating Watson-Crick automata systems of degrees ni andn2, respectively, using
the same complementarity relation. Then the language (L I #) | ") (Z < 2 #) is also ac-
cepted by a system of degree n\ + n2.

Proof. Let Li = L(Ai) and L2 = L(A2), where

A = (V',p,Ä1,...,Äni,Ä'1,...,Ä'n2,KöK'), where

: . Ä ! - (V', p, Qi U {q{,q\} U {vj"1 | 2 < x < m } U {K2,..., Kni},qu {q{} ,8 J,

. Ai = (V',p,'Qi U { < ? / , # } U {v{ | 1 < j < m - 1 },qit { < / / } , 5*), 2 < i < m

. % = (V^p^'Mq'^qTMv'r1 I 2 < t < n2}U{K^,...,K2},q'1,{q'1f},6'1),

i % = (V', P, Q\ U {q'/, q?} U {v'i | 1 < j < n2 - 1}, q<, {q^X), 2 <i<n2.

Ai = {V,p,Au...,Ani,K), with Ai = (V,p,Qi,qi,Fi,5i) and

The components At and A^ are obtained from Ai and A[, respectively, by adding
some states and some new transition rules, as follows:

(i) for all 1 < i < n\ and 1 < j < n2: Si(q,) and

(ii) for all 1 < i < ni: Si(s,) = for any s € Fit Si(q{,) = q{,

(iii)) = Ki+i, for all 2 < i < ni — 1, and

(iv) for all 2 < i < n\: = ^ '+ 1 , for 1 <j<ni-2,

(v) for all 1 < t < n2: ¿-(s, (*)) =q?, for any s € F/, faq'/, f ^)

Parallel Communicating Watson-Crick Automata Systems 697

(vi) S[(q[v, Q)) = K'2, ¿[{v?-1, (*)) = K'i+ x, for all 2 < i < n2 - 1, and

(vii) for all 2 < i < n2: t^tf, Q)) = v[\ Q) = for.l < j <

The system works as follows. We first check in parallel if a word w is in both
languages. In order to have w € I a # , the first n\ components have to reach final
states and read a t exactly the same time. We use transitions of type (i) until

every component Ai reaches (Jj^j a final state, at which moment it enters a

special state q". All we have to do now is to verify that all first ni components
entered the states q? at the same time. This is done by using a verification procedure
composed of transitions of type (iii) and (iv). Similarly, we use transitions of type,
(vi) and (vii) to impose the same condition for the last n2 components. Then, each
component enters the new final states q{ or respectively q'/ and waits for all the
others to finish parsing the input. Hence, the accepted language is (Za#) (\(L2#).

Using a similar technique, we also obtain the following result.

Theorem 12. Let Li,L2 C V* be two languages accepted by some parallel commu-
nicating Watson-Crick automata systems of degrees n\ andn2, respectively, using
the same complementarity relation. Then the language Li#L2# is also accepted
by a system of degree n\ +n2.

Proof. We construct a new system A of degree n\ + n2 which works as follows. The
first ni components recognize the language L i # (V U {# }) * by verifying that the

first ^ ̂ ^ is read by all of them at exactly the same moment and then they enter

a new final state in which they finish reading the input string. Similarly, the last
n2 components recognize the language V*#L2#.

Since a word is accepted by A if and only if all components reach final states
and read all the input, the language accepted by A is Z,1#L2#- •

Theorem 13. Let L C V* be a language accepted by some parallel communicating
Watson-Crick automata system. Then the language {Ljf)* is also accepted by a
system of equal degree.

Proof. Let L = L(A) where A — (V, p, A\,..., An, K) is a system of degree n
with each Ai = (V, p,Qi,qi, Fi,5i). Starting from A we construct a new system
M = (VU{#},p,A[,...,A'n,K) with AI = (VU WhfiM.tf.qf},® by

698. Elena Czeizler and Eugen Czeizler

adding some new states and transitions as follows. In order to recognize also the
empty word, we introduce in each component a new initial and final state qf.

We also introduce transitions * (a) 9 * ' w ^ e r e i s initial state of

component i in system A. Then, the system A! simulates A on each component

until we reach ^ ̂ ^.

Next, we use the verification procedure described in Theorem 11 to check that

all components read a t exactly the same moment in which case they each

enter a new final state q{. Then, by introducing transitions of the form q{ A
A

qi in each component, we assure that the system can loop, also preserving the
/

synchronization of components.
Thus, the system recognizes the language {A} U (L #) t . •

Next, we give a representation result for recursively enumerable languages using
languages accepted by parallel communicating Watson-Crick automata systems.
We start by recalling a known characterization of recursively enumerable languages,
see [14].

Lemma 14. For each recursively enumerable language L C V*, there exist two
X-free morphisms h\, /12, a regular language R, and a projection pry such that
L = prv{h1(EQ(h1,h2))nR).

The next lemma: was also proved in [14].

Lemma 15. If h\,h2 • V* —» V* are two morphisms, then h\(EQ(hi, h2)) can be
recognized by a Watson-Crick finite automaton.

Using the previous two results as well as the closure of parallel communicating
Watson-Crick automata systems under intersection, we can prove the following
characterization.

Theorem 16. For each recursively enumerable language L C V*, there exists a
projection pry such that L = prv(L(A)), where A is a parallel communicating
Watson-Crick automata system of degree 2.

Proof. Let L be a recursively enumerable language. Prom Lemma 14 and Lemma
15 we have that there exists a projection pry such that L = prv{L' n R), where L'
is recognized by a Watson-Crick finite automaton and R is a regular language.
Moreover, for any given complementarity relation p we can easily construct a
Watson-Crick automaton M such that L(M) — R. f

Prom Theorem 11 we obtain that there exists a parallel communicating Wat-
son-Crick automata system A of degree 2 such that L(A) = (I / #) H (# #) . Since
$ V, we can extend the projection pry by setting prv(#) = A and obtain
L = prv(L(A)). •

Parallel Communicating Watson-Crick Automata Systems 699

5 Conclusions
In this paper we introduced and investigated parallel communicating Watson-Crick
automata systems. We prove that their accepting power is increased compared to
Watson-Crick finite automata. However, every language accepted by a Watson-
Crick finite automata system is context-sensitive. Moreover, one-letter languages
accepted by such systems but with an injective complementarity relation prove to
be regular. We also investigate some closure properties for these systems and give
a representation of recursively enumerable languages.

Many questions and problems have remained open. For example it would be
interesting to investigate other closure properties, e.g. under union or comple-
mentation. Also, it remains open what is the accepting power of systems using
non-injective complementarity relations, when we restrict only to one-letter alpha-
bets.

6 Acknowledgement
The authors are grateful to Prof. Arto Salomaa for valuable discussions. Also, the
authors are thankful to the anonymous reviewers for their useful comments.

References
[1] S. Balan, Distributed Processing in Automata, Master Thesis, Department of

Computer Science and Engineering, Indian Institute of Technology, (2000).

[2] E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana, G. Vaszil, Parallel Communicat-
ing Pushdown Automata Systems, Int. J. Found. Comput. Sci. 11(4), 633-650,
(2000).

[3] E. Csuhaj-Varju, V. Mitrana, G. Vaszil, Distributed Pushdown Automata Sys-
tems: Computational Power, Proc. DLT 2003, LNCS, 2710, 218-229, (2003).

'.i>
[4] E. Czeizler, E. Czeizler, On the Power of Parallel Communicating Watson-

Crick Automata Systems, Theoretical Computer Science, 358: 1, 142-147,
(2006). Also as TUCS Techreport 722, (2005).

[5] R. Freund, Gh. Paun, G. Rozenberg, A. Salomaa, Watson-Crick finite au-
tomata, Proc 3rd DIMACS Workshop on DNA Based Computers, Philadel-
phia, 297-328, (1997).

[6] M. A. Harrison, Introduction to formal language theory, Addison-Wesley Pub-
lishing Co., Reading, Massachusetts, 1978.

[7] J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, languages, and
computation., Addison-Wesley, (1979).

700. Elena Czeizler and Eugen Czeizler

[8] O. H. Ibarra, A note on semilinear sets and bounded-reversal multihead push-
down automata, Information Processing Letters, 3, 25-28, (1974).

[9] C. Martin-Vide, V. Mitrana, Parallel communicating automata systems. A
Survey, Korean Journ. of Comp. and Appl. Math 7: 2, 237-257, (2000).

10] C. Martin-Vide, A. Mateescu, V. Mitrana, Parallel finite automata systems
communicating by states, Intern. Journ. of Found, of Comp. Sci. 13: 5, 733-
749, (2002).

11] C. Martin-Vide, Gh. Paun, Normal forms for Watson-Crick finite automata,
in F. Cavoto, ed., The Complete Linguist: A Collection of Papers in Honour
of Alexis Manaster Ramer: 281-296. Lincom Europa, Munich., (2000).

12] V. Mihalache, A. Salomaa, Lindenmayer and DNA: Watson-Crick DOL sys-
tems, Current Trends in Theoretical Computer Science, World Sci., 740-751,
(2001).

13] A Paun, M. Paun, State and transition complexity of Watson-Crick finite au-
tomata, Proc. Fundamentals of Computation Theory, FCT'99, LNCS 1684,
Springer-Verlag, 409-420, (1999).

14] Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, (1998).

15] E. Petre, Watson-Crick lj-Automata, J. Autom. Lang. Comb. 8(1), 59-70,
(2003).

16] G. Rozenberg, A. Salomaa (eds.) The Handbook of Formal Languages,
Springer-Verlag, (1997).

17] J. M. Sempere, A Representation Theorem for Languages accepted by Watson-
Crick Finite Automata, Bulletin of the EATCS 83, 187-191, (2004).

18] A. C. Yao, R. L. Rivest, Ar-/-1 heads are better than k, Journal of the Associaton
for Computing Machinery, 25:2, 337-340, (1978).

Acta Cybernetica 17 (2006) 701-717.

A Fast Algorithm for the Constrained Multiple
Sequence Alignment Problem*

Dan HeJ Abdullah N. Arslan* and Alan C. H. Ling*

Abstract

Given n strings S\, S2, ..., S„, and a pattern string P, the constrained
multiple sequence alignment (CMSA) problem is to find an optimal multiple
alignment of Si, S2, • • •, Sn such that the alignment contains P, i.e. in the
alignment matrix there exists a sequence of columns each entirely composed
of symbol P[fc] for every k, where P[k] is the fcth symbol in P, 1 < k < |P|,
and in the sequence, a column containing P[i] appears before the column
containing P[j] for all i,j, i < j. The problem is motivated from the problem
of comparing multiple sequences that share a common structure, or sequence
pattern. There are 0(2nsis2. . .sn ! ") -time dynamic programming algorithms
for the problem, where si ,s2, . . . , s n and r are, respectively, the lengths of the
input strings and the pattern string. Feasibility of these algorithms in practice
is limited when the number of sequences is large, or the sequences are long be-
cause of the impractically long time required by these algorithms. We present
a new algorithm with worst-case time complexity also 0(2ns\s2...snr), but
the algorithm avoids redundant computations in existing dynamic program-
ming solutions. Experiments on both randomly generated strings and real
data show that this algorithm is much faster than the existing algorithms.
We present an analysis that explains the speed-up obtained in our experi-
ments by our algorithm over the naive dynamic programming algorithm for
constrained multiple sequence alignment of protein sequences. The speed-up
is more significant when pattern is long, or n is large. For example in the case
of constrained pairwise sequence alignment (the CMS A problem with n = 2)
when the pattern is sufficiently long for strings Si and S2, the asymptotic
time complexity is observed to be 0 (s is2) instead of 0 (s is2r) . Main ideas
in our algorithm can also be used in other constrained sequence alignment
problems.

Keywords : constrained sequence alignment, pairwise alignment, multiple
alignment, dynamic programming

"This work was supported in part by NSF Award No. CCF-0514819.
t Department of Computer Science, University of Vermont, Burlington, VT 05405, USA, E-mail:

{dhe,aarslan,aling}8cs.uvm.edu

701

702 Dan He, Abdullah N. Arslan and Alan C. H. Ling

1 Introduction
Multiple sequence alignment [2] is one of the most important problems in com-
putational biology. Detecting similarities in DNA sequences gives clues about the
evolutionary relatedness of different species, and similarities in protein sequences
point out similar functionality. The multiple sequence alignment problem can be
defined in various ways depending on the objective function used for measuring the
similarity. When sum of pairs (SP) scoring is used, the problem is defined as fol-
lows: Given a set of n > 2 sequences Si, S2, • ••, Sn, insert gap symbols '—' into these
sequences to obtain equal length strings, respectively, SJ1, S2 , .-., S* so that the
global similarity score J2i<i<j<n score{S*, S*) is optimized where score(S*, S*) is
the similarity between S* and S* computed under a given scoring scheme. When
n = 2, namely the sequence set has only two sequences Si, S2, the problem is the
classical pairwise sequence alignment problem for which there is an 0(sis2)-time
dynamic programming algorithm [11]. This dynamic programming solution is ex-
tended to multiple sequence alignment problem with the resulting time complexity
0(2nsis2 . . .sn) . However, there are many heuristic algorithms to approximate the
optimal solution (e.g. Clustal W [8], T-Coffee [5]). Recent progress in multiple
sequence alignment is summarized in [6].

Given strings Si,S2 ,-.- ,S„, and pattern string P, the constrained multiple se-
quence alignment (CMSA) problem is to find an optimal multiple alignment of
Si ,S2 , . . . ,Sn such that the alignment contains P, i.e. in the alignment matrix
there exists a sequence of columns each entirely composed of symbol P[k] for every
k, where P\k] is the fcth symbol in P, 1 < k < |P|, and in the sequence, a column
containing P[z] appears before column containing P[j] for all i,j, i < j. A motiva-
tion for the problem is the alignment of RNase sequences. Such sequences are all
known to contain three active residues His(H), Lyn(K), His(H) that are essen-
tial for RNA degrading. Therefore, it is natural to expect that in an alignment of
RNA sequences, each of these residues should be aligned in the same column. The
CMSA problem when n = 2 is called the constrained pairwise sequence alignment
(CPSA) problem.

For example, for Si = bbaba, S2 = abbaa, and P = ab, an optimal alignment
that maximizes the number of matches with the constraint is shown in Figure 1.

Solutions for CPS A can also be used to solve the CMSA problem. One idea
is to progressively align the sequences into a multiple alignment by using a mini-

s ' b b a

S 2 = - - a

P = a b

) - a -

) b a a

Figure 1: For Si = bbaba, S2 = abbaa, and P = ab, an optimal alignment which
maximizes the number of matches with the constraint.

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 703

mum spanning tree obtained from a pairwise distance matrix of the sequences [7, 3].
There are many dynamic programming algorithms for the CMS A and CPS A prob-
lems, and their variations [7, 3, 9, 10, 1, 4]. The best known time complexity for
the CMS A problem is 0(2ns\s2 • • • snr) (see for example Chin et al. [3], or Tsai et
al. [10]).

In this paper, we present a new dynamic programming algorithm for CMS A
based on the dynamic programming formulation given by Chin et al. [3], and the
observation that we can use the pattern string P to avoid redundant computations
in the dynamic programming matrix.

We have implemented our algorithm, and performed tests on both randomly
generated data and real protein sequences. Experiments show that our algorithm
is much more efficient in both time and space than a naive implementation of the al-
gorithm presented by Chin et al. [3]. For the CPS A problem the time requirement
of our algorithm we observe in experiments is 0(sis2) when the pattern length r
is large for given strings Si and S2. For the CMS A problem when n > 2, effi-
ciency with respect to the naive algorithm we achieve with our algorithm increases
significantly as the pattern length of P, or the number n of the set of sequences,
Si, ¿>2, •••, Sn increases. The speed-up we obtain by our algorithm over the original
naive dynamic programming algorithm proposed in [3] for the case of real protein
sequences indicates that our algorithm is more feasible for solving the constrained
multiple sequence alignment problem in practice.

The outline of this paper is as follows: in Section 2 we present our algorithm for
the CMS A problem. We summarize the results of our experiments in Section 3,
and present mathematical analysis in Section 4 to explain the speed-up we observe
in these tests using our algorithm. We include our final remarks in Section 5.

2 An Algorithm for the Constrained Multiple Se-
quence Alignment Problem

Our algorithm uses the dynamic programming formulation given by Chin et al. [3].
Let D(i i , i 2 , ...,i„, A:) be the optimal constrained pairwise sequence alignment

score of sequences Si[l..ii],S2[l-.i2]r--,Sn[l--in] with constrained pattern sequence
P[L..r). Then this score can be computed by the following recurrence:

Theorem 1 ([3]). For all k, 1 < k < r, D(ii,... ,in, k) — oo if ¿i = 0 or ¿2 = 0
or ... or in = 0. £>({0}n, 0) = 0. For all ii,i2,..., in, k, 0 < ix < s i ,0 < ¿2 <
s 2 , . . . , 0 < in < sn, 0 < k < r,

D(ii - l,i2 - 1 ,...,in -l,k-\)
+S{Si[ii],S2[i2},-,Sn[in])

if (Si\ii] = S2\i2] = ... = Sn[in]
D(ii,i2,...,in,k) mm

P[fc]) and k>l

minetz{0ii}nD(ii - ei,i2 - e2, ...,i„ - e„, k)
+<5(ei * Si[ii], e2 * S2[i2],..., en * Sn[in])

704 Dan He, Abdullah N. Arslan and Alan C. H. Ling

where ej = 0 or 1, * Sj[ij] with e3 = 0 represents a space character '—', and
Sj[ij] when ej = 1, and 6(xi,x2, ...,Xk) = Yli<i<j<n^(xi'xj) (w^en sum-of-pairs
distance is used) where 6(x{,xj) is the given minimum distance between the symbols
Xi and Xj.

A naive CMS A algorithm for the dynamic programming solution in Theo-
rem 1 is shown in Algorithm 1. The algorithm returns the optimal CMS A score,
L>(si,s2,...,s„,r), in time 0 (2" S1S2•••sn r) where Si, s2,..., sn,r are the lengths
of the sequences Si, S2, •••, Sn, and P, respectively. The reason for factor 2n is
that computing D(ii, ¿2, ...,in, k) uses 0(2") neighboring entries of (¿1, i2,..., in, k)
in the dynamic programming matrix. When n = 2, the solution in Theorem 1 is a
solution for the CPS A problem.

Algorithm 1 The dynamic programming algorithm for the CMS A problem pro-
posed by Chin et al. [3].

Algorithm NaiveCMSA

1. Init ia l ize D(0,0,..., 0) = 0, D(i\, ¿2,..., in, k) = 00, for a l l
¿1 * ¿ 2 * . . . * in = 0 , 0 < ¿1 < S l , 0 < ¿ 2 < S2, •••, 0 < in < sn, 1 < k < r

2. f o r k = 0 t o r do
f o r i i = 0 t o si do

f o r ¿ 2 = 0 t o S 2 d o

f o r in = 0 t o sn do
I f D(i\,i2, ...,in,k) i s not i n i t i a l i z e d , compute D{i\, ¿ 2 , . . . , in, k)
according t o Theorem 1

3. return D(si, S2, •••, sn, k)

This algorithm computes the complete dynamic programming matrix parts of
which are redundant in many cases. We observe that in an alignment matrix for
Si, S2, . . . , Sn , each P[/c] in P is required to appear in an entire column (we
call such a column a constraint-column for P[/c]) for the constraint to be satisfied.
If Si[ji} is aligned to P[k] for the satisfaction of the constraint (i.e. if Si[ji] ap-
pears in a constraint-column for P[k] together with Si[ji], 52[j2i, • • •, Si_i[ji_ij,
Si+i[7i+i],..., Sn[jn}) then Si[l..(ji - 1)] can never be aligned with Sp[(jp + l)..sp]
for all p, 1 < p < n and p ^ i. This means that we can save time by avoiding
calculations in redundant regions in the dynamic programming matrix.

Our algorithm is based on the same dynamic programming formulation for
computing D(ii,i2,...,in, k) given in Theorem 1. It is shown in Algorithm 2.

We first analyze Algorithm FastCMSA for CPS A computations. The analysis,
and the results can be generalized for CMS A computations which involve more
than two sequences (i.e. n > 2). The dynamic programming algorithm here can be
seen as computing r 4-1 layers, one layer at each iteration k, where each layer is
an n dimensional dynamic programming matrix. Figure 2 illustrates layers during
the computations of CPS A for a pattern whose length is 2.

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 705

Algorithm 2 Our algorithm for the CMSA problem.

A l g o r i t h m FastCMSA

1. I n i t i a l i z e D(0,0,..., 0) = 0, £>(¿1 ,12 , . . . , i n ,k) = 00, f o r a l l
¿1 * ¿2 * 13 * ... * in = 0 , 0 < ¿1 < S l , 0 < ¿2 < S2 , •••, 0 < in < sn, 1 < k < r

2. For each k, f i n d every pair of f i r s t and l a s t p o s s i b l e p o s i t i o n s
that match P[fc] in each s tr ing Si, S2, • • •, Sn in a constrained alignment:
f o r t = 1 t o n do

f o r k = 0 to r — 1 do
set S /irst[i][k] = the f i r s t p o s i t i o n / in St

such that P [l . . (f c + 1)] i s a subsequence of S t [l . . /]
se t 5iast[i][fc] = the l a s t p o s i t i o n I in 5 t

such that P[{k + l)..r] i s a subsequence of S t[/ . .st]
3. For each k , f i n d a pair of s t a r t point and end point :

(S i b e g i n [fc], S i i o i t l f c]) , (S 2 6 e S t n [f c] , S 2 i a s t [f c]) , •••, (Snbegin[k], Snlast[k})

f o r k=0 t o r do
i f (fc ===== 0) {

Sibegin [0] = 0 ;

S 2 6 e g i n [0] = 0|

Snbegin [0] = 0 ;

} e l s e {
Sibegin [A:] = S / i r i t [l] [fc - 1] + 1;
S26eSin[fe] = 5/ i rat[2][fe - 1] + 1;

Snbegin = 5 / i r s t [n] [f c - 1] + 1 ;

}
i f (fc = = r) {

SliaitM = «I!
S2!ast[k] = S2!

Sn(ost[fc] = Sk\
} e l s e {

Slio3t[fc] = Si ast [i P R i ;
S2iast[k] = Si ast [2 P] + 1;

5„iost[fc] = 5ia>t[n][fc] + 1;

}
4. f o r fc = 0 to r do

f o r ¿1 = S i b e g i n [fc] t o S u a J t [f c]

f o r ¿2 = S 2 6 c 9 i n [f c] t o S2 ! o s i [f c]

f o r in - Snbegin [&] t O S „ i a 3 t [^]

compute D{ii,ii, ...,in,k) using the expression in Theorem 1

5. return D(si,s2,.:,sn,r)

706 Dan He, Abdullah N. Arslan and Alan C. H. Ling

In the naive solution in Algorithm 1, at every iteration k (staring at k = 0)
the whole layer is computed. On the other hand in Algorithm FastCMSA,
when we process Layer k we compute only the subregion of the n dimen-
sional dynamic programming matrix whose two diagonal corners, respectively, are
(5lbegm[fc],S26eStn[fc], — J Snfceflin[fc])> (^liastW, ^ a s t M , •••, SntaatM)- This is based
on our observation that the area outside this region is not needed in later itera-
tions because an optimal constrained alignment path does not pass there. For
illustrative purposes, we only give an example for CPS A computations in Figure
3. We only show the first two layers, and the last layer in the figure. Layers for
CMSA when n > 2 are similar, but have more dimensions. In Layer 0 we only
need to compute the region whose two diagonal corners are ({Sibegin[0], S2i>egm[0]),
(S\iast [0], S2iast [0])) • This is the only region required in the computations in the
next layer, Layer 1. Similarly, at Layer 1, we only need to consider the region
identified by two diagonal corners ((Si6eSi„[l], S2begtn[l]), a n d (Si/asifl], ^¡astf1)))-
Computations in our algorithm proceed layer by layer in this manner.

Compared to the naive algorithm, our algorithm performs fewer operations on
average for the points in the computed region of the dynamic programming ma-
trix. For simplicity, we show this in the pairwise alignment case in Figure 4.
On layer 0, we need to compute the rectangular region identified by its two di-
agonal corners (Si&epin[0], S2&epm[0]), (Si/asi[0], S2/asi[0]). In this region, the
number of operations per point is the same in both algorithms. The differences
are on Layer 1 and higher. For Layer 1, we need to compute the rectangular re-
gion of (5i6e<7ui[l], S2begin[l]), (5i/asi[l], S^/as^l]). In the rectangular region of
(Si6e<?m[l], S2begin[l}), (S\last [0], ^ /as i [0]) (in Figure 4 the rectangular region
shaded with backward diagonal lines) the number of operations per point consid-
ered is still the same in both algorithms, but for the region elsewhere on Layer 1
(non-rectangular region shaded with forward diagonal lines in the figure), we do
not need to consider the entries from the previous layer, Layer 0 in this case, since

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 707

Slbegin[0] S1 last[0]

S2begin[0]'

S21ast[0]'
Layer 0

SIbegin[l] Sl last[l]

S2begin[l]

Layer 1

S2last[l]

•'jp

Slbegin[r] Sllastfr]

Layer r

S2begin[r]

S21ast[r] \

Figure 3: Regions in each layer considered in the computation of CPSA with
pattern string length r > 2.

708 Dan He, Abdullah N. Arslan and Alan C. H. Ling

on Layer 0, this region is not computed at ail since there are no entries from last
layer in this region.

Slbegin[0] Slbegin[l] Sl!ast[0] S l las t [l]
S2begin[0] -

S2begin[l]

S21ast[0]

Sllast[l]

s / / A / / A / \ \ / / A / / A / \ / / A / A A / \ N / A / / A A / \ \ S \ \ \
V \

\ \ \ \ \ \ \ \ N

Figure 4: Illustration of the computation efficiency of our algorithm FastCMSA
over the naive dynamic programming algorithm.

Clearly the time complexity of our solution in Algorithm 2 is 0{s\s2r) for
CPS A computations. In our algorithm, for each layer, we only compute the region
identified by (Sif,eflin[fc] i S2begin[k], •••, Snbegin [&]) i {Sllast [&], [^3' •"> ^niostW)-
The larger the area, the longer our algorithm runs. We can create a worst case
scenario as follows: For Layer 0, we try to move the last possible position which
matches P[l] as far as possible and the most backward position for Si is Si — r
since the length of the pattern string is r, there must be at least r symbols from
this position. For the first layer, the area we need to compute is fi((si — r)(s2 —
r)...(sn —r)). For simplicity we only consider the pairwise sequence alignment case
in Figure 5. For Layer 1, we try to move the first possible position which matches
P[l] to the beginning as much as possible, and move the last possible position which
matches P[2] to the end as much as possible. For similar reasons we discuss for
the case of Layer 0, the smallest and largest positions, that determine the region
we need to consider, in Si, respectively, are 1 and Si — r + 1. Then we can see
that the computations for Layer 1 takes Q((si —r)(s2 — r)) time. We can conclude
that there is a case in which our algorithm requires fi((si — r)(s2 — r)r) time for
CPS A computation. For n > 2 case, we can create a similar worst-case scenario for
Si, S2 . . . Sn, and P, and therefore, the worst-case computation time for CMS A is
ii(2n(si — r)(s2 — r)...(sn — r)r). From the analysis of the worst-case scenarios, we
can see that the longer the pattern string, or the higher the dimension, the better
the speed-up we achieve relative to the naive CMS A algorithm. We verify this by
the results of our experiments.

Our discussions about the application of Algorithm FastCMSA for the CPS A
computations can be extended to CMS A computations that involve more than two

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 709

Slb[01 ,Slb[l] ,S lb[2] ,S lb[3] SI 1[0], Sl l [l] , SI 1[2], Sll[3]

S2b[0] '
S2b[l] .
S2b[2] '
S2b[3] .

S21[0]
S21[l]
S21[2]
S21[3]

Figure 5: A worst case scenario for our algorithm FastCMSA for a CPS A com-
putation with pattern string length 3. We use Stb{j] for Sibegin[j], and Su[j] for
Stiastfj] to save space in the figure.

dimensions. Compared to the naive solution in Algorithm 1, our algorithm does
computations for fewer points, and spends less time at each point.

3 Experiments
We first tested the performance of our algorithm FastCMSA (which we call
FastCPSA when n — 2, i.e. when it is used for solving the CPSA problem).
We compare its performance with that of Algorithm NaiveCMSA (which we call
NaiveCPSA when it is used for solving the CPSA problem). In our tests, we ran-
domly generate, over the alphabet of amino acids that contains 20 symbols, strings
Si and S2 with equal length, and pattern string P. We use 10 consecutive seeds
to generate the sequences and the pattern each time, and show only the average
performance. To measure time we count in the dynamic programming matrix the
number of points for which the algorithms perform computations. Our algorithm
is consistently faster than the naive solution in Algorithm 1. We note that when
sequences Si and S2 are fixed, the time requirement of our algorithm does not
increase linearly with the increasing length of P. Figure 6 illustrates this. We plot
pattern length plength versus time in the figure. In this test, we fix the sequence
lengths seqlength as 1,000 and increase the pattern length plength from 4 to 35.
The time requirement of the naive algorithm linearly increases with the pattern
length, and for our algorithm, it increases at slower pace first, and it starts to de-
crease permanently after certain level of plength. This is because as the plength
increases, the matching regions in the matrix on average is confined to smaller parts
in the matrix and the volume computed by our algorithm is expected to be smaller

710 Dan He, Abdullah N. Arslan and Alan C. H. Ling

Pleng th

Figure 6: Time requirement of CPSA computation when seqlength is fixed as
1,000, and plength is increased from 4 to 35. For each pattern length we use 10
consecutive seeds to generate the sequences and the pattern, and show only the
average performance.

in ratio on average to the size of the entire matrix. We will discuss this in more
detail in Section 4.

We next tested the performance of Algorithm FastCMSA on randomly gener-
ated sets of 4 protein sequences with equal length, and pattern string with length
1, 2, 3, 4 separately, over alphabet of 20 amino acid symbols. For each pattern
length we use 10 consecutive seeds to generate the sequences and the pattern, and
show only the average performance.

We compare the number of points in the dynamic programming matrix Algo-
rithm FastCMSA needs to compute with the number of points the naive dynamic
programming algorithm computes. Table 1 shows that our algorithm is consistently
faster than the naive CMS A algorithm, and the performance of our algorithm over

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 711

Table 1: Average number of points the two algorithms need to compute for the
alignment of 4 sequences when we fix seqlength as 100 and increase plength from
1 to 4 at increments of 1, and use 10 consecutive seeds to generate the sequences
and the pattern for each pattern length, and show only the average performance.

plength FastCMSA NaiveCMSA Naive/Fast
1 8.09e+ 007 2.12e + 008 2.62
2 6.30e + 007 3.18e + 008 5.05
3 4.77e + 007 4.25e + 008 8.90
4 2.10e + 007 5.31e + 008 25.28

seqlength — 1 0 0

Table 2: Number of points both algorithms need to compute when we fix seqlength
as 200, plength as 4 and increase the number of sequences from 3 to 6. For each
case, we use 10 consecutive seeds to generate the sequences and the pattern, and
show only the average performance.

dimension FastCMSA NaiveCMSA Naive/Fast
3 9.60e + 006 4.06e + 007 4.22
4 1.10e + 008 8.16e -f 009 7.42
5 1.19e + 011 1.64e + 012 13.78
6 1.30e + 013 3.30e + 014 25.38

seqlength — 200, plength = 4

the naive CMS A algorithm increases quickly with the increasing pattern length.
This is because the larger the plength, the less chances there are for the worst-case
scenario. Therefore, for the same sequence set, the longer the pattern string is, the
more significantly our algorithm outperforms the naive CMS A algorithm.

In another set of tests, we fixed the sequence lengths seqlength as 200 and the
pattern length plength as 4. Then we solved CMS A problems for n i = 3,4,5,6.
For each n, we also show the average performance of 10 tests by 10 consecutive
seeds. We summarize the results in Table 2. We observe that the performance
of Algorithm FastCMSA over the naive CMS A algorithm nearly doubles every
time we add one more sequence (increase n by one). This is because with new
sequences being involved in the alignment, a larger region in the original dynamic
programming matrix is avoided.

Another advantage of our algorithm is that it first computes the possible pat-
tern occurrence positions in each sequence, if there are no such positions then our
algorithm stops immediately while NaiveCPSA computes the entire dynamic pro-
gramming matrix.

712 Dan He, Abdullah N. Arslan and Alan C. H. Ling

Table 3: Experiments on constrained alignment of 5 RNase sequences with pattern
string HKH and HKSH, separately.

pattern FastCMSA NaiveCMSA Naive/Fast
HKH

HKSH
7.343e + 009 2.737e + 011 37.3
5.053e + 009 3.421e + 011 67.7

number of computation points

We have also done experiments on real protein sequences. We used the set of
sequences with references given in [3](Data Set 1, and Data Set 2):

Seql : gi\ll9124\sp\pl2724\ecpJiuman,
Seq2 : 5i|2500564|sp|p70709|ecp.rai,
Seq3 : gi\lM00006\pdb\ldyt\,
SeqA : pi|20930966|re/|xpJ42859.1,
Seq5 : si|20930966|re/|xp.l42859.1

The results of the experiments are shown in Table 3. Clearly, our algorithm is much
faster than the naive CMS A algorithm on RNase sequences.

4 Performance analysis of our algorithm
The performance of our algorithm depends on the total size of the layers from Layer
0 to Layer r.

We note that our algorithm does not perform computations for all the points
considered by the naive algorithm implementing Theorem 1, and for the points it
does it spends less time than the naive algorithm. Therefore, we compare the total
volume (number of points) at which our algorithm performs computations with
the total size of the (n + l)-dimensional dynamic programming matrix the naive
algorithm uses.

. Size of each layer in our algorithm is determined by the first and last matches
of the given pattern P in each dimension (i.e. on each sequence). Let be the
position of P[k] in the first occurrence of P[l..k] in Si, and let e ^ be the position
of P[fc] in the last occurrence of P[k..r] in Sj.

We assume that pattern P occurs at least once in each sequence Si. Otherwise,
our algorithm does not do any computations in the dynamic programming matrix.

Throughout our analysis we also assume that each symbol in alphabet E over
which sequences Si, S2, • • •, Sn are defined appears with equal probability in each
position in these sequences.

Layer 0 is identified by two extreme points (0 ,0 , . . . , 0) and (ei i r, e2, r , . . . , e„,r),
and its size is

n

i=l

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 713

Each Layer k, 1 < k < r, has two extreme points (&i , f c , ¿ > 2 , br . f c) and
(ei,fc+i, &2,t+i, • • •, bT,k+i), and its size is

k=r—1 n

£ 1 1 (^ + 1 - Kk) (2)
¿=1

Two extreme points on Layer r are (&i,i, 6 2 , i , . . . , 67l>i) and (si,S2,
the size of this layer is

n

n (s * - Kr)
¿ = 1

We study the expected sizes of these layers and their sum.

Lemma 2. Suppose P — a i a 2 . . . a r is a pattern of length r. Let S be a sequence
of length s that contains P as a subsequence. Let E be the alphabet for P and S.
The expected position of P[r] in the first occurrence of P[l..r] in S is |E|r.

Proof. Let di — Q\ {a*} be the set of alphabet except a*. Then, all strings contain
the first occurrence of P as a subsequence must have a unique representation of the
form A = d*a\d2* . • • ar*ar. One can see this because when we scan the sequence
from left to right, we first seek for ai, then a2, and so on until we find ar eventually.
We next compute a generating function f(x) that counts the number of strings in
A. Here, we mean f(x) = YlaeA xlen^ where len(a) denotes the length of a. Based
on the decomposition of A, we can easily deduce that f(x) = (i-(isl-i)x)1" [12].
In order to compute the expected length of such sequences, we need to determine

ifi w h e r e fi is the coefficient of xl in the function f{x). It is evident that the
expected length is equal to xf (x)|x= 1 . Simple calculus shows that the expected
length of such strings is |E|r. We can also calculate the expected length when the
sequence length is finite. This gives us the expected position of P[r] in the first
occurrence of P in 5 given that P occurs in S at least once. In this case, for a given

s s (n~1)(|£|-l)n~r
sequence length s, the expected length is = Y^n=on |£|" • We
calculate expected lengths for s — 10 , . . . , 200 in increments of 10, and in Figure
7 we plot them versus sequence length s for varying pattern lengths r = 1 , . . . , 5,
and for a fixed alphabet size |Ej = 20. We see that they converge to |E|r quickly
(before the sequence length s approaches to 200). We note that length of a protein
sequence used in constrained multiple sequence alignments is typically 150 [3, 7].

•
By using Lemma 2, and observing that the expected position of the last occur-

rence of pattern P is the same as the expected first occurrence of the pattern pR
where PR means the reverse of the pattern, we can reach the following corollaries:

Corollary 3. For a given pattern P of length r, and a string S of length s that
contains P as a subsequence, the expected position of P[l] in the last occurrence of
P[l..r] approaches quickly to s — |E|r if S is sufficiently long for r and |E| where
E is the alphabet for S and P.

...,sn), and

(3)

714 Dan He, Abdullah N. Arslan and Alan C. H. Ling

end position of first pattern occurrence vs sequence lengths

120 i

c

S -§> «? ^ c? ^ ^ ^
sequence length

Figure 7: Expected position of P[r] in the first occurrence of pattern P[l..r] in
string S that contains P as a subsequence versus the length s of S. Pattern length
r varies from 1 to 5. The alphabet size is |£| = 20. The convergence is observed
when s approaches to 200.

We use x ~ V to denote that the value of x approaches to V.

Corollary 4. For alii, 1 < i < n, E(bitT) = |£|r, and if Si is sufficiently long for
r and |£| then E(ati) ~ s» — |£|r.

Corollary 5. For a given pattern P of length r, and a string S of length s that
contains P as a subsequence where P and S are defined over alphabet for all k,
1 < k < r, let bk be the position of P[k] in the first occurrence o/P[l..fc] in S, and
letek+i be the position of P[k + 1] in the last occurrence of P[(k + l)..r] in S. The
expected position E{bk) = |E|fc, and if S is sufficiently long for r and |E| then the
expected position E(ek+1) ~ s — |£|(r — k), and therefore, the ejected difference
E(ek+1 - bk) = E(ek+1) - E(bk) ~ s - |£|r.

Corollary 6. For alii, 1 < i < n, and k, 1 < k < r, if Si is sufficiently long for
r and |E| then E(eitk+ i - i>i,Jt) ~ St - |E|r.

It is easy to see that e^i for different Si's are independent, and by the product
rule of expectation for independent random variables, and using Equation (1) the
expected size of Layer 0 is

n n

£(11 = 11^1) (4)

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 715

If we consider e,,fc+i and bitk as random variables then e^k+i — ¿¿,fc are indepen-
dent for different Si's. We note that eitk+i — bi,k are not independent for different
layer k's for the same Si but the linearity of expectation does not require this
property, and therefore, using Equation (2) the expected size of Layer k, for all
1 < k < r — 1, is

n n

£ (n e»,fc+i - hk) = n E (e i * + i - M (5)
¿=1 i=l

Since (si — bi>r) are independent for different Si's, and if we use Equation (3) we
can see that the expected size of Layer r is

n n

E(Y[(Si - bi,r) = n E(Si - bi,r) (6)

i= 1 ¿=1

Adding equations (4), (5), and (6), and using corollaries 4 and 6, if S% is sufficiently
long for r and |E| for all i, 1 < i < n, then the expected total volume of layers from
0 to r approaches to

n

+1) n ^ - (?)
¿=1

If we compare this volume with the total size (r + 1) Si of the dynamic
programming matrix used by the naive algorithm we can see that the expected
speed-up achieved by our algorithm over the naive algorithm approaches to

n
TT .

Given a pattern of length r, and n sequences of lengths sj, • • •, sn over al-
phabet E where each Si contains P as a subsequence, and Si sufficiently long for r
and |E|, and s» > |E|r, let Ci = for all i, 1 < i < n, then we can see that the
expected speed-up of our algorithm over the naive algorithm approaches to

n n „

TT—-— >T7 .

This expression for the speed-up explains the results we have shown in Figure
6, and tables 1, 2, and 3. The speed-up is more significant if Ci = > 1 is a
small number close to 1. For example, for the CPS A problem with fixed sequence
lengths si = S2 = 1000 and with pattern length r increasing from 4 to 35, and
alphabet size is 20, the speed-up accelerates with increasing r as shown in Figure
6.

The target application of this paper is the constrained multiple sequence align-
ment of protein sequences where the alphabet is composed of 20 amino acids, a
typical protein sequence length is 150 [3, 7], and a pattern used as a constraint
is typically 3 — 4 character-long. In these cases all Ci < 2.5, and the expected
speed-up ~ (5/3)" where n is the number of sequences compared.

716 Dan He, Abdullah N. Arslan and Alan C. H. Ling

5 Concluding Remarks
We present an algorithm for the constrained multiple sequence alignment problem
based on the dynamic programming formulation given by Chin et al. [3]. We
observe that it is redundant to compute the entire dynamic programming matrix
because the alignments are constrained to include pattern string P. We can pre-
compute a set of points that breaks the dynamic programming matrix into parts
some of which are redundant for solving the problem. Although our algorithm does
not improve the worst-case time-complexity of the problem, the experiments we
have conducted on both syntectic data and real RNase sequences show that our
algorithm is significantly faster than the original naive dynamic programming algo-
rithm proposed by Chin et al. [3]. The speed-up we achieve is more significant when
the pattern is long, and the number of sequences is large. We present mathemat-
ical analysis for the expected speed-up achieved by our algorithm. The speed-up
is expected to be significant if the product of the alphabet size and the pattern
length is a relatively large fraction of the sequences aligned. This is in general true
in practice in constrained multiple sequence alignment of protein sequences [3, 7].

An interesting behavior of our algorithm is observed when it is applied to the
constrained pairwise sequence alignment. In this case, our algorithm's observed
asymptotic time complexity is quadratic instead of cubic when the pattern is suf-
ficiently long for given sequences.

Our ideas on the CMS A can also be used in the algorithms for the constrained
longest common subsequence problems [1, 4], and similar speed-up can be achieved.

Other kinds of existing techniques for multiple sequence alignment, both heuris-
tic and exact, can be combined with the main steps of our algorithm to increase
the feasibility of the CMS A problem in real-life applications.

References
[1] Arslan, A. N. and Egecioglu., 0 . Algorithms for the constrained longest com-

mon subsequence problems. International Journal of Foundations of Computer
Science, (16)6:1099-1111, December 2005.

[2] Carrillo, H. and Lipman, D. J. The multiple sequence alignment problem in
biology. SIAM J. Appl. Math, 48(5):1073-1082, 1988.

[3] Chin, F. Y. L., Ho, N. L , Lam, T. W., Wong, P. W. H., and Chan, M. Y.
Efficient constrained multiple sequence alignment with performance guarantee.
Proc. IEEE Computational Systems Bioinformatics (CSB 2003), pp. 337-346,
2003.

[4] Chin, F. Y. L., Santis, A. D., Ferrara, A. L., Ho, N. L., and Kim, S. K. A sim-
ple algorithm for the constrained sequence problems. Information Processing
Letters Vol. 90, pp. 175-179, 2004.

A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 717

[5] Notredame, C., Higgins, D. G., and Heringa, J. T-Coffee: A novel algorithm
for multiple sequence alignment. J.Mol.Biol., 302,205-217, 2000.

[6] Notredame, C. Recent progresses in multiple sequence alignment: a survey.
Ashley Publications Ltd, ISSN 1462-2416, 2001.

[7] Tang, C. Y., Lu, C. L., Chang, M. D.-T., Tsai, Y.-T., Sun, Y.-J., Chao, K.-
M., Chang, J.-M., Chiou, Y.-H., Wu, C.-M., Chang, H.-T., and Chou, W.-I.
Constrained multiple sequence alignment tool development and its applications
to RNase family alignment. Proceeding of the 1st IEEE Computer Society
Bioinformatics Conference (CSB 2002), pp. 127-137, 2002.

[8] Thompson, J., Higgins, D., and Gibson, T. CLUSTAL W: Improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting
position specific gap penalties and weight matrix choice. Nucleic Acids Res,
22,4673-4690, 1994.

[9] Tsai, Y.-T. The constrained common sequence problem. Information Process-
ing Letters, 88:173-176, 2003.

[10] Tsai, Y.-T., Lu, C. L., Yu, C. T., and Huang, Y. P. MuSiC: A tool for multiple
sequence alignment with constraint. Bioinformatics, 20(14):2309-2311, 2004.

[11] Waterman, M. S. Introduction to computational, biology. Chapman & Hall,
1995.

[12] Wilf, H. S. Generating functionology. Academic Press, Inc, 1994.

Acta Cybernetics 17 (2006) 719-749.

Kleene Theorems for skew formal power series*

W e investigate the theory of skew (formal) power series introduced by
Droste, Kuske [5, 6], if the basic semiring is a Conway semiring. This yields
Kleene Theorems for skew power series, whose supports contain finite and
infinite words. We then develop a theory of convergence in semirings of skew
power series based on the discrete convergence. As an application this yields
a Kleene Theorem proved already by Droste, Kuske [5].

1 Introduction and preliminaries
The purpose of our paper is to investigate the skew formal power series introduced
by Droste, Kuske [5, 6]. These skew formal power series are a clever generalization
of the ordinary power series and Eire defined as follows.

Let A be a semiring and : A —> A be an endomorphism of this semiring. Then
Droste, Kuske [5] define the ip-skew product r O^ s of two power series r, s € ,
E an alphabet, by

for all w e E*. They denote the structure (AE*, +, Q^, 0,1) by Av((E*)) and prove
the following result.

Theorem 1 (Droste, Kuske [5]). The structure AV({H*)) is a semiring.

They call ^ ((E*)) the semiring of skew (formal) power series (over E*).
In the sequel, we often denote simply by • or concatenation and A, and

E denote a semiring, an endomorphism <p : A —• A and an alphabet, respectively.
The paper consists of this and four more sections. In this section we give a

survey on the results achieved by this paper and then define the necessary al-
gebraic structures: starsemirings, Conway semirings, semimodules, starsemiring-
omegasemimodule pairs, Conway semiring-semimodule pairs, complete semiring-
semimodule pairs and quemirings. These algebraic structures, due to Elgot [8],
Bloom, Esik [2] and Esik, Kuich [9] give an algebraic basis for the theory of power

"Partially supported by Aktion Österreich-Ungarn, Wissenschafts- und Erziehungskooperation,
Projekt 60öul2.

^Technische Universität Wien, E-mail: kuich8tuvieu.ac.at

Werner Kuich*

Abstract

719

720 Werner Kuich

series, whose supports contain finite and infinite words. At the end of this section
we refer to some examples for these algebraic structures.

In Section 2 we prove that the semiring of skew power series over a Conway
semiring is again a Conway semiring. Moreover, we prove two isomorphisms of
certain semirings defined in connection with Conway semirings.

In Section 3, the results of Section 2 are applied to finite automata. A Kleene
Theorem over quemirings defined by skew power series over Conway semirings and
the usual Kleene Theorem over Conway semirings are shown.

In Section 4, we consider a semiring-semimodule pair defined by skew power
series and prove that under certain conditions this pair is complete. This gives rise
to another Kleene Theorem that is then applied to a tropical semiring and yields a
result already achieved by Droste, Kuske [5].

In the last section we develop a theory of convergence in semirings of skew power
series based on the discrete convergence. We show that important equations, which
hold in Conway semirings, are valid under certain conditions also in semirings of
skew power series over an arbitrary semiring. As an application this yields then
another Kleene Theorem proved already by Droste, Kuske [5].

We assume that the reader of this paper is familiar with the theory of semirings
as given in Sections 1-4 of Kuich, Salomaa [14]. Familiarity with Esik, Kuich [9,
10, 11] is desired.

Recall that a starsemiring is a semiring A equipped with a star operation * :
A —* A. The Conway identities are the sum-star equation and the product-star
equation

(a + b)* = (a*b)*a*
(ab)* = 1 + a(ba)*b.

A Conway semiring is a starsemiring satisfying the Conway equations. Note that
any Conway semiring satisfies the star fixed point equations

* i i * aa +1 = a
a* a + 1 = a*,

as well as the equations

a(ba)* = (ab)*a
(a + b)* = a*(ba*)*.

Suppose that A is a semiring and V is "a commutative monoid written additively.
We call V a (left) A-semimodule if V is equipped with a (left) action

Ax V -> V
(s,v) l-> sv

Kleene Theorems for skew formal power series 721

subject to the following rules:

s(s'v) = (ss')v
(s + s')v - sv 4- s'v
s(v + v') = sv + sv'

Iv = V

Ov = 0
s 0 = 0,

for all s, s' £ A and v, v' £ V. When V is an A-semimodule, we call (A, V) a
semiring-semimodule pair.

Suppose that (A, V) is a semiring-semimodule pair such that A is a starsemiring
and A and V are equipped with an omega operation w : A —» V. Then we call
(A, V) a starsemiring-omegasemimodule pair. Following Bloom, Esik [2], we call a
starsemiring-omegasemimodule pair (A, V) a Conway semiring-semimodule pair if
A is a Conway semiring and if the omega operation satisfies the sum-omega equation
and the product-omega equation:

(a + b)u = (a*b)w + (a*b)*au

(ab)u = a(6a)w,

for all a,b £ A. It then follows that the omega fixed-point equation holds, i.e.,
{jj /J aa = a ,

for all a £ A.
Recall that a complete monoid is a commutative monoid (M,+ ,0) equipped

with all sums Yliei m i s u c h that

0

m

mi+m2

ieujtjij

where in the last equation it is assumed that the sets Ij are pairwise disjoint. A
complete semiring is a semiring A which is also a complete monoid satisfying the
distributive laws

- E
¿6/ ¿6/

iei
- E

£
¿€0
m

¿€{1}

£ mi
¿6(1,2} ££ m<

722 Werner Kuich

for all s £ A and for all families Si, i £ / over A. Esik, Kuich [9] define a complete
semiring-semimodule pair to be a semiring-semimodule pair (A, V) such that A is
a complete semiring, V is a complete monoid and an infinite product operation

¿>1
is given mapping infinite sequences over A to V with

($2si)v = YlSiV>
iei i€i

for all s £ A, v £ V, and for all families Si, i £ I over A and Vi, i £ I over V and
with the following three conditions:

n-< = I l i ^ + I - - • S„J
»>1 ¿>1

Si üSi+1 = Eh
¿>1 ¿>i

n E
(»l,i2,...)€/lX/2X.. ..¿>1

where in the first equation 0 = no < n\ < < . . . and • • are arbitrary
index sets. Suppose that (A, V) is complete. Then we define

£ s i
i>0

N - .
i>l

for all s £ A. This turns (A, V) into a starsemiring-omegasemimodule pair. By
Esik, Kuich [9], each complete semiring-semimodule pair is a Conway semiring-
semimodule pair. Observe that, if (A, V) is a complete semiring-semimodule pair,
then 0" = 0.

A star-omega semiring is a semiring A equipped with unary operations * and
w : A —> A. A star-omega semiring A is called complete if (/1, A) is a complete
semiring-semimodule pair, i.e., if A is complete and is equipped with an infinite
product operation that satisfies the three conditions stated above.

Consider a starsemiring-omegasemimodule pair (A, V). Then, following Con-
way [4], we define, for all n > 0, the operation * : Anxn —> Anxn by the following
inductive definition. When n = 0, M* is the unique 0 x 0-matrix, and when n = 1,
so that M = (a), for some a in A, M* = (a*). Assuming that n > 1, let us write
M as

" - (: i)

Kleene Theorems for skew formal power series 723

where a is 1 x 1 and d is (n — 1) x (n — 1). We define

" • - { " ') • №
where a = (a + bd*c)*, (3 = a*b6, j = d*ca, 6 = (d + ca*b)*.

Following Bloom, Esik [2], we define a matrix operation w : An*n —> V"* 1

on a starsemiring-omegasemimodule pair (¿4, V) as follows. When n = 0, M " is
the unique element of V°, and when n = 1, so that M = (a), for some a € A,
M " = (a"). Assume now that n > 1 and write M as in (1). Then

_ / (a + bd*c)» + (a + bd*cybd" \
\ (d + ca*b)u+ (d + ca*b)*cau' J ' w

Following Esik, Kuich [11], we define matrix operations Uk : Anxn —> V n x l ,
0 < k < n, as follows. Assume that M G A n x r l is decomposed into blocks a,b,c,d
as in (1), but with a of dimension k x k and d oi dimension (n — k) x (n — A:). Then

/ (a + W c) - \
M v d*<a + bd*cY)

Observe that = 0 and MWn = M U .
Suppose that (j4, V) is a semiring-semimodule pair and consider T = A x V.

Define on T the operations

(s,u) • (s',v) = (ss',u + s v)
(s,u) + (s',u) = (s + s' .u + u)

and constants 0 = (0,0) and 1 = (1,0). Equipped with these operations and
constants, T satisfies the equations

(x + y) + z = x + (y + z) (5)
x + y = y + x (6)

x + 0 = x (7)
(x - y) - z = x - (y - z) (8)

i - 1 = I 1 (9)
1 - x = x (10)

(x + y)-z = (x-z) + (yz) (11)
0 • x = 0. (12)

Elgot[8] also defined the unary operation f on T: (s ,u) l = (s, 0). Thus, f̂ selects
the "first component" of the pair (s,u), while multiplication with 0 on the right
selects the "second component", for (s,u) • 0 = (0,u), for all u € V. The new

724 Werner Kuich

operation satisfies:

x%-(y + z) =
x =

®H-0 =
(* + l/)1 =

(x • i/)1 =

Note that when V is idempotent, also

• y) + (iH • z) (13)
x H + (z - 0) (14)
0 (15)
xH + 2/H (16)
•aH-yH. (17)

x • (y + z) = x • y + x • z

holds.
Elgot[8] defined a quemiring to be an algebraic structure T equipped with the

above operations -,+,11 and constants 0,1 satisfying the equations (5)—(12) and
(13)—(17). A morphism of quemirings is a function preserving the operations and
constants. It follows from the axioms that x^ftj = x^I, for all x in a quemiring T.
Moreover, x f = x iff x • 0 = 0.

When T is a quemiring, A = T f = {x^f | x £ T } is easily seen to be a semiring.
Moreover, V = TO = {x • 0 | x G T } contains 0 and is closed under + , and,
furthermore, sx G V for all s € A and x G V. Each x G T may be written in
a unique way as the sum of an element of and a sum of an element of TO as
x = + x • 0. Sometimes, we will identify A x {0} with A and {0} x V with V. It
is shown in Elgot [8] that T is isomorphic to the quemiring Ax V determined by
the semiring-semimodule pair (A,V).

Suppose now that (A, V) is a starsemiring-omegasemimodule pair. Then we
define on T = A x V a generalized star operation:

(s,t/)® = (s V + s't;) (18)

for all (s, v) G T. Note that the star and omega operations can be recovered from
the generalized star operation, since s* is the first component of (s, 0)® and su is
the second component. Thus:

(a*,0) = (3,0)® H
(0 , 0 = (5,0)®-0.

Observe that, for (s,0) G A x {0}, (s,0)® = (s*,0) + (0,sw).
Suppose now that T is an (abstract) quemiring equipped with a generalized star

operation ®. As explained above, T as a quemiring is isomorphic to the quemiring
A x V associated with the semiring-semimodule pair (A,V), where A = T% and
V = TO, an isomorphism being the map x >-> (x^[, x-0). It is clear that a generalized
star operation ® : T —> T is determined by a star operation * : A —* A and an
omega operation " : A —» V by (18) iff

x®1 = (*1)®1 (19)
x® • 0 = (xH)® • 0 + z®f • x • 0 (20)

Kleene Theorems for skew formal power series 725

hold. Indeed, these conditions are clearly necessary. Conversely, if (19) and (20)
hold, then for any G we may define

W) * = (x1f)®f (21)
(x l i r = M f) ® - 0 . (22)

It follows that (18) holds. The definition of star and omega was forced.
Let us call a quemiring equipped with a generalized star operation ® a general-

ized starquemiring. Morphisms of generalized starquemirings preserve the quemir-
ing structure and the ® operation.

We now refer to some examples for the algebraic structures defined in this
section. All the following semiring-semimodule pairs are complete. Hence, they are
starsemiring-omegasemimodule pairs and Conway semiring-semimodule pairs, and
by (18) give rise to a generalized starquemiring.

(i) The pair ($ (£*) , $$(£")), where £ is an alphabet and ip denotes the power
set, is a complete semiring-semimodule pair. The first component of this pair is the
set of formal languages over finite words over E, the second component is the set of
formal languages over infinite words over E. (See Esik, Kuich [10], Example 3.2.)

(ii) The pair (№°((£*)),№°((Ew))), where №° = NU{oo} denotes the complete
semiring of nonnegative integers augmented by oo with the usual operations, is a
complete semiring-semimodule pair. The first component of this pair is the set
of power series with coefficients in №° over the finite words over E, the second
component is the set of power series with coefficients in N°° over the infinite words
over E. This pair is used if ambiguities of the formal languages in (i) are considered.
(See Esik, Kuich [10], Example 3.3.)

(iii) The pair (K~ax,,((E*)),K~ax9((E"))) is a complete semiring-semimodule
pair. It is defined before Corollary 30.

(iv) The clock languages of Bouyer, Petit [3] give rise to a complete semiring-
semimodule pair. (See Esik, Kuich [11].)

2 Skew power series over Conway semirings
Let A be a starsemiring. Then, for r € ^((E*)) , we define r* € AV((T,*}), called
the star of r by

(r*,e) = (r,e)*,

(r'.w) = (r,e)'- £ (r,u)¥>M(r».
uv—w, U^E

Moreover, we define r + £ Av((E*)) by r + = rr*. We prove now the result that the
structure (j4 e , + , ©(¿,, *, 0,1), again denoted by ((£*)), is a Conway semiring
if A is a Conway semiring. The proof of this result is a generalization of the
proofs of Theorems 2.19, 2.20, 2.21 of Aleshnikov, Boltnev, Esik, Ishanov, Kuich,
Malachowskij [1]

726 Werner Kuich

Theorem 2. Let A be a Conway semiring, tp : A —* A be an endomorphism and
E be an alphabet. Then the sum-star equation holds in A^l^£*)).

Proof. Let r,s € Av ({£*)). Then we prove by induction on the length of w G E*
that ((r 4- s)*,w) = ((r*s)*r*,w). The case w = e is clear. Assume now w ^ e.
Then we obtain ((r + s)* ,M) = ((r + s)*,e) Euv=w, + s, ((r + s)- , v) =
((r + s) V) £ ™ , U f i e M < P M ((r + s y , v) + ((r + S y , e) Z u v = W }

s)*,v). We call the first and second of these terms L\ and L2, respectively. More-
over, we obtain

((r* s)*r* ,w) = E^^Jir'sr, wi)^\{r*,w2) =
((r^eXr'^ + E ^ ^ , Wl^((r*sy,Wl)<PM(r*,w2) =

((r*Sy,e)(r*,w) +

(r* IUS)^ 1" 3 1 (s, W4)v|ui 1 ((r*Sy, V1)<p\w>I(r* w2) =

((r s) i s) Eiuitua=iu E u j v i = u) j Etu3ti<4=ui, ii)354e

We call the first, second and third of these terms R\, R2 and R3, respectively.
Eventually, we obtain

R2 = ((r + S)*,e) 'Eu1z=w, u^Ul^Kir-Syr*, z) =
((r + sy,e) E U 1 2 = „ , ui)¥>|uil((r + sy,z) = L2

and

Ri +R3 = ^E(r,u)^\{r*,v) +

((r 5) , . £) x v t u i IL)2 =w X^Ui Vi =U>1 =ui 1

((r + £ u a z = » , u 2 * e (r , U 2) < P ^ K (r * s) + r * , z) =

((r + s)*,c) Eu2Z=U,, ^ (^ ^ ((r ^ V * , z) =
((r + E U 2 2 = „ , U2^(r,u2)<pM((r + sy,z) = Lx.

Hence, Li + L2 = Ri + R2 + R3 and the sum-star equation holds in £*)). •

Theorem 3. Let A be a Conway semiring, ip : A —> A be an endomorphism and
E be an alphabet. Then, for r £ ^ ((E*)) , the following equation is satisfied:

r* = £ + rr*

Kleene Theorems for skew formal power series 727

Proof. We prove by induction on the length of w G E* that (r*,w) = (e + rr*,w).
The case w = e is clear. Assume now w ± e. Then we obtain

(s + rr*,w) = T,Wlw2=w(r>wi)(P]wil(r*,w2) =
(r,e)(r',w) + ZW1W2=W< =

(r+,e) £ „ , u?£e(r,«)¥>"»" ir'v) + EW1W2=W, =

•
Theorem 4. Let A be a Conway semiring, ip : A A be an endomorphism and
E be an alphabet. Then, forr,s G ̂ ((E*)) , the following equation is satisfied:

r(sr)* = (rs)*r .

Proof. We prove by induction on the length of w G E* that (r(sr)*,w) =
((rs)*r,w). The case w = e is clear. Assume now w ^ e. Then we obtain

(r(sr)*,ti>) = =

(r, £)((«•)', £) £ „ „ = „ , Ufte(sr,u)<pM((sr)',v) +

ZW1W2=W, Wl?Jr,™i)<Plwil(M*,w2) =
(r(sry, e) Zuv=wt ^£(s, e)(r, u^N ((«•)',v) +

(r(sry,£)Zuv=wZW3W^u, ^e{s,V>3)<PM(r,V>4)^((srrtv) +

((rs)+,e) U7iE(r,u)<pM((sry,v)+
(r(sr)*, e) £ „ E№3tt4=u, W3^£(s, w3)<pM(r, u>4 V"'((sr)*, v) +
EWlW2=Wl Wl&(r<Wl)<PIWll((Sr)*<W2) =

((rsy, e) u # £ (r , u)^ ((«•)•, v) +
(r(sry, e) ZW32=Wt ^ (s , w3)^(r(sr)*, z)

((rsyr,w) = E ^ ^ r s) ^) ^ ! ^) =
((rs) ' ,e)(r , w) + w2) =
((ra^.eXr.to) +

i(rsy,e) ZUV=WL, u&(rs,u)<PM((rsy,v)<P^(r,w2) =

¿-/UV=vji, u^e Z-iw3Wi=u (r, w4)ip^((rsy ,v)<p^(r, w2) =
((rsy,e)(r,w) + ZWlW2=w((rsy,e)-

((rsy, e)(r, w) + ((rs)*r, e) £ u 2 = t u , u^(s, u)<pM((r«)*r, z) +

728 Werner Kuich

((rs)',e)(r,w) + ((«)V,e) ((rs)'r,z) +
((«)*,£) *e(r,v>3)<pM((sry,z) +
((ra)*,e)(r,t<;)VM((sr)+,e) =

((«)*r, e) Euz=tu , ({rs)*r, z) +
((«)* .£) ^ (^ ^ ' ((s r) ' , *) .

Hence, (r(sr)*,u;) = ((rs)*r,w). •

Corollary 5. If A is a Conway semiring, <p : A —> A is an endomorphism and E
is an alphabet then ((£*)) is again a Conway semiring.

Proof. The equations of Theorems 3 and 4 hold iff the product-star equation holds.
•

Corollary 6 (Bloom, Esik [2]). If A is a Conway semiring and E is an alphabet
then .A((£*)) is again a Conway semiring.

In the next corollary we consider A"xn((£*)). Here (p : Anxn —> An*n is the
pointwise extension of the endomorphism tp : A —^ A. Clearly, the extended is
again an endomorphism. Note that the set An*n of n x n-matrices is equipped
with the usual matrix operations addition and multiplication.

Corollary 7. Let A be a Conway semiring, <p : A —* A be an endomorphism, E
be an alphabet and n > 1. Then (Av({E*)))nxn and -A"xn((E*)) are again Conway
semirings.

Theorem 8. Let A be a Conway semiring, <p : A —> A be an endomorphism, E
be an alphabet and n > 1. Then {Av((E*)))nxn and A™xn{{E*)> are isomorphic
starsemirings.

Proof. We will prove that (Av((T,*)))nxn and A™n{{E*)) are isomorphic by the
correspondence of M £ (A,((E*)))nxn and M' £ A%xn ((£*)) given by (Mi3,w) =
(M',w)ij, w £ E*, 1 < i,j < n.

We prove only the compatibility of multiplication and star. Let M\,M2 £
(^<(E*)))n x n with corresponding M[,M'2 £ A"xn{(£*)), respectively. Then, for
all w £ E* and 1 <i,j<n, we obtain

(M[M2,w)ij = (Eu ^JMiuWKM^v))^ =
¿->uv=w ¿^l<fc<n
Zl<k<nZuv=J(M1)ik,u)<pM((M2)kj,v) =
Elifc<„((Ml)ik(M2)k j ,w) =; ((M\M2)ij ,w).

Let now M £ (Av{{E*)))nxn correspond to M' £ A™n((£*)). We assume that M
is partitioned as usual into blocks

Kleene Theorems for skew formal power series 729

where a e (Av{(£*)))lxl, b € (A v ((E*))) l x (n _ 1 \ c £ (4 , « E * ») (b ~ 1) x 1 , d G
{Av{(E*)))(n-1)xin-1). We first show by induction on the length of w € £* that
((M*) 11,«0 = ((fl + ^ r , «) and (M7*, w)n =
<^ltIl(M'*,'i;))ii coincide. The case w = e is clear. Assume now w ^ e. Then we
obtain

№)n,v>) = (a + £ „ , + Wc.^M««» + bd*c)\v) =
(a + bd*c, e)' u^£(a, u)yM ((a + bd*c)\ v) +

(a + bd*c,e)* £ „ , u * z2)<P|u|((a + bd*Cy, v) =
(a + bd*c, e)" ((a + td'c)*, +
(a + U5ie(M*,e)(c>tt)¥>N((o + 6d'c)*,i;) +
(a + c,£)* £ „ E 2 1 2 2=„, V 2 l | (c , z 2) ^ ((a + bd*c)\ v).

We call the first, second and third of these terms L\, L2 and L3, respectively.
Moreover, we obtain

(M",w)n = E i ^ x n i W . e i i i E u « ^ , ^(^^""'((M'',«),-,)' =
E K y X n t t ^ *) ! ^) ^ , U)lf\u\((M*)ji, f) =
((a + bd*c)*,e) £ „ , u # £ (a , u)VM((o + bd*c)\v) +
((a + bd*c)\e) uteM<pM(d*c(a + bd*c)*,v) +
((a + bd*c)*bd*,e) E u w = t u j u ^ (c , «) ^ l ((a + 6d'c)*,«) +
((a + bd*c)*bd*,e) Zuv=w, (d'c(o + 6d*c)*,«).

We call the first, second, third and fourth of these terms R\,R2,R3 and /¿4, re-
spectively.

It is clear that Li = R\ and L2 = R3. Hence, we have only to prove that
L3 = R2 + R4. We obtain

L3 = ((a + bd*c)*,e) £UU=1I) £ 2 l 2 2 =u, E 2 3 2 4 = 2 i

(b, z3)<p^(d*,zi)<p^(c, W ' f t « + bd*c)\v) =

Eu l U l V|Z31 (<*. V1*3*1 1 (<**. w i) (c , ((a + W c) ' , v) =
((a + bd*c)*,e) Euv=w £ 2 l 2 2 = u (M (d V) •

=21, „ 1 # e (d , U l I (d * I (c , z2)y>N((a + fcd-c)*, v) +
((a + bd*cy,e) E r a E 2 l 2 2 = u E 2 3 2 4 = 2 l , 23*e(M3)v|z3l(<T,£) •

We call the first and second of these terms L4 and ¿5, respectively.
We now obtain

La = ((a + bd*c)*bd*,e) £„„=„ £2l22=u EUlv1=zl,
(d, u i I (d * (c , z2)<pM ((a + 6d*c)*, v) =

((a + bd*c)*bd*,e) E„ l 2 3=u,
{d, u\)(p\UlI (d*c, 23)<piu| ((a + M*c)*, w) =

((a + bd*c)*bd*,e) E U l 2 4 = „ , Ul? ie(d, ui)^»»l(d*c(o + bd*c)*, z4) = R* .

730 Werner Kuich

Eventually, we obtain

L5 = ((a 4- bd*c)*,e) Zuv=w £2l22=u £2324=2,, z3&
(b, z3)v»lZs' (d*. ¿4)<P|211 (c, sate1"1 ((a + 6d*c)*,«) =

UD=UJ £2325=11, 23?i£
(6,23)y|z31 (d*c, z5)y|u| ((a + W c) * , v) =

((o + M * c) * , e) £ i s l 8 = t B i Z^£(b,z3)^(d*c(a + bd*cy,z6) = R2.

Hence, L3 = L4 + L5 = i?4 + i?2-
Next, we prove by induction on the length of w € £* that the (l,2)-blocks of

M* and M" correspond to each other: ((M*) 12, w) = (M'*,w) i2. Here we have
W)12,v>) = ((a 4- bd*c)*bd*,w) and (M'*,w)12 = ((M'*,e) Zuv=w, ^e(M'>u)"
<£>l"l(M'*,i;))i2. The case w = e is clear. Assume now w ± e. Then we obtain

((M*)u,w) = ZZlZ2=J(a + bd*cy,z1)<pM(bd\z2) =
(a + Wc ,e)* (M* ,w) + £ 2 l 2 2 = > + 6d*c,£)* u j t e

(a + u)y>l((a + 6d*c)*, v)y>lx,l(M*, z2) =
((a + bd*Cy,e)(bd*,w) +
£ u „ 2 2 = „ , u^((a + bd*cy,e)(a,u)<pM((a + bd*cy,v)<pM(bd*,Z2) +
HUVZ2=W, + M*c)',e)(6d' Ie)(c lu)¥»l«l((a + bd*c)* ,v)^{bd\z2) +
£ 2 l 2 2 = J (a + bd*c)*,e) £u„=2l £2324=u, 23^£

(1bd*, 2 3) (c , «4)^1«' ((a + bd*c)*, I (6d*, z2).

We call the first, second, third and fourth of these terms Lq,L\, L2 and L3, respec-
tively.

Moreover, we obtain

(M'*,u>)i2 = E 1 < i j -< n (M" 1 e) l i £ 1 1 1 > = 1 I , i uJy^ 'C iAf ' * , «) i a) =

((a + W c) ' l £) u)<pM((a + bd*c)*bd*,v) +
((a + M*c) ' ,e) £ „ „ = „ , + co '6)*,«) +
((a 4- bd*c)*bd* ,e) t i^e(c,«)v>'u '((a + bd*Cybd\v) +
((a + bd*c)*bd*,e) „ ^ (d , ti)y>M((d + ca*6)*, v).

We call the first, second, third and fourth of these terms
Ii 1, R.2, and re-

spectively.
It is clear that L\ = R\ and L2 — R3- Hence, we have only to prove that

LQ + L3 = R2 + R4. We obtain

((o + bd*cy, s) £2l22=U)(6, z1)^(d\z2) +
((a + bd*cy,e)ZZ3Zs=w, Z3^(bd\z3)^{c(a + bdrcybd\zb) =
((a + bd*c)\£)(b,£)(d*w) +
((a + bd*c)*, e) £ 2 l 2 2 = t u , tlftt(b, z{)^{d\z2) +
((a + bdTcY,e) £ 2 3 2 5 = t u , 23^(b,e)(d",z3)<p^(c(a + bd'Cybd*,z5) +
((a + bd*c)*,e) £2325=u/ £2fi27=23,

(,b, 26)V|Z61 (d*, zr)v>lIsl(c(a + bd*c)*bd*, z5) =

Kleene Theorems for skew formal power series 731

((a + bd*c)* ,e)(b,e)(d*,e) Euv=w, (d*,v) +
((a + bd*cy,e)Z2lZ2=w,Zlte(b,zi)<PM(d*,z2) +
((a + bd*c)*,e)(b, e) £ 2 3 2 5 = t t (d* , e) E ™ = 2 3 , « A

(id, u)<pM (d* , v)<pM (c(a + bd*c)*bd*, z5) +
((a + 6d*c)* , £) EZ6Z8=tUiZ6^(6,26)v»|z8|(d*c(a + bd*Cybd*,z8) =
((a + bd*c)*bd*,e) £ u „ = l W £ (d , n) ^ { d \ v) +
((a + 6d*c)*6d*, e) Eu 2 6 = 1 1 , us i e(d, u)<pl"l(d*c(a + &d*c)*&d*, z6) +

((a + bd*c)*, e) £ 2 6 2 8 = „ , 2 6 # £(6, z 6) ^ l (d * c (a + bd*c)*bd\ z8) = /L, + R2 .

Here we have used in the last equality the equation (d + ca*b)* = d* + d*c(a +
bd*c)*bd*.

The equality of the (2,1)- and (2,2)-blocks is proved by symmetry: interchange
1 and 2, a and d, b and c. •

Corol lary 9. Let A be a Conway semiring and E be an alphabet. Then
(A({T,*)))nxn and A" x n ((£*)) are isomorphic starsemirings.

Let <p' : A —> A be endomorphisms. Then we define the mapping :
Av((£*)} ^ ((E *)) by (^ (r) , « ;) = <p'(r,w), r € for all w e £*.
Moreover, ip and ip' are commuting if, for all a € A, <p(<p'(a)) = <p'(<p(a)).

The next theorem is a special case of Theorem 4.3 of Droste, Kuske [5].

T h e o r e m 10. Let ip,ip' '• A —> A be commuting endomorphisms. Then <p's :
Av{(£*}) —> ^((E*)) is an endomorphism.

Proof. Clearly, (¿/E(0) = 0 and <p's(e) = e. Let now rx,r2 € Av({£*)). Then, for all
w € £*, (v?'s(ri + r2), w) = (p'(ri +r2,w) = tp'(ri,w) + <p'(r2,w) = (<p'E(ri),w) +
(<Px(r2),w),i.e.,

<p'Ari + r2) = Vs(ri) + Vsfa)>
and {<p'z(n Qvr2),w) = <p'(n Qtp r2,w) = y ' (E „ „ 1 = J r i , ' « i) i ' | , " l (' , 2 , H 2)) =
T.WlW2=wiP'{n,wl)<p'{ipM{r2,w2)) = Y.wiw2=wv'{ruwl)^\{v'{r2,w2)) =
E ^ ^ J ^ i) , w i) ^ { ^ { r 2) , w 2)) = (^ (r O O ^ s f o) , ™) , i.e.,

<P'Ar 1 ©¥> r2) = ¥»s(n) ©v> V s f o) .

•

Corol lary 11. Let <p : A —» A be an endomorphism. Then w : ^ ((E *)) —>
£*)) and </?£ : A((E*)) —> A{{T,*}) are endomorphisms.

Corol lary 12. Lei A be a Conway semiring, <p : A ^ A be an endo-
morphism, and E i ,E 2 be alphabets. Then ¿A^T-l)))^ ((£2)). (A>((E*»X(E2)}-
(-A((£i)))v>El ((£2)) and (^4((£I)))((£2)) are again Conway semirings.

T h e o r e m 13. Lei A be a Conway semiring, ip,ip : A —> A 6e commuting endomor-
phisms and Ei, £ 2 be alphabets. Then (Av({T,*1)))^i ((£$)) and (4 , / , ((£2)))^ ((£*)}
are isomorphic starsemirings.

732 Werner Kuich

Proof. We will prove that (A p P i))) ^ , ((E2)) and (A/,((E5»)„Ea((Si» are isomor-
phic by the correspondence of r G ((E2)) and r' G
(i4^«E5»)№2((E;)) given by ((r,wa),Wl) = {(r',wi),w2), u»i € EJ, u;2 G E2.

We prove only the compatibility of multiplication and star. Let r i ,r 2 G
(>M<si»)v>El«£2» w i t h corresponding r[,r'2 G (^(<E2>»№ a«EJ», respectively.
Then, for all u/i G EJ and w2 G E2, we obtain

((r'1r^w1),w2) = W.WOOVE, (ri.vahws) =

Ev1v2=wl((r'l'Vl)<Pxl (r'2,V2),W2) =

£ u i u 2 = u , 2 K¥UlK{r2,U2),V2)) =

£u1ua=iO a((r l 'u0^S l l l(r2»u2)>1 i ' l) = {(nr2,W2),Wi).

Let now r G (^ « E ; ») ^ ^ » correspond to r' G (A/,((ES»)VSj((E;». We
show by induction on |u/i| + |u;2|, w\ G EJ, u>2 G E2, that ((r*,W2),wi) =
((r'*,i<;i),u>2). The case |iui| + \w2\ — 0, i.e., w\ = e, w2 = e, is clear. As-
sume now |u>i| 4- |to2| > 0. Then we consider the three cases (i) wi = e, W2 ^ e,
(ii) w\ ^ e, w2 = e and (iii) wi ^ e, w2 ^ e.

(i) We obtain

((r*,w2),£) = (£„11ia=1Bai U1 (r*,e)(r, w i 1 (r*, w2),e) =
£„1U2=W2 , „ ^ « ((r ' . ^ . e J i i r . u O . e ^ ' i i r ' . t i a J . e)

and
((r 'V),«^) = ((r',£)*,w2) =

£UiU2=*2, e),£)((r,u1),£)^\((r*!U2)!e).

(ii) By the substitution <-> <£><-> r <-> r', Ej <-> E2, the proof of the
equality ((r*,e),wi) = {{r'*,wi),e) is symmetric to the proof of (i).

(iii) We obtain

((r*,w2),z«i) = (£U1U2=UJ2, „ ^ ¿ n r . u x) ^ 1 =

((»••,£), wi)*»11'11 ((»•, « 0 , wa)^!"1"»! (V1"1' ((r*, ua), v3)) =

((r*,£),V1)<p^((r,U1),V2)<p^(^((r*,U2),V3)) +
£U i U 2=.2 , £v2V3=™I, w a#eC(r* ' e) ((r> 1 (-01"11 ((r*, U2), U3)) +
£ u i u 2 = t u 2 , U i y i £ ((r * ' £) ' £) ((r ' u l) > e) ^ , ' U l ' ((r * i i i 2) , « ' l) •

We call the first, second and third of these terms L\, ¿2 and L3, respectively.

Kleene Theorems for skew formal power series 733

Moreover, we obtain

((r ^ W) = E I I I 2 = B 1 , Xlte((r'*,e)(r',x1)<p^(r'*,x2),W2) =

((r*. yi), e)^Vl]((r, y2), Xl)<pM ((r*, y3), x2)) =

{{r*, 2/1), e)^Vl]((r, y2), y3), x2)) +
Ex,*»»«,, x1^T ly2V3=W2l Vajie((r*,e),e)((r,w),®i)v>|ll|(^lwl((r*,w3),x2)) +

We call the first, second and third of these terms Ri, R2 and R3, respectively. It
is clear that L2 = R2. We will prove that L3 = Ri and L\ = R3. We obtain

((r*,e),e)((r, «0 , e)rpM ((r", e)(r', i i) < Ä ' V 2) , ua) +
((r*,£),e)((r, e)V|tU21 ((r*. e), =
Euiti2=1«2, Ul̂ e, U2#£ Et,t2=U)l, Es,S2S3=1i2
((r*, e), e)((r, Ul), e)V|ui1 (((r*, sr), £)V|si|((r, «2), ((r*. «3), ta).)) +

Eu,s,i2s3=ti;2, Ei,t2=u;i, ii^e

and

— ExiX2=toi, Xî e Ep,p2j/2i/3=tU2, Pi

Hence, L3 = R\.
We now write Li and i?3 in an other form, using the isomorphism of the induc-

tion hypothesis. Then we obtain

£u,H2=ia2, Ev, v2U3=tUi, tlljie

and

By the substitution xi «-» wi, x2 <-> u2, vi «-> yi, u2 3/2, 3̂ J/3, W2,
<-+ r <-» r', £1 E2, L R, the proof of the equality L\ = i?3 is symmetric

to the proof of the equality iii = L3. •

Corollary 14. Lei A be a Conway semiring, ip : A be an endomorphism and
E I , E 2 be alphabets. Then « E J » , (A«S;»)VJSl « E $ » , (^ « E J ») ^ »
and (X((Ei)»<(E5», ond(^((E5») V B j ((EI» , (44E$)»«Ei>) , (¿ « E J) » ^ «EJ»
and (J4((E2)))((EI)) are isomorphic starsemirings, respectively.

734 Werner Kuich

3 Finite automata and Kleene Theorems over
Conway semiring-semimodule pairs

In this section we consider finite automata over semirings and quemirings and prove
some Kleene Theorems.

By ((£"")), + , 0) we denote the set of skew power series (s> v)v> (s< v) e

A, with pointwise addition. We define a (left) action : ^ ((E*)) x ((£")) —>
Av((£")), {r,s)^r®ip s, by

(r®vs,v)= (r,w)<plw\{s,u),
tu6£", wu=v

Theorem 15. Let A be a complete semiring, ip : A —> A be an endomorphism
of complete semirings and E be an alphabet. Then ((£")) is a (left) Av {(£,*))-
semimodule.

Throughout this section, A is a Conway semiring, such that (A^,({£*)), AV>{(T?')))
is a starsemiring-omegasemimodule pair (see Elgot [8], Esik, Kuich [9]). Moreover,
we assume 0" = 0. Furthermore, we use the notation ^ (E U e) = {a£ + £ 2 . e i : axx \
a,ax € >1}, Av(E) = {Y,xer:axx I ax 6 A}, Av(e) = {ae | a e A}.

A finite automaton over the semiring ^ ((E*))

a = (n, i , M, p)

is given by

(i) a finite set of states { 1 , . . . , n}, n > 1,

(ii) a transition matrix M € (^ (E U e)) n x n ,

(iii) an initial state vector I € (A v (£)) l x n ,

(iv) a final state vector P € (•/4v,(e))nxl.

The behavior of 21 is a skew power series in Av({Ti*)) and is defined by

||2l|| = IM*P.

(See Conway [4], Bloom, Esik [2], Kuich, Salomaa [14].)

A finite automaton over the quemiring A v ((£*)) x AV(CSU))

21 = (n, I, M, P, k)

is given by
(i) & finite automaton (n,I,M,P) over Av({£*)),

(ii) a set of repeated states { 1 , . . . , fc}, 0 < k < n.

Kleene Theorems for skew formal power series 735

The behavior of 21 is a pair of skew power series in ((£*)) x E1")) and is
defined by

||2l|| = IM*P + IM"k .

(See Bloom, Esik [2], Esik, Kuich [11].)
Observe that, if 21 = (n, I, M, P) is a finite automaton over Av((£*)) and 21' =

(n,I,M,P,0) is a finite automaton over .Â , ((£*)) x A^{(£")) without repeated
states, then ||2l'|| = ||2l||.

A finite automaton 21 = (n , I , M , P) over Av((E*)) or 21' = (n , I , M , P , k) over
{(£*)) x Av{(£")) is called e-/ree if the entries of M are in
A subsemiring of .A^ ((£*)) is rationally closed if it is closed under the operations

+, - ,* . A subquemiring of the generalized starquemiring ({£*)) x ^((E"")) is
Lj-rationally closed if it is closed under the operations + , By definition,
A™4((£*)) (resp. cj-9Iiat(Av>(E U e))) is the smallest rationally (resp. cj-rationally)
closed semiring (resp. quemiring) that contains A{fi(EUe).

Since A is a Conway semiring, we can specialize the Kleene Theorem (Theo-
rem 3.10) of Esik, Kuich [11].

Theorem 16. Let (^((E*)) , .<4̂ ((£"))) be a starsemiring-omegasemimodule
pair, where A is a Conway semiring and 0W = 0. Then the following statements
are equivalent for (r, s) € ^ ((E*)) x ^ ((£ ")) :

(i) (r,s) = ||2l||, where 21 is a finite automaton over Av((Ti*)) x /^((E1")),

(ii) (r,s) G w-Rat(J4v,(E U e)),

(Hi) r £ ^ a t « £ *)) , S = Li<3-<m^ ™th Uj,vj G E*)).

Proof. By Theorem 3.10 of Esik, Kuich [11] and by Corollary 5. •

Moreover, Conway [4], Bloom, Esik [2], or Aleshnikov, Boltnev, Esik, Ishanov,
Kuich, Malachowskij [1] imply at once the following generalization of the Kleene-
Schiitzenberger Theorem.

Theorem 17. Let A be a Conway semiring. Then the following statements are
equivalent for r € Av((£*)):

(i) r = ||2l||, where 21 is a finite automaton over A^ ((£*)),

(ii) r = ||2l||, where 2i is an e-free finite automaton over Av((£*)),

(Hi) r G ((£*)) .

Proof. Theorems 3.2 and 3.3 of Aleshnikov, Boltnev, Esik, Ishanov, Kuich, Mala-
chowskij [1]. •

This theorem can also be seen to be a specialization of Theorem 16 for finite
automata over AV{(H*)) x A v ((£")) with empty repeated states set.

736 Werner Kuich

4 Cycle-free finite automata and a Kleene Theo-
rem over complete semiring-semimodule pairs

We first prove that, for a complete star-omega semiring A and an endomorphism
ip : A —».' A compatible with infinite sums and products, (((£ *)) , ((£"))) is a
complete semiring-semimodule pair.

Then, for a subsemiring A! of A, such that, for any cycle-free q € A'(EUe), <p
is in A'V((T1UJ)), we consider cycle-free finite automata over the quemiring ((£*)) x
A'p((£")) and prove a Kleene Theorem.

We then show that the star-omega semiring R£?ax is complete. This implies
then the Kleene Theorem of Droste, Kuske [5].

Assume that A is a complete star-omega semiring, i.e., there exists an infi-
nite product subject to three conditions appearing in the definition of a complete
semiring-semimodule pair. Then we define an infinite product for skew power series
in the following way:

(ri,ra> • • •) ^ n ^ G MWh rj G A^i£*», j > 1 ,
j> l

where, for all v £ S u ,

(1 1 % «) = E n ^ 1 - ^ 1 1 ^ ' ^) -
j> 1 U=t>iVj... J>1

Observe that now, for r £ A^ ((£*)),

r " = J] V
¿>i

Theorem 18. Let A be a complete star-omega semiring, <p : A —* A be an endo-
morphism compatible with infinite sums and products and £ be an alphabet. Then
(AV{(T,*)), ^ ((E "))) is a complete semiring-semimodule pair satisfying (ae)" = 0
for a £ A.

Proof. We only prove the equation

I T (E ^) = ' E rjGAviV*)}, j> 1.
j>i ijBij (i1,t2,...)e/ix/2x... j>i

We obtain, for v £ £",

E(n,i2,...)6/ix/2x... Eu=ulV2... rij>l ^ V l 'V3~^{rj,Vj) =
...)6/lX/2X...(rij>l rj>V) =

(E(t! ,i2,...)e/ix/2x...

Kleene Theorems for skew formal power series 737

Consider now, for a 6 A, v G £ " , fll^i oe,v) = E„=„lUa... Uj>i <pivi-v>~lKae,Vj)-
Then infinitely many of the Vj are unequal to e. Hence, (as, Vj) = 0 for infinitely
many j and d l ^ i ae> u) = 0. •

In the sequel, we often denote simply by • or concatenation.

Corollary 19. Let A be a complete star-omega semiring, ip : A —> A be an endo-
morphism compatible with infinite sums and products and £ be an alphabet. Then
(A^,((£*)), Av((£"))) is a Conway semiring-semimodule pair satisfying (ae)" = 0
for a € A.

Proof. By Theorem 3.1 of Esik, Kuich [9]. •

Corollary 20. Let A be a complete star-omega semiring, <p : A —> A be an endo-
morphism compatible with infinite sums and products and £ be an alphabet. Then,
for n > 1, ((Av((£*)})nxn, (Av((£")))") is a complete semiring-semimodule pair
satisfying (ME)" = 0 for M e Anxn.

Proof. By Esik, Kuich [9] and an easy proof by induction on n. •

Corollary 21. Let A be a complete star-omega semiring, ip : A —> A be an endo-
morphism compatible with infinite sums and products and £ be an alphabet. Then
the following statements are equivalent for (r, s) G A^ ((£*)} x ,4 v ((£")):

(i) (r,s) = ||2l||, where 21 is a finite automaton over {(£*)) x {(£")),

(ii) (r,s) G w-Rat(Av(£Ue)),

(Hi) r G A?<(£*», s = Ei<j<m^r W G A^((E')).

(iv) (r, s) = ||2l||, where 21 is an e-free finite automaton over AV{(T,*}) x ((£")).

(v) (r, s) G w-Rat(i4y,(£ U e>),

(vi) r G AJf ((£*)), s = Ex<j<mu^ wUh G ((£*)) where (uhe) = 0,
(vj,e) = 0.

Proof. Since ((£*)), is a complete semiring-semimodule pair, it is also
a Conway semiring-semimodule pair by Corollary 19. Moreover, (ae)w = 0 for
a G A. Hence, the corollary is implied by Theorems 16 and 17. •

A semiring A is called zerosumfree if, for all oi, a2 G A, oi + a2 — 0 implies
a\ — 0 and a2 = 0. A semiring A is called positive if A is zerosumfree and if, for
all a\,a2 G A, whenever si • s2 = 0 then si = 0 or s2 = 0 (see Eilenberg [7]). An
element a G A is called nilpotent if there exists a k > 1 such that ak = 0. The
following lemma is from Esik, Kuich [10].

738 Werner Kuich

Lemma 22. (i) Let A be a complete positive semiring. Assume that

M = (c d) £ Wh6re 0 € d G ^(n_1)x(n_1) •

If M is nilpotent then a + bd*c = 0.
(ii) Let A be a zerosumfree semiring. Assume that

M = (c d) G where a G AniXni< d£An*xn\ m+n2 = n.

If M is nilpotent then a, d, be and cb are nilpotent.

A skew power series r G A v ((£*)) is called cycle-free if there exists a k > 1 such
that (r, e)k = 0, i. e., if (r, e) is nilpotent. A finite automaton 21 = (n, I, M, P) (resp.
21 = (n,I,M,P,k)) over ((£*)) (resp. ((£*)) x A ^ E ") » is called cycle-free if
M is cycle-free.

For the rest of this section, A is a complete star-omega semiring and ip : A —> A
is an endomorphism compatible with infinite sums and products.

Theorem 23. Let Abe a positive complete star-omega semiring, ip : A —> A be an
endomorphism compatible with infinite sums and products and E be an alphabet. Let
A' be a subsemiring of A such that, for any cycle-free q G A'tp(EUe), qu G Ew)).
Assume that M G (A'v{£ U £))nXn is cycle-free. Then M" G (A'v{(£")))".

Proof. The proof is by induction on n. The case n = 1 is clear. Assume now that
n > 1 and partition M as usual into blocks a,b,c,d, where a G U e) and
d G (A^(E U £)) (" - i) x (n - i) Consider (M»)x = (a + bd*c)w + (a + bd*c)*bd". By
Lemma 22, (a + bd*c,e) = 0 and d is cycle-free. Hence, (a + bd*c)bJ G A ,̂ ((£ "))

and d" G (A^((E")))n _ 1 . Moreover, (a + bd'c)* G ^ ((£*)). This implies that
(M")i G A ((£")). By application of the omega-permutation-equation (see Bloom,
Esik [2]) we obtain that Mw G (A^,((Ew)))n. •

By definition, 3 t a i (4 , (E U e » C is the smallest semiring containing
AV , (EU£) such that, for q G iHat(AL/,(E U £)) where (q,e) = 0, q* is again in
9iat(AV , {E UE)).

Theorem 24. Let A be a positive complete star-omega semiring, ip : A —» A be an
endomorphism compatible with infinite sums and products and £ be an alphabet. Let
A! be a subsemiring of A such that, for any cycle-free q G A^(£Ue), qu G A ,̂ ((£")).
Assume that M G E U £)) n x n is cycle-free. Then, for 1 < i < n, 1 < j < m,
there exist Uij,Vij G iRat(Av(E U £)), where (Uij,e) = 0, (Vij,e) = 0, such that

Proof. The proof is by induction on n. The case n = 1 is clear. Assume now
that n > 1 and partition M as usual into blocks a,b,c,d, where a G A^(E U £)
and d G {A' (E U e)) (n - i) x (n - i) _ T h e e n t r i e s o f a + hd*c^ (a + u*c)*b and d

Kleene Theorems for skew formal power series 739

are in U e)). Hence, by Lemma 22 , there exist t £ SKat^^E U e)),
u £ (9tat(^(E U £ ») l x (n - 1) , where (i,e) = 0, such that (Mw)i = tw + udu =

+ u(dk)u = tu + udk(dkY for all k > 1. Here the second equality follows by
Corollaries 4.3 and 4.2. Since d is cycle-free there exists a k > 1 such that (dk, e) —
0. Let now (ud k) i = u{, (dk)f = v^ By induction hypothesis, Vi = J2\<j<m u'ijv"ij>

where (u'ips) = 0, (v'ijte) = 0. Then (M-)x = V + E x ^ m « ^ " « .
where (i,e) = 0, (uf,e) = 0, (u^,e) = 0, (v^,e) = 0. The omega-permutation-
equation proves the theorem for (Mw)j, 2 < i < n. •

Theorem 25. Let A be a complete semiring and A! be a subsemiring of A. Let
21 = (n, I, M, P) be a cycle-free finite automaton over the semiring A'V((T,*)). Then
№ \ e W » -

Proof. Since 51 is cycle-free, (M,e)* £ A'nxn. Let Mj = £ l 6 S (M , x) x . Then,
since ((M,e)*Mi,e) = 0,

M* = ((M, e)*Mi)*(M, e)* £ (^ ((E*))) n x n .

(Here we have applied already the forthcoming Theorem 38.) Hence, ||2l|| £
A'V«Z*)). •

Theorem 26. Let A be a positive complete star-omega semiring, ip : A —» A be
an endomorphism compatible with infinite sums and products and E be an alpha-
bet. Let A' be a subsemiring of A such that, for any cycle-free q £ j4^(EUe),
qw £ ((£")). Let 21 = (n , I , M , P , k) be a cycle-free finite automaton over the
quemiring A'v({E*» x A'v((£"». Then ||2l|| e A'v{(£*)) x ^ « E " » .

Proof. By the proof of Theorem 25, M* £ (A'v{{E*»)nxn. By Theorem 23, M" £
(A;«£">))" . Hence, ||2l|| € ^ « E ') > x A'v((£<")>. •

Theorem 27. Let A be a positive complete star-omega semiring, (p : A —» A be an
endomorphism compatible with infinite sums and products and E be an alphabet. Let
A' be a subsemiring of A such that, for any cycle-free q £ j4^(EUe), qu £ ({£")).
Then the behaviors of cycle-free finite automata over ^ ((£*)) x A' {(Ew)) form a
subquemiring Tv of A'v ((£*)) x A'v{(Ew)) containing A'v(EUe), such that for r £ fv,
where (r^,e) = 0, r® is again in T,

Proof. Inspection of the proofs of Theorems 3.3-3.8 of Esik, Kuich [11] shows that
all constructed finite automata are again cycle-free. This is seen by the proofs of
Lemmas 3.15-3.17 of Esik, Kuich [10]. Hence, Theorem 26 proves our theorem. •

Theorem 28. Let A be a positive complete star-omega semiring, ip : A —> A be an
endomorphism compatible with infinite sums and products and E be an alphabet. Let
A! be a subsemiring of A such that, for any cycle-free q £ Ue), qu £ A'{p({'Eu')).
Then the following statements are equivalent for (r,s) £ ((£*)) x A'v({Ew)):

(i) (r, s) = ||2l||, where 21 is a cycle-free finite automaton over {(£*)) x
A'{(£")),

740 Werner Kuich

(ii) (r,s) 6 w-iHot(A;(EUe)),

(iii) r G JRatiA^E U £)) and s = £1<i<m Uivf with Ui,Vi G 9tat(Av(E U e)) and
•(ui,-e) = 0, (vi,e) = 0.

Proof, (i) => (iii): By Theorems 24 and 25.
(iii) => (ii): Since r G 9iat(Av,(E U e)) and s G ¿>-9iot(A^(E U e).0, we obtain

(r, s) G w-iRat(i4^(E U e).
(ii) (i): By Theorem 27. •

We now want to prove the Kleene Theorem of Droste, Kuske [5]. We first
consider the complete semiring

Kmax = ({a > o I a G M} U { -oo ,oo } ,max,+ , - o o , 0) .
Here the operations are as usual, with —oo + oo = —oo, infinite sums are defined by
Yl'iei ai = s uP{at | i G / } and infinite products are defined by ni>i ai ~ £ i > i a»-
Here E ^ j f l i denotes s u p { £ 1 < i < n ai \ n > 1}. We now show that this infinite
product satisfies the three laws of a complete star-omega semiring.

(i) Let di > 0 and 0 = no < n\ < n2 < -. • and define 6* = a n i _ ,+ i . . . ani =
Hrn-i+KjXni a v * — We ^ a v e t o show that n i > i a » = Ili>i We obtain
rit>l bi = £¿>1 h = £¿>1 Eni-^l^j^rn ao = £ t> l ai = IIi>l ai-

(ii) Let dj > 0, i > 1. Then we obtain ai + n i>i a»+i = + £¿>1 a*+i =

E i > i a i = n i> i a i -
(iii) Let > 0, ij G Ij, j > 1. Then we have to show that rT;>i1Z'i^ij ai3 =

, i 2) e / ix / 2 x . . . IIj>i aij • We obtain n ^ i fli, = sup{ f l i. | ij G
I j } = s u p f E ^ ! fli- I (li,» 2 > . . .) G /1 X /2 X ... } = E (i l) i 2 , . . .) 6 / l X / 2 X . . . I I J > 1 Oir

Hence, we have proved the next theorem.

Theorem 29. is a complete star-omega semiring.

The only endomorphisms of are of the form <p(a) = q • a for some q G R,
q > 0. (See Droste, Kuske [5], Lemma 5.1.) Denote (R„ a xM(£*)) by R ^ X <J((E*))
and (K~ax)v((£")) by M™X?((EW)) if <p is defined as above, and observe that the
multiplication + , in KJ^aXj(?((E*)) is defined by

(?"i r2,w) = max{(ri,ioj) + q^(r2,w2) | wiw2 = w} ,

where n , r 2 G R~Xi,«E*)>, w G E*.

Corollary 30 (Esik, Kuich [10]). (R~ x>,«E*)>, RSS«,, <(£"») is a complete
semiring-semimodule pair.

Let Rmax be the following subsemiring of R ^ :

Rm a x = ({a > 0 | a G R) U { - 0 0 } , max, + , - 00 ,0) .

Denote (Rm a xM(£*)) by Rmax,g((£*>) and (Rmax)„«E")> by Kmax , ,{(£")).

Kleene Theorems for skew formal power series 741

Theorem 31 (Droste, Kuske [5]). The following statements are equivalent for
V i ^ ^max.q ^max.g «E")>, 0 < q < 1;

(i) (r,s) — ||2l||, where % is a cycle-free finite automaton over ®max,g((E*)) x
®max,g((Eu')),

(ii) (r, s) £ w-$Hot(Rmax,,(E U e)),

(Hi) r £ iRat(RmaXig(£ U e)) and s = max{uj +g Vi | 1 < i < m} with Ui,Vi £
£Hdt(KmaXi<j(E U e)) and (Ui,e) = - o o , (v i te) = - o o .

Proof. By Theorem 28. •

5 Skew power series over arbitrary semirings
We assume that the reader is familiar with the axiomatic theory of convergence
considered in Section 2 of Kuich, Salomaa [14]. We also use the notations and
isomorphisms used there.

In this section we define a convergence in the semiring A v ((£*)). This is done
mainly for the purpose to define the star of a cycle-free power series in ((£*)).
If A is a starsemiring, these considerations on a convergence are not necessary.
Hence, we assume that A is not a starsemiring. (Or, if A is a starsemiring, we do not
consider explicitly the star operation in A.) We then show variants of the sum-star-
equation, the product-star-equation and the matrix-star-equation. Eventually, we
prove a Kleene Theorem due to Droste, Kuske [5] by application of these equations.

By (AV((E*)))N we denote the set of sequences in AV((E*)). We denote by o and
r} the sequences defined by o(n) = 0 and 77(71) = e, n > 0. For a\,a2 6 (.AV,((£*)))N

we define C*i + cx2 and a2 in (A¥,((E*)))N by (QI + a2)(n) = ai(n) 4- a2(n)
and (ai GV a2)(n) = ai(n) © v a2(n), n > 0. For a € (A¥,((E*)))N, r £ Av((£*)),
we define r ®v a and a ©^ r in (AV((E*)))N by (r ©^ a)(n) = r ©^ a(n) and
(a © v r)(n) = a(n) Qvr, n > 0. Observe that ((^((E*)))1^,+, ©^,0,77) is a
semiring, the full Cartesian product of w copies of the semiring .Â , ((£*)). In the
sequel, we often denote Q v by • or by concatenation.

Consider a e (Av,((Ei)))N and r £ Av((£*)). Then a r € (AV((E*)))N denotes
the sequence defined by a r(0) = r, a r (n + 1) = a(n), n > 0. Moreover, for a
sequence /3 £ </?(/?) is the sequence in A defined by tp(0)(n) = ip((3(n)), n> 0.

By IV<(£*)) C (Av((E*)))n we denote the set of sequences a : N - » AV((E*))
such that for all w £ E* there

6xists a.I\ fla)W ^ 0 with (Oi(Tlcr,-UJ 4- k),w) —
(&(na,w),w) for all k > 0. Let Da be the set of convergent sequences of the
discrete convergence in A. Then o: £ ((£*)) iff (a,w) £ Dd for all w £ E*.

We now will show that Dv((£*)) is a set of convergent sequences. Hence, we
have to prove that the following conditions are satisfied:

(Dl) v £ Ap((£*)),
(D2) (i) if a i ,a 2 e Dv{{£*)) then + a2 € Dv((E*»,

(ii) if a e Dv((E*)) and r £ Av{(E*)) then rQipa,aQipr£ Dv{(£*)),
(D3) if a e Dv((E*)) and r 6 A^((£*)) then a r 6 Dv{{E*)).

742 Werner Kuich

Lemma 32. D ,̂ ({£*)) is a set of convergent sequences in (AV,((E*)))N.

Proof. We only prove (D2)(ii), i.e., we prove that for a £ £)„((£*)), r £ Av({£*)),
the sequences r Qv a and a ©^ r are again in Z^((E*)). We obtain, for all w € £*,

(rOva,w)= ^ (r , № 2)

and

UJlUJ2 = UJ

Since and (a,Wi) are in Dd, these sequences r a and aO< f i r a r e

DAW))-
The rest of the proof is analogous to the proof of Lemma 2.10 of Kuich, Salo-

maa [14]. •

We now will show that the mapping lim : .D ,̂ {(£*)) —> A v ((£*)) defined by
lima = limd(a,w)w, a £ Dv{(£*)), is a limit function on Dv((£*)). Here
limd : Dd —> A is the limit function of the discrete convergence in A defined by
limj /3 = P(np) if /? £ Dd with P(np + fc) = /3(np) for all A; > 0. Hence, we have to
prove that the following conditions are satisfied:

(liml) lim 77 = 1,
(lim2) (i) if oci,oc2 £ Dv{(£*)) then lim(ai + a 2) = limai + lima2,

. (ii) if a € £>,,((£*)) and r £ A^i£*» then lim(ra) = rlima:
and lim(ar) = (lim a)r,

(lim3) if a £ DV((E*)) and r £ ^ ((E*)) then lima r = lima.

Theorem 33. The mapping lim : Dv({E*)) —> .Â , ((£*)) defined by lima =
£u>e£* limd(a, w)w, a £ DV({T:*)}, is a limit function on Dv((E*)).

Proof. • We only prove (lim2)(ii). Let r £ ^ « £ *)) , a £ D^({£*)) and w £ E*. Then

(lim ra, w) = l im d(ra,w) = ^md(Ylw^==w(r,wi)ip^{a,W2)) =

E ^ ^ ^ K ^ O v ' ^ ' O i m a . ^) = (rlima, w)

and

(lim ar,w) = limd (ar, w) = limd(£ti;itU2=.u,(a,u;i)<plu'1l(r,u;2)) =

We now obtain

lim(ra) = ^ ^ limd (ra, ui)w - ^ ^ (r lim a, w)w = r l ima

Kleene Theorems for skew formal power series 743

and
lim(or) = ^ limd(ar, w)w = ^ ((lima)r,ti;)uj = (lim ot)r.

we£' weE'

The rest of the proof is analogous to the proof of Lemma 2.11 of Kuich, Salomaa [14].
•

We make now the following conventions throughout the rest of this paper: In A
•we use always the discrete convergence; in A v ({£*)) we use always the convergence
defined in Theorem 33; in Anxn we use always the discrete convergence; and in
i4Jx"((E')) (and isomorphically in (Aip((S*)))nxn) we use always the convergence
defined in Theorem 33.

If, for r € Av((£*)) the sequence rJ) is in Dv((£*)) then we write
lim„_»oo £ j = o ~ r* an<^ call r* the star of r.

Clearly, a skew power series r £ Av((£*)) is cycle-free iff limn_<00((r, e), e)n = 0.
A proof analogous to the proof of Theorem 3.8 of Kuich, Salomaa [14] yields the
next theorem.

Theorem 34. Ifr € AV((E*)) is cycle-free then there exists a k > 1 such that

(r(n+l) k + j f W) = 0

for all w € £*, = n, and j > 0. Furthermore, r* exists and

(n+l)fe-l
(r*,w)= ^ (rj,w), we E*.

j=o

Corollary 35. If r € Av((£*)) is cycle-free then limn_oo ?'n = 0 and r* exists.
Moreover,

r* = £ + rr* = £ + r*r .

Proof. The second statement follows from Kuich, Salomaa [14], Theorem 2.3. •

Theorem 36. Let r,se ((£*)). Then rs is cycle-free iff sr is cycle-free and, in
this case,

s(rs)* — (sr)*s .

Proof. If rs is cycle-free there exists a A; > 1 such that ((rs)k,e) = 0. This implies
that ((sr) f e+1,£) = (s(rs)kr,e) = 0. Hence, rs is cycle-free iff sr is cycle-free. Now
apply Theorem 2.7 of Kuich, Salomaa [14]. •

Recall that, in case of a Conway semiring A, for r e ((£*)), r* is defined by
a formula given in Section 1. In case of a cycle-free skew power series we can prove
the validity of that formula in arbitrary semirings.

744 Werner Kuich

Theorem 37. If r G Av{(E*)) is cycle-free then

(r V) = (r,e)*

and, for all w G E*, w / e,

(r*,w) =] T (r*,e)(r,u)(r\i>).
uv—w, ti^e

Proof. Analogous to the proofs of Lemmas 3.3, 3.4 and Theorem 3.5 of Kuich,
Salomaa [14]. •

The next theorem shows that the sum-star-equation and the product-star-
equation are valid for certain skew power series.

Theorem 38. Let r,s€ Av((E*)). If r is cycle-free and (s,e) = 0, or (r,e) = 0
and s is cycle-free then

(r + s)* = (r*s)*r*.

If rs or sr is cycle-free then

(rs)* — £ +r(sr)*s .

Proof. If r is cycle-free (resp. (r, e) = 0) and (s, e) = 0 (resp. s is cycle-free) then
r + s is cycle-free. Hence, limn_0 0(r + s)" = 0 and (r + s)* exists by Corollary 35.
Moreover, (r*s,£) = 0 (resp. (r*s,e) = (s,£)). Hence, r*s is cycle-free and (r*s)*
exists by Theorem 34. Eventually, r* exists, again by Theorem 34. Now, Theo-
rems 2.8 and 2.7 of Kuich, Salomaa [14] prove the first statement of our theorem.

By Corollary 36, s(rs)* = (sr)*s. Hence, e + rs(rs)* = e + r(sr)*s. By
Corollary 35, we obtain the equality (rs)* = e + rs(rs)*. •

Corollary 39. Let r € ((£*)) be cycle-free and ro = (r, e)e, r\ =
T h e n

r* = (r0+n)* = (r*0rl)*rt0.

We now turn to matrices M G A£xn((£*)). In Theorem 40 and Corollary 41,
we partition M and M* into blocks

/Mn M12\ , j/. _ (M*(n\,n\) M*(m,n2) \
M ~ \ M21 M22) ~ ^ M*(n2,m) M*(n2,n2) J '

where m + n2 = n, Mn,M*(nuni) G A£ l X n i ((£*)) and M22,M*(n2,n2) G
A^2X"2 ((£*)). The next theorem shows that, under certain conditions, the matrix-
star-equation is valid.

Kleene Theorems for skew formal power series 745

Theorem 40. Let M £ A"xn((E*)) and assume that Мц and M22 are cycle-free
and (M2i,e) = 0. Then M is cycle-free and

M * (n i , m) = (М ц + м12м;2м21у,
М * (щ , п 2) = (M i 1 + M 1 2 M 2 * 2 M2i)*M 1 2 M 2 * 2 ,

M * (n 2 , n \) = (M 2 2 + М 2 1 М 1 * 1 М 1 2) , М 2 1М 1 * 1 ,

М*(п2,п2) = (М22 + МъМ^МпУ .

Proof. In the proof of Theorem 4.22 of Kuich, Salomaa [14] it is shown that, for
3 > 1 ,

1 ' ' ~ I 0 (М22,еУ J /

Since Мц and M22 are cycle-free there exist k\, k2 > 1 such that (Мц, e)fcl = 0
and (M22,e) fc2 = 0. Hence, {M,e)kl+k*+1 = 0 and M is cycle-free.

Let now

, Мц 0 - ,
A I = < 0 M 2 2 1 A N D A 2 =

(0 M12\
\ M 2 1 0 J

and consider the matrix

/ , . ч f (Mli.e) 0 \ (ai + a2ala2,e) = ^ Q ^ ^ j +
0 (M12,e) \ ((M ^ e) 0 \ / 0 (M12,e) \

(M21, s) 0 Л 0 (M22,e) ; V (M2i,e) 0 У '

Since (M 2 i , e) = 0 this matrix equals (ai,e). Since 0 1 + 0 2 = M, and oi and
ai -f a2a\a2 are cycle-free, we can apply Theorem 2.9 of Kuich, Salomaa [14]:

(ai + a2)* = (ai + a2a{a2)*(l + a2a\).

Computation of the right side of this equality yields the equations of our theorem.
•

Corollary 41. Let M € A"xn((£*)) and assume that Mn and M22 are cycle-free
and M21 = 0. Then M is cycle-fee and

AT = (r n Mi 2 Mt 2 \
M22 J •

Corollary 42. Let M £ A£xn((E*)) be of the form

Мц Mi 2 M13
M = I 0 M22 M23

0 0 M 3 3

746 Werner Kuich

where M\\, M2 2 and M33 are square blocks and assume that these blocks are cycle-
free matrices. Then M is cycle-free and

(M*n M*nM12M;2 m1*1M12M2-2M23M3*3 + M*uM13M^
M* = [0 M2*2 M2*2M23M3*3

V 0 0 M3*3

Theorem 43. Let M £ (A„((E*)))n>xn* and M ' £ (i lv<(E*»)n»x n" . Then MM'
is cycle-free iff M'M is cycle-free and, in this case,

(MM')*M = M(M'MY .

Proof. If M M ' is cycle-free there exists a k > 1 such that ((MM')k,e) = 0. This
implies that ((M 'M) f c + 1 , e) = (M'(MM')kM,e) = 0. Hence M M ' is cycle-free iff
M ' M is cycle-free.

We now distinguish three cases: 711 = n2, ni > n2 and ni < n2.
(i) If ni = n2 then Theorem 36 proves our theorem.

(ii) If m > n2, write M = (J M ' = (a ' d) , where a, a' £ (Av((E*») n 2 X " 2 .

Denote M 0 = ^ ^ ® = ^ ^ ^ ^ and observe that M0M^ =

M M ' and MqM0 = ^ M'QM q Y Moreover, by Corollary 41, (M^M0)* =

^ (MM) We now apply Theorem 36 and obtain, by (M 0 M q) *M 0 =

MO(MQMO)*, the equation (MM')*M = M (M ' M) * .

(iii) If n2 > ni, write M = (a.c), M ' = ^ J,' where a,a' e (A^E*))) " 1 x " 2 .

Denote Mo = ^ q ^ Mq = ^ ^ jj ^ and observe that MqMq =

(T 0) a n d M o M ° = M ' M ' M o r e o v e r > b y Corollary 41, (M0M^)* =

^ (M M) ^ ^ now apply Theorem 36 and obtain, by (M0Mq)*M0 =

Mo(M^Mo)*, the equation (M M ') * M = M(M'M)* . •

We now show part of the Kleene Theorem of Droste, Kuske [5], Theorem 3.6.
Before, some auxiliary results are necessary.

A finite automaton 21 = (n, / , M, P) over A^((£*)) is called normalized if n > 2
and

(i) /1 = e, h = 0, 2 < i < n;

(ii) Pn = £, Pi = 0, 1 < i < n - 1;

(iii) Mil = M n i = 0, 1 < i < n.

Kleene Theorems for skew formal power series 747

Theorem 44. Let 21 be a cycle-free finite automaton over A^£*)). Then there
exists a normalized cycle-free finite automaton 21' over Av((E*)) with ||2t'|| = ||2l||.

Proof Let 21 = (n, I, M, P). Define

/ 0 / o \ / o \
21' = (1 + n 4-1, 0 M P , (£ 0 0), 0) .

V 0 0 0) \ e)

Then 21' is normalized. Moreover, by Corollary 42, 21' is cycle-free. Applying
Corollary 42 yields the proof that ||21'|| = ||2l||. •

Theorem 45. Let 2li and 2l2 be cycle-free finite automata over ((£*)). Then
there exist cycle-free finite automata 2li + 2l2 and 2li2l2 over A v {(£*)) with ||2li +
2l2|| = pi|| + ||2l2|| and p ^ H = ||2li|| ||2l2||.

Proof. Let 2li = (nu Ii, Mi, Pi), i = 1,2. Define

2li + 2l2 = (n 1 + n 2 , (^

2 1 ^ = (n 1 + n 2 , (^

Then, by Corollary 41, 2li + 2l2 and 2li2l2 are cycle-free. Applying Corollary 41
yields the proof that ||2li +2l2|| = ||2li|| + ||2l2|| and p ^ H = ||2li|| ||2l2||. •

A finite automaton 21 = {n,I, M, P) over A^E*)) is called e-free if (M, e) = 0.

Theorem 46. Let 21 be a cycle-free finite automaton over Av((E*)). Then there
exists an e-free finite automaton 21' over A^E*)) with ||21'|| = ||2l||.

Proof. Let 21 = (n, I, M, P). Define

2t' = (n,/,M0*M1 ,M0*P),

where Mo — (M,e) and Mi = £ x € i ; (M, :r) :r . Then 21' is £-free. We now apply the
sum-star-equation of Corollary 39: ||2l'|| = 7(M0*Mi)*M0*P = 7(M0 + MX)*P =
IM*P = ||2l||. •

Theorem 47. Let 21 be an e-free finite automaton over Av((£*)). Then there exists
a cycle-free finite automaton 21* over £*)) with ||2l*|| = ||2l||*.

Proof Let 21 = (n, I, M, P). Define

21+ = (n, I, M + PI, P).

Since 21 is £-free, we obtain IP = 0. Hence, (PI)2 = 0 and 2l+ is cycle-free. We
now apply Theorems 38 and 43: ||2l+|| = I(M + PI)*P = I{M*PI)*M*P =
IM*P(IM*P)*.

Consider now the £-free finite automata 2le = (1, e, 0, e) and 21* = 2le + 2t+ over
({£*)) with ||2l£|| = e and ||2l*|| = ||2l||*. Here the second equality is obtained

by Theorem 45 and Corollary 35. •

748 Werner Kuich

Theorem 48. Given r £ A ^ E U e), there exists a cycle-free finite automaton 21
over A,«E*)) with ||2l|| = r.

Proo/. For a £ A, the finite automaton 2ia = (l,a£,0,£:) has behavior ||2la|| = ae.
For x € £ , the finite automaton

« . - < m . O > . (s ;) . (") >

has behavior \\2LX\I= x. - -
Since each r € A^EUe) is generated from ae, a £ A, and x, x £ E, by addition

and multiplication, Theorem 45 proves our theorem. •

Corollary 49. Ifr £ iRa^A^ (EUe)) then there exists a cycle-free finite automaton
21 over Av<(£*)) such that ||2l|| = r.

Theorem 50. Let M £ (Av((£*)))"*" with (M,e) = 0. Then M* £ (^ (A ^ E L l
e)))nxn.

Proof. An easy proof by induction on n using the matrix-star-equation of Theo-
rem 40 proves our theorem (see Theorem 8.1 of Kuich, Salomaa [14]). •

Theorem 51 (Droste, Kuske [5]). Let A be a semiring, (p : A —> A be an endo-
morphism and E be an alphabet. Then the following statements are equivalent for
r 6 A, ((£*)):

(i) r = ||2l||, where 21 is a cycle-free finite automaton over Av((E*)),

(ii) r = ||2l||, where 21 is an e-free finite automaton over Av((£*)),

(in) r £ <Kat(Av{EUe)).
Proof, (i) => (ii): By Theorem 46. (ii) => (iii): By Theorem 50. (iii) (i): By
Corollary 49. •

• Droste, Kuske [5] introduce generalized weighted automata. This model of a
finite automaton is captured by our next definition.

A generalized finite automaton 21 = (n,I,M,P) over Av((£*)) is defined as a
finite automaton over Av((E*)), except that M £ (iHQt(Av(E U e))) n x n . If M £
(i K a t ^ E U e))) " * " with (M,e) = 0, then we obtain by an easy proof by induction
on n using the matrix-star-equation of Theorem 40 that M* £ (iHat(Av,(EU£)))nx"
(see Theorem 8.1 of Kuich, Salomaa [14]). This together with a generalized version
of Theorem 46 yields the following result, due to Droste, Kuske [5].

Theorem 52- (Droste, Kuske [5]). Let A be a semiring, tp : A —» A be an endo-
morphism and E be an alphabet. Then the following statements on r £ ^^((E*))
are equivalent to the statements of Theorem 51:

(iv) r = ||2t||, where 21 is a cycle-free generalized finite automaton over AV((E*)),

(v) r — ||2l||, where 21 is an e-free generalized finite automaton over Av((E*)).

Kleene Theorems for skew formal power series 749

References
[1] Aleshnikov, S., Boltnev, J., Esik, Z., Ishanov, S., Kuich, W., Malachowskij, N.:

Formaljnyje jasyki i awtomaty I: Polukoljza Konweja i konetschnyje awtomaty.
(Formal languages and automata I: Conway semirings and finite automata.)
Westnik Kaliningradskogo Gosudarstwennogo Universiteta, Wyp. 3. Ser. In-
formatika i telekommunikazii (2003) 7-38.

Bloom, S. L., Esik, Z.: Iteration Theories. EATCS Monographs on Theoretical
Computer Science. Springer, 1993.

Bouyer, P, Petit, A.: A Kleene/Büchi-like theorem for clock languages. J. of
Automata, Languages and Combinatorics 7(2002) 167-186.

Conway, J. H.: Regular Algebra and Finite Machines. Chapman & Hall, 1971.

Droste, M., Kuske, D.: Skew and infinitary formal power series. Technical Re-
port 2002-38, Department of Mathematics and Computer Science, University
of Leicester.

Droste, M., Kuske, D.: Skew and infinitary formal power series. ICALP 2003,
LNCS 2719(2003) 426-438.

Eilenberg, S.: Automata, Languages and Machines. Vol. A. Academic Press,
1974.

Elgot, C.: Matricial theories. J. Algebra 42(1976) 391-422.

Esik, Z., Kuich, W.: On iteration semiring-semimodule pairs. To appear.

Esik, Z., Kuich, W.: A semiring-semimodule generalization of cj-regular lan-
guages I. J. of Automata, Languages and Combinatorics, to appear.

Esik, Z., Kuich, W.: A semiring-semimodule generalization of w-regular lan-
guages II. J. of Automata, Languages and Combinatorics, to appear.

Esik, Z., Kuich, W.: A semiring-semimodule generalization of w-context-free
languages. LNCS 3113(2004) 68-80.

Kuich, W.: Conway semirings and skew formal power series. Proceedings of
the 11th International Conference on Automata and Formal Languages 2005
(Z. Esik, Z. Fülöp, eds.), Institute of Informatics, University of Szeged, 2005,
pp. 164-177.

[14] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science, Vol. 5. Springer, 1986.

Acta Cybernetics 17 (2006) 719-749.

A regular viewpoint on processes and algebra*

Kamal Lodaya*

Abstract
While different algebraic structures have been proposed for the treatment

of concurrency, finding solutions for equations over these structures needs to '
be worked on further. This article is a survey of process algebra from a very
narrow viewpoint, that of finite automata and regular languages. What have
automata theorists learnt from process algebra about finite state concurrency?
The title is stolen from [31]. There is a recent survey article [7] on finite
state processes which deals extensively with rational expressions. The aim
of the present article is different. How do standard notions such as Petri
nets, Mazurkiewicz trace languages and Zielonka automata fare in the world
of process algebra? This article has no original results, and the attempt is to
raise questions rather than answer them.1

1 Formal languages
Formal language theory begins with the monoid of words (E*,- , l) over a finite
alphabet S. A language is a set of words, and the algebraic structure of a set can
be added to form an idempotent semiring (p(E*), •, 1, +,0) . The identification of
the semiring as a relevant algebraic structure is due to Conway [14] and Eilenberg
[18].

Definition 1. A semiring is a set S with an associative, commutative binary
operation + ón S with identity 0; an associative binary operation • on S with
identity 1 and absorbing element Ó; and • distributing over +. The semiring is said
to be idempotent if + is idempotent.

If we restrict ourselves to a regular language, recognized by a finite automaton,
this amounts to saying that some equations hold in addition to those derived from
the axioms of an idempotent semiring. Myhill and Nerode showed that recognizable
languages, those saturated by finite-index congruences over the word monoid, are
exactly the regular languages.

*This article is based on the talk "Looking back at process algebra" given at the AFL '05
conference in Dobogókő. I take this opportunity to thank the organizers of the conference, Zoltán
Ésik and Zoltán Fülöp, for their invitation and hospitality. I also thank Zoltán Esik for his
encouragement over the years.

'The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, India.
1For some related questions in the world of process calculi, see [2].

751

752 Kama1 Loclaya

Kleene showed that the regular languages can be modelled by rational expres-
sions, formed by adding to the signature an additional unary star operation forming
the (Kleene) starred (idempotent) semiring (p(E*), •, 1 ,+, 0, *). We will henceforth
assume idempotence of + in our algebraic structures. As is usual, we will omit •
when writing expressions.

Chomsky's type 3 grammars are another formalism to describe regular languages,
where one works with a system of tail-recursive equations over the semiring S[V]
with a set of variables V. The equations can be put in Greibach form and solved
using Arden's rule [3] which says that, with the proviso a ^ 1 + a, the equation
x = ax + b has the solution p,x.(ax + b) = a*b, where p. : V x 5[V] —» 5 is a
partial function giving a unique solution ¡jLx.e to the equation x — e when it exists.
Formally we are in a (Chomsky) fi-semiring [20] (p(E*)[V], •, 1, + , 0, p,).

This solution procedure is the basis of the axiomatization of equality of rational
expressions by Aanderaa [1] and Salomaa [46], using the "no empty word property"
(NEWP), a syntactically checkable condition equivalent to a ^ 1 + a over the
semiring of regular languages. Here is Salomaa's axiomatization:

Axiom system S for starred semirings
(Assoc) (a + b) + c = a •+ (b + c); (ab)c = a(bc)
(Ident) a + 0 = a; al = la = a
(Comm) a + b — b + a
(Idem) a + a = a
(Absorp) aO = 0a = 0
(Distr) (a + b)c = ac + bc\ a(b + c) = ab + ac

(Guard) a* = (1 + a)*
(Fixpt) ,a* = l + a a * ; a* = 1 + a*a

• r — nr -4- h — rn 4- b
(Guardlnd) ; - — - (provided a has NEWP)

x = a*b x = ba*

Kozen gives an equational treatment using axioms and inference rules [28] and
identifies Kleene algebras (which we will not describe here) as the basic structure.
The'main property used, inspired by Conway [14], is that matrices over a Kleene
algebra form a Kleene algebra. These matrices can be used to encode automata
and constructions over them. Completeness is proved by reducing to isomorphism
over the minimal deterministic finite automaton.

1.1 Concurrency
Definition 2 (Petri [45]). A Petri net is a bipartite directed graph N = (P, T, F)
where P and T are disjoint finite sets of places and transitions, and F C (P x T) U
(T x P) a flow relation. For a place or transition y, its pre-set {x \ xFy} is
conventionally denoted 'y and its post-set {z \ yFz} is denoted y *. F satisfies the
condition that for each transition t, *t and t * are nonempty, and for each place p,
either *p or p* is nonempty.

A regular viewpoint on processes and algebra 753

A marking is a multiset of places. A transition t is enabled at marking M if
t C M. A transition t enabled at M "fires" taking M to (M — 't)+t. Given an
initial marking Mo, the net system (Af, Mo) is said to be 1-safe if every reachable
marking is a set (hence multisets are not required).

The "firing sequences" of nets (words over the alphabet T) have been investi-
gated thoroughly from the formal language viewpoint. For instance, since we have
not introduced any notion of a final marking, the language accepted by a net sys-
tem is prefix-closed. In the firing sequence view, nets are seen as no more than a
representation of automata which have concurrent behaviour. The marking graph
of a 1-safe net system, with vertices the reachable markings and edges representing
the firing relation, is in fact a finite automaton. Concurrency is modelled as the
shuffle or interleaving of two languages, for which rational expressions are sufficient
since rationality is preserved by the shuffle.

But rational expressions are certainly not succinct for concurrent behaviour.
The shuffle expression a||b||c has equivalent rational expression abc + acb + bac +
bca + cab + cba (this is an instance of Milner's expansion axiom from CCS [34]),
which shows that a shuffle can be exponentially succinct. A net for this language
is exponentially succinct compared to the corresponding automaton.

The operating systems community continually had to deal with concurrent be-
haviour and were alive to this problem. They developed cobegin-coend [17], path
expressions [13], and the languages COSY and CSP (fully described in the later
books [27, 26]). The signature of rational expressions was expanded by binary
shuffle operations {||c | C C E}, with intersection over the letters in C. The inter-
section comes in handy to represent synchronization between concurrent processes.

Definition 3 (Grabowski [23]). The series-rational expressions over an al-
phabet E consist of the atomic actions a € E and the constants 1 and 0, closed
under the binary operations •,+, || and the unary operation *.

The shuffle operator ej||e2 is now redefined to additionally act as intersection
whenever an action is shared between e\ and e2. In the term algebra generated
from E, these expressions still describe languages over starred semirings, since a
Milner-like expansion axiom can be used to eliminate the shuffle operations.

There is a translation from series-rational expressions to 1-safe net systems
which preserves succinctness. The later work of Garg and Ragunath [21], when
restricted to 1-safe nets, provides a method of going from net systems to these
expressions (with the notable addition of renaming functions) when a distribution
of places of a net is provided.

Grabowski [23] provided an interpretation of series-rational expressions over
labelled posets (or "pomsets" as Pratt called them). A net can be seen as accepting
a poset language, and Grabowski provided a two-way translation between 1-safe nets
and series-rational expressions with renaming (including crucially renaming to the
empty poset), representing regular poset languages. But posets are difficult to put
into an algebraic framework. A popular representation of these posets which is
closer to usual formal language theory is as Mazurkiewicz traces, to which we now
turn.

754 Kama1 Loclaya

2 Trace languages

Let I be an irreflexive symmetric relation over E, called independence, and let its
reflexive transitive closure be called trace congruence. For instance, if alb then
wabx wbax (a and b commute). Sometimes it is convenient to consider the
complementary symmetric dependence relation instead of independence.

Definition 4 (Mazurkiewicz [32]). A trace over the concurrency alphabet (£, I)
is a word over the partially commutative monoid (£*/ •, 1). Trace concatenation
• works on the congruence classes. A trace language is a set of traces.

Trace languages form the trace semiring (p(E*/ ~ /) , •, 1,+, 0) where the com-
mutativity equations ab = ba are added for every pair a,b in the independence
relation. Hence only one representative of a trace needs to be described, the others
being inferred, and we regain succinctness. We need not restrict ourselves to the
term algebra, and the shuffle operations are not needed.

A 1-safe Petri net has a natural independence relation on its transitions: they
are independent if their neighbourhoods are disjoint. This is a necessary condition
for concurrent behaviour but not sufficient. The firing traces of a finite 1-safe
net system are defined by quotienting the firing sequences with this independence
relation. The set of firing traces form a recognizable trace language; that is, it
is saturated by a finite-index congruence over the partially commutative monoid
defined by (E,7). Again, because of the lack of final markings, the language will
be prefix-closed.

Extend the independence relation to words: for nonzero w and x, let wlx
iff every letter in w is independent with every letter in x. w and x are said to be
connected if they are not independent. This syntactically checkable condition can be
inductively lifted to rational expressions. Assuming that a and b are independent,
we can derive ab — ba = ab+ba by using idempotence. a*b* = 1 + aa*b* + a* bb* =
1 + (a + b)a*bm = (a + by. The axiom system S is used in the first step and again
in the last step, which is an application of the (Guardlnd) rule.

Ochmanski realized that it is sufficient to take the trace closure [e*] of the usual
Kleene e* over connected expressions e—that is, e and every starred subterm of
e is connected [43]. If e does not satisfy this condition, Ochmanski defined the
concurrent star as described by the axiom below.

Now the trace languages (not just the prefix-closed ones) form an (Ochmanski)
starred trace (idempotent) semiring (p(£*/ •, 1,+, 0, *). An axiomatization for
equality of recognizable trace languages was recently provided by the author [30].

A regular viewpoint on processes and algebra 755

Axioms TS for starred trace semirings
(S) All valid equalities for starred semirings
(Comm) ab = ba, provided a and b are independent
(CStar) (ab + c)* = (a + 6 + c)*,if a and b are independent

Assume that a, b and c are independent. By iterating the derivation ((a + b)*c+
d)* = (a*b*c + d)* d= • (a* + b* + c + d)* = {a + b + c + d)*, where the first step
was derived above and the last step uses the S system, the Ochmanski star can be
reduced to the Kleene star over connected expressions.

Question 5. Is equality of trace languages over a given concurrency alphabet,
described by rational expressions, recursively enumerable?

Question 6. Is there a complete axiomatization for rational trace languages over
a concurrency alphabet?

Here is a proof attempt which gets stuck.
Fix a total order over the letters of the alphabet and extend it lexicographically

to words. Each trace can be represented by its lexicographically minimal word. Let
Lex be the set of lexicographically minimal words. For a rational- trace language
TL, Lex(TL) = Lex n ((JTL) is a rational word language.

Suppose expressions a and b denote the same rational trace language TL(a) =
TL(b). By another theorem of Ochmanski [16], there are connected rational ex-
pressions e and / whose word languages WL(e) = Lex(TL(a)) and WL(f) =
Lex(TL(b)) are the same, and the trace closures are [WL(e)\ = TL(a) and
\WL(f)] = TL(b). By completeness of Salomaa's axiomatization, the equality
e — f is provable in S, and hence in TS. If we could show for a connected rational
expression e that if e describes Lex(TL(a)), then e = a is provable in TS, we could
prove a = b in TS and obtain its completeness. We do not have such an argument.

2.1 Distributed automata
A suitable automaton model which matches recognizability was defined by Zielonka
[48]. Let Loc be a finite set of "locations", and loc : E —> p(Loc) map each action to
the locations required for executing it. Thus the alphabet E is distributed across
the locations; if an action requires more than one location, we think of it as a
synchronization between the distributed locations. A word language is said to be
Loc-consistent if it is closed under commutation, where the actions a and b commute
(wabx ~Loc wbax) if they are not shared by more than one location in Loc. Trace
languages and Loc-consistent word languages are essentially the same thing.

r 11

Definition 7 (Zielonka [48]). Let Q be a set of states distributed by the function
dist : Q —> Loc. For L C Loc, let IILQ be the functions f : L —> Q such that
dist(f(i)) — i. A Zielonka automaton over the distributed alphabet (E, Loc)

756 Kama1 Loclaya

is given by (Q,dist,qo,—*,F), where qo 6 HLOCQ IS a distributed initial state and
F Q HLOCQ A set of distributed final states, and -*= (J {—>aQ N I O C (A)Q x I I / O C (Q) Q }

aGS
is a transition relation.

Zielonka automata are automata distributed over locations. The states are local,
the transitions act on exactly those locations which an action is declared to require,
and the final states are global. A run of a Zielonka automaton is defined over global
states, every action transforming the states of the locations it affects, the other
states remaining fixed. Zielonka [48] showed that the regular trace languages, those
accepted by his automata, match the recognizable trace languages. Our notation
for the automata follows Mukund and Sohoni [39], who provided an alternate proof
of Zielonka's theorem by defining a gossip framework which explicitly represents
state information shared across locations.

Thus trace theory [16] neatly generalizes formal language theory with regu-
lar trace languages playing a pivotal role. Mohalik and Ramanujam [38] provide
a framework for Loc-consistent regular languages and a variant of series-rational
expressions using special labelling functions, which provide a local presentation of
distributed automata.

Question 8. Is there an equational treatment of distributed automata in a Kleene
algebra-like framework?

3 Process calculi
We now turn to what Pnueli called the viewpoint of "reactive" systems: viewing
automata in a concurrent environment not just as language generators but as pro-
cesses. The classic vending machine example [26] shows that processes describe
branching behaviour, and hence the left-distributivity axiom a(b + c) = ab + ac for
language equivalence fails. Some of the early models include failure sets, testing
equivalences, synchronization trees and bisimulation [12, 15, 34, 44].

Definition 9 (Benson and Tiuryn [6]). A grove is a set G with an associative,
commutative binary operation + with identity 0, an associative binary operation •
urith 0 a left zero, and where • right-distributes over 4-, that is, (a + b) c = a c+6-c .
A grove is idempotent if + is idempotent. A p-grove (G[V],-,+,0,/I) with a set
of variables V has a partial solution function p. : V x G\V\ —> G analogous to a
fi-semiring [20].

A grove is defined by dropping the monoid identity, the right-absorption of 0 for
multiplication and the left-distributivity of multiplication over addition from the
axioms of a semiring. We will use fi-groves Gn[V] generated from an alphabet £
and a set of variables V as our basic model. (As before, we assume idempotence of
+ in our structures.) Idempotent /i-groves are closely related to the axiomatization
of bisimulation equivalence. Bloom and Esik's monograph [10] provides a detailed
description.

A regular viewpoint on processes and algebra 757

The first process calculus, Robin Milner's CCS, was published in 1980 [34]. Of
course, CCS was based on a lot of earlier work, and Milner himself had been devel-
oping the idea for a few years, but LNCS 92 is the first fully developed treatment.

Milner proved a striking early result in process algebra [35], showing that tail-
recursive equations (or guarded /^-expressions in his terminology) interpreted over
/.¿-groves are sufficient to describe branching behavior of finite automata, whereas
rational expressions over Kleene starred groves are not.

Axiom system M for ¿¿-groves
(Assoc) (a + b) + c = a -I- (6 + c); (a • b) • c — a • (b • c)
(Comm) a + b = b + a
(Idem) a + a = a
(Ident) a + 0 = a
(LeftAbs) 0-a = 0
(RightDistr) (a + b) • c = (a • c) + (b • c)

(Guard) HX.e = ¡j,x.(x + e)
(Fixpt) fix.e — e[fjix.e/x\

(Guardlnd) ~ — (p r o v i d e d x guarded in e)
/ = fxx.e

The existence of unique solutions over certain groves was proved by Bergstra
and Klop [8]. They also extended the positive result to automata with silent tran-
sitions [9], which was later developed by Milner in [36]. Since a finite system of
tail-recursive equations implicitly defines a finite-index congruence on a finitely
generated free grove, the negative result led to various kinds of extended star op-
erations to restore the syntactic treatment known for rational languages. They are
described in the survey article [7] mentioned in the introduction.2

3.1 Concurrency
Representing concurrency as interleaving of atomic actions, the shuffle operators
can be added on since the expansion axioms are sound over groves. This yields
the framework of process calculi [5]—PA and ACP for shuffles without and with
synchronization respectively. Within a term model the shuffles can again be elimi-
nated.

Bravetti and Gorrieri [11] extended Milner's axiomatization of regular behaviour
to strongly guarded ¿¿-expressions over £ with shuffle, that is, those which are in
Greibach form and do not allow a shuffle operation inside a recursion. The following
question is still open:

Question 10. Is there a direct way of going from finite 1-safe Petri nets to strongly
guarded /x-expressions with shuffle, without incurring an exponential blowup?

2The paper [4] provides a recent update on Milner's results and questions.

758 Kama1 Loclaya

One approach may be to work with a "concurrent" bisimulation, as for example
in [41]. Van Glabbeek and Vaandrager [22] proposed to axiomatize such a bisimu-
lation by dropping the expansion axiom while retaining some desirable properties
of the shuffle such as commutativity and associativity. That is, they expand groves
with a shuffle operator (GsfV], -, + , 0, ||, p.). The shuffle is not reducible to the other
operators.

Axiom system S M for p.- groves with shuffle
(M) All axioms of M
(Assocll) (a||6)||c = a||(6||c)
(Commll) a||6 = 6||a
(ldent||) a||0 = a
(Distr||) (a + h)||c=(a||c) + (6||c)

/ = e[f/x]
(StGuardlnd) — (provided x strongly guarded in e)

/ = px.e

Question 11. Is there a complete axiomatization of concurrent bisimulation over
finite state processes?

3.2 Mobility
Process theory research seems to be moving more in the direction of value-passing
[24] and mobile processes [19, 37], which are described by 7r-expressions upto a
value-passing bisimulation, which comes in "early" and "late" variants to model
eager and lazy forms of evaluation. We do not provide details of the syntax here.

Finite-control mobile systems model a state as an edge-labelled graph, where
the nodes ("agents") have local storage to save some values and the edges ("links")
communicate these values between the agents. Further, the values communicated
are the link names themselves. Hence the atomic actions are of the form c\v and
c?x, sending a value v on a link c or receiving it in a variable x. To describe
these systems, we allow tail-recursion in ^-expressions, but disallow the replication
operator which is sufficiently powerful to model general recursion. Effectively the
syntax reduces to guarded ¿¿-expressions with parameters and a calling mechanism
built over an alphabet of atomic expressions with constants and variables (and with
a shuffle, which is eliminable in a term algebra).

Milner's axiomatization has been extended to the value-passing bisimulations by
Hennessy, Lin and Rathke [25] for finite-control systems described by tail-recursive
7r-expressions. However the underlying algebraic structure is far from clear. It
appears to be some kind of combinatory grove, as illustrated by the communication
axiom, which is based on the /3-rule of A-calculus:

(c!i> • P)||(c?x • Q) = P||(Q[u/x]).

Question 12. Can one describe the algebraic structure of mobile systems?

A regular viewpoint on processes and algebra 759

3.3 Event structures
Definition 13 (Nielsen, Plotkin and Winskel [40]). A (E-labelledJ event
structure (E, <,#,£) is a (L-labelled) poset (E, <, i) with an irreflexive symmet-
ric conflict relation # which is "inherited"; that is, if two events e\,e2 € E are
in conflict, all events e[> e\ and e'2 > e2 above them are also in conflict. A
configuration of an event structure is a downward-closed conflict-free set of events.

Event structures are a generalization of traces or labelled posets to include
branching behaviour. Events can be related by causality (< or >), conflict (#) , or
by neither causality nor conflict, in which case we say they are concurrent.

Configurations are a notion of "state" in an event structure. For the purposes
of finite state behaviour, it is sufficient to restrict oneself to event structures which
are finitary, where each event has a finite number of events below it, and have
bounded enabling, that is, each configuration can be extended by a bounded number
of immediately enabled successor events. In particular, this will mean that all
configurations of interest are finite sets of events, and the conflict relation will be
generated from an immediate conflict relation. We henceforth assume our event
structures satisfy these properties.

We now lift some definitions from infinite trees.

Definition 14 (Thiagarajan [47]). The residue of a configuration in an event
structure is those events strictly above it. Two configurations are said to be-right
invariant if their residues are isomorphic as event structures. An event structure is
recognizable if the right invariance relation on its configurations is of finite index.

Although configurations are finite, residues can very well be infinite. The con-
current branching behaviour of a 1-safe Petri net can be defined by "unfolding" it;
Thiagarajan proves that this yields a special kind of event structure.

Call an event structure deterministic if at any of its configurations, for any letter
of the alphabet, at most one event labelled by that letter is enabled.

Definition 15 (Thiagarajan [47]). A deterministic T,-labelled event structure is
said to be a trace event structure if there is an (irreflexive symmetric) inde-
pendence relation over £ such that the labels of concurrent events are independent,
and the labels of neighbouring events (related by the immediate successor relation
or immediate conflict relation) are dependent.

Theorem 16 (Thiagarajan [47]). An event structure is the unfolding of a 1-safe
Petri net if and only if it is a recognizable trace event structure.

The proof of the right-to-left direction goes via Zielonka's theorem.
Petri nets as we have defined them are not sufficiently abstract, since their

behaviour is described in terms of the transitions T. Even a finite language like
{a, aa} is not representable. Hence one should start with a labelled 1-safe Petri net
(P, T,F,t), £ :T —+ E. Unfolding such a net certainly yields a recognizable labelled
event structure, but it may no longer be deterministic.

760 Kama1 Loclaya

Question 17. Is the converse also true? Is a recognizable labelled event structure
the unfolding of a labelled 1-safe Petri net?

Thiagarajan [47] conjectured that the answer is yes. The conjecture has been
proved for conflict-free event structures [42], where the conflict relation is empty;
sequential event structures, which have no concurrency [42]; and deterministic event
structures [29]. The general case is still open.

The reliance on determinism amounts, in the algebraic setting, to left-
distributivity. So the basic algebraic structure is that of a semiring, or a trace
semiring in the case of a trace event structure. Like posets, event structures are
not well suited for algebra, and groves might be better to work with. Thiagarajan's
conjecture leads one to ask the following:

Question 18. Given a finite-index congruence over an idempotent grove with shuf-
fle, is there a direct way of constructing a finite 1-safe Petri net which satisfies this
particular behaviour?

A categorical structure suitable for Petri nets has been proposed by Meseguer
and Montanari [33]. A similar question can be raised in that setting.

References
t

[1] S. Aanderaa. On the algebra of regular expressions, in Appl. Math, (course
notes), Harvard, Jan 1965, 1-18.

[2] L. Aceto. Some of my favourite results in classic process algebra, Bull. EATCS
81, Oct 2003, 89-108.

[3] D.N. Arden. Delayed logic and finite state machines, in Theory of computing
machine design (course notes), U. Mich., Ann Arbor, 1960, 1-35.

[4] J.C.M. Baeten and F. Corradini. Regular expressions in process algebra, Proc.
LICS, Chicago, IEEE, 2005, 12-19.

[5] J.C.M. Baeten and W.P. Weijland. Process algebra, CUP, 1990.

[6] D.B. Benson and J. Tiuryn. Fixed points in free process algebras I, TCS 63(3),
1989, 275-294.

[7] J. Bergstra, W. Fokkink and A. Ponse. Process algebra with recursive opera-
tions, in Handbook of process algebra (J. Bergstra, A. Ponse and S.A. Smolka,
eds.), Elsevier, 2001, 333-389.

[8] J. Bergstra and J.W. Klop. Fixed point semantics in process algebra, Report
IW 206/82, Centre for Mathematics and Computer Science, Amsterdam, 1982.

[9] J. Bergstra and J.W. Klop. A complete inference system for regular processes
with silent moves, Proc. Logic Colloquium, Hull (F. Drake and J. Truss, eds.),
North-Holland, 1986, 21-81.

A regular viewpoint on processes and algebra 761

[10] S. Bloom and Z.Esik. Iteration theories: the equational logic of iterative pro-
cesses, Springer, 1993.

[11] M. Bravetti and R. Gorrieri. Deciding and axiomatizing weak ST bisimulation
for a process algebra with recursion and action refinement, ACM TOCL 3(4),
2002, 465-520.

[12] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of communicating
sequential processes, J ACM 31(3), 1984, 560-599.

[13] R.H. Campbell and A.N. Habermann. The specification of process synchroniza-
tion by path expressions, in Proc. Operating Systems conference (E. Gelenbe
and C. Kaiser, eds.), LNCS 16, 1974, 89-102.

[14] J..H. Conway. Regular algebra and finite machines, Chapman and Hall, 1971.

[15] R. De Nicola and M. Hennessy. Testing equivalences for processes, TCS 34,
1984, 83-133.

[16] V. Diekert and G. Rozenberg, eds. The book of traces, World Scientific, 1995.

[17] E.W. Dijkstra. Cooperating sequential processes, in Programming languages
(F. Genuys, ed.), Academic Press, 1968.

[18] S. Eilenberg. Automata, languages and machines A, Academic Press, 1974.

[19] U.H. Engberg and M. Nielsen. A calculus of communicating systems with
label-passing, Report DAIMI PB-208, Aarhus University, 1986.

[20] Z. Esik and H. Leifi. Algebraically complete semirings and Greibach normal
form, Ann. Pure Appl. Logic 133, 2005, 173-203.

[21] V.K. Garg and M.T. Ragunath. Concurrent regular expressions and their re-
lationship to Petri nets, TCS 96(2), 1992, 285-304.

[22] R.J. van Glabbeek and F.W. Vaandrager. Petri net models for algebraic theo-
ries of concurrency, Proc. PARLE 2, Eindhoven (J.W. de Bakker, A.J. Nijman
and P.C. Treleaven, eds.), LNCS 259, 1987, 224-242.

[23] J. Grabowski. On partial languages, Fund. Inform. IV(2), 1981, 427-498.

[24] M. Hennessy and A. Ingolfsdottir. A theory of communicating processes with
value-passing, Inf. Comput. 107(2), 1993, 202-236. .

[25] M. Hennessy, H. Lin and J. Rathke. Unique fixpoint induction for message-
passing process calculi, Sci. Comput. Program. 41(3), 2001, 241-275.

[26] C.A.R. Hoare. Communicating sequential processes, Prentice-Hall, 1985.

[27] R. Janicki and P.E. Lauer. Specification and analysis of concurrent systems:
the COSY approach, Springer, 1992.

762 Kama1 Loclaya

[28] D. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events, Inf. Comput. 110(2), 1994, 366-390.

[29] K. Lodaya. Petri nets, event structures and algebra, in Formal models, lan-
guages and applications (K.G. Subramanian, K. Rangarajan and M. Mukund,
eds.), World Scientific, 2006, 246-259.

[30] K. Lodaya. Product automata and process algebra, Proc. SEFM, Pune
(D.V. Hung and P. Pandya, eds.), 2006, 128-136.

[31] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes, TCS
274(1-2), 2002, 89-115.

[32] A. Mazurkiewicz. Concurrent program schemes and their interpretations, Re-
port DAIMI PB-78, Aarhus University, 1977.

[33] J. Meseguer and U. Montanari. Petri nets are monoids, Inf. Comput. 88 (1990)
105-155.

[34] R. Milner. A calculus of communicating systems, LNCS 92, 1980.

[35] R. Milner. A complete inference system for a class of regular behaviours, JCSS
28(3), 1984, 439-466.

[36] R. Milner. A complete axiomatisation for observation congruence of finite-state
behaviours, Inf. Comput. 81(2), 1989, 227-247.

[37] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes I and II,
Inf. Comput. 100(1), 1992, 1-77.

[38] S. Mohalik and R. Ramanujam. Distributed automata in an assumption-
commitment framework, Sâdhanâ 27, Part 2, 2002, 209-250.

[39] M. Mukund and M. Sohoni. Keeping track of the latest gossip in a distributed
system, Distr. Comp: 10(3), 1997, 117-127.

[40] M. Nielsen, G. Plotkin and G. Winskel. Petri nets, event structures and do-
mains I, TCS 13 (1980) 86-108.

[41] M. Nielsen and P.S. Thiagarajan. Degrees of nondeterminism and concurrency:
a Petri net view, Proc. FSTTCS, Bangalore (M. Joseph and R.K. Shyamasun-
dar, eds.), LNCS 181, 1984, 89-117.

[42] M. Nielsen and P.S. Thiagarajan. Regular event structures and finite Petri
nets: the conflict-free case, Proc. ICATPN, Adelaide (J. Esparza and C. Lakos,
eds.), LNCS 2360, 2002, 335-351.

[43] E. Ochmanski. Regular behaviour of concurrent systems, Bull. EATCS 27,
1985, 56-67.

A regular viewpoint on processes and algebra 763

[44] D. Park. Concurrency and automata on infinite sequences, Proc. 5th GI con-
ference,, Karlsruhe (P. Deussen, ed.), LNCS 104, 1981, 167-183.

[45] C.-A. Petri. Fundamentals of a theory of asynchronous information flow, Proc.
IFIP, Munich (C.M. Popplewell, -1.), North-Holland, 1962, 386-390.

[46] A. Salomaa. Two complete axiom systems for the algebra of regular events,
JACM 13(1), 1966, 158-169.

[47] P.S. Thiagarajan. Regular trace event structures, BRICS Research Abstracts
RS-96-32, 1996.

[48] W. Zielonka. Notes on finite asynchronous automata, RAIRO Inf. Th. Appl.
21(2), 1987, 99-135.

Acta Cybernetics 17 (2006) 719-749.

Automata on Infinite Biposets*

Zoltán L. Németh*

A b s t r a c t

Bisemigroups are algebras equipped with two independent associative op-
erations. Labeled finite sp-biposets may serve as a possible representation of
the elements of the free bisemigroups. For finite sp-biposets, an accepting de-
vice, called parenthesizing automaton, was introduced in [6], and it was proved
that its expressive power is equivalent to both algebraic recognizability and
monadic second order definability. In this paper, we show, how this concept
of parenthesizing automaton can be generalized for infinite biposets in a way
that the equivalence of regularity (defined by acceptance with automata),
recognizability (defined by homomorphisms and finite w-bisemigroups) and
MSO-definability remains true.

1 Introduction
The importance of automata and Blichi-automata is unquestionable in theoretical
computer science from both theoretical and practical point of view. Its widespread
applicability is mainly due to the fact that finite and infinite words can serve as
models of a wide range of sequential systems. But, of course, there are many
other computational models using more complex structures than words, such as
trees, traces, posets, message sequence charts, graphs, etc. These models were
introduced to capture other computational aspects, as timing or concurrency.

Besides the varying concept of automata and regularity, there is the more gen-
eral notion of algebraic recognizability (by homomorphisms into finite algebras)
and the concept of (counting) monadic second order logical definability. In many
important cases these three notions can be suitably defined and they are known
to be equivalent. In particular, this holds for finite trees, traces, message sequence
charts, series-parallel posets of bounded width. See [23] for a recent survey on this
topic. But sometimes we are confronted with serious difficulties. It is not always
clear how to choose an appropriate algebraic or logic framework, and for graphs,

*An extended abstract of this paper appeared in the proceedings of AFL 2005 [19].
^Institute of Informatics, University of Szeged, P.O.B. 652, 6701 Szeged, Hungary, E-mail:

zlnemethfiinf. u-szeged. hu

765

766 Zoltán L. Németh

for posets, and even for sp-posets in general, a concept of automaton that matches
algebraic recognizability is not known.

However, one of the most obvious generalizations of the case of words is the
situation when we consider more than one, say n, associative operations. This
naturally leads to the concept of n-semigroups and n-w-semigroups. Accordingly,
n-semigroups are sets equipped with n independent associative operations, and n-
w-semigroups are generalizations of the w-semigroups of Perrin and Pin [20], where
the formation of infinite (more precisely u;-ary) products is also allowed.

A description of the free n-semigroups by labeled finite n-posets was given by
Esik [5]. A E-labeled n-poset is a set P equipped with n patrial orders and a
labeling function One of the main results of [7] is a similar description of
the free n-w-semigroups by, so called, constructible n-posets. We say that a (finite
or infinite) n-poset is constructible if it can be constructed from the singleton n-
posets by the binary and the w-ary product operations.

For simplicity, we only deal with the case when n = 2, i.e., we study bisemi-
groups and biposets only, although all of our notions and results can be generalized
to n-sèmigroups.and n-posets for any integer n greater than 2, without any diffi-
culty.

In [6], an accepting device, called parenthesizing automaton, was introduced,
and it was proved that for finite sp-biposets the recognizable, regular and MSO-
definable languages coincide. Here we generalize the result mentioned above foi-
infini te biposets. First, we show, with the help of a suitably defined notion of
parenthesizing Buchi-automaton, that the class of regular languages of infinite con-
structible biposets coincides with the class of recognizable languages. We also
demonstrate that, contrary to the word case, automata for infinite biposets must
differ from automata for finite ones.

The equivalence of regular and recognizable sets implies that all MSO-definable
languages are regular. Finally, we prove the converse inclusion, namely that every
regular constructible biposet language is MSO-definable. (This verifies a conjecture
of the preliminary version [19] of the present article.)

There are several branches of research that are in close connection with our
investigations. Here we only briefly enumerate them, and refer to [6] where a whole
section is devoted to a more detailed comparison. First of all, automata on series-
parallel posets were studied by Lodaya and Weil in [15, 16, 17]. Their work was
extended into two directions by Kuske [14], to automata on infinite posets and to
(first- and second-order) logical definability. On text languages see the papers of
Hoogeboom and ten Pas [12,13]. On picture languages we refer to Giammarresi and
Restivo [8] in general, and to Dolinka [1] in connection with sp-biposets. Finally,
automata and languages over free bisemigroups (more precisely, free bisemigroups
with identity, called binoids) have also been studied by Hashiguchi et al. [10, 11].

Automata on Infinite Biposets 767

2 Basic concepts
2.1 Biposets and bisemigroups
In this paper, n always denotes a positive integer and E a finite alphabet. The
empty word is denoted by e. Let us call an algebra equipped with n associative
operations n-semigroup. A bisemigroup is an n-semigroup for n = 2. It is proved
in [5] that the elements of the free n-semigroups freely generated by some set E
can be represented by finite E-labeled series-parallel n-posets defined as follows.

A E-labeled n-poset, or n-poset, for short, is a (finite or countably infinite)
nonempty set P of vertices equipped with n (irreflexive) partial orders <i for i =
1 , . . . ,n, and a labeling function A : P —> E. We denote an n-poset by P=(P, < i
, < 2 , . . . , < n , A), so we do not distinguish between the name of the biposet and the
name of its vertex set. A E-labeled biposet, or biposet, is a E-labeled ?i-poset for
n = 2.

The two partial orders of a biposet (P, < i , <2, A) are called the horizontal and
the vertical order. Accordingly, instead of <1 and <2, we write <h and <„ , or
and <y if we want to emphasize that these orderings belong to biposet P.

A morphism between biposets P and Q is a function on the vertices that pre-
serves the partial orders and the labeling. An isomorphism is a bijective morphism
whose inverse is also a morphism. Below we will identify isomorphic biposets.

Suppose that P = (P, < £ , Ap) and Q = (Q, AQ) are E-labeled
biposets. Without loss of generality, assume that P and Q are disjoint. We define
their horizontal product as P • Q := (P U Q, <v'Q> ^P'Q)> a n d their vertical
product as P o Q := (P u Q, <£°Q, <£°Q, \P°Q), where

< r ° - < £ U < ? U (P x Q) , < r Q < P k U < l
< r Q := < U < ? , < r Q := < U < ? U (P x Q) ,

and the labelings are AP»Q = XpoQ := Ap U XQ.
We say that a finite or infinite biposet P is horizontal if there are biposets Pi

and P2 such that P — P\ » P2, otherwise P is called irreducible or horizontally
irreducible. Similarly, P is vertical if it can be written as P = Pi ° P2, and P is
said to be a-irreducible or vertically irreducible if no such decomposition exists. The
fact that P is a horizontal (vertical) biposet will be abbreviated as Type(P) — •
(Type(P) = o, resp.) If P is a horizontal (vertical) biposet, then any factorization
P = Pi • P2 • ... • Pm (P — Pi ° P2 0 ... 0 P m) , where m > 2, is called a horizontal
(vertical, resp.) decomposition of P. A horizontal (vertical) decomposition is said
to be maximal if every factor is horizontally (vertically, resp.) irreducible.

It is obvious that both product operations are associative. Each letter a € E
may be identified with the singleton biposet labeled o. Let SPB(E) denote the
collection of biposets that can be generated from the singletons corresponding to
the letters in E by the two product operations in a finite number of steps. Clearly,
these biposets are finite. The biposets in SPB(E) are called series-parallel biposets,
or sp-biposets, for short. It is known that series-parallel biposets have a graph-
theóretic characterization, which is an appropriate generalization of the "N-free"

768 Zoltán L. Németh

condition for posets, cf. [5, 9, 22]. We say that an arbitrary biposet P is complete
if every two vertices of P are related either horizontally or vertically, but not by
both order relations. It is obvious that every sp-biposet is complete.

Proposition 1 ([5]). A finite biposet (P, </,, <„ , A) is in SPB(E) if and only if P
is complete and both posets (P, </,) and (P,<v) are N-free.

Proposition 2 ([5]). SPB(E) is freely generated by E in the variety of bisemi-
groups.

2.2 Term and tree representation of sp-biposets
The most evident way of representing sp-biposets is describing them by terms. For
this reason, we extend the alphabet with operation symbols and parentheses. Let
E : = E U { * , ° , (,) } . As usual, we should put parentheses around the horizontal
biposets that appear as vertical factors, and symmetrically, around the vertical
biposets that appear as horizontal factors. The precise definition is the following.

Definition 3. If P e SPB(E), let Ptm denote the term representation of P. It is
a word over the alphabet E, defined inductively as follows.

(i) If P = a is a singleton biposet, then Ptm := a.

(ii) If P = P\ • P2, then Plm := Hfonn(Pi) . Hform(P2).

(Hi) If P = P\ o P2, then Ptm := Vform(Pi) ° Vform(P2).

Here Hform(P) denotes the horizontal form of the sp-biposet P, defined as:

. . . J Ptm if P is a singleton or horizontal biposet,
^ ' | (Ptm) if P is a vertical biposet.

In (Hi), Vform(P), the vertical form of P, is defined symmetrically.

It should be noted that in cases (ii) and (Hi) above, the definition of Ptm does
not depend on the choice of the factorization, since •, ° and the concatenation of
words are all associative operations.

We will also use finite ordered trees to represent sp-biposets. In that case, leaves
are labeled from E, and the inner nodes are labeled by • or o.

Definition 4. If P is an sp-biposet, its tree form Ptr, is defined as follows.

(i) If P = a is a singleton, then Ptr is a tree consisting of a single veHex labeled
by o.

(ii) If P is horizontal, then consider the maximal horizontal decomposition P =
Pi • P2 • . . . • Pm, (m > 2). Now Ptr is the tree whose root is labeled • and
this root connects the subtrees P{r, P2r, • • •, P£ (in that order).

Automata on Infinite Biposets 769

/1 A
b • e / A
c d

(b)

Figure 1: The biposet P of Example 5 (a), and its tree representation Ptr (b).

If P is vertical, then consider the maximal vertical decomposition P = P\ °
P2 ° ... ° Pm, (m > 2). Now Ptr is the tree whose root is labeled ° and this
root connects the subtrees P{r, P2tr, • • •, Pm ft71 that order).

Example 5. Consider the sp-biposet P = ({1 ,2 , . . . , 6}, </,, <„ , A), where </, and
< v are the transitive closures of the relations 1 <h 2, 1 <n 3, 3 </, 4, 2 </, 5,
2 <h 6, 4 <h 5, 4 <h 6, and 2 < v 3,2 <„ 4,5 <„ 6, respectively. Moreover,
A(l) = a, A(2) = b, A(3) = c, A(4) = d, A(5) = e, A(6) = / . Now Ptm = a • {b °
(c • d)) • (e o /) , and the graphical representation of P and the tree representation
Ptr are depicted in Figure 1. In the figure, horizontal and vertical relations are
indicated by solid arrows and dashed arrows, respectively.

It is obvious that for any leaf node in Ptr there is a corresponding vertex in P.
Hence, we may and will identify the leaves of Ptr with the corresponding vertices
of P. This allows us to speak about elements and subsets of P as those of Ptr.
Similarly, we can identify vertices of P with the corresponding letters in the term
representation Pt7n.

2.3 Infinite biposets and w-bisemigroups
In this subsection, we briefly summarize the main results of [7] regarding infinite
biposets. First, we introduce two types of operations that construct infinite biposets
from finite ones: the w-product and the w-power.

Suppose that Pi,P2,. . . are pairwise disjoint finite biposets. Their horizontal
u-product is defined as

where

w.(Plt P2, •••):= (Pi U P2 U . . . , < h , <„, A)

<„:= [J U (J (Pi x Pj), <v:= (J
¿=1 i<j »=1

770 Zoltán L. Németh

and
A : = XPL U XP2 U . . .

The vertical uj-product OJ0(PI, P2, • • •) is defined symmetrically. We will also refer to
horizontal and vertical w-products as Pi • P2 • . . . and P\ O P2 ° ..., respectively.
The two (¿-product operations naturally induce a. horizontal and a vertical power
operation: Pw* := P • P • P • . . . , and PWo := P ° P o P o . . .

Note that the definition of the product operations applies to both finite and
infinite operands. Nevertheless, in order to avoid constructing biposets which have
chains not contained in w, we will restrict the product operations P • Q and P ° Q
to a finite biposet P only. The biposet Q may be finite or infinite. The w-product
and w-power operations are applied only to finite biposets. These restrictions seem
to be necessary for the proofs later.

All the restrictions just described imply that we should use two-sorted algebras
as our algebraic framework making a difference between the finite and the infinite
elements. Fortunately, this can be done in complete analogy to the case of finite
and infinite words cf. [20]. But, as a minor difference from op. cit., we assume the
binary product operations to be appropriately polymorphic, i.e., we use the same
notation for the product of two finite biposets and for the product of a finite and
an infinite biposet.

Accordingly, call an algebra B = (BF,B[, »,°,W,,UJ0) an u-bisemigroup if it
satisfies the following identities

x*(y*u) = (x*y)*u,

X * L j t (x i , x 2 , • • •) = W » (X , X 1,Z2 , . . .) ,
W,(x\ * . . . * X f c l _ i , xkl * • • • * Xk2-1, • • •) = . . . , I f c , _ l , Xfe! ,

Efcj+1, • • • ,Xk2-1, • • •),

for all x, y,x 1, x 2 l . . . £ Bp, u £ BpUBj, * G {•,•=}, and for all increasing sequences
of positive integers k\ < k2 < •• •

A morphism of w-bisemigroups C = (CF, CJ, WO) —> V = (DF,DI,*',°'
,oj'm,oj'0) is a pair of functions h, = (HF CF —> Dp, h; : Ci —> Dj) that jointly
preserve the operations.

We call a E-labeled biposet constructible if it can be generated from the singleton
E-labeled biposets by the (restricted) binary product operations • and and by
the w-ary product operations w. and wo.

Note that SPB(E) is exactly the set of those constructible biposets which are
finite. Let ISPB(E) denote the set of infinite constructible biposets, and let

wSPB(E) := (SPB(E),ISPB(E),.,o,a;.,Wo)

stand for the two-sorted algebra of all constructible biposets over E. It is clear
that this is an w-bisemigroup. Now, it is easily seen that the set of all finite
and countably infinite biposets also form an w-bisemigroup, and wSPB(E) is the
smallest subalgebra of this w-bisemigroup that contains E. The infinite counterpart
of Proposition 2 is the following.

Automata on Infinite Biposets 771

(a) (b)

Figure 2: An upward comb (a) and a downward comb (b).

Proposition 6 ([7]). The algebra WSPB(E) is freely generated by E in the variety
of w-bisemigroups.

A graph-theoretic characterization of sp-biposets is also given in [7]. This, of
course, is a suitable generalization of the "generalized N-free" condition of the finite
case.

Proposition 7 ([7]). An infinite biposet (P,<h,<v, A) is in ISPB(E) if and only
if P is complete, and both posets (P, <h) and (P, <v)

(i) are N-free,

(ii) are free of "upward combs",

(Hi) are free of "downward combs", and

(iv) have only finite principal ideals,

where the "upward comb" and "downward comb" posets are depicted in Figure 2.

See [7] for precise definitions.
In order to simplify the notations, in the sequel, we use * to indicate any of

the • and ° operations. Sometimes, we also give subscripts to the *-s, but in any
formula all * symbols, without subscript or with the same subscript, always denote
the same operation.

A decomposition of P into an w-product of infinitely many biposets P = P*P2*
. . . is said to be maximal if every Pi is *-irreducible. If P is an infinite constructible
biposet, we say that P is primitive if it can be written as Pi * P2 * . . . for some finite
sp-biposets P\,P2,... Now each infinite constructible biposet can be generated from
the primitive biposets by multiplication with finite sp-biposets from the left. We
define the rank of an infinite constructible biposet P as the least number of left
multiplications with finite sp-biposets needed to construct P from the primitive
infinite biposets. The rank of P is denoted by Rank(P).

772 Zoltán L. Németh

It is easy to prove that if an infinite constructible biposet P is not primitive,
than it can be uniquely written as P = P' * P", where P" is *-irreducible and
Rank(P") < Rank(P). A direct consequence of this fact is that every infinite
constructible biposet has the form

Pi *i (P2 *2 (P3 *3 •••Pk*k {Q1 *k+1 Q2 *k+1 Q3 *fc+i • • •))). i 1)

where all Pi and Qi are finite biposets in SPB(E), and *i, *2, +3 . . . is an alternating
sequence of the • and ° operations. Moreover, this form is unique provided that
every Qi is *fc+i-irreducible. In this case, we call it the normal form of P. Note
that if (1) is the normal form of P, then Type(P) = *i and Rank(P) = k.

2.4 Tree and term representations of infinite constructible
biposets

Here we outline the changes to be made if one intends to represent infinite con-
structible biposets by terms and trees.

The only thing we need to describe is how to handle infinite products as P =
Pi • P2 • . . . The definition of PtT is straightforward if we allow (¿-branching in
trees. The tree Ptr has a root labeled by and this root has u branches connecting
the tree representations of all the horizontally irreducible components of the Pi-s
(i > 1). .

There are only slight changes also in the term representation. The term rep-
resentations of a biposet in ISPB(E) is an cj-word over the extended alphabet
E ' : = £ U { (,) , [} . We should add two more cases to Definition 3:

(iv) If P = Pi • P2 • • • t h e n Ptm := Hform(Pi) • Hform(P2)

(v) If P = Pi ° P2 o . . t h e n Ptm := Vform(Pi) ° Vform(P2)

The definitions of the horizontal and vertical forms are also extended appropri-
ately. In the representation of a product of a finite biposet with an infinite one,
we use the [symbol if the type of the product differs from the type of the infinite
factor. We only give the definition of the horizontal form:

{ ptm if P is a singleton or a horizontal biposet,
(Ptm) if P is a finite vertical biposet,
[P £ m if P is an infinite vertical biposet.

2.5 Recognizability
A language consisting of finite sp-biposets is said to be recognizable if it is recognized
by a homomorphism into a finite bisemigroup, i.e., L C SPB(E) is recognizable if
and only if L = ip~1(F), for some bisemigroup homomorphism ip : SPB(E) —> B,
where B is a finite bisemigroup, and F C. B.

Automata on Infinite Biposets 773

Similarly, for a language that contains both finite and infinite biposets, L. —
(L p , L i) C ojSPB(E), is recognizable if and only if there is a finite w-bisemigroup
B = (BF,BI), a subset of it, T = (TF,Tj) C (B F , F /) , and a morphism <p =
(<pF,ipi) • wSPB(E) -> B such that L = <p~l(T).- Here (T F , T j) C (B f . ,F J) means
TF C BF and T/ C F[, moreover, L = </3_1(T) stands for Lp = ,<pp1(TF) and
LI = tpJ1(Ti).

Example 8. Let £ = {a, b, c}, and consider the following language L C ISPB(E)
of infinite biposets

L={c"\ a . (6 ° (0) , o. (bo (a. (60 (tf")))),...}. '

L is the least solution of the fixed point equation a » (b ° X) + c"" = X. It is
not hard to show that L is recognizable. Indeed, consider the finite bisemigroup
B = (B p , B j) , where Bp = {da,db,dc,0}, and Bj — { i i ,¿2,^3,0} . The binary
product operations are given by dc • dc = dc, and all other binary products of two
finite elements are equal to 0, moreover, dc • 11 = 11, d\, ° t\ = t2, da • t2 = t3,
db 0 ¿3 = t2, and all other products of a finite element with an infinite one are
equal to 0. Finally, the w-product operations are given by = t\, and all other
u-products are equal to 0. Now, if we take the homomorphism <p : wSPB(£) —» B
that is induced by the mapping a t-> da, b db, c 1—> dc, then L = ipj1({ti,ts }).
This shows that L is recognizable.

2.6 Logical definability "
By considering biposets as relational structures, there is a usual way of defining
languages by logical formulas. Let V = {x, y,...} denote a fixed countable' set of
first-order variables, and W = {X, Y,...} a fixed countable set of monadic second-
order variables.

Now we define monadic second order (MSO) formulas. An atomic formula (over
£ , V and W) is of the form Qa{x), X(x), x <h y or x <v y, where a € £, x,y € V,
and X € W. MSO-formulas are composed from atomic formulas by the boolean
connectives V and -1 and first- and second-order existential quantifiers 3x and 3X,
where x eV and X e W .

We interpret formulas over both finite and infinite constructible biposets. Sup-
pose that P is in SPB(£) or in ISPB(£). First order variables are interpreted to be
vertices (also called positions) in P, whereas second order variables are interpreted
to be sets of positions in P. Now, Qa(x) means that vertex x is labeled by a and
X(x) means that x belongs to X. The atomic formulas x </, y and x <v y have
their expected meanings. The fact that a closed formula (sentence) <p holds in, or
is satisfied by P is defined in the usual way, and it is denoted P \= tp. The language
defined by <p is Lv := { P e (I)SPB(E) \P\=<p}.

Definition 9. We say that a language L C (I)SPB(E) is MSO-definable if there is
sentence tp with L — Lv.

774 Zoltán L. Németh

3 Automata and regularity
In this section, we will define parenthesizing automata operating on finite con-
structible biposets (i.e., on sp-biposets), and parenthesizing Biichi-automata oper-
ating on infinite constructible biposets.

3.1 Parenthesizing automata
An accepting device, called parenthesizing automaton, was introduced in [6] to
define the class of regular languages of sp-biposets. Its definition below involves
a finite set fl of parentheses. We assume that fi is partitioned into opening and
closing parentheses that are in a bijective correspondence. We usually denote the
corresponding pairs by (x,)i and (2J2, etc.

Definition 10. A (nondeterministic) parenthesizing automaton is a 9-tuple A :=
(S, H, V, E, fi, <5,7,I, F), where S is a nonempty, finite set oj states, H and V are
the sets of horizontal and vertical states, which give a disjoint partition of S, £ is
the input alphabet, Q, is a finite set of parentheses, moreover,

• 5 C (H x E x H) U (V x E x V) is the labeled transition relation,

• 7 Q (H x Q, x V) U (V x D. x H) is the parenthesizing transition relation,

• I, F C S are the sets of initial and final states, respectively.

Let A = (S, H, V, E, fi, <5,7,1, F) be a parenthesizing automaton. If t = (p, x, q)
is a labeled or parenthesizing transition of A, i.e., t S 6 U 7, the starting and the
ending state of t is denoted by start(i) := p and end(i) := q, respectively. Moreover,
if r = f i i 2 .. .tn £ (¿U7)* is a sequence of transitions, then let start(r) := start(ti)
and end(r) := end(t„). We say that two parenthesizing transitions 11 = (p,uj\,q)
and i2 = (s, U>2, t) £ 7 form a parenthesizing transition pair if OJI is an opening
parenthesis and u>2 is its closing partner.

Definition 11. Let A be a parenthesizing automaton. The set of its runs, Runs(_4),
is the least set of transition sequences that contains

(i) (p,o,q) for every {p,a,q) £ S;

(ii) rii-2 for every ri ,r2 £ Runs(-A) provided that end(ri) = start(r2);

(iii) t\v¿2 for every ti and t2 parenthesizing transition pair such that end(ii) =
start(r), end(r) = s tart^) , cind for every r £ Runs(A) such that r is of the
form r = r i r 2 , where r i , £ Runs(.4).

In case (i), the run is called singleton run, in case (ii), it is called direct run, in
case (iii) the run is called indirect run.

Automata on Infinite Biposets 775

Let A be a parenthesizing automaton, r = t\.. .tn £ Runs(A). A parenthesizing
transition pair ti, tj, (i < j) is said to be a matching parenthesizing transition pair
in r if ti • • • tj is an indirect run of A. It is obvious that every run of A is of the
form

r = T\T2T3 . . . ¿N = (P0,WI,PI) (PI ,W 2 ,P2) (P2,W3,P3) •••(PN - i ,w„,p„) ,

where Pi € S and un £ £ U O for all i = 1 , . . . , n. If r is an indirect run, then
ti and tn is a matching parenthesizing transition pair, and i2 • • -tn-1 is a direct
run of A. Moreover, if r is a direct run, then it has a unique decomposition into
subruns r = rir2 . . . rfc, where each r, is either a singleton run or an indirect run
for i = 1 , . . . , fc, and k >2.

Definition 12. Suppose that A is a parenthesizing automaton andr £ Runs(A).
The biposet of r is an element of SPB(£) defined inductively as follows:

(i) If r = (p,a,q), then Biposet(r) := a.

(ii) If r is a direct run, and r = rir2 for some ri ,r 2 € Runs(A), then •• • •

- i /end(r1) e H, then Biposet(r) := Biposet(ri) • Biposet(r2);
- z/end(rx) £ V, then Biposet(r) := Biposet(ri) o Biposet(r2).

(Hi) If v is an indirect run r = t\r' t2, then Biposet(r) := Biposet(r').

As in Definition 3, the definition of Biposet(r) is also independent of the choice
of factorization in case (ii) above.

If r = (po: wi,pi)(pi , w2,i>2)... {pn-i, w n ,p n) is a run of A, we define the word
of r as

Word(r) := wiw2 • •

where

{ Wi if Wj £ E,

(if u>i £ 0 is an opening parenthesis, and
) if Wi £ ii is a closing parenthesis.

The relationship between the term representation of a biposet and the word of
a run on that biposet, is given by the following lemma. This is a straightforward
consequence of Definition 3, Definition 11 and Definition 12. In the sequel, we write
Type(g) = • if q is a horizontal state, and Type(<7) = ° if g is a vertical state of an
automaton A.
Lemma 13. Suppose that A is a parenthesizing automaton, r £ Runs(X), and
P = Biposet(r).

(i) r is singleton or direct run <=> Type(start(r)) — Type(P)
<=> Word(r) = Ptm.

(ii) r is indirect run Type(start(r)) ^ Type(P) Word(r) = (Ptm).

776 Zoltán L. Németh

Definition 14. Suppose that P £ SPB(E) and p,q £ S. We say that A =
(S, 77, V, £, Q, <5,7,/, F) has a run on P from p to q, denoted \p,P, q]A, if there
is a run r £ Runs(.4) with start(r) = p, end(r) = q, and Biposet(r) = P.

Definition 15. The sp-biposet language L(A) accepted by the automaton A =
(5, 77, V, £, fi, <5,7,7, F) is defined as

L(A) := { P £ SPB(E) | [i, P, f]A for some i £ I and f £ F}.

An sp-biposet language L C SPB(E) is called regular if there exists a parenthe-
sizing automaton A that accepts it, i.e., L — L(A). Two automata are said to be
equivalent if they accept the same language.

The following lemma is a straightforward consequence of Definition 11 and Def-
inition 12.

Lemma 16. Let A = (S, 77, V, £,fi,5,7,1, F) be a parenthesizing automaton, and
let P be a horizontal sp-biposet, with maximal horizontal decomposition P = Pi •
. . .•Pn , (n > 2).

If p, q £ H, then

\p,P,q}^ 3 r i , . . . , r n _ i £ H, 7*o =p, rn=q : [ri_i, Pu Vi = 1 ,...,n.

If p, q £ V, then

\p,P,q)A^3(k,)k£n, 3p',q'£H : (p,(k,p'), (q',)k, q) £ J, \p',P,q'\A

Obviously, for vertical sp-biposets there are two analogous statements.
Corollary 17. If A= (S, H, V, 5,7,7, F) is a parenthesizing automaton, and
P is a horizontal biposet, then

P £ L(A) either i) P, f]A, where i £ I n 77, and f £ F n 77;
or ii) [r,P,s]A where r,s £ H, and (i, (,r), (s,), /) £ 7,

i£lC\V, feFnv, (,) en.

Again, an analogous statement holds for vertical sp-biposets.

We do not give examples of parenthesizing automata here, but several exam-
ples can be found in [6]. The main result concerning sp-biposet languages is the
following.

Theorem 18 ([6]). An sp-biposet language L C SPB(E) is recognizable if and only
if it is regular if and only if it is MSO-definable.

Automata on Infinite Biposets 777

3.2 Parenthesizing Biichi-automata
Our next task is to define parenthesizing Biichi-automaton so that a language is
recognizable if and only if it can be accepted by such an automaton. A straight-
forward approach would be to use the same accepting device and only extend the
notion of run appropriately for the acceptance of languages of infinite biposets, but,
as we shall see, this cannot be achieved. Thus, our definition is the following.

Definition 19. A parenthesizing Biichi-automaton is a tuple A := (S,H,V,
E,f2, [, 5, /3, 7,1, F), where A' := (S, H, V, £, fl, 6,7,1, F) is a parenthesizing au-
tomaton, called the underlying parenthesizing automaton of A. And the new com-
ponents are the following:

- [^ (E U i l) s s the separating parenthesis, and

- (3 C (H x { [} x V) U (V x { [} x H) is the separating transition relation.

For the sake of simplicity, we will write [p, P, instead of [p, P, q\A> if P is an
sp-biposet, and A' is the underlying parenthesizing automaton of the parenthesizing
Biichi-automaton A.

Remark 20. It was proved in [18] that if we would like to accept all regular
sp-biposet languages, we cannot give a universal upper bound for the number of
parentheses used in parenthesizing automata. On the other hand, as we need not
to close parentheses of the separating transitions, a single symbol in itself is enough
for changing the type of the state at the borders of "finite-infinite" products.

Next, we define when a parenthesizing automaton A accepts an infinite biposet
P from a given state p. For this, we choose Biichi's approach: for acceptance a run
must contain a final state r (in certain "outer" positions) infinitely many times. Let
[p, P, r}^ denote this fact. Its definition distinguishes two cases and uses induction
on the rank of P. Recall that we write Type(p) = • if p is a horizontal state, and
Type(p) = o if p is a vertical state of A. Similarly, Type(P) = • (Type(P) = °)
indicates that P is a horizontal (vertical, resp.) biposet.

Definition 21. Suppose that A = (S, H, V, E, 0, [, S, 7, /?, I, F) is a parenthesizing
Biichi-automaton, p and r are in S, and P is an infinite constructive biposet. We
write [p, P, r]^ in the following cases.

i) Type(p) = Type(P), and either

a) P can be written as P = Po * Pi * P2 * • •., where each Pi is a finite (not
necessarily *-irreducible) sp-biposet such that \p,Po,r]A and [r,Pi,r]A

for i > 0; or
¡3) P = P ' * P", where Rank(P") < Rank(P), and there is a state q £ S

such that \p,P',q}A and [q, P " t h e latter is defined inductively.

ii) Type(p) Type(P), and there exists a state p' £ S such that A has a sepa-
rating transition (p, [,p') £ /3, and [p',P, r]^ holds according to case i) above.

778 Zoltán L. Németh

Figure 3: A parenthesizing Biichi-automaton

Definition 22. A parenthesizing Biichi-automaton A accepts the following lan-
guage

L(A) := { P G ISPB(E) | [», P, for some i G / and f G F }.

Again, a language L C ISPB(E) is regular if there is a parenthesizing Biichi-
automaton A such that L = L(A).

Similarly to Definition 11, one could also define infinite runs formally. In this
case, runs are u-words over the union of the sets of labeled, parenthesizing and
separating transitions. Later we will use the same notations as in the finite case:
Runs(A), Biposet(r), etc.

Example 23. Figure 3 shows a parenthesizing Biichi-automaton. The horizontal
states are those labeled Hi and the vertical states are those labeled Vj for some
i and j. There is a single initial state H\ and a single final state The angle
brackets indicate parenthesizing transitions, while the square brackets represent
separating transitions. It is easy to check that this automaton accepts exactly the
constructible biposets of the form

(a o b) • c • (a o b) • c • . . . • (a ° b) • c • (d ° (e • (d ° (e • . . . (d ° (e • / • / • / . . .)) . . •))))

Remark 24. As we mentioned above, we cannot use original parenthesizing au-
tomata for acceptance of infinite biposets. First, there is no meaningful definition
of closing a parenthesis after the acceptance of an infinite subbiposet. E.g., suppose
that P = Q • R is an infinite constructible biposet, where Q is a finite sp-biposet
(either horizontal or vertical), and R is an infinite vertical biposet. Now, if there
is a finite run [p, Q,q\j^ for some horizontal states p and q, we must open a paren-
thesis by some transition (q, (, r) in order to arrive at a vertical state r, from where
the acceptance of the infinite vertical biposet R can be started. However, as R is
infinite, we have no possibility to close this parenthesis. Second, it can be proved
that we must distinguish between the normal and these "non-closable" parenthe-
sizing transitions, otherwise there would be w-recognizable languages that cannot
be accepted by Biichi-automaton. To check this, consider the language L {a •
[b o c) • d"*, a • (6 o (a . (6 ° c))) • <f a . (b ° (a . (b ° (a . (b ° c))))) • d"*,...}.

Automata on Infinite Biposets 779

4 From regularity to recognizability
The fact the regularity implies recognizability is easily follows from the finite-state
property of automata.

Theorem 25. Every regular language of infinite constructible biposets is recogniz-
able.

Proof. Let L denote a language containing only infinite constructible biposets, i.e.,
L C ISPB(£). We show how to transform a parenthesizing Buchi-automaton A =
(S, H, V, E, f1, [, S, 7 ,0,1 , F) accepting L into a finite w-bisemigroup recognizing L
analogously to [20].

Recall that [p, P, q]A means that the automaton A has a run on the sp-biposet
P from state p to state q. Moreover, we write Type(p) = • if p is a horizontal state,
and Type(p) = o if p is a vertical state of A. Suppose that Type(p) = Type(g) = *,
and consider an sp-biposet P. If P is ^-irreducible, then take P\ = P and m = 1,
otherwise let the maximal ^-decomposition of P be P = Pi * P2 * . . . * P m for
some m > 2. According to Lemma 16, there are states po = p,pi, • • • ,Pm = Q of
type * such that [p0, Pi,pi]A, [pi, • • •, [pm-i, Pm,pm]A hold. Let us write
[p, P, to indicate the existence of such states for which {po , . . . , p m } O F ^ 0.
Thus, [p, P, if and only if there is at least one final state among the "outer"
states of a possible run between p and q on P.

Next, we define for any P,Q 6 SPB(E) and P',Q' e ISPB(E)

P ~F Q iff Vp, q e 5 : ([p, P, q)A O [p, Q, q\A and [p, P, q}A+ [p, Q, q}A+),

P' Q' iff Vp £ S : (3r £ F : [p,P',r]% 3r' G F : \p,Q',r'}<%).

Now one can check that and are equivalence relations with finitely many
equivalence classes. Furthermore, they satisfy the following equalities. If Pi,Qi G
SPB(E), for i = 1 ,2 , . . . , and P' , Q' G ISPB(E), * G { •, ° }, then

Pi ~ f Q1, Pi Q2 => Pi * P2 Q\ * Q2,
Pi ~ F Qi for i > 0 Pi * P2 * . . . Q\ * Qi * • • •, and
Pi ~ F Qi, P' Q' Pi* P' -/ Qi * Q'.

Hence the quotient can be equipped with the structure of an w-bisemigroup.
Finally, the canonical epimorphism of wSPB(E) onto this quotient accepts L(A).

•

5 From recognizability to regularity
In this section, our aim is to prove that every recognizable infinite constructible
biposet language is regular, i.e., can be accepted by a parenthesizing Biichi-
automaton. First, we observe that every parenthesizing automaton is equivalent to
one in normal form, i.e., with a single initial and a single final state.

780 Zoltán L. Németh

In the sequel, we assume that no automaton has two opening or closing paren-
thesizing transitions with the same label. This can easily be achieved by replacing
the multiple occurrences of the same parenthesizing transition pair with new tran-
sitions using different symbols. We start with the definition of the substitution
product of parenthesizing automata.

Definition 26. Suppose that Ai = (Sx,Hi, Vi,E,f2,<5i,7i,/i,.F\) and Ai =
{S2,H2,V2,Y.,Sl,82n2,I2,F2) ore parenthesizing automata, and either p,q £ Hi
and R,S C. H2; or p,q £ Vj and R, S C V2. We assume that Si and S2 are dis-
joint. We define the substitution product of Ai and A2 with respect to p, q, R and
S, as

Ai *[p—»/i (5—»q] M : = {S3,H3,V3,E,Q3,83,^3,Ii,Fi),

where

S3 := S1US2, H3 Hi U H2, V3:=ViUV2,
n 3 •.= nu{ (f i r s t ,) f i r s t , (last,) last | (,) e f i } ,
¿3 := ¿i U S2

U{ (p, a, x) | a £ H,x £ S2,3r G R : (r, a, x) £ S2 }
u{ (y, b, q) I y £ S2, b £ E, 3s £ S : (y, b, s) £ 82 },

7 3 : = 7 i U 7 2
U{ (p, (first, x), (y,)first, z)\x,y,z £ S2, 3r G R : (r, (, x), (y ,) , z) £ 7 2 }
U{ (x, <las\ y), (z,)last, q)\x,y,z£ S2, 3s £ S : (x, (, y),(z,),s) G 7 2 } •

The construction is illustrated in Figure 4. If both R and S are singletons,
say R = { r } and S = {s} , then we will write Ai A2 instead of
Ai

*b— M,W-><?] A2. The next lemma formulates a key property of the substi-
tution product.
Lemma 27. Suppose that Ai and A2 are parenthesizing automata as above, p,q £
Hi, R,SCH2 and A3 = Ai *[p_# is_9] A2. Moreover, p^ q, and no transition of
Ai arrives at p or starts from q. Then, for every P £ SPB(E)

[p. p> Q\a3 ** e i t h e r V b> p> QiAi'
or ii) 3r £ R,3s £ S : [r, P, s] ^ and P is horizontal.

Proof, {p, P, implies that P — Biposet(r) for a run r = ti.. ,tm £ Runs(As)
with start(ii) = p and end(im) = q.

If end(fi) G Si, then r G Runs(Ai) also holds. This follows from the definition
of A3 and from the fact that no transition arrives at p. Thus, case (i) is true.

If end(ii) G 52, then we can modify r to obtain a run r' := t[.. ,t'm £ Runs(A2)
with Biposet(r') = P and start^) G R, and end(ii„) G S. Indeed, if ti is of the
form ti = (p,a,x), a £ E, then there is an r £ R such that t[:= (r,a,x) G ¿2-
Similarly, if tm = (y, b, q), b £ E, then there is an s £ S such that t'm := (y, b, s) £ 52.
On the other hand, if 11 or tm involves parenthesis, e.g., ii = (p, (f i rs t,x), then

Automata on Infinite Biposets 781

(a)

Figure 4: The labeling (a) and the parenthesizing (b) transitions used in Defini-
tion 26. The thin arrows represent the original transitions, and the thick arrows
the new ones.

there is a closing transition partner of t\, say U = {y,)first, z), where i < m, and
x,y,z G S'2. Moreover, by definition, there is an r G R such that t\ := (r, {, x),
t\ := (y ,) , z) G 72- Similarly, if tm = (z,)last,<7), then there is an index j > 1
such that tj = (x, (l a s t ,y). So, we can set tj := (x,(,y) and t'm (z ,) , s) G 72
for a suitable s G S. So far we have defined t'k for at most four A;-s. Let t'k := tk

for all other fc-s (note that tf. £ 82 U 72 in these cases). Now Biposet(r') = P,
start(ii) = r G R, and end(i^) = s G S implies [r, P, s] ^ . Since (first and) last do
not match, t\ and tm cannot be a matching parenthesizing transition pair. Hence,
r is a direct run, and so is r'. Consequently, by Lemma 13, r,s G H implies that
P is horizontal. Thus, (ii) holds.

For the converse direction, it is obvious that [p, P, implies \p, P, q]j\3-
Assume that ii) holds, so P — Biposet(r) for r = ti... tm G R u n s (^ 2) with
start(ii) = r G R and end(fm) = s G S. By Lemma 13, as P is horizontal and r
and s are in H, r is a direct run. Hence, ii and tm is not a matching parenthesizing
transition pair. Thus, it is possible to replace both (and) with (first and) last, in
the first and in the last transitions, if necessary. We can also substitute their closing
and opening partners by)first and (last, if needed. Therefore, the construction of
A3 ensures that [p, P, holds. •

782 Zoltán L. Németh

Definition 28. We say that a parenthesizing automaton is in horizontal normal
form if it has a single initial state ih, and a single final state fh, and both ih and fh
are horizontal states, moreover, there is no transition into ih or from //,. Automata
in vertical normal form can be defined accordingly.

Lemma 29. For every parenthesizing automaton A, there exists an equivalent
parenthesizing automaton Ah in horizontal normal form and an equivalent paren-
thesizing automaton Av in vertical normal form.

Proof. First we prove that for every parenthesizing automaton A = (S, H,V,H,
Sl,S,f,I,F) there exists a parenthesizing automaton Ann in horizontal normal
form that accepts exactly the horizontal biposets accepted by A, i.e.,

L(Am) = L(A) n H,

where H denotes the set of all horizontal biposets. Indeed, let

T:={(s,t)\3i£lnV,3f £FnV,3(,)£Q. : (i,(,s), (i,),/)e7},

and assume that T = { (si , i i) , (s2, <2), • • •, (sn,tn) } . Moreover, let Ao be the
automaton without transitions, with two states only, an initial horizontal state ih,
and a final horizontal state //,.

Now, with the help of the substitution product, we define

Ai := Ao *[ill-,inH,FnH-,fu} A

Ak+1 := Ak *{ih-*sk,tk->fh] -A. for k = l , . . . , n ,

A™ := An+i.

Using Lemma 27 and Corollary 17, it is straightforward to check that L(An7i) =
L(A) fl H, as claimed.

Similarly, there is an automaton Anv in vertical normal form which accepts
exactly the vertical biposets accepted by A. Let iv and fv denote the (single)
initial and final vertical states of A n V . ,

Now, we can construct Ah by taking the disjoint union of An7i and Anv and
adding two new parenthesizing transitions, (ih, {, iv) and (fv,}, fh), where { and }
is a new pair of parentheses. Of course, we do not regard iv and fv as initial and
final states any longer. In order to accept the singleton biposets, we also define
(ih, fh) for each singleton biposet a £ L(A). As Ann accepts all horizontal,
and An all vertical biposets of L(A), the resulting automaton is equivalent to A.
Again, Au can be defined symmetrically. •

Now, we are ready to prove the converse of Theorem 25.

Theorem 30. Every recognizable language of infinite constructible biposets is reg-
ular.

Automata on Infinite Biposets 783

Proof. Suppose that a language L C ISPB(E) of.infinite constructible biposets is
recognized by a morphism ip : wSPB(E) —> B, where B = (Bp,Bj) is a finite
w-bisemigroup, and L = ip~1(F) for some F C Bj.

Let us call an element e £ Bp horizontally idempotent if it is idempotent with
respect to the horizontal product, i.e., e • e = e. Similarly, e is said to be vertically
idempotent if e ° e = e. This notion is important for the fact that every primitive
biposet PO* P\ * ... can be written in the form PQ * P{ * ..., where <P(PQ) = b and
ip(P[) — e for all i > 0, where e is a *-idempotent element of Bp. This follows from
an application of the Ramsey-theorem, cf. [20]. We can even assume that b — b*e,
but we do not need this now.

Thus, if we omit Pq from the above biposet, then the remaining primitive biposet
is P{*P^*..., where <p(P[) = e for all i > 0. Let us call those biposets that can
be written in such a form e-* -primitive.

For a given e and *, the set of all e-*-primitive biposets is easy to accept by
a parenthesizing Biichi-automaton constructed as follows. Since </J-1 (e) is a
recognizable set of finite sp-biposets, it is also regular by Theorem 18. So there
is a parenthesizing (finite) automaton A accepting <p~1(e). Moreover, it can be
assumed that A is in '*-normal form (i.e. in horizontal normal form if * = •, or
in vertical normal form if * =o). Thus, A has a single initial state i and a single
finite state / , both of them are of type *. We can transform A into Ae,* just by
merging i and / . We will refer to this fused state as the basic state of -4e,*. Now,
it is obvious that if we regard Ae,* as a Biichi-automaton with its basic state as
the only initial and final state, it accepts exactly the e-*-primitive biposets.

Recall that according to (1) the normal form of a constructible biposet is

We can assume that except for a finite factor Q\ the biposet Q\ *k+i Q2 *k+i • • •
is e-*fc+i-primitive for some *fc+i-idempotent e. Thus, we only need to build our
automaton in a way that it can also process the finite "introductory slice" Pi *i
(P2 *2 (• • • Pk *k {Q'*k+1 before the e-*fc+i-primitive tail.

Assume that Bj = {£;,£2, • • • ,tm}- We start to construct a Biichi-automaton
A from the horizontal states Ho, vertical states Vo, with separating transitions /3,
where

For all b G Bp, there is a parenthesizing (finite) automaton Ab recognizing
ip~l(b). Similarly as before, we will incorporate these finite automata into A.

More precisely, if p and q are states of A of the same type, say *, then one can
take a copy of Ab in *-normal form and merge its initial state i and final state / with
the states p and q of A, respectively. In the sequel, we refer to this construction as
extension of A (between p and q) by <p~l(b). Let us denote it by

-Pi *i (P2 *2 • • • {Pk *k (Q i *fc+i Q2 *k+1 • • •)))•

784 Zoltán L. Németh

Figure 5: A Biichi-automaton accepting the recognizable language of Example 8

We need to add the following extensions to A:

T^^T* for all U = B*TJ, BE BF, U,TJ e BJ,* e {• , » } .

Now we obviously have

[i*, P, t* }A ti = <p(P) * tj for any P G SPB(E).

Furthermore,

[t*, Pi *i (P2 *2 (• • • Pk-1 * {Pk*k,t* }A^U = ip(Pi) *! (<p(P2) *2 (. . . ip(Pk) *fc tj)),

where the left hand side abbreviates the first part of an infinite run of A (as a
Biichi-automaton) on an infinite biposet beginning with Pi *i (P2 *2 •.. (Pk*k•

Next, add an instance of Aefor each *-idernpotent element e in Bp to A, and
assure the reachability of the new components by adding some new transitions. In
more detail, for consider t := and duplicate each transition arriving at
t* using the same source and label, but with the target of the basic state of Ae,»
instead of t*.

Our last task is to settle the initial and the final states. Let the initial states
be the states t' and t° for each t G F, and set the basic states of the components
Ae,*-s as final states.

Finally, it can be argued by induction on the rank of the biposets that in fact
this automaton accepts L = <p~~l(F). We omit the formal proof. •

Example 31. Figure 5 shows a parenthesizing Biichi-automaton that was con-
structed according to the proof of Theorem 30 from the morphism ip, the u>-
bisemigroup and the set F C B of Example 8. We omitted the two shrink
states 0*,0° that correspond to the infinite zero element, and also the transitions
pointing to them. We should admit that this example represents a somewhat spe-
cial case, since, for every x G Bp the extension by <p_1(x) is a single transition, and
there is only one idempotent in Bp. Of course, in the general case the constructed
automaton can have a more complex structure.

Automata on Infinite Biposets 785

6 From regularity to MSO-definability
In this section, we prove the equivalence of regularity and MSO-definability. First
of all, it is not hard to demonstrate that MSO-definability implies recoginzability,
and hence regularity. This can be shown by formula induction using the closure
properties of the recognizable sets, more precisely, the closure under Boolean op-
erations and direct letter-to-letter morphisms. See Chapter III.l of Straubing [21]
for a similar argument. Thus, we have the following theorem. .

Theorem 32. Every MS0-definable language of infinite constructive biposets is
regular.

The rest of the paper is devoted to the converse of the previous theorem:

Theorem 33. Every regular language of infinite constructible biposets is MSO-
definable.

Before the proof, let us introduce a few definitions and lemmas.
The notion of clan is one of our key definition, that can be easily adapted from

the theory of 2-structures [2] and texts [4, 13]. If (P, <h, < v , A) is a finite or infinite
constructible sp-biposet, a subset X of P is said to be a clan of P if for all x, y G X,
z G P \ X and for each relation p G {</i, <v, >h, >v}

xpz ypz.

Two clans X and Y overlap if X n Y ^ 0, X \ Y ^ 0 and Y \ X ^ 0. A clan is
called prime clan if it does not overlap with any other clan. A clan of P is a proper
clan if it is neither a singleton, nor equal to P.

Example 34. In the biposet of Example 5, the clans of P are the following: the
singletons, P, { 1 , 2 , 3 , 4 } , { 2 , 3 , 4 } , { 3 , 4 } , { 2 , 3 ,4 ,5 ,6 } and { 5 , 6 } . Since, only
{ 1,2,3,4 } and { 2,3,4,5,6 } overlap, the other clans are prime clans as well. Thus,
the proper prime clans are { 2 , 3 , 4 } , { 3 , 4 } and { 5 , 6 } . As we will see later in
Lemma 38, these are the sets which are surrounded by parentheses in the term
representation of P.

The proof of the following lemma is trivial and is left to the reader.

Lemma 35. The property of being a clan, a prime clan or a proper prime clan can
be expressed in MS0 logic.

Lemma 36. If P = (P, </ i ,< v ,A) is a (finite or infinite) constructible biposet,
then <h U <v is a linear order on P.

Proof. By induction on the construction of P. •

In the sequel, let < denote the <k U < v relation, and we interpret the functions
+ and — also according to this relation.

786 Zoltán L. Németh

By definition, clans form sections (or intervals) with respect to <. That is, if X
is a clan then x € X, y € X and x < z < y imply 2 £ X. Thus, we can talk about
prefix and suffix relations among the clans of P. Formally,

Prefix(X, Y) := X CY A VxVy(y < x A X(x) A Y(y) —> X(y));

Suffix(X, Y) := XCYAVxVy(y>xAX(x)AY(y)-*X(y)),

where X CY means that X is a proper subset of Y. Thus, under prefix and suffix
relations we always mean proper prefix and suffix.

Recall that Ptr denotes the tree representation of P. Two (or more) subtrees
of a tree are said to be sibling subtrees if their roots have the same parent.

Lemma 37. Suppose that P is a (finite or infinite) constructible biposet and X is
a subset of P, then

(i) X is a clan of P if and only if there are consecutive sibling subtrees in Ptr

such that X is exactly the union of the sets of leaves of these subtrees;

(ii) X is a prime clan of P if and only if X is the set of leaves of a single subtree
of PtT.

Proof. We start with the proof of case (i). The necessity of the condition is based
on the following observation. Suppose that x and y are vertices of P. As we
mentioned earlier, we can regard them as two leaves in the tree representation Plr.
The (horizontal or vertical) type of the order relation between x and y is solely
determined by the label of their lowest common ancestor node. For this reason, let
u denote the lowest common ancestor of x and y. If the label of u in Ptr is •, then
x <k y or y <h x] ii the label is o, then x and y are ordered vertically. We can also
easily decide whether x is less or greater than y. Consider ux and uy, the children
of u that are ancestors of x and y, respectively. Now, x is less than y if and only if
ux is less than uy according to the order of the children nodes at u. It follows that
if a subset X of P satisfies the condition of (i), then it also fulfills the requirements
of being a clan. Indeed, the order relation between a vertex x from X and a vertex
y outside X is independent of the choice of x from X.

For the converse direction, suppose, on the contrary, that X is a clan, but the
condition does not hold. First let v denote the lowest common ancestor node of
the vertices of X. Now consider those children of v that have leaves in X, and then
take the subtrees generated by them. The condition can be violated in two ways.
Either these subtrees are not consecutive or there is a subtree that has leaves both
from X and P\X. In the first case, it is straightforward to show that X is not a
clan. In the second case, consider a child u of v that has a leaf x in X and has a
leaf z mP\X as well. We can even assume that x and z are descendant of different
children of u, so their lowest common ancestor is u. Moreover, there must also be
a vertex y in X whose lowest common ancestor with x is v, otherwise the lowest
common ancestor of the set X could not be v. But, x and z are related by an order
of type determined by the label of u, while y and z are related by an order of type
determined by the label of v. As u is a child of v, their labels in Ptr are different.

Automata on Infinite Biposets 787

Consequently, the types of the order relations between x and z and between y and
2 are also different. This contradicts to our assumption that X is a clan.

Now case (ii) easily follows from case (i), since if X consists of the leaves of
two or more (but not all) subtrees of a given node, then overlapping clans can be
constructed by (i) showing that X is not prime. •

The following lemma is important for a later proof. It connects the various
representations of biposets with the use of parentheses of automata. Recall that
E = £ u { . , o , (,) } .

Lemma 38. For any P £ SPB(E), X C P; parenthesizing automaton A, and
r £ Runs(A) with Biposet(r) = P, the following statements are equivalent:

(i) X is a proper prime clan of P.

(ii) X is the set of leaves of a proper subtree of Ptr.

(Hi) Ptm can be written as Ptm = u(Xtm)v, where u,v £ £*, and the subword
Xtrn above corresponds to those vertices of P that are in X.1

(iv) r is of the form r = riiirxi2i"2, where rir? ^ £, t\ and t2 form a matching
parenthesizing transition pair in r, and rx denotes the direct subrun of r on
the vertices of X.

Proof. The equivalence of (i) and (ii) follows from Lemma 37. The equivalence of
(ii) and (Hi) is obvious, it expresses a usual correspondence between the term and
the tree representations. Finally, the equivalence of (Hi) and (iv) is a consequence
of Lemma 13. •

Now we are ready to start the proof of the main theorem of this section.

Proof of Theorem 33. For sp-biposet languages, the equivalence of MSO-definabil-
ity and recognizability (and hence regularity) directly follows from an analogous
equivalence result on text languages shown by Hoogeboom and ten Pas [13]. See
also [6] about the relationship between texts and biposets. Even though, here we
outline an alternative proof of this fact, since it will serve as the base for the proof
of the infinite case. Our argument does not rely on the equivalence of recogniz-
ability and MSO-definability of finite binary trees, but shows how the operations of
parenthesizing automata can be described by logical formulas. We start with the
finite case, i.e., with the case of sp-biposets, and explain the necessary changes for
the infinite case later.

Let A = (S,H,V,T,,Q,6,j,I,F) be a parenthesizing automaton accepting an
sp-biposet language L. Our aim is to construct an MSO-formula <p for which L^ —
L.

The proof of Lemma 29 implies that we may assume that A accepts via direct
and singleton runs only. Therefore, it is sufficient to construct a formula tpij which
expresses the fact that A has a direct run from an initial state i to a final state f.

1Note that the subword Xtm can also appear at other places in the word Ptm.

788 Zoltán L. Németh

We use second order variables for storing information about the states of the
runs. In more detail, two types of monadic second order variables are used. First,
let Xa be a variable for each state s in S, and let Z^. denote a variable for each
pair of parentheses in fi. Formally,

Var^ := { X , | s e S } U { Z{j)j | (,,>,• € SI}.

The general form of <pij is the following

ipu := 3XSl3XS2... 3XSm3Z(i)l3Z{2h ... 3ZUnipiif,

where, ipij expresses the fact that the values of our variables in fact encode a direct
run of A from i to / .

We need to check three conditions. First, the run must start from i. Second, it
must end in / . Third, we need to verify that A has correct transitions everywhere
between the states indicated by the variables. We handle the labeled and the
parenthesizing transitions of the run separately.

For labeled transitions, the usual technique (cf. [21]) can be applied, that is,
the intended meaning of x £ Xs is that A reads position x in state s. The storage
of parenthesizing transitions is more involved. Fortunately, by Lemma 38 the use
of parentheses is always around proper prime clans. But we also need to arrange
a unique position in the biposet for each matching parenthesizing transition pair
used during the run.

For this purpose, the following rule can be applied. If a proper prime clan
is a prefix of an other proper prime clan, then let the designated position be its
last position, otherwise let the designated position be its first position. Thus,
the statement that 2 is the designated position of a proper prime clan X , can be
expressed as:

Dp(z,A:) := [- i 3 y (P P C (y) A Prefix(X, Y)) A First(z, X)]

V [3 Y (P P C (Y) A Prefix(X, Y)) A Last(z, X)],

where PPC(Y) states that Y is a proper prime clan, and First(z, X) (Last(2, X))
is true if and only is z is the first (last, resp.) position of the clan X.

Now, it can be verified that the prime property implies that the designated
positions of any two proper prime clans do not coincide.

Lemma 39. Different proper prime clans have different designated positions.

Proof. For a contradiction, assume that X and Y are different proper prime clans,
but z is their common designated position. If 2: is the first position of both X
and Y, then either X is a prefix of Y, or Y is a prefix of X, in contradiction with
the definition of designated position. If 2 is the first position of one clan and the
last position of the other clan, then X and Y overlap, leading to a contradiction
again. Finally, assume that z is the last position of both X and Y, and X C Y. By
definition, there is a proper prime clan X' such that A" is a prefix of X'. Therefore,
in this case, Y and X' overlap, again a contradiction. •

Automata on Infinite Biposets 789

Proof of Theorem 33, continued. If x is a position, then the intended meaning of
Z^^^x) is that A uses parentheses (j,)j (more precisely the unique pair of tran-
sitions labeled (j and)j) before and after processing the proper prime clan whose
designated position is a;.

As usual, we require that every position belongs to exactly one Xs:

1&i := Vx[\/Xa(x) A / \ (^ ? i (i) V n X f t (i))] .
ses qi ,q2€5,

91 #92

Moreover, the designated positions of proper prime clans must also belong to a
unique set Z^r.

ip2 := Vx 3X(PPC(X) A D p (i , J))

-> V Z{j)j(x) A /\ (^Z{jh(x)V-,Z{k)k(x))
(j.)jefi (j,)j en,

(k,)ten,

We know that for all positions x, the state of A before processing this position
is indicated by a unique state p such that x £ Xp. Moreover, q, the state after
reading position x, can be computed as follows. First we observe whether P has a
proper prime clan that ends at x. If so, then we determine the smallest such clan,
and q is the starting state of the closing parenthesizing transition of that clan. Of
course, this state can be determined by observing the designated position of the
clan. If there is no proper prime clan that ends at x, then q is indicated at the
position x + 1 or at the greatest prime clan that starts at x 4-1. Besides, if x is
the last position, then q must be the final state of the run. Finally, we can check
whether A in fact has a labeled transition with the label of x between p and q. We
should perform this verification for every position x. The precise algorithm of this
computation and the way of converting it to an M SO-formula are presented in the
appendix.

We can also check the correctness of the parenthesizing transitions by a similar
procedure. For all proper prime clans, we compute four states of the encoded
run: the states before and after the opening, and before and after the closing
parenthesizing transitions around the clan. In the pseudocode presented in the
appendix, these states are denoted by ob, oe, cb and ce. Then, it is straightforward
to check whether A has a parenthesizing transition pair between the computed
states, and whether the labels of these transitions are indicated at the designated
position of the clan. It is also a nontrivial computation, since we must take into
consideration various inclusion relations of the clans. For more detail, see the
appendix again.

Finally, note that the algorithm of verification can be transformed into an MS0-
formula ips. Hence we can write ipij as ipij := ipi A ip2 A 1P3. This completes the
proof for finite constructible biposets.

790 Zoltán L. Németh

We now turn to a brief discussion of the infinite case. Here we only describe the
necessary changes compared to the finite case. First, the adaptation of Lemma 38
for infinite constructible biposets is the following. Note that we must distinguish
between finite and infinite clans, but this distinction is in parallel to the use of the
parenthesizing and separating parentheses.

Lemma 40. For any P £ ISPB(E), X C. P, parenthesizing Biichi-automaton
A, infinite run r £ Runs(A) with Biposet(r) = P, the following statements are
equivalent:

(i) X is a finite proper prime clan of P.

(ii) X is the set of leaves of a finite proper subtree of Ptr.

(Hi) Ptm can be written as Ptm = u{Xtm)v, where u, v £ £'*, and the subword
Xtm above corresponds to those vertices of P that are in X.

(iv) r is of the form r = riiirxi2r2, where 11 and t2 is a matching parenthesizing
transition pair, and rx denotes the direct subrun of r on the vertices of X.

Moreover, the following statements are also equivalent.

(i') X is an infinite proper prime clan of P.

(ii') X is the set of leaves of an infinite proper subtree of Ptr.

(Hi') Ptm can be written as Ptm = u[Xtm, where u € £'*, and the subword Xtrn

above corresponds to those vertices of P that are in X.

(iv') r is of the form r = riirx, where ri ^ e, t is a separating transition of A,
and rx denotes the direct subrun of r on the vertices of X.

Proof of Theorem 33, completed. It is trivial that we can express the finiteness of
clans, as

Finite(X) := - .3zLast (z ,X) .

Hence, we can easily locate the separating transitions and check their correct-
ness, as well. Furthermore, we have no trouble formulating the acceptance condi-
tion: a finite state has to appear infinitely often as outer state of the encoded run.
We leave the reader to verify the correctness of the formulas bellow.

âcc := V y z 3 X
f€F

MaxFiniteClan(X) A OuterState/(X)

A Vz (Last (x ,X) -> (z <x))

MaxFiniteClan(X) := Finite(X) A Clan(X)
A -3Y(Fini te (Y) A Clan(Y) A X C Y);

Automata on Infinite Biposets 791

OuterState/(X) := [Singleton(X) A 3x (X(x) A Xf(x))]

V [P P C (X) A \ / 3z (Dp(z, X) A Z(k)k (2))].

Of course, here the formulas Finite(X), Clan(X) and Singleton(X) have their ex-
pected meanings. •

Finally, we summarize the main results of the paper.

Theorem 41. Let L C ISPB(E). Then L is recognizable if and only if L is regular
if and only if L is MS0-definable.

Acknowledgement . The author would like to thank the anonymous referees for
their numerous valuable comments and suggestions.

Appendix

In this appendix, we give the detailed algorithm of verification of the correctness
of encoded runs. And we briefly describe how to build formula ips that realizes the
algorithm.

Suppose that A = (5, H, V, S, Q, <5,7, J, F) is a parenthesizing automaton, i £ I
and / 6 F. Recall that Var_4 = { X S i | s» € 5 } U {Z{i)i | (¿,)i e i i } . Let P =
(P, <h, <u, A) € SPB(E) denote an sp-biposet, and assume that r) is an evaluation
of the monadic second order variables, i.e.,

T) : Var_4 - V(P),

where V(P) denotes the power-set of P. Moreover, assume that P with 77 satisfies
formulas and ip2 on page 789.

The following algorithm decides whether 77 encodes a direct run of A on P that
starts from i and ends in / . For the sake of simplicity, we write X j instead of
rj(Xj). Moreover, in the names of the procedure calls below, "Clan" always means
a proper prime clan of P.

Unfortunately, in the definition of function NEXTSTATE a difficulty arises. As
A is nondeterministic, for a given position x and s € S, there can be more than
one t such that (s,X(x),t) £ S holds. But when we convert our algorithm into
an MSO-formula, we only need to test whether NEXTSTATE(X) = t holds, which
resolves the problem.

The pseudocode in Lines 1-10 verifies that the run starts from i and ends in
/ . The code in Lines 11-22 checks the correctness of the labeled transitions, while
Lines 23-49 verify the parenthesizing transitions. The proof of correctness of the
algorithm is omitted, but Figures 6-9 should help the reader to establish it.

792 Zoltán L. Németh

*«<> >)) M' ' 1 I

G R C L A N S T A R T S A T (6)

Figure 6: The computation of i' in Line 3.

pq pq

((< Y > > > Y < < < x + I)) >
I ' ' V H I I ' ' 1 1

S M C L A N E N D S A T (X) G R C L A N S T A R T S A T (X + 1)

(a) (b)

Figure 7: The computation of q in Line 14 (a) and in Line 18 (b).

°b ^x , , , i /
«•<> ^ >) í í í b - l \ V W
II.' ^ ' 1 I 1 v ' U

\ P R E F I X C O V E R (X) ^ G R C L A N E N D S A T) (6 - 1)
(a) (b)

Figure 8: The computation of ob in Line 27 (a) and in Line 31 (b).

oe G R P R E F I X C L A N O F (X)

<*< [b /)))
I I ' / 1 I I

Figure 9: The computation of oe in Line 34.

Algorithm CORRECT-RUN (A, i, f , P, 77)
1 b *- F I R S T O F (P)
2 if ISCLANSTARTSAT(6)
3 • then ï < - S T A R T O F O P P A R (G R C L A N S T A R T S A T (6))
4 eise ï « - STATE(6)
5 e < - L A S T O F (P)

Automata on Infinite Biposets 793

6 if ISCLANENDSAT(C)
7 t h e n / ' E N D O F C L P A R (G R C L A N E N D S A T (6))
8 e lse / ' <— NEXTSTATE(C)
9 if i ± i' or / + / '

10 t h e n r e t u r n 'no'
11 for all x £ P
12 d o p <- STATE(X)
13 if ISCLANENDSAT(X)
14 t h e n q <— S T A R T O F C L P A R (S M C L A N E N D S A T (X))
15 e lse if ISLASTPOSITION(X)
16 t h e n q <- /
17 e lse if ISCLANSTARTSAT(X + 1)
18 t h e n q <— S T A R T O F O P P A R (G R C L A N S T A R T S A T (X + 1))
19 e lse q <— STATE(X + 1)
20 <r *- \{x)
21 if n o t (p, cr, q) £ 6
22 t h e n r e t u r n 'no'
23 for all proper prime clans X C P
24 d o b<- F I R S T O F (X)
25 e L A S T O F (X)
26 if I S P R E F I X O F C L A N (X)
27 t h e n ob < - E N D O F O P P A R (P R E F I X C O V E R (X))
28 e lse if ISFIRSTPOSITION(6)
29 t h e n ob i
30 e lse if ISCLANENDSAT(6 - 1)
31 t h e n ob « - E N D O F C L P A R (G R C L A N E N D S A T (6 - 1))
32 e lse ob <— NEXTSTATE(6 - 1)
33 if I S P R E F I X C L A N I N (X)
34 t h e n oe < - S T A R T O F O P P A R (G R P R E F I X C L A N O F (X))
35 e lse oe < - STATE(6)
36 if ISSUFFIXCLANIN(X)
37 t h e n cb E N D O F C L P A R (G R S U F F I X C L A N O F (X))
38 else cb <— NEXTSTATE(e)
39 if I S S U F F I X O F C L A N (X)
40 t h e n ce <— S T A R T O F C L P A R (S U F F I X C O V E R (X))
41 else if IsLASTP0SiTi0N(e)
42 • t h e n ce <— /
43 - e lse if ISCLANSTARTSAT(6 + 1)
44 t h e n ce STARTOFOPPAR(GRCLANSTARTSAT(e + 1))
45 else ce <— STATE(e + 1)
46 k <— INDEXOFPARUSEDAROUND(AT)
47 if not(o6, (k,oe),(cb,)k,ce) G 7
48 t h e n r e t u r n 'no'
49 r e t u r n 'yes'

794 Zoltán L. Németh

The input-output specifications of the predicates and functions used in the
algorithm are the following:

ISFIRSTPOSITION(X) / ISLASTPOSITION(X)
i n p u t : a position x £ P ;
o u t p u t : 'yes' if x is the first/last position of P ;

'no' otherwise.

ISCLANSTARTSAT(X) / ISCLANENDSAT(X)
i n p u t : a position x € P;
o u t p u t : 'yes' if there is a proper prime clan X C P whose first/last position is x\

'no' otherwise.

I S P R E F I X O F C L A N (X) / ISSUFFIXOFCLAN(X)
i n p u t : a proper prime clan X C P ;
o u t p u t : 'yes' if there is a proper prime clan Y such that X is a prefix/suffix of Y;

'no' otherwise.

I S P R E F I X C L A N I N (X) / ISSUFFIXCLANIN(X)
i n p u t : a proper prime clan X C P ;
o u t p u t : 'yes' if there is a proper prime clan Z such that Z is a prefix/suffix of X;

'no' otherwise.

STATE(X)
i n p u t : a position x € P;
o u t p u t : a state s £ S in which A reads position x, i.e., x £ Xs.

NEXTSTATE(X)
i n p u t : a position x £ P;
o u t p u t : a state t £ S at which A arrives after reading the position x, i.e., x £ Xs

and (s, X(x),t) £ 6.

F I R S T O F (X) / L A S T O F (X)
i n p u t : a proper prime clan X C P ;
o u t p u t : the first/last position of X .

S T A R T O F O P P A R (X) / E N D O F O P P A R (X)
i n p u t : a proper prime clan X C. P ;
o u t p u t : a state s £ S such that the s is the source/target of ah opening paren-

thesizing transition (s,{j,t) / (r, {j, s) £ 7, and this transition was used
immediately before X, i.e., the designated position of X is in Z^) .

S T A R T O F C L P A R (X) / E N D O F C L P A R (X)
i n p u t : a proper prime clan X C P ;
o u t p u t : a state s £ S such that the s is the source/target of a closing paren-

thesizing transition (s ,) j , t) / (r ,) j , s) £ 7, and this transition was used
immediately after X, i.e., the designated position of X is in Z^..

Automata on Infinite Biposets 795

SMCLANENDSAT(X) / G R C L A N E N D S A T (X)
input: a position i e P ;
output: the smallest/greatest proper prime clan of P that ends at position x.

GRCLANSTARTSAT(X)
input: a position 1 6 F ;
output: the greatest proper prime clan of P that starts at position x.

G R P R E F I X C L A N O F (X) / G R S U F F I X C L A N O F (X)
input: a proper prime clan X C P;
output: the greatest proper prime clan Y C. X that is a proper prefix/suffix of

x.
P R E F I X C O V E R (X) / SUFFIXCOVER(X)
input: a proper prime clan X C P;
output: the smallest proper prime clan Y such that is X is a proper prefix/suffix

of Y.

INDEXOFPARUSEDAROUND(X)
input: a proper prime clan X\
output: an index k such that the parentheses were used before and after X

in the encoded run, i.e., the designated position of X is in Z^k)k.

Finally, we outline the transformation of the algorithm into formula ipz. The
following observations lead to this transformation.

1. All predicates of the algorithm can be expressed by MSO-formulas. For ex-
ample, ISPREFIXOFCLAN(X) can be formulated as

3 Y (PPC(Y) A Prefix^, Y))

2. For any function f { x \ , . . . , x{) of the algorithm and for any element c in the
range of / , the fact f { x \ , . . . , x{) = c can also be expressed by an MSO-
formula. For example, for any state s in 5, STARTOFOPPAR(X) = s can be
written as

\J 3z(Dp(z, X) A ^(j)j-(^)) ,

where J = { j | 3t € S, (s, (j,t) e 7 } is a finite set.

3. The variables whose values are not positions or sets of positions of P, all take
their values from a finite set. Namely, i, f , i', /', p, q, ob, oe, cb, ce take
values from S, a from S, and k is an index of a parenthesis in fi.

4. The composition of functions can be handled with the help of auxiliary vari-
ables. For example, STARTOFOPPAR(GRCLANSTARTSAT(6)) = s can be
expressed as

3 Z (GRCLANSTARTSAT(6) = Z A S T A R T O F O P P A R (Z) = s)

796 Zoltán L. Németh

5. Assignments like y <— f(x\,..., xi) can be treated as follows. We can consider
all possible values c in the range of y in advance, and at the points of the
assignments we can test whether f(x\,... ,xi) = c holds. If the range of
y is P or the power-set V(P), i.e., y is a 'standard' first or second order
variables, then existential quantification can be used. On the other hand,
if y is not 'standard', then it has a finite range by point 3. Hence we can
use disjunction over this finite range. For example, we can start the formula
realizing Lines 12-22 as

V V V -
VZSqZSoes

6. The control flow of the algorithm is easily expressible in the logic framework.
For the sequential executions conjunctions, for "for all" loops universal quan-
tifications, and for the conditional statements implications and negations can
be used.

References
[1] I. Dolinka. Á .note on identities of two-dimensional languages. Disc. Appl.

Math., 146(2005), 43-50.

[2] A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures, Part 1: clans,
basic subclasses, and morphisms. Part 2: representation through labeled tree
families. Theoret. Comput. Sci, 70(1990), 277-303, 305-342.

[3] A. Ehrenfeucht and G. Rozenberg. Angular 2-structures. Theoret. Comput.
• Sci., 92(1992), 227-248. .

[4] A. Ehrenfeucht and G. Rozenberg. T-structures, T-functions and texts. The-
. oret. .Comput. Sci., 116(1993), 227-290.

[5] Z. Esik.' Free algebras for generalized automata and language theory. RIMS
Kokyuroku 1166, Kyoto University, Kyoto, 2000, 52-58.

[6] Z. Esik and Z. L. Németh. Higher dimensional automata, J. of Autom. Lang.
Comb., 9(2004), 3-29.

[7] Z. Esik and Z. L. Németh, Algebraic and graph-theoretic properties of infinite
n-poests. Theoret. Informatics Appl., 39(2005), 305-322.

[8] D. Giammarresi and A. Restivo. Two-dimensional languages. In: Handbook of
Formal Languages, Vol. 3, Springer-Verlag, Berlin, 1997, 215-267.

[9j J. Grabowski. On partial languages. Fund. Inform., 4(1981), 427-498.

[10] K. Hashiguchi, S. Ichihara and S. Jimbo. Formal languages over free binoids.
J. Autom. Lang. Comb., 5(2000), 219-234.

Automata on Infinite Biposets 797

[11] K. Hashiguchi, Y. Sakakibara and S. Jimbo. Equivalence of regular binoid ex-
pressions and regular expressions denoting binoid languages over free binoids.
Theoret. Comput. Sci., 312(2004), 251-266.

[12] H. J. Hoogeboom and P. ten Pas. Text languages in an algebraic framework.
Fund. Inform., 25(1996), 353-380.

[13] H. J. Hoogeboom and P. ten Pas. Monadic second-order definable text lan-
guages. Theory Comput. Syst., 30(1997), 335-354.

[14] D. Kuske. Towards a language theory for infinite N-free pomsets. Theoret.
Comput. Sci, 299(2003), 347-386.

[15] K. Lodaya and P. Weil. Kleene iteration for parallelism. In: proc. FST &
TCS'98, LNCS 1530, Springer-Verlag, 1998, 355-366.

[16] K. Lodaya and P. Weil. Series-parallel languages and the bounded-width prop-
erty. Theoret. Comput. Sci., 237(2000), 347-380.

[17] K. Lodaya and P. Weil. Rationality in algebras with series operation. Inform,
and Comput., 171(2001), 269-293.

[18] Z. L. Németh. A Hierachy Theorem for Regular Languages over Free Bisemi-
groups. Acta Cybern., 16(2004), 567-577.

[19] Z. L. Németh. Automata on Infinite Biposets. In: Automata and Formal
Languages, 11th Int. Conf, AFL 2005, Dobogókő, Hungary, May 17-20, Pro-
ceedings, Inst, of Informatics, Univ. of Szeged, Szeged, 2005, 213-226.

[20] D. Perrin and J.-E. Pin. Infinite Words. Pure and Applied Mathematics, Vol.
141, Elsevier, 2004.

[21] H. Straubing. Automata, Formal Logic and Circuit Complexity. Birkhuser,
Boston, 1994.

[22] J. Valdes, R. E. Tarjan and E. L. Lawler. The recognition of series-parallel
digraphs. SI AM J. Comput., 11(1982), 298-313.

[23] P. Weil. Algebraic recognizability of languages. In: proc. MFCS 2004, LNCS
3153, Springer-Verlag, 2004, 149-175.

[24] Th. Wilke. An algebraic theory for regular languages of finite and infinite
words. Internat. J. Algebra Comput., 3(1993), 447-489.

Acta Cybernetics 17 (2006) 719-749.

Rotational tree structures on binary trees and
triangulations*

Jean Marcel Pallet

Abstract
A rotation in a binary tree is a simple and local restructuring technique

commonly used in computer science. W e propose in this paper three restric-
tions on the general rotation operation. W e study the case when only leftmost
rotations are permitted, which corresponds to a natural flipping on polygon
triangulations. The resulting combinatorial structure is a tree structure with
the root as the greatest element. W e exhibit an efficient algorithm for com-
puting the join of two trees and the minimum number of leftmost rotations
necessary to transform one tree into the other.

K e y w o r d s : Binary trees; Rotation; Distance; Lattice; Algorithms

1 Introduction
Rotation is one of the most common operations for restructuring binary trees. It
has the advantage of altering the depths of some of the nodes in the tree, while
preserving the symmetric order of all the nodes. Thus rotation is commonly used
in a variety of algorithms for maintaining binary search trees with a good amortized
behavior [10, 24, 28].

The combinatorial properties of binary trees under the rotation operation have
been studied for thirty years [27]. In [17] we have shown that a directed version
of the rotation graph of binary trees with n nodes is a lattice, known as the nth
Tamari lattice. This corresponds to the case when only left rotations are permitted
in the binary tree transformation. Over the last ten years, Tamari lattices have
often been used as examples to illustrate algebraic theories [1, 3, 16, 25].

Initially, Tamari lattices were orderings of parenthesizations of words. But
nowadays they can be described in other ways via the well-known bijections between
families of Catalan combinatorial objects. A system that is isomorphic to Tamari
lattices is that of triangulations of a convex polygon related by the diagonal flip
operation. This is the transformation that converts one triangulation into another

"The results reported in this paper were presented at the 11 th International Conference AFL
2005 (Automata and Formal Languages) held at Dobogókő, Hungary, May 17-20.

tLE2I, UMR 5158, Université de Bourgogne, BP 47870, F21078 DIJON-Cedex, France, E-mail:
palloflu-bourgogne.f r

799

800 Jean Marcel Pallo

Figure 1: A triangulation diagonal flip and its corresponding binary tree rotation

by removing a diagonal in the triangulation and adding the diagonal that subdivides
the resulting quadrilateral on the opposite way [8, 9, 26] (see Fig. 1).

In 1982j Culik and Wood defined the rotation distance between two binary trees
with the same number of leaves as the minimum number of rotations necessary to
transform one tree into the other [4]. Using the classical bijection between binary
trees with n internal nodes and triangulations of (n+2)- gons, the previous distance
is equivalent to the minimum number of diagonal-flip transformations needed to
convert one triangulation of a polygon into another. There remains today an open
problem whether the rotation distance can be computed in polynomial time.

Therefore it seems natural to consider special instances of rotation transforma-
tions in order to obtain simpler operations [12, 24]. In [2] the rotation operation is
limited to the case where the leftmost subtree is constrained to be a leaf. In [5, 6,
11, 22] the authors only allow rotations at nodes along the right arm of a tree.

The current paper belongs to this appoach. We consider the problem by limiting
the general rotation operation to the restricted version where only leftmost rotations
on trees are allowed. We obtain a tree structure which is a join-semilattice with the
root as the greatest element. An efficient algorithm computes the corresponding
restricted rotation distance. This algorithm is constructive: it builds a sequence of
leftmost rotations transforming one tree into the other.

Clearly, the restricted rotation distance defined above is bounded below by the
usual rotation distance for which no efficient algorithm is known to compute it

Rotational tree structures on binary trees and triangulations 801

exactly. However, this restricted rotation distance is a weak approximation of the
usual rotation distance. A better approximation can be found in [21, 23]. This new
metric can be considered as a way of measuring the difference in shape between
two binary trees.

2 Definitions and terminology
Let us denote by O (respectively •) internal nodes (respectively leaves) of a binary
tree. Let Ti (respectively TR) denote the left (respectively right) subtree of a binary
tree T (the order is significant). Thus we can write T = Q>TLTR in Polish notation,
i.e. by traversing T in preorder (visit the root and then the left and right subtrees
recursively). The weight |T| of a binary tree T is the number of leaves of T. Let Bn

denote the set of binary trees with n internal nodes (and thus with n + 1 leaves).
The leaves of T G Bn are numbered from 1 to n + 1 by a preorder traversal of T
(i.e. from left to right). The left (respectively right) arm of T G B„ is the path
from the root of T to its first (respectively (n + l)th) leaf. The mirror image T of
T is recursively defined by f = OTRTL and • = •. Let us define 0n = (O 0) " 0

(respectively 1„ = O n D n + 1) the tree of B n where every internal node has a leaf as
a left (respectively right) child.

In this paper we use the representation of binary trees via weight sequences
introduced in [17]. This coding is defined as follows. Given T G Bn, the weight
sequence of T is the integer sequence WT = • • •, Mr(n)) where tur(i) is
the weight of the largest subtree of T whose last leaf is the ¿th leaf (see Fig. 2).
The usual left-rotation —> on Bn is defined as follows. A tree T G Bn being given,
it associates a tree T' obtained by replacing some subtree QT\ Q T2T3 of T by the

O n O O D D O a a o O O D n a O ° °
1231 1121

root
1131
root root

1234
root

. t i i

Figure 2: Three lefmost left-rotations in B4 and the corresponding flips in TQ

802 Jean Marcel Pallo

subtree OQT1T2T3. Let —» denote the right-rotation and let-^ denote the reflexive
transitive closure of —*. The usual rotation distance between T and T' £ Bn is the
fewest number of left- and right-rotations required to convert T into T'. We have
proved in [17] the following characterization: given T,T' £ Bn, we have T —> T' ifi
for all i £ [l,n]: wr{i) < WT'(i).

Let us consider (n + 2)-gons, i.e. convex polygons with n + 2 sides and with a
distinguished side as the top. We label the other sides from 1 to n + 1 counterclock-
wise. Any triangulation of the (n + 2)-gon has n triangles and n — 1 non-crossing
diagonals. Let Tn+2 denote the set of triangulations of the (n + 2)-gon. There is an
explicit bijection r between Bn and T n + 2 [23,26]. The top of the (n + 2)-gon r(T)
corresponds to the root of the tree T. The ith side of T(T) corresponds to the ith
leaf,of T. Diagonals corresponds to internal nodes recursively as follows. If j is the
last leaf of the left subtree TL of T, then Ti corresponds to the (j + l)-gon having
edge set {1 , . . . , j} and the right subtree TR corresponds to the (n — j + 2)-gon
haying edge set { j + 1, . . . ,n + 1} (see Fig. 1 and 2).

Given some T £ Bn with T ^ l n , according to the Polish notation of T, consider
the leftmost • followed by a O which respectively are the last leaf of a subtree T\
and the root of a subtree QT2T3. Thus the root of O^i O T2T3 is located on the
left arm of T. Then define as the leftmost left-rotation on Bn the transformation
T T' which consists in converting the leftmost subtree O^i O T2T3 of T into
O OT1T2T3 (see Fig. 2). Given T £ Bn, the leftmost left-rotation transformation
is uniquely defined.

Let us describe the transformation on r(T) £ Tn+2 which corresponds to the
leftmost left-rotation on T £ Bn via the classical bijection r between Bn and Tn+2-
This transformation is the unique operation on r(T) which consists in removing
some diagonal and adding a new diagonal an end of which coincides with the
vertex located between the root side and the side labelled 1 (see Fig. 2 and 3).
This alternative formulation may seem more natural and intuitive. But the weight
sequences of binary trees are more appropriate for calculations.

Let denote the reflexive transitive closure of The leftmost rotation graph
LGn is the directed graph which has a node for each tree of Bn. Two nodes are
adjacent when their corresponding trees differ by a single leftmost left-rotation.
Since the leftmost left-rotation operation on T is uniquely defined, LGn enjoys a
tree structure. The leftmost rotation distance d(T, T') between T and T' £ Bn is
the length of the unique path between T and T' in the directed graph LGn. LGn is
a subgraph of the graph Gn according to the usual rotation. Algebraic properties
of Gn can be found in [1, 3, 16, 20, 25, 26].

3 Tree structure Bn

Given T £ Bn with T ^ 1„ and WT, we obtain the weight sequence of the unique
T' such that T T' in the following way. Let i > 2 be the smallest integer such
that wr{i) = 1. Let j = max{m £ [i,n]|i = m - WT{TTI) + 1}, i.e. the greatest
integer m such that the largest subtree with last leaf m has i as the first leaf. Then

Rotational tree structures on binary trees and triangulations 803

Figure 3: The flipping tree structure TQ

WT< = WT except for the integer j: u>T<(j) = j- It is worth noting that this integer
j cannot be modified further since we have 1 < wr(k) < k for all T € Bn and
fc€[l,n].

The poset (Bn,-^->) enjoys some properties which can be easily obtained. (,Bn,~>
) is a poset with greatest element l n for which win = (1,2,3, . . . , n). This poset has
a tree structure (with the greatest element l n as root) and thus is a join-semilattice
(see Fig. 4 and 5). The poset (B n i s graded, i.e. there exists an integer-valued
function r defined on Bn by r(T) = card{i € [l,n]|u;r(i) = i} such that T T'
and r(T') = 1 + r(T) iff T V . r(T) is equal to the number of internal nodes
that are on the left arm of T. We have r(l„) = n — 1.

Let us remark that Bn is isomorphic to two subtrees of Bn+\. One is obtained
by sustituting 0D D for the last leaf • in all the Bn trees. If (w\,..., wn) € Bn,
then (w\,... ,w„ , l) is the weight sequence of a tree in the corresponding subtree of
Bn+j. The other is obtained by sustituting O1-"-1 f°r the one before last leaf • in
all the Bn trees. If (iui,... ,wn) € Bn, then (w\,... ,wn-i, 1,1 + wn) is the weight
sequence of a tree in the corresponding subtree of Bn+1. For example in Fig. 5,
the left and right subtrees of are isomorphic to B4 (Fig. 4).

804 Jean Marcel Pallo

1121 1111 1123 1112 1113

1131 1211 1124 1212 1114

1231 1134 1214

1234

Figure 4: The leftmost tree structure

11231 11131 11121 11211 M i l l 11134 11123 11124 11234 11112 11212 11113 11114 11214

11241 11141 12121 11311 12111 11135 12123 11125 11235 12112 11312 12113 11115 11215

11341 12141 12311 11145 12125 11245 12312 12115 11315

12345

Figure 5: The leftmost tree structure

The leftmost rotation distance between T and T' can be computed by the for-
mula d(T, T') = 2r(T V T') - r{T) - r(T'). Thus we are led to compute the join
T V T' of any couple of trees T and T'.

4 Computing joins and leftmost rotation distance

We already have observed that in applying the leftmost rotation T T' the
unique integer which has been transformed reaches its maximal possible value
and thus cannot increase. Now, for every T £ Bn, compute from WT an ordered
array a,T which keeps track of the sequence of all the integer transformations for
designing the unique path between T and l n .

Rotational tree structures on binary trees and triangulations 805

A l g o r i t h m (C o m p u t a t i o n o f а т f r o m w t)
Given T £ Bn and its weight sequence WT
k:=l
f o r i : = 1 t o n d o

if w r { i) = 1 t h e n
for j := n d o w n t o i d o

if i = j — wr{j) + 1 t h e n ат(к) := j;k := к + 1 e n d i f
e n d d o

e n d i f
e n d d o

This algorithm requires 0(n2) time in the worst case and 0(n) space.
The join Т У Т ' of T and T ' is located at the intersection of the two paths

connecting T and T ' to l n . Thus we compute WTVT1 in the following way.
Let us consider the greatest suffix which is common to ат and ат> (if it exists).

The corresponding prefixes of ат and a y contain the same integers i (possibly in
different order) for which WT\/T'{i) = i- The remaining integers j verify wtvt-U) =
WT{J) = WT'(J)- Therefore it is easy to compute WTMT', and then r(T) , r(T') ,
d(T, T ') = 2r(T V T') - r (T) - r (T ') using the rank function r(T) = card{i €
[1,n]|uir(i) = г}. See some examples in Table 1 where suffixes are shown in bold
type.

Table 1:

WT WT' ат ат> WT vT' d(T,T')
11112 11315 1 2 3 5 4 5 3 1 2 4 12315 4
11234 11345 1 5 4 3 2 5 4 3 1 2 11345 3
11214 11215 1 5 3 2 4 5 1 3 2 4 11215 1
11111 12345 12345 54321 12345 4
11111 11114 12345 15234 12345 8
11315 12112 5 3 1 2 4 2 1 3 5 4 12315 3
11212 11114 1 3 2 5 4 1 5 2 3 4 12315 6

ат (respectively ат<) allows to build the unique path between T and T V T '
(respectively T and ТУТ'). Thus we obtain the unique path (T ,T V T',T')
between T and V .

5 Mirror leftmost rotation distance
Let us define the mirror leftmost rotation «-> on Bn by T <-> T' iff T' T. Then
(^ B n >) is a poset with least element 0 n for which won = (1 ,1 ,1 , . . . , 1). This
poset has a tree structure (with the least element 0 n as root) and thus is a meet-

806 Jean Marcel Pallo

semilattice. This poset (B„ , •—>) is ranked by the rank function p(T) — n — kr + 1
where kr is the number of internal nodes on the right arm of T € Bn. We have
p(0n) = 1 The following algorithm computes p(T) using the weight sequence of T:

Rank algorithm (Computation of p(T) from WT)
Given T 6 B„ and its weight sequence WT;
kr := 1; i := n;
while i > 1 do

if wt(i) = 1 then kr kr + l;i := i — 1
else i:= i — wr{i) + 1 endif

enddo
p(T) = n-kT + 1

See in Fig. 6. Observe that is a particular case of the right-arm
rotation transformation defined in [22]. As illustration, compare for example Fig.
3 of [22, p. 176] and Fig. 6 of this paper. The edge which links 1112 and 1212 in
Fig. 3 of [22] has disappeared in Fig. 6. The graph drawn in Fig. 3 of [22] does
not enjoy the tree structure property.

1111

1211 A
1231 1212

1234 1214 1114 1134 1124

Figure 6: The mirror image of B4

1112 1121

Let us define the mirror leftmost rotation distance d(T,T') between T and
T' 6 Bn as the length of the unique path between T and T' in the graph of
(Bn,^>). Therefore we have: d(T, T') = d{f,T).

Since Wf can be easily computed recursively from wt, the mirror leftmost ro-
tation distance ¿(T\T") = d(T,V) is computed using Section 4. Then S(T,T') =
min(d(T,T'),d(T,T')) is bounded below by the usual rotation distance for which
no polynomial time algorithm is known to compute it exactly today. See some
examples in Bg (Table 2).

Rotational tree structures on binary trees and triangulations 807

Table 2:

WT WT' d(T, T') Wf W^r, d(T,T') 5(T,T')
11121511 12123611 8 12312148 12311141 9 8
11121518 11234112 11 11212147 11341118 11 11
11312312 11214111 13 11311612 12341218 6 6
11115123 12311312 11 11141234 11312611 11 11
11111123 11231237 14 11145678 11114118 8 8
11235112 12115111 11 11341114 12341231 9 9
11211612 11111312 5 11312315 11312678 9 5
11311245 11341678 6 11113612 12112678 9 6

6 Open problems

We propose below two other new definitions of restricted rotations which lead to
computing open problems.
First we can restrict the general definition of the rotation transformation by choos-
ing OTi О T2T3 as the rightmost subtree in the Polish notation of T. More pre-
cisely, let us consider in the Polish notation of T the rightmost pattern D O made
up of a • followed by a O- This О ' s the root of a subtree denoted by QT2T3,
and thus T3 is always equal to a leaf •. Let us denote by T\ the largest sub-
tree of T whose last leaf is the leaf • involved in the previous pattern DO- The
uniquely defined rotation which transforms Q)T\ О of T into Q Q T\T2U is
called rightmost left-rotation on the tree T. Bn endowed with this transforma-
tion has a tree structure (with the root as the greatest element l n) and thus is
a join-semilattice (see Fig. 7). Despite this tree structure, the direct computa-
tion of the joins of two trees seems to be more arduous. The definition of an
efficient algorithm for computing the corresponding rightmost rotation distance d'
seems difficult, too. However, we can easily exhibit the unique paths connect-
ing T and T' with 1„. The weight sequence of the unique tree suce(T) obtained
from T by a rightmost rotation is such that wsucc(T) = wt except for the integer
i = max{k £ [j,n]\wT(k) = к — j + 1} where j = max{l £ [l,n]|wr(0 = 1}-
For this integer г, we have wsucc(T)(г) = wr(i) + wr(i — wrii))- The join Т У Т '
of T and T' is located at the intersection of the two paths (T, l n) and (T', l n) .
Unfortunately, this rough construction requires 0(n 3) time and 0(n2) space.

It is worth noting that leftmost d and rightmost d' rotation distances can-
not be compared. For example: ¿(1112,1114) = 3 < ¿'(1112,1114) = 4 and
<f (1113,1121) = 2 < <¿(1113,1121) = 6 (see Fig. 4 and 7).

Second, we have limited in [2] the rotation operation to the case where the
leftmost subtree T\ of the subtree O^i О T2T3 is always constrained to be a leaf •.
This transformation QOQT2T3 —> ОО^^г^з induces a graded lower semimodular
meet-semilattice structure on Bn. We can define a new restricted rotation by
compelling, this time, the central subtree T2 of the subtree Q)T\ OT2T3 to be always

808 Jean Marcel Pallo

1111

1112

1121 1113

1123 1114 1211

1131 1124 1212

1231 1134 1214

1234

Figure 7: The rightmost tree structure B4

un

1234

Figure 8: The central poset B4

equal to a leaf •. This transformation QTi Q OT3 —> induces a graded
poset structure on Bn, but does not have as good algebraic properties as before.

c c However, this "central" rotation operation —+ has a nice characterization: T —> T'
iff wt = wt' except for an integer i such that wr(i) = 1 < wr'(i) (see Fig. 8). The
rank of T G Bn is easily computed by r(T) = n + 1 — card{i G [l ,n]|u ;x(0 = 1} -
Here too, it seems difficult to exhibit an efficient algorithm for computing the
corresponding central rotation distance.

Rotational tree structures on binary trees and triangulations 809

Acknowledgement
I would like to thank the anonymous referees for their constructive remarks and
recommendations which have greatly helped to improve this paper.

References
[1] M.K. Bennet, G. Birkhoff, Two families of Newman lattices, Alg. Universalis

32(1994), 115-144.

[2] A. Bonnin, J. Pallo, A shortest path metric on unlabeled binary trees, Pattern
Recognition Lett. 13(1992), 411-415.

[3] C. Chameni-Nembua, B. Monjardet, Les treillis pseudocomplments finis, Eu-
ropean J. Combin. 13(1992), 89-107.

[4] K. Cukik, D. Wood, A note on some tree similarity measures, Inform. Process.
Lett. 15(1982), 39-42.

[5] S. Cleary, Restricted rotation distance between binary trees, Inform. Process.
Lett. 84(2002), 333-338.

[6] S. Cleary, J. Taback, Bounding restricted rotation distance, Inform. Process.
Lett. 88(2003), 251-256.

[7] R.D. Dutton, R.O. Rogers, Properties of the rotation graph of binary trees,
Congr. Numer. 109(1995), 51-63.

[8] S. Hanke, T. Ottmann, S. Schuierer, The edge-flipping distance of triangula-
tions, J. Universal Comput. Sei. 2(1996), 570-579.

[9] F. Hurtado, M. Noy, J. Urrutia, Flipping edges in triangulations, Discrete
Comput. Geom. 22(1999), 333-346.

[10] K.S. Larsen, E. Soisalon-Soininen, P. Widmayer, Relaxed balance using stan-
dard rotations, Algorithmica 31(2001), 501-512.

[11] J.M. Lucas, A direct algorithm for restricted rotation distance, Inform. Pro-
cess. Lett. 90(2004), 129-134.

[12] J.M. Lucas, Localized rotation distance in binary trees, Congr. Numer.
169(2004), 161-178.

[13] J.M. Lucas, Untangling binary trees via rotations, Comput. J. 47(2004), 259-
269.

[14] F. Luccio, L. Pagli, On the upper bound of the rotation distance of binary
trees, Inform. Process. Lett. 31(1989), 57-60.

810 Jean Marcel Pallo

L5] E. Makinen, On the rotation distance of binary trees, Inform. Process. Lett.
26(1987/88), 271-272.

16] G. Markowski, Primes, irreducibles and extremal lattices, Order 9(1992), 265-
290.

17] J.M. Pallo, Enumerating, ranking and unranking binary trees, Comput. J.
29(1986), 171-175.

18] J.M. Pallo, On the rotation distance in the lattice of binary trees, Inform.
Process. Lett. 25(1987), 369-373.

19] J.M. Pallo, Some properties of the rotation lattice of binary trees, Comput. J.
31(1988), 564-565.

20] J.M. Pallo, An algorithm to compute the Mbius function of the rotation lattice
of binary trees, RAIRO Theoret. Inform. Appl. 27(1993), 341-348.

21] J.M. Pallo, An efficient upper bound of the rotation distance of binary trees,
Inform. Process. Lett. 73(2000), 87-92.

22] J.M. Pallo, Right-arm rotation distance between binary trees, Inform. Process.
Lett. 87(2003), 173-177.

23] R.O. Rogers, On finding shortest paths in the rotation graph of binary trees,
Congr. Numer. 137(1999), 75-95.

24] A.A. Ruiz, F. Luccio, A.M. Enriquez, L. Pagli, fc-restricted rotation with an
application to search tree rebalancing, 9th WADS, Lecture Notes in Computer
Science, Springer, vol. 3608(2005), 2-13.

25] B.E. Sagan, A generalization of Rota's NBC theorem, Adv. Math. 111(1995),
195-207.

26] D.D. Sleator, R.E. Tarjan, W. Thurston, Rotation distance, triangulations and
hyperbolic geometry, J. Amer. Math. Soc. 1(1988), 647-681.

27] D. Tamari, Monodes prordonns et chanes de Malcev, Bull. Soc. Math. France
82(1954), 53-96.

28] R. Wilber, Lower bounds for accessing binary search trees with rotations,
SIAM J. Comput. 18(1989), 56-67.

Acta Cybernetics 17 (2006) 719-749.

Regular tree languages and quasi orders

Tatjana Petkovic*

Abstract

Regular languages were characterized as sets closed with respect to monotone
well-quasi orders. A similar result is proved here for tree languages. Moreover,
families of quasi orders that correspond to positive varieties of tree languages
and varieties of finite ordered algebras are characterized.

1 Introduction
Regular languages are characterized by the well-known Myhill-Nerode theorem as
those that can be saturated by a congruence, or a right congruence, of finite index
defined on the free semigroup over the same alphabet over which the language
is defined. A generalization of this result, proved by Ehrenfeucht, Haussler and
Rozenberg in [3], characterizes regular languages as closed sets with respect to
monotone well-quasi orders. A result analogous to Myhill-Nerode's theorem exists
for tree languages, whereas we are going to prove here a characterization of regular
tree languages similar to the generalized Myhill-Nerode's theorem from [3].

On the other hand, variety theory establishes correspondences between families
of languages, algebras, semigroups and relations. The elementary result of this
type is Eilenberg's Variety theorem [4] which was motivated by characterizations of
several families of string languages by syntactic monoids or semigroups (see [4, 10]),
such as Schiitzenberger's theorem [12] connecting star-free languages and aperiodic
monoids. Eilenberg's theorem has been extended in various directions. We are
going to mention here only those that are of the greatest interest for this work.
Therien [16] extended the Eilenberg's correspondence to varieties of congruences
on free monoids. Concerning trees and algebras, similar correspondences were
established by Steinby [13, 14, 15], Almeida [1], Esik [5], Esik and Weil [6]. On the
other hand, a correspondence between positive varieties of string languages and
varieties of ordered semigroups was established by Pin in [11], and similar results
were proved for trees by Esik [5], and Petkovic and Salehi in [9]. Motivated by this,
and a characterization of regular tree languages established in the first part of the
paper, we involve in the correspondence suitable families of quasi orders on term
algebras.

•Nokia, Joensuunkatu 7, 24100 Salo, Finland, El-mail: tatjana.petkovic0nokia.com

811

812 Tatjana Petkovic

The paper consists of three parts. In Section 2 concepts are introduced and
preliminary results given. In Section 3 regular tree languages are characterized by
well-quasi orders. In Section 4 varieties of quasi orders are defined and a correspon-
dence between positive varieties of tree languages, varieties of ordered algebras and
varieties of quasi orders is established.

2 Preliminaries
A finite set of function symbols is called a ranked alphabet. The ranked alphabet
E will be fixed throughout the paper, and the set of m-ary function symbols from
E is denoted by £ m (m > 0). A E-algebra is a structure A = (A, E) where A is
a set and operations of E are interpreted in A, i.e., any c e So is interpreted by
an element c 4 € A and any / S E m (m > 0) is interpreted by an m-ary function
fA : Am —> A. Congruences, morphisms, subalgebras, direct products, etc., are
defined, as usual for algebras (see e.g. [2, 15]).

For a ranked alphabet E and a leaf alphabet X, the set of EX-trees T s (X) is
the smallest set satisfying

(1) E p U X C T E (X) , and
. . (2). / (f i , . . . , tm) € T e (X) for all m > 0, / € G T E (X) .

The EX-tevm algebra TS(X) = (T S (X) , E) is determined by

(1) = c for c € So,
(2) fT^x\tu. ..,tm)= f(t i,..., tm) for all m > 0, / 6 E m

andí i , . . . , í T O e T E (X) .

A EX-tree language \s any subset of the EX-term algebra. An algebra A =
(A, E) recognizes a tree language T C T E (X) if there is a morphism 4>: T^(X) —> A
and a subset F C A such that T = F<f)~l. In the case a tree language can be
recognized by a finite algebra, it is regular or recognizable. It is known that a tree
language is regular if and only if it is saturated by a congruence of finite index.

Let £ be a symbol which does not appear in any other alphabet considered
here. The set of EX-contexts, denoted by Cn(.X'), consists of the E(X U {£})-trees
in which £ appears exactly once. For P,Q 6 C s (^) and t € T E (X) the context
PQ, the composition of P and Q, is obtained by replacing the special leaf £ in P
with Q, and the term P(t) results from P by replacing £ with t. Note that Cz{X)
is a monoid with the composition operation and that (PQ)(t) = P(Q(t)) holds for
a l l P , Q e C s (X) , i e T s (4

For an algebra A = (A, E), an m-ary function symbol f G E m (m > 0) and
elements a i , . . . , am £ A, the term fA(ai, ...,£,..., am) where the new symbol £
sits in the i-th position, for some i <m, determines a unary function A —> A defined
by a i—* / ^ (o i , . . . , a,..., am) which is an elementary translation of A. The set of
translations of A, denoted by Tr(.A), is the smallest set that contains the identity
mapping and elementary translations and is closed under composition of unary

Regular tree languages and quasi orders 813

functions. The set Tr(A) equipped with the composition operation is a monoid,
called the translation monoid of A.

Lemma 1 ([14]). Let A — (A, E) and B = (B, E) be two algebras, and ip : A—> B be
a morphism. The mapping <p induces a monoid morphism TV (A) —> Tr(S), p p<¿
such that p(a)ip = plf>(aip) for any a G A. Moreover, if ip is an epimorphism then
the induced mapping is a monoid epimorphism.

There is a bijective correspondence between the set of EX-contexts CE(X)
and translations of term algebra Tr(7i;(X)) in a natural way: an elemen-
tary context P = / (¿ i , ...,£,..., tm) corresponds to the translation =
fr^x^(t\, trn), and the composition of contexts corresponds to the com-
position of translations.

Let us recall that for a relation p defined on a set A, by p~x the inverse relation
of p is denoted, i.e., a p - 1 b bpa for any a,b G A. Let p be a quasi order, i.e., a
reflexive and transitive relation, on a set A. Then the relation =p = p fl p~l is an
equivalence on A and the relation < p defined on the factor set A/=p by

a/=p <P b/=p & apb

is an order. The ordered set (A/=p, <p) is denoted by A/p.
Let •< be a quasi order on an algebra A = (A, E), i.e., •< is a quasi order on

A. Then is compatible with E if ai < b\,..., am bm implies fA(ai,..., a m)
fA(b\,.. .,bm) for any / S E m (m > 0) and o j , . . . ,am, b\,...,bm G A. In case
when it is not necessary to emphasize the alphabet E, we say that < is a compatible
quasi order on A.

An ordered H-algebra is a structure A = (A, E, <) where (A, E) is a E-algebra
and ^ is an order on A compatible with E. Moreover, if a quasi order p defined
on an algebra A = (A, E, is compatible, then = p is a congruence on (A, E)
and the order factor algebra is A/p = (A/=p, E, <p) . Compatible quasi orders
containing the order of the algebra play on ordered algebras the role of congruences
on ordinary algebras. We note that any algebra (A, E) in the classical sense is an
ordered algebra (A, E, A A) in which the order relation is equality.

For a tree language T C T s (X) the relation (see [9])

M R S » (V P € C S (X)) (P (s) € T => P (i) G T)

is a compatible quasi order on T-z(X). The corresponding equivalence relation is
the well-known syntactic congruence of T, denoted by 6T, and the corresponding
order is <T- The corresponding factor algebra is the syntactic ordered algebra of
T, in notation SOA(T) = TZ(X)/<T- It is known that a tree language is regular
if and only if its syntactic congruence has finite index, i.e., the algebra SOA(T) is
finite. On the other hand, the compatible quasi order ^ T is defined on CS(X) by
(see [9])

p ¿T Q (Vt G T E (X)) (WR G C E (X)) (RQ{t) G T RP(t) G T)

814 Tatjana Petkovic

and the corresponding equivalence is the m-congruence of T, in notation ¡JLT, ([15],
definition 10.1) defined on Cs(A") by

PHTQ (Vt G T £ (X)) (Vi? G CE(A-)) (RQ(t) RP(t) € T).

3 Regular tree languages and well-quasi orders
We are going to characterize regular tree languages in terms of well-quasi orders.
Motivation for this comes from [3], where a similar result for string languages was
given. There are several equivalent ways to define well-quasi orders (see [8]), but
we list here only those that we are going to use. A quasi order •< defined on a set
A is a well-quasi order if either of the following conditions is satisfied:

(1) for each infinite sequence {arjJjgN of elements of A there exist i and j with
i < j such that Xi ^ Xj;

(2) each infinite sequence {xjJigN of elements of A contains an infinite ascending
subsequence;

(3) every sequence of ^-closed subsets of A which is strictly ascending under
inclusion is finite.

Recall that a subset H is X-closed if a < b and a G H imply b G H.
The following lemma contains some simple properties of well-quasi orders. Parts

(a) and (b) are from [3].

Lemma 2.

(a) If Pi Q P2, Pi is a well-quasi order and p2 is a quasi order on A, then p2 is
a well-quasi order, too.

(b) Let pi and p2 be well-quasi orders on Ai and A2 respectively. Then the
transitive closure of pi U p2 is a well-quasi order on Ai U A2 and pi x p2 is a
well-quasi order on Ai x A2.

(c) If pi and p2 are well-quasi orders on A, then pi Pi p2 is a well-quasi order on
A, too.

Recall that pi x p2 is defined on Ai x A2 by

(ai,a2)pi x p2(bi,b2) ttaipibi and a2p2b2,

for oi , bi G Ai and a2, b2 G A2.
Let p be a quasi order on TE(X). Then the relation pc defined on CE(X) by

PpcQ o (Vt G T E (X)) P(t) pQ(t)

is a quasi order induced by quasi order p. For example, for a tree language T C
T s (X) and the relations defined in Section 2, it can be proved that = ^ T and
6% = /xr-

Theorem 3. If 6 is a congruence on Tz{X), then C s (X) / 0 c = Tr(7s (X) /0) .

Regular tree languages and quasi orders 815

Proof. Let 7r : T^(X) —> T^{X)/9 be the natural epimorphism. According to
Lemma 1, there is an epimorphism from C E (X) = Tr(7i;(X)) to Tr(T^(X)/6)
where P h P , and r) = (P(t))n holds for all P G C S (X) and t G T S (X) .
Thus it suffices to prove that the kernel of this epimorphism is 9C, i.e., that Pn =. Qn

if and only if P6C Q, for any P,Q G C^(X). Indeed, assume that Pn = Qn for
some P,Q G C S (X) . Then P„(£TT) = Q„(tir) for every tir G Ts(X)/9, which is
equivalent to (P(t))n = (Q(t))ir for every t G T E (X) . This means that P{t)8Q(t)
for every t G T2 (X) , and so P9CQ. •

A quasi order p defined on a set A is of finite index if = p is of finite index, i.e.,
if the set A/p is finite. Clearly, such quasi orders are well-quasi orders.

Corollary 4. If p is a compatible quasi order on T%(X) of finite index, then pc is
of finite index as well.

Proof. According to Theorem 3, CE(X) / = p c has as many elements as
T r (7 s (X) / = p) which is finite since T^(X)/=P is finite. •

We are ready now to prove a tree version of the generalized Myhill-Nerode's
theorem (Theorem 3.3 [3]).

Theorem 5. For a tree language T C T 2 (X) the following conditions are equiva-
lent:

(i) T is regular;
(ii) T is p-closed where p is a compatible well-quasi order and pc is a well-quasi

order too;
(iii) T is p-closed where p is a compatible well-quasi order on T%(X) and there

exists a well-quasi order on Cs(X) contained in pc:

Proof. (i)=>(ii). Since T is regular, the relation 6t is a congruence of finite index,
and hence a compatible well-quasi order. The fact that T is saturated by 9t implies
that T is 0T-closed. According to Corollary 4 it follows that is of finite index,
and so a well-quasi order.

(ii)=4>(iii). This is obvious since pc satisfies the condition.
(iii)=>(i). Suppose that T is not regular. Then 9t is not of finite index, and

hence there exists an infinite sequence {ii}jgN such that U/9T ^ t j / 9 r whenever
i j. Since p is a well-quasi order there exists an infinite /»-ascending subsequence
of {ii}igN- Without losing generality we can assume that {i»}igN itself is ascending,
i.e., Uptj whenever i < j. Using compatibility we get P(ti)pP(tj) for all P G
C E (X) and i < j. If P(U) G T then P{tj) G T since T is p-closed. If we denote by
T.t-1 the set

T.r1 = {P G C E (X) | P(t) G T }

then we get P G T.t'1 implies P G T.tJ1, i.e., T.t'1 C T.tJ1 when i < j. Moreover,
U/QT I tj/9r implies that T.t'1 c T.tJ1 for i < j. Therefore the sequence

is infinite.

816 Tatjana Petkovic

Let v be a well-quasi order on CE(X) contained in pc. We are going to prove
that the set T.t~l is ¡/-closed for any t 6 T E (X) . Assume that Pi/Q. Since v C p c ,
then P(t)pQ(t) for any t G T. If P G T.t~l then P(t) G T and since T is /9-closed,
it follows that Q(t) G T, and so Q G T.t~l.

Finally, we have proved that { T . i " 1 } * ^ is an infinite ascending sequence of
i/-closed sets, which contradicts the fact that u is a well-quasi order. Therefore, T
must be regular. •

For a language T C T E (X) the relation i ^ 1 is the greatest compatible well-
quasi order on TE(X) such that T is ^y1-closed. Indeed, if T is p-closed for a
compatible well-quasi order p on then from t\ pt2 follows that P{t\) p P{t2)
for any P G C E (X) and so P(ti) G T implies P(i 2) G T, i.e., h t2, for
any t\, t2 G Moreover, in case T is a regular language, r^J1 is of finite
index and, according to Corollary 4, is of finite index too, and thus it is a
well-quasi order. Hence, is the greatest well-quasi order on T%(X) satisfying
condition (ii) of Theorem 5.

E x a m p l e 6. For a tree t G T S (X) , let t G (E U X)* be the string obtained
by reading symbols as they appear in t, i.e., in right Polish notation. Denote
by < e the embedding order relation on the free monoid (E U X)*, i.e., the re-
lation defined by u <e v u = u\u2 • • -un, v = VQUIVIU2 • • • vn-iunvn for
u\,... ,un,vo,vi,... ,vn G (E U X)* . It is a well order. Let p be the relation
defined on T E (X) by t\ pt2 ii <e t2. It can be proved that p is a compatible
well-quasi order and pc is a well-quasi order. Thus, every p-closed EX-language is
regular.

4 Varieties of quasi orders
A correspondence between positive varieties of tree languages and varieties of finite
ordered algebras has been given in [9]. It is known that in the case of ordinary
varieties of (tree) languages and varieties of algebras the corresponding families
of relations are varieties of congruences of finite index (see [14]). Results from the
previous section, as well as from [9], suggest that families of relations corresponding
to positive varieties of languages and varieties of ordered algebras consist of com-
patible well-quasi orders for which the induced relations on contexts are well-quasi
orders. Moreover, the fact that we are dealing only with finite algebras restricts
our attention to compatible quasi orders of finite index. According to Corollary 4,
their induced quasi orders on contexts are of finite index, too.

Let us recall first necessary concepts and the Positive Variety Theorem from [9].
Let A = (A, E, and B — (5, £, ^B) be two ordered algebras. The structure

B is an order subalgebra of A if (B, E) is a subalgebra of (-<4,E) and is the
restriction of ^¡A on B. A mapping tp : A —> B is an order morphism if it is a
E-morphism, i.e., if c^ip — cP and fA(ai,..., am)<p = fB(ai<p,... ,amtp) for any
c G Eo, / G Em (m > 0) and a i , . . . , am G A, and preserves the order, i.e., for any
a, b G A if a ^ b then a<p ^¿j hp. The order morphism <p is an order epimorphism if

Regular tree languages and quasi orders 817

it is surjective, and then B is an order image of A. When ip is bijective and its inverse
is also an order morphism, then it is an order isomorphism, and A = B denotes
that A and B are order isomorphic. The structure A x B = (A x B,H, ^ ^ x
where (A x B, E) is the product of the algebras (A, E) and (B, E), is the direct
product of A and B. A variety of finite ordered algebras is a class of finite ordered
algebras closed under order subalgebras, order images and direct products.

Let A and B be arbitrary sets. For a mapping cj> : A —> B and a relation p on
B the relation (f> o p o <j>~1 is defined on A by

(a, b) G (j) O p o 4T1 <=> (a<p, b(j)) e p.

Lemma 7. For ordered algebras A = (A, E, and B = (B, E, ^g) and order
morphism tp : A —> B, if =4 is a compatible quasi order on B containing ^B, then the
relation <p o =<: o ip~l is a compatible quasi order on A containing Moreover, if
ip is an order epimorphism then A/ (<¿>0 =<; o<p~l) = B/^..

Let us recall that for a tree language T C T e (X) , a context P € C e (X) ,
and a E-morphism ip : Ts(Y) —» T%(X), the inverse translation of T under P is
p - ! (T) = {f e T E (X) I P(t) e T}, and the inverse morphism of T under ip is
Tip-1 = {t e TE(Y) I tip e T} (cf. [14]). An indexed family of recognizable
tree languages Y = {y(X)} is a positive variety of tree languages if it is closed
under positive Boolean operations (intersection and union), inverse translations
and inverse morphisms.

Theorem 8 (Positive Variety Theorem [9]). For a positive variety of tree
languages V, let Y* be the variety of finite ordered algebras generated by syntactic
ordered algebras of tree languages in "V. For a variety of finite ordered algebras
JT let the indexed family JOT* = {Xx(X)} be defined by JXT^X) = {T C T 2 (X) |
SOA(T) € J f } .T / ie mappings Jif ^ J^ ' and y V* are mutually inverse lattice
isomorphisms between the class of all varieties of finite ordered algebras and the
class of all positive varieties of recognizable tree languages.

Let us denote by FQ(X) the set of all compatible quasi orders of finite index
defined on T E (X) .

Lemma 9. Let 4> 1~z(X) Tz(Y) be a morphism.

(a) If p e FQ(Y) then <t> o p o 0 - 1 e FQ(X) .
(b) IfTC TS(Y) then

f l ^ ^ - . c ^ ^ 1 0 ^
P€CZ(Y)

Moreover, ifT is regular then the intersection can be taken over a finite subset
ofCx(Y).

Proof, (a) Clearly <j> o p o is reflexive and transitive. Let us prove that it is
compatible. Assume t\(<popo<f>~1)£2, i.e., (¿i^) p(t2<t>). Compatibility of p implies

818 Tatjana Petkovic

that Q{t\<j>) pQ{t2(j>) for any Q G CD(Y). In particular, for any P G CE(X) we
have P^hcp) p P^t^), and so P(h) (<j> o p o 4>~l)P(t2).

It remains to prove that <j> o p o <f>~1 has a finite index. It is easy to prove
that =0Opo0-i= 4>° =p °4>~l- Therefore the mapping t/ =^opo<i>-t>-^ t(j>/ =p is a
well-defined one-to-one mapping. Moreover, it is a bijection onto Tz(X)<f>/ =p.
Therefore, | T E (X) / = ^ 0 < I > - I | = |TE (X)I6/=P| < | T E (Y) / = P | and this number is
finite.

(b) The following proves the claim:

(¿1, ¿2) s ripGCsiy) - P - i t T) ^ - ! 0

o (VP 6 C e (Y)) u t2

(VP £ Cz(V)) (VQ e Cz(X))
m 1) G P - ^ r j r 1 =» Q (i 3) G P - H ^ r 1)

=> (VP 6 C S (Y)) (h e p - H T) ^ - 1 i2 G p - H T) ^ - 1)
(VP e CzPO) (ti0 G P - ! (T) => i2<£ G P - ^ T))
(VP e C z (Y)) (P(ii0) G T => P{t2<j>) G T)
M) ^ M)

Let us define a relation 1/ on C S (Y) by Pi /Q o P _ 1 (T) = Q~l{T). Clearly, i> is
an equivalence and ¡J.T Q V. In case T is regular PR has finite index, and hence
v has finite index. Therefore, there can be only finitely many different sets of the
form P - 1 (T) . •

A family Si = {M(X)}, where S%(X) is a set of compatible quasi orders on
7s (X) of finite index, is a variety of quasi orders if

(1) pi, p2 G S?{X) then pi r\p2 G &(X) for any X;

(2) pi C p2 and pi G S?{X) then p 2 G &{X) for any X\

(3) 4>: 7s (X) -> TS(Y) is a morphism and p G S$(Y) then <j> o p o «¿r1 G 3Z(X).

In other words, &(X) is a filter of the lattice FQ(X) satisfying condition (3).

Lemma 10. Let = {Y(X)} be a positive variety of tree languages. Let yT(X)
be the filter in the lattice FQ(X) generated by the set { i^ 1 1 T G y(X)}. Then
yx = {yr(X)} is a variety of quasi orders.

Proof. Conditions (1) and (2) from the definition of varieties of quasi orders are
fulfilled by the way Yr is defined. Assume that p G r r (F) and <f>: TS(X) -> TE(Y)
is a morphism. Since p G yT(Y) there are languages T j , . . . ,Tn G y(Y), n G N,
such that D£=1 ^ ^ C p. For a language Tk G f(Y) and any P G C E (F) we
have that P - 1 ^) G f(Y), and then P~l{Tk)<t>G V{X). This implies that
^p-HTk)<t>-*e Since Tfe is regular, the family { P " 1 (T fc)0_1 G f (X) \
P G C S (Y) } is finite. Therefore, 4>o o4>~l G YT{X) according to Lemma 9.
Now from fl£=1 P follows that fl£=1(0o o0_1) C cf> o p o cj)~l, and so
0 o p o 0 _ 1 G y z (X) . " •

Regular tree languages and quasi orders 819

Lemma 11. LetSfc = {£%(X)} be a variety of quasi orders. Let us denote ^(X) =
{T C T S (X) | £?(X)j. Then = {&*(X)} is a positive variety of tree
languages.

Proof. According to Theorem 5 it follows that languages belonging to the family are
regular. Prom X " 1 n -<rl - -Tjnt2 anc^ - r / n - t 2 - -T1UT2 it follows that
is closed for positive Boolean operations. Similarly, Q — p-i(r) iniplies closure
for quotients. Finally, if <f>: TS(X) Tz(Y) is a morphism and T G №(Y) then

a n d s o <j)°<Tl 0<t>~X e @ (X) . It is easy to prove that o ^ o ^ r 1 C
which further implies r ^ - i G &(X), and hence T<j>~1 G ^(X). •

Lemma 12. For positive varieties of tree languages "f = {V(X)}, Yi = {Yi(X)}
and % = {y2(X)}, and varieties of quasi orders !% = {&(X)}, = (&i(X)}
and&2 — {&2(X)j, the following hold:

(a) r = r r t ;
(b
(c) Vi C % implies Y{ C r / ;
(d) C 3%2 implies C ^ .

Proof, (a) The inclusion f C r r t is obvious. Assume now that T G. YTt(X). Then
r r (X) . This means that there are languages T i , . . . , T n € f { X) , n € N,

such that n£=1 ^ C ^ 1 , which implies that SOA(T) is an order image of an
order subalgebra of SOA(Ti) x • • • x SOA(Tn). Now SOA(Ti),...., SOA(Tn) G r a

and y * is a variety of ordered algebras, which implies that SOA(T) G and
hence T G y a t (X) = according to Theorem 8.

(b) It is easy to check that 3%tr C 3%. Consider now p G 3%{X). Since p has
finite index, there are finitely many p-closed sets. Let T j , . . . ,Tn , n G N, be all of
them. We are going to prove that n£=1 ^ ^ C p. Assume that t,s G T 2 (X) are
such that tps does not hold. Then the set {t' G T s (X) | tpt'} is /»-closed and
hence equal to some T,, and so t ^ ^ s does not hold, i.e., (t,s) £ njj=1 r^ 1 - On
the other hand, p Q^t* f° r e v e rY k G { 1 , . . . , n} since Tk is p-closed and ^J 1 is the
greatest such well-quasi order. Therefore, &{X) which implies Tk G ^{X),
this further gives ^ ^ G &tr(X), which finally, together with H£=1 — P> implies
p G^tr(X).

(c) and (d) are obvious. •

Summing up the results from Lemmas 10, 11, 12 we get the following variety
theorem. , ,

Theorem 13. For a positive variety of tree languages — {y(X)}, let Vr(X) be
the filter of the lattice FQ(X) generated by the set

{^M TeY(X)}.

On the other hand, for a variety of quasi orders = {&(X)}, let us denote

= {TC Tx(X) | ^ G &(X)}.

820 Tatjana Petkovic

The mappings V H-> "V* = {yz(X)} and SiS?* = {^(X)} are mutually inverse
lattice isomorphisms between the lattices of all positive varieties of tree languages
and all varieties of quasi orders.

The next theorem establishes a similar result for varieties of finite ordered al-
gebras and varieties of quasi orders. First we need to prove several lemmas.

Lemma 14. Let X be a variety of finite ordered T,-algebras. Let XT(X) — {p £
FQ(X) | Tz(X)/p £ X } . Then X1 = {XT{X)} is a variety of quasi orders.

Proof. Let p\,p2 G XT(X). Then T^(X)/(pi n p2) is an order image of an order
subalgebra of T^{X)/pi x T E (X) /p 2 , and hence T^{X)/pi,Tz(X)/p2 G X imply
T-z(X) / (p\C\ p2) G X , what means pxC\p2 G tv(X). Similarly, if px G JT R (X) and
Pi Q p2 then Tx(X)/p2 is an order image of T^(X)/px G X , and so Tz(X)/p2 G
X , which implies p2 G Xr(X).

Consider now p G Xr(Y) and a morphism (j> : T^(X) —» T^(Y). The mapping
V> : Tv{X)/{cj> opo cj,-1) -> Ts{Y)/p defined by i / (0o = p o^" 1) (i0) / = p is
an order isomorphism from T^(X)/(<j) opo to Tz(X)<j>/p, which is an order
subalgebra of TE(Y)/p. Therefore, T s (F) / p G X implies Ts,(X)/((f>opo<j)-1) G X ,
and so <j) o p o (f>~1 G XI(X). •

Lemma 15. Let S%.— {S?(X}} be a variety of quasi orders. Let Stf* be the set of
all ordered E-algebras A such that A = T^(X)/p for some X and p G S%(X). Then
St* is a variety of finite ordered algebras.

Proof. Let us notice first that for any order algebra A = T^(X)/p for some alphabet
X and a compatible quasi order p, there exists an epimorphism (j>: T^(X) —> A such
that p = 4>°<A04>~1 > where < A is the order of A. Indeed, if TT : T^(X) —» T^(X)/p
is the natural epimorphism defined by i H t/=p, and ip : T^(X)/p —> A is an
order isomorphism, then nip : Tz(X) —> A is an epimorphism and p = (irtp)o <A

o(7rT/))_1.
Consider now A G SI*. Then there exists an alphabet X and p G S£(X) such

that A = T-z{X)/p, and let <j> : Th(X) —» A be an order epimorphism such that
p — <f>o <_4 o(j)-1.

Let B be an order subalgebra of A. Then there exists a finitely generated order
subalgebra C of Tb(X) such that B is the order image of C under epimorphism
<j>. Let y be a finite alphabet such that there exists an order epimorphism ip '•
Tz(Y) —* C. Therefore, the mapping ip(p : T^(Y) —> B is an order epimorphism and
B = Tv(Y)/((ip<f>)o(<B)o(ip<f>)~1) where <g is the restriction of on B. It is easy
to check that B S Tz{Y)/((iM>) ° (< s) o = T E (y) / ((^) o o (^) - 1) .
Now A G implies (j>o o(f>~1 — p £ S?(X), what further implies (ip4>)o
o (^) - 1 = ipo(<j>o <A 0(f)-1) o ^ - 1 G 8{Y). Therefore, B S T^(Y)/({ip^o <B

O (^) - 1) G S?*.
Assume now that B is an order image of A and let ip : A —» B be the order

epimorphism. Then (j>tp : T^(X) —> B is an order epimorphism. If <B is the order
of B, then B ^ 7b(X)/({<fn}>)o <B o(^)~l). From the fact-that ip is an order

Regular tree languages and quasi orders 821

morphism, it follows that <AQ < s oip-1. This further implies p = <j>O <A
0(f)-1 C (f> o Ipo <B otp—1 o 4r1 £ 32(X), and so B£ Sg*.

Consider now two ordered algebras A\,A2 £ Let < i , < 2 be their or-
ders respectively, and X\ and X2 alphabets for which there are quasi orders
pi e @(Xi) and p2 £ 3?(X2) such that Ai = Tz(Xi)/p! and A2 = T^{X2)/p2,
respectively. Denote by 7Ti : Tz(X\) —» A\ and n2 : T^(X2) —• A2, respec-
tively, order epimorphisms such that p\ = -K\o <I o7rf1 and p2 = 7r2o < 2

Let Y be a finite alphabet such that there is an epimorphism xp 1h(Y)
Tz(X 1) x r E (X 2) , and let Vi : Tz(Y) - » T S (X 1) and : T s (r) -> T S (X 2)
be the projection mappings of ip. Then the mapping $: Tz(Y) —> A\ x A2

whose projection mappings are $1 = Vi7ri a n d $2 = ' 0 2 i s an order epi-
morphism and A\ x A2 = 7 i ; (Y) / ($ o (< x x < 2) o It can be easily
checked that $ o (< x x < 2) 0 $ - ! = ($ x o < ! o ^ - 1) fl ($2° 5:2 1)" Now
i>!0 <! o^J"1 = ipi o-k\o <1 ovrj"1 o ipj1 =tjjlopl oipj1 £ 32{Y) since pi £ 2&{X{).
Similarly, $ 2 ° <2 °$2 1 e > a n d hence $ o (< x x < 2) o e 3g(Y) what
implies Ax B £ Si*.

Therefore, Si* is a variety of finite ordered algebras. •

Lemma 16. For varieties of finite ordered algebras X , and X2, and varieties
of quasi orders Si = {3%(X)}, Si\ = {3?i(X)} and 3$2 = {3?2{X)}, the following
hold:

(a) X = X ™ ;
(b) Si =
(c) C X2 implies C J(f2 ;
(d) Sii C Si2 implies Si\CSi\.

Proof. It is easy to check (a), (c), (d) and the inclusion Si(X) C ¿¡¡^(X) for any
X.

Consider p £ 3?al{X). Then A = Tz(X) /p £ Si*, which further implies that
A = Tx(Y)/fj. for some alphabet Y and p. £ 3#(Y). Let cp : T^(X) —> A and
ip : 7s (y) —> A be order epimorphisms such that p — <¡>0 <.4 otp-1 and p. = ipo <_x
oip-1, where < A is the order of A. Let us define the morphism $: T^(X) —* T%(Y)
so that £ xcpip-1 for any x £ X. Then 4> = and so <j>o<Ao4>_1 = ($ip)o<A

i-e., p=$op,o i - 1 e 3?(X) since p. £ 32(Y). •

As a corollary of Lemmas 14, 15, 16 we get the following variety theorem for
algebras and relations.

Theorem 17. For a variety of finite ordered H-algebras X , let us define

Xr(X) = {p£ FQ(X) | Ts{X)/p £ X } .

For a variety of quasi orders Si = {38(X)}, let 32* be the set of all ordered E-
algebras A such that A = T%(X)/p for some alphabet X and p £ 3$(X).
The mappings X H-> = {XT(X)} and 3& are mutually inverse lattice
isomorphisms between the lattices of all varieties of finite ordered algebras and all
varieties of quasi orders.

822 Tatjana Petkovic

The correspondences established here are similar to those used in [14] between
varieties of tree languages, varieties of finite algebras and varieties of finite con-
gruences. However, in [14] the variety of algebras assigned to a variety of finite
congruences was generated by a family which resembles our family and it has
been shown here that the family already forms a variety of finite ordered algebras.

Example 18. Ordered nilpotent algebras and cofinite tree language were intro-
duced in [9]. Namely, an ordered algebra A = (A, E, is ordered n-nilpotent,
n £ N, if pi • • • pn (a) ^ b holds for all a, b £ A and non-trivial translations p i , . . . , pn

of A, and it is ordered nilpotent if it is ordered n-nilpotent for some n £ N. A non-
empty tree language T C T E (X) is cofinite if its complement TE(-X") \ T is finite.
The family of cofinite tree languages for all leaf alphabets X is a positive variety of
tree languages and finite ordered nilpotent algebras form the corresponding variety
of finite ordered algebras. Let pn , n £ N, be the relation on T s (X) defined by

t pns o hg(s) > n or t = s

where hg(s) is the height of s. It is easy to show that pn is a compatible quasi
order of finite index for every n £ N, and a tree language T is cofinite if and only
if Pn Q d^ 1 f° r some n £ N. Therefore, the corresponding variety of quasi orders
is & — {&(X)j, where 3${X) is the filter of FQ(X) generated by {pn\n £ N}.

Example 19. Symbolic algebras and symbolic tree languages were introduced in
[9]. An algebra A = (.4, E, is symbolic if it satisfies the following:^ for every
f,g£ E and a , b , c , d , a £ A, where boldface letters stand for appropriately long
sequences of elements from A:

fA{ a, gA(c, a, d), b) = gA(c, fA(a, a, b), d);
fA(a,a,b) a.

For a tree t £ T s (X) , the contents c(t) of t is the set of symbols from E U X which
appear in t. For a subset Z C E U X, the tree language T(Z) consists of all trees
which contain at least one appearance of each symbol from Z. A tree language
T C T s (X) is symbolic if it is a union of tree languages of the form T(Z) for some
subsets Z C EUX. It was shown in [9] that symbolic tree languages form a positive
variety of tree languages, symbolic algebras form a variety of finite ordered algebras
and that the positive variety of symbolic tree languages corresponds to this variety
of ordered algebras. It can be easily proved that the relation p defined on T E (X)
by

tps & c(i) C c(s)

is a compatible quasi order of finite index, and a tree language T is symbolic if
and only if p C ^y 1 . Therefore, the variety of quasi orders corresponding to the
classes of symbolic tree languages and symbolic algebras consists of filters of FQ(X)
generated by p, i.e., @{X) - {a £ FQ(X) | p C a).

Regular tree languages and quasi orders 823

References
[1] J. Almeida, On pseudovarieties, varieties of languages, filters of congruences,

pseudoidentities and related topics, Algebra Universalis 27 (1990), 333-350.
[2] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer-

Verlag, New York, 1981.
[3] A. Ehrenfeucht, D. Haussler, G. Rozenberg, On regularity of context-free

languages, Theoretical Computer Science 27 (1983), 311-332.
[4] S. Eilenberg, Automata, Languages, and Machines, Vol. B. Pure and Applied

Mathematics, Vol. 59, Academic Press, New York - London (1976).
[5] Z. Esik, A variety theorem for trees and theories, in: Automata and formal

languages VIII (Salgótarján, 1996), Publ. Math. Debrecen 54 (1999), 711-762.
[6] Z. Esik and P. Weil, Algebraic recognizability of regular tree languages, The-

oretical Computer Science 340 (2005), 291-321.
[7] F. Gécseg, B. Imreh: On Monotone Automata and Monotone Languages, Jour-

nal of Automata, Languages and Combinatorics 7 (1) (2002), 71-82.
[8] G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math.

Soc. 3 (2) (1952), 326-336.
[9] T. Petkovic and S. Salehi, Positive Varieties of Tree Languages, Theoretical

Computer Science 347/1-2 (2005), 1-35.
[10] J. E. Pin, Varieties of formal languages, Foundations of Computer Science,

Plenum Publishing Corp., New York, 1986.
[11] J. E. Pin, A variety theorem without complementation, Izvestiya VUZ Matem-

atika 39 (1995), 80-90. English version, Russian Mathem. (Iz. VUZ) 39 (1995),
74-63.

[12] M. P. Schiitzenberger, On finite monoids having only trivial subgroups, Infor-
mation and Control 8 (1965), 190-194.

[13] M. Steinby, Syntactic algebras and varieties of recognizbale sets, in: Proc.
CAAP'79, University of Lille (1979), 226-240.

[14] M. Steinby, A theory of tree language varieties, in: Nivat M. & Podelski A.
(ed.) Tree Automata and Languages, Elsevier-Amsterdam (1992), 57-81.

[15] M. Steinby, General varieties of tree languages, Theoretical Computer Science
205 (1998), 1-43.

[16] D. Thérien, Recognizable languages and congruences, Semigroup Forum 23
(1981), 371-373.

Acta Cybernetics 17 (2006) 719-749.

Small Conjunctive Varieties of Regular Languages*

Libor Polâkt

Abstract
The author's modification of Eilenberg theorem relates the so-called con-

junctive varieties of regular languages with pseudovarieties of idempotent
semirings. Recent results by Pastijn and his co-authors lead to the description
of the lattice of all (pseudo)varieties of idempotent semirings with idempotent
multiplication. We describe here the corresponding 78 varieties of languages.

K e y w o r d s : varieties of languages, pseudovarieties of idempotent semirings

1 Introduction
Certain significant classes of regular languages can by characterized by properties
of syntactic semigroups/monoids of their members. The underlining framework is
the so-called Eilenberg correspondence. The books by Pin [9] (see also [10]) and
Almeida [1] present the background and numerous both simple and sophisticated
examples. Varieties of languages corresponding to pseudovarieties of idempotent
monoids are described by Neto and Sezinando in [6] and in their previous papers.

The author introduced syntactic semirings and proved an Eilenberg-type the-
orem in [11]. In Section 2 we reformulate the main result of Pastijn and his col-
laborators [7, 3, 8] giving a description of the lattice of all varieties of idempotent
semirings with idempotent multiplication. We solve the identity problems in all
those varieties, we show that all of them have a finite basis of identities. Further
we recall one of the main results by Kuril and author [4] relating the above vari-
eties with certain operators on relatively free semigroups. In Section 3 we recall
the author's modification of Eilenberg theorem, we find which classes of languages
correspond to pseudovarieties of idempotent semirings in term of the closure oper-
ators mentioned above. Then we formulate it concretely for all 78 varieties. We
complete this section by a relationship with the so-called shuffle closed languages.
The last part of our contributions shows which of our varieties of languages are
positive ones; we generate by each of our variety a positive one. We end with a
simple example giving a language with idempotent syntactic semigroup having a
syntactic semiring with a non-idempotent multiplication.

'Supported by the Ministry of Education of the Czech Republic under the project MSM
0021622409 and partially also by Project AKTION Österreich - Tschechische Republik

t Department of Mathematics, Masaryk University, Janâckovo nâm 2a, 662 95 Brno, Czech
Republic, E-mail: polak8math.muni.cz, Url: http://ww.math.muni.cz/"polak

825

http://ww.math.muni.cz/%22polak

826 Libor Polák

2 Varieties of idempotent semirings
A semigroup is a non-empty set equipped with an associative operation. Let A+

and A' = A+ U {1} be the free semigroup and the free monoid, respectively, over
a non-empty set A. An ordered semigroup is a triple (5, • <) where (S, •) is a
semigroup and < is a (partial) order on S such that

(V a, 6, c € S)(a < 6 implies both ac < be and ca < cb) .

Homomorphisms of ordered semigroups are isotone semigroup homomorphisms. An
idempotent semiring is a structure (5, V) where (S, •) is a semigroup, (5, V) is a
semilattice, and

(V a, b, c e S)(a(6 V c) = ab V ac and (a V b)c = acVbc)

(w e d o n o t p o s t u l a t e here t h e e x i s t e n c e o f the n e u t r a l e l e m e n t for the o p e r a t i o n •
n o r for t h e o p e r a t i o n V) . Such a s t ruc ture b e c o m e s an o r d e r e d s e m i g r o u p w i t h
r e s p e c t t o t h e re la t i on < de f ined b y

a < b - i = > a V 6 = 6, a,b e S .

Let A° denote the set of all non-empty finite subsets of Note that this set
with the operations U • V = {uv \ u € U, v € V } and the usual union forms a free
idempotent semiring over the set A.

A class of semigroups is a variety if it is closed with respect to the forming of
homomorphic images, substructures and products. A class of finite semigroups is
a pseudovariety if it is closed with respect to the forming of homomorphic images,
substructures and finite products. Similarly for ordered semigroups and idempotent
semirings. '

Let X = {11 ,12 , . . . } be the set of variables and let Xn = { x i , . . . , x n } for
n S N. For a variety V of semigroups we put

pv = { (u, v) 6 X+ x X+ | all members of V satisfy the identity u = v } .

As well-known, the assignment V i-> pv is an isomorphism of the lattice of all
varieties of semigroups onto the set Fic X+ of all the so-called fully invariant
congruences on the semigroup X+ ordered by the opposite inclusion. We put
Pv,n = pv l~l (X+ x X+). Then X+/pv is a free semigroup in V over X and
X+/p v ,n a free semigroup in V over Xn, n e N. Similarly, for a variety of
idempotent semirings X, we put

<7* = { (K . . , 4 K ; - , " l }) ^ D x X D I

all members of X satisfy the identity u\ V • • • V = v\ V • • • V vi } .

Again, X ax is an isomorphism of the lattice of all varieties of idempotent
semirings onto the set Fic Xa of all fully invariant congruences on the semiring Xa

ordered by the opposite inclusion. We put ox,n = oxC\(X° x X°). Then Xa/a* is

Small Conjunctive Varieties of Regular Languages 827

a free idempotent semiring in X over X and X°/(Jx,n is a free idempotent semiring
in X over Xn, n 6 N.

First of all we have to recall basics on varieties of idempotent semigroups. The
class of all semigroups satisfying a set E of identities is denoted by Mod 'E. We
denote :

• T = Mod (x = y) - the class of all trivial semigroups,

• CZ = Mod (xy = x) - the class of all semigroups of left zeros,

• HZ — Mod' (xy — y) - the class of all semigroups of right zeros,

• SI — Mod (a;2 = x, xy = yx) - the class of all semilattices,

• CAÍB = Mod (x2 = x, xyz = xzy) - the class of all left normal bands,

• 71MB = Mod' (x2 — x, xyz = yxz) - the class of all right normal bands,

• 7ZeB = Mod (x2 = x, xyx = x) - the class of all rectangular bands,

• C7ZB — Mod (x2 — x, xy = xyx) - the class of all left regular bands,

• TZTZB = Mod (x2 = x, xy = yxy) - the class of all right regular bands,

• MB = Mod (x2 = x, xyzx = xzyx) - the class of all normal bands,

• CQAÍB = Mod '(x2 = x, xyz — xyxz) - the class of all left quasinormal
bands,

• 'TZQAÍB = Mod '(x2 = x, xyz = xzyz) - the class of all right quasinormal
bands,

• WB = Mod (x2 = x, xyzx = xyxzx) - the class of all regular bands.

Note that the pairs CZ and TZZ, CMB and HhfB, CRB and K11B, CQMB and
1ZQAÍB consist of pairwise dual semigroups.

We need to introduce several operators on words from X* :

• c(u) is the set of all variables in u,

• h(u) is the first variable of u S X+, h(l) = 1,

• t(u) is the last variable of u € X+, t(l) = 1 (it is dual to h),

• l(u) is the word resulting from u € X+ leaving only the first occurrence of
each variable from the left, 1(1) = 1,

• r(u) is the word resulting from u £ leaving only the first occurrence of
each variable from the right, r(l) = 1 (it is dual to I),

828 Libor Polák

• uy, for Y C X, is the word resulting from u by substituting 1 for each
occurrence of each variable from Y.

Next we formulate how to solve the identity problem (i.e., to describe the con-
gruences px) in varieties mentioned above.

Result 1 (see for instance [13]). The lattice of all varieties of regular bands
consists of 13 varieties introduced above; the order by the inclusion is given by the
diagram below.

Further, for u, v G X+ we have

(i) u PT v for all u,v; thus X+/pr = ({zi}>°),

(ii) u pcz v iff h(u) = h(u); thus X+/pcz — (X, °) where x o y = x,

(Hi) u psi v iff c(u) = c(v); thus X+/psi =

({ Y | Y is a non-empty finite subset of X }, o) where Y o Z = Y U Z ,

(iv) u pcatb v iff c(u) = c(v), h(u) = h(u); thus X+/pCMB =

({ (y, Y) | Y is a non-empty finite subset of X, y G Y }, o)

where (y,Y)°(z,Z) = {y,YuZ),

(v) u pizeB V iff h(u) = h(z>), t(u) = t(u); thus X+/pneB =

(X x X, o) where (x, y) o (z, t) = (x, t) ,

(vi) u PCTZB v iff \(u) = 1(d); thus X+/PAIB =

(I u has pairwise different variables }, o) where uov = l(m;) ,

(vii) u ptfe v iff c(u) = c(v), h(u) = h(u), t(u) = t(u); thus X+/PNB —

({ (x, Y, y) | Y is a non-empty finite subset of X, x, y £ Y }, o)

where (x, Y, y) o (z, Z, t) = (i , y i l Z, t) ,

(viii) u PCQMB V iff\(u) = l(i;), t(u) = T(v); thus X+/PCQATB =

({ (u, y) e X+ | u has pairwise different variables, y G c(u) }, o)

where (u,y)o(v,z) = 2;) ,

(ix) u PUB V iff\{u) = \(v), r(u) = r(v); thus X+/PKB —

({ (u,v) G X+ x l + I c(u) = c(v), each of u,v has pairwise diff. variables }, °)

. where (u, v) o (u', v') — (l(uu'), r (W)) .

Small Conjunctive Varieties of Regular Languages 829

RB

LRB RRB

T

Now we introduce several important finite idempotent semirings :

• L is the left zero semigroup with elements a and b ordered by a < b ,

• R is the right zero semigroup with elements a and b ordered by a < b ,

• D is the distributive lattice with elements a and ¿» ordered by a < b (multi-
plication is the meet),

• M has the elements a, b and both operations equal to the join with respect
to the order a < b ,

• B is the left zero semigroup with elements a and b and with an extra neutral
element 1 ordered by a < 1 < b ,

• C is the right zero semigroup with elements a and b and with an extra neutral
element 1 ordered by a < 1 < b .

For any idempotent semiring S, we denote by S° the semiring obtained from 5
by adding an extra element 0 and where 0 • a = a • 0 = 0, 0 V a = a V 0 = a, for
every a S S .

Result 2 ([4] Thm.2.9, [7] Thm.2.3). Each idempotent semiring with an idem-
potent multiplication satisfies the identity xyxzx =• xyzx; that is, its multiplicative
reduct is a regular band.

The following varieties play here a crucial role :

• TS - the class of all trivial (i.e., one element) semirings,

• C = < L > - the class of all idempotent semirings whose multiplicative
reducts are left zero semigroups,

• 7Z = < R > - the class of all idempotent semirings whose multiplicative
reducts are right zero semigroups,

830 Libor Polák

• 1) = < £ > > - the class of all distributive lattices,

• M = < M > - the class of all monobisemilattices,

• 5 = < M° > - the class of all bisemilattices,

• B = < B >, C = <C>, L° — < L° >, 11° — < R° >, = < >,
C° = <C°>,

• I - the class of all idempotent semirings whose multiplicative reducts are
idempotent.

Notice that the pairs C and TZ, B and C, B° and C° consist of pairwise dual
semirings. Next we will solve the identity problems (i.e., to describe the congruences
AX) for the varieties C, V, M, B, £°, S and B°. These results can be extracted
from [5, 7, 3, 8]. We present here simple and transparent proofs. Notice that each
set of identities is equivalent to the inequalities of the form

u<u i V • • • V Ufc . (*)

Result 3.

(i) L satisfies (*) iff h(u) £ { h(u\),..., h(ufc) },

(ii) D satisfies (*) iff there exists i £ {1,..., k} such that c(u) D c(ui),

(Hi) M satisfies (*) iff c(u) C c(uj) U • • • Uc(ufc),

(iv) B satisfies (*) iff for each Y C X h(uy) £ { h ((u i)y) , . . . , h ((uk)y) },

(v) 5° satisfies (*) iff S satisfies u < \/{ " j | i £ {1, • • • ,k), c(u) D c(ttj) } .

Proof, (i) L does not satisfy (*) iff we can find a substitution £ : X —» L such that
f(h(u)) is b and of £(h(ui)) = • • • = £(h(u*)) = a.

(ii) D does not satisfy (*) iff we can find a substitution £ : X —> D such that
£(u) = b and £(ui) = • • • = £(ufc) = a. This is equivalent to

V i £ { 1 , . . . , k) 3 x £ c(m) \ c(u) .

(iii) M does not satisfy (*) iff we can find a substitution £ : X —> M such that
£(u) = b and = ••• = £(ufc) = a. This is equivalent to the existence of
x £ c(u) \ { c(ui) U • • • U c(ufc)}.

(iv) (*) is valid in B for all substitutions X —» B where exactly all variables
from Y go to 1 iff L satisfies uy < (ui)y V • • • V (Uk)y •

(v) If we substitute 0 for a variable from c(u) the inequality (*) holds trivially.
So substitute for all of them elements from S. The worst case is to substitute for
all other variables the element 0. •

Small Conjunctive Varieties of Regular Languages 831

We denote by Y{X) the lattice of all subvarieties of a variety X. By McKenzie
and Romanowska [5], all non-trivial varieties of idempotent semirings with commu-
tative and idempotent multiplication are exactly : V, M, VMM. and S. Later
Ghosh, Pastijn and Zhao in [3] found a description of the lattice of all varieties of
idempotent semirings whose multiplicative reducts are normal bands (35 varieties).
They use combination of semantical methods (congruences, Green relations,...)
with syntactical ones (calculating with identities,...). The result was previously
announced by the authors of [4] : they used purely syntactical approach (operators
on relatively free semigroups) - see Result 5. In [8] Pastijn accomplished the task
of the description of the lattice V(T). Up to now we are not able to get it purely
syntactically. We formulate this deep result next in a modified form. Recall that
a subset B of an ordered set (A, <) is hereditary if b £ B, a £ A, a < b implies
a € B.

Result 4 (extracted from [7, 3, 8]). The lattice of all varieties of idempotent
semirings with an idempotent multiplication is distributive. Its non-trivial join-
irreducible elements are exactly the eleven varieties mentioned above. They form
the partially ordered set (£>, <) depicted below. Consequently, the varieties of idem-
potent semirings with an idempotent multiplication correspond to the 78 hereditary
subsets of (D, <); more precisely, they are exactly joins of hereditary sets and joins
of different hereditary sets are different.

B° C°

L D M R

Proof. By Theorem 3.4. of [3], the kernel of the mapping

<j): y(l) —> y(S), X i-> X C\S

decomposes ^(T) into five intervals with the lower ends TS, V, M, T>\/ M, S,
respectively. By Result 4.1, the first interval is [TS, C V K] and it consists exactly
of TS, C, 7Z and CVR. Since U £ B° by Result 3, this interval intersects Sf(B°)
in {TS, £ } . Similarly, by Theorems 4.5. and 4.7., the second and the third interval
intersect in {D, V V C, C0} and {M,M V £ } , respectively.

Further by Corollary 2.5 and 3.4. of [8], the fourth and the fifth interval intersect
in {WM, D V M V £ , WM.VC°, B, BVC0} and { 5 , S v £ , 5 V £ ° , SV

B, B° } , respectively.

832 Libor Polák

Finally, by Theorem 4.1, the mapping

i> • { {X, y) e [TS, B°] x [TS, C °] | ^ n 5 = y n 5 } - > i f (I) , (X, y) ^ X V y

is a bijection. •

One of the main results of [4] is recalled below. For our purposes it is not
necessary to put here the 10 axioms defining the so-called V-admissible closure
operators from subsets of X+/pv to subsets of X+/p\>. Notice only that one of the

Small Conjunctive Varieties of Regular Languages 833

axioms is to be of finite character (ali closures are determined by closures of finite
sets).

Result 5 ([4]\ Theorem 4.7). Varieties of idempotent semirings corres-pond to
the pairs (V, []) where V is a variety of semigroups and [] ¿is a V-admissible closure
operator on X+/pv; we write X t-* (X_, []*). Moreover,

{ui,...,uk} ax{vi,...,vi} iff

[{uipx_,..., ukpx)]x = [{v\Px_, • • •, vipx} }x •

Conversely, given a variety X, we get X_ and []x by

u px_ v if and only if {u} ax { f } , and

upxe[(ui)px,---,(uk)px} iff {ui,...,uk,u} ax {ui,...,uk} ,

which is also equivalent to the fact that X satisfies u < u\ V • • • V uk.

The situation above leads also to a closure operator on subsets of X+/py,n
defined by

[uipv,n,- -,ukpv,n]x,n = [uipv,---,ukpv}xn(x+/pvtn x X + / p v , n) •

It follows how to get (X_, []*) for all varieties knowing the data for the join-
irreducible ones.

Result 6 ([4], Theorem 4.9). Let X, y be varieties of idempotent semirings urith
idempotent multiplication. Then X V y = X_ V y and

u(px_r\py) G \{ui(pxC\ py),... ,uk(px_ if and only if

upx € [uipx, • • -,ukpx]x and upy € [uipy,... ,ukpy]y •

We can extract from [3, 8] that each variety from ~¥(T) is finitely based. We
formulate and prove it now in a transparent way.

Theorem 7. For each variety X G D there exists a variety Xc G such that

(V y G f (I)) X%y if and only ify C Xc .

More precisely,

• £c = Mod (xy < y V yx),

• TP — Mod (x < xyx),

• Mc = Mod (xyz <xVz),

• <SC = Mod (xyx < x V yzy),

• Bc = Mod (xyz < x V zyz),

834 Libor Polák

• (£°)c = Mod (xy <xzV yxy),

• (go)' = Mod (xyz <xzV zyz V xyt).

Consequently,

(V y e Y{X)) y = f | { I X € O, X 2 3>} •

It follows that each y € ^(1) is finitely based.

Proof. We see that

• L does not satisfy xy < y V yx but C° does,

• D does not satisfy x < xyx but L, M, R do,

• M does not satisfy xyz <x\Jz but L°, R° do,

• S does not satisfy xyx < x V yzy but L°, B, C, R° do,

• B does not satisfy xyz < x V zyz but L°, C° does,

• L° does not satisfy xy <xz\! yxy but B, C° do,

• B° does not satisfy xyz < xz V zyz V xyt but L°, B, C° do.

Let 3̂ € y(l), {X!,...,Xk} = {X £ O \ X <Z y} and {Xk+l,... ,Xn} =
{X e D \ X <Z y}. Then Xk+1 V---VXU = y C Xfn---nX£. The last
inclusion is, in fact, an equality since there is no Xi, i € {1,... ,k}, such that
XiCXtn-n XI •

3 Varieties of languages
A language L C A+ defines the syntactic congruence on (AD, - ,U) by

{ti l , . . .,uk} ~L { V ! , . . i f and only if

(V p,q £ A*) (puiq, ...,pukq G L <i=> pviq, ...,pvtq £ L) .

The factor-structure (^4°, •, U)/~L is called the syntactic semiring of L; we denote
it by (S (L), •, V). This structure is finite if and only if the language L is regular.

For non-empty finite sets A and B, a semiring homomorphism

/ : (B°, -,U) —> -,U)

and K C A+, we define

f ^ (K) = {veB+\f({v})CK}.

Small Conjunctive Varieties of Regular Languages 835

Similarly, for a semigroup homomorphism g : (B+, •) —> (A + , •) and K C A+ we
put

g^HK) = {v e B+ \ g(v) € K} .

A class of (regular) languages is an operator Jz? assigning to every non-empty finite
set A a set -S?(A) of regular languages over the alphabet A. Such a class is a
conjunctive variety if

(i) each Jf(A) contains both 0 and A+,

(ii) each Jz?(A) is closed with respect to finite intersections and quotients, and

(iii) for each finite sets A and B and a semiring homomorphism / : B° —• Aa, K €
Jf(A) implies f[~l\K) € JP(B).

Similarly, it is a positive variety if (i) holds,
(ii') each Jz?(A) is closed with respect to finite intersections, finite unions and
quotients, and
(iii') for each finite sets A and B and a semigroup homomorphism g : B+ —
A+, K € Jz?(A) implies £ J£{B).

Adding to (ii') the closeness with respect to complements, we get the notion of
a boolean variety.

We can assign to any class of languages Jzf the pseudovariety

S (JS?) = [{ (S (L), V) | A is a non-empty finite set, L e &{A) }]

of idempotent semirings generated by all syntactic semirings of members of all
Jzf(A)'s. Conversely, for a class X of idempotent semirings and a non-empty finite
set A, we put

(L(^)) (A) = { L C A * | (S (L) , . , V) e ^ } .

Result 8 ([11], Theorem 14). The assignments h-> S (Jf) and X L(X)
are mutually inverse bijections between the conjunctive varieties of languages and
pseudovarieties of finite idempotent semirings.

Similarly, by the classical Eilenberg theorem, the boolean varieties of languages
correspond to pseudovarieties of semigroups, and the positive varieties of languages
correspond to pseudovarieties of ordered semigroups (see Pin [10]).

Theorem 9. The pseudovarieties of finite idempotent semirings with idempotent
multiplication are exactly the classes Fin X consisting of finite members of a vari-
ety X of idempotent semirings with idempotent multiplication. Finite members of
different varieties form different pseudovarieties.

Proof. Since the lattice is finite, the pseudovarieties are exactly of the form
Fin X, X € (see [1], Proposition 3.2.4). Since all varieties are generated by
finite members, the mapping Fin is injective. •

Our key result follows.

836 Libor Polák

Theorem 10. Let X be a variety of idempotent semirings with idempotent mul-
tiplication. For each n G N, the set (L (F i n X)) (X n) consists exactly of unions of
[]x,n-closed subsets of X*/px,n •

Proof. Let L C X + , u,ui,... ,uk G X + . We show that

(X ° , - , U) / ~ i satisfies u < uj V • • -Vuk (f)

if and only if (V wi,.. •, wm G X + , p,q G X*)

(pui(wi,... ,wm)q,... ,puk(wi,... ,wm)q G L => pu(wi,... ,wm)q € L) . (J)

Indeed, (f) means that (V w\,..., wm € X+)

(u(wi ~L,---,wk <m(wi V • • • Vuk {w\ ~L,...,wk ,

which is equivalent to (V wi,..., wm G)

u(wi,...,wk) < (ui(wi,...,wk) V •••Vuk(wi,...,wk)) ,

and this is equivalent to (|).
Now let u i , . . . , uk G L, u G X+ and let X satisfy u < ui V . . . uk. Put p = q = 1

and w\ = x\,..., wn = xn (we have m = n) in (|).
Conversely, let L be a union of []*-closed set of classes. Let u,ui,... ,uk G

X + , u < ui V • • • V m in X. Let wi,..., wm G X+,p,q G X*. Then also
pu(wi,.. .,wm)q. < pui(wi,...,wm)qV • • • V puk(wi,... ,wm)q in X, which gives
(|) and therefore also (f) . Moreover, L is a regular language since it is recognized
by a finite semigroup X + / p x , n • •

Similar results for semigroups and ordered semigroups are almost obvious. Re-
call that the operator L there uses syntactic semigroups and ordered semigroups
instead of semirings; we write L' and L - . In the ordered case py consists of all
pairs (u, v) such that u < v in V. Let 7v = Pv H (pv) - 1 - Then / ry is ordered
by UT\) < VT\) iS u p\> v.

Result 11.

(i) Let V be a variety of semigroups. For each n G N, the set (L ' (FinV))(X„)
consists exactly of unions of classes of X+ /pv,n which are regular languages.

(ii) Let V be a variety of ordered semigroups. For each n G N, the set
(L-(Fin V)) (X n) consists exactly of unions of hereditary sets of classes of
(X+/TV , „ , <) which are regular languages.

Now we describe conjunctive varieties of languages corresponding to our pseu-
dovarieties.

Small Conjunctive Varieties of Regular Languages 837

T h e o r e m 12 .

(i) V = Sl,

andY e[{Y1,...,Yk}]v iff(3i£{l,...,k})YDYi .

Consequently,

L&(L(V))(Xn) iff (3 Y\,...,Yk C Xn)

such that L = { u G X+ | (3 i G {1 , . . . , k}) c(u) D Y{ } ,

or equivalently L is a union of languages of the form

|cWDF}, Y CX .

(ii) M = SI,
and Y G [{ Y i , . . . , Yfc}]z> iffYCY1U---UYk .

Consequently,

L G (L (M))(Xn) iff (3 Y C Xn) L = y + .

(Hi) S = SI,

andY £[{Y1,...,Yk}]s iff(3 iu...,U G { l , . . . , fc}) Y = Yh U • • • U Yu .

Consequently,

L G (L (S))(X„) iff(3Y1,...,YkCXn)

with L = { u€X+ | (3ii,...,it G {1,...,*;>) c(u) = Yit U • • • U Yu } .

(iv) £ = CZ, and [{yi,.. .,yk}]c - {Ui, • • •,Vk}• Consequently,

LG (L (£))(*„) iff(3YCXn)L = {ueX+\

(v) = CUB, and

(y,Y)e{{(yi,Y1),...,(yk,Yk)}]co

iff (3 i , k)) (y = yi, YDYi).

Consequently,

Le(L(C°))(Xn) iff(3Y1,...,YkCXn,y1eYu...,yk€Yk)

such that L = { u G X„ | (3 i G { 1 , . . . , k}) h(-u) = yi and c(u) 2 Yi } ,

or equivalently L is a union of languages of the form

{uex+ \ h(u) = y, c(u)DY], yeYCX .

838 Libor Polák

(vi) B = C71B, and

u G [{tiX,. •. .«jtJJs iff (MY C X) h(uy) G { h (M Y) , . . . , h((« f c)y) } •

Consequently,

L G (L (£)) (X n) iff (3 ult..., uk G X+) such that

L = { ueX+ | (v y C X n) h(«y) G { h((tix)y) H((tijfc)y) } } .

(vu) B° = CUB,

and u G [{u i , . . . ,Ufc}]Bo iff u £ {{ui \ i = 1,... ,k, c(u,) C c(u) }]b

Consequently,

L £ (L(B°))(Xn) iff (3 uu...,uk £ X+) such that L =

. { u£X+ | (V y C X „) h(uY)£{b((ui)Y)\i = l,...,k, c(ui) C c(u) } .

Proof. We find the values of X_ first. It would follow from the observations below.
We will use Result 3.

• The identity x2 = x holds in B°; by duality also in C° and therefore in all
eleven varieties from D.

• The identity xy = yx holds in M° but not in L.

• The identity xy — x holds in L but not in D, M, R.

• The identity xyz = xzy holds in L° but not in M, R.

• The identity xy = xyx holds in B° but not in R.

The descriptions of the operators [)x follows immediately from Result 3. Use
Theorem 10 for the formulas for the corresponding languages. •

The corresponding results for the varieties TZ, TZ°, C and C° we get by duality.
We can describe the joins of irreducible varieties of languages by Result 6 or we
can use the following simple construction.

Theorem 13. For conjunctive varieties of languages X and JSf and a non-empty
finite set A, we have

(jerV JSf)(A) = {KnL\K£ JXT(A) and L £ Jif(A) } .

Proof. Obvious. •

Small Conjunctive Varieties of Regular Languages 839

A language L C A + is closed if u,v £ L implies uv 6 L. Recall that the shuffle
of words u, v £ A + is the set u\Jv =

{U\V\. ..Ukvk | k € N, u = t i l . . .uk, V = V!.. .vk, m,... ,uk,vi,... ,vk € A* }.

Thus the following system of identities characterizes languages all quotients of which
are shuffle-closed

x\Vi • • • XkVk < x i . . . xk V y i . . . yk, x i y i . . . xkykXk+i < Xi... xk+i V y x . . . yk ,

k £ N. Now the following is straightforward.

Theorem 14.

(i) All quotients of a language whose syntactic semiring has idempotent multipli-
cation are shuffle closed.

(ii) Each language with idempotent syntactic semigroup with all quotients being
closed has syntactic semiring with idempotent multiplication.

•

4 Conjunctive versus positive varieties of lan-
guages

For a class V of semigroups, we put

V - = { (S, •, <) is an ordered semigroup | (S, •) € V } ,

and for a class W of ordered semigroups, we set

W+ = { (S, •, <) £ W | (S, •, <) satisfies xyx < x } and

W - = { (5, •, <) £ W | (S, •, <) satisfies x < xyx } .

Result 15 ([2]). The lattice of all varieties of ordered normal bands consists of 8
varieties of the form V - where V is a variety of normal bands and 8 varieties of
the forms W+, W_ where W £ { }.

The operator Fin is a bijection of this lattice onto the lattice of all pseudovari-
eties of ordered normal bands.

As announced in [2] and also proved by the authors of [4] (uripublished) any
other variety of ordered bands is of the form V - for a variety V of bands. Therefore
we have exactly 21 varieties of ordered regular bands and (since they are generated
by their finite members) exactly 21 pseudovarieties of ordered regular bands.

Theorem 16. Let ££ be a conjunctive variety of languages. Then the smallest
positive variety of languages is of the form where for each non-empty finite
set A :

Jf°(A) = { LiU---ULfc | k GN, Li,...,Lfc Gi?(A) } .

840 Libor Polák

Proof. The result is obvious. •

Theorem 17.

(i) For X £ V(I) with X = {T,Sl}, exactly i(TS) = L* (T) and L (D) =
L ~(iS/|) are positive varieties of languages. Moreover,

(l(M))u = l^{Sli) and (L (V V 7W))U = (L (<S))U = L - (.S i -) .

(ii) For X £ Г (1) with X = {CZ,LMB}, exactly L(£) = L ~{CZ) and L(£°) =
L - (£ЛЛВ|) are positive varieties of languages. Moreover,

(L (£ V M))u = L-(CAiB~), (L (£ V X>))u = L (£°), and

(L (£ V U V M))u = • • • = L-(CAfB-) .

(Hi) For X € Г(Х) with X = {1leB,MB}, exactly L (£ V 71) = L-(72.eB) and
L (£° V 72.°) = L -(Л/"Б^) are positive varieties of languages. Moreover,

(L(£ V M V7l))u = L^(TVSz), (L (£ V I? V 7£))u = L (£° V 1Z°), and

• (L (£ V I> V Л^ V 7?.))u = • • • = L -(ЛЛВ-) .

For all other X 6 У (J), L (A") is not a positive variety and

Proof All follows from simple calculations. •

Example. Let A = {a, 6}, L = a + U 6+ . Then the (ordered) syntactic semigroup
is idempotent, but the syntactic semiring is not. Indeed, using the notation from
[12] we have D = { a + U b+, a*, b*, 0 } and the transformation semigroup consists
of transformations given by a, b, ab having the presentation a2 — a, b2 = b, ab =
ba = 0. Further, D = D U {a + , b+, 1} and there

is a new transformation given by
{a, 6}. This element is not an idempotent.

We can derive the result from Theorem 14 : a2,b € L but aba £ a2Lib, aba $ L.

References
[1] J. Almeida, Finite Semigroups and Universal Algebra, World Scientific, 1994.

[2] S.J. Emery, Varieties and pseudovarieties of ordered normal bands, Semigroup
Forum 58 (3) (1999), 348-366.

[3] S. Ghosh, F. Pastijn and X. Zhao, Varieties generated by ordered bands I,
Order, accepted.

Small Conjunctive Varieties of Regular Languages 841

[4] M. Kuril and L. Polák, On varieties of semilattice-ordered semigroups, Semi-
group Forum, to appear.

[5] R. McKenzie and A. Romanowska, Varieties of -distributive bisemilattices, in
Contribution to General Algebra (Proc. Klagenfurt Conference 1978), Heyn,
Klagenfurt 1979, pages 213-218.

[6] O. Neto and H. Sezinando, Band monoid languages revisited, Semigroup Fo-
rum 61 (1) (2000), 32-45.

[7] F. Pastijn and X. Zhao, Varieties of idempotent semirings with commutative
addition, Algebra Universalis, to appear.

[8] F. Pastijn, Varieties generated by ordered bands II, Order, accepted.

[9] J.-E. Pin, Varieties of Formal Languages, Plenum, 1986.

[10] J.-E. Pin, Syntactic semigroups, Chapter 10 in Handbook of Formal Languages,
G. Rozenberg and A. Salomaa eds, Springer, 1997.

[11] L. Polák, A classification of rational languages by semilattice-ordered monoids,
Archivum Mathematicum (Brno) 40 (2004), 395-406.

[12] L. Polák, Syntactic semiring and language equations, in Proc. of the Seventh
International Conference on Implementation and Application of Automata,
Tours 2002, Springer Lecture Notes in Computer Science, Vol. 2608, pages
182-193 (2003).

[13] M. Petrich and N.R. Reilly, Completely Regular Semigroups, Canadian Math-
ematical Society Series of Monographs and Advanced Texts. 23. Chichester:
Wiley, 1999.

CONTENTS

Editorial 661
Preface 663
Paul Amblard: Finite State Evaluation of Logical Formulas : Jevons' Ap-

proach (1870) and Contemporary Description 665
Elena Czeizler and Eugen Czeizler. Parallel Communicating Watson-Crick

Automata Systems 685
Dan He, Abdullah N. Arslan and Alan C. H. Ling-. A Fast Algorithm for the

Constrained Multiple Sequence Alignment Problem 701
Werner Kuich: Kleene Theorems for skew formal power series 719
Kamal Lodaya: A regular viewpoint on processes and algebra 751
Zoltdn L. Németh: Automata on Infinite Biposets. 765
Jean Marcel Pallo: Rotational tree structures on binary trees and triangula-

tions 799
Tatjana Petkovic: Regular tree languages and quasi orders 811
Libor Polâk: Small Conjunctive Varieties of Regular Languages 825

»

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik Jíános

