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Preface

This volume contains the papers of the 12th International Joint Conference on Auto-
mated Reasoning (IJCAR) held in Nancy, France, during July 3-6, 2024. IJCAR is the
premier international joint conference on all aspects of automated reasoning, including
foundations, implementations, and applications, comprising several leading conferences
and workshops. IJCAR 2024 brought together the Conference on Automated Deduction
(CADE), the International Symposium on Frontiers of Combining Systems (FroCoS),
and the International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX).

Previous IJCAR conferences were held in Siena, Italy (2001), Cork, Ireland (2004),
Seattle, USA (2006), Sydney, Australia (2008), Edinburgh, UK (2010), Manchester, UK
(2012), Vienna, Austria (2014), Coimbra, Portugal (2016), Oxford, UK (2018), Paris,
France (2020, virtual), and Haifa, Israel (2022).

IJCAR 2024 received 115 submissions (130 abstracts) out of which 45 papers were
accepted (with an overall acceptance rate of 39%): 39 regular papers (out of 96 regular
papers submitted, resulting in a regular paper acceptance rate of 41%) and 6 short
papers (out of 19 short papers submitted, resulting in a short paper acceptance rate of
31%). Each submission was assigned to at least three Program Committee members and
was reviewed in single-blind mode. All submissions were evaluated according to the
following criteria: relevance, originality, significance, correctness, and readability. The
review process included a feedback/rebuttal period, during which authors had the option
to respond to reviewer comments.

In addition to the accepted papers, the IICAR 2024 program included three invited
talks:

e Jeremy Avigad (Carnegie Mellon University, USA) on “Automated Reasoning for
Mathematics”,

e Laura Kovics (TU Wien, Austria) on “Induction in Saturation”, and

e Geoff Sutcliffe (University of Miami, USA) on “Stepping Stones in the TPTP World”.

This year marks the 30th anniversary of the CADE ATP System Competition
(CASC), which was conceived in 1994 after CADE-12 in Nancy, France, when Christian
Suttner and Geoff Sutcliffe were sitting on a bench under a tree in Parc de 1a Pépiniere. In
the 28 competitions since then, CASC has been a catalyst for research and development,
providing an inspiring environment for personal interaction between ATP researchers
and users. A special event took place to celebrate this anniversary.

In addition to the main programme, IJCAR 2024 hosted ten workshops, which
took place on July 1-2, and two systems competitions (CASC and Termination). The
SAT/SMT/AR 2024 Summer School was held in Nancy the week prior to IICAR 2024.

The Best Paper Award of IJCAR 2024 went to Hugo Férée, Iris van der Giessen,
Sam van Gool, and Ian Shillito for the paper “Mechanised Uniform Interpolation for
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Modal Logics K, GL, and iSL”. The Best Student Paper Award went to Johannes Nieder-
hauser (with Chad E. Brown and Cezary Kaliszyk) for the paper entitled “Tableaux for
Automated Reasoning in Dependently-Typed Higher-Order Logic”.

Another highlight of the conference was the presentation of the 2024 Herbrand
Award for Distinguished Contributions to Automated Reasoning to Armin Biere (Albert-
Ludwigs-University Freiburg, Germany) in recognition of “his outstanding contributions
to satisfiability solving, including innovative applications, methods for formula pre- and
in-processing and proof generation, and a series of award-winning solvers, with deep
impact on model checking and verification.”

The 2024 Bill McCune PhD Award was given to Katherine Kosaian for the PhD
thesis “Formally Verifying Algorithms for Real Quantifier Elimination”, completed at
Carnegie Mellon University, USA, in 2023.

The main institutions supporting IJCAR 2024 were the University of Lorraine and
the Inria research center at the University of Lorraine. We also thank as sponsors: the
research laboratory for computer science in Nancy (LORIA), a joint research unit of the
University of Lorraine, CNRS, and Inria, its Formal Methods Department, and Métropole
du Grand Nancy. For hosting the conference, we thank IDMC Nancy.

We would also like to acknowledge the generous sponsorship of Springer and Iman-
draInc., and the support by EasyChair. Finally, we are indebted to the entire [JCAR 2024
Organizing Team for their assistance with the local organization and general management
of the conference, especially Didier Galmiche, Stephan Merz, Christophe Ringeissen
(Conference Co-Chairs), Sophie Tourret (Workshop, Tutorial and Competition Chair),
Peter Lammich (Publicity Chair) and Anne-Lise Charbonnier and Sabrina Lemaire (main
administrative support).

May 2024 Christoph Benzmiiller
Marijn J. H. Heule
Renate A. Schmidt



Organization

Conference Chairs

Didier Galmiche University of Lorraine, France
Stephan Merz Inria, University of Lorraine, France
Christophe Ringeissen Inria, University of Lorraine, France

Program Committee Chairs

Christoph Benzmiiller Otto-Friedrich-Universitiat Bamberg and FU
Berlin, Germany

Marijn J. H. Heule Carnegie Mellon University, USA

Renate A. Schmidt University of Manchester, UK

Workshop, Tutorial and Competition Chair

Sophie Tourret Inria, France and Max Planck Institute for
Informatics, Germany

Publicity Chair

Peter Lammich University of Twente, The Netherlands

Local Arrangements

Anne-Lise Charbonnier Inria, France
Sabrina Lemaire Inria, France

Steering Committee

Arnon Avron Tel-Aviv University, Israel
Franz Baader TU Dresden, Germany
Jiirgen Giesl RWTH Aachen University, Germany

Marijn J. H. Heule Carnegie Mellon University, USA



viii Organization

Lawrence Paulson
Elaine Pimentel
Christophe Ringeissen
Renate A. Schmidt

Program Committee

Franz Baader
Haniel Barbosa
Christoph Benzmiiller

Armin Biere
Nikolaj Bjgrner
Jasmin Blanchette

Maria Paola Bonacina
Florent Capelli
Agata Ciabattoni
Clare Dixon

Pascal Fontaine
Carsten Fuhs
Didier Galmiche
Silvio Ghilardi
Jiirgen Giesl

Arie Gurfinkel
Marijn J. H. Heule
Andrzej Indrzejczak
Moa Johansson
Daniela Kaufmann
Patrick Koopmann
Konstantin Korovin
Peter Lammich
Martin Lange

Tim Lyon

Kuldeep S. Meel
Stephan Merz
Claudia Nalon
Aina Niemetz
Albert Oliveras
Xavier Parent
Nicolas Peltier

University of Cambridge, UK
University College London, UK
Inria, University of Lorraine, France
University of Manchester, UK

TU Dresden, Germany

Universidade Federal de Minas Gerais, Brazil

Otto-Friedrich-Universitit Bamberg and FU
Berlin, Germany

University of Freiburg, Germany

Microsoft, USA

Ludwig-Maximilians-Universitit Miinchen,
Germany

Universita degli Studi di Verona, Italy

Université d’ Artois, France

TU Wien, Austria

University of Manchester, UK

Université de Liege, Belgium

Birkbeck, University of London, UK

University of Lorraine, France

Universita degli Studi di Milano, Italy

RWTH Aachen University, Germany

University of Waterloo, Canada

Carnegie Mellon University, USA

University of Lodz, Poland

Chalmers University of Technology, Sweden

TU Wien, Austria

Vrije Universiteit Amsterdam, The Netherlands

University of Manchester, UK

University of Twente, The Netherlands

University of Kassel, Germany

Technische Universitit Dresden, Germany

University of Toronto, Canada

Inria, University of Lorraine, France

University of Brasilia, Brazil

Stanford University, USA

Universitat Politecnica de Catalunya, Spain

TU Wien, Austria

CNRS, Laboratory of Informatics of Grenoble,
France



Rafael Penialoza
Elaine Pimentel
André Platzer
Andrei Popescu
Florian Rabe
Giles Reger

Giselle Reis

Andrew Reynolds
Christophe Ringeissen
Philipp Riimmer

Uli Sattler

Tanja Schindler
Renate A. Schmidt
Claudia Schon
Stephan Schulz
Roberto Sebastiani
Martina Seidl

Viorica Sofronie-Stokkermans
Alexander Steen
Martin Suda

Yong Kiam Tan
Sophie Tourret
Josef Urban

Uwe Waldmann
Christoph Weidenbach
Sarah Winkler

Yoni Zohar

Additional Reviewers

Noah Abou El Wafa
Takahito Aoto

Martin Avanzini
Philippe Balbiani

Lasse Blaauwbroek
Frédéric Blanqui
Thierry Boy de La Tour

Organization

University of Milano-Bicocca, Italy

University College London, UK

Karlsruhe Institute of Technology, Germany

University of Sheffield, UK

FAU Erlangen-Niirnberg, Germany

Amazon Web Services, USA and University of
Manchester, UK

Carnegie Mellon University, Qatar

University of lowa, USA

Inria, University of Lorraine, France

University of Regensburg, Germany

University of Manchester, UK

University of Basel, Switzerland

University of Manchester. UK

Hochschule Trier, Germany

DHBW Stuttgart, Germany

University of Trento, Italy

Johannes Kepler University Linz, Austria

University of Koblenz, Germany

University of Greifswald, Germany

Czech Technical University in Prague, Czech
Republic

Institute for Infocomm Research, A*STAR,
Singapore

Inria, France and Max Planck Institute for
Informatics, Germany

Czech Technical University in Prague, Czech
Republic

Max Planck Institute for Informatics, Germany

Max Planck Institute for Informatics, Germany

Free University of Bozen-Bolzano, Italy

Bar-Ilan University, Israel

Marvin Brieger
Martin Bromberger
James Brotherston
Chad E. Brown
Florian Bruse

Filip Bartek

Julie Cailler

ix



X Organization

Cameron Calk
Christophe Chareton
Jiaoyan Chen

Karel Chvalovsky
Tiziano Dalmonte
Anupam Das
Martin Desharnais
Paulius Dilkas
Marie Duflot

Yotam Dvir
Chelsea Edmonds
Solrin Halla Einarsdottir
Clemens Eisenhofer
Zafer Esen

Camillo Fiorentini
Mathias Fleury

Stef Frijters

Florian Frohn
Nikolaos Galatos
Alessandro Gianola
Matt Griffin
Alberto Griggio
Liye Guo

Rail Gutiérrez
Xavier Généreux
Hans-Dieter Hiep
Jochen Hoenicke
Jonathan Huerta y Munive
Ullrich Hustadt
Cezary Kaliszyk
Jan-Christoph Kassing
Michael Kinyon
Lydia Kondylidou
Boris Konev
George Kourtis
Francesco Kriegel
Falko Kotter

Timo Lang
Jonathan Laurent
Daniel Le Berre
Jannis Limperg
Xinghan Liu

Anela Lolic

Etienne Lozes
Salvador Lucas
Andreas Loow

Kenji Maillard
Sérgio Marcelino
Andrew M. Marshall
Gabriele Masina
Marcel Moosbrugger
Barbara Morawska
Johannes Oetsch
Eugenio Orlandelli
Jens Otten

Adam Pease

Bartosz Piotrowski
Enguerrand Prebet
Siddharth Priya
Long Qian

Jakob Rath

Colin Rothgang
Reuben Rowe

Jan Frederik Schaefer
Johannes Schoisswohl
Marcel Schiitz
Florian Sextl

Ian Shillito

Nicholas Smallbone
Giuseppe Spallitta
Sergei Stepanenko
Georg Struth

Matteo Tesi
Guilherme Toledo
Patrick Trentin

Hari Govind Vediramana Krishnan
Laurent Vigneron
Renaud Vilmart
Dominik Wehr
Tobias Winkler
Frank Wolter
Akihisa Yamada
Michal Zawidzki



Contents — Part I1

Intuitionistic Logics and Modal Logics

Model Construction for Modal Clauses ..............c.coiiininiinininan... 3
Ullrich Hustadt, Fabio Papacchini, Cldudia Nalon, and Clare Dixon

A Terminating Sequent Calculus for Intuitionistic Strong Lob Logic
with the Subformula Property ......... ... .. 24
Camillo Fiorentini and Mauro Ferrari

Mechanised Uniform Interpolation for Modal Logics K, GL, andiSL ......... 43
Hugo Férée, Iris van der Giessen, Sam van Gool, and lan Shillito

Skolemisation for Intuitionistic Linear Logic .............................. 61
Alessandro Bruni, Eike Ritter, and Carsten Schiirmann

Local Intuitionistic Modal Logics and Their Calculi ........................ 78
Philippe Balbiani, Han Gao, Cigdem Gencer, and Nicola Olivetti

Non-iterative Modal Resolution Calculi .......... ... ... ... ... ... .. ...... 97
Dirk Pattinson and Cldudia Nalon

A Logic for Repair and State Recovery in Byzantine Fault-Tolerant

Multi-agent SYStEIMS . .. ..ottt e 114
Hans van Ditmarsch, Krisztina Fruzsa, Roman Kuznets,
and Ulrich Schmid

Calculi, Proof Theory and Decision Procedures

A Decision Method for First-Order Stream Logic .......................... 137
Harald Ruess

What Is Decidable in Separation Logic Beyond Progress, Connectivity
and Establishment? .. ... ... .. e 157
Tanguy Bozec, Nicolas Peltier, Quentin Petitjean, and Mihaela Sighireanu

Sequents vs Hypersequents for Aqvist Systems .....................o...... 176
Agata Ciabattoni and Matteo Tesi

Uniform Substitution for Differential Refinement Logic ..................... 196
Enguerrand Prebet and André Platzer



xii Contents — Part IT

Sequent Systems on Undirected Graphs ............coviiiiiinniiiiinna... 216
Matteo Acclavio

A Proof Theory of (w-)Context-Free Languages, via Non-wellfounded
Proofs .. 237
Anupam Das and Abhishek De

A Cyclic Proof System for Guarded Kleene Algebra with Tests .............. 257
Jan Rooduijn, Dexter Kozen, and Alexandra Silva

Unification, Rewriting and Computational Models

Unification in the Description Logic ELH i+ Without the Top Concept
Modulo Cycle-Restricted Ontologies ............. ..., 279
Franz Baader and Oliver Ferndndez Gil

Confluence of Logically Constrained Rewrite Systems Revisited ............. 298
Jonas Schopf, Fabian Mitterwallner, and Aart Middeldorp

Equational Anti-unification over Absorption Theories ....................... 317
Mauricio Ayala-Rincon, David M. Cerna,

Andrés Felipe Gonzdlez Barragdn, and Temur Kutsia

The Benefits of Diligence . ................uuuuiiiiieeaaiaeann 338
Victor Arrial, Giulio Guerrieri, and Delia Kesner

A Dependency Pair Framework for Relative Termination of Term Rewriting ... 360
Jan-Christoph Kassing, Grigory Vartanyan, and Jiirgen Giesl

Solving Quantitative Equations ........... ... .. i 381
Georg Ehling and Temur Kutsia

Equivalence Checking of Quantum Circuits by Model Counting .............. 401
Jingyi Mei, Tim Coopmans, Marcello Bonsangue, and Alfons Laarman

Author Index . ......... . e 423



Contents — Part I

Invited Contributions

Automated Reasoning for Mathematics ................................... 3
Jeremy Avigad
Induction in Saturation ............ ... ... 21

Laura Kovdcs, Petra Hozzovd, Mdrton Hajdu, and Andrei Voronkov

Stepping Stones in the TPTP World ......... ... .. ... . .. 30
Geoff Sutcliffe

Theorem Proving and Tools

An Empirical Assessment of Progress in Automated Theorem Proving ........ 53
Geolff Sutcliffe, Christian Suttner, Lars Kotthoff, C. Raymond Perrault,
and Zain Khalid

A Higher-Order Vampire (Short Paper) ......... .. ... . i it 75
Ahmed Bhayat and Martin Suda

Tableaux for Automated Reasoning in Dependently-Typed Higher-Order
LOgIC oo 86
Johannes Niederhauser, Chad E. Brown, and Cezary Kaliszyk

The Naproche-ZF Theorem Prover (Short Paper) ........................... 105
Adrian De Lon
Reducibility Constraints in Superposition . ...................cooeiuunnnn... 115

Mdrton Hajdu, Laura Kovdcs, Michael Rawson, and Andrei Voronkov

First-Order Automatic Literal Model Generation ........................... 133
Martin Bromberger, Florent Krasnopol, Sibylle Mohle,
and Christoph Weidenbach

Synthesis of Recursive Programs in Saturation ............................. 154
Petra Hozzovd, Daneshvar Amrollahi, Mdrton Hajdu, Laura Kovdcs,
Andprei Voronkov, and Eva Maria Wagner



Xiv Contents — Part I

Synthesizing Strongly Equivalent Logic Programs: Beth Definability
for Answer Set Programs via Craig Interpolation in First-Order Logic ......... 172
Jan Heuer and Christoph Wernhard

Regularization in Spider-Style Strategy Discovery and Schedule
CONSLIUCHION . ..ttt ettt et e e 194
Filip Bdrtek, Karel Chvalovsky, and Martin Suda

Lemma Discovery and Strategies for Automated Induction .................. 214
Solriin Halla Einarsdottir, Mdrton Hajdu, Moa Johansson,
Nicholas Smallbone, and Martin Suda

Control-Flow Refinement for Complexity Analysis of Probabilistic
Programs in KOAT (Short Paper) ..., 233
Nils Lommen, Eléanore Meyer, and Jiirgen Giesl

On the (In-)Completeness of Destructive Equality Resolution
in the Superposition Calculus ........... i i 244
Uwe Waldmann

SAT, SMT and Quantifier Elimination

Model Completeness for Rational Trees ................. ..., 265
Silvio Ghilardi and Lia M. Poidomani

Certifying Phase AbsStraction . .................uuuuueuiinnn.. 284
Nils Froleyks, Emily Yu, Armin Biere, and Keijo Heljanko

Verifying a Realistic Mutable Hash Table: Case Study (Short Paper) .......... 304
Samuel Chassot and Viktor Kuncak

Booleguru, the Propositional Polyglot (Short Paper) ........................ 315
Maximilian Heisinger, Simone Heisinger, and Martina Seidl

Quantifier Shifting for Quantified Boolean Formulas Revisited ............... 325
Simone Heisinger, Maximilian Heisinger, Adrian Rebola-Pardo,
and Martina Seidl

Satisfiability Modulo Exponential Integer Arithmetic ....................... 344
Florian Frohn and Jiirgen Giesl

SAT-Based Learning of Computation Tree Logic ............ .. ..., 366
Adrien Pommellet, Daniel Stan, and Simon Scatton



Contents — Part I

MCSat-Based Finite Field Reasoning in the YICES2 SMT Solver (Short

Paper) e

Thomas Hader, Daniela Kaufmann, Ahmed Irfan,
Stéphane Graham-Lengrand, and Laura Kovdcs

Certified MaxSAT Preprocessing ... ...........uuuueeuuunnnnnnnnnn..

Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg,
Matti Jarvisalo, Magnus O. Myreen, and Jakob Nordstrom

A Formal Model to Prove Instantiation Termination for E-matching-Based

AXIOMAISALIONS . .\ ottt ettt e e e

Rui Ge, Ronald Garcia, and Alexander J. Summers

Fast and Verified UNSAT Certificate Checking ............................

Peter Lammich

Generalized Optimization Modulo Theories ........................oooo..

Nestan Tsiskaridze, Clark Barrett, and Cesare Tinelli

Author Index . ... ... .. e

XV



Intuitionistic Logics and Modal Logics



®

Check for
updates

Model Construction for Modal Clauses

Ullrich Hustadt?®)@®, Fabio Papacchini®*®, Cldudia Nalon'®,
and Clare Dixon*
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f.papacchini@lancaster.ac.uk
4 Department of Computer Science, University of Manchester, Manchester, UK
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Abstract. We present deterministic model construction algorithms for
sets of modal clauses saturated with respect to three refinements of the
modal-layered resolution calculus implemented in the prover KgP. The
model construction algorithms are inspired by the Bachmair-Ganzinger
method for constructing a model for a set of ground first-order clauses
saturated with respect to ordered resolution with selection. The chal-
lenge is that the inference rules of the modal-layered resolution calculus
for modal operators are more restrictive than an adaptation of ordered
resolution with selection for these would be. While these model construc-
tion algorithms provide an alternative means to proving completeness of
the calculus, our main interest is the provision of a ‘certificate’ for sat-
isfiable modal formulae that can be independently checked to assure a
user that the result of KgP is correct. This complements the existing
provision of proofs for unsatisfiable modal formulae.

1 Introduction

Propositional modal logics can be applied to formalise and reason about a wide
range of applications, including programming languages [22], knowledge repre-
sentation and reasoning [4,9,23], verification of distributed systems [8,10,11]
and terminological reasoning [26]. For such applications, it is expected that the
underlying reasoning tool may be able to provide certification for their answer
with respect to a particular problem. While at least one kind of certificate is
expected to be produced, either in the form of a proof or a model, the production
of both not only helps with the task related to the particular application (e.g.
the generation of counter-examples in verification problems) but also assures the
user that a reasoning tool has produced the right result as those certificates can
be independently and automatically checked. Given the complexity of reasoning
tools, with most of them implementing sophisticated optimization procedures
which are very difficult to check for correctness, it is not surprising that the

© The Author(s) 2024
C. Benzmiiller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 3-23, 2024.
https://doi.org/10.1007/978-3-031-63501-4_1
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community in automated reasoning has been encouraging the extraction of both
kind of certificates: some tracks in the SAT competition® require both proofs
and models; the same approach is argued for QBF reasoning tools [29]; and this
is also required in some tracks of the CASC competition [32,33], with standards
being currently under discussion?.

There are several implemented tools for basic propositional modal logic K,,,
the logic considered in this paper. However, and somehow surprisingly, most of
state-of-the-art tools do not produce any kind of certificate (e.g. CEGARBOX
[6]); produce only partial information on models (e.g. Spartacus [7], InKreSAT
[12]; see also discussion in [14]); or, as in our case, produce only proofs (KgP [17]).
There are fully certified tools that do produce models and proofs (e.g. [34]), but
their performance is usually not comparable to state-of-the-art provers.

In this paper we present the needed theoretical results that will allow us to
implement certification for satisfiable problems in KgP [19]. Our prover imple-
ments both the resolution calculi presented in [16] as well as the modal layered
calculus MLR presented in [17]. Refinements, such as negative, positive, and
ordered resolution are also implemented. As with other resolution-based sys-
tems, proofs produced by KgP are easily readable and verifiable. However, as
mentioned, model extraction has never been implemented. One of the reasons is
that although the completeness proofs for the calculi in [16,17] are constructive
they do not yield efficient procedures. Very briefly, those proofs are similar to
canonical constructions for axiomatic proof systems and rely on the construction
of some structures over the subsets of consistent formulae of an input formula
(in clausal form), and even in the best case require exponential time and space.

Here we present novel model construction algorithms from saturated sets
of clauses produced by the positive, negative or order resolution refinements
of MLR. These refinements require different normal forms: SNF_,, SNF! and

ml» ml>

SNF;!'T, respectively. We first show how to obtain models from sets of SNF
clauses saturated with respect to ordered resolution refinement of MLR (Sect. 3).
This results in a deterministic procedure inspired by the Bachmair-Ganzinger
model construction for ground first-order clauses [2]. For positive resolution,
we adapt the procedure for SN F:fj clauses by constructing separate orderings
for each world in a model (Sect.4). We then obtain a procedure for negative
resolution by flipping the polarity of literals in SNF;Z clauses and reusing the
procedure for positive resolution (Sect. 5). From these procedures we obtain alter-
native completeness proofs for ordered and negative resolution; and provide the
first completeness proof for positive resolution. Moreover, all procedures are
deterministic and suitable for implementation.

The paper is structured as follows. In Sect.2 we give details of the logic,
resolution rules and resolution refinements. Sections 3, 4 and 5 provide the model
construction algorithms for each refinement. We discuss our approach in relation
to the Bachmair-Ganzinger method and consider complexity in Sect. 6. Section 7
presents how to perform model construction for extensions of basic modal logic.
Finally, we draw conclusions and discuss future work in Sect. 8.

! https://satcompetition.github.io/2022/rules.html.
2 https://www.tptp.org/ TPTP /Proposals/InterpretationsModels.shtml.
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2 Preliminaries

Let P be a denumerable set of propositional symbols. Let A,, = {1,...,n}, with
n € N, be a finite, fixed set of agents. The set of modal formulae over P and A,
is then the least set containing the two propositional constants true and false,
all elements of P, and the formulae =@, (o A ), (¢ V¢), (¢ — ¥), [a]e, and
(a)¢ provided ¢ and 1) are modal formulae and a € A,,. The set of literals over
Pis Lp ={p,—p|p€ P}. For p € P, aliteral p is a positive literal and a literal
—p is a negative literal. A modal literal is [a]l or {(a)l, for a € A,, and | € Lp.

The semantics of modal formulae is provided by Kripke structures. A Kripke
structure M over P and A,, is a tuple (W, {R,}aca,,, V) where W is a non-empty
set of worlds, each accessibility relation R,, a € A,, is a binary relation on W,
and the valuation V is a function mapping each propositional symbol in P to a
subset V(p) of W. If (w,w’) € R,, written wR,w’, we say w’ is an a-successor
of w; we may omit the index a when there is no need to distinguish the relation
R, and just say w’ is a successor world of w.

Satisfaction (or truth) of a formula at a world w of a Kripke structure M =
(W,{Rs}aca,,V) is inductively defined by:

(M, w) [ tru (M, w) [~ false;

(M,w) Ep iff we V(p), where p € P;

(M, w) = —p it (M, w) = ¢;

(M, w) = (pAy) i (M, w) = ¢ and (M, w) |= ¢

(ML w) = (p v ) i (M, w) o or (M,w) = s

(M, w) = (9 — ) iff (M, w) =~ or (M, w) k=

(M, w) = la]p iff for every v, wRqv implies (M, v) = ¢;
(M, w) = (a)p iff there is v, wRLv and (M, v) |= .

If (M, w) | ¢ holds then M is a model of ¢, ¢ is true at w in M and M satisfies
. A modal formula ¢ is (locally) satisfiable iff there exists a Kripke structure
M and a world w in M such that (M, w) | ¢.

A tree Kripke structure M is an ordered pair ((W,{Ry}aca, V), wo) where
wo € W and (J,¢ 4, Ba 1s a tree, that is, a directed acyclic connected graph
where each node has at most one predecessor, with root wg. Finally, M is
a tree Kripke model of a modal formula ¢ iff ((W,{Rs}aca,,V),wo) E .
To simplify notation, in the following we write (W, {Rq}aca, , V,wp) instead of
((W,{Rs}aca,,V),wo). In a tree Kripke structure with root wy for every world
wy € W there is exactly one path w connecting wy and wy; the modal level of
wy, (in M), denoted by mly(wy), is given by len(w). By M[ml] we denote the
set of worlds that are at a modal level ml in M, that is, M[ml] = {w € W |
mly (w) = mi}.

In [18], we have introduced the Separated Normal Form with Modal Levels,
SNF,,,;, for modal formulae. For the local satisfiability problem, clauses in SNF_,
are in one of the following forms:

— Literal clause ml:\/y_, by
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— Positive a-clause ml: 1l — [a]l
— Negative a-clause ml: ' — {(a)l

where ml e Nand [, I', I, € Lp, 1 < b <7, r € N. We denote by ml : false an
empty clause, that is, a literal clause with » = 0. Positive and negative a-clauses
are together known as modal a-clauses. By a positive (negative) modal clause
we mean a positive (negative) a-clause for an arbitrary agent a € A4,,. We also
use ml : I’ — (a)l to denote a modal a-clause that can either be a positive or a
negative a-clause.

A tree Kripke structure M satisfies a clause mli : ¢ in SNF,;, written M =
ml : ¢ iff for every w € M[ml], (M,w) |= . M satisfies a finite set ¢ of clauses
in SNF,,; iff for every ml : ¢ in &, M satisfies ml : ). We then call M a Kripke
model of @. Finally, a set @ of clauses in SNF,; is satisfiable if there exists a
tree Kripke structure M that satisfies &.

Theorem 1 ([17,18]). Let ¢ be a modal formula. Then there exists a finite set
@ of clauses in SNF,,; such that ¢ is satisfiable iff @ is satisfiable and if a tree
Kripke structure M is a Kripke model of @ then M is also a Kripke model of .

The transformation of a modal formula ¢ into an equi-satisfiable set @ of clauses
in SNF,,,; proceeds by replacing complex subformulae by new surrogate proposi-
tional symbols and including into @ clauses defining those new symbols.

Given a finite set ® of SNF,,, clauses, by Py and L% we denote the set of
propositional symbols occurring in ¢ and the set of propositional literals over
Pg, respectively. For ml € N, by ®[ml] we denote {ml : ¢ | ml : ¢ € &}. Then
by ®'[ml], ®P°*[ml], and ¢"I[ml] we denote the set of all literal clauses, all
positive modal clauses, and all negative modal clauses in ®[ml], respectively.
The mazimal modal level max pr,(P) of @ is max({ml+1|ml: ¢ € & and ml :
1 is a modal clause}) and we assume max()) = 0.

In [18] we have also introduced a resolution calculus to reason with SNF,,,
the modal-layered resolution (MLR) calculus. Table 1 shows the inference rules
of this calculus restricted to the labels occurring in the normal form defined
above. We require that clauses are kept in simplified form, that is, if ml € N and
D is a (possibly empty) disjunction of literals, and [ € Lp, then: mi : DV IV
simplifies to ml : D V I; ml : D V false simplifies to ml : D; and ml : DV IV -l
and ml : DV true simplify to ml : true.

Let C and D be disjunctions of propositional literals. A clause ml : C' sub-
sumes a clause ml : D if and only if D is of the form C VvV C’ where C’ is a
possibly empty disjunction of propositional literals.

Let @ be a set of clauses in SNF,;. A derivation by MLR from & is a sequence
of sets & = Py, 1, ... where for each ¢ > 0, either (i) §;11 = &;U{ml : ¢} where
ml : 1 is the resolvent obtained by an application of one of the rules in Table 1
to premises in @;, ml : v is in simplified form, ml : 1 is not subsumed by a
clause in @;, and ml : ¢ is not a tautology, or (ii) ®;41 = ®; — {ml : ¥} where
ml : 1 is subsumed by a clause in @; — {ml : ¢}.

A set of clauses @ in SNF,,; is saturated with respect to MLR if any further
application of the inference rules LRES, MRES, GEN1, GEN2 and GEN3 generates
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Table 1. Inference rules of the Modal Layered Resolution (MLR) calculus

ml: 1] — [a]lx

ml: D VI ml: 1y — [a]l ml: U, — [a]-l
ml: D' Vv =l ml: o — (a)—l ml: U, — (a)lo
LRes: LDV pes T T ey, s — (o)
ml: DV D' ml =y V —la mi =1, i VI
ml: I} — [a]-l ml: I} — [a]-l
mil: 1, — [a]=lm mil: ), — [a]=lm
ml: ! — (a)-l ml: ! — (a)l
ml+1:101 VvV ...Vl VI ml+1:101 V ...Vin
GEN1 : GEN3: y / ;
ml: =l Vvl vl ml: =l VeVl vl

a clause already in @ or subsumed by a clause in @. A set of clauses ¢’ in SNF,_; is
the saturation of @ with respect to MLR if there is a derivation ® = @y, ..., D, =
@’ by MLR from & such that ¢’ is saturated with respect to MLR.

Just as for propositional clausal logic, to improve the efficiency of the MLR
calculus it is important to restrict applications of the LRES rule, that is, to use a
refinement of this rule. However, when doing so it is not enough to ensure that
from a set of literal clauses that logically implies a clause of the form ml : false we
can derive that clause. Instead we have to make sure that all literal clauses that
could be used as premises for GEN1 and GEN3 can still be derived. A sufficient,
though not necessary, condition for that is to ensure that the refinement of LRES
is consequence complete.

In [17] we have considered three refinements of propositional resolution as a
basis for refinements of LRES:

— Negative Resolution [24] is a special case of semantic resolution [30], which
restricts clause selection by using an interpretation as a guide. For the clas-
sical case, given an interpretation I, the (binary) semantic resolution rule
allows to derive DV D’ from D V[ and D’V -l provided one of the clauses
in the premises is an electron, that is, a clause which evaluates to false under
I. By taking I(p) = true, for all propositional symbols p, semantic resolution
corresponds to negative resolution, that is, the electron is a clause contain-
ing only negative literals. Semantic resolution is complete irrespective of the
interpretation chosen to guide the search for a proof [30]. Moreover, semantic
resolution is also consequence complete [31]. The following theorem, which
follows directly from the consequence completeness of semantic resolution,
holds:

Theorem 2 ([31, Theorem 8]). If a clause C is a prime consequence of a
finite set @ of clauses and contains no negative (positive) literals, then there is
a positive (negative) resolution derivation of C from &.
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Theorem 2 ensures that all clauses containing only negative literals and which
are consequences of a set of clauses are generated by applications of negative
resolution to the clause set.

Our calculus for SNF,,; can be restricted to negative resolution with a small
change in the normal form by allowing only positive literals in the scope of
modal operators. Given a set @ of clauses in SNF,_,;, we exhaustively apply the
following transformations to ¢ (where ml € N, t € Lp, p € P, and t' is a new
propositional symbol):

& U{ml:—p— (a)t} =P U{ml:t — (a)t,ml:t'V p}
& U{ml:t— (a)-p} =P U{ml:t— (a)t',ml+1:~t'V-p}

Note that the transformation rules are not mutually exclusive. The first trans-
formation ensures that resolvents of the modal inference rules are negative literal
clauses. The second transformation rule ensures that only positive literals are in
the scope of modal operators. It can be shown that the resulting set of clauses
is satisfiable if, and only if, the original set of clauses is satisfiable. We call the
resulting normal form, where there are no negative literals below modal opera-
tors, SNF;Z.

— Positive Resolution is then the analogous special case of semantic resolu-

tion for an interpretation in which all propositional symbols are false. Elec-
trons then must be clauses in which all literals are positive.
SNF,,; can be restricted to positive resolution if we only allow negative lit-
erals in the scope of modal operators. Given a set @ of clauses in SNF,;, we
exhaustively apply the following transformation to ¢ (where ml € N, t € Lp,
p € P, and t’ is a new propositional symbol):

& U{ml:p— (a)t} =& U{ml:-pV -t ml: -t — (a)t}
& U{ml:t— (a)p} = U{ml:t— (a)~t',mi+1:¢Vp}

These transformation rules are analogous to those for SNanl. It can be shown
that the resulting set of clauses is satisfiable if, and only if, the original set
of clauses is satisfiable. We call the resulting normal form SNF_,.

— Ordered Resolution is a refinement of resolution where inferences are
restricted to maximal literals in a clause, with respect to a well-founded order-
ing on literals. Formally, let < be a well-founded and total ordering on Pg.
This ordering can be extended to literals L% occurring in @ by setting p < —p
and —q < p whenever ¢ < p, for all p,q € Pg. A literal [ is said to be mazimal
with respect to a clause C V1 if, and only if, there is no I’ occurring in C' such
that [ < I’. In the case of classical binary resolution, the ordering refinement
restricts the application to clauses C' VI and D V =l where [ is maximal with
respect to C' and —l is maximal with respect to D.

The key idea for achieving completeness when restricting LRES to ordered
resolution is to introduce new literals in the scope of the modal operators
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1 Function isTrue(V,w,l)

2 if (I is negative and w ¢ V (]I])) then

3 ‘ return true ; /* | is negative and true at w */

4 else if (I is positive and w € V(1)) then

5 ‘ return true ; /* | is positive and true at w */

6 else

7 ‘ return false ; /* | is false at w */

8 Function isProductive(V,w,C,l)

9 D+ C—{l};

10 for (each literal I’ in D) do

11 if (isTrue(V,w,l’)) then

12 ‘ return false ; /* ' is true at w and so is C */
/* none of the literals in D is true at w */

13 return true

Fig. 1. Auxiliary functions isTrue and isProductive used in Fig.2 and Fig. 4

and set their ordering to be “low enough” so that the relevant literal clauses
needed for the modal hyper-resolution rules (i.e., the GEN rules) are gener-
ated. Given a set of clauses @ in SNF,,; and a well-founded and total ordering
< on Pg, we exhaustively apply the following transformations to @ (where
ml €N, t,l € L% and ¢ is a new propositional symbol):

P U{ml:t—[all} =P U{ml:t—[at/,)mi+1:-t'VI}
dU{ml:t— (a)l} =P U{ml:t— (a)t/,ml+1:~t'VI}

and extend the given ordering by setting ¢’ < p, for all p occurring in @. Recall
that @ already includes surrogate propositional symbols from the transfor-
mation of a modal formula ¢ to SNF,_ ;. We call the resulting normal form
SNF;‘;‘. Note that we only need to apply the rewriting rule to the clauses in
@, but not to the generated clauses in SN F;rj Thus, the rewriting procedure
is terminating. Two characteristics of SNF, T that we will use in our proofs is
that (i) the only positive occurrence of a symbol ¢ introduced by the trans-
formation is below a modal operator, all other occurrences of ¢’ are negative;
and (ii) there are no two modal clauses with the same propositional symbol

below a modal operator.

Theorem 3. Let ¢ be a satisfiable modal formula, let @ be the corresponding
finite set of clauses in SNF,;, SNF_,, SNF;Z, or SN m;r. If M is a Kripke model
of @ then M is a Kripke model of .

Proof. Follows from the proofs of Lemmata 3.6 and 3.9 to 3.13 in [17].

Theorem 4. Let ¢ be a finite set of clauses in SNF,,, SNF,,, SNF!, or
SNF;T. Let &' be the saturation of @ with respect to MLR or one of its refine-
ments. If M is a Kripke model of ' then M is a Kripke model of ®.
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3 Deterministic Model Construction for SNF:;JL Clauses

We first describe a model construction algorithm for a set of SNFZ;}Ir clauses.
Let @' be a satisfiable set of SNF;‘[ clauses. Let < be a total ordering on the
propositional symbols in Pp compliant with the conditions set out in Sect. 2.
Let @ be the saturation of ¢’ wrt the ordered resolution refinement of MLR with
ordering <. Let max;;; be the function that maps a propositional clause C' to
the <-maximal literal in C.

For our model construction procedure we need to extend < to a well-founded
total ordering on SNF:L?' clauses that we will also denote by <. Recall that
p < —p for every p € Pp and —p < ¢ iff p < g for every p,q € Pg. We now extend
< to propositional clauses (sets of propositional literals) such that C; < Cs iff (i)
Cy # Co, and (ii) whenever I; € C; but l; & C5 then there exists Iy with Iy < lo,
lo € Cy, lo ¢ (. Finally, on SNF;;T clauses we allow any well-founded total
ordering such that mily : ¥1 < mly : Yo if (i) mly < mls or (ii) mly = mlis, ¥
and 1)y are propositional clauses, and 11 < 9. Strictly, the procedure itself only
relies on the ordering on literal clauses but the correctness proof also requires
an ordering between literal and modal clauses.

Figure2 shows our deterministic model construction procedure for satu-
rated sets of SNF;‘[ clauses. The procedure uses auxiliary functions isTrue and
isProductive that are shown in Fig. 1. The procedure constructs a Kripke struc-
ture starting at modal level 0 with a root world and proceeds in much the
same way as a classic tableau procedure [13]. The main difference is that the
valuation for each world is constructed deterministically using the Bachmair-
Ganzinger model construction (Lines 9-12). Once the valuation for a world w
at modal level ml has been constructed, first each modal clause ml : I’ — (a)l
is considered (Lines 14-19). If the literal !’ is true at w, then a new successor
world w' is created, using an auxiliary function new,,; . ;(w), and a pair (w, w’)
added to the accessibility relation R, for agent a. If the literal [ is positive, then
it will be added to the valuation for world w’ After all those negative modal
clauses have been considered, all successor worlds of w’ necessary for a model
have been created and each positive modal clause ml : I' — [a]l is considered
(Lines 20-22). If the literal !” is true at w and the literal [ is positive, then I
is added to the valuation of each successor world w’ of w for R,. Crucially, for
both positive and negative modal clauses in SNFXJ, the literal [ below the modal
operator is always positive. Since a world is never removed from the valuation
V, later modifications of V' will not result in a situation where [ becomes false
at a successor world w'.

Theorem 5. Let p be a satisfiable modal formula and let &' be the corresponding
finite set of SNF:;J clauses. Let @ be the saturation of @' wrt the ordered refine-
ment of MLR with an ordering <. Let M be the Kripke structure constructed by
the algorithm in Fig. 2 for &. Then M is a model of &', @, and .

Ezample 1. Consider the satisfiable set ®; of SNF,,;, clauses consisting of the
three clauses 0 : ¢, 0 : ¢ — (a)—r and 1 : ¢ V r. The transformation to SNFF

ml
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1 Algorithm: Local Model Construction for SNF; T

2 Function modelSNF++(®,<)

3 V 0

4 W() < {wo};

5 for (each agent a € A,) do

6 ‘ R, + 0;

7 for (each modal level ml, 0 < ml < maxy(®)) do

8 for (each world w € Wp,;) do

9 for (each literal clause ml : C € ®'*[ml] in <-order) do
10 I + maxy; (C);
11 if (I is positive and isProductive(V,w,C,l)) then
12 | V() V() u{w)
13 Wit < 0;

14 for (each modal clause ml : 1" — (a)l € #"[ml]) do

15 if (isTrue(V,w,l’)) then

16 w4 newmi .1 (w);

17 Winit1 < W41 U {w'};

18 Ry + Ry U {(w,w")};

/* In SNF/t [ is always positive */
19 V(i) «+ V()u{w'};
20 for (each modal clause ml : 1" — [a]l € #P°°[ml]) do
21 if (isTrue(V,w,l’)) then
/* In SNF/t | is always positive */

22 V() + V() U{w | wRw'};
23 W o (Jrima= Py,
24 return (W, {Ra}aca,,V, wo);

Fig. 2. Local Model Construction for SN F:;J'

introduces an additional propositional symbol ¢, and the resulting set ¢f+ of
SN F+l clauses consists of

(1) 0:q (2) 0:q— (a)t-r (3 1:qvr
(4 1:=t-pV-r

In the ordering on propositional symbol on P<15T+7 t—, must be smaller than ¢
and r. We assume t_,. < ¢ < r. Saturation only derives one additional clause

(5) 1:qV -ty

by application of LRES to Clauses (3) and (4). The order between the three
literal clauses at level 1is 1:qV -t <1:qVr <1:—t_,.V-r. The model
construction process then proceeds as follows.
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Kripke Structure M
Clause C w R, 1% Consideration of C
Because (M,w) = C
wo | 0:q {wo} 0 0 and q is mazimal:
Vig) = V(g) U{wo}
Because wg € V(q):
W=wu {U}l}
0: tﬁr @ )
wo |0:g = (@)ter | {wo) A
V(t-r) = V(t=r) U{w:}
Because (M, w1) = C
. {(q7 {’LU()}), . . .
wy | 1:qV —t— | {wo,wi} | {(wo,wr)} and q 1is mazimal:
(t=r, {w1})} _
Vig) = V(g) U{w:}
B M C:
wi |1 cqVrT {'U)07w1} {(w07w1)} {(q7{w07w1})7 ecause < 7w1> ':
(t-r,{wi1})} no change
B Ci tive:
wr | =t v = (wo, w1} | {(wo, w1)} {(g, {wo,wn1}), | Because C is negative
(t-r, {wi})} no change

The constructed Kripke structure is

W = {wo,wl} R, = {(wo,wl)} Vig) = {w07w1} V(r) = 0 V(t-r) = {wl}

which is a model of both 451++ and 1.

4 Deterministic Model Construction for SNF_, Clauses

The model construction for sets of SNF;L;r clauses saturated with respect to
the ordered refinement of MLR used the same ordering < as was used by the
calculus. However, the positive resolution refinement of MLR is not based on
an ordering and therefore there is no pre-existing ordering that can be used in
the model construction for sets of SNF_, clauses saturated with respect to the
positive resolution refinement of MLR. So, to adapt the procedure presented
in Sect. 3 to sets of SNF,_, clauses, we need to construct an ordering. The fact
that below operators we now only have negative propositional literals further
complicates things as we have to make sure that we do not unnecessarily produce
corresponding positive literals from literal clauses.

Suppose we have a world w at modal level ml and we have determined that
(a)=p1, ..., (@)= pm, [a]-q1, ..., [a]7¢n, 0 < m, 0 <n are all the modal literals
that have to be true at w. For each (a)-p;, 1 < i < m, we have to create a
successor world w; of w at modal level ml + 1. Then we have to make sure that
Di, q1, - - -5 qn are smaller than all other propositional symbols for w;, 1 <1i < m,
in order to ensure that literal clauses ml+ 1 : ¥ do not unnecessarily produce p;
or one of the g;, 1 < j < n, when considered for the world w;. For this purpose,
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1 Function constructOrdering(P)

2 < 0;

3 D <+ 0;

4 for (each propositional symbol p € P) do

5 D < DU {p};

6 for (each propositional symbol p' € Ps — D) do
7 | < =<U{lp)k

8 for (each propositional symbol p € Ps — P) do

9 D < D U {p};

10 for (each propositional symbol p' € Ps — D) do
11 | <« =<Uu{pr)}

12 return <

Fig. 3. Auxiliary function constructOrdering used in Fig. 4

first we use a function-valued variable PS that for each successor world w; keeps
track of the propositional symbols p;, g1, ..., ¢,. Second we use a function
constructOrdering (Fig.3) that, given PS(w;) for some world w;, constructs
an ordering <,,, on propositional symbols specifically for w; that has the desired
property.

This ordering is then extended to literals and to literal clauses with the
same modal level as in Sect. 3. This is sufficient for the model construction pro-
cedure in Fig. 4. Except for the function-valued variable PS and the function
constructOrdering the only other difference to the model construction pro-
cedure for SNF T in Fig.2 is that literals below modal operators are always
negative and therefore never change the valuation.

However, for our correctness proof we need to combine and extend these
orderings into a total ordering. This total ordering will not be on the clauses
themselves but on ordered pairs (w,ml : 1) consisting of a world w at modal
level ml in a Kripke structure M and a clause ml : ) € &. We use H(P, M) to
denote the set of all such ordered pairs.

Let W be the set of worlds in a Kripke structure M produced by the algorithm
in Fig. 4. We can use the order in which the worlds in W were generated to impose
a total ordering <y on W. Note that mly(w1) < mlys(we) implies wy <, wa.
Then on H(®, M) we allow any well-founded total ordering < (g ar) such that
(w1, mly 1) < {wa,mls : o) if (1) miy < mly or (i) mly = mly and wy <4, wa,
or (iii) mly = mly, w1 = we, ¥y and 1)y are propositional clauses, and ¥; <, ¥2.

Theorem 6. Let ¢ be a satisfiable modal formula and let ' be the correspond-
ing finite set of SNF,_, clauses. Let & be the saturation of &' wrt the positive
resolution refinement of MLR. Let M be the Kripke structure constructed by the
algorithm in Fig. 4 for ®. Then M is a model of &', @, and .
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1 Algorithm: Local Model Construction for SNF_,

2 Function modelSNF-(®)

3 V<« 0;

4 PS + {(wo,0)};

5 Wo < {wo};

6 for (each agent a € A,) do

7 | Ra 0

8 for (each modal level ml, 0 < ml < maxpr(P)) do

9 for (each world w € Wp,;) do
10 <w ¢ constructOrdering(PS(w));
11 for (each literal clause ml : C € &' [ml] in <w-order) do
12 1 + max; (C);
13 if (I is positive and isProductive(V,w,C,l)) then
14 | V() V() u{w)

15 for (each modal clause ml : 1" — {(a)l € $"[ml]) do

16 if (isTrue(V,w,l’)) then

17 W' 4 NeWpmq,1(w);

18 Winis1 < Wingr U {w'};

19 Ry + Ry U{(w,w")};

/* In SNF_, | is always negative, V unchanged */
20 PSS« PSU{(, {|lI}H};
21 for (each modal clause ml : 1" — [a]l € #°*[ml]) do
22 if (isTrue(V,w,l’)) then
/* In SNF_, | is always negative, V unchanged */

23 for (each w' € {w' | wR,w'}) do
24 | PS(w') + PS(w') U{Jl]};
25 | W Ummes Wi
26 return (W, {Ra.}aca,,, V,wo)

Fig. 4. Local Model Construction for SNF,_,

Ezample 2. Consider the satisfiable set of clauses 5 in SNF_ ;:

(6) 0:q (1) 0:7g—(a)mq (9) 0:-p— la]-ta
8) 0:-p—{a)y—r (10) 1:t1VvgqgVr

where —t; is a surrogate introduced for (¢Vr). This set of clauses is saturated with
respect to the positive resolution refinement of MLR. The model construction
for @, proceeds as before:
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Clause C' Kripke Structure M Consideration of C'
w R, \%4

Because (M,wn) = C
wo |0:q {wo} 0 0 and q is mazimal in C:
Vi(g) = V(g) U{wo}
Because wo € V(q):

wo | 0: ~qg — (a)—q | {wo} 0 {(g, {wo})} 5

no change

Because wo € V(p):
wo |0:—p — (a)—r | {wo} 0 {(g:{wo})} | W =W U {w:}

R, =R, U {(wo,wl)}
Because wo € V(p)
wo | 0: —p — [a]=t1 | {wo, w1} | {(wo,w1)} | {(g,{wo})} | but —t; is negative:

no change

Before the model construction proceeds to w;, we now determine the ordering
<w,. The literals —r and —t; ‘contribute’ to the construction of wy, so r and
t1 must be smaller in <,,, than the other propositional symbols p and ¢. Let
us assume t; <y, 7 <w, P <w, ¢- S0, when we proceed to w; and the clause
1:t1VqVr,it will be ¢ that will be made true not r:

Clause C' Kripke Structure M Consideration of C'
w R, |4

Because (M,wn) = C
wi |1:t1VgVr | {wo,wi} | {(wo,w1)}|{(q,{wo})} | and q is mazimal in C:
Vig) = V(g) U{wi}

The constructed Kripke structure M, is

W = {wo, w1} Vip)=0 V(g ={wo, w1} V(r)=10
Ry = {(wo,w1)}

which is a model of @5 .

5 Deterministic Model Construction for SNF:“ Clauses

Our model construction for a set @ of SNFT‘H clauses saturated wrt the ordered
resolution refinement of MLR started with a valuation in which every proposi-
tional symbol is false at every world and successively makes propositional sym-
bols true at certain worlds in order to ensure all clauses of @ are true in the
constructed model.
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For propositional clauses, negative resolution corresponds to semantic reso-
lution wrt the valuation V+ in which all propositional symbols are true. A model
construction for a set @ of SN F;;l clauses saturated wrt the negative resolution
refinement of MLR would therefore naturally start with a valuation in which
every propositional symbol is true at every world and successively make propo-
sitional symbols false at certain worlds to obtain a model of ®.

However, instead of devising a new model construction procedure that does
so, we take advantage of the fact that we can simply reverse the polarity of all
literals in @, to again start with a valuation in which every propositional symbol
is false at every world.

More formally, let :~ be a function on propositional literals such that for
every propositional symbol p € P, v"(p) = —p and ¢"(—p) = p. The function ¢~
can be homomorphically extended to clauses and set of clauses as follows:

Cml: VNVl =ml: () Ve Ve (hy)
Ciml U = a]l) =ml (") — [a]e ()
C(ml U = {a)) =ml (1) — (a) (1)

and ¢ (@) = {¢"(ml : ) | ml : ¢ € ®}. Let It be a function on Kripke structures
such that for M = (W, {R,}aca,,V), IT(M) = (W,{Ry}aca,, V), such that
VTt (p) =W — V(p) for every p € P.

Lemma 1. Let @ be a set of clauses in SNF,,,. Let M/ be a tree Kripke model
of & =17 (®). Then It (M) is a tree Kripke model of .

Lemma 2. Let T be a set of clauses in SNFj;ll that is saturated with respect
to the negative resolution refinement of MLR. Then ®f = (&%) is (i) a set
of clauses in SNF_, and (ii) saturated with respect to the positive resolution
refinement of MLR.

Theorem 7. Let ¢ be a satisfiable modal formula, let @' be the corresponding
finite set of clauses in SNF;LI, and let @ be the saturation of ' wrt the negative
resolution refinement of MLR. Let ®f = (&), let M7 be the Kripke structure
constructed by the algorithm in Fig. J for &1, and let M = I (M'). Then M is

a model of &', @, and .

Example 3. Consider the satisfiable SNF;Z clause set 3 = {0 : p,0 : p —
(a)r,0: ¢ — [a]g,1: ¢V —r}. Reversing the polarity of all literals in @7 gives us
the SNF_, clause set @g

(11) 0:-p (12) 0:-p— (a)—r (14) 1:-qVr
0:-q — [a]=g

which is saturated with respect to the positive resolution refinement of calculus
MLR.
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Clause C' Kripke Structure M Consideration of C'
w R, \%
wo 0 :—p (wo) 0 0 Because (Mc,wo) = —p:
no change
Because (Mc,wo) = —p:
wo | 0: —p — (a)—r | {wo} 0 0| W=wWuU{w}

Ro = Ra U {(wo,w1)}
Because (Mc,wo) = —g:

no change

wo | 0:-q — [a]=q | {wo,wi} | {(wo,w1)} 0

Before the model construction proceeds to wy, we now fix the ordering <., .
The literals —¢q and —r ‘contributed’ to the construction of wy, so ¢ and r must
both be smaller in <,,, than the only other propositional symbol p, while we
can impose an arbitrary order between g and r, e.g., ¢ <w, 7 <w, D-

Clause C' | Kripke Structure M Consideration of C
w R, 1%

Because (Mc,w1) = C':

wi|1:=2gVr|{wo,wi} | {(wo,w1)} |0
no change

The resulting Kripke structure Mg is
W ={wo, w1} Ro={(wo,w1)} V(p)=V(g)=V(r)=0
which is a model of 433’; . We obtain M; by reversing the valuation in Mg :

W = {wo, w1} Vip)=V(g)=V(r)=W — 0= {wo, w1}
R, = {(wo,w1)}

It is straightforward to check that M is a model of &3 = {0: p,0: p — (a)r,0:
q—lalg,1:qV—r}

6 Discussion

The model construction procedures presented in this paper are inspired by and
closely related to the Bachmair-Ganzinger model construction procedure [2,15].
The primary purpose of this model construction procedure is to prove the com-
pleteness of resolution and superposition calculi, in particular, ordered resolution
with selection for first-order clausal logic. But it can also be used to construct a
Herbrand model of a specific saturated set of propositional or ground first-order
clauses.

Commonalities and differences between the two approaches are best illus-
trated by an example. Consider the following set of clauses in SNF, .



18 U. Hustadt et al.

(15) 0:po (16) 0:po — [a]r (18) 1:-¢2V—q1Vqo
(17) 0:po — (a)ge

The corresponding set of first-order clauses, using the relational translation and
ignoring the specific modal levels at which each SNF 7 clause is meant to hold,
is as follows.

(19)  po(wo) (20) —po(z)V-r(z,y) Vai(y) (23) —g(z)V —q1(x) V go(z)
(21)  —po(=) V g2(f(x))
(22) —po(z) Vr(z, f(x))

Following [28] on resolution-based decision procedures for the relational trans-
lation of basic modal logic, we choose an ordering that ensures that —r(z,y),
g2(f(z)) and r(z, f(z)) are maximal in Clauses (20), (21) and (22), respectively.
We are free to impose an arbitrary order on unary literals and we choose an
ordering such that po(x) < go(r) < q1(z) < g2(x). We can then derive the
following additional clauses:

[ORes,20(2),22(2)]  (24) —po(x) V —po(z) V ¢1(f(x))
[ORes,21(2),23(1)]  (25) —po(x) V ~aq1(f(2)) V qo(f())
[ORes,24(3),25(2)]  (26) —po(x) V —po(x) V —po(x) V go(f(z))

Here ‘ORes’ denotes an inference by ordered resolution, followed by the iden-
tifying numbers of the clauses that are the premises of the inference. The num-
ber in parentheses identifies the literal in each premise on which we resolve. The
Bachmair-Ganzinger model construction operates on ground clauses, in partic-
ular, all ground instances of the first-order clauses here, and it views clauses as
multisets of literals. However, the Herbrand universe for this set of clauses is
infinite. Given that a Kripke model for the set of SNF | clauses has at most
depth 1, we can restrict ourselves to the terms wg and f(wy).

The constructed model consists of p(wy), r(wo, f(wo)), qo(f(wo)), g1(f(wp))
and ga2(f(wo)). In particular, go(f(w)) is produced by an instance of Clause (26).

For this particular example, our own procedure will arrive at the same model,
but the way it does so differs in a number of ways. First, we are more constrained
regarding the order we can use. Regarding the propositional symbols qg, g1 and
g2 we have to ensure that the propositional symbols ¢; and ¢o that appear
below modal operators are smaller than the other propositional symbols. So, the
ordering pg < qo < q1 < g2 corresponding to the one we used in the first-order
setting is not admissible. Instead we have to use, for example, ¢; < g2 < Py < qo-

Second, irrespective of the ordering, no inferences by MLR are possible on
Clauses (15) to (18). This also means no equivalent of Clause (26) will be derived.
Consequently, our model construction procedure has fewer clauses available and
less explicit information about which propositional symbols have to be true.

Third, the order in which clauses are considered by the Bachmair-Ganzinger
procedure for ground first-order clauses is solely down to the ordering. In con-
trast our model construction procedure considers literal clauses according to
the ordering, but negative and positive modal clauses are handled separately.
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This design choice is mainly down to the fact that the effects of existential and
universal quantifiers are dealt with at different times. In the first-order setting,
existential quantifiers are dealt with by the use of Skolem functions in first-order
clauses while universal quantifiers are dealt with by instantiation when ground
clauses are computed. In the modal setting, (a)- and [a]-operators are only dealt
with by the model construction procedure.

Regarding the complexity of our approach we can observe the following.

Theorem 8. Let ¢ be a satisfiable modal formula, let @' be the corresponding
finite set of clauses in one of the three normal forms SN m'l", SNF:;l or SNF_,,

let @ be the saturation of @ wrt to the corresponding refinement of MLR, and let
M be model generated by the corresponding model construction procedure. Then

a. the computation of &' from ¢ requires linear time in the size of ¢ and the
number of clauses in @' as well as the size of @' is linear in the size of ©;

b. the computation of @ from ' requires at most exponential time in the size of
@ and the number of literal clauses in @ is at most exponential in the number
of propositional symbols in @' ;

c. the generation of M requires at most exponential time in the size of ® and
the size of M is also at most exponential in the size of d'.

Theorem 8a follows from the fact that the normal form transformation introduces
at most two clauses for each occurrence of a logical operator in . Regarding
Theorem 8b, the resolution procedure for propositional clauses runs in determin-
istic exponential time in the number of literals occurring in the clause set [25].
The refinements we use and the additional modal inference rules in MLR do not
change the overall complexity, in particular, no new modal clauses are generated
by any of the inference rules. For Theorem 8c, the number of worlds in a tree
Kripke model of ¢ is at most exponential in the size of ¢ [9]. For each of the
worlds in the model we have to consider exponentially many literal clauses to
determine the valuation of the model. The consideration of each clause takes at
most linear time in the number of propositional symbols in ¢'.

It is worth pointing out that the Bachmair-Ganzinger procedure only takes
time O(|P|l1log(|P])) for a set of ground clauses ¢ [15]. In the context of the
translation of modal formulae to first-order clausal logic, the size of the set N’
of non-ground clauses obtained from the translation of ¢ is linear in the size
of ¢. But the size of the set N of ground clauses obtained by instantiation can
be exponential in the size of N’ and therefore in the size of ¢. So, while the
construction of a Herbrand model then only requires polynomial time in the size
of N, it takes exponential time in the size of N’ and of . This then aligns with
Theorem 8.

7 Extension to the Modal Cube

A multitude of extensions of the basic modal logic K,, can be formed by adding
one or more axioms to the axiomatisation of K,, itself. The most extensively



20 U. Hustadt et al.

1 Algorithm: Modal Logic L Model Construction

2 Function model(p,L)

3 | @« SNF2SNF++(p}™ (simplifiedNNF(y)));
< < constructOrderSNF++(P);

(W, R, V,wp) < modelSNF++(P, <);

RY < closure(R,L);

return (W, RY, V, wo);

B =R L B

Fig. 5. Model Construction for modal logic L

studied axioms are ¥ — [al(a)y (B), [}y — (a)y (D), [aly — v (T), [a] —
[a][a]® (4), and {a)y) — [a]{a)y) (5). Model-theoretically, these additional axioms
correspond to properties of the accessibility relation R, for the agent a € A,,. For
the above axioms, the properties are symmetry, seriality, reflexivity, transitivity
and Euclideaness, respectively.

In [20] we have presented reductions p§™ () for logics L that are extensions
of the mono-modal logic K with these axioms and their combinations. We have
shown that a formula ¢ in simplified negation normal form is L-satisfiable iff
the set p3™(y) of clauses in SNF,,, is satisfiable. In particular, we have shown
that given a tree Kripke structure M = (W, R, V,w) that satisfies pi™ () we
can obtain a Kripke structure ML = (W, R, V,w) that satisfies ¢ where R is
obtained by computing the closure of R corresponding to the additional axioms
in L.

Putting these ingredients together gives us the algorithm in Fig.5 where
we are using ordered resolution refinement of MLR together with our model
construction algorithm for sets of clauses in SN Fj;f Here, simplifiedNNF is a
function that computes the simplified negation normal form of a modal formula,
SNF2SNF++ is a function that transforms a set of clauses in SNF,_; into a set
of clauses in SNF,,; using additional renaming steps as described in Sect. 2,
constructOrderSNF++ constructs an ordering on the propositional symbols in
a set of clauses in SNF;" compliant with the conditions set out in Sect. 2, and
closure is a function that computes the closure of a binary relation R with
respect to the relation properties corresponding to the additional axioms in a
modal logic L.

The Kripke structure returned by the algorithm in Fig. 5 is then an L-model
of the formula ¢.

8 Conclusion and Future Work

In this paper we have presented deterministic model construction algorithms for
satisfiable sets of modal clauses saturated with respect to three refinements of
the modal-layered resolution calculus. These algorithms are meant to comple-
ment the provision of refutations for unsatisfiable sets of modal clauses that is
a standard byproduct of resolution-based calculi.
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In future work we intend to implement these algorithms in the prover KgP
and to evaluate their effectiveness. For this it will be necessary to define a format
in which Kripke models will be provided. Such a format was presented in [14].
Regarding an evaluation, a challenge will be to find other solvers for basic modal
logic that can produce models. While there are range of solvers for basic modal
logic available, few output models. As found in [14], even where a solver claims
to output models, those might be incomplete. The main cause appears to be the
use of simplification during pre-processing and reasoning (pure literal elimina-
tion, tautology elimination, simplification to true) that may remove propositional
symbols without the produced model then indicating a valuation for these sym-
bols even where that valuation is not arbitrary. This kind of interaction between
simplification and model generation is also an issue that we will need to pay
close attention to when implementing our algorithms.

A potential improvement of the algorithms is to reuse existing worlds during
the model construction. In tableau decision procedures this technique is known
as blocking [1,3,5,21,27]. What complicates its application in our context is that
each SNF, ; clause only holds at a certain modal level instead of universally.
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Abstract. Intuitionistic Strong Lob logic iSL is an intuitionistic modal
logic with a provability interpretation. We introduce GbuSLg, a termi-
nating sequent calculus for iSL with the subformula property. GbuSLg
modifies the sequent calculus G3iSLg for iSL based on G3i, by annotat-
ing the sequents to distinguish rule applications into an unblocked phase,
where any rule can be backward applied, and a blocked phase where only
right rules can be used. We prove that, if proof search for a sequent ¢ in
GbuSLp fails, then a Kripke countermodel for o can be constructed.

1 Introduction

Intuitionistic Strong Lob Logic iSL is the intuitionistic modal logic obtained by
adding both the Godel-Lob axiom O(0yp — ¢) — O¢ and the completeness
axiom ¢ — Oy to Ko, the O-fragment of Intuitionistic Modal Logic. Equiva-
lently, iSL is the extension of K with the Strong Lob axiom (Op — ¢) — ¢.
Logic iSL has prominent relevance in the study of provability of Heyting Arith-
metic HA. Tt is well known that the Godel-Lob Logic, obtained by extending
classical modal logic with Gédel-Léb axiom, is the provability logic of Peano
Arithmetic [11]. However, it is an open problem what the provability logic of HA
should be; a solution to this problem is claimed in a preprint paper [8]. In [16],
it is shown that iSL is the provability logic of an extension of HA with respect
to slow provability. Moreover, iSL plays an important role in the X;-provability
logic of HA [1]. We stress that iSL, as well as other related logics (such as the
logics iGL, mHC and KM investigated in [13,14]), only treats the [J-modality,
connected with the provability interpretation; it is not clear what interpretation
¢ should have and which laws it should obey.

In this paper we investigate proof search for iSL. Recently, in [13,15] some
sequent calculi for iSL have been introduced, obtained by enhancing the sequent
calculus G3i [12] for IPL (Intuitionistic Propositional Logic) with the rule RO
to treat right O (actually, four variants of such a rule are proposed). We start
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by presenting the sequent calculus G3iSLJ|:|r (see Fig.1), a polished version of
the calculus G3iSLg [13,15] where rule RO avoids some redundant duplications
of formulas. The calculus G3iSLE has the subformula property, namely: every
formula occurring in a G3iSLE—tree is a subformula of a formula in the root
sequent. However, G3iSLE is not well-suited for proof search. This is mainly due
to the rule L — for left implication, which has applications where the sequent
a — (3, = « is both the conclusion and the left premise, and this yields loops
in backward proof search. We are interested in a sequent calculus C where back-
ward proof search always terminates, that is: given a sequent of C and repeatedly
applying the rules of C upwards, proof search eventually halts, no matter which
strategy is used. A calculus of this kind is called (strongly) terminating and can
be characterized as follows: there exists a well-founded relation < on sequents
of C such that, for every application p of a rule of C, if the sequent o is the
conclusion of p and ¢’ is any of the premises, then ¢’ < o. Clearly, any calculus
containing rule L — is not terminating; in this case, to get a terminating proof
search procedure for C some machinery must be introduced (for instance, loop-
checking). A calculus C is weakly terminating if it admits a terminating proof
search strategy. The calculus G3i is weakly terminating. A well-known terminat-
ing calculus for IPL is G4i [2]; this is obtained from G3i by replacing the looping
rule L — with more specialized rules: basically, the left rule with main formula
a — [ is defined according to the structure of a. The same approach is used
in [13,15], where the G4-variants of the G3-calculi for iSL are introduced. The
obtained calculi are weakly (but not strongly) terminating and the proof search
procedure yields a countermodel in case of failure. This means that, if proof
search for a sequent 0 = I' = ¢ fails, one gets a Kripke model for o (as defined
in [1,7]) certifying that ¢ is not an iSL-consequence of I". These results have been
definitely improved in [10], where the G4-style (strongly) terminating calculus
G4iSLt for iSL is presented. Notably, the proofs of termination and completeness
(via cut-admissibility) have been formalized in the Coq Proof Assistant.

So far, it seems that the only way to design a (weakly or strongly) terminat-
ing calculus for iSL is to throw rule L — away and to comply with G4-style. As
a side effect, the obtained calculi lack the subformula property. Now, an intrigu-
ing question is: is it possible to get a terminating variant of G3iSLJ,£I still pre-
serving the subformula property? To address this issue, we follow the approach
discussed in [4,5], where (strongly) terminating variants of the intuitionistic cal-
culus G3i are introduced: the crucial expedient is to decorate the sequents with
one of the labels b (blocked) and u (unblocked). In backward proof search, if a
sequent has label b, the (backward) application of left rules is blocked, so that
only right rules can be applied. Accordingly, bottom-up proof search alternates
between an unblocked phase, where both left and right rules can be applied,
and a blocked phase, where the focus is on the right formula (the application
of left rules is forbidden). We call the obtained calculus GbuSLg (see Fig.2).
The subformula property for GbuSLg can be easily checked; to ascertain that
GbuSLp is terminating, we introduce the well-founded relation <y, on labelled
sequents (Definition 2). We show that a GbuSLg-derivation can be translated
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into a G3iSLE-derivation; as a corollary, the calculus G3iSLE is weakly termi-
nating. To prove the completeness of GbuSLg, we show that, if proof search
for a sequent o with label u fails, then a countermodel for o can be built. An
implementation of the proof search procedure, based on the Java framework
JTabWb [6], is available at https://github.com/ferram/jtabwb_provers/tree/
master/isl _gbuSL; the repository also contains the online appendix we refer to
henceforth.

2 The Logic iSL

Formulas, denoted by lowercase Greek letters, are built from an enumerable set
of propositional variables V, the constant 1 and the connectives A, V, — and
[J; =« is an abbreviation for « — L. Let o be a formula and I' a multiset of
formulas. By OI" we denote the multiset {Oa | o € I'}. By Sf(a) we denote
the set of the subformulas of «, including « itself; Sf(I") is the union of the sets
Sf(e), for every « in I'. The size of «, denoted by |«|, is the number of symbols
in a; the size of I', denoted by |I'|, is the sum of the sizes of formulas « in I',
taking into account their multiplicity. A relation R is well-founded iff there is
no infinite descending chain ... RzoRxz1Rzo; R is converse well-founded if the
converse relation R~! is well-founded.

An iSL-(Kripke) model K is a tuple (W, <,/ R,r, V) where W is a non-empty
set (worlds), < (the intuitionistic relation) and R (the modal relation) are subsets
of W x W, r (the root) is the minimum element of W w.r.t. <, V' (the valuation
function) is a map from W to 2Y such that:

(M1) < is reflexive and transitive;

(M2) R is transitive and converse well-founded;

(M3) R is a subset of <;

(M4) if wy < w; and w; Rws, then woRws;

(M5) V is persistent, namely: wo < wy implies V(wo) C V(wy).

Given an iSL-model K, the forcing relation I between worlds of K and formulas
is defined as follows:

K,wlkpiff pe V(w),VpeV K,wl L

K,wlFangiff C,wlkaand K,w ik G K,awlkavpgiff C,wlkaor K w3
K,wlFa— 8iff Vw' > w, if K, w’ IF o then K, w’ IF 3

K,w - O iff Vo' € W, if wRw' then K, w’ IF a.

We write w I ¢ instead of K, w IF ¢ when the model K at hand is clear from
the context. One can easily prove that forcing is persistent, i.e.: if w IF ¢ and
w < w', then w' IF ¢. Let I" be a (multi)set of formulas. By w IF I we mean that
w I ¢, for every ¢ in I'. The iSL-consequence relation =g is defined as follows:

IkEsLy iff VKVw (KiwlbFDl = K,wlkg).
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Fig. 1. The calculus G3iSL{, (p € V, k € {0,1}).

The logic iSL is the set of formulas ¢ such that () s ¢. Accordingly, if ¢ & iSL,
there exists an iSL-model I such that r ¥ ¢, with r the root of KC; we call
K a countermodel for . We stress that iSL satisfies the finite model prop-
erty [16]; thus, we can assume that iSL-models are finite and condition (M2)
can be rephrased as “R is transitive and irreflexive”.

Ezample 1. Figure) defines a formula ¥ and a countermodel K for ¥. The worlds
of IC are wy (the root), wr, wia, wis, wig, was. The relations < and R of K can
be inferred by the displayed arrows, as accounted for in the figure. For instance
wy < wig, since there is a path from ws and wig (actually, a unique path);
wo < wis and weRwqs, since the path from ws, and w5 ends with the solid
arrow —. However, it is not the case that wsRwig, since the path from ws to
w19 ends with the dashed arrow --+. In each world wy, the first line displays the
value of V(wy), the remaining lines report (separated by commas) some of the
formulas forced and not forced in wy. Since wq W 9, K is a countermodel for .

We remark that, if we replace a dashed arrow with a solid arrow, or vice-
versa, we get ws IF 9, thus K is no longer a countermodel for 1. For instance,
let us set we — wy. Then, we Rwy and, since wy ¥ s, we get we W Os, hence
wo W a. Since wr IF v and wio I G, it follows that wso IF v. Similarly, assume
w15 — wyg, which implies w5 Rwig. Then wys ¥ O-p (indeed, wisRwie and
w9 ¥ —p) and, by the fact that we Rwys, we get we W O0—p, thus we ¥ «; as in
the previous case, we conclude ws IF 9. Let us set wy — wis. Since wis ¥ C—p
and wyo Rwio, we get wo ¥ O—p; this implies that ws IF 1. O

In the paper we introduce some sequent calculi for iSL. For the notation
and the terminology about a generic calculus C (e.g., the notions of C-tree, C-
derivation, branch, depth of a C-tree), we refer to [12]. By k¢ o we mean that
the sequent o is derivable in the calculus C. Let C be a calculus and let < be a
relation on the sequents of C. A rule R of C is decreasing w.r.t. < iff, for every
application p of R, if o is the conclusion of p and ¢’ is any of the premises of p,
then o/ < 0. A calculus C is terminating iff there exists a well-founded relation
< such that every rule of C is decreasing w.r.t. <.

The calculus G3iSLE in Fig.1 is obtained by adding the rule RO to the
intuitionistic calculus G3i [12]. Sequents of G3iSL{, have the form I" = §, where I’
is a finite multiset of formulas and ¢ is a formula. The calculus is very close to the
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variant G3iSLE of the calculus G3iSLg for iSL presented in [13,15]. The notable
difference is in the presentation of rule R[J: given the conclusion I',JA = e,
in G3iSLY the premise is Oa, I, 0A, A = «, in G3iSLE the redundant multiset
OA is omitted. The calculus G3iSLE is sound and complete for iSL:

Theorem 1. '_G3iSLE I' =0 4iff I'EisL d.

The soundness of G3iSL{; (the only-if side of Theorem 1) immediately follows
from the soundness of G3iSLYy (for a semantic proof, see the online appendix);
the completeness is discussed in Sect.4.! It is easy to check that G3iSLJ,£I enjoys
the subformula property; however, as discussed in the Introduction, G3iSLE is
not terminating, due to the presence of rule L —.

3 The Sequent Calculus GbuSL

The sequent calculus GbuSLg is obtained from G3iSLJ,£I by refining the sequent
definition: we decorate sequents by a label [, where [ can be b (blocked) or u
(unblocked). Thus, a GbuSLo-sequent o has the form I'L §, with [ € {b,u}; I"
and § are referred to as the lhs and the rhs (left /right hand side) of o respectively.
We call I-sequent a sequent with label I; Sf(I" & §) denotes the set Sf(I"U {d}).
To define the calculus, we introduce the following evaluation relation.

Definition 1 (Evaluation). Let I' be a multiset of formulas and ¢ a formula.
We say that I' evaluates @, written I' > @, iff ¢ matches the following BNF:

e=y|lpAo|pValaVe|a—e|Op withy eI and a any formula.

By I'> A we mean that I' >4, for every 6 € A. We state some properties of
evaluation.

Lemma 1.

(i) If T'>p and I’ C I, then I' > .

(i) If TUA> @ and I > A, then T'UT" > .
(ii5) If I'> @, then I' N St(p) > .

(i) If I'>p, then '_G3iSLE I' = .

(v) If ' and K,w Ik T, then K, w I+ @.

Proof. All the assertions are proved by induction on the structure of ¢.

(i). Let I'bp and I' C I'; we prove I" > . If o € T', then ¢ € I'", hence I'' > .
Let us assume ¢ € I'. If ¢ = a A, then I'> « and I' > (5. By the induction
hypothesis, we get ">« and I >3, hence I''>a A 3. The other cases are similar.
(ii). Let T'U A @ and IV > A; we prove I' U IV > . Let us assume ¢ € I'U A.
If o € I', then I' U T” > . Otherwise, it holds that ¢ € A. Since I'" > A, we

1 'We stress that the completeness of G3iSLE is not a consequence of the one of G3iSLE,
since rule RO of G3iSL{, is a restriction of rule RO of G3iSL{.
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get IV > ¢; by point (i), we conclude I" U I'" > . Let us assume ¢ ¢ I' U A. If
@ =aAf, then 'UAp>a and I' U A (. By the induction hypothesis we get
I''ul">aand 'UT" >3, hence I'U T >a A 3. The other cases are similar.
(iii). Let I'>y: we prove I'NSt(p)>. If ¢ € T, then ¢ € I'NSf(p), which implies
I'nSf(p)> . Let o € I'. If o = a A B, then I'> v and I'> 8. By the induction
hypothesis, we get I' N Sf(a) > and I' N SE(B) > 5. Since Sf(a) C Sf(a A ) and
St(B) C Sf(a A B), by point (i) we get I' N Sf(a A B)>a and I'NSf(a A B) > 5;
we conclude I' N Sf(a A B) > a A 8. The other cases are similar.

(iv). We prove the assertion by outlining an effective procedure to build a G3iSLE—
derivation of the sequent I' = ¢. We start by showing that:

(%) |_G3iSLE p, I" = ¢, for every formula ¢ and every multiset of formulas I".

We prove (*) by induction on the structure of . If ¢ € VU {L}, a G3iSL{-
derivation of ¢, I" = ¢ is obtained by applying rule Id or rule L L. Otherwise, a
G3iSLE—derivation of ¢, I" = ¢ can be built as follows, according to the form of
0, where the omitted G3iSLE—derivations are given by the induction hypothesis:

a, B, =« a, B8, =3 o, = « B, I =

_— RV ——— X RV
aNB, I =« LA aNg, I =3 R/\ a, I’ =>aVvp 0 B, ' =>aVp I !
aANB,I =aNp A aVp,I =aVp v
, I = 68,1 = ’
va—pB @ B A L — Oa,a, " = «

a,a— B, =0
a— B, =>a—0

R — Da,F = o

Let I' > ¢; we show that I" = ¢ is provable in G3iSLE. If ¢ € I', the assertion
follows by (*). Let us assume ¢ ¢ I'. According to the shape of ¢, a G3iSL{-
derivation of I' = ¢ can be built as follows:

I' =>a«a I =g I' = o o, I’ = p Oo, I' = «
RA RV R — RO
I' =>ang I' ==a)Var I' =a—0 I' = o

The omitted G3iSLJDr—dcrivations exist by the induction hypothesis; for instance,
if o =aAp, then I'>b« and I'> 3, hence both I' = « and I' = [ are provable
in G3iSL{. In the cases p = o — (3 and ¢ = Oa, we also have to use point (i).
For instance, let ¢ = a — f3; then, I'> 8 and, by point (i), we get I' U {a} > 3,
hence the G3iSLE—derivation of a,I' = [ exists by the induction hypothesis.

(v). Let I'b and w IF I' (in K); we prove that w I ¢. The case ¢ € I is trivial.
Let p € I'. If o = a A B, then I'>« and I'> 3. By the induction hypothesis, we
get w IF a and w IF 3, hence w - a A 3. The other cases are similar. |
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Fig. 2. The calculus GbuSLg (I € {b,u}, k € {0,1}).

The calculus GbuSLy (see Fig.2) consists of the axiom rules Ax” and L1,
together with left/right rules for each logical operator. The calculus is oriented
to backward proof search, where rules are applied bottom-up. If the conclusion of
a rule has label b, the (bottom-up) application of left rules is blocked. There are
two rules for right implication, namely R>, and R%,; the choice between them is
settled by the evaluation relation >. Right O-formulas are handled by rules RE'
and RE; here the choice is determined by the label of the conclusion. We remark

that if 0 = I, DAL Oa and I'UOA > Oa, then o is an axiom sequent (see rule
Ax") and an application of rule RE to o is prevented by the side condition of
RE. Rule RE is similar to rule RO of G3iSLE: both rules introduce in the lhs
of the premise a copy of the main formula O« (also called diagonal formula); in
rule RE’ such a duplication is not required. In backward proof search, a b-sequent
starts the construction of a branch only containing b-sequents, where only right
rules are applied. This phase ends either when an axiom sequent is obtained or
when no rule can be applied or when one of the rules turning a label b into u is
applied (namely, rules RY, and RE).

Ezample 2. We show a GbuSLp-derivation of the u-sequent og = % —=p.

C Ax” — Ll
Up, ~Up = Up 4y Up, L =p
Op, ~Op & p 3,
o ., LL
~Hp=Up ) L= L
-
—Op= Ly

=="Up o)
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In the derivations each sequent is marked with an index (n) so that we can
refer to it as 0,. The above derivation highlights some of the peculiarities of
GbuSLg. In backward proof search, oq is obtained by a (backward) application
of rule L — to oq; the label b in o5 is crucial to block the application of rule
L —, which would generate an infinite branch. The sequent o3 is obtained by
the application of rule RE to os9. In this case, the key feature is the presence
of the diagonal formula Op; without it, the sequent o3 would be =(p & p and,
after the application of L — (the only applicable rule), the left premise would

be 04 = ~Op 2 Op, which yields a loop (04 = 03). O
We state the main properties of GbuSLg.
Theorem 2.

(i) GbuSLg has the subformula property.

(#i) GbuSLg is terminating.
(iii) Fobusiy I8 implies I' =is & (Soundness).
(i) I' l=isL 0 implies Fepusiy I =0 (Completeness).

We remark that in soundness [ is any label; instead, in completeness the label is
set to u. For instance, since p V ¢ |=isi ¢ V p, completeness guarantees that the
u-sequent o = pV ¢ gV p is provable in GbuSL. A GbuSLg-derivation of o
is obtained by first (upwards) applying rule LV to ¢" and then one of the rules
RVg or RVy; if we first apply a right rule, we are stuck (e.g., if we apply RV
to o, we get the unprovable sequent p V ¢ ¢). On the contrary, the b-sequent
pV g2 qVpis not provable in GbuSLg, since the label b inhibits the application
of rule LV and forces the application of a right rule.

The subformula property of GbuSLg can be easily checked by inspecting
the rules; termination is discussed below and completeness in the next section.
Soundness can be proved in different ways. One can exploit semantics, relying
on the fact that rules preserve the consequence relation isi (see the online
appendix). Here we prove the soundness of GbuSLg by showing that GbuSLg-
derivations can be mapped to G3iSLE—derivations.

Proposition 1. If GbuSLg F I' L. §, then G3iSLE F I' = 4.

Proof. Let T be a GbuSLg-tree with root sequent o = I’ L, §;7T can be translated
into a G3iSLE-tree 7 having root sequent & = I" = & by erasing the labels and
weakening the lhs of sequents when rules R*, and RE are applied. Assume now
that the GbuSLg-tree 7 is a GbuSLg-derivation of o and let 6* = A = ¢ be a
leaf of 7 which is not an axiom of G3iSL7. Note that An, hence by Lemma 1(iv)
we can build a G3iSLE—derivation D* of o*. By replacing in 7 every leaf o* with
the corresponding derivation D*, we eventually get a G3iSLE-derivation of 6. 1

To prove the termination of GbuSLg we have to introduce a proper well-
founded relation <y, on labelled sequents. As mentioned in the Introduction,
the main problem stems from rule L —. Let ¢ and ¢’ be the conclusion and the
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left premise of an application of rule L —; we stipulate that ¢’ <, o since o’
has label b and ¢ has label u; thus, we establish that b weighs less than u. Now,
we need a way out to accommodate rules RY and RE that, read bottom-up,
switch b with u. In both cases, we observe that the lhs of the premise evaluates
a new formula; e.g., in the application of rule R¥, having premise «, I' & 3 and
conclusion I'4 o — 3, it holds that I i a (side condition) and I' U {a} b a
(definition of ©>); this suggests that here we can exploit the evaluation relation.
Let Ev be defined as follows:

Ev(I'L ) = {¢ | peSH(IU{6})and I'> ¢}

Note that Ev(c) C Sf(o). We also have to take into account the size of a sequents,
where |I" L §| = |I'| + |6]. This leads to the definition of <

Definition 2 (<py). 0’ <pu 0 iff one of the following conditions holds:

(a) St(c’") C St(o);

(b) St(o’) = St(o) and Ev(c’) D Ev(o);

(c) Sf(o’) = St(o) and Ev(o’) = Ev(o) and label(c’) = b and label(c) = u;
(d) St(c’) = St(o) and Ev(c’) = Ev(o) and label(o’) = label(o) and |o'| < |o].

Proposition 2. The relation <y, is well-founded.

Proof. Assume, by contradiction, that there is an infinite descending chain of the
kind ... <py 01 <pu 00. Since Sf(og) 2 Sf(o1) D ... and Sf(oy) is finite, the sets
Sf(o;) eventually stabilize, namely: there is k£ > 0 such that Sf(o;) = Sf(oy) for
every j > k. Since Ev(o;) C Sf(o;), we get Ev(ox) C Ev(og41) € ... C Sf(ox).
Since Sf(oy) is finite, there is m > k such that Ev(o;) = Ev(o,,) for every j > m.
This implies that there exists n > m such that all the sequents o, 0,41, ... have
the same label; accordingly |oy,| > |on+1| > |onaa| > ... > 0, a contradiction.
We conclude that <y, is well-founded. |

To prove that the rules of GbuSLg are decreasing w.r.t.<y,, we need the
following property.

Lemma 2. Let p be an application of a rule of GbuSLg, let o be the conclusion
of p and o’ any of the premises. For every formula ¢, if Ths(o)>¢ then lhs(o’)>e.

Proof. The assertion can be proved by applying Lemma 1. For instance, let o =
IOAY% Oa and o' = I A% o be the conclusion and the premise of rule RY;
assume that I' UOA > . Since A>OA, by Lemma 1(ii) get I"' U A . |

Proposition 3. Every rule of the calculus GbuSLp is decreasing w.r.t. <py.

Proof. Let o and o’ be the conclusion and one of the premises of an application
of a rule of GbuSLg. Note that Sf(¢’) C Sf(o); moreover, if Sf(¢’) = Sf(o), by
Lemma 2 we get Ev(o’) 2 Ev(o). We can prove ¢’ <y, o by a case analysis; we
only detail two significant cases.
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I'** is a multiset of propositional variables, I'™ is a multiset of —-formulas
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Fig. 3. The refutation calculus RbuSLy (I € {b,u}, k € {0,1}).

’

o =a—-pBT2a B, %5
c=a—pIT3%6

If Sf(o") C Sf(0), then o’ <py, o by point (a) of the definition. Otherwise, it holds
that Sf(¢’) = Sf(o) and Ev(¢’) D Ev(c). If Ev(o’) D Ev(c), then ¢’ <py o by
point (b); otherwise, ¢’ <y, o follows by point (c).
o = 0o, A% o
o = I0AL Qo

R}  T'uOA¥ Do

If Sf(¢’) C Sf(o), then o' <py o by point (a). Otherwise, Sf(o’) = Sf(c) and
Ev(¢’) 2 Ev(o). Note that Do € Ev(o’) and, by the side condition, Da ¢ Ev(o).
This implies that Ev(c’) D Ev(o), hence o’ <py o by point (b). [ |

By Proposition 2 and 3, we conclude that the calculus GbuSLp is terminating.

4 The Refutation Calculus RbuSL

A common technique to prove the completeness of a sequent calculus C consists
in showing that, whenever a sequent o is not provable in C, then a counter-
model for o can be built (see, e.g., the proof of completeness of G4iSLg dis-
cussed in [13,15]); we prove the completeness of GbuSLg according with this
plan. Following the ideas in [3-5,9], we formalize the notion of “non-provability
in GbuSL” by introducing the refutation calculus RbuSLg, a dual calculus to
GbuSLg. Sequents of RbuSLp, called antisequents, have the form I’ L §. Intu-
itively, a derivation in RbuSLg of I" Ly § witnesses that the sequent I' L § is
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refutable, that is, not provable, in GbuSLp. Henceforth, I'®® denotes a finite
multiset of propositional variables, I'~ denotes a finite multiset of —-formulas
(i.e., formulas of the kind o — ). The axioms of RbuSLg are the irreducible
antisequents, namely the antisequents I’ Ly § such that the corresponding dual
sequents I' L § are not the conclusion of any of the rules of GbuSLg. Irreducible
antisequents are characterized as follows:

Definition 3. An antisequent o is irreducible iff ¢ = I'* '~ 0A L & and
both (i) 6 € VU{LH\IT? and (i) l=Db or '™ =1.

The rules of RbuSLg are displayed in Fig.3. In rules S2*, SY and S5 (we call
Succ rules) the notation {I" LN 0}a—per— means that, for every a« — € ',

the b-antisequent I" & « is a premise of the rule. Note that all of the Succ rules
have at least one premise (in rule S2* this is imposed by the condition '™ # 0)).
The next theorem, proved below, states the soundness of RbuSL:

Theorem 3 (Soundness of RbuSLp). If Frpusiy I' % 6, then I s 9.

Ezample 3. Figure 4 displays the RbuSLg-derivation D of oy = 2 1. The (back-
ward) application of rule SY to o3 has three premises, the left-most one is related
to the formula p — ¢ in ©. The application of rule S{?t to o7 has only the
premise og, generated by the formula —s in A. To 013 we must apply R>,, since
X' q. The application of rule S4* to oa4 gives rise to two premises, correspond-
ing to the formulas =—¢ and —p in {2. By Theorem 3, we get b~ p. ¥, namely
¥ & iSL. %

Countermodel Extraction. An iSL-model I with root r is a countermodel for
oc=1 2 §iff rlI- I and r ¥ §; thus K certifies that I" |55 . Let D be an
RbuSLp-derivation of a u-antisequent of; we show that from D we can extract
a countermodel Mod(D) for of. A u-antisequent ¢ of D is prime iff o is the
conclusion of rule Irr or of a Succ rule. We introduce the relations <, < and <gr
between antisequents occurring in D:

— 01 < 09 iff 07 and o3 belong to the same branch of D and oy is below o9;

— 01 = o9 iff either 097 = 09 or 01 < 09;

— 01 <R 09 iff there exists a u-antisequent ¢’ such that o1 < ¢/ < 09 and ¢’ is
either the premise of rule RE or the rightmost premise of SE'.

We define Mod(D) as the structure (W, <, R, o2, V') where:

— W is the set of the prime antisequents of D;

— < and R are the restrictions of < and <g to W respectively;
— o is the <-minimum prime antisequent of D;
-V(I'x4d)=TnV.

It is easy to check that Mod(D) is an iSL-model; in particular, o} exists since
the antisequent at the root of D has label u. We introduce a canonical map ¥
between the u-antisequents of D and the worlds of Mod(D):
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=a—=(BV(yVy) a = (p—q) ANOs AOO-p A OOO-q

=-(pA-s) y=-¢q—05 §=-pvO-p

p — ¢, Os, O0-p, O0O0O-qg A = p, q, —s, Os, O0-p, O0O0O-g

= q, 7q, Os, O0-p, O0O0—-q T = gq, s, g, O-p, O0—q

2 = q, s, ~—q, —p, O-—p, O—q antisequents marked by x are prime

In L — application (f) the main formula is p — g (thus, p — ¢ is replaced with q)

bi IIT .
- YA Lag Ro (see below)
b
AL s " X3 q13) T %8s * o0
A% Lopyx X % 06 (1) *
el O JAENGS! - L —M
p, 78, O % L (6) =g, © % 06 (11)
u LA b RE} b Trr
pA-s, O3 L5 O 2 v (10) O 2 q(28)
b Trr b RY, b
CES 16 O 3 B O % Vg SV
0% BV(YVQ) () * !
LA (four times)
ah BV (yVa )
* ¥ (0) -~
bi Irr
2% L2
T Irr bi() R2>, — Trr
T 3% L R, 2 2 —q (25) 22 parn GAt
N N 2% 1o * U
- Ter p # 74 (20) Sé“ #+ 1 (24) R,
Y3 Lan P, T3 L(19)* 2% —p(23) o
b RZ b RY, Th o
Y 2 —q(16) Y 2 -pis) Y 2 O-p (22 gV
T % 515 * b

Fig. 4. The RbuSLg-derivation D of 0o = 3 1 (see Example 3).

- ¥(o") = o, iff o, is the =-minimum prime antisequent o such that o" < 0.

One can easily check that ¥ is well-defined and ¥(o,) = oy, for every prime o,,.
We state the main properties of Mod(D).

Theorem 4. Let D be an RbuSLp-derivation of a u-antisequent o).

(i) For every u-antisequent o = I" 2 6 in D, ¥(c") IF I" and ¥ (") ¥ 6.
(#i) Mod(D) is a countermodel for of.

Point (ii) follows from (i) and the fact that ¥(oy) is the root of Mod(D). The
proof of (i) is deferred below. We remark that point (ii) of Theorem 4 immediately
implies the soundness of RbuSLg (Theorem 3).
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Example 4. At the top of Fig.5 we represent the structure of the RbuSLg-
derivation D of Fig.4, displaying the information relevant to the definition of
Mod(D). The countermodel Mod(D) for ¢ coincides with the iSL-model in the
figure and described in Example 1; the figure also reports the canonical map ¥.

O

Structure of the RbuSLg-derivation D (x: prime, e: label b)

026@®
021@ 025@ o27@ At
020® A 024 % v
gi7e® Jgigx " 023 o
g14@ J16® oige® 0220 Sy
age At 013@ 015 % <0 v
o7 % v 012 * u
J6 11
05 g10® 028@
o3e® g4 og® v
09 * u
o1
o0 = %V
v =a—=(BV(yVa) a = (p—q) ANOs AOO-p A OO0-q
ﬂ = —v(p A\ _\S) vy = g — 0é J = -pV \:‘ﬁ—\p
w24 s
w19 : P, 4, S I Lk
/| _
|F _|_‘q J% _|_‘q7 /g
. P
w < w' iff w=w or / W15:q,s /
there is a path from w to w I 0 oo o2 K05 02 K011
w Rw’ iff there is a path from W _‘_‘ql’j P s -4 o12 <R 015
w to w’ ending with — P, =P, o015 L 019 015 <R 023
wy is an alias for oy T W(00) = (o) = U(02) = ws
w7 : P, q A 8 ¢ U(os) = ¥(o6) = ¥(o7) = wr
I-p—q, =g W(o11) = U(012) = w12
LI;];—) 4 7S PATS Y L Os, O0—p, O0O0—q, 8 T(o15) = wis
- W 06, ’j W (o19) = wie
N 7 V(o33) = W(024) = woaa
w2

IFp — q, Os, O0-p, O00O—q, «
¥B,v, a8V (Ve v

Fig. 5. The countermodel Mod(D) for ¢ (see Examples1, 4).

Proof Search. We investigate more deeply the duality between GbuSLp and
RbuSLo. A sequent o = I'L § is regular iff | = u or I' = '™, '~ 0A; by & we
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denote the antisequent I" % 8. Let o be a regular sequent; in the next proposition
we show that either o is provable in GbuSLg or @ is provable in RbuSLp. The
proof conveys a proof search strategy to build the proper derivation, based on
backward application of the rules of GbuSLg. We give priority to the invertible
rules of GbuSLp, namely: LA, RA, LV, R>,, RY,, RE; as discussed in the proof
of Proposition 4, the application of such rules does not require backtracking. If
the search for a GbuSLg-derivation of o fails, we get an RbuSLg-derivation of &.
The proof search procedure is detailed in the online appendix.

Proposition 4. Let o be a regular sequent. One can build either a GbuSLg-
derivation of o or an RbuSLg-derivation of &.

Proof. Since <y, is well-founded (Proposition 2), we can inductively assume that
the assertion holds for every regular sequent ¢’ such that ¢’ <y, o (IH). If o or
7 is an axiom (in the respective calculus), the assertion immediately follows. If
an invertible rule p of GbuSLp is (backward) applicable to o, we can build the
proper derivation by applying p or its dual image in RbuSLg. For instance, let us
assume that rule LV of GbuSLp is applicable with conclusion o = ag V a1, I' 2.6
and premises oy, = ay, I' = J. Let k € {0,1}; since o), <py o (see Proposition 3),
by (IH) there exists either a GbuSLg-derivation Dy, of oy, or an RbuSLg-derivation
& of 7. According to the case, we can build one of the following derivations:

Do D1 50 51
JAENY) 'y J AN} r%é

o, L = a1, L = v Qo, > LVo aq, 7> LV,
Oé()VCM1,F;>5 040\/0[1,th>5 aoVal,Fééé

Let us assume that no invertible rule can be applied to o; then:
~o=T%6with'=7*T~ 0OAand § € VU{L, § V1, 0dp }.

We only discuss the case § = 0dg. Let o9 = I'**, ', A% §y be the premise
of the application of rule RY of GbuSLg to o; for every a — € I'”, let
0o =T2aand o5 =T\ {a — B}, § be the two premises of an application
of rule L — of GbuSLg to o with main formula o« — . By the (IH):

— we can build either a GbuSLg-der. Dy of oy or an RbuSL-der. & of 7g.
— for every @« — 8 € I'” and for every w € {«, 3}, we can build either a
GbuSL-derivation D, of o, or an RbuSLg-derivation &, of 7.

One of the following four cases holds:

(A) We get Dy.

(B) There is @« — 3 € I'” such that we get both D, and Dg.
(C) There is a — € I'~ such that we get &g.

(D) We get & and, for every a — S € I, &,.

According to the case, we can build one of the following derivations:

Do Do Ds s Ea &o
(A) ZO RO (B) o‘aaag I (©) ? I D) ... aﬁ... o0 §0
ag g
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In the proof search strategy, this corresponds to a backtrack point, since we
cannot predict which case holds. |

Let us assume I =i § and let o = I'& §. By Soundness of RbuSLy (The-
orem 3) @ is not provable in RbuSLg, hence, by Proposition4, o is provable in
GbuSLp; this proves the Completeness of GbuSLg (Theorem 2(iv)). By Proposi-
tion 1 it follows that G3iSLE is complete as well.

Properties of RbuSLg. It remains to prove point (i) of Theorem 4. By Sf™ («) we
denote the set Sf(a) \ {a}; w < w' means that w < w’ and w # w'.

Lemma 3. Let TP be an RbuSLg-tree only containing b-antisequents having
root I'* I~ OA Y 6: let K= (W,<,R,7,V) and w € W such that:

(I1) w W &, for every leaf T2, I~ 0A 5 & of TP;
(12) wlk (' NSt (9)) U OA4;
(13) V(w) = I3,

Then, w ¥ 6.

Proof. By induction on depth(7®). The case depth(7?) = 0 is trivial, since the
root of TP is also a leaf. Let depth(7™) > 0; we only discuss the case where

r]ab
at —
b _ b o I = r~. oA
W =I%8 pe roa
I'ka—gp

By applying the induction hypothesis to the RbuSLg-tree ’Zf)b, having root 0'03’
and the same leaves as T, we get w ¥ (3. Let I', = I'N Sf(a); by Lemma 1(iii),
I, > a. Since Sf(a) C St~ (a0 — ), by hypotheses (I12)- (I3) we get w Ik Iy,
which implies w I+ @ (Lemma 1(v)). This proves w ¥ o — (. ]

Let D be an RbuSLg-derivation having a Succ rule at the root. To display
D, we introduce the schema (1) below; at the same time, we define the relations
< and <y between u-antisequents in D (for exemplifications, see Fig. 5).

DX
D = 0; _ F“t,Fﬁ,DA%X 0’1‘2 = Fat,F_',A%ﬂ/’ g (1)
o' = I I 0A% 6 Hee

. a; is any of the premises of Succ having label b.

e 0, is only defined if Succ is S (thus § = (¢); in this case we set 0" < oy
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e The RbuSLp-derivation D, of a; has the form

m+n >0
(251 Tm b
P o Pn o It . o~ Irr 7. only contains
o1 e Om T1 Tn

b-antisequents
TP at
X r=r*r—0A
ob =Ty
yIin-
~ For every i € {1,...,m}, either (A) p; = R¥, or (B) p; = RY, namely:
(A)

— The RbuSLg-tree TXb has root a; and leaves o, ... 00 TP ... 7P

o; = aaF:‘fbﬁ

¥ or
o =T'xa—-p -
) of = 0o, I T, A%«

oP = 'y Oa
In case (A) we set o < o}, in case (B) we set 0" < o}

(B RY

Lemma 4. Let D be an RbuSLg-derivation of c* = I' 3 & having form (1)
where I' = ' '~ OA; let K= (W, <, R,r,V) and w € W such that:

(J1) for every w' € W such that w < w’, it holds that w' I+ '™

(J2) For every w' € W such that wRw', it holds that w' IF A.

(J3) For every o’ = a,I" 35 B such that o" < o', there exists w' € W such that
w<w and w' Ik o and w ¥ S.

(J4) For every o' = Oa, I'™ '™, A % « such that o <r o', there exists
w' € W such that wRw' and w' ¥ «.

(J5) V(w) = 12,

Then, wlk I' and w ¥ 9.
Proof. We show that:

(P1) w W x, for every premise 0)‘2 =TI 5% y of Succ;
(P2) wlka— g, for every « — € .

We introduce the following induction hypothesis:

(IH1) to prove Point (P1) for a formula x, we inductively assume that Point (P2)
holds for every formula o — @ such that |a — §] < |x];

(IH2) to prove Point (P2) for a formula a — [, we inductively assume that
Point (P1) holds for every formula yx such that |x| < |a — g

We prove Point (P1). Let o be the premise of Succ displayed in schema (1).
We show that the RbuSLp-tree 72 and w match the hypotheses (11)—(I3) of
Lemma 3, so that we can apply the lemma to infer w I x.

We prove (I1). Assume m > 1 and let i € {1,...,m}; then either (A) oP =
'Y a— gor (B)od =0a ™ r~, AL O In case (A) we have o} =
a,I' 3  and 0" < o}'; by hypothesis (J3), there is w’ € W such that w <
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w’ and w' Ik a and w’ ¥ B, hence w ¥ a — (. In case (B), we have o}' =
Oa, I, ', A % « and 0" < o}'; by hypothesis (J4), there is w’ such that
wRw' and w’ W «, hence w ¥ Oa. Assume n > 1, let j € {1,...,n} and
ij =TI % §;. Since TJb is irreducible and V(w) = I'* (hypothesis (J5)), we get
w K §;. This proves that hypothesis (I1) holds.

We prove (I12). Let v € I'” NSt~ (); since |v| < |x|, by (IH1) we get w I ~.
Moreover, w I+ OA by (J2), thus (I2) holds. Finally, (I3) coincides with (J5).
We can apply Lemma 3 and conclude w ¥ y, and this proves Point (P1).

We prove Point (P2). Let « — 8 € ', let w' € W be such that w < w’
and w’ IF o; we show that w’ I 3. Note that o2 = I’ 5 o is a premise of Succ;
since |a| < |a — B, by (IH2) we get w ¥ «. This implies that w < w’. By
hypothesis (J1), w’ IF o — 8, hence w’ Ik §; this proves (P2).

We prove the assertion of the lemma. By (P2) and hypotheses (J2) and (J5),
we get w IF I'. The proof that w ¥ ¢ depends on the specific rule Succ at hand
and follows from Point (P1) and hypothesis (J5). ]

Proof (Theorem 4(i)). By induction on the depth of the sequent o = ' §
in D. Let p be the rule of RbuSLg having conclusion ¢". We proceed by a case
analysis, only detailing some significant cases.

If p=TIrr, then I' = '™, 0A and § € (VU{L})\ ™ and ¥(c") = o". Since
V(o") = I'** and ¢" is R-maximal, it follows that W(o") I I" and ¥(co") I 6.

Let us assume that p = R®>,. Then, c" = I' % a — (3, where I' > , and
the premise of p is o' = I' & (. By the induction hypothesis, ¥ (o) IF I and
U(o}) ¥ 8. By Lemma 1(v) we get ¥(o}') IF «, which implies ¥(o}') ¥ a — .
Since ¥ (") = ¥(o}'), we conclude ¥ (o") I I" and ¥(a") ¥ o — B.

Let us assume p = SE. We have ¢ = I' % [O6, where I' = ' ['~ 0A,
and ¥(o") = o". Let D" be the subderivation of D having root sequent o"; we
apply Lemma 4 setting D = D", £ = Mod(D) and w = o". We check that
hypotheses (J1)-(J5) hold.

Let w’ be a world of Mod(D) such that o™ < w'. There exists an u-sequent
o/ =I"% § such that o < o/ < w' and I'~ C I". Since depth(o’) < depth(o"),
by the induction hypothesis we get ¥(¢’) I+ I'', hence W(o’) I+ I' . Since ¥(o') <
w’, we conclude w’ IF I", and this proves hypothesis (J1).

Let w’ be a world of Mod(D) such that o"Rw’. There exists an u-sequent
o' =I"% ¢ such that o < ¢/ <w’ and A C I"”. Reasoning as in the previous
case, we get w’ IF A, and this proves hypothesis (J2).

Let o" < ¢’ = «o,I' % (. By the induction hypothesis, ¥(¢’) I+ « and
U(o') ¥ . Since 0" = (") < ¥(o'), hypothesis (J3) holds. The proof for
hypothesis (J4) is similar. Hypothesis (J5) holds by the definition of V. By
applying Lemma 4, we conclude that o" IF I" and o" ¥ 4. |

Conclusions. In this paper we have presented a terminating sequent calculus
GbuSLg for iSL enjoying the subformula property; iSL is obtained by adding
labels to G3iSLE, a variant of the calculus G3iSLg [13,15]. If a sequent o is not
derivable in GbuSL, then ¢ is derivable in the dual calculus RbuSLg, and from
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Lineage |Termination |Subf. property [Other features
GbuSLp G3i Strong v Count
G3iSL], G3i Weak v
G4iSLt [10] G4i Strong X Cut
G3iSLg [13,15] |G3i Weak v Cut
G4iSLp [13,15] |G4i Weak X Count

Fig. 6. Overview of the main sequent calculi for iSL. Cut: syntactic proof of cut-
admissibility; Count: proof search procedure with countermodel generation.

the RbuSLg-derivation we can extract a countermodel for o. In Fig. 6 we compare
the known sequent calculi for iSL. We leave as future work the investigation of
cut-admissibility for GbuSLg; this is a rather tricky task since labels impose strict
constraints on the shape of derivations. We also aim to extend our approach to
other provability logics related with iSL, such as the logics iGL, mHC and KM
(for an overview, see e.g. [13]).
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Abstract. The uniform interpolation property in a given logic can be
understood as the definability of propositional quantifiers. We mecha-
nise the computation of these quantifiers and prove correctness in the
Coq proof assistant for three modal logics, namely: (1) the modal logic
K, for which a pen-and-paper proof exists; (2) Godel-Lob logic GL, for
which our formalisation clarifies an important point in an existing, but
incomplete, sequent-style proof; and (3) intuitionistic strong L&b logic
iSL, for which this is the first proof-theoretic construction of uniform
interpolants. Our work also yields verified programs that allow one to
compute the propositional quantifiers on any formula in this logic.

Keywords: provability logic - uniform interpolation - propositional
quantifiers - formal verification - proof theory

1 Introduction

Uniform interpolation is a strong form of interpolation, which says that propo-
sitional quantifiers can be defined inside the logic. More precisely, a left uniform
interpolant of a formula ¢ with respect to a variable p is a p-free formula, denoted
Vpyp, which entails ¢, and is a consequence of any p-free formula that entails .
The dual notion is that of a right uniform interpolant, denoted Ipp, and a logic
is said to have uniform interpolation if both left and right uniform interpolants
exist for any formula. Said otherwise, uniform interpolation means that for any ¢
and p, the logic has a strongest formula without p that implies ¢, and a weakest
formula without p that is implied by .

The uniform interpolation property was first established for intuitionistic
propositional logic IL by Pitts [23], and then for a number of modal logics,
including basic modal logic K and Godel-Lob provability logic GL [10,25,27].
Since then, uniform interpolation has been shown to hold in various modal fix-
point logics [1,22] and substructural logics [2], and connections have been devel-
oped with description logic [11], proof theory [12,18], model theory [10,19], and
universal algebra [16,20].
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Existing proof methods for uniform interpolation can be divided, roughly,
into two strands: one is syntactic and relies on the existence of a well-behaved
sequent calculus for the logic (see e.g. [18]), the other is semantic and uses
Kripke models to establish definability of bisimulation quantifiers (see e.g. [10]).
An advantage of the syntactic method over the semantic one is that, at least in
theory, it provides better bounds on the complexity of computing uniform inter-
polants. In practice, however, it is not feasible to compute uniform interpolants
by hand, as the calculations quickly become complex even on small examples.
The algorithms for computing uniform interpolants are often intricate, and it is a
non-trivial task to implement them correctly. The first- and third-named author
recently developed the first verified implementation of Pitts’ algorithm for com-
puting uniform interpolants in the case of IL, using The Coq Proof Assistant in
order to formally prove the correctness of the implementation [9].

In this article, we provide mechanised proofs of the uniform interpolation
property for the classical modal logics K and GL and for an intuitionistic version
of strong Lob logic, iSL. Of these three contributions, we discuss the first one in
Sect. 3, which serves as a warm-up for what follows. The formalisation of uniform
interpolation for GL starts from a sequent-style proof of this theorem [5]. During
our work on formalising this proof in Coq, we uncovered an incompleteness in
it, and our formalisation contains a corrected version of the construction of [5],
as we will explain further in Sect. 4. Finally, the uniform interpolation result for
iSL is new to this paper, and resolves an open question of [13]. (T. Litak and
A. Visser have shared a draft paper with us in which they obtain a different,
semantic, proof of the same result, available in preprint [28].) The proof we
give extends the syntactic method of Pitts, while taking advantage both of the
robustness of the earlier Coq formalisation for the case of IL, and of a recently
developed sequent calculus for iSL [26].

All definitions and proofs that we describe in this paper are implemented in
the constructive setting of the Coq proof assistant; the code is available online at
https://github.com/hferee/UIML. In particular, this means that the definitions
of the uniform interpolants for the three logics at hand here are effective, which
allows us to extract from the Coq implementation an OCaml program that
can generate interpolants from input formulas. Throughout the paper, links to
an online-readable version of the Coq proofs are given by a clickable symbol %.
Finally, a demonstration webpage is available at https://hferee.github.io/UIML/
demo.html where the uniform interpolants for each logic can be computed.

2 Sequent Calculi and Uniform Interpolation

In this section, we recall some standard notions that we need in this paper,
pertaining to the classical modal logics K and GL, and intuitionistic modal logic
iSL. We mostly follow the same notations as in [12, Ch. 1], and we refer the
reader to that chapter for more details.

It will be convenient to use a more economical language for the classical
setting than for the intuitionistic setting, so we define the precise syntax in some
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detail now. Both languages contain boolean constant 1, connective —, modality
0 and a set V of countably many (propositional) variables, denoted p, ¢, . ...

In the classical modal language we use the following standard classical con-
structors, -, V, A, and ¢, which should be read as abbreviations: =p :=¢ — L,
VY =(p—= L) =P, oA = (p— (¥ = 1)) = L, and Op = O(p —
1) — L. The intuitionistic modal language, instead contains the connectives A,
V (no ©) ; only — and T are abbreviations: —p := ¢ — L, T := —1. In both
the classical and intuitionistic setting, we denote modal formulas by lowercase
Greek letters ¢, 1), ... and we write Vars (¢) to denote the set of all propositional
variables occurring as subformulas in the formula ¢.

We briefly recall the axiomatisation of logics K, GL, and iSL. The logics K
and GL are defined over the considered classical modal language and iSL over
the intuitionistic modal language. To do so, we recall three axioms:

— the normal azxiom (k) O (p — ¢) — Op — Og,
— the Gédel-Léb aziom (gl) 0 (op — p) — Op, and
— the strong Léb aziom (sl) (Op — p) — p.

Also recall the rules modus ponens (from ¢ and ¢ — 1 infer 1), necessitation
(from ¢ infer Oy), and substitution (from ¢ infer oy, for any uniform substitution
o). Now, logic K is defined by the classical propositional tautologies, axiom k,
and the rules modus ponens, necessitation, and substitution. The logic GL is
the extension of K by the axiom gl. Furthermore, intuitionistic propositional
logic IL is defined by the intuitionistic tautologies, and the rules modus ponens,
necessitation, and substitution; intuitionistic modal logic iSL is the extension of
IL with axioms k and sl.

2.1 Sequent Calculi

A sequent is a pair of finite multisets of formulas I" and A, which we denote by
I' = A. In the intuitionistic case, A will necessarily be a singleton. A sequent
I' = Ais empty, if I’ and A are empty multisets. Given two multisets I" and A,
we write I, A for the multiset addition of I and A, and, when ¢ is a formula, we
write I, ¢ as notation for I', {¢}. Analogously to formulas, we write Vars (I') to
denote the set of all propositional variables occurring as subformulas in formulas
in I'. For p € V, we define I, := I' \ {p} for any multiset I".
In the intuitionistic setting we use the following notation 0" on formulas:

04— ¢ if ¢ = Oy for some formula ¢,
. 1 otherwise.

This notation is naturally overloaded to also apply to (multi)sets of formulas:
o 'I'={o'g|pel}

Now we define the sequent calculi that we use throughout the paper. The
sequent calculus KS consists of two initial rules (IdP) and (LL), left and right
implication rules (— R) and (— L), and the modal rule (KR); all are displayed
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— (1dP) —— (LL)
p, "= Ap 1L, Ir=A
I'= A, = A 1= A,

v ¥ (—L) u(%m
=Y, I = A I'=Ao—1

I' = ol oy =
A ) LoLov = g
Q.0 =0y, A o, 0 =0y, A

Fig. 1. Classical sequent rules. Here, ¢ does not contain boxed formulae.

in Fig. 1. The sequent calculus GLS is the variant of the calculus KS in which
the rule (KR) is replaced by the rule (GLR) in Fig. 1. The sequent calculus KS
is well-known to be sound and complete for K, and GLS is sound and complete
for GL [24]. In the rule (GLR), the formula O is called the diagonal formula. We
denote by KP(s) the multiset of all possible (KR)-premises for a given sequent s,
and by GP(s) the multiset of all (GLR)-premises for s.

For iSL, we work with the calculus G4iSLt from [26], which was specifically
designed with the aim to prove uniform interpolation for iSL. The calculus is an
extension of the calculus G4iP for IL [7]. We show the calculus G4iSLt in Fig. 2,
using the O~ operator to rephrase its definition slightly compared to [26].

For every sequent calculus S, we denote by Fs the set of sequents that are
derivable using the rules in S. For a sequent I' = A, we then write ks I' = A
to mean that I" = A is an element of the set Fs.

The crucial fact for proving uniform interpolation is that each of the three
calculi KS, GLS, and G4iSLt has a complete and terminating backward proof
search strategy, which may only depend on a local loop-check. Completeness
means that the strategy finds a proof for any sequent provable in the calculus.
Termination means that the strategy always ends in a finite proof search tree.
By a local loop-check we mean: the criterion for deciding whether or not to stop
the proof search for a given sequent only depends on the sequent itself, and does
not depend on other sequents, encountered earlier by the proof search strategy.
Termination for KS, GLS, and G4iSLt is discussed in detail in Sects. 3.1, 4.1 and
5.1 respectively.

2.2 Uniform Interpolation

Definition 1. A logic L has the uniform interpolation property if, for every
L-formula ¢ and variable p, there exist L-formulas, denoted by Vpy and Ipy,
satisfying the following three properties:

1. p-freeness: Vars(3pp) C Vars(p) \ {p} and Vars(¥Vpp) C Vars(e) \ {p},
2. implication: Fr ¢ — Jpp and F Vpp — ¢, and
3. uniformity: for each formula ¢ with p ¢ Vars(¢):

Fr o — v implies Fp 3Ipp — P,

Fr v — ¢ implies Fp v — Vpe.
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— (L1 - aapy  Dpsb=x L I'= F:M/J(AR)
I =X p=p oA =) I'= oAy
e=x ©Iy=x I'= p; =1
(VL)  —————— (VRy)(i€{1,2}) ————— (=R)
oV =x I'= @1 Vs I'=sp—vY
o= @W—=x) =0 e—=x,%—=>x=06
A —L) (v—L)
Ii(end) = x=96 Li(evy) = x=96
Ip, o= x Nv—-x=¢—=vyv Ix=9
— (p-L) (=—L)
Ip,p— ¢ = x Ii(p—9¢)—=x=0
o 'Op=¢ O 'Nop,y=>¢ IYy=x
—  (oR) (o —L)

I'=0p I'op—=v=x

Fig.2. The sequent calculus G4iSLt. The sequent calculus G4iP is the restriction
of G4iSLt obtained by omitting the two rules involving O.

Lemma 1. Both classically and intuitionistically, the formulas Vp(e — ) and
Ap(p) — Vp(e — ) are equivalent.

Proof. The left-to-right direction is clear. For the right-to-left direction, note
that the formula Ipp — Vp(p — 1) is p-free by definition. Moreover, one easily
obtains that Ipp — Vp(¢ — 1) implies ¢ — 1, using the implication rules and
the implication properties of dp and Vp. Now uniformity ensures that Ipp —

Vp(e — 1) implies Vp(p — ). a

To show uniform interpolation of the logics in the paper, we employ a stan-
dard proof-theoretic approach via the sequent calculi. The following definition
merges the well-known definitions for intuitionistic logic from [23] and classical
modal logic from [3].

Definition 2. A set of provable sequents, denoted &, has the uniform interpo-
lation property if, for any sequent I' = A and variable p, there exist modal
formulas E,(I") and Ap(I" = A) such that the following three properties hold:

1. p-freeness: (a) Vars(E,(I")) C Vars(I') \ {p} and (b) Vars(A,(I' = A)) C
Vars (I, )\ {p},

2. implication: (a) b I' = E,(I") and (b) b IA,(I' = A) = A, and

3. uniformity: for any finite multisets of formulas II and X such that p ¢
Vars (I1, X)), if it holds that = II,I" = A, X, then it also holds that:

(a)F IILE,(I') = A, X if p ¢ Vars(A), and
(b) - I1E,(I') = A (I = A), 5.
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In the intuitionistic setting, we require A to be a singleton and X to be empty.
In this paper, we say that a sequent calculus S has uniform interpolation if
Fs has the uniform interpolation property.

We provide some observations and facts in the following remarks.

Remark 1. When proving uniform interpolation in the classical setting, we prove
a stronger statement in clause (b) of uniformity:

(b)FIT = Ay(I = A), X

where we omit the occurrence of E,(I') on the left-hand side of the sequent.
In fact, now we can take E,(I") := —A,(I" = () and we only have to consider
clauses (b) in every property of Definition 2 as in [3]. This will be the route
taken in this paper for KS and GLS.

Remark 2. Tt is well-known that the uniform interpolation property for a sequent
calculus results in the uniform interpolation property for its corresponding logic
[4,23]. Both classically and intuitionistically, we can define Ypy := A, (0 = ).
In classical modal logic, we can define Jpy as its dual, i.e., Ipp := =Vp(—¢p). For
intuitionistic modal logic, we define Ipyp := E,({¢}). One may then show that,
for these definitions of Vp and dp, the three properties from Definition 1 follow
from those in Definition 2, where, in the intuitionistic case, one needs to use the
fact that E,(0) = T.

Remark 8. In the sequel of the paper we explicitly construct operators A,(-) (and
also E,(-) in the intuitionistic case) using the terminating sequent calculi for the
logics. These operators have the following properties which could be viewed as
Remark 2 applied to sequents instead of formulas. In both the classical and intu-
itionistic setting, E,(I") serves as the formula Jp(A I'). In the classical case, the
formula A,(I" = A) will be equivalent to Vp(A I — \ A). However, intuition-
istically, A,(I" = ¢) is not equivalent to Vp(AI' — ¢), but it is computed as
E,(I') — A,(I" = ¢). The latter does not contradict Remark 2 by Lemma 1.
See also Remark 5 in [23].

3 Basic Modal Logic K

We start our investigations on uniform interpolation for provability logics by
showcasing a simple example: the modal logic K. We follow the strategy in [3]
using calculus KS and provide a formalisation in Coq.

3.1 Termination of the Sequent Calculus KS

To compute the uniform interpolants for sequent calculus KS, we provide a com-
plete and terminating proof search strategy for it. For this, we define some useful
notions for sequents I' = A. The size of I' = A is the total number of sym-
bols in the multiset I, A. We call a sequent critical if there is no formula of the
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form ¢ — ¢ in I A, and we call a critical sequent initial if either L € I or
I'NANY # (), that is, if the sequent I" = A can be proved with an initial rule.

A complete and terminating strategy for proof search in KS can easily be
defined in three steps, as follows. Given a sequent, we first saturate it by maxi-
mally iterating applications of the rules (— L) and (— R). This step computes
a finite multiset Can(s) of critical sequents, called the canopy of s. Note that,
if s is not critical, then all sequents in Can(s) have strictly smaller size than s.
Second, we try to apply the rules (IdP) and (LL), and close any branches where
we have an initial sequent. Third, we try to apply the rule (KR) on any remain-
ing sequents which are not initial. Since the size of sequents decreases during
the execution of this strategy as long as sequents are not initial, this strategy
clearly terminates.

3.2 Uniform Interpolation for KS

Definition 3 (). Let p € V be a variable and s = (I',0l” = A) a sequent,
where no @ € I' is a boved formula. We define A5(s) recursively, as follows:

if ... ... then A%(s) equals:
(AS1) s is empty 1
(A52) s is not critical A AS(s)
s’€ Can(s)
(A53) s is initial T
(A¥4) mome of the above | \/ gV \/ —rVv \/ DAS(s") V OAS(T" =)
qEA, rely s'€ KP(s)

Termination of this function is proved by an induction on the size of sequents.
This definition mirrors the termination of the proof search strategy for KS. The
first case corresponds to a default where the sequent bares no content. The
remaining cases obviously correspond to steps of the strategy: (A;2) postpones
the computation of the interpolant to the sequents in the canopy via recursive
calls; (A53) checks for initiality; (Aj4) is the case where we apply (KR). As this
last case is the most complex, we motivate that definition in more detail now.
Because an application of the (KR) rule on a sequent s deletes the non-boxed
formulas in s, we need to first record all these formulas in Af(s): this is the role of
the first two disjuncts, \/ ¢and \/ -r, which notably discard all occurrences

qeEA, rely
of variable p. The third disjunct, \/  DA¥(s’), contains recursive calls on all
s'€KP(s)

(KR)-premises of s, and prefixes them with a O to reflect the logical strength
of the rule. The last disjunct GAJ(I" =) is needed to obtain the uniformity
from Definition 2. It considers the possibility that our sequent s = (I, 0l =
A) becomes provable once the context is extended, i.e., that a sequent of the
form ¢,0¢', I',0l” = A, A’ is provable. In a proof of the latter, suppose that
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the last rule applied was (KR), triggered by a formula Op in A’. In the premise
@' I = @ of that application, what remains of our sequent I,0I" = A is the
sequent I =, on which we then perform the recursive call Aj(I" =). So, the
last disjunct uses a < to record the possibility for a “step aside” of the proof
search tree, by considering a recursive call on what remains of s through a (KR)
application in an extended context.

The complexity of the function A} lies in its recursive calls on multisets of
sequents, and in the use of the canopy function which contains similar recur-
sive calls. Since only computable functions can be defined in Coq, termination
needs to be proved whenever Coq cannot automatically derive it. In order to
formalise our two functions in Coq, we synchronously need to define them and
convince Coq that all recursive calls are justified, by exhibiting a quantity which
decreases along a well-founded order. Because of the complex recursive calls of
our two functions, the traditional pen-and-paper definition of such an order is
rather intricate to formalise, involving a well-founded order on multi-sets, cf.
[9, Section 3]. To circumvent this difficulty in our formalisation of Definition 3
(%), we use the Braga method [21] of Larchey-Wendling and Monin, which sep-
arates the definition of the function from the termination proof. More precisely,
using this method we can first define a function as a relation which captures the
computational graph of the function, and then prove that this relation is indeed
functional and terminates. While this method was initially designed to capture
partial functions in Coq, we here apply this method to the definition of AY and
the canopy. This allows us to separate the concerns of defining these functions
and proving that the definition terminates.

Given that Aj is connected to the proof search tree, and its definition tailored
to satisfy the three correctness properties for uniform interpolants, we can now
prove the correctness of the definition, and formalise it in Coq.

Theorem 1. The sequent calculus KS has the uniform interpolation property.

Proof. We have formalised in the Coq proof assistant the proof from [3] with
no major changes. We have to check the three properties from Definition 2,
i.e., p-freeness, implication, and uniformity. It is evident that A,(s) is p-free for
every sequent s, as the computations in A all make sure to discard p whenever
propositional variables are recorded (%). Second, as Af(I" = A) follows closely
the proof search tree of I' = A, we obtain rather straightforwardly that Aj(I" =
A), I' = A is provable (%), hence proving the implication property. Finally, we
make a crucial use of the disjunct GAF(I" =) of the case (Aj4) in the proof of
uniformity (%). O

4 Classical Provability Logic GL

We now shift our focus to the logic GL. We will first provide a complete and
terminating strategy for GLS. Then, in order to construct uniform interpolants
for GL, we take inspiration from [5], but we modify the definition given there in
order to fix an incompleteness in the correctness proof.
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4.1 Terminating Strategy for Sequent Calculus GLS

In the rule (GLR), the multiset OI" on the left of the premise is preserved, while
the diagonal formula 0Oy moves diagonally from the left to the right when moving
from premise to conclusion. These features are known to be an obstacle to the
termination of a strategy for GLS, which can be overcome by a local loop-check.
Consider the following rule, labelled (IdB) for ‘Identity Box’.

——(IdB)
O, '=A,0p

Our proof search strategy for GLS extends the one for KS: first apply (— L)
and (— R), then the initial rules (IdP), (LL) and (IdB), and finally the rule
(GLR). When following this strategy, any application of the rule (GLR) is such
that its conclusion is critical but not initial, where our definition of initial sequent
now also includes sequents that allow for an application of (IdB). Note a subtlety
of our strategy: while (IdB) is not a rule of GLS its presence in our strategy is
justified by its admissibility [17], ensuring the completeness of this strategy.

To show termination, we define a measure on sequents which decreases, in a
well-founded order, as we move upwards by applying rules according to the proof
strategy. Given a sequent I' = A, its measure @(I' = A) is a pair of natural
numbers (imp(I" = A), (" = A)), where the first component is the number
of occurrences of the symbol — in I' = A and the second component is what
we call the number of usable boxes, B3(I" = A), defined as the cardinal of the set
{op | Op € Sub(I"'UA)}\ {op | op € I'}. The idea is that 5 counts the number
of boxed formulas of a sequent I' = A which might later become the diagonal
formula of an instance of (GLR) in a derivation of this sequent, when following
the proof search strategy. To show termination of our strategy via ©, we use the
lexicographic order << on pairs of natural numbers, noting that, for any GLS
rule with conclusion s and any premise s’ of that rule, we have O(s") << O(s).

4.2 Computing Uniform Interpolants for GLS

We now replicate the argument for K for GL, using the sequent calculus GLS
and the terminating and complete proof search strategy for it. A first try would
be to use the modified notion of initiality, and to change the function A} into a
function Aj" by exchanging the rule (A54) for a similar rule that follows the rule
(GLR) instead of (KR). However, this approach leads to a termination problem
in the fourth case of the definition of the function, as was noticed in [3], and as
we briefly explain now. In this case I,0I" = A is critical, not empty and not
initial, so we would require a recursive call of the function on I 0 I"” = in the
last disjunct. However, this recursive call could fail to terminate, as we do not
have in general that ©(I", 0" =) << O(I,0l" = A). To address this problem,
[3] used an auxiliary function N in the definition of Aj for GL.

We recall the definition of the function N as given in [5] in Fig. 3; in Defini-
tion 4 below, we will modify this table to obtain a mutually recursive definition
of the function AZ. Given the function N, the idea is, then, to replace the rule
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if ... ...then N,(s,t) equals
(N1) ¢ is initial T
(N2) ¢ is not initial and 8(t) < B(s) | A5 (¢)
(N3) otherwise V gv V —rv V OAF®E)
g€ll,  rEX, + EGP(t)

Fig. 3. Definition of function N,(-,-) from [3], where t = (¥ = II).

(A54) in Definition 3 by a rule which says that, if s = (I,0/" = A) and s is
critical, not empty, and not initial, then Aj‘(s) equals

\V qv\/ v \/ oANS) VO A N,(s,t) . (AS4)

q€l,  rel, s'€GP(s) teCan(I",0I" =)

Here, in the last disjunct of (Ag%), we apply the function N to all elements
of the canopy of the sequent IV, 01" =, which is exactly what remains of the
sequent s after applying (GLR) upwards. The purpose of the function N is to
attempt another unfolding of Aj} in the canopy of I" " oI =. Indeed, the defi-
nition of N first checks whether any recursive call is necessary via the initiality
check in (N1), and then proceeds in (N2) to recursively call Aj' if we are ensured
that © decreases via the first component, or goes to (N3) if there is no such
decrease. Notice that, in this last case, the definition of N is a truncation of
(AZL4), which omits the problematic last disjunct, as it cannot be guaranteed to
decrease in the recursion. The termination of A}l is obviously ensured by defini-
tion. However, the correctness is no longer obvious, due to the truncation in the
rule (N3). The key insight for proving the correctness is the following fized point
equivalence [5] which is valid in GL:

o(hfrvolpma)ls) o olpens)

This equivalence can be used to prove that the diamond disjunct from the rule
(A;-4) may be omitted in the rule (N3). In order to make this work formally, one
needs the following equivalence to be derivable in GLS:

o N Np(s,s) < OANI",ol"=). (1)
s’€Can(l,0l""=)

Assuming this equivalence, one can show that the uniform interpolation prop-
erty holds for GLS. To justify (1), [5] relies on another equivalence between two
formulas N (s,t1) and N,(s,t2), where t; = I;,0I; = for ¢ = 1,2, where the
multisets I} and I% are known to be equal only when considered as sets, i.e.,
not counting multiplicities. This equivalence is not formally proved, but only
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“observe[d]” [5, p. 17]. Since the sequents t; and t5 are identical modulo contrac-
tion, and contraction is an admissible rule in GLS, this sounds reasonable, but
we were unable to formally derive this equivalence, even after consulting with
the author of [5].

The difficulty in formally proving the observation primarily lies in the fact
that the function N includes computations of the canopy of our two sequents t;
and t5. However, the canopies of two sequents can vastly differ, even if they are
identical modulo contraction. We give a minimal example of such a situation in
Fig.4, where the sequents ¢ = p on the right find no counterparts on the left.
This mismatch in canopies, then, makes it hard to prove that any call to A" in
one canopy has a counterpart in the other canopy.

— = = p,p q=p q=p 4,9 =
L
(—=L) pP—q=>p (L)

(—=L)

= ¢.q=
P—4.q L)

—q=
b PGP g (

Fig. 4. Two sequents that are equivalent up to contraction, but the canopies are not.

In order to overcome this problem, we propose to modify the mutually recur-
sive definition of A7 and N with respect to the one given in [5]: in strategic places,
we fully contract sequents, notably before computing canopies. We denote by s
the fully contracted version of the sequent s; that is, when s = (I' = A), 3
denotes the sequent (I" = A’), where I'" and A’ are the multisets obtained
from I" and A, respectively, by removing duplicates.

Definition 4 (%). Let p € V be a variable. We define A" and N, by a mutual
recursion, as follows. Let s = (I, 0l = A) be a sequent, where no ¢ € I' is a
bozed formula. If s is empty or initial, then At (s) equals Aj(s), and

if ... ...then Agl'(s) equals
(A52) s is not critical A AS(s)
s’€ Can(3s)
V ogv V -rv \  DAS(s))
(Aj4) otherwise €qp el s'€GP(3)
v <> /\ NP(87 t)
te Can(T,0T=)

Lett = (X = II) be a sequent. We also define (%) the formula Np(s,t) as in
Fig. 3, but replacing the formula in the last row of the table with:

\/ qVv \/ -V \/ DA (t

q€ll, reXy t'€ GP(%)

where we note that the last disjunction is indexed by GP(t) instead of GP(t).
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With this new definition, we obtain a proof of correctness of the equiva-
lence (1), as we always fully contract sequents before computing their canopies.
In our formalisation of Definition 4, we again made use of the Braga method
already described in Sect. 3.

4.3 Syntactic Correctness Proof
Theorem 2. The sequent calculus GLS has the uniform interpolation property.

Proof. We refer to the formalised proofs of the first (%), second (%) and third
(%) property. O

5 Intuitionistic Strong Lob iSL

The aim of this section is to give a sequent-based proof of the uniform interpo-
lation property for intuitionistic strong L&b logic, iSL. We will simultaneously
explain the proof method of this new result, and report on our mechanisation of
the definition of the propositional quantifiers in Coq. The work in this section
builds on an earlier formalisation [9] of Pitts’ theorem [23] that uniform interpo-
lation holds for IL. In order to make the explanation below for iSL understand-
able, we first briefly review some important points of that work. We subsequently
explain how to extend that definition to deal with the modality of the logic iSL,
and how the correctness proof can be extended to work for that logic.

As for the classical modal logics considered above, the definitions of the
propositional quantifiers A,(-) and E,(-) for IL are guided by the terminating
sequent calculus, G4iP (see Fig. 2). In [9,23], A,(-) and E,(-) are defined for G4iP
as follows. Based on the rows (E;-0)-(Ep-8) and (Al-1)-(Al-13) in Fig. 5, the sets
A (I' = ¢) and &,(I") are defined by pattern matching. Based on this we define,

Ap(l = @)=\ A(I' =) and Ep(I):= \&(D). (2)

Theorem 3. The sequent calculus for IL has the uniform interpolation property.

5.1 Termination of Sequent Calculus G4iSLt

The calculus G4iSLt has already been shown to be terminating [26], but we find
it convenient to provide a different termination ordering here, which is closer to,
and compatible with, the termination ordering used by Pitts in the context of
the sequent calculus G4iP, also see [7,8]. In particular, this lets us re-use some
earlier Coq engineering work [9, Thm. 3.3] that was needed to be able to apply
the theorem of Dershowitz and Manna [6] that the natural order on the set of
multisets of well-founded order is again well-founded. The weight of a formula
is inductively defined, by adding a given weight for each symbol: L,0,— and
variables count for 1, A for 2 and V for 3. This naturally defines a well-founded
strict preorder on the set of formulas: ¢ <y 9 iff weight(yp) < weight(¢)).
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[Ep(F/, (52 — 53)) — Ap(Fl, (62 — 63) = 01 — 52)}

EPLS) I, (61 — 62) — d3) S E, (I, 05)

EPN9) [I7,06 OE, (0~ "1, 9)
D[EP(DF/,52,D51) — AP(DF’,dg,Dél = 51)]

I" matches Ex(I") contains
(Epo) |17, L 1
(Ep1) |I".q Ex(I") A g
(Ep2) [T, ¢1 Ao Ep(I",1b1,92)
(Ep3) |I",1 Vb Ep(I",41) V Ep(I7, 42)
(Egd) |, (g — ) ¢~ Ep(I",¢)
(E:DLS) F/7p7 (p - 1/)) EP /7p7¢)
(E:,LG) F/, (51 A (52) — (53) Ep(F/, ((51 — ((52 — (53)))
(EX7Y |7, (61 V 62) — 63) E,(I", (61 — 83), (02 — 83)))
(
(
(

ESL10) |17, (001 — 62)

— EP(F/,(SQ)
s matches A, (s) contains
AL [Fg=¢ Ap(I" = o)
AR2) |Thr Ao = Ap(Ty4h1, 02 = @)
Ep(Iyh1) — Ap(Ly b1 = @)]A

AlL3) |y Vs = [E P

p3) (Lp1Ve =g Ep(Ly002) = A (I t2 = )]
A;{4 Ig—=y)=¢ qANA(I ) = @)
AYS) |Lip,(p— ) = ¢ Ap(I 4 = )
Ay6) |, (61 Ad2) — 83) = ¢ |Ap(I, (61 — (62 — 83)) = )
A

[Ep (I, (02 = 03)) = Ap(I}, (62 — J3) = 01 — 62)]

A AP(F,(SS = 90)

)
)
)
)
%
IpL7) F, (61 Vv 62) — 63) = @ AP(F, (51 — 53), (52 — 53)) = tp)
) F7(§1—>62)—>63):>g0
)
0
1
2
3

AP [ = 06
AB15)| 1,061 — 62 = ¢

A'PL9 I'=q q

A'p"l )| I,p=1p T
AF11) [T = o1 A g2 A (T = 1) ANAL(I = o)
AF12) [T = o1V 2 A (I = 1) VAT = o)
Ap13) |I' = o1 — 2 Ep(L 1) = Ap(L' o1 = 2)

- O

O

(

(Ep(Ol,08) — Ap(Ol, 06 = 9)).

[EP(DF, 52, []51) — AP(DF, 52, []51 = 51)]
/\AP(Fa 62 = @)

Fig. 5. The top part of each table, i.e., (Ex0)-(Ex8) and (Ar1)-(A13) define E,(I")
and A,(I" = ¢) for IL as defined in [23]. The complete table provides definitions for
E,(I") and A,(I" = ¢) for iSL. In all clauses, g # p.

In [7], the preorder on sequents used to prove the termination of G4iP is the
Dershowitz-Manna ordering on multisets induced by this ordering on formulas:
I' = ¢ < A = if the multiset I, ¢ is smaller than the multiset A, . However,
the Og-rule of G4iSLt is not always compatible with this ordering. Indeed, with
I' =0 and ¢ = L, note that {01, 1} A {OLl}. The reason is that this rule both
replaces a boxed formula on the right hand side with its unboxed version, which
is a strict subformula, but also moves the boxed formula to the left-hand side.
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We fix this issue by counting twice the right-hand side of the sequent in
the multiset, accounting for the fact that a formula on the right-hand side of a
sequent might be duplicated using a (g rule.

Definition 5 (Sequent ordering). I' = ¢ < A = ¢ whenever I',p,p is
smaller than A, for the multiset ordering induced by <j.

The ordering is again well-founded, as follows from an application of the
Dershowitz-Manna theorem to the fact that the weight ordering on formulas is
well-founded. Also, any hypothesis of an G4iSLt rule is smaller than its conclu-
sion. This ensures the termination of proof search for G4iSLt, but we will also
use this ordering to construct the uniform interpolants.

Note that, although this order does not strictly speaking contain the original
order, it is the case that, if two sequents were comparable for the original one in
Pitts proof, then they still are for this modified order. This means that changing
the definition of the ordering does not break the proof structure for the exist-
ing cases with no modality involved. This allows us to adapt the existing Coq
formalisation for G4iP at minimal cost.

5.2 Computing Uniform Interpolants for G4iSLt

Following the same proof scheme as Pitts’ for IL, we now define Eips"(f’) and
AipSL(F = ).

Definition 6. The formulas E;SL(F) and Aips"(F = ) are defined by mutual
induction on the < ordering, respectively as a conjunction of a multiset of for-
mulas E,(I") and as a disjunction of a multiset of formulas Ay(I' = ), both
defined by the rules from Fig. 5.

Remark 4. Our adaptation of Pitts’ construction for IL to iSL adds formulas to
the sets £, and A, only in the cases where some formula in A, § contains a boxed

isL _ AlL iSLey — EIL
subformula. As a consequence, AP"(I" = ¢) = Ay (I" = ¢) and E"(I") = E(I)
whenever I' and ¢ do not contain the O modality.

Remark 5. Rule (EipSLQ) can be read as adding DEipSL(D”F) to the set &,(I")
whenever I" contains at least one boxed formula (otherwise, 0~'I" = I" and this
definition would not be well-founded). An efficient implementation of this rule
should then take care not to add multiple copies of OES-(0~'I"), i.e. for each
boxed formula in I'.

In order to prove the implication and uniformity properties of uniform inter-
polation (Definition 2) we will first require some admissibility lemmas for G4iSLt,
in particular weakening and contraction. Note that, as for Pitts’ proof for IL, the
admissibility of cut is not necessary here and indeed, we do not use nor prove it
in our Coq mechanisation. However, since cut is in fact admissible in G4iSLt [26],
we allow ourselves to use this fact in our ‘paper’ explanations below. In addition,
iSL satisfies the strongness property.
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Lemma 2 (Strongness). For any formula @, b ¢ = Op.

However, we will actually use the following stronger, dual lemma instead,
provable by induction on the proof derivation of Hg. A, = .

Lemma 3. Ifkig. A, ¢ = ¢ then g A,07'¢ = 1.

The following lemma highlights how the interpolant interacts with the O
modality and its dual O~ ".

Lemma 4. For any multiset of formulas A, Fis. Eips'-(A) = DEipSL(D‘lA).

Proof. If A contains no boxed formulas, then 0'A = A and Lemma 2 lets
us conclude. Otherwise, A is multiset-equivalent to A’, 06 for some A’ and §.
Then, by rule (Eips"-Q)7 Eips'-(A) is a conjunction containing \:|(E;§"-(D*1A’7 0)) which
is equivalent to O(ES-(07"A)) since the definition of ES'() is invariant under
multiset-equivalence. a

Theorem 4. The sequent calculus G4iSLt has uniform interpolation.

Proof. The p-freeness property is easily proved (%). The implication property is
proved (%) by well-founded induction of < on the sequent A = ¢ and mostly
relies on weakening. The proof of uniformity (%) is by structural induction on
the derivation of kg I'; A = . If the last rule is an IL rule, then Pitts’ proof
of uniform interpolation for IL still applies. The cases for the modal rules are
handled similarly, with a critical use of Lemmas 3 and 4. We postpone a detailed
pen-and-paper version to a forthcoming journal publication. a

6 Conclusion and Future Work

We have provided formalised sequent-style proofs of three uniform interpolation
results, one well-known (K), a second subtle (GL), and a third new (iSL). One
recent application of the verified implementation of uniform interpolation of IL [9]
was to prove non-definability results in intuitionistic logic [19]. We hope that the
implementations given in this paper and the accompanying online demo can be
similarly useful in the future.

As explained in detail in Sect. 4, our effort made in formalising the argument
of [5] in Coq exposed an incompleteness in the paper proof, which we were
eventually able to correct. This incompleteness would not have been discovered
(nor corrected) as quickly without the formalisation effort. The work in that
section thus provides a further example of the usefulness of such efforts when
subtle correctness proofs of algorithms in logic are concerned.

We leave to future work a more modular formal development of uniform
interpolation proofs. In particular, one could formalise the theoretical results
of [18] in order to obtain a general algorithm which, given as input a suffi-
ciently well-behaved sequent calculus, produces a verified calculation of uniform
interpolants for the corresponding logic. A further piece of evidence that such a
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general development might be possible is that the generalisation from the known
result for the logic IL to the new result for the logic iSL was relatively frictionless.
This shows another strength of the formalisation endeavour, allowing for an easy
experimentation with the boundaries of the formalised results.

A concrete logic that we would like to capture with our work is the intu-
itionistic version of GL, often referred to as iGL, for which it is an open problem
whether or not uniform interpolation holds [12].

A final problem that we leave to future work is the formalisation of the
semantic approach to uniform interpolation, via the definability of bisimulation
quantifiers, as e.g. in [10,14,15,27]. This would allow for a comparison of the two
approaches, both in terms of algorithmic complexity and ease of formalisation.
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Abstract. Focusing is a known technique for reducing the number of
proofs while preserving derivability. Skolemisation is another technique
designed to improve proof search, which reduces the number of back-
tracking steps by representing dependencies on the term level and instan-
tiate witness terms during unification at the axioms or fail with an
occurs-check otherwise. Skolemisation for classical logic is well under-
stood, but a practical skolemisation procedure for focused intuitionistic
linear logic has been elusive so far. In this paper we present a focused
variant of first-order intuitionistic linear logic together with a sound and
complete skolemisation procedure.

1 Introduction

Modern proof search paradigms are built on variants of focused logics first intro-
duced by Andreoli [1]. Focused logics eliminate sources of non-determinism while
preserving derivability. In this paper we consider the focused logic LJF [2]. By
categorising the logical connectives according to the invertibility of its left or
right rules, we obtain a so-called polarised logic [2]. For example, the V-right
rule is invertible, making V a negative (or asynchronous) connective, and the
3-left rule is invertible, making 3 a positive (or synchronous) connective.

But even a focused proof system does not eliminate all non-determinism.
There is still residual non-determinism in-between focusing steps. It is well
known that we can control this non-determinism using different search strategies,
such as forcing backward-chaining and forward-chaining using the atom polarity.
Another remaining source of non-determinism comes from the order of quantifier
openings, as choosing the wrong order may lead to additional back-tracking.

For example, consider the following judgment in multiplicative linear logic:

Va.A(z)—oB(x),Vy.Ju.A(u) - 32.B(2)

Variables v introduced by the well-known rules 3L* and VR" (and written next
to the rule name) are fresh and called Eigen-variables, which we can use to
construct witness terms for the universal variables on the left or the existential
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variables on the right. Because quantifier rules do not permute freely with other
rules, one needs to resolve quantifiers in a particular order, or otherwise risk an
exponential blow-up in the proof search. This fact has already been observed by
Shankar [8] for LJ, who proposed to capture the necessary dependencies using
Skolem functions to encode the permutation properties of LJ inference rules,
guaranteeing reconstruction of LJ proofs from their skolemised counterparts.

However, naive Skolemisation is unsound in linear logic. As first noted by
Lincoln [3], the sequent

Vz.A® B(z) - A® Yu.B(u)

does not admit a derivation in linear logic, but its naive skolemisation does:
A® B(x) F A® B(u()), where x denotes an existential and u() a universal
variable that must not depend on x. Introducing replication creates a similar
problem, where the following sequent does not admit a derivation:

Ve lA(z) FVu.A(u)

however again its naive skolemisation loses the relative order between quantifier
openings and replication, thus admitting a proof: !A(x) HA(u()).

In this paper we show that the ideas of skolemisation for classical logic and
intuitionistic logic for LJ [8] carry over quite naturally to focused intuitionistic
linear logics (LJF) [2]. We propose a quantifier-free version of LJF that encodes
the necessary constraints called skolemised intuitionistic linear logic (SLJF). Our
main contribution is to define a skolemisation procedure from LJF to SLJF that
we show to be both sound and complete: any derivation in LJF is provable in
SLJF after skolemisation and, vice versa, any derivation in SLJF of a skolemised
formula allows to reconstruct a proof of the original formula. Hence we eliminate
back-tracking points introduced by first-order quantifiers. We do not eliminate
any back-tracking points introduced by propositional formulae.

The paper proceeds as follows: Sect. 2 introduces focused intuitionistic linear
logic (LJF), Sect. 3 presents skolemised focused intuitionistic linear logic (SLJF),
Sect. 4 presents a novel skolemisation procedure, Sect. 5 presents soundness and
completeness results, and Sect. 6 presents our conclusion and related work.

Contributions: This work is to our knowledge the first work that successfully
defines skolemisation for a variant of linear logic. The benefit is that during proof
search any back-tracking caused by resolving quantifiers in the wrong order is
eliminated and replaced by an admissibility check on the axioms.

2 Focused Intuitionistic Linear Logic

We consider the focused and polarised formulation of linear logic LJF [2] that
we now present. The syntactic categories are defined as usual: we write u, v for
Eigen-variables and x,y for existential variables that may be instantiated by
other terms, finally N for negative formulas and P for positive formulas. We
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also distinguish between negative and positive atoms, written as A~ and AT.
We write T to embed a positive formula into a negative, and | for the inverse.
The rest of the connectives should be self-explanatory.

Atom A Bu=q(ty...ty)
Negative formula N = A~ | P—oN |Vz.N |1 P
Positive formula P = AT | P @ P, |IN |Jz.P || N

We use the standard two-zone notation for judgments with unrestricted con-
text I and linear context A: we write I'; A = N for the judgment, where at most
one formula [N] € A or N = [P] can be in focus. All formulas in I" are negative
and all other formulas in A are positive. When [N] € A we say that we focus on
the left, whereas when N = [P] we focus on the right, and we are in an inversion
phase when no formula is in focus. To improve readability, we omit the leading -;
when the unrestricted context is empty. The rules defining LJF [2] are depicted
in Fig. 1. We comment on a few interesting aspects of this logic. There are two
axiom rules ax~ and ax' where, intuitively, ax~ triggers backwards-chaining,
and ax™ forward-chaining [6]. Hence we can assign polarities to atoms to select
a particular proof search strategy. Once we focus on a formula, the focus is
preserved until a formula with opposite polarity is encountered, in which case
the focus is lost or blurred. After blurring, we enter a maximal inversion phase,
where all rules without focus are applied bottom-up until no more invertible
rules are applicable. The next focusing phase then commences.

Focusing is both sound and complete. i.e. every derivation (written as
I'A by F) can be focused and every focused derivation can be embedded
into plain linear logic [2]. In particular, in our own proofs in Sect.5, we make
use of the soundness of focusing.

Theorem 1 (Focusing). If T;A by, F and TV, A’ and F' are the result of
polarising T', A and F respectively by inserting T and | appropriately, then
I"; A" F F' in focused linear logic [2].

We now present three examples of possible derivations of sequents in LJF. We
will use these examples to illustrate key aspects of our proposed skolemisation.

Ezample 1. Consider the motivating formula from the introduction that we
would like to derive in LJF, assuming that the term algebra has a term ¢.

| (va.(l A(@))=oB(@) "), | (Vo T Fu. | A(w)") FT (3. | B)")

All formulas are embedded formulas, which means that there is a non-
deterministic choice to be made, namely on which formula to focus next. As
this example shows, it is quite important to pick the correct formula, otherwise
proof search will get stuck and back-tracking is required. This observation also
holds if we determine the instantiation of universal quantifiers on the left and
existential quantifiers on the right by unification instead of choosing suitable
terms when applying the VL or 4R rule.
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Fig. 1. Focused intuitionistic linear logic (LJF)

Focusing on the first assumption before the second will not yield a proof. The
FEigen-variable that eventually is introduced by the nested existential quantifier
inside the second assumption is needed to instantiate the universal quantifier in
the first assumption. If we start by focusing on the first assumption then none
of the subsequent proof states is provable, as the following two proof states (|
Alto) )—oBl(t) ", Altr)” F Blto) and (| A(ts) )=oBlto) s A(t)” F B(t1)
demonstrate. Back-tracking becomes inevitable.

To construct a valid proof we must hence focus on the second assumption
before considering the first. The result is a unique and complete proof tree that
is depicted in Fig. 2. a

Ezample 2. Consider the sequent | (Vz. 7 (] A~ ® | B~ (z))) T (] A~ ® |
Vu.B~ (u)). This sequent is not derivable in LJF: note that VL needs to be
above the VR rule, but this step requires that @R is applied first. However, to
apply ® R, we would need to have applied ®L first, which requires that VL is
applied first. This cyclic dependency cannot be resolved. a

Ezample 3. Consider the sequent | V. 1A~ (z) F1Vu.A™ (u). This sequent is
not derivable in LJF either: note that the VL-rule needs to be above the VR rule,
but this step requires the !R rule to be applied first. However, to apply the |R
rule we would need to apply the VL rule first to ensure that the linear context
is empty when we apply the !R rule. This is another cyclic dependency. O
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Afwo) - Alw)”

L Awo) - Auo)” focusL i
— — blurR — — ax
4 Auo)” F [ A(uo)~] [B(uo) ] = B(uo)

)]
[(4 A(uo)™)—oB(uo) )],4 A(uo)™ F B(uo)~

L (Va.(L A(2)")~oB(x) ), L Aluo)™ F Bluo)™
L (%20 A@))=oB() ). 4 Aluwo)” T (3. L B(x))

b (Va.(b Ale))=oB(2) ), (V2. 1 Fu. L Aw)”) H1 (3. 4 B(2)")

Fig. 2. Example 1, unique and complete proof

Focusing removes sources of non-determinism from the propositional layer,
but not from quantifier instantiation. In the next section we present a quantifier-
free skolemised logic, SLJF, where quantifier dependencies are represented
through skolemised terms. This way, proof search no longer needs to back-track
on first-order variables, as the constraints capture all dependencies. Instead,
unification at the axioms will check if the proof is admissible.

3 Skolemised Focused Intuitionistic Linear Logic

We begin now with the definition of a skolemised, focused, and polarised intu-
itionistic linear logic (SLJF), with the following syntactic categories:

Atom A Biu=q(ty...t,)

Negative formula N:=Ag; | PoN|[TP

Positive formula P:=A} | PP '(a;@;09 N [L N
Variable vi=zx|ul|a

Term tao=v| f(E)|(&...,1)
Variable context b= |dv

Modal context Ii:=-|T,(a;P;0): N

Linear context Au=-]AP

Parallel substitution o =] o,t/x | o,u(t)/u] o, t/a

Following the definition of LJF, we distinguish between positive and negative
formulas and atoms. Backward and forward-chaining strategies are supported in
SLJF, as well.

SLJF does not define any quantifiers as they are removed by skolemisation
(see Sect.4). Yet, dependencies need to be captured in some way. Quantifier
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Fig. 3. Typing rules for substitutions

rules for VR* and IL" introduce Eigen-variables written as u. Quantifier rules
for VL and R introduce existential variables, which we denote with z. And
finally other rules, such as ® R, —oL, and !R are annotated with special variables
a capturing the dependencies between rules that do not freely commute. These
special variables are crucial during unification at the axiom level to check that
the current derivation is admissible.

The semantics of the bang connective ! in SLJF is more involved than in LJF
because we have to keep track of the variables capturing dependencies and form
closures: One way to define the judgmental reconstruction of the exponential
fragment of SLJF is to introduce a validity judgment (a; ®;0) : N, read as N
is valid in world (a; ®;0), which leads to a generalised, modal T' that no longer
simply contains negative formulas N, but also closures of additional judgmental
information. The special variable a is the “name” of the world in which No is
valid, where all possible dependencies are summarised by ®. ® consists of vari-
ables, where we assume tacit variable renaming to ensure that no variable name
occurs twice. We write L®_ for all existential and special variables declared in
®. In contrast to LJF, atomic propositions Ay and Aj are indexed by ® cap-
turing all potential dependencies, which we will inspect in detail in Definition 2
where we define admissibility, the central definition of this paper, resolving the
non-determinism related to the order in which quantifier rules are applied. The
linear context remains unchanged.

Terms ¢ are constructed from variables (existential, universal, and special)
and function symbols f that are declared in a global signature % := - | 3, f.
Well-built terms are characterised by the judgment ®  ¢. Substitutions con-
structed by unification and communicated through proof search capture the
constraints on the order of application of proof rules, which guarantee that a
proof in SLJF gives rise to a proof in LJF. Their definition is straightforward,
and the typing rules for substitutions are depicted in Fig.3. For a substitution
o such that o: ® — &', we define the domain of o to be ® and the co-domain
of o to be ®. For any context ® and substitution o with co-domain ¥ we write
o1 for the substitution o restricted to ® N ¥, i.e. vo1e is defined iff v € NP,
and vote = vo in this case. We write o \ @ for the substitution o restricted to
U\ D, ie. vo\ D is defined iff v € U\ @, and vo \ & = vo in this case. For any
substitution o we define the substitution ¢ by induction over n to be ¢! = o,
and vo" ! = (vo™)o.
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Definition 1 (Free Variables). We define the free variables of a skolemised
formula K, written FV (K) by induction over the structure of formulae by

FV(Ag)=FV(Ay) =
FV(P, @ Py) — FV(Pl) U FV(PQ)
FV(P—oN) = FV(P)UFV(N)

FV(Yg0,0)N) = @

Now we turn to the definition of admissibility, which checks whether the
constraints on the order of VL-and JR-rules (which instantiate quantifiers)
and application of non-invertible propositional rules can be satisfied when re-
constructing a LJF-derivation from an SLJF-derivation.

Definition 2 (Admissibility). We say o is admissible for ® if firstly for all
existential and special variables v and for all n, v does not occur in vo™, and
secondly for all special variables ay and ar respectively and for all n, if xo™
contains a variable ay, or agr for any x in the co-domain of o, then the variable
ar or ay, respectively does not occur in P.

The first condition in the definition of admissibility ensures that there are no
cycles in the dependencies of VL-and JR-rules and non-invertible propositional
rules. The second condition ensures that for each rule with two premises any
Eigen-variable which is introduced in one branch is not used in the other branch.
Examples of how this definition captures dependency constraints are given below.

Next, we define derivability in SLJF. The derivability judgment uses a sub-
stitution which captures the dependencies between VL-and dR-rules and non-
invertible propositional rules.

Definition 3 (Proof Theory). Let ® be a context of variables, I' the modal
context (which refined the notion of unrestricted context from earlier in this
paper), A the linear context, P a positive and N a negative formula, and o
a substitution. We define two mutually dependent judgments T'; A+ N;o and
[ A+ [P];o to characterise derivability in SLJF. The rules defining these judg-
ments are depicted in Fig. 4.

The !R-rule introduces additional substitutions which capture the dependency
of the !R-rule on the VL-and JR-rules which instantiate the free variables in
the judgment. An example of this rule is given below. The copy-rule performs a
renaming of all the bound variables in N.

Example 4. We give a derivation of the translation of the judgment of Exam-
ple 1 in skolemised intuitionistic linear logic. We omit the modal context I' = -.
Furthermore, let the goal of proof search be the following judgment:

ST (LA@DG, ))0B@1) G, a1 AW, 0 b Bas)g,)io

where o must contain the substitution u(xz)/u, which arises from skolemisation.
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Fig. 4. Skolemised intuitionistic linear logic

We observe that only focusing rules are applicable. Focusing on A will not suc-
ceed, since A was assumed to be a negative connective, so we focus on the
right. Recall, that we will not be able to remove the non-determinism intro-
duced on the propositional level. We obtain the derivation in Fig.5, where
o = u/x1,x1/x3,u(x2)/u. This derivation holds because o is admissible for
r1,ar,x2 and x1,apr,x3. The constraint that the variable x5 can be instantiated
only after the VR-rule for u has been applied is captured by the substitution
u(ze)/u.

Ezample 5. Next, consider the sequent | (Vz. T (| A~ ® | B7z))F1 (| A= ® |
Vu.B~ (u)) from Example 2. To learn if this sequent is provable, we translate it
into | A;® | B(z), F1 (] Ae,® | B(u);R;u). The only possible proof yields an
axiom derivation [B; | = B; . .,; -, u(ar)/x , which is not valid, as -, u/x, u(agr)/u
is not admissible for x,ay. More precisely, the second condition of admissibility
is violated. O



Skolemisation for Intuitionistic Linear Logic 69

[A(W) g )] F A@) @100
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Fig. 5. Example 4, unique complete proof

_ A7) =A"
pos(A™) = | A N~ pe
pos(P—oN) = | (P—oN) ne%e};ﬁ];; _ TPP "
pos(t f) i §+ neg(A+) =1 A"
pOS( ) : neg(P1 ®P2) :T(P1®P2)
pos({ N)**LN neg({ N) =N
pOS( (a;®;0) N) (a ®;0) N neg( (a;®;0) N) = T'(a,@,o) N

Fig. 6. Polarity adjustments

Ezample 6. Now, consider the sequent | Vz. 1A~ (z) F1Vu.A™ (u) from Exam-
ple 3. The skolemised sequent is !(4.5:)Aaz ™ FT biusu(s)/u) A~ () u,p). The only
possible derivation produces the substitution -, u/z, /b, u(b)/u, which is not
admissible for -, x,u,b,a. More precisely, the first condition of admissibility is
violated for the variable b. This expresses the fact that in any possible LJF-
derivation the instantiation of x has to happen before the !R-rule and the !R
-rule has to be applied before the instantiation of x, which is impossible.

4 Skolemisation

To skolemise first-order formulas in classical logic, we usually compute prenex
normal forms of all formulas that occur in a sequent, where we replace all quan-
tifiers that bind “existential” variables by Skolem constants. This idea can also
be extended to intuitionistic logic [8]. This paper is to our knowledge the first
to demonstrate that skolemisation can also be defined for focused, polarised,
intuitionistic, first-order linear logic, as well. In this section, we show how.
Skolemisation transforms an LJF formula F (positive or negative) closed
under ® into an SLJF formula K and a substitution, which collects all variables
introduced during skolemisation. Formally, we define two mutual judgments:
skp(®,F) = (K;0) and skg(®,F) = (K;0). K is agnostic to polarity infor-
mation, hence we prepend appropriate | and | connectives to convert K to the
appropriate polarity by the conversion operations pos(-) and neg(-), depicted in
Fig. 6. Alternatively, we could have chosen to distinguish positive and negative
K's syntactically, but this would have unnecessarily cluttered the presentation
and left unnecessary backtrack points because of spurious 1| and |T conversions.
We return to the definition of skolemisation, depicted in Fig.7. The main
idea behind skolemisation is to record dependencies of quantifier rules as explicit
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substitutions. More precisely, if an Eigen-variable u depends on an existential
variable z, a substitution u(x)/u is added during skolemisation. We do not extend
the scope of an Eigen-variable beyond the !-operator as we have to distinguish
between an Eigen-variable for which a new instance must be created by the
copy-rule and one where the same instance may be retained.

Explicit substitutions model constraints on the order of quantifiers. The sat-
isfiability of the constraints is checked during unification at the leaves via the
admissibility condition (see Definition 2) which the substitution has to satisfy.
Potential back-track points are marked by special variables a, which are associ-
ated with the ! connective. These annotations need to store enough information
so that the set of constraints can be appropriately updated when copying a
formula from the modal context into the linear context.

In our representation, any proof of the skolemised formula in SLJF captures
an equivalence class of proofs under different quantifier orderings in LJF. Only
those derivations where substitutions are admissible, i.e. do not give rise to cycles
like u(z)/x or introduce undue dependencies between the left and right branches
of a ® or —o, imply the existence of a proof in LJF.

The judgments can be easily extended to the case of contexts I' and A for
which we write sk, (®;T") and sky(®; A). Note that tacit variable renaming is
in order, to make sure that no spurious cycles are accidentally introduced in the
partial order defined by the constraints.

Example 7. We return to Example 1 and simply present the skolemisation of the
three formulas that define the judgment:

L (Va.(l A(z))—oB(z)), | (Va. T Ju. | A(u)) FT (3z. | B())
First, we skolemise each of the formulas individually.

skr(5 1 (Vo.(l A(z))—B(2))) = (I A(@)(z,a1))°B()(z,an)}"
skp (51 (Vo 1 Ju. | A(u))) = A(u) z,0); u(z) /u
skr(:; 1 (3z. | B(2))) = B(%)(2);

Second, we assemble the results into a judgment in SLJF, which then looks as
follows. To this end, we a-convert the variables,

(L A(@1) (21,01)) 0B (%1) (21,a5)» A(W) (25,u) F B(23)(a4); u(22) /1

The attentive reader might have noticed that we already gave a proof of this
judgment in the previous section in Example 1, after turning the first two for-
mulas positive, because they constitute the linear context.

5 Meta Theory

We begin now with the presentation of the soundness result (see Sect.5.1) and
the completeness result (see Sect.5.2). Together they imply that skolemisation
preserves provability. These theorems also imply that proof search in SLJF will
be more efficient than in LJF since it avoids quantifier level back-tracking. Proof
search in skolemised form will not miss any solutions.
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sk (®; A) = pos(As); -

skp (®;Va.F) = K; 0
where sk (z,®; F) = K; 0
sk (®;Fu.F) = K;0,u(L®)/u
where sky (u, ®; F) = K; 0
skr (®; F1 @ Fh) = pos(K1) ® pos(Ka); 01,02
where sk, (®; F1) = K501
SkL(q);FQ) = KQ;(TQ

sk, (®; F1—oF>) = pos(K1)—oneg(K2); 01,02
where skr(®,ar; F1) = K1;01
sk (P, ar; Fr) = Ka;02

SkL((I); ! F) :!(a;q);g\q)) neg(K); (o}

skr(®; A) = neg(As); -

skr(®;3z.F) = K;0
where skg(z, ®; F) = K; 0
skp(®;Vu.F) = K;o,u(L®l)/u
where skgr(u, ®; F) = K; o
skr(®; F1 @ F») = pos(K1) ® pos(K2); 01,02
where skr(®,ar; F1) = K1;01
skr(®,ar; F2) = Ka; 02

skr(®; F1—oF2) = pos(K1)—oneg(Kz); 01, 02
where sk, (®; F1) = K501
SkR((I);Fz) = Ks; 02

SkR((I); ! F) :!<a,(1>;g\(1,) neg(K); [}

where sk (®,a; F) = K; o where skr(®,a; F) = K; 0
skr(®;] F) = neg(K); o skr(®;) F) = neg(K); o

where skz(®; F) = K;0 where skr(®; F) = K; o0
skp (®;1 F) = pos(K); o skr(®;1 F) = pos(K); o

where sk, (®; F) = Ko where skr(®; F) = K; o

Fig. 7. Skolemisation

5.1 Soundness

For the soundness direction, we show that any valid derivation in LJF can be
translated into a valid derivation in SLJF after skolemisation.

Lemma 1 (Weakening).

(i) Assume T;AF K;0 Then also T, (a; ®;0'): N,A}—KJ
(i) Assume T'; A+ [K);o Then also T, (a; ®;0"): N; A [K],o.
(iii) Assume T; AJ[K'|F K;0 Then also T, (a; ®;0'): N;AJ[K'|F K;o.

Proof. The proof is a simple induction over derivation in all three cases.

Next, we prove three admissibility properties for ®R, —oL, and copy, respec-
tively, that we will invoke from within the proof of the soundness theorem. In
the interest of space, we provide a proof only for the first of the three lemmas.

Lemma 2 (Admissibility of ®R). Assume I'; A1 F neg(K1);0 and T'; Ay
neg(Ks); o with proofs of height at most n such that the first application of the
focus-rule is the focus R-rule. Then also T'; Ay, Ag F neg(pos(K1) @pos(Ks)); o

Proof. We prove this property by induction over n. There are several cases.
Firstly, assume that there is any positive formula in A; or Ay which is not an
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atom. Again, there are several cases. We start by assuming Ay = K] @ K3, A}

and the derivation is
F; KL Ké7 A/l - neg(K1)7 9

[: K @ Kp, A} F neg(Ky); o

Hence by induction hypothesis we have T'; K1, K5, A}, Ay F neg(pos(K;) ®
pos(Ks)); o and hence also T'; Kf ® Kb, A, Ay b neg(pos(K1) ® pos(K3));o .
Now assume that Ay =!(4,¢,01) IV, A’ and the derivation is

T, (a;®;0"): N; AL Fneg(Ky);0
L5 asds0n N, Al Fneg(Kq);0

By Lemma 1, we also have T, (a;®;0’): N; Ay F neg(Ks);o. By induction
hypothesis we have T', (a; ®;0'): N; A}, Ay F neg(pos(K;) ® pos(Ks));o and
hence also I';!(4;0,5) N, A, Ag - neg(pos(K1) ® pos(Ks)); 0.

Secondly, assume that K1 = N7, where N; is a negative formula and Ky = P,
where P, is a positive formula. By assumption there is a derivation

F,AQ = [PQ}O-
A0 HT Poso

There is also a derivation
A Nyso

F; Al }_ [l Nl];O'

Hence we also have the following derivation:

I'ALF Nyso
DAL E [l Nifyo T A F [P0
A1, A [ Ny ® P;o
[5AL A FT (L N ® Po)so

By assumption we obtain I'; A, Aoy FT (| N1 ® Py); 0. All other cases of K7 and
K5 being positive or negative are similar.

Lemma 3 (Admissibility of —L). Assume
;A1 Fneg(Kq);0 and T Ag,pos(Kso) F Ko

with proofs of height at most n such that the first application of the focus-rule is
the focus L-rule for Ky. and the focus R-rule for Ko. Then also

I; Ay, Ag,neg(pos(K1)—opos(Ks)) F K; o
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Proof. Similar to the proof of Lemma 2. O
Lemma 4 (Admissibility of copy). Assume
T, (a;®;0"): N;pos(N{7'/v}), A+ neg(K); o, 0’ {00}

with a proof of height at most n such that the first application of the focus-
rule is the focus L-rule applied to pos(N{v'/U}). Then also T, (a; ®;0"): N; Ak
neg(K);o.

Proof. Similar to the proof of Lemma 2. a

Theorem 2 (Soundness). Let ® be a context which contains all the free
variables of T, A and F. Let 0: ® — & be a substitution. Assume
Toto; Aotie, B Fople, in focused intuitionistic linear logic. Let ski(®;T) =
I;or, skp(P;A) = A'so0ar and skr(®; F) = K;0k. Let 7 = op/,0nr,0K. Let
O = (FV(I")UFV(A")YUFV(®p)) \ . Assume that o does not contain any
bound variables of I', IV, A, A’, F or K. Moreover, assume whenever ® contains
a variable ap, or ar, then the corresponding variable ar or ay respectively does
not occur in ®. Then there exists a substitution o’': &, & — @ such that

neg(I"); A"+ K;o,7,0" .

Proof. Induction over the derivation of I'oy_¢,; Ao e, B Fopo,. The axiom
case follows from the definition of admissibility, ®R follows from Lemma 2,
and —oL from Lemma 3. Now we consider the case of VL. By definition,
skr(®;Va.F) = skp,((x, ®); F'). Moreover, ¢ contains only variables in ®. Hence
we can apply the induction hypothesis with replacing ® by ®, x. The next case
is VR. Consider any formula Vu.F'. Skolemisation introduces another Eigen-
variable u. Hence we can apply the induction hypothesis with replacing ® by
®, u. The case for copy is a direct consequence of Lemma 4. All other cases are
immediate. a

5.2 Completeness

We now prove the completeness direction of skolemisation, which means that we
can turn a proof in SLJF directly into a proof in LJF, by inserting at appropriate
places quantifier rules, as captured by the constraints. We introduce an order
relation to capture constraints on the order of rules in the proof.

Definition 4. For any substitution o, define an order < by x < uw or x < a
if a or w occur in xro, and u < x or u < a if the variable T or a occurs in
w(z1y. ..y 2n).

Lemma 5 (Strengthening).

(i) Assume T, (a';®;0"): K; A1 F K';0 and there exists a free variable x in K
such that ar occurs in xo. Moreover assume that ar, occurs in every axiom
of K'. Then alsoT; A1+ K'o.
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(i) Assume T, (a';®;0") : K; Ao b K';0 and there exists a free variable x in K
such that ay, occurs in xo. Then also T'; As - K'; 0.

Proof. (i) If the copy-rule for K is applied during the derivation, the linear con-
text contains the free variable x such that ar occurs in xo. As ar, occurs in
all atoms of K’, the variable x must not occur in any of the linear formulae
in the axioms in the derivation of T, (a’; ®;0’) : K;A; + K';0 because of the
admissibility condition. Hence no subformula of K can occur in the linear for-
mulae in the axioms in this derivation either. Hence there is also a derivation of
I'; Ay F K'; 0, which does not involve K. (ii) A similar argument applies. O

Lemma 6. Assume I'; A1, Ay 1 (K ® K3); 0. Furthermore assume that each
formula K in Ay and Ay is either a formula | K', or there exists a free existential
variable x in K such that ap or ar occurs in xo, where ay and agr are the
special variables introduced by the skolemisation of K1 ® K. Moreover assume
that the first focusing rule applied is the focus R-rule. Then I'; A1 F Ki;0 and
A F Koo

Proof. We use an induction over the structure of A; and As. Firstly, consider
the case I'; K] @ Kb, A1, Aq T (K1 ® K3); 0. We have a derivation

T, K}, K A Ay T (K @ Ko)'o
K @ Ky, Ay Ag FT (K @ Ka)jo

By induction hypothesis we have T'; Al;F Ki;0 and T'; AL B Ky; 0. Assume af,
occurs in zo. Because o is admissible for I'; Ay, K{ and K} must be part of
Al. Hence A} = K{, K}, Ay and A} = As. An application of the ® L-rule now
produces I'; K| ® K}, Ay;+ Ky 0.

Next we consider the case I';!(y/a,0) K, A1, A0 FT (K1 @ Ka);0. Assume
without loss of generality ar occurs in xo. We have a derivation

L, (ad;®;0") : K;A1, A0 ] (K7 ® Ka);0
F; !(a/;@;ol)K7A17A2 "T (Kl & KQ);O'

By induction hypothesis we have T, (a’; ®;0') : K; Aq;F Ky;0and T, (a; ®;07) :
K; Az F Ka;o. An application of the ! L-rule yields I'; ! 4/.9,5/) K, A1; = K750 and
Lemma 5 yields T'; As F Ks; 0. O

Lemma 7. Assume I'; A1, Ag, | (K1—oKs) b K;o. Furthermore assume that
each formula K' in Ay, Ay and K is either a formula | K", or there exists
a free existential variable x in K' such that a;, or ar occurs in xo. Moreover
assume that the first focusing rule applied is the focus L-rule for K1—oKy. Then
AL F Kys0 and T A, Ko F Ko

Proof. Similar to the proof of Lemma 6. g

Lemma 8. Assume I'; A F|!(, 4.0 K50 and the first occurrence of the focus-
rule is the focus R-rule followed by R with T containing the side formulae. Let
x be a free variable v of T, A or!(, 400 K.



Skolemisation for Intuitionistic Linear Logic 75

(i) If the variable u occurs in xo, then u is a free variable of T or ! g.0n) K.
(i) The variable a does not occur in xo.

Proof. (i) By induction over the number of steps before application of the focus
R-rule. Assume that the first rule applied is the focus R-rule. There are several
cases. Firstly, assume u occurs bound in I'. We consider here only the case that
u occurs in (ai,®1,01) : Np, which is part of I'; all other cases are similar.
By assumption we have u < a; and z < w. The !R-rule implies a1 < a. If x
occurs freely in I', we also have a < x via the !R-rule, which is a contradiction.
If & occurs freely in K, then we also have a; < z via the !R-rule, which is a
contradiction. Secondly, assume u occurs bound in K. Hence z cannot be a free
variable of K. In this case we have u < a and z < w by assumption, together
with a < z by the ! R-rule, which is a contradiction. The step case is true because
there are fewer free variables in the conclusion of a rule than in the premises.
(ii) Assume z < a. Then there must exist a u such that © < v and u < a.
The latter implies u is a bound variable in K, which is a contradiction to (7).

Theorem 3 (Completeness). Let ® be a set of Eigen-, special, and existential
variables which contains all the free variables of ', A and F. Let o: ® — ® be a
substitution. Let sk (®;T) = (IV;0r), skp(®;A) = (A';0a0) and skr(®; F) =
(K;o0k). Let ' = (FV(I")UFV(A)UFV(K))\ ® and 7 = or/,on,0K. Let
o' ® 9" — D be a substitution.

(i) If neg(T"); A" = K;0,7,0" then oy a,; Aoy e, B Fore, in focused intu-
itionistic linear logic.
(1) If A" = A", | K’ and neg(I"); A", [K'| - K;0,7,0" then T'oy a,; Aoy e, -
Foy o, in focused intuitionistic linear logic.
1) If neg(I"); A’ + [K);0,7,0" then Tor o ,; Aoy e, = For e, in focused intu-
T T 1
itionistic linear logic.

Proof. We use firstly an induction over the derivation of neg(I'); A’ + K; 0, 7,0’
and secondly an induction over the structure of A, F. Let A = Fy,..., F, and
A= Ky,...,K,. Let V.= {a1,..., 2k, u1,...,un} be the set of outermost
bound variables of A’ K (including names). There are several cases. Firstly, if
there exists a ¢ such that 1 <+¢ < n and Fj is a tensor product or a formula !N,
or F'is a linear implication, we apply the corresponding inference rule and then
the induction hypothesis.

Secondly, assume there exists an Eigen-variable u € V. Assume F = Vu.F’.
Hence by induction hypothesis we have I'ot ¢_; Aoy e, F F'or e,. By assump-
tion, u does not occur in xzo for any variable z in the co-domain of ¢. Now the
VR-rule yields the claim. Now assume F' = Ju.F’. This case is similar to VR.

Thirdly, assume there exists an existential variable in V. Let x be an exis-
tential variable which is maximal in V. Assume F = Jdz.F’. We show that every
Eigen-variable u of xo’ is a free variable of A, F. By definition, we have z < u.
Assume u is a bound variable in A, F. If u is a bound variable of F', we would
have u < z, which is a contradiction. Hence u is a bound variable of A. Because
u is not an outermost bound variable, there exists a bound existential variable
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y such that v < y. Hence x is not a maximal bound variable. By induction
hypothesis we have I'oy_¢_; Aot e, - F'op e, and now we apply the IR-rule.
Now assume F; = Vz.F]. Similar to the IR-case.

Next, assume there are no maximal first-order variables in V. By definition,
the special variables corresponding to the last rule applied to the skolemised
version where the principal formula is asynchronous are now the only maximal
elements in V. ® R and —oL are direct consequences of Lemma 6 and Lemma 7,
respectively. For | R, let = be any outermost bound variable in I'; A or K which
is not maximal in V. Because x £ a, there exists a variable y or u in V such
that x < y or £ < u, which is a contradiction. Hence we can use the !R-rule of
the skolemised calculus and the induction hypothesis. Finally, the axiom rule in
the skolemised calculus implies n = 1, and hence I'oy o ; Fiot o, F Fore,. O

6 Conclusion

In this paper, we revisit the technique of skolemisation and adopt it for proof
search in first-order focused and polarised intuitionistic linear logic (LJF). The
central idea is to encode quantifier dependencies by constraints, and the global
partial order in which quantifier rules have to be applied by a substitution. We
propose a domain specific logic called SLJF, which avoids back-tracking during
proof search when variable instantiations are derived by unification.

Related Work: Shankar [8] first propose an adaptation of skolemisation to LJ.
Our paper can be seen as a generalisation of this work to focused and polarised
linear logic. Reis and Paleo [7] propose a technique called epsilonisation to char-
acterise the permutability of rules in LJ. Their approach is elegant but impracti-
cal, because it trades an exponential growth in the search space with an exponen-
tial growth in the size of the proof terms. McLaughlin and Pfenning [4] propose
an effective proof search technique based on the inverse method for focused and
polarised intuitionistic logic. To our knowledge, the resulting theorem prover
Imogen [5] would benefit from the presentation of skolemisation in our paper,
since it requires backtracking to resolve the first-order non-determinism during
proof search.

Applications: There are ample of applications for skolemisation. To our knowl-
edge, proof search algorithms for intuitionistic or substructural logic are good
at removing non-determinism from the propositional level, but don’t solve the
problem at the first-order level. Skolemisation can also be applied to improve
intuitionistic theorem provers further, such as Imogen. With the results in this
paper we believe that we are able to achieve such results without much of a
performance penalty.
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Abstract. We investigate intuitionistic modal logics with locally inter-
preted O and ¢. The basic logic LIK is stronger than constructive modal
logic WK and incomparable with intuitionistic modal logic IK. We pro-
pose an axiomatization of LIK and some of its extensions. Additionally,
we present bi-nested calculi for LIK and these extensions, providing both
a decision procedure and a procedure of finite countermodel extraction.

Keywords: Intuitionistic Modal Logic + Axiomatization - Sequent
Calculus - Decidability

1 Introduction

Intuitionistic modal logic (IML) has a long history, starting from the pioneering
work by Fitch [10] and Prawitz [16]. Along the time, two traditions have emerged.
The first tradition, called intuitionistic modal logics [7-9,15,17], aims to define
modalities justified by an intuitionistic meta-theory. In this tradition, the fun-
damental logic is IK, considered as the intuitionistic counterpart of the minimal
normal modal logic K. The second tradition, known as constructive modal logics,
is mainly motivated by computer science applications like Curry-Howard corre-
spondence, verification and contextual reasoning, etc. In this tradition, the basic
logics are CCDL [19] and CK [3].

However, there are other intuitionistic modal logics with natural interpreta-
tions of modalities that have received little interest and deserve to be studied.
One approach can be to study intuitionistic modal logic on a common semantic
ground in terms of a bi-relational model (W, <, R, V') combining an intuitionis-
tic pre-order < on states/worlds and an accessibility relation R for modalities.
The present work aims to study several intuitionistic modal logics where, in a
bi-relational model, the modal operators are classically interpreted:

(1) = IF OA iff for all y such that Rzy it holds y I A;
(2) z Ik QA iff there exists y such that Rzy and y IF A.
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We call these forcing conditions “local” as they do not involve worlds <-greater
or <-smaller than x. Meanwhile, we require that all the intuitionistic axioms
remain valid in the full logic. This is conveyed by the hereditary property (HP),
which says for any formula A, if A is forced by a world z, it will also be forced
by any upper world of x. In order to ensure (HP), we need to postulate two
frame conditions which relate < and R in a bi-relational model: the conditions
of downward confluence (DC) and forward confluence (FC) [1,4,9,17]. We call
the basic K-style logic LIK by local TK.

In the literature, Bozi¢ and Dogen [4] studied separately the O-fragment and
the O-fragment of LIK and also considered a logic combining [ and ¢. However,
the logic they obtained is stronger than LIK, since they considered a restricted
class of frames. Moreover, in their setting, ¢ becomes definable in terms of [J,
which is inappropriate from an intuitionistic point of view. In other respect,
Bozi¢ and Dosen did not tackle the decidability issue. Besides, a logic related
to LIK has been considered in [5] in the context of substructural logics. More
recently, the S4-extension of LIK has been shown to be decidable [1].

In this paper, we consider LIK and some of its extensions with axioms char-
acterizing seriality, reflexivity and transitivity of the accessibility relation R in a
bi-relational model. We provide complete axiomatizations for them with respect
to appropriate classes of models. The basic logic LIK is stronger than Wije-
sekera’s CCDL as well as another intuitionistic modal logic FIK which only
assumes forward confluence on models [2]. But LIK is incomparable with TK. Tt
is noteworthy that LIK fails to satisfy the disjunction property. However, unex-
pectedly, its extension with axioms characterizing either seriality or reflexivity
of the accessibility relation possesses this property.

Turning to proof theory, we propose bi-nested sequent calculi for LIK and its
extensions. A bi-nested calculus uses two kinds of nestings in the syntax: the first
one is used for >-upper worlds proposed by Fitting in [11]. Recently a nested
sequent calculus using Fitting’s nesting to capture an extension of CCDL has
been presented in [6]. The second one is for R-successors, which is used in several
nested sequent calculi for other IMLs [12,14,18]. A calculus for IK intended to
combine the two nestings was also preliminarily considered in [13]. A bi-nested
sequent calculus with the same bi-nested structure is proposed for the logic FIK
in [2] where the frame condition of forward confluence is captured by a suitable
“interaction” rule. A calculus for LIK can be obtained from the calculus for
FIK by adopting a “local” [, or by adding another “interaction” rule capturing
the downward confluence frame condition. Calculi for the extensions of LIK are
defined by adding suitable modal rules.

We prove that these calculi provide a decision procedure for the logic LIK
and some of its extensions. Moreover, we show the semantic completeness of these
calculi: from a single failed derivation under a suitable strategy, it is possible to
extract a finite countermodel for the given sequent at the root. In addition, for
the extensions of LIK with (D) or (T), a syntactic proof of the disjunction
property via the calculi is provided. These results demonstrate that bi-nested
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sequent calculus is a powerful and flexible tool which constitutes an alternative to
other formalisms like labelled sequent calculus and is capable to treat uniformly
various IMLs.!

2 Local Intuitionistic Modal Logic

Let At be a set (with members called atoms and denoted p, g, etc.).

Definition 1 (Formulas). Let £ be the set (with members called formulas and
denoted A, B, etc.) of finite words over AtU{D, T, L,V,A,[0,0,(,)} defined by

A= p|(ADA) | T|L|(AVA)|(AAA)|OA|0A

where p ranges over At. We follow the standard rules for omission of the paren-
theses. For all A € L, we write =A as A D L.

For all sets I' of formulas, let OI' = {A € L: JA € '} and OI' = {0A € L:
Aell.

Definition 2 (Frames). A frame is a relational structure (W, <, R) where W
s a nonempty set of worlds, < is a preorder on W and R is a binary relation on
W. A frame (W, <, R) is forward (resp. downward) confluent if > oR C Ro >
(resp. <oR C Ro <). For all X C {D, T, 4}, an X-frame is a frame (W, <, R)
such that R is serial if D € X, R is reflexive if T € X and R is transitive if
4 € X. Let C&, be the class of forward and downward confluent X -frames. We
write “Cgae” instead of “wadc 7,

We can see that C;”gg C C85t: C Cede-

Definition 3 (Valuations, Models and Truth Conditions). For all frames
(W, <,R), a subset U of W is <-closed if for all s,t € W, if s € U and s < ¢
then t € U. A valuation on (W, <, R) is a function V : At — (W) such that
for allp € At, V(p) is <-closed. A model based on (W, <, R) is a model of the
form W, <,R,V). In a model M = (W,<,R,V), for all x € W and for all
A € L, the satisfiability of Aat zin M (in symbols M,z I+ A) is defined as
usual when A’s main connective is either T, L, V or A and as follows otherwise:

- M,z Ik p if and only if x € V(p),

- M,z - AD B if and only if for all &' € W with x < ', if M, 2" I+ A then
M,z |+ B,

- M,z |- 0A if and only if for ally € W such that Rxy, M,y - A,

- M,z - QA if and only if there exists y € W such that Rxy and M,y I+ A.

When M is clear from the context, we simply write x I+ A. The notions of truth
and validity are defined as usual.

Lemma 1 (Hereditary Property). Let (W, <,R,V) be a forward and down-
ward confluent model. For all A € L and x,x’ € W, if x|+ A and x < ' then
7 I+ A.

! The full version with proofs is available on ArXiv: https://arxiv.org/abs/2403.06772.
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Note that our definition of I differs from the definitions proposed by Fischer
Servi [9] and Wijesekera [19]. In both settings,

z |k OA iff for all 2/ € W with z < 2’/ and for all y € W with Ra'y, it
holds y I+ A;

whereas in [19],

zIF QA iff for all ' € W with x < 2/, there exists y € W such that Rx'y
and y IF A.

However, these satisfiability relations collapse on forward and downward conflu-
ent frames.

Proposition 1. In Cggc, our definition of I+ determines the same satisfiability
relation as the relations determined by definitions in [9] and [19].

From now on in this section, when we write frame (resp. model), we mean for-
ward and downward confluent frame (resp. model).

Obviously, validity in Cgqc is closed under the following inference rules:

ADB A A

B 0A

Moreover, the following axiom schemes are valid in Cggc:

(MP) (NEC)

(Kg) O(AD> B) > (UADOB) (Ko) O(AD B) D (0ADOB)
(DP) O(AV B) D 0AV OB (RV) O(AV B) 5 0A VOB
(N) =0L

In CR, (resp. Ch., Ciy.), modal axiom D (resp. T, 4) is valid:
(D) OT(T) (MAD A AN(ADOA) (4) (ADTOOA) A (OOA D QA)

Axiom (RV) is also considered in [1] where it is called (CD) for constant domain,
since it is related with the first-order formula Vz.(P(z) V Q(x)) D Jz.P(z) V
Va.Q(x) which is intuitionistically valid when models with constant domains are
considered.

Definition 4 (Axiom System). For all X C {D,T,4}, let LIKX be the
axiomatic system consisting of all standard axioms of IPL, the inference rules
(MP) and (NEC), the azioms Ko, Ko, N, DP and RV and containing in
addition the azioms from X. We write LIK for LIK). Derivations are defined
as usual. We write Frixx A when A is LIKX -derivable. The set of all LIKX -
derivable formulas is also denoted as LIKX .

From now on in this section, let X C {D,T,4}.

Lemma 2. I[fD e X or T € X then Op D Op and -OL are in LIKX.
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Theorem 1 (Soundness). LIKX -derivable formulas are Cy.-validities.

Next we prove completeness, which is the converse of soundness, saying that
every formula valid in C3y, is LIK X-derivable. At the heart of our completeness
proof lies the concept of theory. Let L = LIKX.

Definition 5 (Theories). A theory is a set of formulas containing L and closed
with respect to MP. A theory I" is proper if L & I'. A proper theory I' is prime
if for all formulas A, B, if AV B € I' then either A€ I', or Be .

Lemma 3. IfD € X or T € X then for all theories I', we have QUII" C I.

Definition 6 (Canonical Model). The canonical model (W, <r, Ry, V1) is
a tuple where

- Wy, is the nonempty set of all prime theories,

— <y, is the partial order on Wy, defined by: I' <p, A iff ' C A,

— Ry, is the binary relation on Wy, defined by: RpT'A iff OI' C A and QA C T,
- WL is the valuation on Wy, defined by: Vi,(p) ={I" € WL : pe I}.

Lemma 4. I. (Wy, <y, Ry, V1) is forward confluent,

2. (Wi, <w, Rr, W) is downward confluent,

3. if D e X (resp. T € X, 4 € X) then (W, <p,Ry,VL) is serial (resp.
reflexive, transitive).

The proof of the completeness is based on the following lemmas.

Lemma 5 (Existence Lemma). Let I" be a prime theory.

1. If B D C & I' then there exists a prime theory A such that ' C A, B € A
and C & A,

2. if OB & I' then there exists a prime theory A such that R, I’ A and B € A,

8. if OB € I' then there exists a prime theory A such that R, I’ A and B € A.

Lemma 6 (Truth Lemma). For all formulas A and all I' € Wy, we have
A €T if and only if (Wi, <p,Rp, V1), I+ A.

From Lemma 6, we conclude
Theorem 2 (Completeness). All C_-validities are LIKX -derivable.

In [17, Chapter 3], Simpson discusses the formal features that might be expected
for an intuitionistic modal logic L:

— L is conservative over Intuitionistic Propositional Logic,

— L contains all substitution instances of axioms of Intuitionistic Propositional
Logic and is closed under modus ponens,

— L has the disjunction property: for each formula A Vv B, if AVB is in L then
either Aisin L, or B isin L,

— by adding the law of excluded middle to L it yields modal logic K,

— [ and ¢ are independent in L.
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Now, we show that LIKX possesses the formal features that might be expected
of an intuitionistic modal logic.

Proposition 2. 1. LIKX is conservative over IPL,

2. LIKX contains all substitution instances of IPL and is closed with respect
to modus ponens,

3. LIKX has the disjunction property if and only if DeX or TeX,

4. the addition of the law of excluded middle to LIKX yields modal logic K,

5. O and O are independent in LIKX.

3 Bi-nested Sequent Calculi

In this section we present bi-nested calculi for LIK and its extensions LIKD and
LIKT. These calculi are called bi-nested in the sense that they make use of two
kinds of nesting representing <-upper worlds and R-successors in the semantics,
similar to the calculus for FIK presented in [2]. In a basic system for LIK, two
rules encoding forward and downward confluence are contained. We will show
that the latter rule called (inter|) is admissible in a smaller system without it,
thus by dropping out this rule we still have a complete calculus for LIK. However,
as we will see, the (inter|) rule is required to prove the semantic completeness of
the calculus and further allows us to obtain counter-model extraction. We also
prove the disjunction property for LIKD and LIKT using the calculi.

In order to define the calculi we first give some preliminary notions.

Definition 7 (Bi-Nested Sequent). A bi-nested sequent S is defined as:

— The empty sequent = s a bi-nested sequent;

- I'= A (T),....,(Th),[S1],---,[Sm] is a bi-nested sequent if both I' and A
are multisets of formulas, all the Sy, ...,Sm,T1,..., T, are bi-nested sequents
where m,n > 0.

We use S and T to denote a bi-nested sequent and simply call it “sequent” in the
rest of this paper. The antecedent and consequent of a sequent S are denoted
by Ant(S) and Con(S). Syntactic objects of the shape (S) and [T] are called
implication and modal blocks respectively.

The notion of modal degree can be extended from a formula to a sequent.

Definition 8 (Modal Degree). Modal degree md(F') for a formula F' is defined
as usual. Let I' be a finite (multi)set of formulas, define md(I") = md(\T).
For a sequent S = I' = A, (Th),....,{Tn),[S1],---,[Sm], we define md(S) =
max{md(I"), md(A), md(Ty), ..., md(T,), md(S1) + 1,...,md(Sy,) + 1}.

Context is defined as usual in standard nested calculi which can be regarded
as a placeholder to be filled by a sequent.

Definition 9 (Context). A context G{ } is inductively defined as follows:

— The empty context { } is a context.
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—if I' = A is a sequent and G'{ } is a context, then both I' = A, (G'{ }) and
I = A [G'{ }] are contexts.

Ezample 1. Given a context G{ } = pA¢,0r = Op, Op = [= ¢)),[{ }] and a
sequent S = p = gV r,[r = s], we have G{S} = pA ¢,0r = Op, (Op = [=
ql),[p=qVrr=4)]

Definition 10 (6<'>,€H,€+-Relation). Let IN = Ay, Iy = A be two
sequents. We denote I = A el I = Ay if (Ih = Ay) € Ay and let
e() be the transitive closure of 68>. Relations €5 and €l for modal blocks

are defined similarly. Besides, let €= b u el and finally let €% be the
reflezive-transitive closure of €7 .

When we say S’ €T S, it is equivalent to say that S = G{S'} for some context
G.

As we will see, some rules in the calculi propagate formulas in the antecedent
(“positive part”) or the consequent (“negative part”) of sequents into a modal
block. The two operators in the following definition single out these formulas of
a sequent.

Definition 11 (b-Operator and f-Operator). Let A = O be a sequent and
Fm(O) the multiset of formulas directly belonging to ©.

Let @ =0 if O is []-free; @ = [ = V1],..., [P, = 7], if O = Oy, [®; =
U, ..., [Pk = W] and Oq is []-free.

Dually let = 6 = = Fm(O) if O is [|-free; = O = = Fm(60y),[=
v, [0 ifO =6y, [ = W),....[Br = W] and Oy is []-free.

Ezample 2. Consider the sequent G{S} = p A ¢,0r = Op, (Op = [= ¢)),[p =
gV r[r = s]] of Example 1, denote Ant(G{S}) and Suc(G{S}) by A and O
respectively, we can see by definition, A = 6° = p A q,0r = [p = [r =]] while
= 0 == Op,[=qVr[= s3]

Definition 12. Rules for the basic logic LIK and its modal extensions are given
i Fig. 1, which consists of the basic calculus Crix and modal rules correspond-
ing to azioms (D), (T¢) and (Th). We define Crikp = CrLik + (D) and
CrixT = Crik + (To) + (To).

The notions of derivation and proof in a calculus are defined as usual. We
say a formula A is provable if the sequent = A has a proof in the calculus.

Here are some remarks on the rules. First, the rule (id) which only concerns
atoms can be easily generalized to arbitrary formulas. Reading the rule upwards,
the rule (Dg) introduces an implication block (-) while the rules (¢ ) and (Og)
introduce a modal block []. Observe that the (Og) rule corresponds to the
“local” interpretation of 0. The rule (inter_,) is intended to capture Forward
Confluence, whereas the rule (inter)) Downward Confluence. Finally the (trans)
rule captures the Hereditary Property. All the rules of Crik, except (Og) and
(inter|) belong to the calculus Crik for the logic FIK [2], we will discuss the
relation between the two calculi later in the section.



Local Intuitionistic Modal Logics and Their Calculi 85

(L) (Tr) (id)

G{I,L = A} G{I'=T,A} G{I,p= A,p}

G{A,B,I' = A}

G{AAB,I' = A}

G{I'A= A} G{I',|B = A} (V1)

G{I AV B = A} t

G{I’TADB= A A} G{I',B = A}

G{I'AD B = A}

G{INOA= A [X, A= ]}
G{IN'OA= A, X = II}

G{I'= A, [A=]}
G{I0A = A}
G{I,I" = A (I, % = 1)}
G{I\I'" = A (X = II)}

G{I'= A, A} G{I' = A, B}
G{I'= A, AN B}

G{I' = A, A, B} Va)
G{Ir=AAvBy "
G{I'= A,(A= B)}
G{I'= A, AD B}

G{I'= A, [= A}

(Cr) G{I' = A,0A}

G{I' = A, 0A,[¥ = II, A}
G{I'= A,0A[¥ = 111}

(AL) (AR)

(Or)

(Or)

(Or)

(Or) (Or)

(trans)

G{I'= A(2=II,[A= 0")),[A= 0]}
G{I' = A, (Y= II),[A = O]}
G{I'= A, (X = II,[A = 0)),[= 6]}

G{I' = A(Y = II,[A= O))}
G{IOA, A= A}
G{I'OA = A}

(inter—,)

(intery)

G{I' = A,[=]}
G{I' = A}

G{I' = A,0A, A}
G{I' = A, 0A}

(D (To) (To)

Fig. 1. Bi-nested rules for local intuitionistic modal logics

We can verify that each axiom of LIK in Sect.2 is provable in Cprik. An
example of axiom (RV) is given below.

Ezample 8. We show O(p V ¢) = Op Vv Uq is provable.

OV q) = Op,[p = ¢, (id) OV q) = Op, [qa = q,p] Elv(lz)
OpVaq) = Op,pVaq=qp] (@)
OV q) = Op, [= q,p] (Or)
O(pVq) = Op, [= 4] (@n)
O(pVq) = Op,0q
(Vr)

O(pVq) = OpVvUq

We now show that Cpik is sound with respect to the semantics. The first
step is to extend the forcing relation IF to sequents and blocks therein.

Definition 13. Let M = (W, <, R, V) be a bi-relational model and x € W. The
satisfiability relation |+ is extended to sequents as follows:
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- M,z

- M,z Ik [T] if for every y with Rxy, M,y I+ T

- M,z - {T) if for every ' with z <z', M, 2’ IF T

- M,z - I' = A if either M,z I A for some A € I' or M,z |- O for some
O € A, where O is a formula or a block.

We say S is valid in M iff Vw € W, we have M,w I+ S. We say S is valid iff
it is valid in every model.

Definition 14. For a rule (r) of the form G{Slé{s?{‘%} or %{{%1}}, we say ()

is valid if the following holds: if for each i, x I+ G{S;}, then it follows x |+ G{S}.

We can easily verify the validity of each rule and then obtain the soundness
of Cpik by a standard induction on a derivation. The soundness of Cpixp and
CrikT can be proven similarly.

Theorem 3 (Soundness of Crik). If a formula A is provable in Crik, then
1t 1s valid in LIK.

Next, we show that the rule (inter|) is admissible in the calculus Cpyx-=
Crik \{(inter})}. The proof can be easily extended to the modal extensions as
well. In order to prove this, we need some preliminary facts. First, weakening and
contraction rules (wr,)(wg)(cr)(cr) defined as usual are height-preserving (hp)

admissible in Cyk-, not only applied to formulas but also blocks. Moreover,

extended weakening rules 4 {93}7 %{{I;:;AX}}, %{{?ZAX}} are hp-admissible as well.

Proposition 3. The (inter|) rule is admissible in Cpg-. Consequently, a
sequent S is provable in Cryx if and only if S is provable in Cprg—.

As mentioned above, all the rules in Crik, except (Or) and (inter| ), belong
to the calculus Cgrk for the logic FIK [2]. As a difference with LIK, the logic

FIK adopts the “global” forcing condition for O as in [9,17,19] and only forward

confluence on the frame. The (Og) rule in Cprk is %. It can be

proved that this rule is admissible in Cy k- and on the opposite direction, the
“local” (Og) rule in Crik is admissible in Cprk+ (inter|). Thus Cgik + (inter))
can be regarded as another equivalent variant of Crik, which is obtained in a
modular way from the one for FIK.

We end this section by considering the disjunction property. For simplicity,
we only work in Cyg- and its extensions. Let Cpyxp- = Crix- + (D) and
Crikt- = Crix- + (To) + (Ty). Consider the formula 0L V T which is
provable in Cpyk-, but it is easy to see neither (01 nor (T are provable.?
However, this counterexample does not hold in LIKD or LIKT since QT is
provable in both calculi. We show that the disjunction property indeed holds for
both Cpixp- and Cpikr-- The key fact is expressed by the following lemma:

2 We thank Tiziano Dalmonte for suggesting this counterexample.
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Lemma 7. Suppose S = = Ay,...,Ap,(G1),...,(Gpn),[H1],...,[Hi] is prov-
able in Crigp- (resp. Crixr- ), where A;’s are formulas, G; and Hy’s are
sequents. Further assume that each Hy is of the form = @y and for each sequent
T €ll Hy, T has an empty antecedent. Then either = A; or = (G;) or = [Hy]
is provable in Cyigp- (resp. Crixr-) for some i <m,j <n,k <I.

We obtain the disjunction property by an obvious application of the lemma.

Proposition 4 (Disjunction Property for Cyxp- and Cyxr-). For any
formulas A, B, if = AV B is provable in Cyixp- (resp. Crixr- ), then either
= A or = B is provable Crigp- (resp. CrixT-)-

4 Termination

In this section we define decision procedure for LIK as well as its extensions
LIKD and LIKT based on the calculi in Sect.3. We treat first LIK, then at
the end of the section we will briefly describe how to adopt the the procedure
to the extensions. The terminating proof-search procedure is essential for the
semantic completeness of the calculi, as well as for countermodel construction,
as we will demonstrate in the following section.

We have introduced two calculi for LIK, namely Crix and Cypyx-. For
Ciik-, We can obtain a terminating proof-search procedure by adapting the
one in [2] for the calculus of FIK. Actually, the decision procedure for Cy k- is
remarkably simpler than that for FIK, as “blocking” is not needed to prevent
loops. For Cr1k, however, some extra work needs to be done. Despite the equiv-
alence of Cpik and Cp k- in terms of provability, constructing a countermodel
from a failed proof in Cy k- poses a challenge due to the absence of a rule
capturing downward confluence. Therefore, we need to explore a terminating
proof-search procedure for Cyk to further advance our goal of proving seman-
tic completeness.

Recall our ultimate aim is to build a countermodel from a failed derivation, in
which the main ingredient is the pre-order relation < in the model construction.
This relation is specified by the following notion of structural inclusion between
sequents, which is also used in defining the saturation conditions required for
termination.

Definition 15 (Structural Inclusion CS). Let S; = I'1 = A}, Sy = [ =
Ag be two sequents. We say that Sy is structurally included in Sa, denoted by
Sy CS Sy, when all the following holds:

- I7 CIy;

~ for each [A] = O1] € Ay, there exists [Ay = Os] € Ay such that Ay = 61 CS
/12 = @2,’

~ for each [Ay = O] € Ay, there exists [A] = O1] € Ay such that Ay = 61 CS
/12 = @2.
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It is easy to see CS is both reflexive and transitive.

We now define an equivalent variant CCy,k of Cyik which adopts a cumu-
lative version of the rules along with some bookkeeping. Moreover the (Dg) rule
is modified in order to prevent loops. This calculus will be used as a base for
the following decision procedure and then semantic completeness. At first we
reformulate the f-operator as below, annotating the generated f-sequents by the
full sequent where it comes from.

Definition 16. Let Fm(©) be the multiset of formulas directly belonging to ©.
We define the §-operator with annotation as follows:

- S pne OF = = Fm(0) if O is []-free;
- Same OF = = Fm(0), [Ze,mu U, ... [Se,u, U] if © = 00, [0 =
Ul,..., [Pk = W] and O is [-]-free.

The -sequents are generated only by applications of (inter|), and we use the
annotation (the subscript of =) to “track” the implication block from which
a f-sequent is generated. The annotation can be omitted and we simply write
= 6% whenever we do not need to track an (inter|) application.

Definition 17 (The f-Annotated Cumulative Calculus CCprik). The
cumulative calculus CCrik operates on set-based sequents, where a set-based
sequent S =1 = A is defined as in definition 7, with the distinction that I" is
a set of formulas and A is a set of formulas and/or blocks (containing set-based
sequents). The rules are as follows:

- (L), (Tg), (i), (OL), (Or), (trans) and (inter—,) as in Cprik.
- (DRr) is replaced by two rules for Ac I’ or A¢ I':

G{I' = A,A> B,B}
G{I' = A, A> B}

G{I'= A,AD B,(A= B)}
G{I'= A,AD> B}

(AeT) (AgTI)

— (inter)) is replaced by the following annotated rule:

G{I = A(Y = II,[A = 6)),[=1-0 O}
G{I'= A (Y= II,[A=0))}

(inter))
— The other rules in Cpg are modified by keeping the principal formula in the
premises. For example, the cumulative versions of (A1), (Ogr) are:

G{A,B,A/\B,F:>A}( ) G{I' = A, 04, [= A]}
G{ANB,T = A} L G{I'= A,0A}

(Or)

Given the admissibility of weakening and contraction in Crk, the following
proposition is a direct consequence.

Proposition 5. A sequent S is provable in Crix iff S is provable in CCrik -

Next, we introduce saturation conditions for each rule in CCyk. They are
needed for both termination and counter-model extraction.
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Definition 18 (Saturation Conditions). Let S = I' = A be a sequent. We

say S satisfies the saturation condition on the top level with respect to

(Dr): If AD B € A, then either A€ I and B € A, or there is (¥ = II) € A
with A€ X and B € II.

(OR) : If0Aec Aand (¥ = I € A, then A € II.
(Or) : If QA € I, then there is (X = II] € A with A € X.
(Og) : IfOA € A, then there is [A = O] € A with A € 6.
(Or) : IfO0A el and (¥ = )€ A, then Ae X.

(inter)) : If (X = II,[A= O]) € A, then there is [p = W] € A s.t. =¥ C5 A= 0.
(inter_) : If (¥ = II),[A = O] € A, then there is [0 = W] €Il s.t. A=0C5d=V.
(trans) :  If (¥ =II) € A, then I' C X.

Saturation conditions for the other propositional rules are defined as usual.

We say a sequent is saturated with a rule (r) if it satisfies the saturation
condition associated with (r). We say a backward application of a rule (r) to a
sequent S is redundant if S already satisfies the corresponding saturation condi-
tion associated with (r).

Proposition 6. Let S = I' = A be a sequent. If S is saturated with (trans),
(inter_.) and (inter|), then for (X = II) € A, we have I' = A CS ¥ = II.

In order to define a terminating proof-search strategy based on CCrik, we
first impose the following constraints:

(i) No rule is applied to an axiom and (ii) No rule is applied redundantly.

However there is a problem: backward proof search only respecting these basic
constraints does not necessarily ensure that any leaf of a derivation, to which
no rule can be applied non-redundantly, satisfies all the saturation conditions of
rules in CCrik. This is a significant difference from the calculus of FIK in [2].
The problematic case is the saturation condition for the (inter) rule.

Ezample 4. Let us consider the sequent O(p V q) = Or D Os. After some pre-
liminary steps, we obtain two sequents:

(i). OV q) =0Or > 0s,(0(pVq),0r =0s,[pVgnp,r=s]
(ii). O(pVvq) = 0Or > 0s,(0(pV¢q),0r=0s,[pVgq,qr=s]

Suppose we select (i) and then apply (inter)) obtaining (i’): O(p V ¢) = Or D
Os,(0(pV q),0r = 0Os,[pV q,p,7 = s]),[= s]. After applying (O), (VL) and
(inter_,), we further obtain:

(ii). dpVve)=0Or>0sO(pVe),0r=0s,[pVgpr=s])pVep=s
(iv). OlpVvq)=0r > 0s,(0(pVq),0r=0s,[pV¢gpr=s][pVagq=]),
[PV q,q=s]

We can see that (iii) satisfies the saturation condition for (inter|), as pV ¢,p =
s CS pVq,p,r = s but (iv) does not, since there is no [ = ¥] s.t. ¢ = ¥ CS
pVq,p,r = s. Sequent (iv) would not give in itself a model satisfying (DC) and
it is not obvious how to extend it in order to satisfy (DC).? This example also

3 Observe that a disallowed redundant application of (inter)) to the block [pV q,q =]
would not help, as it would reproduce the branching.
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shows the inadequacy of Cy k- for semantic completeness, as sequent expansion
in Cpik- terminates with (i) and (ii), from which we do not know how to define
a model satisfying (DC).

This means that certain branches in a derivation may lead to unprovable sequents
from which we do not know how to build a “correct” counter-model directly.
Hence, to obtain a “correct” counter-model, we require a mechanism that chooses
the suitable branch which ensures the saturation condition for (inter)). This is
provided by the tracking mechanism and realization procedure defined below.

Definition 19 (Tracking Record Based on €ll). Let S be a set-based
sequent which is saturated with respect to all the left rules in CCrikx. Take
an arbitrary set of formulas, denoted as I'. Let 2 = {T | T = S or T €ll S}.
For each T € 2, we define 5(T, "), the ell-based tracking record of I' in S,
which is a subset of Ant(T) as follows:

- 65(S,I') = I' N Ant(S);

- IfT eg] T’ for some T" € 02, let ®5(T,I") be the minimal set such that
if0A € &g(T",T), then A € 5(T,I');

if QA€ &g(T',T") and A € Ant(T), then A € &g(T,I);

if ANB € ®(T,I), then A, B € (T, I');

if AV B e 6g(T,I') and A € Ant(T), then A € &s(T,I);

if AD Be®g(T,I') and B € Ant(T), then B € 65(T,T).

Tracking record is used to control rule applications to and within a block
created by (inter|), preserving the saturation condition associated to it.

Definition 20 (Realization). Let S = I' = A, (S1),[S2], where S} = X =
II[A = O], Sy = =420 O% and I' C X. Moreover, we assume that Sy is
saturated with respect to all the left rules in CCrik. Using the €ll-based tracking
record of I' in Sy, we define the realization of the block [S2] in S as follows:

(i). First for each T €t Ss, define the realization function fs,(T).
By definition, T is of the form =g_y W' for some & = ¥ €T A = 6O,
fs,(T) is defined inductively on the structure of W% as follows:
— if W¥ is block-free, then fs,(T) = &(® = ¥, I') = Wt.
— otherwise W% = Wy, [T1],...,[Tx] where ¥y is a set of formulas, then
fsl(T) = Qj(@ = W’F) = Yo, [fsl(Tl)L ) [fSl(Tk)]
(ii). With fs,(S2), the realization of [Sa] in S is I' = A, (S1), [fs,(S2)].

As the next proposition shows the expansion produced by a realization pro-
cedure is not an additional logical step; rather, it can be obtained by applying
the rules of the calculus while selecting the appropriate branch.

Proposition 7. Let S = I' = A, (S1),[S2], where S1 = X = II,[A = O] and
Sy = =400 O and I' C X. If S; is saturated with respect to all the left rules
in CCrLik, then for the sequent S" = I' = A, (S1),[fs, (S2)] which is obtained
by the realization procedure in Definition 20, we have
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(i). S’ is saturated with respect to all the left rules applied to or within [fs, (S2)];
(ii). fs,(92) C5 A= O;
(111). S’ can be obtained by applying left rules of CCrik to [S2] in S.

Ezample 5. We go back to sequent (i’) in Example 4. Let

S =0(pVe) =0r>0s OpVe),dr=0s[pVqgp,r=s]),[= s
S1=0(ppVq),0r=0s,[pVgpr=s]
So==s,T=pVqgpr=s

Since [S2] is produced by (inter|) from T, we have S; = =1 s. We are
intended to realize the block [S3] in S by the tracking record of Ant(S) in Sj.
By definition, we have

&, (51, Ant(S)) = Ant(S) = {O(p V ¢)}
651 (T’ Ant(S)) = {p \ q,p}

According to realization, by applying fs, (-) to Sa, we get fs, (=7 s) =pVg,p =
s. Thus, the entire output sequent is

O(pVe) =0r>0s,(0pVe),0r=0s[pVegpr=s])pVqegp=s]
And this is just (iii) in Example 4, which is the right expansion of (i’).

In order to define the proof-search procedure, we first divide all the rules of
CCLik into four groups as (R1): all propositional and modal rules except (Dg);
(R2): (trans) and (inter_.); (R3): (Dg); and (R4): (inter|).

Let S = I' = A, we denote by A the sequent obtained by removing all the
(nested) occurrences of (-)-blocks in A.*

Definition 21 (Saturation). Let S =I'= A be a sequent and not an aziom.
S is called:

~ Rl-saturated if I' = A satisfies all the saturation conditions of R1 rules;

— R2-saturated if S is RI-saturated and S satisfies saturation conditions of R2
rules for blocks (S1),[Sz2] s.t. S1 Eé'> S and Sy Eg] S;

— R3-saturated if S is R2-saturated and S satisfies saturation conditions of RS
rules for formulas A D B € A;

— Rd-saturated S is R3-saturated and S satisfies saturation conditions of R4

rule for each implication block (X = II,[S1]) s.t. X = II,[S1] €(<)A> S.

Definition 22 (Global Saturation). Let S be a sequent and not an aziom.
S is called global-Ri-saturated if for each T €™ S, T is Ri-saturated where
i € {1,2,3}; global-saturated if for each T € S, T is Rj-saturated.

In order to specify the proof-search procedure, we make use of the following
four macro-steps that extend a given derivation D by expanding a leaf S. Each
procedure applies rules non-redundantly to some T = 1" = A ct S.

* For example, let A = B, (X = II),[A = [D = E,(P = Q)]], then A = B,[A =
[D = E]].
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Algorithm 1: PROC(Sp)

Input: Sy

1 initialization D = = So;

2 repeat

3 if all the leaves of D are axiomatic then

4 | return “PROVABLE” and D

5 else if there is a non-axiomatic leaf of D which is global-R3-saturated then
6 ‘ return D

7 else

8 select one non-axiomatic leaf S of D

9 if S is global-R2-saturated then
10 ‘ for all non-R3-saturated 7' €' S, let D = EXP3(D, S, T)
11 else if S is global-R1-saturated then
12 ‘ for all non-R2-saturated 7' €' S, let D = EXP2(D, S, T)
13 else
14 | for all non-Rl-saturated T € S, let D = EXP1(D, S, T)

15 until FALSE;

— EXP1(D,S,T) = D’ where D’ is the extension of D obtained by applying
Rl-rules to every formula in I" = A.

- EXP2(D,S,T) = D’ where D’ is the extension of D obtained by applying
R2-rules to blocks (T3), [T}] € A.

— EXP3(D,S,T) = D’ where D’ is the extension of D obtained by applying
R3-rules to formulas A D B € A.

— EXP4(D,S) = D’ where D’ is the extension of D obtained by applying (i)
R4-rule to each implication block 77 € S and (ii) realization procedures to
modal blocks produced in (i). This step extends D by a single branch whose
leaf is denoted by S’.

It can be proved that each of these four macro-steps terminates. The claim
is almost obvious except for EXP1 (see [2, Proposition 46]).

Proposition 8. Given a finite derivation D, a finite leaf S of D and T €+ S,
then for i € {1,2,3,4}, each EXPiD,S,T) terminates by producing a finite
expansion of D where all sequents are finite.

Now we define the procedure. We first demonstrate the preliminary procedure
PROC(Sp) (see Algorithm 1)which builds a derivation with root Sy and only
uses the macro-steps EXP1(-) to EXP3(-), thus only the rules in Cpix-are
applied. It follows that PROC((A) decides whether a formula A is valid in LIK.
Additionally, the procedure PROCy(+) is then used as a subroutine in the full
procedure PROC(= A) to obtain either a proof of A or a global-saturated
sequent, see Algorithm 2.

Proposition 9. Given a sequent Sy, PROCy(Sy) produces a finite derivation
with all the leaves axiomatic or at least one global-R3-saturated leaf.
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Algorithm 2: PROC(A)
Input: A
1 initialization D = PROCy(= A);
2 if all the leaves of D are axiomatic then
3 | return “PROVABLE” and D
4 else
5 while (No global saturated leaf of D is found) do
6 select one global-R3-saturated leaf S of D
7 let D = EXP4(D, S)
8 let S’ be the leaf of the unique branch of D expanded by EXP4(D, S)
extend D by applying PROCo(S")
9 return “UNPROVABLE” and D

Lastly, we show that PROC(A) terminates.

Theorem 4 (Termination for CCrik). Proof-search for a formula A in
CCrik terminates with a finite derivation in which either all the leaves are
axiomatic or there is at least one global-saturated leaf.

We can also obtain decision procedures for Crixkp and CypikT in a similar
way. Consider a cumulative version CCrixp and CCrixT of the respective
calculi and define suitable saturation conditions associated the extra modal rules,
for a sequent S =1I" = A:

(D): if '™ U A® is non-empty. then A is not []-free.
(To/To): fOA €I (resp. 0A € A), then A € I' (resp. A € A).

The saturation condition for (D) prevents a useless generation of infinitely
nested empty blocks of the form [= [... = [=]...]], which can be created by
the backward application of the (D)-rule. The procedure PROCy(:) integrates
the rules for (D) or (T)’s accordingly: the rule (D) is applied immediately after
each round of EXP2(-) while the two (T) rules are integrated in EXP1(-). As
a result, we can obtain:

Theorem 5 (Termination for CCrixkp and CCrikt). Proof-search for a
formula A in CCrixp and CCrikT terminates with a finite derivation in which
either all the leaves are axiomatic or there is at least one global-saturated leaf.

5 Completeness

Using the decision procedure from the previous section, we show how to build
a countermodel for an unprovable formula, which entails the completeness of
CCrik- Subsequently, we adapt this construction to CCrikp and CCrikT as
well.

Given a global-saturated sequent S in CCyrik, we define a model Mg for it
as below.
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Definition 23. The model Mg = (Ws,<g, Rs,Vs) is a quadruple where
-Ws = {:&p:w | b=Vt S};

- x5, <g xg, if S1 S5 Sy;

- Rgxs,ws, if 52 €} S1;

- for each p € At, let Vs(p) = {xo=w | p € P}.

Proposition 10. Mg satisfies (FC) and (DC).

Lemma 8 (Truth Lemma for CCrik). Let S be a global-saturated sequent
in CCLik and Mg = (Ws,<g,Rs,Vs) defined as above. (a). If A € &, then
Mg, xeoy IF A; (b) IfA eV, then Mg, tp—y ¥ A.

By the truth lemma we obtain as usual the completeness of CCrk.

Theorem 6 (Completeness of CCrik). If A is valid in LIK, then A is
provable in Cpik.-

Ezample 6. We show how to build a countermodel for the formula (Op D Og) D
O(p D ¢) which is not provable in CCrik. Ignoring the first step, we initialize
the derivation with Op D O¢ = O(p D ¢). By backward application of rules, one
branch of the derivation ends up with the following saturated sequent

So=90pD0g=0(p>q),0p,[=pDqp, (p=q)

and we further let S;1 = = p D ¢, p, (p = ¢q) while S; = p = ¢. We then get the
model Mg, = (W, <, R, V) where

- W= {‘rs()?xSl?xSQ};

—®g, S XSy, TSy S X5y, Ty S TS, TGy < TSy;
- Rxgs,xs,;

V(p) ={zs,} and V(q) = @.

It is easy to see that zg, Iff (Op D Og) D O(p D q).

Next, we consider the completeness of CCrixp and CCrikxt. We consider
the model Mg = (Wg,<g, Rg,Vs) for a global-saturated sequent S in either
calculi, where Wg, <g and Vs as in Definition 23, Rg modified as follows:

— For CCrikp: Rsxs,xg, if So E([)'] Sy or Suc(Sy) is []-free and zg, = zg,;
— For CCrikT: R5$51$52 if Sy Gg] Sy or TS, = TGy
Trivially the relation Rg is serial or reflexive according to Cpikp or CrLikT,

moreover models for CCrikp and CCrikr still satisty (FC) and (DC). Finally,

Theorem 7 (Completeness of CCrixkp and CCrikr). If A is valid in
LIKD (resp. LIKT), then A is provable in CCrikp (resp. CCLIKT)-



6

Local Intuitionistic Modal Logics and Their Calculi 95

Conclusion

We studied LIK, the basic intuitionistic modal logic with locally defined modali-
ties as well as some of its extensions. In further research, we intend to investigate
both axiomatizations and calculi of extensions to the whole modal cube. For
instance, we would like to provide a (terminating) calculus for the S4 extension
of LIK (the logic is studied in [1]). Since LIK is incomparable with IK, we may
also wonder what the “super” intuitionistic modal logic obtained by combining
both is. Our broader goal is to establish a framework of axiomatization and
uniform calculi for a wide range of IMLs, including other natural variants that
have been little studied or remain entirely unexplored so far.
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Abstract. Non-monotonic modal logics are typically interpreted over
neighbourhood frames. For unary operators, this is just a set of worlds,
together with an endofunction on predicates (subsets of worlds). It is
known that all systems of not necessarily monotonic modal logics that
are axiomatised by formulae of modal rank at most one (non-iterative
modal logics) are Kripke-complete over neighbourhood semantics. In this
paper, we give a uniform construction to obtain complete resolution cal-
culi for all non-iterative logics. We show completeness for generative
calculi (where new clauses with new literals are added to the clause set)
by means of a canonical model construction. We then define absorp-
tive calculi (where new clauses are generated by generalised resolution
rules) and establish completeness by translating between generative and
absorptive calculi. Instances of our construction re-prove completeness
for already known calculi, but also give rise to a number of previously
unknown complete calculi.

Keywords: Modal Logics + Automated Reasoning + Resolution

1 Introduction

There are two standard ways to define modal logics. The syntactic approach
specifies a logic by means of its axioms and proof rules. One way of defining
the modal logic K is as the least set of formulae that contains all instances of
propositional tautologies and the K-axioms, and is closed under modus ponens
and necessitation. Alternatively, we can take a semantic approach, and define
a logic as the set of formulae that is valid over a given class of frames. For
the modal logic K, this is typically the class of formulae valid over all Kripke
frames, but we can alternatively define K as the class of all formulae that are
valid in all neighbourhood frames where neighbourhoods are closed under finite
intersections. More often than not, the frame class under consideration is also
described using logical formulae as axioms.

No matter whether we take a syntactic or semantic approach, the questions
remain the same: can we define a proof calculus that allows us to derive all
formulae of the logic? Can we decide whether a formula is in the logic?

In this paper, we answer these questions uniformly for the class of all non-
iterative modal logics and resolution calculi. Non-iterative logics are defined
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(either syntactically or semantically) by axioms without nesting of modal oper-
ators. While this excludes e.g. logics with (generalised) transitivity axioms, it
still covers a large class of specimens. Examples include various classical modal
logics of Chellas [8], all standard conditional logics treated in [19], extensions
of the modal logic K with reflexivity, seriality and functionality [6], graded and
probabilistic modal logic [13,14], Pauly’s coalition logic [22], a variety of deontic
logics [24] and logics of agency [11]. For all these logics, we construct a complete
resolution system that can be turned into a decision procedure. From a syn-
tactic viewpoint, we cannot restrict ourselves to normal modal logics. That is,
our basic modal systems will only include modal congruence (from ¢ < ¢ infer
O¢ < O, or its multi-argument, multi-modal generalisation). Consequently
on the semantic side, we adopt neighbourhood semantics as the most general
semantic framework. For this semantics, Lewis [16] has already shown that non-
iterative logics are complete with respect to the class of neighbourhood frames
that are defined by their axioms. Here, completeness is understood with respect
to a Hilbert-style system, where deduction is defined as the closure of propo-
sitional tautologies and axioms under substitution, modus ponens, and modal
congruence. Here, we use the same classes of frames (that are defined by modal
axioms), and show that our resolution systems are complete with respect to these
frames. Considering the same semantics, this builds a bridge between syntacti-
cally defined logics, and the resolution systems that we introduce.

Our technical contribution is the definition, and analysis, of two different
types of resolution calculi for each non-iterative logic. The first system that we
call generative extends propositional resolution with modal rules that produce
new clauses with possibly new modal literals. For example, the modal congruence
rule above introduces the clause —[p V g, i.e. Op — g, in contrast to more
standard calculi that are based on resolving conflicting literals. In these calculi
that we call absorptive, the modal congruence rule would identify Cp and —[g
as conflicting, and — assuming that p and ¢ are equivalent — adds the clause
DV E if DV —Op and E V UOgq are already derived. The reason for introducing
both calculi is technical: generative calculi are much more suited to a canonical
model construction that we use to prove completeness. In particular, maximally
consistent sets behave in the expected way (they contain every literal or its
negation). On the other hand, absorptive calculi are the calculi de rigeur, and
transforming generative proofs to absorptive proofs, we obtain completeness for
absorptive calculi by translation.

Methodologically, we make an interesting, but not entirely unexpected dis-
covery. While in propositional logic, we can derive completeness of resolution
directly from completeness of a cut-free sequent calculus (e.g. [10]), this method
fails for modal logic: for example, the set & = {p, —p V q,0p, -Og} is evidently
satisfiable (at a world, in a neighbourhood or Kripke model), but ¢ L in a
sequent calculus for classical (or normal) modal logic where A € @ are treated
as additional axioms or initial sequents. Because the additional initial sequents
@ play the role of global assumptions, @ FI" means that I is valid in all models
where all A € @ are true globally (at all worlds). Hence @ I~ L as there is no
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model where all ¢ € @ are globally true. Despite the fact that we do not obtain
a resolution calculus directly from a sequent calculus (by forgetting the propo-
sitional rules), both calculi are still closely related. To ensure completeness of
the resolution systems, we employ the same technical condition that guarantees
cut elimination in sequent calculi: in both cases, we require that modal rules
are cut-closed, i.e. two applications of modal rules, followed by a resolution step
between their conclusions, can be replaced by a single modal rule (whose pre-
misses are derivable from the premisses of the original rule). In cut-elimination
proofs, this is what allows us to propagate cut towards the leaves of a proof
tree. For resolution calculi, this property ensures that a consistent set remains
consistent if we extend the language: an inconsistency in the larger system would
involve new variables, and cut-closure allows us to eliminate them. We discuss
this phenomenon more in the conclusion.

Related Work. As far as we are aware, our paper is the first to study the con-
struction of resolution calculi from a more general perspective, i.e. focusing on
properties such as non-iterative axioms rather than on concretely given logical
systems. There is a large body of work on resolution calculi on normal modal log-
ics [1-3,7,9,12,17,18] but [20] appears to be the only paper on modal resolution
for non-normal calculi. All of the above approaches focus on concretely given
calculi in contrast to this paper that uniformly applies to all calculi with non-
iterative axioms. The notion of cut-closure has been used to construct cut-free
sequent calculi in [21]. Indeed, the results of op.cit. will give complete, cut-free
sequent calculi that have precisely the same modal rules as our generative sys-
tems. Of course, we are not the first to observe this deep relationship between
sequent calculi and resolution, although our paper appears to be the first that
follows a semantic route to directly express completeness of resolution. Avron [4]
has discussed the relationship between resolution and sequent calculi for propo-
sitional and first order logic, and Mints [17] has considered modal calculi; both
from the perspective of syntactical translation. To our knowledge, there is no
work that relates sequent calculi and resolution for non-normal modal logics, or
on methods that apply to a range of logics in a uniform way.

2 Preliminaries

Definition 1. Let V be a set of propositional variables that we fix throughout.
The language £ of modal logic is given by the grammar

L3¢z=p|-¢|oVe[Oe

where p € V. A substitution is a mapping o : V — L, and we denote the result
of uniformly substituting each p € V with o(p) in a formula ¢ by ¢o. A global
formula is of the form G(¢) where ¢ is a formula. Propositional and modal
literals are given by PL(V) = U{p,—p | p € V} and ML(V) = [J{Op,-Op |
p € V}, respectively. We denote the set of literals over V by Lit(V) = PL(V) U
ML(V). Two literals are disparate if the variables that occur in them are different.
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A clause is a finite disjunction of (propositional or modal) literals. We identify a
clause with the set of its literals, and sometimes say that a literal is an element
of a clause, or write Dy C D; to indicate that clause Dg is a subclause of D;.
In particular, we consider two clauses as equal if they have the same literals.
A clause is propositional if all literals are propositional. We distinguish local
clauses, written Iy V --- V I,,, and global clauses, written G(l; V --- V I,,). We
sometimes refer to formulae and clauses as local formulae or local clauses to
emphasise the distinction to their global counterparts. We write CI(V) = {l1 V
Vi, | l,..., 1, € Lit(V)} for the set of clauses with literals in Lit(V).

The following notion of truth distinguishes local and global clauses.

Definition 2. A neighbourhood frame is a pair (W, N) where W is a set (of
worlds) and N : W — PP(W) is a (neighbourhood) function where P(X)
denotes the powerset of a set X. A neighbourhood model is a triple (W, N, )
where (W, N) is a neighbourhood frame, and 6 : V — P(W) is a (valuation)
function. We say that the model (W, N, ) is based on the frame (W, N'). Truth
w = ¢ of a formula ¢ at a world w € W is given by

w = piff we f(p) wE ¢ iff w £ ¢
wEVYifwEdorwkEY w | O¢ iff [¢] € N(w)

where [¢] = {w € W | w | ¢} is the truth set of ¢ € L. We occasionally
write M,w = ¢ or even (M, N,0),w = ¢ if we want to emphasise the (carrier
of) the model. This defines the interpretation of local formulae and clauses. For
global formulae and clauses, we have w | G(¢) iff w’ = ¢ for all w' € W. We
use standard terminology, and write (W, N,0) = ¢ if (W, N,0),w = ¢ for all
we W, and (W,N) = ¢ if (W,N,0) = ¢ forall§:V — P(W). If Fis a class of
neighbourhood frames, we write F = ¢ if F' |= ¢ for all frames F' € F. A formula
¢ is satisfiable in a class F of neighbourhood frames if there is a neighbourhood
model (W, N,0) with (W,N) € F, and w € W such that (W,N,0),w E ¢;
otherwise, ¢ is unsatisfiable in F. The notion of (un)satisfiability is extended as
usual to sets of formulae.

It is standard that every formula can be converted to an equi-satisfiable set of
global and local clauses in linear time.

Proposition 3 (Normal Form [20]). Every (local or global) formula can be
converted to an equisatisfiable set of (global and local) clauses.

Proof. Let ¢ € L be a formula and p € V be a fresh propositional variable
(that does not occur in ¢). We write R(p = ¢) for R(p)(¢) where the function
R:V — L — CI(V) is given by

R(p=¢1 N ¢2) = R(p1=0¢1) U R(p2=¢2) U{—pV p1,—pV p2,~p1 V —p2 V p}

R(p ¢>1\/¢2):R( 1=01) UR(p2=¢2) U{=pV p1Vp2,=p1 Vp, -p2Vp}
R(p=0¢) = R(¢g=¢) U{-p Vv Uq,~OqV p}
R(p=-¢) = R(gq=¢) U{-pV q,~qV p}
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where, in each of the clauses, p1,ps and ¢ are fresh. It is a routine induction to
show that ¢ and {p} U {G(D) | D € R(p=¢)} are equi-satisfiable when p does
not occur in ¢. The same holds for G(¢) and {G(p)} U{G(D) | D € R(p=¢)}. O

3 Non-iterative Logics and Their Calculi

Definition 4. A formula ¢ € L is non-iterative if, for every subformula (i of
¢, the formula v is purely propositional, i.e. does not contain a modal operator.
If Ax is a set of (not necessarily non-iterative) formulae, then Frm(Ax) is the
class of neighbourhood frames (W, N) so that (W, N) = ¢ for all ¢ € Ax.

A rule is an n + 1-tuple (p1,. .., ¢Pn, do), written as @1 ... ¢, /do where the
¢; are formulae, and ¢1, ..., ¢, are the premisses, and ¢g is the conclusion. It
is mon-iterative if all the premisses are propositional clauses, and the conclusion
is a (not necessarily propositional) clause. If Rl is a set of (not necessarily non-
iterative) rules, then the class of Frm(RI) is the class (W, N) of neighbourhood
frames such that (W, N, 0) = ¢¢ whenever (W, N,0) = ¢; (all i =1,...,n), for
all :V — P(W).

A set Ax of formulae (thought of as axioms) and a set Rl of rules are equivalent
if they define the same frames, i.e. Frm(Ax) = Frm(RI).

It is easy to convert between non-iterative rules and axioms [23].

Definition 5. We write cnf(¢) for a (chosen) conjunctive normal form of a
formula ¢. The rules induced by the non-iterative axiom ¢ are the rules induced
by the (non-iterative) clauses 71, ..., 7, that constitute the conjunctive normal
form of ¢, that is, cnf(¢) =1 A+« Av,.

A non-iterative clause v =y V... V1, VO¢ V --- V QO¢,, induces the rule
t(y)=061...0/LuV-- VI, VOp1V---VOp,, where p1,. .., p, are pairwise distinct,
fresh, propositional variables, © € {{0,-0} and §; A --- A d; is a conjunctive
normal form of (p; < ¢1) A+ A (pn < dn).

If on the contrary, p = ¥1 ...7n /70 is a non-iterative rule, the aziom induced
by p is ¢(p) = Yoo where o is the most general unifier of 41 A -+ A 7,,.

The above construction ensures that induced axioms and rules are equivalent in
the sense of Definition 4.

Proposition 6. Fvery set Ax of azioms is equivalent to the set of | J{c(a) | a €
Ax} of induced rules, and every set Rl of non-iterative rules is equivalent to the
set {¢(p) | p € RI} of induced azioms.

In examples, the situation is as follows.

Example 7. The classical modal logic E is defined by the empty set of (extra)
axioms that induce an empty set of rules. The K-axiom O(p — ¢) — (Op — Oq)
induces the rule =r VvV =pV ¢,p V r,=q V r/=0Or vV -Op vV Oq. In the presence of
the congruence rule, necessitation can be replaced by the axiom JT which gives
the rule p/Op. One can show that the (simplified) set of rules N = {=pV =g V
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r/=0pV -0OqV Or;p/0Op}, as well as the set S = {-p; V-V —p, Vpo/~Op; V

-+ V =0p, VOpy | n > 0} are equivalent to the K-axiom and OT. We call N
and S the non-standard and standard rules for K. As we are demonstrating in
Example 19 the non-standard rules will not give us completeness as they are not
cut-closed (Definition 20).

As our calculi apply to all non-iterative logics, we are parametric in a set of
(non-iterative) rules. For a set Rl of rules, we define an generative calculus that
adds new clauses with possibly new literals, and an absorptive variant, where
clauses are combined and conflicting literals are removed.

Definition 8. Let Rl be a set of non-iterative rules. The rules

Dvil D'v-l G(D) G(DVI) G(D'Vv=l) -pVg pV-—q
DvD D G(DvVv D) —-Op Vv Oq

are called local resolution (LR), the global-local rule (GL), global resolution (GR),
and the modal congruence rule (MC), respectively. We write RI = RIU {(MC)}
for the extension of Rl with the modal congruence rule.

The generative calculus given by Rl has the rules (GR), (GL), (LR) and all rules

G(D:) ... G(D)
G(Do)

for which Dy ...D,, /Dy € RIC and D3, ..., D; aresubclauses of Dq,...,D,. The
absorptive calculus defined by Rl has the rules (GR), (GL), (LR) and the rules

G(DS) ... G(DE) G(E1v—l) ... G(ExV i)
G(El\/“'\/Ek)

GD;) ... G(D:) Eyv-ly ... EpV-i
ELV -V B

where Dy ...D, /Dy € RI¢ and D7 C D; is asubclause of Dy, foralli =1,...,n.
If I' is a set of local and global clauses, we write I" by (resp. I' k) for the
least set of (local and global) clauses that contains I" and is closed under all

instances of the rules of generative (resp. absorptive) rules defined by RI. We
write I' k. vy if v € ' k for x = G, A.

Generative and absorptive calculi serve a different purpose: we are going to
prove semantic completeness for generative calculi, and then show that derivation
in absorptive calculi can be translated to generative calculi, thus establishing
completeness for absorptive calculi as well. In particular, we only consider notions
like maximal consistency for generative calculi.

Example 9. The modal logic E just has the congruence rule. The generative
and absorptive local version of the congruence rule are

G(Do) G(Dy) G(Dg) G(Dy) CyvOp Cyv-lg

(GO) G(—0Op v Og) (ACL) C1 Vv Cy
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where Dy C —pV q and D; C —q V p are subclauses. In the global version
(ACG) of the absorptive rule, all clauses of the rightmost rule are under a global
modality. For the standard rule set of modal K, the generative version looks like
the sequent rule on the left

G(—Op; Vv --- v -Op,, V Opo) DyV---v D,V Dy

with the local absorptive rule on the right. Again D C —p; V.-V p, Vpp is a
subclause, and all clauses are under a global modality in the global absorptive
variant of the rule.

It is easy to see that both the generative and the absorptive calculus are sound.

Proposition 10 (Soundness). Let Rl be a set of non-iterative rules. Then
I' k € for both x = G, A only if I" is unsatisfiable in the class Frm(RI) of RI-

frames.
Proof. We show that - is satisfiable whenever I is by induction on I' k. . O

In particular, if Rl is equivalent to a set Ax of non-iterative axioms, the calculus
fri is sound with respect to Frm(Ax). We collect some elementary results on the
calculi just introduced. The most important one is the trichotomy theorem for
generative calculi:

Theorem 11 (Trichotomy). Let | be a modal or propositional literal, and let
@ be a set of local and global clauses, and D a local clause with ® U {l} ko D.
Then (1) D=1 or (2) ks D or (3) @U{-l} ka D.

Proof. By induction on the proof of & U {I} k; D. Note that the format of the
rules guarantees us that @ kg G(D) whenever @ U {I} to G(D), as rules with
global conclusions only have global premisses. a

Remark 12. The trichotomy fails for absorptive calculi. Over the empty set of
rules Rl = {), i.e. for the modal logic E, consider ® = {G(—pV q), G(—qVp), ~Oq}.
Then @ U {0Op} k4 € but neither e = Op nor @ k4 € or @ k4 —Op hold.

The trichotomy property is a stepping stone to prove negation completeness for
maximally consistent sets. As trichotomy fails for absorptive calculi, negation
completeness only holds for generative calculi, too.

Definition 13. Let G be a set of global clauses over a (finite or infinite) set V
of variables, and let @ be a set of local clauses over the same set of variables.
Then @ is G-inconsistent if GU @ k4 €, and G-consistent, otherwise. The set @
is G-mazimally consistent if @ is G-consistent, and for every clause D € CI(V)
with D ¢ @, we have that ® U {D} is G-inconsistent.

Technically speaking, it would be more appropriate to speak of generatively
(maximally) consistent sets, but we elide the qualifier ‘generative’ as we never
consider these notions for absorptive calculi.
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Lemma 14. Let M be G-mazimally consistent and | be a (propositional or
modal) literal. Thenl € M or =l € M.

Proof. If neither [ € M nor =l € M, then M U {l} ks € and M U {~l} k e
Using the trichotomy lemma, this entails that M k5 €, contradiction to M being
consistent. O

Moreover, this gives a characterisation of maximally consistent sets as given by
a set of singleton clauses.

Lemma 15. Let G be a set of global clauses over a set Vo of propositional
variables. Let L C Vo U {Op | p € V} be a set of positive literals, and
L™ =Lu{~l|lelit(Vy)\ L}. Then there is a 1-1 correspondence

{M | M G-mazimally consistent} 1, {L CVy | L™ G-consistent}

given by f(M) = M N Lit(Vo) from left to right, and f~*(L) = {D V1| D €
Cl(Vo),l € L™}. Moreover, N M and \(f(M)) are logically equivalent.

The trichotomy law also allows us to show a limited form of deductive complete-
ness for propositional resolution which is known in the literature, consequence
completeness [15], although our proof appears to be new. We state the theorem
for the generative calculi of Definition 8. It evidently remains true for proposi-
tional resolution.

Lemma 16. Let @ be a set of local clauses, and let D be a local clause with
pairwise disparate literals such that A\ ® — D is a propositional tautology. Then
there is a subclause Do C D of D such that ® by Dyg.

Proof. We use completeness of propositional resolution (which is the only rule
applicable) and assume that D =1y V --- V[, with the [; pairwise disparate. If
A\ @ — D is a tautology, then ®U{-ly,...,l,} is unsatisfiable. By completeness
of propositional resolution, @ U {—ly,...,l,} ks €. Repeated application of the
trichotomy lemma yields a subclause Dy C D such that @ ki Dy. O

Remark 17. The above theorem fails without the assumption that the literals
that occur in D are pairwise disparate. Take for example ® = () and D =
q V —q. Then clearly AP — ¢V —q is a tautology, but @ k5 ¢ V —q is false.
The reason is that repeated application of the trichotomy lemma fails: we have
®U{q} U{~q} ks L. Hence by trichotomy, either ® U {¢q} ks L, or DU {q} ks ¢
as —q = € is impossible. In the first case, we can apply trichotomy again. In the
second, another application leaves the evident possibility that ¢ = q.

4 Completeness

Throughout the section, we fix a set Rl of non-iterative rules. Our first goal is
to show completeness for the generative calculus. That is, if @ is a finite and
consistent set of local and global clauses, then & is satisfiable in Frm(RI).
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As @ is finite, only a finite number of variables will appear in (clauses in) &.
Our construction has two stages. We start with a finite set V of propositional
variables. This allows us to consider maximally consistent sets of clauses over
Vo. We then extend the language with new variables V;. The purpose of these
new variables is to give names to collections of maximally consistent sets. For
example, for every maximally consistent set M, we will have a variable pp; such
that ppy = A M, and for a set S of maximally consistent sets, we add a variable
with the interpretation ps = \/ ;o5 /A M.

Definition 18. Let Vg be a finite set of variables, and Gg be a finite set of
global clauses over variables in V. The extension of Vg and Gg are the sets Vi
of variables, and G; of global clauses where the set Vi extends Vy with

— a variable pp for every clause D over V
— a variable py; for every set M of clauses over V
— a variable pg for every set of clause sets over V.

The set Gy extends Gy with the clauses G(F) where E is in one of the following:

~{=ps V Viyespu} U{-prm Vps | M € S}, to express that ps < \/ ;e P
~AVper P Vpu}U{—pym Vpp | D € M}, to express py < A peps PD;
— {-pp Vou}U{=lVpp |l € D}, to express that pp < D.

We let W; = {M C CI(V;) | M Go-maximally consistent}, defining two sets of
maximally consistent sets of clauses: Wy are clauses over the original variables
Vo and W3 are maximally consistent sets over the extended language.

To define the structure of the canonical model, we would like to extend every
Go-maximally consistent set M to a G;-maximally consistent set M, and define
No(M) = {S € Wy | Ops € M}. While this will allow us to establish that the
frame conditions (defined by the rules of the calculus) hold, it is not true that
every Gp-consistent set is Gj-consistent.

Example 19. Let Vo = {p,q,r, s} and consider generative rules corresponding
to the nonstandard rules for K from Example 7, that is
G(D)
G(—\Dp \Y —\Dq V D’I“)

G(D)
G(Op)

(DC—pV—gVr) (D Cp)

Consider the set Gg = {—pV—qV—rVs} and let H = {Op, Og, Or, -Os}. Then H
is Go-consistent (no resolution rule can be applied), but it is not Gp-consistent.
It S={M e Wy |{p,q} C M}, then pg is equivalent to p A ¢ under G;. Hence
we have that Gy ko G(—p V —q V pg), and also G kg G(—pg V —r V s). Applying
the K-rule to both, we obtain G(=Op Vv —Ogq V Opg) and G(—Opg VvV —0Or v Os).
Applying resolution, and converting to a local clause, we have that Gy ko =Cp Vv
—0gq Vv -0Or v Os so that H is clearly Gi-inconsistent.

The key here is that in G; we have more propositional variables and defining
axioms that allow us to make more modal deductions. The crucial point in the
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above example is that we could apply the modal rule in two different ways, and
the apply cut to the rule conclusions. Had we chosen the standard rules for K,
ie. =p1 V-V op, Vpo/—Opy V-V -Op, VOpy for all n > 0, the above set
H would not have been Gy-consistent. The requirement of cut-closure addresses
this problem, and also ensures that Gg-consistency implies G;-consistency.

Definition 20. Let Rl be a set of non-iterative rules. Then Rl is cut-closed if,
for any two instances on the left
Dyv---vD, E/V---VE, BV VF
IV Dy =LV Ey Dy V Ey

there exists a rule instance in Rl (on the right) such that {Ds,...,D,,E,...,
E,,} FF; in propositional resolution for all i =1,... k.

Clearly, the paradigmatic example is the rule set of K.

Example 21. The nonstandard set of rules for K from Example 7 is not cut-

closed: a cut between two instances of the binary K-rule gives a conclusion of

the form —Op v =Oq Vv =Or vV =0t which is clearly not an instance of any of the

rules. We therefore need to generalise the rule to —p; V-V —p, V po/—0Opy V
-V =p,, V Opg, i.e. the standard set of rules is cut-closed.

Crucially, cut-closed sets guarantee preservation of consistency.

Lemma 22. Let Rl be a cut-closed set of non-iterative rules, and let Gy and Gy
be as in Definition 18. Then every Gg-consistent set is Gy-consistent.

Proof. We use the fact that resolution is confluent, i.e. that we can change the
order of resolution steps ad libitum. That is, given clauses D V I; V Iy, —ly V By
and —ls V Ey, we can resolve with —l; V F first (to obtain DV E; VI3) and then
resolve with —ls V E5 to get DV E;7 V E5, which we also obtain if we change the
order of resolution steps.

Now assume that H is Go-consistent, but Gi-inconsistent. Then the derivation
of € from G; U H needs to contain a modal rule, as the extension G; of Gg is
purely definitional.

Using the confluence property of resolution, we may permute resolution steps
so that cuts between conclusions of modal rules are performed first. Using cut-
closure, we can replace modal rules, and the cuts between their conclusions, by a
single modal rule. We now claim that the ensuing proof is already a proof in Gg.
This follows, as we can establish by induction that every proof that uses at least
one Gp-axiom (with variables in V1\Vj) has a clause with at least one variable
in Vp\V; as a conclusion. O

Definition 23 (Canonical Model). In the terminology of the previous defi-
nition and now assuming that Rl is cut-closed, for M € Wy, let M e Wy be a
maximally consistent extension of M, that is, we require that M C M.

The canonical model over the set Gg of global clauses and V( of variables is
M = (W, No, o) where 0y(p) = {M € Wy | p € M} and No(M) = {S C W |
Upg € M}
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In the sequel, we fix Vo and Gg and speak of the canonical model. Maximally
consistent sets are closed under resolution:

Lemma 24. Let G be a set of global clauses, and let M be a G-mazimally con-
sistent set. Then D € M <= M to D and D1V Dy € M whenever both D1V —l
and Dy V1 e M.

Proof. The second item is immediate from the first. Assume for a contradiction
that M ks Dbut D¢ M. If D=1,V ---Vl,, then —l,...,-l, € M. But then
M kg e, contradicting the consistency of M. a

The truth lemma requires us to establish the premisses of the modal rules. This
is split into two lemmas.

Lemma 25. Let g € Vg and let S = [q] = {M € Wy | ¢ € M}. Then G; ks
G(=ps V@)

Proof. We have that G; ks G(—pum V pg) for all M € S by definition of S.
We also have G tz G(—ps V V ycg Par). By propositional resolution, we have
Gy ka G(—ps V pg). As we also have G(—p, V ¢) € Gy by construction, we apply
resolution again to obtain Gy ko G(—ps V q). O

The reverse implication is more difficult, and we need the following which essen-
tially capitalises on the fact that all our rules with global conclusions have global
premisses only.

Lemma and Definition 26. Let G be a set of global clauses. The global clo-
sure of G is the set G& = {G(D) | G ke G(D)} of global clauses that are deriv-
able from D. The boundary of G is the set GB = {D | G(D) € G%} of local
clauses that are derived from their global counterpart. With this terminology,
GB ={D |G D}.

Proof. This is immediate from the shape of the rules, as there are no rules with
local premisses and global conclusions. It can be proved straightforwardly using
induction on the derivation of G ky D. |

Lemma 27. Let G be a set of global clauses, and suppose that G kg D, for a
local clause D. Then also Gk G(D).

Proof. By induction on the derivation of D. More precisely, we show that if
G kg C, for a local or global clause C, then G ks Cy, where Cy = C if C is
global, and Cy = G(C), if C is local. The key here is that all rules that only deal
with local clauses (propositional resolution) have a global counterpart. a

The following is the companion to Lemma 25.

Lemma 28. Let ¢ € Vo and let S = [q] = {M € Wy | ¢ € M}. Then G; kg
G(D), for a subclause D C —q V pg.
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Proof. The formula ¢ — V{AL™ | ¢ € L C Vy} is a tautology. As any G-
inconsistent set is inconsistent with G, the same applies to ¢ A GP — \/{A\ L™ |
q € L C VoGi-consistent}. By Lemma 15 we get that ¢ A GP — \/{AM | q €
M € Wy}. As pg is equivalent to the last disjunction under G, we finally obtain
that ¢ A GP — pg is a tautology. Lemma 26 then yields the claim. a

This gives us enough ammunition to establish the truth lemma:

Lemma 29 (Truth Lemma). In the canonical model, we have D € M <=
M |= D, for all M € W1 and all local clauses D over V.

Proof. By Lemma 14 we just need to show the claim for singleton clauses. For
propositional literals, this is immediate from the definition of the valuation 8:
we have M = p iff M € 0(p) iff p € M. For the modal case, we have to show
that Og € M iff Opg € M where S = [q] = {M € Wy | ¢ € M}.

By Lemma 25 and Lemma 28, we have that Gy ks G(Dp) and Gy ks G(Dy),
where Dy is a subclause of =pg V g and D, is a subclause of —q V pg. The modal
rule allows us to conclude that Gy ky G(=Op, vV Ogq) as well as G(=Oq v Ops).

We can now argue that g € M iff Og € M (as M is Go-maximally consistent
and M C M) iff Opg € M (by resolving with the derivable clauses =Ops V Og
and —Og Vv Opy). O

For completeness, we still need to establish that the canonical model satisfies all
axioms in A. We use Lemma, 15.

Lemma 30. Let (Wy, Ny) be the frame of the canonical modal, and let 6 : V —
P(Wy) be any valuation. Moreover, let D be a local propositional clause such that
(Wo, No, 0) = D. Then there is a subclause Dy C D of D such that Gy ks G(Dgo)

where a(q) = po(q)-

Proof. This is similar in spirit to the proof of Lemma 28. We know that
T — V{AL" | L C Vy} is a tautology. As every Gg-inconsistent set is incon-
sistent with the boundary G, we obtain that GP — {AL™ | ¢ € L C V
Go-inconsistent }. Using Lemma 15, we may replace L™ with maximally consis-
tent sets, i.e. G — \/{AM | M € Wy} is a tautology. As (Wy, No,0) = D,
any maximally consistent M € Wy is either an element of 6(q) for ¢ € D, or
an element of Wy \ 6(q), for =¢ € D. As pg is equivalent to \/{M | M € S}
under G, we obtain that {G — \/ pa) | ¢ € D} V V{-po(q | 7¢ € D} are
tautologies, which entails the claim as in Lemma 28. a

The previous lemma has shown that we can derive the substituted premiss of a
rule in A. The next lemma shows that derivability of the substituted conclusion
turns into semantic validity in the canonical model.

Lemma 31. In the canonical model, for M € Wy and S C Wy, we have that
ps €M <= MeS andOps e M < S € No(M).

This allows us to show that the canonical model is in the right frame class.
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Lemma 32. Let Ax be a set of non-iterative axioms and Rl an equivalent set of
rules. Then M € Frm(A) for the canonical model M given by RI.

Proof. Let 0 be any valuation, and let 7/+ be a rule in Rl such that (Wy, Ny, 0) |=
. We show that (Wp, Ny, 0) = ~, and the result follows from Lemma 15. Assum-
ing that m = D; ... D,, the previous lemma gives us subclauses D] C D; such
that G; Fg G(Djo) where o(q) = pg(q)- Applying the rule 7/y € A, this gives
G1 ke G(Dgo) where Dy = + is the conclusion of the rule 7/vy. Let M € Wy,
and showing that (Wy, No,6), M |= Dy implies the claim. As M is maximally
consistent, there is a literal [ € Dyo with [ € M. Tt follows from Lemma 31 that
(Wo, No, 0) |= 1, hence (Wy, No,0) = Dy. As Dy = v was the conclusion of the
rule 7 /7, this is all we had to show. O

Finally:

Theorem 33 (Generative Completeness). Let @ be a set of local and global
clauses, and let Rl be a set of non-iterative, cut-closed rules. If @ is unsatisfiable
in Frm(RI), then & k e.

Proof. As usual, by contraposition: Let Gg denote the global clauses of @, and
let M be a maximally G-consistent set that contains all the local clauses of &.
In the canonical model, we have that M = ¢ for all ¢ € &, so P is satisfiable.
By the last lemma, we have M € Frm(A) so that @ is satisfiable in Frm(A). O

The criticism of generative calculi is that they are not very “resolution-like”. In
particular, the “spirit” of resolution is the removal of conflicting literals, i.e. the
absorptive calculi. We now show that both are equivalent.

Lemma 34. Suppose that @ is a set of local or global clauses, and assume that
D €. Then @ k4 € whenever kg and b4 are induced by a cut-closed set of rules.

Proof. We demonstrate how to successively replace a generative instance of a
rule in RI® by an absorptive one. If the derivation & h € contains an instance of
a modal rule (or the congruence rule), assume that there is no other modal rule
further below. As the derivation ends in €, every literal must either be resolved
against the conclusion of a modal rule (in which case, we can use cut-closure to
replace the two rule instances with a new one), or it must be resolved against
a clause that is not. Successively applying cut-closure, we are left with just the
second case, i.e. with a proof tree of the following form if the last clause is local:

G(D$) ... G(Dg)
G(ly V- Vi)
ll\/\/ln _\ll\/El
E1\/l2"'\/ln —\lg\/EQ

E,Vv---VE,
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This proof tree can be replaced by its absorptive variant, i.e. the rule instance
GD3) ... GD) -LvE, ... —l,VE,
E,Vv---VE,
thus reducing the number of applications of generative rules by one. If the con-

clusion of the cascade of cuts is global, we use the global variant of the absorptive
rule instead. O

This gives us completeness for the absorptive calculus, too.

Theorem 35 (Absorptive Completeness). Let @ be a set of local and global
clauses, and let Rl be a set of cut-closed, non-iterative rules. If @ is unsatisfiable
in Frm(A), then @ 4 e.

Using Lewis’ theorem, i.e. completeness of a Hilbert system for non-iterative
axioms over the class of neighbourhood frames defined by the axioms, we can
now also close the loop between syntactically defined logics, and their resolution
systems.

Theorem 36. Let Ax be a set of non-iterative axioms, and let Rl be a cut-closed,
equivalent set of rules. If by ¢ is the provability predicate in the Hilbert system
given by Ax, and @ is the result of translating ¢ into an equisatisfiable set of
clauses, then by ¢ — L iff @ b4 € iff © bo e iff ¢ is unsatisfiable in Frm(Ax).

Proof. Lewis [16] shows completeness of by with respect to Frm(Ax), and we
apply Theorem 35 and Theorem 33. a

The task of finding a complete resolution calculus then boils down to exhibiting
a cut-closed set of rules for a given modal logic. We demonstrate this using the
example of functional roles in description logic, and role inclusions [5].

Example 37. We consider a modal logic with two normal operators, [J and .
In description logic parlance, they correspond to two different roles. We assume
that the role corresponding to M is functional (R(i,j) A R(i k) — j = k).
Axiomatically, this means that B is a K-modality and additionally satisfies
4 A\ ¢qg — 4(p A q). The second modality, [0, just satisfies the K-axioms. A
role inclusion is expressed using a transfer axiom [p — Hp. While the natural
semantics here are Kripke frames (with two relations, the first functional, and
a subset of the second), the semantics in terms of neighbourhood frames (with
two neighbourhood functions) is equivalent (for weak completeness).

1. The axiom of functionality is equivalent to the rule
pVgvr “poVpLV--Vpn
-HpVv gV Hlr —HlpyvVHp,V---VHlp,

which readily generalises to the rule scheme (for n > 1) above. Note that the
rule p/#p is not an instance of functionality. Cuts between the conclusion of
the K-rule and the above scheme yield the rule
(T) a1 V- Voa, Vb Ve Vb
VoM V-V -Ba, VR V-V B

where n > 0 and k£ > 1. It is easy to see that this set is cut-closed.
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2. The rule for the K-modality OJ in Example 19, that is

—ay V- Vooa, Voag
—Uay V- --V =Ua, V UOag

(t2)

is already cut-closed.

3. To incorporate the role inclusion axiom [Op — Hp, we need to modify the
above rules by resolving their conclusions with the axiom —Up Vv Bp. This
changes the above rules to

(T) —a1 V- V-oa, Vb V- Vb
V0wV Vva0Oa, VERb V-V R,

where n, k are as above and O € {{J, B}, and

—ap V- Vooa, Vag
—Oa; V- Vv -Oa, VOag

(ta)
where O € {J, ®}. To this, we add the axiom as a rule without premiss, viz

(Ts)m

4. One now checks that the rules (f3), (T4) and ({5) together are cut-closed and
equivalent to the respective axioms. This means that we can apply Theo-
rem 36 to obtain a complete resolution calculus.

5 Conclusion and Further Work

We have given a general method to construct complete resolution calculi for the
class of all non-iterative modal logics. In doing so, we have defined, for each logic,
a generative and an absorptive calculus that can be translated into one another.
Conceptually, the generative calculus can be seen as a stripped-down sequent
calculus that only consists of the modal rule and the cut rules, and we have
proved completeness for this calculus, under the same condition, cut-closure,
that would also give rise to cut elimination in a sequent calculus. The naive
method to convert a sequent calculus to resolution (elide all propositional rules
and just keep cut and the modal rules) is bound to fail. For example, consider
the clauses (viewed as sequents) & = {p,Op, —Oq, —p V ¢}. With sequents in &
as additional axioms in the sequent calculus for the modal logic E, we can derive
the empty sequent (clause) using just cut, weakening and the congruence rule.
However, @ is evidently satisfiable in the class of neighbourhood frames: we need
a world that validates both p and ¢, where p and ¢ have different truth sets in
the model, and stipulate the truth set of p to be the only neighbourhood. The
reason is that proving | in a sequent calculus with additional assumptions @,
means that L is valid in all models that satisfy @ globally whereas the notion of
consistency of interest in modal logic is local. A fortiori, this is the reason why we
needed to distinguish between local and global clauses in the calculus we have
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given. This points to a deeper question on the relationship between sequent
calculi and resolution systems. Can we just take any cut-free sequent calculus
and turn it into a resolution system (with a suitable notion of global clause)?
Can we use more liberal notions of cut-closure? Is there a purely syntactic way
to translate between sequent calculi and resolution systems? Can we use this
to lift the restriction to non-iterative axioms? Can we employ a more general
notion of cut-closure, e.g. as in [21] which would immediately give resolution
calculi for several conditional logics? We plan on discussing these questions in
further work.
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Abstract. We provide novel epistemic logical language and semantics
for modeling and analysis of byzantine fault-tolerant multi-agent sys-
tems, with the intent of not only facilitating reasoning about the agents’
fault status but also supporting model updates for repair and state recov-
ery. Besides the standard knowledge modalities, our logic provides addi-
tional agent-specific hope modalities capable of expressing that an agent
is not faulty, and also dynamic modalities enabling change to the agents’
correctness status. These dynamic modalities are interpreted as model
updates that come in three flavors: fully public, more private, and/or
involving factual change. Tailored examples demonstrate the utility and
flexibility of our logic for modeling a wide range of fault-detection, iso-
lation, and recovery (FDIR) approaches in mission-critical distributed
systems. By providing complete axiomatizations for all variants of our
logic, we also create a foundation for building future verification tools
for this important class of fault-tolerant applications.

Keywords: byzantine fault-tolerant distributed systems + FDIR -
multi-agent systems - modal logic

1 Introduction and Overview

State of the Art. A few years ago, the standard epistemic analysis of distributed
systems via the runs-and-systems framework [13,18,28] was finally extended [22—
24] to fault-tolerant systems with (fully) byzantine agents [25]. Byzantine agents
constitute the worst-case scenario in terms of fault-tolerance: not only can they
arbitrarily deviate from their respective protocols, but the perception of their
own actions and observed events can be corrupted, possibly unbeknownst to
them, resulting in false memories. Whether byzantine agents are actually present
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in a system, the very possibility of their presence has drastic and debilitating
effects on the epistemic state of all agents, including the correct (i.e., non-faulty)
ones, due to the inability to rule out so-called brain-in-a-vat scenarios [29]: a
brain-in-a-vat agent is a faulty agent with completely corrupted perceptions
that provide no reliable information about the system [23]. In such a system,
no agent can ever know certain elementary facts, such as their own or some
other agent’s correctness, no matter whether the system is asynchronous [23] or
synchronous [34]. Agents can, however, sometimes know their own faultiness or
obtain belief in some other agents’ faultiness [33].

In light of knowledge K;p often being unachievable in systems with byzan-
tine agents, [23] also introduced a weaker epistemic notion called hope. It was
initially defined as H;p := correct; — K;(correct; — ¢), where the designated
atom correct; represents agent ¢’s correctness. In this setting, one can define belief
as By 1= K;(correct; — ) [33]. Hope was successfully used in [15] to analyze
the Firing Rebels with Relay (FRR) problem, which is the core of the well-known
consistent broadcasting primitive [36]. Consistent broadcasting has been used as
a pivotal building block in fault-tolerant distributed algorithms, e.g., for byzan-
tine fault-tolerant clock synchronization [10,16,31,36,39], synchronous consen-
sus [37], and as a general reduction of distributed task solvability in systems
with byzantine failures to solvability in systems with crash failures [26].

The hope modality was first axiomatized in [14] using correct; as designated
atoms. Whereas the resulting logic turned out to be well-suited for modeling and
analyzing problems in byzantine fault-tolerant distributed computing systems
like FRR [15], it is unfortunately not normal. Our long-term goal of also creating
the foundations for automated verification of such applications hence suggested
to look for an alternative axiomatization. In [6], we presented a normal modal
logic that combines KB4,, hope modalities with S5,, knowledge modalities, which
is based on defining correct; := —H; L via frame-characterizable axioms. This
logic indeed unlocks powerful techniques developed for normal modal logics both
in model checkers like DEMO [11] or MCK [17] and, in particular, in epistemic
theorem proving environments such as LWB [20].

Still, both versions [6,14] of the logic of hope target byzantine fault-tolerant
distributed systems only where, once faulty, agents remain faulty and cannot
be “repaired” to become correct again. Indeed, solutions for problems like FRR
employ fault-masking techniques based on replication [35], which prevent the
adverse effects of the faulty agents from contaminating the behavior of the cor-
rect agents but do not attempt to change the behavior of the faulty agents.
Unfortunately, fault masking is only feasible if no more than a certain fraction f
of the overall n agents in the system may become faulty (e.g., n > 3f + 1 in
the case of FRR). Should it ever happen that more than f agents become faulty
in a run, no properties can typically be guaranteed anymore, which would be
devastating in mission-critical applications.

Fault-detection, isolation, and recovery (FDIR) is an alternative fault-toler-
ance technique, which attempts to discover and repair agents that became faulty
in order to subsequently re-integrate them into the system. The primary target
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here are permanent faults, which do not go away “by themselves” after some time
but rather require explicit corrective actions. Pioneering fault-tolerant systems
implementations like MAFT [21] and GUARDS [30] combined fault-masking
techniques like byzantine agreement [25] and FDIR approaches to harvest the
best of both worlds.

Various paradigms have been proposed for implementing the steps in FDIR:
Fault-detection can be done by a central FDIR unit, which is implemented in
some very reliable technology and oversees the whole distributed system. Alter-
natively, distributed FDIR employs distributed diagnosis [38], e.g., based on
evidence [1], and is typically combined with byzantine consensus [25] to ensure
agreement among the replicated FDIR units. Agents diagnosed as faulty are
subsequently forced to reset and execute built-in self tests, possibly followed by
repair actions like hardware reconfiguration. Viewed at a very abstract level, the
FDI steps of FDIR thus cause a faulty agent to become correct again. Becoming
correct again is, however, not enough to enable the agent to also participate
in the (on-going) execution of the remaining system. The latter also requires a
successful state recovery step R, which makes the local state of the agent con-
sistent with the current global system state. Various recovery techniques have
been proposed for this purpose, ranging from pro-active recovery [32], where the
local state of every agent is periodically replaced by a majority-voted version,
to techniques based on checkpointing & rollback or message-logging & replay,
see [12] for a survey. The common aspect of all these techniques is that the local
state of the recovering agent is changed based on information originating from
other agents.

Our Contribution. In this paper,’ we provide the first logic that not only enables
one to reason about the fault status of agents, but also provides mechanisms for
updating the model so as to change the fault status of agents, as well as their
local states. Instead of handling such dynamics in the byzantine extension of the
runs-and-systems framework [22-24], i.e., in a temporal epistemic setting, we
do it in a dynamic epistemic setting: we restrict our attention to the instants
where the ultimate goal of (i) the FDI steps (successfully repairing a faulty
processor) and (ii) the R step (recovering the repaired processor’s local state) is
reached, and investigate the dynamics of the agents’ correctness/faultiness and
its interaction with knowledge at these instants.

Our approach enables us to separate the issue of (1) verifying the correctness
of the specification of an FDIR mechanism from the problem of (2) guaranteeing
the correctness of its protocol implementation, and to focus on (1). Indeed, veri-
fying the correctness of the implementation of some specification is the standard
problem in formal verification, and powerful tools exist that can be used for
this purpose. However, even a fully verified FDIR protocol would be completely
useless if the FDIR specification was erroneous from the outset, in the sense
that it does not correctly identify and hence repair faulty agents in some cases.

1 An extended version of the paper, which also provides the proofs and additional
details that had to be dropped here, can be found in [7].
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Our novel logics and the underlying model update procedures provide, to the
best of our knowledge, the first suitable foundations for (1), as they allow to
formally specify (1.a) when a model update shall happen, and (1.b) the result
of the model update. While we cannot claim that no better approach exists,
our various examples at least reveal that we can model many crucial situations
arising in FDIR schemes.

In order to introduce the core features of our logic and its update mechanisms,
we use a simple example: Consider two agents a and b, each knowing their own
local states, where global state ij, with 4,j € {0, 1}, means that a’s local state
is ¢ and b’s local state is j. To describe agent a’s local state ¢ we use an atomic
proposition p,, where p, is true if s = 1 in global state ij and p, is false if s = 0,
and similarly for b’s local state j and atomic proposition py.

b b
01 11 01 11
a a a becomeggre correct a a
b b
00 10 00 10

Knowledge and hope of the agents is represented in a Kripke model M for
our system consisting of four states (worlds), shown in the left part of the figure
above. Knowledge K; is interpreted by a knowledge relation KC; and hope H;
is interpreted by a hope relation H;. Worlds that are K;-indistinguishable, in
the sense that agent ¢ cannot distinguish which of the worlds is the actual one,
are connected by an i-labeled link, where we assume reflexivity, symmetry, and
transitivity. Worlds ¢j that are in the non-empty part of the H; relation, where
agent ¢ is correct, have ¢ outlined as 0 or 1. For example, in the world depicted
as 01 above, agent a is faulty and agent b is correct.

Now assume that we want agent a to become correct in states 01 and 11
where p; is true. For example, this could be dictated by an FDIR mechanism
that caused b to diagnose a as faulty. Changing the fault status of a accordingly
(while not changing the correctness of b) results in the updated model on the
right in the above figure. Note that a was correct in state 00 in the left model,
but did not know this, whereas agent a knows that she is correct in state 00
after the update. Such a model update will be specified in our approach by
a suitable hope update formula for every agent, which, in the above example,
is ~H, 1l V py for agent a and —H, L for agent b. Note carefully that every
hope update formula implicitly specifies both (a) the situation in the original
model in which a change of the hope relation is applied, namely, some agent ¢’s
correctness/faultiness status encoded as —H; L/H; L, and (b) the result of the
respective update of the hope relation.

Clearly, different FDIR approaches will require very different hope update
formulas for describing their effects. In our logic, we provide two basic hope
update mechanisms that can be used here: public updates, in which the agents
are certain about the exact hope updates occurring at other agents, and private
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updates (strictly speaking, semi-private updates [5]), in which the agents may
be uncertain about the particular hope updates occurring at other agents. The
former is suitable for FDIR approaches where a central FDIR unit in the sys-
tem triggers and coordinates all FDIR activities, the latter is needed for some
distributed FDIR schemes.

Moreover, whereas the agents’ local states do not necessarily have to be
changed when becoming correct, FDIR usually requires to erase traces of erro-
neous behavior before recovery from the history in the R step. Our logic hence
provides an additional factual change mechanism for accomplishing this as well.
For example, simultaneously with or after becoming correct, agents may also
need to change their local state by making false the atomic proposition that
records that step 134 of the protocol was (erroneously) executed. Analogous to
hope update formulas, suitable factual change formulas are used to encode when
and how atomic propositions will change. Besides syntax and semantics, we pro-
vide complete axiomatizations of all variants of our logic, and demonstrate its
utility and flexibility for modeling a wide range of FDIR mechanisms by means
of many application examples. In order to focus on the essentials, we use only 2-
agent examples for highlighting particular challenges arising in FDIR. We note,
however, that it is usually straightforward to generalize those for more than two
agents, and to even combine them for modeling more realistic FDIR scenarios.

Summary of the Utility of Our Logic. Besides contributing novel model update
mechanisms to the state-of-the-art in dynamic epistemic logic, the main util-
ity of our logic is that it enables epistemic reasoning and verification of FDIR
mechanism specifications. Indeed, even a fully verified protocol implementation
of some FDIR mechanism would be meaningless if its specification allowed unin-
tended effects. Our hope update/factual change formulas formally and exhaus-
tively specify what the respective model update accomplishes, i.e., encode both
the preconditions for changing some agent’s fault status/atomic propositions and
the actual change. Given an initial model and these update formulas, our logic
thus enables one to check (even automatically) whether the updated model has
all the properties intended by the designer, whether certain state invariants are
preserved by the update, etc. Needless to say, there are many reasons why a
chosen specification might be wrong in this respect: the initial model might not
provide all the required information, undesired fault status changes could be trig-
gered in some worlds, or supporting information required for an agent to recover
its local state might not be available. The ability to (automatically) verify the
absence of such undesired effects of the specification of an FDIR mechanism is
hence important in the design of mission-critical distributed systems.

Paper Organization. Section 2 recalls the syntax and semantics of the logic for
knowledge and hope [6]. Section 3 expands this language with dynamic modalities
for publicly changing hope. Section 4 generalizes the language to private updates.
In Sect.5, we add factual change to our setting. Some conclusions in Sect. 6
complete our paper.
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2 A Logic of Hope and Knowledge

We succinctly present the logic of hope and knowledge [6]. Throughout our
presentation, let A := {1,...,n} be a finite set of agents and let Prop be a
non-empty countable set of atomic propositions.

Syntaz. The language Ly is defined as

pu=p|-¢|(@Ne)| Kip| Hip, (1)
where p € Prop and ¢ € A. We take T to be the abbreviation for some fixed
propositional tautology and L for = T. We also use standard abbreviations for the
remaining boolean connectives, K;p for the dual modality —K;—¢ for ‘agent a
considers ¢ possible’, H;p for ~H;=p, and Egyp for mutual knowledge ;.4 K
in a group G C A. Finally, we define belief B;p as K;(—H; L — ¢); we recall
that - H; 1 means that 7 is correct.

Structures. A Kripke model is a tuple M = (W, 7, K, H) where W is a non-empty
set of worlds (or states), m: Prop — P(W) is a valuation function mapping each
atomic proposition to the set of worlds where it is true, and £ : A — P(W x W)
and H : A — P(W x W) are functions that assign to each agent i a knowledge
relation IC; C W x W respectively a hope relation H; C W x W, where we have
written /C; resp. H; for IC(4) and H(i). We write H;(w) for {v | (w,v) € H;} and
wH,v for (w,v) € H;, and similarly for ;. We require knowledge relations K;
to be equivalence relations and hope relations H; to be shift-serial (that is, if
wH,v, then there exists a z € W such that vH;z). In addition, the following
conditions should also be satisfied:

Hink : Hi g ’Ci,
oneH : (Vw,v € W)(H;(w) # @ AHi(v) # 2@ AN wKjv = wH;v).

It can be shown that all H; relations are so-called partial equivalence relations:
they are transitive and symmetric binary relations [27].
The class of Kripke models (W, 7, K, H) (given A and Prop) is named KH.

Semantics. We define truth for formulas ¢ € Liy at a world w of a model M =
(W, m,K,H) € KH in the standard way: in particular, M,w [ p iff w € 7(p)
where p € Prop; boolean connectives are classical; M, w = K, iff M,v | ¢ for
all v such that w/C;v; and M,w | H;p iff M,v | ¢ for all v such that wH,v.
A formula ¢ is valid in model M, denoted M = o, iff M, w |= ¢ for all w € W,
and it is valid, notation = ¢ (or KH [ o) iff it is valid in all models M € KH.
The axiom system £ for knowledge and hope is given below.

P all propositional tautologies T Kip— ¢

H' H;-H;1 KH Hp« (mH;L — K;(~H;L — ¢))
KX Ki(p — ¢) NKijp — Kt MP  from ¢ and ¢ — 1, infer
45 Kip — K; Ko Nec® from ¢, infer K¢

55 =Ko — Ki~K;p
Theorem 1 ([6]). A7 is sound and complete with respect to KH.
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3 Public Hope Update

3.1 Syntax and Semantics

Definition 2 (Logical language). Language E’I’(“}l} is obtained by adding the
construct [, ..., o|p to BNF (1).
—_——

n

We read a formula of the shape [p1,...,¢n]®, often abbreviated as [F]y) as
follows: after revising or updating hope for agent 7 with respect to ¢; for all
agents i € A simultaneously, ¥ (is true). We call the formula ¢; the hope update
formula for agent i.

Definition 3 (Semantics of public hope update). Let a tuple g € (£§g}l})",

a model M = (W, n,K,H) € KH, and a world w € W be given. Then
Mw = [@ly iff M? w1,
where M? := (W, , K, H?) such that for each agent i € A:
wHXv iff wKw, MwEyx, and M,vEx
and where we write HY for (H?P); if the i-th formula in @ is x.

If M,w [~ x, then H)}(w) = @: agent i is faulty in state w after the update,
ie., H;L is true. Whereas if M,w |= x, then H}(w) # @: agent i is correct
in state w after the update, i.e., =H;_L is true. If the hope update formula for
agent i is —H; 1, then = H; 1 is true in the same states before and after the
update. Therefore, H;Hil = 'H;: the hope relation for ¢ does not change. On the
other hand, if the hope update formula for agent 4 is H; 1, then 'HfIL(w) =0
iff H;(w) # @: the correctness of agent ¢ flips in every state. If we wish to model
that agent ¢ becomes more correct (in the model), then the hope update formula
for agent 4 should have the shape =H; L V : the left disjunct —H; L guarantees
that in all states where 7 already was correct, she remains correct. We write

[pliy  for [-HyLl,...,mH;11, ¢, =Hjx1l,...,mH, L]0

Similarly, we write [p]gt if the hope update formulas for all agents i € G is ¢
and other agents j have the trivial hope update formula —H;L.

Proposition 4. If @ € (L5 and M = (W,x,K,H) € KH then M? € KH.

Proof. Leti € Aand x be the ith formula in ¢. We need to show that relation H)
is shift-serial and that it satisfies properties HinK and oneH.

— [shift-serial]: Let w € W. Assume v € H}(w), that is, wK;v, and M,w = x
and M,v = x. Now vK;w follows by symmetry of K;. Therefore, H)X(v) # @
since w € HX(v).

— [HinK]: This follows by definition.
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— [oneH]: Let w,v € W. Assume that H}(w) # &, that H}(v) # &, and that
wiC;v. It follows that there exists some w’ € HX(w), implying that M, w = x,
and v' € H(v), implying that M, v = x. Now wH}Xv follows immediately. O

The hope update ¢ for an agent a is reminiscent of the refinement semantics
of public announcement ¢ [4]. However, unlike a public announcement, the hope
update installs an entirely novel hope relation and discards the old one.

3.2 Applications

In this section, we apply the logical semantics just introduced to represent some
typical scenarios that occur in FDIR applications. We provide several simple
two-agent examples.

Ezample 5 (Correction based on agent b having diagnosed a as faulty). To cor-
rect agent a based on KyH,l, we update agent a’s hope relation based on
formula -H, 1 V KpH, L (and agent b’s hope relation based on formula —Hj1).
We recall that the disjunct —H, 1 guarantees that agent a will stay correct if he
already was. The resulting model transformation is:

01 11 01 11
a a (~HalVEpHeL, ~Hyl) a a
b b
00 10 00 10

After the update, in states 00 where a was correct and 10 where a was faulty:

M,00 | [~H, LV KyH, 1],—H, L a is still correct

M,00 E [~H, LV KpyH, 1], K —|H L a now knows he is correct

M,10 &= [~H, LV KyH, L], H a is still faulty

M,10 = [~H, LV KyH, L] K —|H 1 a now considers possible he is correct
M,10 E [~H, LV KpyH, L], KbK —-H,1l ...bnow knows that

A straightforward generalization of this hope update is correction based on dis-
tributed fault detection, where all agents in some sufficiently large group G need
to diagnose agent a as faulty. If G is fixed, -“H, 1 V EgH, L achieves this goal.
If any group G of at least k > 1 agents is eligible, then —-H, L V \/lgcljk EcH, L
is the formula of choice.

Unfortunately, Example 5 cannot be applied in byzantine settings in general,
since knowledge of other agents’ faults is usually not attainable [23]. Hence, one
has to either resort to a weaker belief-based alternative or else to an important
special case of Example 5, namely, self-correction, where G = {a}, i.e., agent a
diagnoses itself as faulty. This remains feasible in the byzantine setting because
one’s own fault is among the few things an agent can know in such systems [23].
We illustrate this in Example 6.
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Ezxample 6 (Self-correction under constraints). Self-correction of agent a with-
out constraints is carried out on the condition that a knows he is faulty (K, H,L1).
The hope update formula for self-correction of agent a with an optional addi-
tional constraint ¢ is

-“H,lV(pANK,H,1)

where the —~H, 1 part corresponds to the worlds where agent « is already cor-
rect and the o A K,H, | part says that, if he knows that he is faulty (K,H,Ll),
then he attempts to self-correct and succeeds if, additionally, a (possibly exter-
nal) condition ¢ holds. Very similarly to Example 5 we now add an additional
constraint ¢ = p,. Notice that the update is indeed slightly different than in
Example 5, as a no longer becomes correct in world 01.

01 11 01 11
a a (“HolV(pAKaHa L), ~HyL) a a
=
b b
00 10 00 10

After the update, we get in states 00 and 10 (where a was correct resp. faulty):

M,00 E [-Hy LV (pp N KoHyL)]omHy L a is still correct

M,00 = [~Ho LV (py A KgHy L) K, H 1 a still cons. poss. he is faulty
M,10 = [~Ho LV (py N KoH, L))o H, a is still faulty

M,10 = [~Hy LV (pp AN K H,y L)]o K,

leo’:[_‘HaJ—\/( )}

—\H 1 @ now cons. poss. he is correct
oo N K H, L KbK -H,1l ...bnow knows that
Byzantine Agents. We now turn our attention to a different problem that
needs to be solved in fault-tolerant distributed systems like MAFT [21] and
GUARDS [30] that combine fault-masking approaches with FDIR. What is
needed here is to monitor whether there are at most f faulty agents among
the n agents in the system, and take countermeasures when the formula

Byz; = \/ /\ﬂHiJ_

GCA ieG
|Gl=n—f

is in danger of getting violated or even is violated already. The most basic way
to enforce the global condition Byz; in a hope update is by a constraint on the
hope update formulas, rather than by their actual shape. All that is needed here
is to ensure, given hope update formulas ¢ = (¢1,...,¢,), that at least n — f
of those are true, which can be expressed by the formula

g l=\/ N

GCA icG
|G|l=n—
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We now have the validity
@™ — (@] Byz.

In particular, we also have the weaker |= Byz; Ag = — 7] Byz;. In other words,
M,w = Byz; ANg "= implies M?,w = Byz;. We could also consider generalized
schemas such as: M |= Byz; A G771 implies M¥ = Byz;. In all these cases, the
initial assumption Byz; is superfluous.

Such a condition is, of course, too abstract for practical purposes. What would
be needed here are concrete hope update formulas by which we can update a
model when Byz; might become false resp. is false already, in which case it must
cause the correction of sufficiently many agents to guarantee that Byz, is still
true resp. becomes true again after the update. Recall that belief B;1) is defined
as K;(—~H; L — ). If we define

Bxpp:i=\/ N Biv,

GCA icG

|Gl=F
it easy to see by the pigeonhole principle that = Byzy A B>f11¢ — 9. Using
Y = H, L will hence result in one fewer faulty agent. To the formula B> 11 H, L
we add a disjunct =H, L to ensure correct agents remain correct.

): Byzf A Bzf+1Hal — [_\HQL Vv BZerlHaL]aByzf_r

3.3 Axiomatization

Axiomatization ##P" of the logical semantics for £2 H extends axiom sys-
tem ¢ with axioms describing the interaction between hope updates and
other logical connectives. The axiomatization is a straightforward reduction sys-
tem, where the interesting interaction happens in hope update binding hope.

Definition 7 (Axiomatization J##7"). A" extends A with
[Zlp oP [P Kt — Ki[gly

(&) [Pl (Bl H ) < (pi — Ki(pi — @)
[@](z/me) By Aldle [AIXY < [[@xis - [Bxa)v

- b - b b
where @ = (p1,...,n) € (Lgy)" X = (X155 xn) € (L))" ¥.§ € Ly,
p € Prop, and i € A.

Theorem 8 (Soundness). For all p € E%Ll}, HAP &= o implies KH = .

Proof. Out of all additional axioms, we only show the most interesting case of
hope being updated: we show the validity of [F|H;v — (p; — Ki(p; — [F¥)):
M, w ': [SE}H’LQ/J iff

M9, w = Hypp iff

(Vv e HY (w)) MP,v=vy iff
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(VUEW)(UGK:i(w)&M,w':gal&M,U'ZQOi = M“Z,v|:¢) iff

MuwEyp, = WMeW)(veKiw)& MvEy, = M%uvE1) iff
MuwEy¢ = (VUEIC w)) Mook, = M?%uvlEq) iff
MuwlE o, = (VUEIC (w)) (MovEe, = MvE[gly) iff
MuwlE@o, = (Vv e K; (w)) M,v = — [Fv iff
MuwlEp, = M,wkEK(p;— [gl¢) iff

K

M,w = p; — Ki(p; — [Fl)). a

Every formula in 51}’{“}? is provably equivalent to a formula in Lxy (Lemma
13). To prove this, we first define the weight or complexity of a given formula
(Definition 9) and show a number of inequalities comparing the left-hand side to
the right-hand side of the reduction axioms in axiomatization AP (Lemma
10). Subsequently, we define a translation from £p wr to Lxp (Definition 11) and
finally show that the translation is a terminating rewrite procedure (Proposition
12).

Definition 9. The complexity ¢ : L5y “ N of Ly ub 7 -formulas is defined recur-
sively, where p € Prop, i € A, and c( ) = max{c(goz) |1<i<n}:

cp) =1 c(Kip) = ¢
c(mp) =c(p)+1 c(Hip) = c(
el NE) ==max{c(p),c()}+1  ¢([FE) = (c(P) + 1) - ¢(€)

Lemma 10. For each aziom 6; < 0, from Definition 7, c¢(6;) > ¢(0,).

Definition 11. The translation ¢ : E’I’gg — Lgpg is defined recursively, where
p € Prop, i € A, and the i-th formula of G is ;:

t(p) p t([2]p) =p

t(-p) = t(p) t([g1-¢) = t([gl¢)

teNE) =t(p) At(&) t([AENAX)) = t([7]€ A [2]x)

t(Kip) = Kt(p) ([P K€) = t(K;[F¢)

t(H;p) = Hgt(e) t([Z)H;€) = t(pi = Ki(pi — [@lO))
t([Bx1s - - - xnl€) = t([[Bx1, - - -+ [Flxn ] €)

Proposition 12 (Termination). For all p € Ei’é‘;}, t(p) € Lkn-
Proof This follows by induction on ¢(yp). O
Lemma 13 (Equiexpressivity). Language L5 H is equiexpressive with Ly .

Proof. Tt follows by induction on ¢(y) that AP - p — t(p) for all ¢ € £1}’;§3,
where, by Proposition 12, t(¢) € Lkg- O

ub
Theorem 14 (Soundness and completeness). For all p € LY,

HAP — KH = .
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Proof. Soundness was proven in Theorem 8. To prove completeness, assume
KH k= ¢. According to Lemma 13, we have P + ¢ « t(p). Therefore, by
Theorem 8, KH = ¢ < t(y) follows. Since KH = ¢ (by assumption), we obtain
KH = t(v). By applying Theorem 1, #7 + t(¢) further follows. Consequently,
HAP E t(p). Finally, since P b @ — t(p), HAP + . O

Corollary 15 (Necessitation for public hope updates).
HAP o) — HAP F (B

4 Private Hope Update

In the case of the public hope update mechanism introduced in Sect. 3, after the
update there is no uncertainty about what happened. In some distributed FDIR
schemes, including self-correction, however, the hope update at an agent occurs
in a less public way. To increase the application coverage of our logic, we therefore
provide the alternative of private hope updates. For that, we use structures
inspired by action models. Strictly speaking, such updates are known as semi-
private (or semi-public) updates, as the agents are aware of their uncertainty
and know what they are uncertain about, whereas in fully private update the
agent does not know that the action took place [5] and may, in fact, believe that
nothing happened. The resulting language can be viewed as a generalization
of 51;?137 where the latter now becomes a special case.

4.1 Syntax and Semantics

Definition 16 (Hope update model). A hope update model for a logical
language L is a tuple U = (E,9,KY), where E is a non-empty set of actions,
9 : E — (A — L) is a hope update function, and KY : A — P(E x E)
such that all KY are equivalence relations. For ¥(e)(i) we write 9;(e). As before,
formulas ¥;(e) € L are hope update formulas. A pointed hope update model is
a pair (U, e) where e € E.

prw

Definition 17 (Language L] We obtain language Ep”v by adding the
construct (U, e]e to BNF (1), where (U, e) is a pointed hope update model.

Definition 17 is given by mutual recursion as usual: all hope update models U
are for the language £

Definition 18 (Semantlcs of private hope update). Let U = (E,9,KY)
be a hope update model, M = (W, n,K,H) € KH, w € W, and e € E. Then:

Mw = [Uele iff M xU,(we) ko,
where M x U = (W>* 7> KX, H*) is such that:

W = WxEFE

(w,e) € 7 (p) iff w € m(p)

(w,e)KC; ( ) iff wKv and eKY f

(w,e)H (v, f) iff (w,e)K) (v, f), M,w [=V;(e), and M,v = 9;(f)
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Public hope updates can be viewed as singleton hope update models. Given
formulas @ € (£540)", define pub := ({e},9,KP"), where ¥;(e) = @; and
KCPub = {(e,e)}.

Difference with Action Models. Although our hope update models look like
action models, they are not really action models in the sense of [2]. Our actions
do not have executability preconditions, such that the updated model is not
a restricted modal product but rather the full product. Another difference is
that, by analogy with Kripke models for knowledge and hope, we would then
have expected a hope relation in the update models. But there is none in our
approach.

Proposition 19. M x U € KH for any hope update model U and M € KH.

Proof. The proof is somewhat similar to that of Proposition 4. It is obvious that
all K are equivalence relations. Let us show now that for all ¢ € A relations H;*
are shift-serial and that they satisfy the properties HinkC and oneH.

— H is shift-serial: Let (w,e) € W*. Assume (w,e)H; (v, f), that is,
(w, )k (v, f), and M,w = ¥;(e), and M,v = 9;(f). (v, f)K (w,e) follows
by symmetry of K. Therefore, H; ((v, f)) # @ since (w,e) € H ((v, f)).

— 'H satisfies HinK: This follows by definition.

— 'H satisfies oneH: Let (w,e), (v, f) € W*. Assume that H ((w,e)) # @,
H((v, f)) # @, and (w,e)K} (v, f). As H ((w,e)) # @, M,w = V;(e). As
H ((v, f)) # @, M,v = 9;(f). Therefore, (w,e)H (v, f). O

Definition 20. Let U = (E,9,KY) and U' = (E',9',KY") be hope update mod-

els. The composition (U;U’) is (E”,ﬁ",ICU?U,) such that:

E” = ExXFE
(e; KV (£ f") iff eKVf and KV f
9 (e, e’) = [U,e]d(e)

Since KV and KU are equivalence relations, ICzU V" is also an equivalence relation,
so that (U;U’) is a hope update model.

4.2 Applications

The arguably most important usage of private updates in distributed FDIR is to
express the uncertainty of agents about whether an update affects other agents.

Ezample 21 (Private correction). We reconsider the example from Sect. 1, only
this time we privately correct agent a based on p; such that agent b is uncertain
whether the hope update happens. This can be modeled by two hope update
formulas for agent a: —H, 1 V p, and —H, L. With =H, 1 V p;, we associate an
event c,, where the correction takes place based on the additional constraint ps,
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and with ~H, 1 we associate an event noc where correction does not take place.
Writing 9(e) = ((Ja(e), 9s(e)), we get U := (E,9,KY), where:

E = {¢p,, noc} KU := the identity relation {(e,e) | e € E}
Iep,) = (mHaL Vpp,—Hyl) K :=the universal relation E x E
d(noc) := (—mH,L,—Hpl)

01 b 11
/ /
/b /b
01 b 11 01 b 11
a a
a a noc a a
/ 00 b 10
b : b/
X / = / ¢ s
00 b 10 Cpy 00 b 10

When naming worlds, we have abstracted away from the event being executed in
a world. Having the same name therefore does not mean being the same world.
For example, the world 11 at the front of the cube ‘really’ is the pair (11,¢p,)
with H,((11,¢,)) # @ and Hy((11,¢p,)) # @. We now have for example that:

M,01 = H, L AU, cp,](mHg L NK,—H, 1) a knows it became correct
M,01 |= [U, ¢p, | " KpKy—H, L ... but b doesn’t know that
M,01 = KpyHy, L AU, cp, |- (KyHy LV Ky—H, L) b is ignorant of a’s fault

4.3 Axiomatization

Definition 22 (Axiomatization Z#7™"). HAP"™ consists of HH and

[U, elp —p

[Ua 8}—\410 A _‘[U’ e]@

[U.el(p Ap) < [Uelp AU elp

U,e]Kip < /\e;cyf Ki[U, fle

Ul o (9i(e) = Aury Ki(9:(F) = [U, f19))
[U,el[U', el < [(U;U"), (e, €]

Theorem 23 (Soundness). For all ¢ € £%ﬁ}}, HAP & @ implies KH = .

Similarly to the previous section, one can show that every formula in ﬁ’lﬁ}’ is
provably equivalent to a formula in Lxp, by defining £/ ;{” -formulas complexity,
showing complexity inequalities concerning the reduction axioms in axiomatiza-
tion A", defining a translation from £} to Lz, and observing that this

translation is a terminating rewrite procedure. We thus obtain:

Proposition 24 (Termination). For all o € LY+ t(p) € Lk
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Lemma 25 (Equ1expressw1ty) Language L%, ; is equiexpressive with Lkpr,
i.e., for all o € LYW AAP™ - o ().

Theorem 26 (Soundness and completeness). For all ¢ € LY},
KA — KHE ¢.

Necessitation for private hope update is an admissible inference rule in AP,

5 Factual Change

In this section, we provide a way to add factual change to our model updates.
This is going along well-trodden paths in dynamic epistemic logic [3,8,9].

5.1 Syntax, Semantics, and Axiomatization

Definition 27 (Hope update model with factual change). 7o obtain a
hope update model with factual change U = (E,9,0,KY) from a hope update
model (E,9,KY) for a language L we add parameter o : E — (Prop — L). We
require that each o(e) is only finitely different from the identity function.

The finitary requirement is needed in order to keep the language well-defined. In
this section, by hope update models we mean hope update models with factual
change.

Definition 28 (Language L{{H). Language EQH is obtained by adding the
construct [U, e]¢ to the BNF of the language L, where (U, e) is a pointed hope
update model with factual change for the language EQH,

As in the previous section, Definition 28 is given by mutual recursion and from
here on all hope update models are for language EJ;{H.

Definition 29 (Semantics). Let U = (E,9,0,KY), M = (W,7,K,H) € KH,
w € W,
and e € E. Then, as in Definition 18, M,w = [U,elp iff M x U, (w,e) = ¢,
only now M x U = (W*, 7% K*, H*) is such that:

W* =W x E; (w,e) e (p) <= M,wlkEoale)(p);
(w, ) (v, f) <= wKv and eKY f;
(w,e)H (v, f) <= (w,e)K (v, f), M,w = 9;(e), and M,v = 9;(f).

The only difference between Definitions 18 and 29 is that the clause for the
valuation of the former is: (w,e) € 7#*(p) iff w € w(p). In other words, then
the valuation of facts does not change, and the valuation in the world w is
carried forward to that in the updated worlds (w,e). It is easy to see that
KH = [Uelp « o(e)(p), as we immediately obtain that: M,w = [U,e]p iff
M x U, (w,e) = piff (w,e) € 7% (p) iff M, w |= o(e)(p). This turns out to be the
only difference:
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Definition 30 (Axiomatization 7). Aziom system HAT is obtained
from HFP™ by replacing the first equivalence in Definition 22 with
[Uselp = a(e)(p)-

Theorem 31 (Soundness). For all ¢ € LQH, A+ o implies KH E .

In itself it is quite remarkable that the required changes are fairly minimal, given
the enormously enhanced flexibility in specifying distributed system behavior.
With techniques quite similar to those employed for the hope update model
logic without factual change, we can also get completeness for the hope update
logic with factual change. Lacking space did not allow us to include many of the
details; the interested reader is referred to the extended version [7] of this paper.

Lemma 32 (Equiexpressivity). Language EJ;{H s equiexpressive with Ly .
Theorem 33 (Soundness and completeness). For all ¢ € EQH,

a7+ » — KH = .

5.2 Applications

The importance of adding factual change to our framework comes from the fact
that, in practical protocols implementing FDIR mechanisms, agents usually take
decisions based on what they recorded in their local states. We demonstrate the
essentials of combined hope updates and state recovery in Example 34, which
combines the variant of self-correction introduced in Example 6 with state recov-
ery needs that would arise in the alternating bit protocol [19].

Ezample 8/ (Private self-correction with state recovery). The alternating bit
protocol (ABP) for transmitting an arbitrarily generated stream of consecutive
data packets from a sender to a receiver over an unreliable communication chan-
nel uses messages that additionally contain a sequence number consisting of 1
bit only. The latter switches from one message to the next, by alternating atomic
propositions g5 and ¢, containing the next sequence number to be used for the
next message generated by the sender resp. receiver side of the channel. In addi-
tion, the ABP maintains atomic propositions ps and p,. holding the last sequence
number used by sender resp. receiver side. In more detail, the sending of data
packet d,,, starting from (gs,¢,) = (0,0) and (ps,p,) = (1,1), is completed in
three phases ([19]): (i) if ¢s # ps, sender s sets ps := g; = 0 and generates a
message (d,,, ps) to be repeatedly sent; (ii) when receiver r receives (d,,, ¢.) (with
gr = 0 here), it records d,, sets p, := ¢, = 0, generates a message (ack,p,) to
be repeatedly sent back to s, and switches to the next sequence number g, := 1;
(iii) if sender s receives (ack,ps) (with p, = 0 here), it switches to the next
sequence number g5 := —ps = 1. Note that the next sequence numbers (gs, g,)
have moved from (0,0) via (0,1) to (1,1), whereas the last sequence numbers
(ps, pr) moved from (1,1) to (0,1) to (0,0). From here, the above phases are just
repeated (with all sequence numbers flipped) for sending d,,11. Thus, during a
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correct run of the ABP, (gs, ¢-) continuously cycles through (0,0), (0,1), (1,1),
(1,0), (0,0), ....

If, however, a transient fault would flip the value of either ¢; or g¢., the
ABP deadlocks and therefore requires correction. Due to the asymmetry of the
ABP regarding sender and receiver, the need for a correction of the receiver can
be conveniently determined by checking the equality of p,. and g¢,, and can be
performed by just setting ¢, := —p,.

We model agent r successfully self-correcting and recovering its state from
pr = qr, that is, based on p, < ¢.. At the same time, s is uncertain whether
r has corrected itself (event scrp, —,,.) or not (event noscr). Again writing 9(e)
as ((19,1(6), 191,(6)), this is encoded in the hope update model U := (E, 9,0, KY),
where:

F = {scrp,=q,,noscr} o(scrp, =g, )(gr) == —pr
ﬁ(SCTpT:qT) = (_‘HSJ—va - qr) IC? =FE X F
I(noscr) = (~H,L,—H,1) Kv = {(e,e) | e € E}

Note that H, L is equivalent to p, < ¢,, making H, | locally detectable by r
and resulting in ¥(scrp, —,,) = (WHs L, H,L). All atoms for noser and all atoms
other than g, for scr,, —,, remain unchanged. Coding the atoms in each state as
Dsqs-Prqr, the resulting update is:

00.0

$ K noscr H H

/

/° _

8CT'p, =q,

The only change happens in global states 00.00 and 01.00 where p,. < ¢, causes
the hope update and g, is set to be the opposite of p,.. After the update, we get:

M,00.00 = [U, scrp,=q,|(mH, L A Krq-) 7 is correct and learned ¢,

[ ]
M,00.00 = [U, scrp,=q, | K,—H, L r is now sure she is correct
M,00.00 = [U, scrp, = qr]( rqs N = K,—qs) r remains unsure regarding g
M,00.00 = [U, scrp, =g, 1K.H, L s consid. possible r is faulty

6 Conclusions and Further Research

We gave various dynamic epistemic semantics for the modeling and analysis of
byzantine fault-tolerant multi-agent systems, expanding a known logic contain-
ing knowledge and hope modalities. We provided complete axiomatizations for
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our logics and applied them to fault-detection, isolation, and recovery (FDIR)
in distributed computing. For future research we envision alternative dynamic
epistemic update mechanisms, as well as embedding our logic into the (temporal
epistemic) runs-and-systems approach.
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1 Introduction

Quantified stream constraints are often used in the principled design of reac-
tive computing systems [7,8,10,25,26]. However, automated solutions to these
constraints can be challenging, as quantifying over streams effectively is second-
order.

Quantifying over sets of natural numbers, for instance, encodes quantifying
over streams in the monadic second-order logic M SO(w) [19] of w-infinite words
over a finite alphabet.! This logic is decidable, but only non-elementarily so,
based on the well-known characterization of the set of models of any MSO(w)
formula in terms of a finite-state machine [9]. Equivalently, the logic-automaton
connection yields a non-elementary decision procedure for a first-order equality
theory of streams [34].

Here we study a first-order stream logic that is not limited to finite alphabets,
and which includes an expressive combination of nonlinear arithmetic stream
operators, such as convolution, with control-oriented stream operators, such as
shifting. Compared to MSO(w), however, this stream logic is restrictive in that
it only supports quantifying over streams, not over positions in streams.

Our main result is that the validity of first-order stream formulas (in the
language of ordered rings) in the structure of real-valued streams is decided in
doubly exponential time. In contrast to automata-based procedures for monadic
second-order logics, our decision procedure is not limited to streams over a finite

! For example, the set of even numbers represents the Boolean-valued stream
(1,0,1,0,1,...), since the i-th position, for 7 € N, is ’on’ if and only if ¢ is even.
© The Author(s) 2024
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Fig. 1. Stream circuit.

alphabet, and the time complexity of our procedure is doubly exponential instead
of non-elementary as in [34]. Definitional extensions demonstrate the expressive
power of this stream logic in solving a number of fundamental problems in the
coalgebraic stream calculus [38].

The structure of the developments is as follows. Section 2 motivates quantified
stream logic with typical examples from stream calculus [38], and Sect. 3 summa-
rizes, with the intention of making the exposition largely self-contained, essential
properties of streams. Since we are targeting stream calculus, we restrict our-
selves to streams with real-numbered elements only. However, the results in this
paper clearly generalize to streams with elements from either a totally ordered
commutative integral ring or a totally ordered field. Streams are identified with
formal power series [32] and the superset of streams with finite history prefixes
is identified with formal Laurent series. Based on this identification of streams
with their generating function it is straightforward to establish that streams are
orderable and also Cauchy complete for the prefix distance.

Based on these developments it is shown in Sect.4 that streams are a real
closed valuation ring and their extension with finite histories are a real closed
field. The main technical hurdle is the derivation of an intermediate value prop-
erty (IVP) for streams. As an ordered and complete non-Archimedean domain,
streams lack the least upper bound property. The usual dichotomic procedure for
proving IVP therefore does not apply. Ordered streams admit quantifier elimi-
nation as a consequence of real closedness.

The results in Sect. 5 therefore are direct consequences of the quantifier elim-
ination procedures for real closed valuation rings [12] and for real closed ordered
fields [44] together with the doubly exponential bound obtained by cylindrical
algebraic decomposition [18] in the case of real closed ordered fields. In Sect. 6,
the language of decidable stream logic is conservatively extended by shift oper-
ators, constants for rational and automatic streams, and stream projections.
Section 7 concludes with some remarks.

2 Examples

We motivate the role of quantified stream logic for encoding some typical prob-
lems from stream calculus.

Observational Equivalence. Two stream processors 17, T are observationally
equivalent if the first-order formula in Example 1 holds.
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Ezample 1 (Observational Equivalence).

(Vz,y1,92) T1(2,91) A Ta(2,92) = y1 = ¥2

The logical variables z, y;, and yo are interpreted over discrete and real-valued
streams, and T;(z,y;), for i = 1,2, are binary predicates for defining the possible
output streams y; of processor T; on input stream z.

In stream calculus [38], the relations T;(z,y;) are typically of the form y; =
fi - z, where the transfer function f; is a stream, and the output stream y; is
obtained by stream convolution of f; with the input stream z. These algebraic
specifications are expressive for the set of all stream circuits [40].

Functionality. A stream processor T' is functional if the first-order stream for-
mula in Example 2 with one quantifier alternation holds.

Ezample 2 (Functionality).
(V2)F) T(z,y) A (Vu)uF#y = —T(z,u)

Non-Interference. We now consider streams of system output that are divided
into a low and a high security part. In such an environment, a stream proces-
sor T is said to be non-interfering [22,29,30] if executing T always results in
indistinguishable low outputs at every step.

Ezample 3 (Non-Interference).

(V2,y1,92) T(z,91) A T(z,y2) = hd(y1) =1 hd(y2) = y1 =L Y,

where hd(y;), for i = 1,2, denote initial values, and hd(y1) =1, hd(y2) is assumed
to hold if and only if the low parts of the two head elements hd(y1) and hd(y1) are
equal. Similarly, the (overloaded) relation y; =r, y2 on streams is assumed to hold
if all the respective projections to the low parts are equal. These non-interference
properties are prominent examples of a larger class of hyper-properties [14] for
comparing two or more traces. Quantifier alternation between existential and
universal quantifiers is required for the formalization of more general hyper-
properties.

Stream Circuits. We take into consideration some typical design steps for the
stream circuit in Fig. 1. At moment 0 this circuit inputs the first value z9. The
initial value 0 of the register Dy is added to this by A, and the result yg =
zo + 0 = zg is the first value to be output. At the same time, this value zq is
copied by C, and stored as the new value of the register D;. The next step is to
input the value z1, add the current value zg of the register to it, and output the
resulting value y; = 2o + z1. Simultaneously, this value is copied and saved as
the new value of the register. In the next step, the input is z5 and the output is
the value yo = 29+ 21 + 22. In general, the output yi, for k € N, of the circuit in
Fig. 1 is determined by the sum Zf:o z; of the finite history zg ...z, of inputs.
In other words, y = (1,1,1,...) - z, where '’ denotes stream convolution. This
input-output behavior of the stream circuit in Fig. 1 can be verified by showing
that the stream logic formula in Example 4 is valid.
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Ezxample 4 (Analysis).

(vz7y7h17h27h3)
hy = D1(h2) A hs = A(z,h1) A hg = C(h3) A y = C(h3)
=y=(111,...) 2

The stream (1,1,...) is considered to be an interpreted constant symbol in the
logic, and Dy, A, and C are interpreted function symbols.

Finally, the formula in Example 5 with one quantifier alternation allows to
synthesize the transfer function by constructing explicit witnesses for existen-
tially quantified variables in an underlying proof procedure.

Ezample 5 (Synthesis).

(Vz,y, hlahQﬂhfﬁ)
hl = Dl(hg) A h3 = A(Z, h1) A hQ = C(h3) A Yy = O(hg)
= Fuy=u-z

3 On Streams

A real-valued stream is an infinite sequence (a;);eny with a; € R, where R denotes
the real numbers. Depending on the context, streams are also referred to as
real-valued discrete streams or signals, w-streams, w-sequences, or w-words. The
generating function [11] of a stream is a formal power series

>_ X’ (1)

1€N

in the indefinite X. These power series are formal because the symbol X is not
instantiated and there is no notion of convergence. The element a; € R is the
coefficient of X*, and the set of formal power series with coefficients in R is
denoted by R[X]. We also write f; for the coefficient of X in the formal power
series. Now, a polynomial in R[X] of degree n € N is a formal power series f
with f, # 0 and f; = 0 for all ¢ > n. We use the terms streams and formal power
series interchangeably for their one-to-one correspondence.

Addition of streams f, g € R[X] is pointwise, and streams are multiplied by
convolution.

f+g9=) (fi+a)X (2)
ieN
F9=> 0 fig)X’ (3)
ieN j=0

With these operations (R[X],+,-,0,1) becomes a commutative integral ring
with additive unit 0 := (0,0,...) and multiplicative unit 1 := (1,0,0,...). The
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real number line R is embedded in the polynomial ring R[X], which itself is
embedded in R[X]. Moreover, the rational functions R(X) are defined as the
fraction field of the polynomials R[X]. R[X] and R(X) are incomparable in
that neither R[X] nor R(X) contains the other.

Proposition 1. For f € R[X], the multiplicative inverse f~! € R[X] exists
if only if fo # 0.

Proof. Let f,g € R[X]. The identity f-g = 1 holds, by the defining identity (3)
for convolution, if and only if fygo = 1 and Zf:o figk—; = 0 for all £ > 1. The
latter equality is rewritten as fogr = — Zle figk—i. Now, fogo = 1 can be solved
for go if and only if fy # 0. In this case, go = /£, and gr = —go Ele figx—, for
k > 1, yielding a solution for g, which gives the multiplicative inverse of f.

1 1

We also write the quotient f/g instead of f - g~', whenever g~ exists.
Ezxample 6.

Ya-x)=(1,1,1,1,...)

Ya-x)2=(1,2,3,4,...)

Ya-rx)= (1,7, 72,73,..)) forreR

These identities are easily verified by the defining identities for convolution (3)
and for the multiplicative inverse. The first stream identity, for instance, is ver-
ified by the identity (1,-1,0,...)-(1,1,1,...) = (1,0,0,...), since 1 — X is
identified with (1,—1,0,...).

A stream in R[X] is rational if it is expressible as a quotient /¢ of polyno-
mials p,q € R[X] such that gy # 0 [40]. Rational streams, as a subring of the
formal power series R[X], are central to stream calculus because of their close
correspondence to stream circuits [40].

Ezample 7 ([37]). Let f,g be rational streams with real-valued coefficients.
Using the defining equations

Di(f)=X-f
A(f,g9) =f+g
Cif)=rf

for the unit delay register Dy, addition A of two streams, and copying C of a
stream, we obtain from the stream circuit in Fig. 1 a system of defining equations
hy = X -ho, h3 = z+hq, ha = hs, y = hs. Back substitution for the intermediate
streams hg, h1, and hs, in this order, yields an equational constraint y = z +
(X -y), which is equivalent to y = 1/(1-x) - z. Now, y = (Zf:o Zi)ken as a result
of the identity for 1/(1—x) in Example 6.

Remark 1. Rational streams substantially differ from the rational functions. The
inverse 1/x, for example, is not a rational stream, and it is not even a formal
power series. But it is in R(X).
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R[X] VAN R(X)

}

RIX] —— R(X)

Fig. 2. Commuting stream embeddings (‘*’ denotes completion for valuation |.|, and
¢/’ the fraction field construction.

The field R((X)) of formal Laurent series is the fraction field of the formal power
series R[X]. Elements of R((X)) therefore are of the form

Z aiXi, (4)

i=—n

for n € N and a; € R. They can therefore be thought of as streams that are
preceded by a finite, and possibly empty, history, which are used for “rewinding
computations”. In fact, every formal Laurent series is of the form X" - f, for
some n € N and for f € R[X] a formal power series.

The valuation v : R(X)) — Z U {oo} with v(0) := oo and v(f), for f # 0, is
the minimal index k € Z with fj #£ 0. In the latter case, fi is also said to be the
lead coefficient of f. Now, the set R((X)) of formal Laurent series is orderable (see
Appendix A) by the positive cone R((X)),. of formal Laurent series with positive
lead coefficient. This set determines a strict ordering f < g, for f,g € R((X)),
which is defined to hold if and only if ¢ — f € R((X)),, and a total ordering
f < g, which holds if and only if f < g or f = g. The restriction of < to the
formal power series in R[X] is also a total order.

Proposition 2.

1. (R[X];+,-,0,1;<) is a totally ordered commutative integral ring.
2. (R(X);+,-,0,1; <) is a totally ordered field.

As a consequence of Proposition 2.2, R((X)) is formally real (—1 can not be
written as a sum of nonzero squares in R((X))), R((X)) is not algebraically closed
(for example, the polynomial X2+ 1 has no root), and R((X)) is of characteristic
0 (0 can not be written as a sum of 1s). Moreover, the Archimedean property
(see [41]) fails to hold for R((X)), because X £ 1+ 1+ ...+ 1, no matter how
many 1’s we add together.

From the (normalized) valuation v one obtains, with the convention 27 :=
0, the absolute value function |.| : R((X)) — R=° by setting

=270, (5)

By construction, |.| is the non-Archimedean absolute value on R((X)) correspond-
ing to the valuation v [31]. Now, the induced metric d : R(X)) x R((X)) — R=°
with

d(f,g) = |f -4l (6)
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measures the distance between f and ¢ in terms of the longest common prefix.
Again, by construction, the strong triangle inequality

d(f,h) < max(d(f,g),d(g,h)). (7)
holds for all f,g,h € R((X)), and therefore d is ultrametric.
Proposition 3. (R((X)),d) is an ultrametric space.

Example 8. The scaled identity function I¢(x) :== f -, for f # 0, is uniformly
continuous in the topology induced by the metric d.? For given € > 0, let § :=
¢/|fl. Now, d(z,y) < 6 implies d(f -z, f -y) = |fld(z,y) < |f|6 = € for all
z,y € R(X)).

Proposition 4. Both addition and multiplication of formal Laurent series in
R(X)) are continuous in the topology induced by the prefix metric d.

The notions of Cauchy sequences and convergence in the metric space (R((X)), d)
are defined as usual. For example, lim,, ..o X™ = 0 and lim,,_, ZZ:O Xk =
/a-x). For a given sequence (fx)reny of formal Laurent series, (1) the
sequence (fx)ken is Cauchy iff limp_ oo d(fr+1, fr) = 0, (2) the series
Z?;O fi = lim, ZZ:O frx converges iff limy .o fr = 0, and (3) suppose
that limy_ .o fx = f # 0, then there exists an integer N > 0 such that for all
m > N, |fm| =|f~n| = |f|- These properties follow directly from the fact that |.|
is a non-Archimedean absolute value.

Proposition 5. (R((X)),d) is Cauchy complete.

Proof. Let (fx)ren be a Cauchy sequence with f, € R((X)). Then, for all c € N
there is N. € N such that d(f,, fm) < |X¢| for all n,m > N.. But this means
that f, — fi € X¢- R((X)). Since f are Laurent series, there are M} € Z and
ar; € R such that f, = ZDMk ay; X" Consequently, (ag,i)ken is constant for
k large enough. Now, there exists J € Z such that

Jim f = Z(klggo ar) X' € R(X)),

i>J
and therefore R((X)) is Cauchy complete.

Indeed, R((X)) can be shown to be the Cauchy completion of R(X), and the
stream embeddings discussed so far commute as displayed in Fig. 2.3 Finally, as a
non-Archimedean, Cauchy complete, and totally ordered field, R((X)) lacks the
least upper bound property, that is, there exists a non-empty subset of R((X))
with an upper bound and no least upper bound in R((X)).

2 The topology induced by the order < on streams is identical to the topology induced
by the prefix metric d.

3 This story continues, as R((X)) is a subfield of the real closed Levi-Civita field, which
itself is the Cauchy completion of the Newton-Puiseux series U2, R((X ")) over the
reals, which can also be shown to be real closed.
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4 Real Closedness

R((X)) is a totally ordered field by Proposition 2. To show that R((X)) is real
closed, we therefore still need to demonstrate the existence of a square root for
streams and the existence of roots for all odd degree polynomials in R((X))[Y],
where Y is a single indeterminate (cmp. Appendix B). General results on the
preservation of real-closedness ([1], §6.23, (1)-(2); [42], p. 221) are not applicable
for demonstrating real-closedness of R((X)).

The main step for showing real-closedness of R((X)) is an intermediate value
property (IVP) for streams. It should be recalled that the standard proof of the
IVP for a continuous function over the field of real numbers essentially uses the
fact that intervals and connected subsets coincide in the real number field and
that continuous functions preserve connectedness. When working with the non-
Archimedean, complete, and ordered field R((X)), however, such an argument is
no longer applicable, as it lacks the least upper bound property and therefore
also the dichotomic procedure for proving IVP. In this case, not only do the
Archimedean proofs of the IVP not work, but the IVP does not hold in general.
It nevertheless holds for special cases [6].

Lemma 1 (IVP). For a polynomial P(Y) € R[X][Y] and o, 8 € R[X] such
that P(a) < 0 < P(B), there exists v € R[X] N (e, B) with P(y) = 0.

Proof. Since R[X] is the Cauchy completion of R[X], there are sequences
(an)nen and (by)nen of polynomials a,,b, € R[X] such that lim, . an, = «
and lim,,_, o b, = 3. From the assumptions P(a) < 0 < P() and continuity of
the polynomial P in the topology induced by the prefix metric d, one can there-
fore find a,b € R[X] in the sequences (a,) and (b,) with o < a < b < 8 and
P(a) < 0 < P(b). For continuity of P, P(a) = P(limy,—,00 ay) = lim,, o0 P(ay).
Now, for 0 < & := IP(®)l/2, there exists N € N such that for d(P(a,), P(a)) < €
for all n > N. Therefore, P(a) < 0 for a := ax. The construction for b is similar.

The proof proceeds along two cases. If there is v € R[X] N (a,b) such that
P(v) = 0 we are finished. Otherwise, f(y) # 0 for all v € R[X] N (a,b). We
define ag := a, By = b, and, for m € N,

[@m,, O] i f(0) >0
[0m, Bm] & if f(6m) <O

where 0, = 1/2(a, + Bm) € R[X]. By assumption, P(4,,) # 0, and, by con-
struction, (ay,)men is a non-decreasing and (G, )men & non-increasing sequence
in R[X] such that, for all m € N, a, < B, d(@m, Bm) < 27, T(ay,) < 0,
and T(By,) > 0. Therefore, both (m)men and (Bm)men are Cauchy, (@ )men
converges from below, and (8,,)men converges from above to a point . Now,
~v € R[X], since R[X] is the Cauchy completion of R[X]. Since P is continuous
we obtain

lim P(ap,)=P( lim a,,)=P(y)=P(lim G,)= lim P(6,),
M~ 00 " ! m— oo m— oo M —00 " !
<0 >0

3

[am-i-lv ﬁm-&-l] = {
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and therefore P(vy) = 0. This establishes the claim.

A real closed ring is an ordered domain which has the intermediate value property
for polynomials in one variable. From the IVP for formal power series in Lemma 1
we immediately obtain the following three properties that characterize real closed
rings [12].

Proposition 6.

1. f divides g for all f,g € R[X] with 0 < g < f;
2. Every positive element in R[X] has a square root in R[X];
3. Every monic polynomial in R[X][Y] of odd degree has a root in R[X].

Proof. In each of the three cases a certain polynomial changes sign, and hence
has a root. The relevant polynomials in R[X][Y] are:

1. f-Y +gon01];

2. Y? — f on [0, max(f,1)];

3. Y "+ fu 1Y L4 .+ f1-Y + fo on [N, N], where n € N is odd and
N =1+ fn_1|+...+|fo]

Ezample 9. +/(1,2,3,...) = (1,1,1,...), since, using the identities in Example 6,
(1,1,1,...)% = (1/(1 X)) 1/ 1-X)? (1 2,3,...).

Alternatively, square roots of streams are constructed as unique solutions of
corecursive identities.

Remark 2 (Corecursive definition of square root [39]). Assume f € R[X] with
head coefficient fo > 0 and tail f/ € R[X]. Then, v/f € R[X] is the unique
solution (for the unknown g) of the corecursive identity ¢’ = '/(v/fo+g), for the
tail ¢’ of g, and the initial condition gy = +/fo for the head gy of g. Now, for all
f,g9 € R[X] with f’ > 0, if g- g = f then either g = \/f or g = —/f, depending
on whether the head g is positive or negative ([39], Theorem 7.1).

It is an immediate consequence of property (1) of Proposition 6 that the
formal power series R[X] is a proper valuation ring of its fraction field R((X));
that is, f or f~! lies in R[X] for each nonzero f € R((X)). Since R[X] also
satisfies the IVP (Lemma 1) we obtain:

Corollary 1. (R[X];+,,0,1;<) is a real closed ordered valuation ring.

Formal Laurent series, as the fraction field of formal power series, inherit the
properties (2) and (3) in Proposition 6.

Proposition 7.

1. Every positive stream in R(X)) has a square root in R(X)).
2. Every monic polynomial in R(X))[Y] of odd degree has a root in R(X)).



146 H. Ruess

Proof. Assume 0 < f/g € R((X)). Then 0 < f-g € R[X], and v7-9/4 is the square
root of f/g. For establishing (2), assume P(Y) € R((X))[Y] be a polynomial of
odd degree n. Choose 0 # h € R((X)) such that h - P(Y) € R[X][Y]. Now,
Q) == h™- P(Y/n) is a monic polynomial in R[X][Y] of odd degree. Applying
Proposition (6.2) to ¢(Y) we see that p(Y') has a root in R((X)).

Formal Laurent series are real closed (see Appendix B) as an immediate
consequence of Proposition 7.

Corollary 2. (R(X));+,-,0,1;<) is a real closed ordered field.

Therefore the ordering < on R((X)) is unique.

5 Decision Method

The first-order theory 7..; of ordered, real closed fields (see Appendix B) admits
quantifier elimination [16,44]. That is, for every formula ¢ in the language L,
(cmp. Appendix B) of ordered rings/fields there exists a quantifier free formula
® in this language with FV (1)) C FV(¢)?* such that Tpr = (¢ <= ). Thus,
Corollary 2 implies quantifier elimination for the streams in R((X)).

Theorem 1. Let ¢ be a first-order formula in the language L. of ordered
fields; then there is a computable function for deciding whether ¢ holds in the
Lor-structure (R(X)); +,-,0,1; <) of streams.

As an immediate consequence of the quantifier elimination property for R((X)),
the structure of formal Laurent series with real-valued coefficients is elemen-
tarily equivalent to the real numbers in that they satisfy the same first-order
Lor-sentences. Notice that decidability of R((X)) already follows from the devel-
opments in ([4], Corollary), since the field R is of characteristic 0. This observa-
tion, however, does not yield quantifier elimination.

There is an explicit quantifier elimination procedure for real closed valuation
rings, which uses quantifier elimination on its fraction field as a subprocedure
([12], Section 2). Therefore, by Corollary 1, we obtain a decision procedure for
first-order formulas and streams in R[X], which has quantifier elimination for
R(X)) as a subprocedure.

Theorem 2. Let ¢ be a first-order formula in the language L, U{|} of ordered
rings extended with divisibility; then there is a computable function for deciding
whether ¢ holds in the Lo U {|}-structure (R[X];+,,0,1;|, <) of streams.

Tarski’s original algorithm for quantifier elimination has non-elementary com-
putational complexity [44], but cylindrical algebraic decomposition provides a
decision procedure of complexity a2’ [18], where n is the total number of vari-
ables (free and bound), and d is the product of the degrees of the polynomials
occurring in the formula.

4 FV(.) denotes the set of free variables in a formula.
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Theorem 3. Let p be a first-order formula in the language L, of ordered fields.
Then the validity of ¢ in the structure R((X)) of streams is decided with com-
plexity d2o(n), where n is the total number of variables (free and bound), and d
is the product of the degrees of the polynomials occurring in .

This worst-case complexity is nearly optimal for quantifier elimination for real
closed fields [20]. For existentially quantified conjunctions of literals of the form
(Fz1,...,25) Aq pi(21,...,25) D 0, where pa stands for either <, =, or >
the worst-case complexity is n**1 . d°(®) arithmetic operations and polynomial
space [5]. Various implementations of decision procedures for real closed fields
use virtual term substitution [46] or conflict-driven clause learning [24].

6 Definitional Extensions

We consider definitional extensions of the first-order theory 7..¢ of ordered real
closed fields for encoding some fundamental concepts of stream calculus. The
transfer function in Example 7 of the stream circuit in Fig. 1, for example, is
encoded as a first-order formula in the language L, of (ordered) rings extended
with constant symbols X and 1/(1-x).

Ezample 10.
(Vz,y,h) (=X -y Ay=z+h) = y=11-x) 2,

where the logical variables z, y, hy are interpreted over streams in R[X]. To
obtain a decision procedure for these kinds of formula, we therefore

— Relativize quantification in 7.t to formal power series; o
— Define constant symbols f for rational streams f (including X).

Relativization. There is a monadic formula with an 3V3V quantifier prefix and
no parameters for uniformly defining the formal power series R[X] in R((X)), as
a direct consequence of Ax’s construction [4].> Moreover, R[X] is V3-definable
in R(X)) by ([35], Theorem 2 together with footnote 2), since the valuation
ring R[X] is Henselian. The model-theoretic developments in [35], however, do
not provide an explicit definitional formula. But explicit definitions of valuation
rings in valued fields are studied in [3,15,21].

From these considerations we obtain an explicit definition in R((X)) of the
monadic predicate S(z) for characterizing the set of streams in R[X]. By rela-
tivization of quantifiers with respect to this predicate S we therefore assume from
now on that all logical variables are interpreted over the streams in R[X]. In
addition, we are assuming definitions R(x) for given, and possibly finite, subsets
R of real number embeddings. For example, the algebraic definition

(Vo) Fo(z) <= =2 (8)
defines the binary set {0,1} of streams.

5 This observation holds for any field of coefficients.
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Shifting Streams. The fundamental theorem of stream calculus [38] states that
for every f € R[X] there exist unique r € R and f’ € R[X] with f = [r]+X - f'.
In this case, r is the head coeflicient, [r] is the embedding of the real number r
as a stream in R[X], and f’ is the tail of the stream f. Therefore, the definition

(Vo) X =2 <= (V) 3'vo,¥)Ryo) A\y=wo+ 2y, 9)

for X a fresh constant symbol, yields a conservative extension T;.¢[S, R, X| of the
theory 7;cf, with X, as an element of R[X], the only possible interpretation for
the constant symbol X. Notice that the definitional formula (9) for X requires
V3V quantifier alternation due to the 3! quantifier involved.

Ezxample 11. The basic stream constructors of stream circuits for addition A,
multiplication M, by a rational ¢ € Q, and unit delay D; are defined by (the
universal closures of)

A(x1,m0) =y <= y=1u1+ 22

M., (z) =y <= my=nx

Di(x)=y +—= y=X-ua,

where D1, A, and Mi/m for n,m € N with m # 0, are new function symbols,
and the variables are interpreted over R((X)). Synchronous composition of two
stream circuits, say S(z,y) and T'(y, z), is specified in terms of the quantified
conjunction (Jy) S(z,y) A T(y,z), where existential quantification is used for
hiding the intermediate y stream [43].

Rational Streams. We are now extending the language of ordered rings with
constant symbols for rational streams (with rational coefficients). This extended
language is expressive, for example, for encoding equivalence of rational stream
transformers. We are considering rational streams f = p(X)/q(x) with rational
coefficients. In this case, the head for ¢(X) is nonzero and f € R[X]. Multi-
plication by ¢(X) and by the least common multiple of the denominators of all
rational coefficients in p(X) and ¢(X) yields an equality constraint in the lan-

guage Lo-[S, R, X]. More precisely, let Rq be a set of fresh constant symbols for

all rational streams (except for X) and 7Z;¢¢[S, R, X, Rg] the extension of Z;.¢ by
the definitions

Vy) f=y <= p(X)-y=qX) (10)

for each (but X) rational stream f, p(z) :== cp(z), and ¢(x) == cq(x), for c € N
the least common multiple of the denominators of coefficients of p(x) and gq(x);

Ehen:iﬂcf[S ,R, X ,Rg| is a conservative extension of Ty, and all the symbols
f € Rg have the rational stream interpretation f.

Remark 3. Alternatively, a rational stream f (with rational coeflicients) can be
finitely represented in terms of linear transformations H : Q¢ — Q and G :
Q? — Q%, where d is the finite dimension of the linear span of the iterated tails
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of f [40]. Constraints for the finite number d of linear independent iterated tails
are obtained from the anamorphism [(H, G')|, which is the unique homomorphism
from the coalgebra (H, G) € Q% — Q x Q? to the corresponding final stream
coalgebra.

Automatic Streams. We exemplify the encoding of a certain class of regular
streams as (semi-)algebraic constraints in stream logic. Consider the Prouhet-
Thue-Morse [2] stream ptm € Fo[X], for Fy the finite field of characteristic 2.
The n'-coefficient of this stream is 1 if and only if the number of 1’s in the
2-adic representation [n]y of n is even. In other words, the n'-coefficient is 1 if
and only if [n]y is in 0*(10*10*)*. This regular expression yields an equivalent
deterministic finite automaton with two states, namely “odd number of 1s” and
“even number of 1s”. Such a stream is also said to be automatic [2].

Christol’s characterization [13] of algebraic (over the rational functions with
coefficients from a finite field) power series in terms of deterministic finite
automata (with outputs) implies that the stream ptm is algebraic over Fa[X].
For instance, the stream ptm can be shown to be a root of the polynomial
X+ 1+ X% Y +(1+X)?-Y? of degree 2 and coefficients in Fa[X]. A
semi-algebraic constraint for ruling out other than the intended solution can
be read-off, say, from a Sturm chain.

In this way, Christol’s theorem supports the logical definition in stream logic
of all kinds of analytic functions (sin, cos, ...) over finite fields. But not over the
reals, as otherwise we could define the natural numbers using expressions such
as sin (mz) = 0. And we could therefore encode undecidable identity problems
over certain classes of analytic functions [36], even without using 7 [28].

Heads and Tails. On the basis of the fundamental law of the stream calculus for
formal power series, we define operators for stream projection and consing. Now,

definitional axioms

(Va, 2V tl(z) =2’ <= (Fzo)R(zg) Nz =20+ X -2’ (11)
(Vo,20) hd(z) =39 <= R(xo) AN (32 )x =20+ X -2’ (12)
(Vxo,2',y) cons(zg, ') =y <= R(zo) Ny=m0+ X -2’ (13)

is a conservative extension of Zi.;. Moreover, hd(z) = y (tl(r) = y) holds in
the structure R[X] if and only if y is interpreted by the head (tail) of the
interpretation of z; similarly for consing.

With these definitions we may now also express corecursive identities in
a decidable first-order equality theory. The following example codifies the
Fibonacci recurrence (see Example 6) in our (extended) decidable logic.
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Ezample 12.

These kinds of behavioral stream identities are ubiquitous in stream calculus [38],
for example, for specifying filter circuits.

Ezample 13 (3-2-filter). A 3-2-filter with input stream x and output y is spec-
ified in stream logic by three initial conditions and the difference equation

— — =2

hd(y) = hd(tl(y)) = hd(tl" (y)) = 0

ﬁg(y) = cox + c1tl(w) + ﬁg(:r) + 0203ﬁ2 (y) + catl(y),
for constants cg,...,cq € Z.

Ezample 14 (Timing Diagrams). The rising edge stream is specified in Scade-
like [17] programming notation using the combined equation

y=0—2a A —pre(z).

That is, the head of y is 0 and the tail of y is specified by the expression to the
right of the arrow. Notice that the Scade notation pre(x) is similar to the shift
operation in that pre(xz) = (L, zg,1,...), where L indicates that the head ele-
ment is undefined. The rising edge stream F is specified corecursively in stream
logic by

(Ve,y) E(x) =y < (hd(y) =0 A ti(y) = and(x, not(tl(z)))),
for an arithmetic encoding of the logical stream operators and and not.

The decision procedure for stream logic may also be used in coinductive proofs
for deciding whether or not a given binary stream relation is a bisimulation.

Ezample 15 (Bisimulation). A binary relation B on streams, expressed as a
formula in stream logic with two free variables, is a bisimulation [38] if and only

if the £,,[S, R, X, hd, tl] formula
(Va,y) B(z,y) = hd(x) = hd(y) A B(tl(z),t(y))
holds in the structure of streams.

Finally, we exemplify how corecursively defined stream functions are defined in
a conservative extension of 7,q¢.
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Ezample 16 (Stream Zip). The function Z for zipping the coefficients of two
streams is defined by the corecursive identities

Since there is a gnique6 interpretation in R[X] satisfying these identities, the
function symbol Z is defined implicitly in the theory Z;c¢[S, R, X, hd, tl, Z]. Now,
by Beth’s definability theorem [23], Z is also explicitly definable, say, on the basis

of Craig interpolation.

Example 17. Assuming definitions F(x) and O(x) for sampling its stream argu-
ment x at even and at odd positions, respectively, we may now prompt our
verification procedure to establish stream equalities such as

(Vo) z = Z(E(x),0(x)),

without using the bisimulation principle and without the need for constructing
an explicit bisimulation relation.

The developments in Examples 16 and 17 generalize to all stream differential
equations ([38], Chapter 11).

7 Conclusions

First-order stream logic is expressive for encoding problems of stream calcu-
lus. It is decidable in doubly exponential time, and its decision procedure is
based on quantifier elimination for the theory of real closed ordered fields. Some
of the proposed encodings for the relativization of quantifiers, however, lead
to additional quantifier alternations (and variables and constraints) in problem
formulations, which significantly increases the computational effort required to
solve these constraints. Thus, it remains to be seen whether and how exactly
a decision procedure for stream logic based on quantifier elimination for real
closed fields makes practical progress compared to mature implementations of
the non-elementary logic-automaton connection [27,33].

Alternatively, the decision procedure for first-order stream logic can be based
directly, that is, without relativizing the stream quantifiers, on a quantifier elim-
ination procedure for real closed valuation rings [12]. But these algorithms have
not been studied and explored nearly as much as quantifier elimination for real
closed fields, and the author is not aware of a reasonable computer implementa-
tion.

5 See ([38], Theorem 252) for constructing unique solutions of corecursive identities
based on the uniqueness of anamorphisms into the final stream coalgebra.
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A Orderable Fields

A field K is orderable if there exists a non-empty K4 C K such that

1. 0¢ K4
2. (z+y),zy € Ky for all z,y € K4
3. Either x € K4 or —z € K4 for all x € K\ {0}

Provided that IC is orderable we can generate a strict order on K by x < y if and
only if (y — x) € K,. Furthermore, a total ordering < on K is defined by z <y
if and only if x < y or x = gy, and (K, <) is said to be a (totally) ordered field.
Now, the absolute value of x € K is defined by |z| := max(—x, ). The triangle
imequality

|z +yl < |2 + [yl (14)

holds for ordered fields. As —|z|—|y| < x+y < |z|+]y|, we have |x+y| < |z|+|y],
because x +y < |z| + |y| and —(x +y) < |z| + |y|-

Let IC be an ordered field and a € K\ {0} fixed. The scaled identity function
I,(z) = ax is uniformly continuous in the order topology of K. For given € € K5,
let § := ¢/|a). Indeed, for all z,y € K, | —y| < § implies |ax — ay| = |a| |z —y| <
|a|0 = . Consequently, every polynomial in K is continuous.

A field K is orderable iff it is formally real (see [45], Chapter 11), that is, —1
is not the sum of squares, or alternatively, the equation 22 + ...+ 22 = 0 has
only trivial (that is, z; = 0 for each k) solutions in K.

B Real Closed Fields

A field K is a real closed field if it satisfies the following.

1. K is formally real (or orderable).

2. For all z € K there exists y € K such that z = y? or x = —y2.

3. For all polynomial P € K[t] (over the single indeterminate ¢) with odd degree
there exists x € K such that P(z) = 0.

Alternatively, a field K is real closed if K is formally real, but has no formally
real proper algebraic extension field.

Let K be a real closed totally ordered field and 2 € K. Then z > 0 iff z = 32
for some y € K. Suppose x > 0, then, by definition of real closedness, there exists
y € K such that z = y2. Conversely, suppose x = y? for some y € K, then, by
the definition of K, we have y? € K, for all y € K, and therefore > 0. Thus
every real closed field is ordered in a unique way.

Artin and Schreier’s theorem gives us two equivalent conditions for a field I
to be real closed: for a field IC, the following are equivalent

1. K is real closed.
2. K? is a positive cone of IC and every polynomial of odd degree has a root in

K.
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3. K (i) is algebraically closed and KC # KC(i) (where ¢ denotes v/—1).

This characterization provides the basis (see axioms 16) and 17 below) for a first-
order axiomatization of (ordered) real closed fields. The language of ordered rings
(and fields), L, consists of a binary relation symbols <, two binary operator
symbols, +, -, one unary operator symbol —, and two constant symbols 0, 1.
Now, the first-order theory 7..¢ of ordered real closed fields consists of all £,,.-
structures M satisfying the following set of axioms.

Field Azioms.

Vae,y,z)x-(y+z)=xz-y+x-2
Vo,y,z)a+ (y+z)=(x+y)+=
Vo,y,z)a-(y-2) = (z-y)- 2
Ve,y)x+y=y+zx

© XN WD
P Y L Y e L Y Y Y

Total Ordering Axioms.

10. (Vz)z <=z

11. (Va,y,2) e <y ANy<z=>ax<z
12. Ve, y)e<yANy<z =>z=y

18. Ve,y)z<yVy<z

14. Ve,y,2)e<y=ax+z2<y+z
15. (Ve,y))0<2A0<y=0<z-y

Existence of Square Root.

16. (Vo)(3Iy)y-y=2Vy y=-x

Every polynomial of odd degree has a root.

17. (Vag,...,an)an, #0 = (3x)ap+a1-z+...+a,-2" =0 foroddn € N

If an L,,-structure M satisfies the axioms for ordered real closed fields above,
then M is called a model of 7..;. Any model of Tyt is elementarily equivalent to
the real numbers. In other words, it has the same first-order properties as the
field of ordered reals.
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Abstract. The predicate definitions in Separation Logic (SL) play an important
role: they capture a large spectrum of unbounded heap shapes due to their induc-
tiveness. This expressiveness power comes with a limitation: the entailment prob-
lem is undecidable if predicates have general inductive definitions (ID). osif et
al. [8] proposed syntactic and semantic conditions, called PCE, on the ID of pred-
icates to ensure the decidability of the entailment problem. We provide a (possibly
nonterminating) algorithm to transform arbitrary ID into equivalent PCE defini-
tions when possible. We show that the existence of an equivalent PCE definition
for a given ID is undecidable, but we identify necessary conditions that are decid-
able. The algorithm has been implemented, and experimental results are reported
on a benchmark, including significant examples from SL-COMP.

Keywords: Separation logic * Inductive definitions * Bounded treewidth
fragment - PCE fragment + Symbolic heaps * Decision procedures

1 Introduction

Separation logic (SL) [9,11] is widely used in verification to reason about programs
manipulating dynamically allocated memory. Formulas in SL are defined from atoms
of the form x — (yi,...,yx), stating that at location (i.e., a memory address), x is
allocated a memory block containing the tuple built from values of yy, ..., y, and emp,
stating that the heap is empty, i.e., that there are no allocated locations. SL includes the
standard logical connectives and quantifiers, together with a special connective ¢; x ¢,,
called separating conjunction, asserting that formulas ¢; and ¢, are satisfied on disjoint
parts of the heap. This particular feature of the logic ensures the scalability of program
analyses by enabling local reasoning: the properties of a program may be asserted and
established by referring only to the part of the heap that is affected by the program. To
specify recursive data structures, the SL formulas include predicate atoms defined by
inductive rules with a fixpoint semantics. For instance, list segments from x to y may be
defined by the following rules:
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ls(x,y) = empxx =y, 1s(x,y) & Az.(x = () * 1s(z,y)). (D)

Many problems in verification boil down to checking the validity of entailments
between formulas in SL. In general, unsurprisingly, entailment is undecidable. How-
ever, several fragments have been identified for which the entailment problem is decid-
able. Among these fragments, the so-called PCE fragment is one of the most expressive
ones [8]. Decidability was initially established by reduction to monadic second-order
logic on graphs with bounded treewidth. Later, more efficient algorithms were proposed
[4,10], and the problem turned out to be 2-ExpriMe-complete [3]. The PCE fragment is
defined by restricting the syntax and the semantics of the inductive rules defining the
predicates. Each rule is required to satisfy three properties (formally defined later):
(P)rogress, (C)onnectivity and (E)stablishment. Informally, the conditions respectively
assert that: (P) every rule allocates exactly one location; (C) the allocated locations have
a tree-shaped structure which mimics the call tree of the predicates, and (E) every loca-
tion not associated with a free variable is (eventually) allocated. A PCE formula is a
formula in which all predicates are defined by PCE rules. Most usual data structures
in programming can be defined using PCE rules. However, the PCE conditions impose
rigid constraints on the rules’ syntax, which are not necessarily satisfied in practice by
user-provided rules. For instance, the above rules of 1s (Eq. (1)) are not PCE (because
the first rule of 1s allocates no location), while the following ones, although specifying
non-empty list segments, are PCE:

1s™(x,y) € x> (y), 1s*(x,y) & z. (x — (z) * 1s*(z,y)). 2)

The non-PCE formula 1s(x,y) can then be written as a PCE formula (emp x x ~
y) V 1s*(x,y). Other, rather natural, definitions of 1s* can be given, which are not
PCE (the second rule of 1s™ allocates no location, and the second rule of 1s° is not
connected):

1s"(x,y) x> (y), 1s"(x,y) & Az. (1s™(x,2) x 15"(z,y)), 3)
1s’(x,y) & x > (), 1s’(x,y) & 2. (As(x,2) x 2 = (¥)). 4)

Similarly, the following definition of lists of odd length is not PCE:
Il ex—> ), Is'(ny) & T n. (v @) xz = @) *1s'@2.9), (5)

but it is clear that it can be transformed into a PCE definition by replacing the inductive
rule (at right) with the following ones:

1s'(r,y) & Jz1. (x = @) *1%@Ly),  18%@,y) & Ja. (0 = @)*1s'@2.)).

(6)

A natural question thus arises, which has not been investigated so far: can algorithms

be provided to identify whether a formula can be rewritten into an equivalent PCE

formula and to effectively compute such a formula (and the associated inductive rules)
if possible? The present paper aims to address these issues.

Contributions. We first observe that the PCE problem — i.e., the problem of testing
whether a given formula admits an equivalent PCE formula — is undecidable. The
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result follows from the undecidability of testing whether context-free grammar is regu-
lar. Then, we provide a procedure for transforming some formulas that do not satisfy the
PCE conditions into equivalent PCE formulas. Equivalence is guaranteed in all cases,
but the procedure does not always terminate. We also identify cases for which the for-
mulas cannot possibly admit any equivalent PCE formula. More precisely, we identify
a property called PCE-compatibility, which is strictly weaker than PCE, in the sense
that any formula that is equivalent to a PCE formula is PCE-compatible, but the con-
verse does not hold, and we prove that this property is decidable. To sum up, given
a formula ¢, the procedure may either terminate with a negative answer (if ¢ is not
PCE-compatible) or may terminate with a positive answer and output a PCE formula
equivalent to ¢ or may diverge (if ¢ is PCE-compatible, but no equivalent PCE formula
can be obtained).

To our knowledge, there is no published work on this topic. In [7], the authors
proposed inductive definitions (ID, termed “recursive definitions” in [8]) with syntactic
restrictions incomparable to PCE since they require linearity and compositionality of
the ID to obtain decidability of the entailment problem. This class of ID (disregarding
data constraints) may be translated by our procedure into PCE form, i.e., they are PCE-
compatible. In [5], other decidable fragments of entailment problems are considered,
which do not fulfil the PCE conditions but can be reduced to PCE entailment. Unlike
the present approach, the reduction proposed in [5] does not preserve the equivalence of
formulas. In [4], the establishment condition is replaced by a condition on the equalities
occurring in the problem.

2 Separation Logic with Inductive Definitions

We recall the definition of the syntax and semantics of SL with inductive definitions.
Missing definitions, further explanations and examples can be found in [8]. We briefly
review standard notations: card(A) denotes the cardinality of set A, and A & B denotes
the disjoint union of sets A and B. The set {x € Z | i < x < j} is denoted by [, j].
The domain of a function f is written dom(f). The equivalence class of an element x
w.r.t. some equivalence relation » is written [x],,, and the set {[x],, | x € S} is written
S .. The relation = will sometimes be omitted if it is clear from the context. We often
identify an equivalence relation p« with the set of its equivalence classes. For any binary
relation —, we denote by — its reflexive and transitive closure. A set R is a set of roots
for — if for all elements x,y such that x — y, there exists r € R such that r —* x. It
is minimal if, moreover, there is no set of roots R’ such that R” C R (where C denotes
strict inclusion).

Definition 1 (SL formulas). Let V be a countably infinite set of variables, and let P
be a set of spatial predicate symbols, where each symbol p € P is associated with a
unique arity #(p) (with countably infinite sets of predicate symbols of each arity). The
set of SL-formulas (or simply formulas) ¢ is inductively defined as follows:

pi=emp | x> Q... )l x=y | xEY @1V | prxer | p(x1,..., Xup) | Ax. @1

where @1,y are formulas, p € P, k € N and x,y, X1, ..., Xt(p)s Y1, -, Yk € V.
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Note that negations are not supported. The considered fragment is similar to that
of [4] (with disjunctions added), with the slight difference that points-to atoms x —
(1, - - - » yx) contain tuples of arbitrary length k > 0. Let fi(¢) be the set of free variables
in @. A substitution o is a function from variables to variables; its domain dom(o) is
the set of variables x such that o(x) # x, and its image img(c) = o(dom(o)). For
any expression (variable, tuple or set of variables, or formula) e, we denote by eo the
expression obtained from e by replacing every free occurrence of a variable x by o (x).
A symbolic heap is a formula containing no occurrence of V. By distributivity of * and
Jover Vv, any formula ¢ can be reduced to an equivalent disjunction of symbolic heaps,
denoted by dnf(¢). An inductive rule associated with the predicate p has the form
p(x1,...,x,) & @, where x1, ..., x, are pairwise distinct variables, n = #(p), and ¢ is a
formula with fi(p) C {x1,..., x,}. If ¢ is not a symbolic heap, then p(xy,...,x,) = ¢
may be replaced by the rules {p(xi,...,x,) < ¢; | i € [1,m]}, where ¢1,...,¢0n
are symbolic heaps such that \/7_, ¢; is dnf(¢). We assume in the following that this
transformation is applied eagerly to every rule. A set of inductive definitions (SID) R
is a set of inductive rules such that, for all predicates p, R contains finitely many rules
associated with p. We write p(yy,...,y,) g ¥ if R contains a rule p(xy,...,x,) < ¢,
with ¢ = of{x; = y; | i € [1,n]}.

Definition 2 (SL structure). Let L be a countably infinite set of so-called locations.
An SL-structure is a pair (s, 1) where s is a store, i.e., a partial function from V to L,
and b is a heap, i.e., a partial finite function from L to L*, which can be written as a
relation: H(€) = (€1, ..., ) iff (€, €1,...,6) € bk e N,

For any heap b, we let ref (h) = {€ | £y € dom(D), £ occurs in h(£y)}, loc(h) = ref (h) U
dom(h) and dgl(h) = loc(h) \ dom(h) (for “dangling pointers”). Locations in dom(bh) and
variables x such that s(x) € dom(}) are allocated. We write £ —y ¢’ iff £ € dom(h), and
¢’ occurs in h(¢£).

Definition 3 (SL semantics). Given a formula ¢, a SID R and a structure (s,9) with
fv(p) € dom(s), the satisfaction relation =g is inductively defined as the least relation
such that (s,b) Er ¢ iff one of the following conditions holds:

—gp=empandb =0; or o =(x = (y1,...,y) and b = {(s(x), s(y1), - - ., SR},

p=(x=y),s(x)=s(y)andbh=0; oro = (x #y), s(x) # s(y)and b = 0;

— @ = @1 V@ and (s,h) Er @i, for some i € {1,2}; or ¢ = ¢1 *x ¢, and there exist
disjoint domain heaps by, b, such thath) = h; Wh, and (s,b;) Er @i, forall i € {1,2};

— @ =dx. ¢ and (s',b) Er Y, for some ' matching s on all variables distinct from x;

— @ =p(x1,...,x8) p € P and (s,h) Eg ¢ for some  such that ¢ <g .

We write ¢ Eg ¥ if for every structure (s,H) we have (s,h) Fg ¢ = (5,h) Fr . If
both ¢ =g Y and Y =g ¢ hold, then we write ¢ =g .

Definition 4 (SL model). An R-model of ¢ is a structure (s,1) such that (s,1) Eg ¢.
Given two pairs (¢,R) and (¢',R’), where ¢, ¢’ are formulas and R, R" are SID, we
write (¢, R) = (¢',R) iff (5,0) Er ¢ = (5,h) Ewr ¢ holds for all structures (s, b).
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We emphasize that the atoms x ~ y or x # y only hold for empty heaps (this con-
vention simplifies notations as it avoids the use of standard conjunction). Formulas are
taken modulo the usual properties of SL connectives: associativity and commutativity
of x and V, neutrality of emp for x, commutativity of =, %, and also modulo prenex
form and a-renaming. We also assume that bound variables are renamed to avoid any
name collision. Rules are defined up to a renaming of free variables.

3 The PCE Problem

We now recall the conditions from [8], ensuring the decidability of the entailment prob-
lem.

Definition 5 (PCE rule and SID). Let r be a function mapping every spatial predi-
cate p € P to an element of [1,#(p)]. For any atom p(xi,...,Xx,), the variable x)
is the root of p(xy,...,X,), and the root of an atom x — (y1,...,Yr) is x. A rule
p(x1,...,x,) & @ is PCE w.r.t. some SID R if it is:

— progressing, i.e., ¢ is of the form uy, ..., uy. (xi = OV1,..., ) * ¥), where m > 0,
Y is a formula with no occurrence of —,3,V, and i = r(p);

— connected, i.e., moreover, all spatial predicate atoms occurring in ¥ are of the form
qz21s .- .5 21g) With 2y € (Y1, ... Vs

— established, i.e., moreover, for all i € [1,m], and for all structures (s,b) such that
(5,9) Er ¥, either s(u;) € dom(b) or s(u;) € {s(x;) | j € [1,n]}.

A SID R is PCE if every rule is PCE w.r.t. R. A formula ¢ is PCE if every predicate used
in ¢ is defined by PCE rules.

The problem we are investigating in the present paper is the following:

Definition 6 (PCE problem). Given a pair (¢, R), the PCE problem lies in deciding
whether there exists a formula ¢’ and a PCE SID R’ such that (¢, R) = (¢’, R').

Assuming that ¢ is atomic is sufficient (complex formulas may be introduced by
inductive rules), but the possibility that ¢’ is non-atomic allows for greater expressive-
ness. If one restricts oneself to list-shaped structures denoting words, then the PCE
conditions essentially state that the set of denoted words is regular. This entails the
following result, obtained by reduction from the regularity of context-free languages:

Theorem 1. The PCE problem is undecidable.

It may be observed that the structures (s, h) satisfying PCE pairs (¢, R) necessarily
satisfy two essential properties. First, due to the connectivity condition, these structures
necessarily admit a bounded number of roots, which correspond to locations assigned
by s to (possibly quantified) variables occurring inside ¢ (at some root position in a
predicate or points-to atom, as defined in Definition 5).

Structures with multiple roots are permitted (e.g., doubly linked lists), but due to the
connectivity condition, if x is the root of an atom ¢, then, for every model (s, ) of ¢, the
singleton {s(x)} is a set of roots for —y (i.e., all locations in loc(h) must be accessible
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from s(x)). Disjoint structures built in parallel (such as two lists with the same length)
are not allowed!. Second, these structures also admit a bounded number of “dangling
pointers” (i.e., elements of dgl(h)), which again correspond (by s) to variables occurring
in ¢, since all the variables introduced by unfolding rules must be allocated due to the
establishment property. The latter property turned out to be essential for decidability [6].
This yields the definition of a property called PCE-compatibility:

Definition 7 (PCE-compatibility). Let k € N. A structure (s,1) is k-PCE-compatible
if (i) card(dgl(h)) < k and (ii) there exists a set of roots R for —y, with card(R) < k. A
pair (¢, R) is k-PCE-compatible if every R-model of ¢ is k-PCE-compatible.

Proposition 1. Let ¢ be a formula, and R be a PCE SID. Every R-model (s,9) of ¢ is
k-PCE-compatible, where k is the number of (free or bound) variables in ¢.

Example 1. Let us consider the formula ¢ = p(x,y) and the SID R, below. For read-
ability, we employ the same variable names in predicate definitions and predicate calls
to avoid introducing the renaming of variables:

px,y) & Jz.z = (x,y), q) & Iz, u,t.(y = (2, 1) x r(z,u, 1)),

7
p(x,y) = x— ) * q(y), rizu,) csudtxz— W) *xt—(1). )

The SID R;, and thus (¢, R;), are not PCE. In the first rule for p, z is root but not a
free variable, the rule defining ¢ is not established for the existential variable u and the
rule defining r does not respect the progress condition as it has two points-to atoms.

4 Overview of Our Procedure

The (nonterminating) algorithm for transforming a pair (&, R) into an equivalent PCE
pair is divided into four main steps (from now on, we denote the target formula by @,
whereas the meta-variable ¢ is reserved for formulas occurring in inductive rules).
Step 1: We compute abstractions of the models of @ (and of all relevant predi-
cate atoms). The aim is to extract relevant information about the constraints satisfied
by these models concerning (dis)equalities, heap reachability and allocated locations.
The abstractions are constructed over a set of variables that includes the variables freely
occurring in the formulas, together with some additional variables — the so-called invis-
ible variables — that correspond to existential variables that either occur in @ or are
introduced by unfolding inductive rules. The usefulness of invisible variables will be
demonstrated later. The computation does not terminate in general, as the set of abstrac-
tions is infinite (due to the presence of invisible variables). However, we prove that the
computation terminates exactly when the considered formula is k-PCE-compatible (for
some k € N). Furthermore, we introduce a technique — the so-called ISIV condition
— to detect when the formula is not k-PCE-compatible during the computation of the
abstractions. This ensures termination in all cases and also proves that the problem of

! Indeed, to satisfy the connectivity condition the two lists must be defined in distinct atoms (as
they are not connected). But then it is impossible to ensure that they have the same number of
elements.
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deciding whether a given pair is k-PCE-compatible, for some k, is decidable. This step
is detailed in Sect. 5.

Step 2: We transform the set of rules in order to ensure that every predicate is asso-
ciated with a unique abstraction, in which all invisible variables are replaced by visible
ones. This step always terminates. It adds some combinatorial explosion that could be
reduced by a smart transformation, but it greatly simplifies the technical developments.
This step is detailed in Sect. 6.

Step 3: We apply some transformations on the SID to ensure that every abstraction
admits exactly one root. This step may fail in the case where the structures described
by the rules do not have this property. See Sect. 7.

Step 4: We recursively transform any rule p(¥) < ¢ into a PCE rule by decompos-
ing ¢ into a separating conjunction y — (zy, ..., 2) % @1 * - - - % ¢ wWhere y is the root of
the structure and every ¢; encodes a structure of root z;. Each of these formulas ¢; may
then be associated with fresh predicate atoms if needed. The process is repeated until
one gets a fixpoint. Equivalence is always preserved, but termination is not guaranteed.
This step is detailed in Sect. 8.

Before describing all these steps, we wish to convey some general explanations
about the difficulties that arise when one tries to enforce each condition in Definition 5.

The progress condition can often be enforced by introducing additional predicates to
ensure that each rule allocates exactly one location. For instance, the definition of lists
of odd length in Eq. (5) is not PCE, but it can be transformed into a PCE definition
by replacing the inductive rule (at right) with the two inductive rules given in Eq. (6)
(introducing a new predicate 1s>(x, y)). The key point is that the root of the structure
must be associated with a parameter of the predicate, which sometimes requires the
addition of new existential variables in the formula. For instance, the formula p(x) with
p(x) & Ay.y — (x) will be written: Iy. p’(x,y) with p’(x,y) & y — (x). The set of
roots is computed in Step 1 above, and invisible roots (like y in the above example) are
made visible during Step 2. Note that this technique is applicable only if the number of
such roots is bounded; the ISIV condition will ensure that this constraint is satisfied.
The connectivity condition is enforced by using the abstract reachability relation com-
puted during Step 1 to identify the predicate atoms that do not satisfy this condition and
by modifying the rules to delay the call to these predicates until the connectivity condi-
tion is satisfied. For instance, the first rule below is modified into the second one:

q(x) < Ay, y2,y3. (x = (1, ¥2) * 1sT(y1,y3) * 1s™(y3,y3) * 1s*(y2,2)),  (8)
g(x) & Iy, y2, 3. (x = (1,32) * ¢’ (1, ¥3) * 1sT(v2,y2)), )

where ¢’(y1, y3) is defined similarly to 1s*(yy, y3) in Eq. (2) except the first rule:

q O1,y3) =y — (13) x 1s™(y3,y3), q' i,y3) & Jz.(y1 = (@) x4’ (z,y3)). (10)

The establishment condition may be enforced in two ways. If the considered exis-
tential variable only occurs in pure atoms (disequalities or equalities), then it can be
eliminated using usual quantifier elimination techniques. For instance, the predicate
r(x) & dy.x — () x x £ y can be reduced into r(x) & x — () since a location y distinct
from x always exists (recall that the equational atom x # y only holds for empty heaps).



164 T. Bozec et al.

Otherwise, one must collect the set of all variables that are reachable but not allocated
and associate them with new existential variables in ¢ (and parameters of predicates).
For instance, the formula »'(x) with r'(x) & 3y. x — (y) is transformed into Iy. r’(x,y)
with r’(x,y) & x — (y). These variables correspond to invisible variables computed
during Step 1 and transformed into visible variables in Step 2. Again, the ISIV condition
ensures that the number of such variables is bounded.

5 Abstracting Models and Formulas

We formalize the notion of abstraction that summarizes the main features (locations
defined and allocated, reachability, etc.) of models and SL-formulas. Then, we define
two relations between abstractions and SL-structures. Finally, we define the abstraction
process for a formula, i.e., how we attach a set of abstractions to an SL-formula.

Definition 8 (Abstraction). An abstraction is a tuple A =(V, -, #,V,, V4, h, ~) where:
(i) V is a set of variables and - is an equivalence relation on V; (ii) # (disequality
relation) is a symmetric and irreflexive binary relation on V; (iii) V, C V is a finite
set of variables called visible variables; (iv) V, C V is a subset of classes of variables
called allocated variables; (v) h : V, —s Visa partial heap mapping which associates
a tuple of classes of variables of arbitrary size to some class of allocated variables; (vi)
wC VxVisa reachability relation which is a relation such that ¥ [x] € ‘_/a and
Y [v] € A([x]), ([x], [y]) €w>. The set of all abstractions is denoted by A. We designate
the components of an abstraction A using the dotted notation by A.V, A.V,, etc. The set
of invisible variables of A is A.Vy,, = A.V N A.V,.

Abstractions are taken modulo renaming of invisible variables: two abstractions, A;
and A, are considered equal, denoted A| = A,, if there exists a renaming o of invisible
variables such that A; = A,o.

1
1
’
' — e
W8

Fig. 1. Examples of abstractions.

Example 2. Figure 1 graphically represents three abstractions denoted AY, A7 and Af.
Equivalence classes are represented by circles and are labelled by variable names. Allo-
cated classes are filled grey; invisible variables are prefixed with 3, and [ ] are omitted.
Disequalities are represented with dashed lines, while heap and reachability relations
are represented with tick resp. snaked arrows.
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An SL-structure is a model of an abstraction if its store is coherent with the abstrac-
tion (i.e., it maps equal variables to the same location and disequal variables to different
locations) and its heap contains at least all the reachability relations of the abstraction.
However, the model may contain more allocated locations and paths between locations.
On the other hand, an abstraction of an SL-structure captures exactly the visibility of
variables in the store, the equivalence between variables and the reachability of loca-
tions in the heap; it abstracts the paths between locations labelled by (visible or invisi-
ble) variables and going through locations not labelled by some variable.

Definition 9 (Model and Abstraction). A structure (s,1) is a model of an abstraction
A, denoted by (s,1) | A, if there exists a functional extension $ of s satisfying the
following conditions: (i) dom(s) = A.V and dom(s) = A.V,; (i) If (x,y) € A
then 5(x) = §(y); (iii) If ([x],[y]) € A.# then $(x) # 5(y); (iv) For all x € A.V, if
[x] € AV, then §(x) € dom(b); (v) Forall [x] € AV, if A-h([x]) = (1], ..., [y]) then
H(s(x)) = (5(01), ..., 5(0w)); (vi) Forall x,y € V, if ([x],[y]) € A.~> then there exists a
path o —y -+ =y, in b such that £y = $(x), £, = $(y) and {{y, ..., L1} Nimg(s) = 0.
If (s,b) E A and the converses of Items (ii), (iii) and (vi) hold, then A is an abstraction
of (s,b). The set of all abstractions of (s, V) is denoted by abs(s, b).

Example 3. Consider the structure (sq, ;) defined over the set of variables {x, y} with
si(x) = €, s10) = & # €1, bi1(by) = (61, 6). Af from Fig. 1 is an abstraction of
(s1,b1) for $1(z) = €y. Moreover, A’f has as model (s;,0,) with s;(x) = s;(y) = €1,
b1(lo) = (€1,41).

The following operations on abstractions are used in our abstraction process.

Definition 10 (Pure abstractions). The empty abstraction, denoted Aenp, has all its
components empty sets. Let Vo be a set of variables. The abstraction of equalities
over Vg, denoted A.(Vy), is Vo, {Vo},0,Vy,0,0,0), i.e., all variables are visible and
in the same equivalence class. The abstraction of disequalities over Vi is Ax(Vy) =
(Vo, Idy,, Vg \ Idy,, Vo, 0,0, 0), i.e., all variables are visible and pairwise distinct, and
none is allocated.

Note that we identify equivalence relations with the set of their equivalence classes so
that {Vy} denotes the relation {(x,y) | x,y € V}.

Definition 11 (Quantified abstractions). Ler Vy C A.V be a set of variables. The
hiding of Vj in A, denoted by Axv,), is the abstraction having the same components as
A except the set of visible variables, i.e., Ayvy).V, = AV, \ V.

Definition 12 (Separated abstractions). Let A| and A, be two abstractions; w.lo.g.,
we consider that Ay«Viy, N ApViy, = 0, i.e., the sets of invisible variables are disjoint
(modulo renaming). Let V* = A1.V U A,.V and the equivalence relation ~, over V*
defined by the transitive closure of A1 .~UA, .. Consider now the relation +, over Wv*
(the set of equivalence classes of —~) defined by the symmetric closure of the relation:
((xl, L) T xy € VA (Xl ]a) € Aii € (L2 Ui, [nl,) | x5 €
V*, [xila,.- € Ai.\_/a,i € {1,2}}. If #, is irreflexive, then A| and A, are separated.
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Definition 13 (Separating abstractions). The separating composition A; x A, of two
separated abstractions A| and A, is the abstraction A, such that:

— ALV =V Apew =y Aot =4y

— AV, =A.V,UAV,;

— AV ={[xla, | [X]a. € AV i € (1,2}

- Ash = ([xXla,e = (Dilayeseo s nla ) | Arh(xla) = (ilaese-os
[Vnla.)si € {1,2)];

— Ao = {8y s V14, ) | (X [V]4,) € Ajerno,i € {1,2}).

The following definitions are used to build the reachability relation in abstractions
by replacing chains [xg] — [x;] — ... > [x,-1] — [x,] related by A.h with the tuple
([x0], [x,]) in Aews if the variables x; with i € [1,n — 1] are not “special” for A.

Definition 14 (Roots). The roots of an abstraction A, root(A), is the set of minimal sets
of roots of A.~». We denote by x €y root(A) or [x] €y root(A) that [x] belongs to all
sets in 1oot(A) and by x €3 root(A) or [x] €3 root(A) that [x] belongs to at least one set
in root(A).

As A.~» may contain cycles, roots are not uniquely defined. However, the algorithm
for computing abstractions will ensure that root(A) is always non-empty.

Definition 15 (Special and persistent variables). A variable x € A.V,,, is special
if its equivalence class is a singleton and it satisfies one of the following conditions:
(i) x ey root(A), i.e., x occurs in all sets of roots of A; (ii) [x] ¢ AV, ie., x is not
allocated, and there exists [y] € A.V, such that ([y],[x]) € Awws, i.e., x is reachable
from an allocated variable; (iii) there exists y € A.V, such that y €3 root(A) and
[x] € A.h([y]), i.e., x is pointed to by a possible root that is visible; (iv) there exists
[y] € A.V, such that [y] €y root(A) and [x] € A.h([y]), i.e., x is pointed to by a
necessary root that is visible or invisible. An invisible variable is persistent if it satisfies
one of the items (i) or (ii) above. The set of persistent variables is denoted by A.V .

Example 4. Abstractions A‘l’ and A? in Fig. 1 have a singleton set of roots built from one
class: root(Af ) = {{[z]}} and root(A‘l’) = {{[y]}}, while A7 has a unique set of roots but
containing two classes root(A}) = {{[z], [7]}}. The variable z is not visible in Af , but it is
special and persistent since it fulfils the condition (i) of Definition 15. All the variables
in A‘f are special, but only y and u are persistent.

Definition 16 (Disconnected variable). A varia_ble x € A.V, is disconnected if it sat-
isfies the following two conditions: (1) [x] & A.V,, i.e., x is not allocated; and (2) for
all [y] € AV, ([y], [x]) € Aews, i.e., x is not pointed by an allocated variable.
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If a variable is disconnected, any variable in its equivalence class is also discon-
nected. Moreover, a disconnected variable cannot be special. For any equivalence rela-
tion b4, we denote by pa\ x the restriction of < to the elements distinct from x. Similarly,
S \ x denotes the set {[y] | y € S,y # x}, and for any relation — on equivalence classes
of 1, — \ x is the corresponding relation on equivalence classes of > \ x.

Definition 17 (Deletion of variables not special). Let A be an abstraction and x €
A.Vi,, a variable that is not special. We define rem(A, x), the abstraction obtained by
deleting x from A as follows: Arem = (A.V \ {x},A._w NX,AcE N x,A.Vv,A.\_/a \NX, AN
x, ' N x) with ~w'= {([y],[z2D) | [y].[z] € AV A ([y].[x]) € Acvo A ([x],[2]) €
AU Ao, We denote by rem(A) the abstraction obtained by removing all variables
not special in A.

Definition 18 (Set of abstractions of a symbolic heap). Let ¢ be a symbolic heap
formula of SL. The set of abstractions of a formula ¢, denoted abs(p), is inductively
constructed using the rules in Tab. 1.

Example 5. Consider the pair (¢, R) introduced by Example 1. The abstractions of ¢ are
built by firstly building the abstractions of the predicates r(z, u, ) and then g(y) — that
calls r — defined by the rules in Eq. (7). Then ¢ = p(x, y) has two abstractions. The first
is Af from Fig. 1, obtained from the non-recursive rule of p. The second is Ag in Fig. 2,
obtained from A, by removing variables z and ¢ using the procedure in Definition 17
because they are not special. The abstraction A, is obtained by applying the rule [Sep]
on A‘f in Fig. 1, which is an abstraction of g(y), and the abstraction obtained by the rule
[Pro] for x — ().

Fig. 2. Abstraction A,

Given A € abs(y), we consider the implicit tree of construction of A using rules in
Definition 18: every node of this tree is an abstraction created by one of the rules [Ex],
[PreD] and [SEep], and every leaf is an abstraction of an atomic formula. Therefore, every
node of this tree is associated with a formula, which is a sub-formula of an unfolding
of .
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Table 1. Computing Abstractions of a Symbolic Heap Formula

Em

P———  Eo NEo
abs(emp) 5 A ey abs(x ~ ) 3 (1%, ¥}) abs(x #5) 3 A,((x. )

AV =AV, ={x,y1,...,Vn} Ao~ =1d At =0
AV, ={xl}  Adr=[xI- (l.... D] Aew = {(x],[v]) i € [, a1}

Pro
abs(x = (yi,..., ) 3 A
S abs(y) 3 A abs(y2) 3 A, Ay, A are separated A = rem(A; x Ay)
EP
abs(y x ¥2) 3 A
abs) 3 A" A =rem(AL,)
X
abs(Ax.¥) 3 A
abs(Ayr, ..,y 1 E X Kk Y R Xk Y)) DA PO, WEYeR
PrED

abs(p(xy,...,x;)) 2 A

Definition 19 (Condition “Infinite Set of Invisible Variables” (ISIV)). The abstrac-
tion A € abs(p(xy,...,x,)) satisfies the condition ISIV if there exists an abstraction A’
in the construction tree of A such that:

1. A’ is associated with a renaming p(y1,...,yn) of p(X1,...,X,);

2. A has strictly more persistent variables than A’: card(A’.V ) < card(A.V,,);

3. the projections of abstractions A and A’ on their visible variables are equal (modulo
a renaming of the arguments x; < y;).

Intuitively, the condition asserts that a “loop” exists in the unfolding tree of p, where
persistent variables are introduced inside the loop. As one can go through the loop
an arbitrary number of times, this entails that some branch exists with an unbounded
number of persistent variables, which in turn entails that non-k-PCE-compatible models
exist. If this condition is satisfied by one abstraction built during this step, the algorithm
fails. The following theorem states that the algorithm is correct and complete:

Theorem 2. Let ¢ be a formula and let R be an SID. We suppose that the construction
of abstractions terminates without failing. If A € abs(y), then there exists a model (s, b)
of ¢ such that A is an abstraction of (s,b). Moreover, if ¢ admits a model (s,}), then
there exists an abstraction A of ¢ such that (s, 1) E A.

We also show that the algorithm terminates, provided the ISIV condition is used to
dismiss pairs (¢, R) that are not k-PCE-compatible (thus that cannot admit any equiva-
lent PCE pair, by Proposition 1):

Theorem 3. Let ¢ be a formula and let R be an SID. If there exists k € N such that
(¢, R) is k-PCE-compatible, then the computation of abs(y) terminates without failure
(hence the ISIV condition is never fulfilled). Otherwise, the ISIV condition eventually
applies during the computation of abs(p). Consequently, the problem of testing whether
(¢, R) is k-PCE-compatible for some k € N is decidable.
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6 Predicates with Exactly One Abstraction

We describe an algorithm reducing any pair (@, R) into an equivalent pair (&', RT) such
that every predicate atom admits exactly one abstraction with no invisible variables.
We also get rid of some existential variables when possible. The eventual goal is to
ensure that the rules that were obtained are established (in the sense of Definition 5).
We need to introduce some definitions and notations. A disconnected set for an n-ary
predicate p and an abstraction A € abs(p(xy, ..., x,)) is any subset [ of {1,...,n} such
that all variables x; for i € I are disconnected in A. Let R be an SID. Let x,..., x,,.
be an infinite sequence of pairwise distinct variables, which will be used to denote the
formal parameters of the predicates. For each n-ary predicate p occurring in R, for each
abstraction A € abs(p(xy,...,x,)) and for all disconnected sets I for p, A, we introduce
a fresh predicate pj‘, of arity n + m — card(/), where m = card(A.V},,). Intuitively,
p4 will denote some “projection” of the structures corresponding to the abstraction A.
The additional arguments will denote the invisible variables. The removed arguments
correspond to disconnected variables.

Example 6. The predicate p, defined by rules on the left in Example 1, has two abstrac-
tions (one by rule), Af and A§ , where all roots are connected. In the same example,
predicates g and r also have only one abstraction. For all these predicates, the sets I are
always 0.

The rules associated with p? are obtained from those associated with p as follows.

For every formula ¢ such that p(xi, ..., x,) &g ¢, where ¢ is of the form AY . (¢ (@) *

- % qi(iy) * ¢’) and ¢’ contains no predicate symbol, and for all abstractions A; €
abs(gi(xy, ..., Xugy)) (for i € [1,k]), we add the rule:

PHE . x) € AT (@) (T T * - x @ (T V) x @) (11)
if all the following conditions hold:

— A is the abstraction computed from ¢ as explained in Definition 18, selecting A; for
the abstraction of g;(xi, ..., Xxg,)), i.€., A = rem(A’ (4)) where {A”} = abs(¢’) (since
¢’ contains no predicate) and A" = A| % --- % A x A” is the abstraction computed
from the matrix (q;(i7) % - - - % qr(ulx) * cp’) of ¢.

— 5 (resp. 71 is the subsequence of xi,. .., x, (resp. of u;) obtained by removing all
components of rank j € I (resp. j € J;). Intuitively, I and J; denote the parameters
that are removed from the arguments of p and g;, respectively.

— Jiis asubset of {1,...,#(q;)}, and for all variables z occurring as the j-th component
of u;, the following equivalence holds: j € J;iff z € T U {x; | i € I} and 7 is
disconnected in A’. Note that the last condition entails that the j-th component of ;
is also disconnected in A;; hence the predicate q,-*}l’ exists. Intuitively, a variable is
removed if it is disconnected, and either it is existentially quantified in the rule, or it
is a free variable that was removed from the argument of p.

— (x},...,x,,) and V; are the sequences of invisible variables in A and A;, respectively
(the order is 1rrelevant and can be chosen arbitrarily). We assume by renaming that
the A;.V;,, are pairwise disjoint.
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— o is any substitution with dom(c”) C ¥ and img(o-) € ¥ U ¥ such that for all y € 5
and forally € YU 5:0(y) = 0(y)) & (y,Y') € A’.—. Intuitively, o is applied to
get rid of superfluous existential variables by instantiating them when it is possible,
i.e., when the variable is known to be equal to a free variable or another existential
variable?.

— ¢" is obtained from ¢’ by removing all pure atoms containing a variable that is
disconnected in A’ and does not occur in 5.

— 7 is the sequence of variables occurring either in the formula ¢” or in the sequences
_t: or v; (for some i € [1,k]) but notin {x,, ..., x,, x},...,%x,}Udom(c) (again, the
order is irrelevant). These variables correspond to variables from ¥ or V; that can be
eliminated during the computation of A using the rule introduced in Definition 17.

The obtained set of rules is denoted by R'. It is clear that R' is finite (up to a-
renaming) if R is finite and abs(p(xy, ..., x,)) is finite for all n-ary predicates p in R.

Example 7. The new rules for p, g, and r defined in the SID R; in Ex. I are given below:

Alll A‘i
Py (5, ¥,2) €2 (x,y), qml(y,z,t, u) =y—(z,t) xr(z,t,u),
Af r
Py’ (X y,u) & Az, 1. (x = () rg‘(z,t, Weugtkzo wxt— (). (12)

Aq
9y 0,2, 1, 1)),

p

The arity of predicates p(b and q0 has been changed to include the invisible but

special variable u, and the predicate pm now does not have an invisible root any more.

Example 8. In this example, we show how disconnected variables may be elimi-
nated. Let p, g be predicates defined by the rules: p(x,y) & Jz.(x — (¥) * g(x,2)),
q(x,y) & x £ y. p(x1, x2) and g(x1, x2) both admit one abstraction, A, and A,, respec-
tively, defined by:

p = (e, xa) {{oah {0, {x, xo b {La Hxa ] = [x21},0), (13)
Ay = ({x, xb () A 1L [ D) {x1, %2}, 0,0,0) . (14)

The above transformation produces the rules: pg”(x, Ve (x - () x qu"] (x)) and
qu’}(x) < emp. The variable z is eliminated, as it is disconnected in the abstraction

corresponding to x — (¥) * g(x,z). This yields the introduction of a predicate q’fz’] in
which the second argument of ¢ is dismissed.

The above transformation may be applied to the formulas @ occurring in pairs
(@, R). Since the establishment condition applies only to the variables occurring in
the rule and not to the existential variables of @, there is no need to eliminate any
predicate argument in this case; thus, we may simply take /I = @ for the predicates

2 In the latter case several substitutions exist, one of them can be chosen arbitrarily (the resulting
rules are identical up to a-renaming, e.g., IxIy(x ~ y * g(x,y)) can be written dx(x ~ y x
g(x, )y < x}por Iy(x = y * g(x, y){x < y}.
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p? such that p appears in @. Predicates of the form qf with I # @ will never appear
at the root level in @, but they may appear in the rules of the predicates pg (in prac-
tice, such rules will be computed on demand). More precisely, we denote by @ the
formula obtained from @ by replacing every atom p(y,...,y,) in @ by the formula
V Acabs(p(xr,vy VA- Py OLs - - -+ Yns Ya), Where Yy is the sequence of variables in A. Vi,
(with arbitrary order). Note that in the case where abs(p(xy,...,x,)) = 0, p(Vi5...,Yn)
is replaced by an empty disjunction, i.e., by false. The properties of this transformation

are stated by the following result:

Theorem 4. (D, R) = (&7, R"). Moreover, for all predicates p‘? defined in R the set
abs(p;‘(?, X\,...,x,,)) contains exactly one abstraction.

7 Abstractions with Exactly One Root

We introduce an algorithm that transforms the considered SID by introducing and
removing predicates such that the abstraction of each predicate p defined by the new
R has only one root. This transformation is done in two steps: first, change predicates
with an abstraction without roots, and then change predicates with an abstraction with
more than one root. The transformation may fail if the structures corresponding to a
given recursive predicate have multiple roots, as such structures cannot be defined by
PCE rules (e.g., two parallel lists of the same length).

Removal of Abstractions Without Root: Let us consider every predicate p such
that its abstraction A, € abs(p(X)) satisfies root(A,) = 0. Because the abstraction of
p has no root, the associated structure has no allocated locations, and the predicate can
only be unfolded into formulas that do not contain points-to. Thus, for each unfolding
of p of abstraction A, which cannot be unfolded any more, it only contains equalities
and disequalities that are abstracted in A by A.— and A.#. As a consequence, we can
create a formula @4 = (%;jer.a; = a;) x (%ijer,b;i # bj) with{a; = a; | i,j€ I} = A
and {b; # b; | i, j € I.} = A.#. We can then replace every occurrence of p with ¢4.

Removal of Abstractions With Several Roots: We suppose now that for all pred-
icates p, the abstraction A, € abs(p(X)) verifies root(A,) # 0. Now let us consider
every predicate p such that its abstraction A, € abs(p(X)) has at least two roots, i.e.,
for all R € root(A ), card(R) > 2. If p does not call itself, we unfold p by replacing each
occurrence of p with its definition using the rules in SID. Otherwise, the transformation
is considered impossible, and it fails.

At this point, if the transformation does not fail, we obtain:

Proposition 2 (Every abstraction has a single root). After applying the transforma-
tion in this section, for all predicates p, for all abstractions A € abs(p(X)), there exists
a set R € root(A) such that card(R) = 1.

Remark 1. We wish to emphasize that the failure of the above operation does not imply
that the transformation is unfeasible. For instance, one could, in principle, define two
lists of arbitrary (possibly distinct) lengths using one single inductive predicate, adding
elements in one of the lists in a non-deterministic way, although such a definition is very
unlikely to occur in practice. Then, our algorithm would fail (as it will detect that the
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structure has two roots), although a PCE presentation exists. Extending the algorithm
to cover such cases is part of future work.

8 Transformation into PCE Rules

The last step of the transformation is a procedure reducing any pair (@7, R") into an
equivalent pair (&%, R¥) such that @* and R* are PCE formula resp. SID.

To this aim, we first introduce so-called derived predicates (adapted and extended
from [4]), the rules of which can be computed from the rules defining predicate symbols.
The aim is to extract from the call tree of a spatial atom the part that corresponds to
another atom. Given a SID R and two spatial atoms y and A, we denote by y —e A the
atom defined by the following rules:

yoledAX. (px(y— 1)), for all ¢, A’ with A &g IX. (¢ x ') (up to AC of %),
yedEX Y Kk k X, RY,, ify=plx,...,x,)and A= p(yy,...,Yy,),0r
y=x1 = (X2,....,x)and A =y; = (V2,...,Yn)

15)
We assume that all such rules occur in R. Intuitively, y —» A encodes a structure
defined as the atom A but in which a call to y is removed. It is easy to see that y — A
is unsatisfiable if A is a points-to atom and 7 is a predicate atom. By definition, (x; —
(x2,...,%,)) = (y1 = (y2,...,ym)) is equivalent to x| =~ y; * --- % x, & y, if m = n and
unsatisfiable otherwise. These remarks can be used to simplify the rules above (e.g., by

removing rules with unsatisfiable bodies).

For instance, given the rules p(x) & Jy.(x — () * p(y)) and p(x) & x — (), the
derived atoms p(x’) —e p(x) and (x" — ()) —e p(x) both denote a list segment from x to
x’, whereas (x’ — (x””)) —e p(x) denotes a list with a “hole” at x’. The corresponding
rules are, after simplification:

p(x’) = p(x) & Fy.(x = () * (p(x') — p»))), p(x) — p(x) = x~ ¥, (16)
¥o0—=p@edHaxo>0*E >0-=po)), ¥o0-—-p®esxry, 17

(' = () = p(x) & . (x > () * (" > (7)) — pO)), (18)
(' = () = p(x) & x = x"* p(x). (19)

The operator —s can be nested, for instance (x; — (x})) — (p(x2) —» p(x)) denotes
a list segment from x to x, with a hole at x;.

Consider arule p = p(xy,..., x,) & ¢, where ¢’ denotes the quantifier-free formula
such that ¢ = 37.¢’. By Theorem 4, the formulas ¢ and ¢’ have unique abstrac-
tions A, and A, respectively (in what follows the notations [x] and ~» always refer
to abstraction A,). Recall that, at this point, establishment is ensured, and all roots are
visible. As ¢ only has a unique abstraction, there is a unique k € [1, n] such that [x;]
is the root of A, and the tuple pointed to by the location associated with x; contains

only locations associated with variables yy, ..., y,, that are visible or special in A,, with
Agh([xc]) = (1], ..., [ym]). To make the rule p PCE, it must be rewritten to have the
form p(xi,...,x,) & AZ. 0 = Y155 Ym) * qr(WT) * -+ % q(W)) * ¢, where y is a

pure formula, and the root of each atom g;(w7) is in {y, .. ., y,.}. There are two cases:



What Is Decidable in Separation Logic Beyond PCE? 173

Case 1: Assume that ¢ contains a points-to atom x; — (¥}, ...,y;), with [x,’C] = [x¢]

and [y:] = [y;] foralli € [1,]. The formula ¢’ is of the form x| — (¥},...,y,) *x¥*y/,
where ¢ contains only points-to and predicate atoms and ¢’ is a pure formula. The
formula ¥ may be decomposed into ¢ * - - - % ¢y, where each formula ¢; allocates only
variables z such that [y j,.] " [z], where y; ,...,y;, are variables in {yi, ..., y;} such that

the [y j[] are pairwise distinct. Such a decomposition necessarily exists® since [x;] is the
root of ~», and every class reachable from [x;] must be reachable from one of the [y;].
For i € [1,/], if ¢; is not a predicate atom, then we create a fresh predicate g; whose
arguments are all the variables w, that appear in ¢;, we create the rule ¢;(w;) < ¢;, and
we replace in ¢ the formula ¢; by g;(W;). We get a rule p’ that is now PCE.

Case 2: Now assume that ¢ contains no such points-to atom x; — (¥},...,¥)).
We have to extract this points-to from some rule that, when unfolded, creates it and
add it to a new rule equivalent to p. Because A, is unique and because every predicate
also has a unique abstraction, only one atom can allocate x;, and this atom must be
a predicate atom (because of case 1). Thus ¢’ is of the form g(W) x ¢”, where x; is
allocated in every model of g(w). By the previous construction, the atom g(w) may
be replaced by xx — (Vi,...,y) * (xx = V1,...,y1) —o g(W)). We get a new rule
P =pln,..x) & 370 = O3 * (= (1, ., 00) —» gO)) x ¢ which
fulfils the previous condition, and we may apply the transformation described in the
previous item to p’. The new rules associated with x; — (y1,...,y1) — pj(x}) are
added to the set of rules.

The above transformations are applied until all rules are PCE. Note that termination
is not guaranteed (indeed, not all k-PCE-compatible pairs (@, R) admit an equivalent
PCE pair, and the existence of such a pair is undecidable by Theorem 1). To enforce
termination in some cases, a form of memoization may be used: the predicates intro-
duced above may be reused if the corresponding formulas are equivalent. As logical
equivalence is hard to test (undecidable in general), we only check that the rules asso-
ciated with both predicates are identical up to a renaming of existential variables and
spatial predicates. In practice, termination may be ensured by imposing limitations on
the number of rules or predicates. We show that if the transformation terminates, we
obtain the desired result.

Theorem 5. Let (®F, RY) be any pair obtained by applying the transformations in Secs.
6 and 7. If the computation of (&*, R¥) terminates, then (7, R") = (D*, RY). Also, the
SID R%, and thus &%, are PCE.

9 Experimental Evaluation and Conclusion

We devised an algorithm to construct PCE rules for a given formula (if possible). The
existence of such a presentation is undecidable, but we identify a property called PCE-
compatibility, which is decidable and weaker. Our algorithm helps to relax the rigid
conditions on the PCE presentations. It is also able to construct PCE rules in some
more complex cases by performing deep, global transformations on the rules. We have

3 If several decompositions exist, then one of them is chosen arbitrarily.
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implemented an initial version of the algorithm in OCamr using the Cycuist [2] frame-
work and applied it to benchmarks taken from this framework and SL-COMP [1]. The
program comprises approximately 3000 lines of code. To ensure efficiency, the imple-
mented procedure is somewhat simplified compared to the algorithm described in this
paper: in Step Sect. 8, we avoid the use of derived predicates and instead employ a
fixed-depth unfolding of predicate atoms (the other sections strictly adhere to the theo-
retical definitions). All tests are performed with a timeout of 30 seconds. The running
time is low in most examples. In the 145 tested examples, 105 are successfully trans-
formed into equivalent PCE-formulas, 20 trigger the ISIV condition (the structures are
not k-PCE-compatible), 3 examples fail at Step Sect. 7 (recursive structures with mul-
tiple roots) and 17 other timeout. The program and input data are available at https://
hal.science/hal-04549937. We find the results highly encouraging, as about 86% of the
tested examples are successfully managed. Therefore, this tool may be used to provide
a measure of the difficulty of the examples in the SL-COMP benchmark.

We end the paper by identifying some lines of future work. For efficiency, we
first plan to refine the transformation by avoiding the systematic reduction to one-
abstraction predicates given in Sect. 6. Indeed, this transformation is very convenient
from a theoretical point of view but introduces some additional computational blow-
up, which could be avoided in some cases. We wish to strengthen the definition of k-
PCE-compatible ID in order to capture additional properties of PCE definitions. Notice
that the semi-decidability of the PCE problem is an open question. Finally, it could
also be interesting to extend the transformation to E-restricted IDs, a fragment of non-
established IDs introduced in [4], for which the entailment is decidable.
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Abstract. Enhancing cut-free expressiveness through minimal struc-
tural additions to sequent calculus is a natural step. We focus on Aqvist’s
system F with cautious monotonicity (CM), a deontic logic extension
of S5, for which we define a sequent calculus employing (semi) ana-
lytic cuts.The transition to hypersequents is key to develop modular
and cut-free calculi for F + (CM) and G, also supporting countermodel
construction.

1 Introduction

Normative reasoning is crucial across various fields, including law and artifi-
cial intelligence. It is effectively formalized by deontic logic, the branch of logic
that deals with obligations and related concepts. Numerous deontic logics have
emerged, and they can be broadly classified into preference-based and norm-
based systems [11]. The latter analyse deontic modalities with reference to a set
of explicit norms, while the former employ possible world semantics. Preference-
based systems are particularly useful to model contrary to duty obligations (i.e.,
obligations that come into force when some other obligation is violated) and
defeasible deontic conditionals. Aqvist’s landmark systems [1] E, F, and G, fall
into this category. Semantically, they are characterized by preference models
using relations to represent the betterness of states. They extend the modal
logic S5 with a dyadic obligation ()(B/A) (“B is obligatory, given A”) which
is true when the best A-worlds are all B-worlds. A more recent addition to
the family [27] is F with the addition of cautious monotonicity (CM) from the
non-monotonic literature [12,18]. E, F, F 4+ (CM), and G are modular systems
with increasing deductive strength w.r.t. the sets of theorems they derive. The
last two systems correspond to well-known conditional logics: G is VTA [13],
one of Lewis’ logics, while F + (CM) corresponds to Preferential Conditional
Logic PCL [6] supplemented with the absoluteness axiom, that reflects the fact
that the ranking is not world-relative. PCL contains as a fragment the KLM
preferential logic P [18] for default reasoning.

Reasoning necessitates (finding) derivations and countermodels. The explo-
ration of the proof theory for these logics has only recently become a focal point.
© The Author(s) 2024
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Prior to that, the only available calculi for them were Hilbert systems, which
are unsuitable for the mentioned tasks. Since Gentzen’s introduction in 1935,
sequent calculi in which the cut rule is admissible (or eliminable) have been
employed for these purposes. Although crucial to simulate modus ponens, the
cut rule poses a hindrance to proof search. Cut-free sequent systems are not
available for Aqvist’s systems insofar as they contain an S5 modality which
impedes their formulation'. Many sequent calculus generalizations, like hyper-
sequents, nested, and labelled sequents, have been introduced to capture logics
without cut-free formulations. Notably, hypersequents are characterized by less
complex objects and expressiveness compared to nested sequents, which, in turn,
are less complex and expressive than labelled sequents, see e.g. [22]. Using hyper-
sequents, modular cut-free calculi have been introduced for E and F in [8,9]. The
situation for G and F + (CM) is less clear. Although G semantically arises by
imposing to F 4+ (CM) totality on frames, this is not reflected in their calculi:
(forms of) labelled sequents [20,24] have been employed for PCL, and a hyper-
sequent calculus with blocks (incorporating a shallow form of nesting) [14] for
G.

This leaves open the question whether modular and cut-free calculi, using a
simpler framework, can be defined for F 4+ (CM) and G. Simplicity in the proof
formalism is advantageous for proving meta-logical results and streamlining the
proof search space. Indeed the introduction of additional structure in the basic
objects manipulated by the formalism often poses obstacles in these endeavors.

Our positive answer to the question relies on the use of an alternative seman-
tics (w.r.t. preference models) [28]. We first introduce a sequent calculus SFem
for F + (CM). Like the calculus in [25] for S5, SFem lacks completeness without
cuts. Nevertheless, we show that a restricted form of cuts, we call them semi-
analytic, suffices. We present a syntactic procedure, akin to cut-elimination, to
transform SFem proofs with arbitrary cuts into proofs with semi-analytic cuts,
simplifying the method in [7]. Extending SFcm to encompass G would be hard, if
possible at all. Sequent calculi, are indeed known to be inadequate for capturing
modal logics with linear frames (Ch.9 in [15]). To achieve modular and cut-free
calculi for F + (CM) and G, we shift from the sequent to the hypersequent
framework. The use of hypersequents (which are sequents working in parallel)
enables the definition of structural rules operating across multiple sequents. In
particular, adapting the peculiar hypersequent rule for S5 from [4] simplifies
the rules for SFem, resulting in a cut-free hypersequent calculus for F + (CM).
A calculus for G is obtained by adding (a version of) the communication rule
from [3], designed to capture Gddel logic [10]. We prove cut-elimination for both
calculi and modify them into proof-search oriented calculi, providing proofs of
decidability and countermodel construction from failed derivations.

Similarly to the calculi for E and F in [8,9] we encode maximality by a (S4-
type) modal operator. ()(B/A) can be indirectly defined as O(A — —Bet—(A A

! The standard sequent calculus [25] for S5 is not cut-free but it is complete with
analytic cuts [30] (i.e. cuts whose cut-formula is a subformula of the conclusion [29]).
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Bet(A — B))). Bet is not part of the language of F + (CM) and G, but is used
at the meta-level in the calculi to define rules for the dyadic obligation.

2 F + (CM) and G in a Nutshell

We present the logics F + (CM) and G both syntactically and semantically. Let
PropVar be a countable set of atomic formulas. Their language is defined by the
following BNF:

Auz=pePropVar | ~A|A— A|TA| O(A/A)

DA is read as “A is settled as true”, and O(B/A) as “B is obligatory, given A”.
The Boolean connectives other than — and — are defined as usual.

Definition 1. F consists of any Hilbert system for S5 augmented with:

O(B = C/A) = (O(B/A) — O(C/A))  (COK) O(A/4) (Id)
O(C/ANB) = O(B — C/A) (Sh) OA 5 O(A/B)  (O-Nec)
O(B/A) =B O (B/A) (Abs) CA—=-0(L/4) (DY)
O(A < B) = (O(C/A) « O(C/B)) (Ext)
F + (CM) and G extend F with azioms (CM) and (RM) respectively:
O (B/A) A O(C/A) = O(C/AN B) (CM)
~ O (=B/A)ANO(C/A) = O(C/ANB) (RM)

(COK) is the analogue of axiom K, (Sh) expresses a “half” of deduction theorem
(or residuation property). The absoluteness axiom (Abs) of [21] corresponds
to the removal of world-relative accessibility relations. (O-Nec) is the deontic
counterpart of the necessitation rule. (Ext) enables the substitution of necessarily
equivalent sentences in the antecedent of deontic conditionals. (Id) is the deontic
analogue of the identity principle. These axioms define the logic E.

F extends E with (D*) that rules out conflicts between obligations for possible
antecedents. (CM) and (RM) are cautious and rational monotony from the non-
monotonic literature [18]. Introduced in [12] (CM) expresses a weakened form of
strengthening of the antecedent, while (RM) a stronger form: if B is permitted
given A, and C' is obligatory given A, then C is obligatory given A A B.

Semantics for the logics E, F, F 4+ (CM) and G can be given in terms of
preference models, see [28]. This semantics was used in [8,9] to define cut-free
hypersequent calculi for E and F. With preference models, structures are easily
described, but they come with complex model theoretic conditions on the valua-
tion function. In this paper we adopt a different semantics. This semantics has a
more complex truth condition for the deontic operator, involving a V3V nesting
of quantifiers [28], but simpler frame and valuation conditions.

The original language does not include the modality Bet, but we add it to
the semantic explanation of connectives for clarity.

Definition 2. A preference model for F + (CM) is a triple (W, <,v), where <
is a reflexive and transitive order on W and v : PropVar — P(W) a valuation
function. The truth conditions for a formula in a world are defined as:
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z Ik P if and only if x € v(P).

- x Ik =A if and only if x ¥ A.

zlkA— Bifand only if t ¥ A or z |+ B.

-z Ik BetA if and only if Vy(z <y =y IF A).

-z |- OA if and only if Vy(y I+ A).

z I OQ(B/A) if and only ifVy(ylF A= Fz(y < z& zIF A& Vu(z <u=ul-
A — B))).

Models for G are obtained by imposing totality, i.e., VaVy(x <y Vy < x).

Theorem 1 ([28]). F + (CM) (resp. G) is sound and complete with respect to
the semantics of (resp. total) preference models.

Note that the truth condition for the operator ()(B/A) can be rewritten, using
the conditions for [J, —, — and Bet, as:

zIF O(BJA) iff I O(A — ~Bet—~(AA Bet(A — B)))

3 A Sequent Calculus for F 4 (CM)

We introduce a sequent calculus SFcm for F + (CM), whose completeness relies
on the use of cuts of a restricted form.

SFcm is obtained by adding the rules for the deontic modality and for the
betterness operator to a (slightly modified? version of) the sequent calculus
in [25] for S5. The cuts required in SFcm are a generalization of analytic cuts
(arising from the calculus for S5 [30]), due to the shape of the rules for the
deontic modality®. We use I', A, IT, ... as metavariables for multisets of formulas.

Definition 3. The sequent calculus SFem consists of a variant of Gentzen’s
calculus LK for classical logic, with axioms I',p = p, A, extended with the rules

below
IO = 4,AR0 ATl= A Y0, rb = 4, A50 AT=A

Treoaa U OAT=A F=aBaa "B Baarsa LB

IO, A, Bet—(A A Bet(A — B)) = APO I'=AA I' = A, Bet—~(A A Bet(A — B)) 10

I'= O(B/A), A RO O(B/A), T = A

where I = {BetA|BetA € T'} and PO = {JA|0A € TYU{O(B/A)| O
(B/A) e I'}.

2 Our RO rule derives the absoluteness axiom.

3 O(B/A) could have been introduced as a defined operator. However, since our main
concern is the investigation of dyadic deontic logics we preferred to retain the obli-
gation connective as a primitive element, and generalize the notion of analytic cut.
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The notion of derivation, principal formulas and height of a derivation are as
usual. The derived rules for conjunction and disjunction are as in Genten’s LK
and the generalization of initial sequents to arbitrary formulas is provable. A
rule is (height-preserving) admissible if, whenever the premises are derivable, so
is the conclusion (with at most the same height). In SFem the weakening rules

I'=A o.oq L=4 oy T . .
( ATo AW and —— A ) are height-preserving admissible. The rules of
contraction ( AAT=>A | g L2444 ) are explicitly present.
AT= A I'= AA

Theorem 2 (Soundness). SFcm is sound for F + (CM).

Proof. By induction on the height of the SFcm derivation distinguishing cases
according to the last rule applied. Initial sequents are clearly sound. We discuss
only the cases of the right rules for the modal operator Bet and (O(A/B).

RBet: Let us assume that the sequent I'7O " = AHO A is valid. Let
x,y be worlds such that z < y and we assume that = I A I'. Hence we get
y IF ATPO A AT (by transitivity of <) which yields (i) y IF \/ AFO or (ii)
ylF A In (i), we get I \/ A, in (ii) « |- BetA, giving the desired conclusion.

RQO: Assume that I'MO, A Bet—~(A A Bet(A — B)) = APO is valid. We
argue by contradiction assuming that the conclusion I' = A, (O(B/A) is not
valid. Hence there is a world x which satisfies every formula in I" and falsifies
every formula in A and )(B/A). By definition there is y s.t.: y IF A and there is
not a world z such that y < zand z I+ A and z I+ Bet(A — B). Since z I+ A I'7O,
we get that y IF A\ IO, We also have y IF A and y IF Bet—~(A A Bet(A — B)).
As a consequence of the validity of 'O, A, Bet—(A A Bet(A — B)) = AFO,
we get that y IF \/ AHO, which entails 2 IF \/ APO| a contradiction.

Theorem 3 (Completeness with cut). FEach theorem of F + (CM) has a
proof in SFcm with the addition of the cut rule.

Proof. Tt suffices to show that all the axioms of F + (CM) are provable in SFem.
Modus Ponens corresponds to the provability of A, A — B = B and two appli-
cations of cut. The necessity rule is a particular case of R[J. The axioms of
classical logic are clearly derivable. In what follows, we omit to write trivially
derivable premises to increase the readability of the derivations.

— A derivation of (CM) is as follow (omitting trivially derivable premises)

A, Bet(A— C),A— B=ANBABet(A— C)
A, Bet(A— C),A— B,Bet=(ANBABet(ANB — C)) =
A, Bet(A — C), Bet(A — B),Bet~(ANBABet(ANB — C)) =
ANBet(A— C),Bet(A — B),Bet-(ANBABet(ANB — C)) =

Bet, L
A, Bet(A = B), Bet~(ANBABet(AAB — C)) = Bei—~(AA Bet(A - C)) f{o "t
O(C/A), A, Bet(A — B), Bet~(ANBABe(ANB — C) = ’
A
OC/A), AN Bet(A = B), Be~(ANBABet(ANB = C) = ot

O(C/A), A, B, Bet~(AAB A Bet(ANB — C)) = Bet—~(A A Bet(A — B))
O(CJA), O(BJA), 4, B, Bet~(ANB A Bet(AA B — C)) =
O(C/A), O(BJA), AN B, Bet~(AABABA(ANB = C)) = io
O(C/A),0(B/A) = O(C/A N B)
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— The S4 axioms are trivially derivable. The characteristic axiom of S5 is deriv-
able using analytic cuts, as follows

A=A - 0-A=0-4 _
A —A= = -[0-A4,0-4
A0-A= 7 Soo-aoa ™
A= -0-A " O-A=0-0-4
A= 0O-0-4

The cut on —[J-A is analytic because it is a subformula of O--A.
— The axiom (D*) O(L/A) — O—-A is derivable in SFem as follow

O(L/A), A, A— L, Bet(A— L) =
O(L/A), A, Bet(A — L) =
O(L/A), ANBet(A— L) =

LBet

A=A O(L/A),A= Bet~(ANBet(A— 1)) ff’”v R~
O(L/A), A= )
O(/A) = -4

OL/A) = 0-a

item The axiom (Sh) O(C/AAB) = O(B — C/A) is derivable in SFem. We
construct the following derivation (the topmost sequent is clearly derivable).

ANBABet(AAB — C), Bet~(AABet(A — (B — C))) =
A, B, Bei~(A A Bet(A = (B = 0))) = C, Bel~(AA B ABet(AA B — C)))
O(CJANB), A, B, Bel~(A A Bel(A — (B = 0))) = C
O(C/AAB), A, Bet~(ANBet(A— (B — (C))) = Bet(A — (B— ()
O(CJANB), A, Bet~(ANBet(A — (B — C)) = AABet(A — (B — C))
O(CJANB), A, Bet~(A A Bet(A = (B — 0))), Bet~(AABet(A — (B — C))) =
OIC/ANB), A Bet-(ANBet(A— (B C) > e
O(CJAANB) = OB — C/A)

RBet, R~
LO
RBet, R— (twice)

LBet,L-

— The axiom (COK) O(B — C/A), O(B/A) = O(C/A) is derivable in SFcm.
We construct the following derivation.

A, Bet(A — (B — C)), Bet(A — B), Bet~(A A Bet(A — C)) =
A, Bet(A - B) Bet~(A A Bet(A — C)) > Bet~(ANBet(A~ (B~ C))) |
O(B = CJA), A, Bet(A — B), Bet~(A A Bet(A — C)) = e
O(B = C/A), A, Bet-(ANBet(A— O)) = Bet~(ANBet(A= B))
O(B = C/A),O(B/A), A, Bet—~(A A Bet(A — C)) =
O(B — C/4),O(B/A) = O(C/4)

RBet, R, LA

RO, LA

The topmost sequent is clearly derivable.

The derivations in SFem of axioms (Id) O(A/A) and (Abs) O(B/A) - OO
(B/A) are evident. Also the extensionality axiom (A < B) — (O(C/A) +
O(C/B)) is easy to derive.
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3.1 From Cuts to Semi-analytic Cuts
We provide a syntactic procedure to restrict cuts in SFem to semi-analytic cuts,

where an instance of the cut rule

Ir'=s0cA X.C=1
Y= A1I

cut

is semi-analytic if C' is a generalized subformula of the conclusion, i.e. C €
SUB(I'UX UAUII), where for any formula A, SUB(A) is inductively defined as

— A eSUB(A); If B— C € SUB(A), then B,C € SUB(A4)
~ If OB, -B, BetB € SUB(A), then B € SUB(A)
— O(C/B) € SUB(A), then Bet—(B A Bet(B — C)) € SUB(A)

The notion of generalized subformula naturally extends to multisets of formulas.

To restrict the use of cuts to semi-analytic cuts we reformulate, simplify and
also broaden the applicability of the method in [7] to apply to rules more general
than so-called simple rules. Specifically, the inherent (almost) local structure
of the proof below could seamlessly accommodate rules having more than one
principal formula, as well as rules that do not obey the subformula property.
Prior to [7], proofs of restriction of cuts to analytic cuts, e.g., [17,26,30,31] were
all logic-tailored and, with the exception of [30], relied on semantic arguments.

Proof Idea: We start considering an uppermost non semi-analytic cut (semi-
analytic cuts are left in the derivation). Cuts on boolean connectives are handled
using rule invertibilities (and reduced in the usual way). Non semi-analytic cuts
with cut-formulas OA, Bet A and O(B/A) need a different approach as their
rules are not invertible; we shift them upwards until their cut formulas are prin-
cipal (and then reduced). Notice that the rules RBet, RO and RO do not allow
to shift any cut upwards; however they permit to permute upward any cut in
which (x) the other premise is a right rule introducing the cut formula BetA, DA
or O(B/A) (because of the “good” contexts of these rules). To reach the scenario
(*) we need to bring the considered cut beyond the rules that do not allow the
permutation, jumping directly to the point where the cut-formula is introduced.
We do that by tracing (bottom up) all the ancestors* of the cut formulas on the
right hand side (RHS), and replacing the cut (actually we consider mix) by new
semi-analytic cuts. Following [7], the premises of these new semi-analytic cuts
are obtained by replacing the cut-formulas in the original derivation with the
contexts of the right rules introducing the cut-formulas (switching their side of
the sequent), taking care that the resulting proof is still a correct derivation.
Smaller cuts are cuts of lesser degrees, according to the following definition.

Definition 4. The degree of a formula A, dg(A) is inductively defined:

— dg(p) =0 if A= p atomic; dg(B — C) = dg(B) + dg(C) + 1
— dg(—B) = dg(0B) = dg(BetB) = dg(B) + 1

4 This is the familiar parametric ancestor relation of [5].
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- dg(O(C/B)) = 3-dg(B) +dg(C) + 7

Definition 5. The non-analytic cut rank o(D) of a proof is the maximal degree
+1 of non-semi analytic cut formulas in D. The cut rank of a proof p(D) is the
mazimal degree +1 of cut formulas in D.

By A™ we denote n-repetitions of the formula A. As here we focus on the elimi-
nation of cuts that are non semi-analytic, we use the non-analytic cut rank.

Lemma 1. The rules for — and — are height and (non-analytic) rank-
preserving invertible.

Lemma 2. Given derivations D1 and Dy of I' = A, X and X, Il = X with
0(D1),0(Dy) < dg(X) and with X principal in the last rule applied in D1 and
Dy, there is a derivation D of I 1T = A, X with o(D) < dg(X).

Proof. Easy in case of the propositional connectives, Bet, and (.
If the cut formula is principal in applications of the rule for (), we have:

Y0, A, Bet—(A A Bet(A — B)) = AHO R =5 A I = X, Bet—~(A A Bet(A — B))
I'= A,Q(B/A) O(B/A), Il = %
o= Ax

LO

Cut
We construct the following derivation:

I=35A T A Bet=(AABet(A— B)) = A0
I = X, Bet—~(A A Bet(A — B)) 90, 11, Bet—(A A Bet(A — B)) = %, AHO
0 72 = AUO, 52
= Ax

Cut

Cut

LC,RC, LW ,RW

The modified version of the rules RO, RC) and RBet in the lemma below will
be used to simplify the presentation of case (B) in the proof of Theorem 4: when
shifting upward a non semi-analytic cut over the right rules for O, Bet or ().

Lemma 3. The versions R'0), R'() and R'Bet of the rules RO, RC) and RBet
with \/ Zlmo, L,V EHO (resp. \ HlﬂO’ ., NIIPO) in their antecedent (resp.
consequent) are admissible.

Proof. (R'0O): Given \/2'1:'0, e \/ETE,'LO,FDO = AUO, /\HIDO, . ,/\HEO,B, we
first apply the invertibility of the derived rules for A and \/ (Lemma1l). The
R'O conclusion \/ X7C, ... \/ £HO 8O o ADO A 17O AP0 OB s
obtained by multiple applications of RO, and of the logical rules. The proof for
R'O and R'Bet is analogous.

Theorem 4. Given the derivations Dy of I' = A, X™ and Dy of X™, 11 = X
containing only semi-analytic cuts, there is a derivation D of I 11 = A, X with
o(D) < dg(X).
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Proof. We first replace all (analytic) cuts on X in Dy and Do, by applications of
contraction. The theorem’s claim is proved by induction on the sum of the height
of the derivations Dy and Ds. If the cut-formula is a connective of classical logic
the claim follows by Lemmas 1 and 2. We consider D; and distinguish two cases:
the cut formula is principal in the last rule applied or it is not.

(A) The cut formula is principal in the last rule applied in D;. We
consider cases according to the last rule (r) applied in Do:

— (r)is an initial sequent, hence the cut is analytic.

(r)is a rule introducing the cut formula. We use Lemma 2 (with obvious

adjustments given by the use of mix).

— (r)is any rule different from R(), R, and RBet. The cut can be per-
muted upwards.

— (r)is RBet, ROor R(). Note that these rules’ contexts permit moving the
cut upward in Ds. As an example, consider the case in which the cut formula
is of the shape BetB and the last rule applied in D5 is RBet, as in:

e, oo = AUO B s BetB™, IT°, [TVO = $UO ¢ .
I = A, BetB" ° BetB™, 11 = ¥, BelC °

I = A XY BetC

We proceed as follows:

I 50 = AHO B
[ 100 = ATO BetB 0 BetBm, 1, 190 = x70 ¢
v, B0, b, 7i0 = ABO 3HO ¢
I1I = A, X, BetC

Cut

RBet

(B) The cut formula is not principal in the last rule applied in D;. We

distinguish sub-cases according to the last rule (r) applied in D;.

— (r)is an initial sequent, then the required derivation follows by weakening.

— (r)is any rule different from RO, RO, and RBet, then we simply per-
mute the cut upwards.

— (r)is RO, RO, or RBet. This is the key case, which requires peculiar proof
transformations and the introduction of new semi-analytic cuts. We focus
on cases where the cut formula is JA or ()(B/A), as other cases are trivial
due to the removal of formulas from the RHS with different shapes by the
application of (r). We detail the case A (the case with cut formula O)(B/A)
is analogous), assuming, for illustration purposes, that the last applied rule
is RBet. We trace the cut formula in Dy, till it is introduced a first time (in
each branch), as in

OO = AP0 mal-1 A
0; = A;,0Ak

I, 50 = AHO O4» B s
I' = A,0A", BetB ¢ OA™ I = X
I = A, X, BetB

Cut
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For the sake of simplicity we first consider the case in which the cut formula
is principal only in one branch of Dy (w.l.o.g. the one displayed above); the
general case is handled in the same way with an additional combinatorial
argument. The cut is replaced by (QFO = /\QFO and \//114DO = AFO are
clearly derivable):

M LW, RW M LW, RW
6; = A, N\67° VAP0 6, = 4, 080 5 40O pAt-1, 4
: : 680 = 470 gak o )
rt, 100 = A00 B, A e70 i v APO, rb, P00 = A0, B . 670, 1= A0, & o o
I' = A,BetB, \67° VAPO, I = A, BetB NOTC 1T =\ ATO, &

T.I.1I = A, A, 5, BelB Cut?

T.11= A, %, BetB

The first derivation above, say D] is obtained from D; by substituting all

LC,RC

occurrences of the cut formulas with A QiD O and the second derivation DY
by removing the cut formula from the RHS and adding \/ AiDO to the LHS.
The correctness of the application of the rules in these sub-derivations is guar-
anteed by Lemma 3. The cut between QEO = AiDO, OAb and OA™, IT = X
is handled by induction hypothesis. The rule Cut* can be replaced by new
semi-analytic cuts (see Lemma 4 below, in the particular case n = 1). The
argument which ensures the semi-analyticity of the new cuts is at the end of
the proof.

In the general case, there may be k branches in which the cut formula is
principal, with the following conclusions of R rules introducing [JA’s:

{679 = A70,04Y |j e {1,... k}}.

We now need to construct - following the pattern detailed for D} and DY
- derivations with all the possible combinations of length %k of the con-
texts /\@Elo and \/AE2O, with k1 # ko and ki,ko € {1,... k}, invert-
ing their polarities, i.e. their position w.r.t. the sequent arrow. To wit-
ness a concrete examgle, if &k = 2, we construct the derivations of the
sequents: \/Alljo,\//l2 O,F = A, BetB; \/A‘le,F = A,BetB,/\@QDO;
VAFO, I = A, BetB, A67C and I' = A, BetB, A 67°, A ©5°.

In general, by suitably replacing all the occurrences of the cut formulas in D,
we obtain 2* derivations of 7, I" = A, BetB, Z, for any multiset 7 and Z s.t.
Cj € T if and only if C; = \/ A7 and C; € E if and only if C; = A O7C
for some j, |T UZ| = k and if C;,C; € Y UE, then j # [. The correctness
of the resulting derivations follows again by Lemma 3. The desired sequent
I''IT = A,BetB,X is obtained by using the derived rule Cut* (Lemma 4
below) also with the k derivations of QJ-DO,H = A]-DO, X obtained by the
induction hypothesis. It remains to show that all cut-formulas of the newly
introduced cuts are generalized subformulas, i.e. that £ € SUB(I, A) for
every F € QJDO U AJ-DO, and hence that the newly introduced cuts are semi-
analytic (by Lemma 4). Indeed, by assumption every formula in D is in
SUB(TI, A, X). Therefore the only case to be excluded is that E is DA. Assume
by contradiction that this is the case. The JA cannot change side of the
sequent, and is not in SUB(I, A) by hypothesis. As there is no cut on A
in D; (being all these cuts replaced by contractions), the only remaining
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possibility is that JA has been removed by a cut on a formula containing [(JA
as a subformula, but this cannot be the case by hypothesis.

The lemma below shows that cuts on conjunctions and disjunctions of gen-
eralized subformulas can be simulated by semi-analytic cuts.

Lemma 4. Let © = Ay, ..., A,, A = By, ..., B, be conjunctions and disjunctions
of formulas in SUB(I',II, A, X)), the rule, with A; C A, ©; C O, |A; UO;| =n:

{A]',H = 27@]‘ ‘ fOT all CL7Ct S Aj U@]‘(Z 7& t)} {A“F = A,Bi}izl)“_m
I = A%

is admissible in SFem without using non semi-analytic cuts.

Proof. We first show that the rule Cut* is admissible using arbitrary cuts on the
formulas A;, B;s and the contraction rules. The proof is by induction on n.

— If n =1, then the proof follows applying twice the cut rule:

HﬁZ,Al Al,F:>A,B1

Cut

.7 = A 2, B Bill=Y
IO = A2, 5 u
LC,RC
I = A%

— Let n = k 4+ 1 and assume that the claim holds for k. We have & =
Ay, .. Ag, Apy1, A = By, ..., By, By and the 251 left premises of the rule
can be rewritten as:

{Aj,ﬂ = 27@j,Ak+1 | fOT‘ all Cy,Cy € Aj U@j(l 7é t)}U
{Bk+1,/1j,n = 27@j | for all C;,Cy € Aj U@j(l =+ t)}

with ©; C {Ay,..., Ay} and A; C {A;,..., A;}. Hence we proceed as follows:

{Aj7H = 2, @ijkJrl ‘ fOT all Cl7Ct S A} U@j(l 7& t)} {A“F = A7Bi}i:1,...,k
0,7 = A%, Ay

the application of Cut* is admissible by induction hypothesis.
Analogously, we construct a derivation of By, I, I" = A, X"

{B;H.l,/lj,H = 2, (‘)/ ‘ fOT all C[,Ct S AJ‘ @] @/(l 7é t)} {AL,F = A,Bi}izl
By, I, T = A X

k

eeny

Cut*

applying the induction hypothesis.
The conclusion now follows from two applications of the cut rule with the
sequent Ay41, I = X, B41 followed by contraction.

The claim of the lemma is now obtained observing that cuts on A; and B; can be
transformed into semi-analytic cuts by exploiting the invertibility of the derived
rules for A and V, because by hypothesis A;, B; € SUB(I,II, A, X).

Theorem 5. Any SFcm proof with cuts can be transformed into a proof of the
same sequent that only uses semi-analytic cuts.
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Proof. Let D be an SFem proof with (D) > 0. We proceed by a double induc-
tion on (¢(D),no (D)), where no(D) is the number of applications of cut in D
with non-analytic cut rank o(D). Consider an uppermost application of non-
analytic (cut) in D with rank o(D). By applying Theorem 4 to its premises
either o(D) or no(D) decreases.

Remark 1. The above result can be adapted to define sequent calculi with
restricted cuts for the sequent calculus version of the calculi for E and F in [8,9].
These calculi would be obtained by replacing in SFcm the rules for Bet and
O(B/A) with the corresponding sequent rules for E and F.

4 A Hypersequent Calculus for F + (CM) and G

The calculus SFecm uses semi-analytic cuts, and is not easily extendable to cap-
ture G®. Additionally, it would be challenging, if possible at all, to adapt it
into a proof-search-oriented calculus for F + (CM). Inspired by the transition
in [4,19,23] from sequent calculus with analytic cuts [25] for the logic S5 to a
cut-free hypersequent calculus, we shift from the sequent to the hypersequent
framework. Hypersequents are arguably the easiest generalization of sequents [2—
4], consisting of multisets of sequents (called components) working in parallel
and separated by the symbol “|”. We introduce a cut-free hypersequent calculus
HFcm for F + (CM). HFcm incorporates the sequent calculus for the logic S4
as a sub-calculus and adds an additional layer of information by considering a
single sequent to live in the context of hypersequents. Axioms and rules (includ-
ing cut) of HFcm are obtained by adding to each sequent in SFem a context G
or H, standing for a (possibly empty) hypersequent, and simplifying the right
rules for O, Bet and (), as follows (with explicit weakening rules):

G|IIPC = A GIT"O,1r*= A G|T"O, A, Bet—(A A Bet(A — B)) =
G|IIPC =04  G|IPO, " = BetA G|I'PC = O(B/A)

To manipulate the additional structure w.r.t. sequents, any hypersequent calcu-
lus contains external structural rules that operate on whole sequents. Standard
rules are ext. weakening (ew) and ext. contraction (ec) (see below), which behave
like weakening and contraction over whole sequents. The hypersequent structure
opens the possibility to define new rules that allow the “exchange of informa-
tion” between different components. These rules increase the expressive power of
hypersequent calculi compared to sequent calculi, enabling the definition of cut-
free calculi for logics that escape a cut-free sequent formulation; in the case of S5
this is done using the rule (s5") below (the O is added to deal with F 4+ (CM))

G G|Ir=MH|Ir=11 G|r'/o,r'=sm
——— (ew) (ec) ; 7 (s5')
G|II'= 1 G|II's I G|\ I's |I"'=1I

5 The totality conditions, is the same as for Gédel logic [4] and S4.3 [16].
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Hence the crucial difference w.r.t. the calculus SFem is that, due to the struc-
tural rules (ec) and (s5'), we can now restrict to single-succedent modal right
rules without impairing cut-free completeness.

Remark 2. A cut-free hypersequent calculus for F was introduced in [9] by
adding one rule to the calculus for E [8]. While F + (CM) extends F (and
E), our calculus is not a modular extension of these two. Indeed HFcm stems
from an alternative semantics definition. Note that the premise A, Bet—A = B
of the right rule for () in these calculi would be trivially derivable in HFcm.

Given a hypersequent It = Ay | ... | I, = A, its interpretation ¢ is defined:

Theorem 6. HFcm is sound and complete with cuts w.r.t. F + (CM).

Proof. The soundness proof follows the pattern detailed for SFecm. Completeness
is ensured by the derivation of (CM).

A calculus for G is obtained in a modular way by adding an external structural
rule to the calculus HFcm for F + (CM). The additional rule is a slightly mod-
ified version of the well known communication rule, introduced by Avron [3] for
capturing Godel logic, and used in [16] for the modal logic S4.3:

GIO. b r-A QGIriortnm= s
GIr'=A|l=>%

com

Theorem 7. HG is sound and complete in presence of cuts w.r.t. G

Proof. Soundness: By induction on the height of the derivation. We only consider
the case of the rule com. If the conclusion is not valid, then there are worlds z
and y where z (y) forces every formula in I" (IT) and z (y) falsifies every formula
in A (X). By totality z <y or y < x. If z <y, then y forces all the O, O and
Bet formulas in I" and thus, by the validity of the premise G | reo e m =y,
we get an immediate contradiction. The other case is symmetrical.

Completeness in Presence of Cuts: follows by the derivability of axiom (RM)
(the topmost sequent is derivable).

A, B, Bet~(A A Bet(A — —B)), Bet~(A A B ABet(AA B — C)), Bet(A — C) = Bet(AA B — C)
A, B, Bet~(A A Bet(A — —=B)), Bet~(AANBABet(AA B — C)), Bet(A — O) = AABABet(ANB — C)
A, B, Bet—(A A Bet(A — —B)),Bet~(AANBABet(AANB — C)),Bet(A — C) =
A, Bet—(A N Bet(A — —B)),Bet—(ANBABet(AANB — C)), A, Bet(A — C) = AN Bet(A — —B)
A, Bet—~(ANBet(A — —=B)),Bet~(ANBABet(ANB — C)), A, Bet(A— C) =
A, Bet—~(A N Bet(A — —B)), Bet=(AANBABet(ANB — C)) = Bet=(A A Bet(A — C))
O(CJA), &, Bet—~(A N Bet(A — ~B)), Bet~(AA B A Bet(AA B — O)) =
O(CJA), A, Bet~(A A Bet(A — ~B)) = | O (CJA), AN B, Bet~(ANBABet(AAB — C)) =
O(C/4) = O(C/AA B), O(=B/4)| O (C/4) = O(C/ANB),O(=B/4)
O(C/4) = O(C/ANB), O(-B/4)

~O(=B/A),0(C/A) = O(C/AAB)

RA

LBet,L

RA, RBet, R~

LBet,L—

RBet, R—,LA
LO

com

RO (twice)

one premise of the rule com is omitted for space reasons.
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5 Cut-Elimination for HFcm and HG

We prove that the calculus HG (and hence HFcm) admits cut-elimination. The
strategy is the same as for the hypersequent calculus for E in [8].

Proof idea: As for the cut-reduction proof of SFcm, cuts on a formula of the
form —=A or A — B are reduced using invertibility. In contrast with SFcm, we
can shift cuts with cut-formulas of the form OA, Bet A and (O)(B/A) upwards
until the cut formula is principal, using a specific order. First over the premise
containing the cut formula on the right hand side (Lemma 6), due to the change
made w.r.t. SFcm to the right rules of Bet, [, and (). Afterwards, over the
other premise (Lemma 7). Note that when a rule introducing the cut formula on
the right hand side is reached, the context has a shape that matches with the
other premise of the cut and allows us to permute the cut upwards, similarly to
case (A) from Theorem 4. When the cut formula becomes principal also on the
left hand side, it can be replaced by cuts on smaller formulas.

Henceforth we use the same inductive measure of the degree of formulas as in
Sect. 3, while the rank of a derivation D is now p(D) (Definition 5). The following
lemmas refer to derivations in HG (and hence in HFcm).

The invertibility of the hypersequent version of the rules for — and —
(Lemma 1) also holds in HG and is rank-preserving.

Lemma 5. Given derivations Dy of G|I' = A, X and Dy of H| X, II =
with X principal in a logical, modal or deontic rule in both premises and p(D;)
dg(X), there is a derivation D of G|H | I',II = A, X with p(D) < dg(X).

IN 4

Proof. As in Lemma 2 (the hypersequent structure plays no role).

The following lemmas are formulated in order to prove the admissibility of
cuts on multiple occurrences of formulas taking into account the presence of
explicit rules for contraction, both internal and external.

Lemma 6 (Right shift). Given Dy of H|II1 = X1, X™ | ... | I, = Y, X™™
in HG(HFcm) and D2 of G| X, I" = A with p(D1), p(D2) < dg(X), there is a
derivation D, with p(D) < dg(X), of

G|H|I™ I = X, A™ | ... | " I, = X, A™

Proof. By induction on the height of D;. If it is an initial sequent or the last
applied rule acts on sequents in H, the proof is trivial. If the cut formula is
principal in a logical (modal, deontic) rule, then we use Lemma 7. Assume that
the cut formula is not principal. If the rule is RQ), RBet and RO, then the claim
follows by internal and external weakening (because such rules permit a single
formula in the RHS). Otherwise, the cut is permuted and removed by induction
hypothesis (note that the RHS of the rules (s5') and (com), if present, remains
unchanged in the premises, along with the associated context on the LHS).

Once we have reached the right rule introducing the cut formula Bet A, O(A/B),
or [JA, we can shift the cut upward over the other premise of the cut, as shown
in the next lemma.
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Lemma 7 (Left shift). Given Dy of G| X", [N = Ai| ... | X", [y = An
and Dy of H|II = ¥, X where X is principal in the last rule applied in Dy with
p(D1), p(D2) < dg(X), there is a derivation D with p(D) < dg(X) of

G|H|IT™, Iy = Ay, 5™ | .. | I, Ty = Ay, 57

Proof. By induction on the height of the derivation Ds. The proof is similar to
case (A) in Theorem4. The hypersequent structure does not alter the proof,
the only additional cases to consider are those involving hypersequent structural
rules. See, e.g. [8] for (s5'). We consider the case of (com) where the cut formula
moves from a component to another. W.l.o.g. we show a case in which we have
two components in Do, as in:

G|o"O, b= B I, BetB", It = Ay BetB"=, I, I = Ay

Gl = £, BaB T = A, [BetB™, I = Ay o

G|Th = A1 [ 1172, Ty = Ay, 272

Cut

assuming that one of the active components does not contain the cut formula
(the other case is analogous). We construct the following derivation:

G| 190, 11" = B G| 90, 11* = B
GO 11" = BetB ' Iy BetBr IY = A, GO0 I = BetB G| BetBrs [ Y = Ay
G, (70,1 1§ = A1 o G (190, 11"y Iy, I = A, o
G| Iy, I9O, 1, 1} = Ay G| PO 1%, Iy, I? = Ay

com

G PO, I = A | TPO, 110, Ty = Ay
GIIUO Iy = Ay [IT", I = Ay, 82
GO = I = A 11, [y = Ay, 2
GO, Ty = Ay, X7 | Iy = Ay [T, Iy = Ay, 2™
G| = A | IT2,T5 = Ay, 272

LW,RW

LW.RW

EC

where cuts are removed by induction hypothesis on the height of the derivation.

Theorem 8. Any HFecm (HG) proof with cuts can be transformed into a proof
of the same hypersequent that does not use cuts.

Corollary 1. HFcm and HG are cut-free complete w.r.t. F + (CM) and G.

6 Proof Search Oriented Calculi for F 4+ (CM) and G

We transform the hypersequent calculi HFem and HG into proof-search ori-
ented calculi. The resulting systems feature reversible rules, with structural rules
absorbed into logical ones, allowing for the construction of countermodels. This
process follows the pattern established, e.g., for system E in [8].

Definition 6. The HFecm?® calculus consists of the initial hypersequents of the
shape G |I'p = A, p, the (usual) rules for the propositional connectives that
repeat the introduced formulas in the premises, together with:

GIT = A OB/A)| A Bet-(ANBet(A > B) = GlO(B/A.I = AA G| O(B/A).I = ABeir(ANBet(A - B)) |
— G[T = 4,0(B/A) o GO B/A),T = A O
G| O(BJ/A)T=A|ll =5,A G| O(BJA), = A|Il = 5, Bet~(A A Bet(A — B))

Gl OB/A)T=A|T=X% LO-
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G|I'= A,BetA| " = A P G| A, BetA, I = A LBet
- G = A, BetA Bet T oTBaa,r = A 0°
GIIT=0A,A| = A G|OA, A, = A G|OA, I = A|A T = %
- RO L, L0,
G|I'=0A, A G|OA T = A GIOAT = Al = %

The proof search oriented calculus HGP® for G extends HFecmP® with the rule:

G‘F17F2112>A1‘F2:>A2 G|F1:>A1|F2,F1b:>A2
G‘F1:>A1‘FQ§A2

com

Notice the peculiar shape of the rules L)y and Ly, designed to absorb the
hypersequent structural rule (s5’). The rule com acts only on Bet formulas.
This depends on the fact that () and O are governed by rules which introduce
bottom-up formulas in every component.

Lemma 8. The rules of (internal and external weakening) and contraction are
height-preserving admissible in HFecm”®. Fvery rule of the calculus is height-
preserving invertible in HFem?P?,

Proof. The height-preserving admissibility of internal and external weakening
follows from a straightforward induction on the height of the derivation. Invert-
ibility follows from weakening. The contraction rules are admissible due to the
repetition of every formula and component in each premise.

Theorem 9 (Soundness of HFcm?® (HG??)). If a hypersequent G is deriv-
able in HFcm?® (HGP?®), then so is in HFcm (HG).

Proof. Follows from the structural rules of HFcm.

6.1 Decidability and Countermodel Construction

We define a proof search procedure which terminates for every sequent. If the
proof search fails, we show how to extract a countermodel out of it.

Definition 7. A hypersequent H is saturated w.r.t. the system HFemP?® if it is
not an initial sequent and for every component I' = A in H, whenever I' = A
contains the principal formulas in the conclusion of a rule (r), then H also
contains the formulas introduced by one of the premisses of (r) for every rule
(r). For example, in the case of Bet, we have:

— (LBet). If I''BetA= A€ H, then A€ T.
~ (RBet). If I' = A, BetA € H, then II,I'* = X, A € H for some I, X.

The saturation condition w.r.t. HGP® is defined adding the condition:
~ (com). If ' == A€ H and Il = X € H then either II° in " or I'® in II.

Theorem 10. Given = A there is a derivation or a saturated hypersequent.
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Proof. We start showing that the number of hypersequent components can be
bounded in any derivation D of = A. Indeed, the rules which introduce new
components are RO, RO and RBet. Consider first RO: we show that this rule
is applied exactly once to each formula (say (0B), occurring in the consequent of
a component and creates only one new component, no matter if [JB appears in
the consequent of many components. To illustrate the situation, consider, e.g.,

. . . H|I= A,0B|©= B,A| ... |II,Tj = A;,5,0B| = B
HI|It= A;,0B|0@= B A|...|IILT; = A;,Y,0B| =B LW, RW
- - - RO H|I'i= A;,0B|©= B,A|...|II,I[j= A;,,0B|© = B, A
H|I; = A;,0B|6 = B,A| ... [II,.I; = A;,2,0B c

H|I; = A;,0B|6 = B, A| ... |[II.I; = A;, 2,0B
D ~ .
H|I = A,0B| = B|...|I} = A;,0B P
|1 i ‘ Lo 1T ’ RO H|I; = A;,0B| = B|...|I; = A;,0B
H|I= A, OB ... |I; = A;,0B ’ ’ RO

H|I, = A,0B|... I, > 4,,0B

Hence the number of components created by RO is bounded by the number of
boxed subformulas of A, whence it is O(n). The situation for RO is similar.
R3Bet requires more care, being Bet an S4 modality. In this case, having
bounded the number of applications of R[] and R(), we assume that if there is
an infinite introduction bottom-up of components these are introduced by the
rule RBet. Hence, since the number of possible sequents is finite (in particular
gl2!svEt)] ‘), there has to be a repetition. In this case, we have met the saturation
condition for the rule RBet. Thus the number of components is finite. Since we
can rule out rule applications for which the saturation condition has already been
met (due to the admissibility of contraction), every rule introduces bottom-up
a new component or new formulas in the components, hence the length of every
branch of a putative derivation of A is bounded and the derivation is finite.

The next theorem ensures the completeness of our calculi and show how to
extract countermodels out of a failed proof search.

Theorem 11. If A is valid in F + (CM) (G ), is derivable in HFem?® (HGP® ).

Proof. By contraposition. If A is not derivable, by Theorem 10 there is a satu-
rated hypersequent: It = Aq| ... |}, = A,. We assign labels to the compo-
nentsi: I; = A; (i € {1,...,n}) and consider the model: M = ({1,...,n}, <, v)
with ¢ < j if and only if I'? C I'; and i € v(p) if and only if p € I7.

We have to check that the model is reflexive and transitive in the case of
HFcm?”® and total in the case of HGP®. The relation < is reflexive and transitive,
because set inclusion is reflexive and transitive. As regards totality, we observe
that the saturation condition for (com) ensures that for every i and j, I’ C TI;
or Fjl? C I'; which gives by definition 7 < j or j < 4.

We now show that for every ¢ in the model M we have i I B if B € I'; and
1 ¥ B if B € A;. We argue by induction on the degree of the formulas.

— If B is atomic, the claim stems from the definition of the valuation function
and by the saturation condition.

— If B is a compound formula, the proof follows from the use of the induction
hypothesis and saturation. We deal with the case in which B is BetC] the
other cases are handled similarly. If BetC' € I, suppose i < j, then I'? C

I';. By the saturation condition for LBet, we get C' € I'; and by induction
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hypothesis we have j IF C, hence the desired conclusion. If BetC € A;, then
by definition of saturation there is I'; = A;,C with I'? C I so i < j, and
by induction hypothesis ¢ ¥ C', so the desired conclusion follows.

Remark 3. The above countermodel construction can be adapted® to define a

pr

oof-search-oriented calculus for Gédel-Dummett logic [10].

Concluding Remark: we demonstrated that for F + (CM) (and Aqvist sys-
tems E and F), while it is possible to define sequent calculi that use semi-
analytic cuts, the hypersequent framework provides a modular and cut-free app-
roach, enabling the capture of F + (CM) and G, and supporting countermodel

CO

nstruction.
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Abstract. This paper introduces a uniform substitution calculus for
differential refinement logic dRL. The logic dRL extends the differential
dynamic logic dL such that one can simultaneously reason about prop-
erties of and relations between hybrid systems. Refinements are useful
e.g. for simplifying proofs by relating a concrete hybrid system to an
abstract one from which the property can be proved more easily. Uniform
substitution is the key to parsimonious prover microkernels. It enables
the verbatim use of single axiom formulas instead of axiom schemata
with soundness-critical side conditions scattered across the proof calcu-
lus. The uniform substitution rule can then be used to instantiate all
axioms soundly. Access to differential variables in dRL enables more con-
trol over the notion of refinement, which is shown to be decidable on a
fragment of hybrid programs.

Keywords: Uniform substitution - Differential dynamic logic -
Refinement - Hybrid systems

1 Introduction

Hybrid systems modeled by joint discrete dynamics and continuous dynamics are
important and subtle systems in need of sound proofs [26] on account of their
important applications [15,16,20,22,32]. Since such systems are important to get
right, hybrid systems verification techniques themselves should be sound. Uni-
form substitution [24,25,27,28], originally phrased by Church for first-order logic
[10, §35,40], has been identified as the key technique reducing the soundness-
critical core to a prover microkernel and is behind the KeYmaera X prover [14].

This paper designs a corresponding uniform substitution proof calculus for
differential refinement logic (dRL) [19]. The logic dRL is unique in its capabilities
of proving simultaneous hybrid systems properties and hybrid systems refine-
ment relations. This ability of dRL has been shown to be beneficial for estab-
lishing refinement relations of system implementations to verification abstrac-
tions and for relating time-triggered implementation models to event-triggered
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verification models [18]. The latter relation overcomes a stark divide in embed-
ded system design principles while combining ease of verification with ease of
implementation in ways that neither design paradigm alone supports. But such
proving power only helps practical system verification if the theoretical proof
calculi are implemented in a sound way and, in fact, dRL has not yet been
implemented at all. Such an implementation is significantly simplified and sig-
nificantly easier to get sound by identifying a uniform substitution calculus,
which has no axiom schemata with their usual side conditions (and the algo-
rithms implementing them) but merely a finite list of concrete dRL formulas as
axioms. Reasoning directly with these concrete formulas also makes the proofs
easier as the conditions are checked only when uniform substitution is used.
This means that a direct consequence of the axioms could have more admissible
substitution instances than the axioms themselves, whereas with schemata, the
side conditions would pile up and not generalize as well. Other beneficial side
effects include the fact that dRL now acquires a Hilbert-style proof calculus that
is significantly more flexible and also more modular than dRL’s previous sequent
calculus.

Challenges include the fact that uniform substitution calculi for hybrid sys-
tems give a differential-form semantics to differentials and differential symbols
[25], which is critical to obtain logic-based decision procedures for differential
equation invariants [30], but also renders some sequent calculus proof rules of
dRL unsound due to the resulting finer-grained view on differential equations.
The flip side is that this finer view distinguishes widely different classes of differ-
ential equations better, thereby making it easier to tell apart different differential
equations that merely coincide on the overall reachable set while having differ-
ent temporal behavior. This difference is exploited here to obtain a decidability
result for refinement for a fragment of hybrid systems. Other challenges to over-
come are the unexpected definition of free variables of refinements, which are
required for soundness. The core of the resulting calculus has been implemented
in KeYmaera X', extending the prover microkernel in 4h of work with about
300 lines of code, mostly spent on writing down all the new axioms.

2 Related Work

Hybrid programs in dRL form a Kleene algebra with tests [17]. Program equiva-
lence for Kleene algebra with tests is known to be decidable for abstract atomic
programs. Refinement o < § can be recovered and defined as U3 = 3, but that
duplicates reasoning about 3. Certain classes of hypotheses can be added to the
theory, e.g. Hoare-like triples 7p; a;; 7—q = 7 false, without breaking the decidabil-
ity [11]. This however does not extend when limited commutativity is allowed,
which arises even in the discrete fragment: (z:=2;y:=3) = (y:=3;2:=2) but
(x:=2;2:=3) # (x:=3;2:=2). KAT with only discrete assignments has been
studied as Schematic KAT [4]. dRL can derive the axioms of Schematic KAT,
but also allows reasoning with continuous dynamics and differential equations.

! https://github.com/LS-Lab/KeYmaeraX-release/tree /dRL.
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The Event-B method [1] is a formalism for reasoning about discrete models
where the primary mechanism is refinement to check the conformance between
abstract models and more detailed ones. Multiple different formalisms have been
proposed. Hybrid Event-B [2,5,6] is an extension with tool support [8] for hybrid
systems with events corresponding to discrete and continuous evolutions. These
continuous steps are however abstracted by the invariants they are assumed to
satisfy. Event-B can also be extended with theories [9]. By adding some axioms
about differential equations, it allows refinement reasoning with some continuous
dynamics [3,12]. In contrast, dRL captures the continuous dynamics directly and
proves the invariants as a consequence of the continuous dynamics.

Uniform substitution was proposed by Alonzo Church for first-order logic to
capture axioms instead of axiom schemata [10, §35,40]. Modern uniform substi-
tution originated for dL to support hybrid systems theorem proving in simple
ways [25], extended to hybrid games in differential game logic dGL [27], and to
communicating parallel programs dLepp [7]. This work is complementing the
approach by adding refinement reasoning in a uniform substitution calculus for
hybrid systems. Developing uniform substitution calculi are key to the design of
small soundness-critical prover microkernels such as KeYmaera X [14].

3 Differential Refinement Logic dRL

Differential refinement logic dRL [19] extends the differential dynamic logic dL for
hybrid systems [23] with a first-class refinement operator < on hybrid systems.
This section presents differential-form dRL, which prepares dRL for the features
needed for dL’s uniform substitution axiomatization, most notably the inclusion
of differential terms alongside function symbols, predicate symbols, and program
constant symbols, but also the requisite inclusion of differential variable symbols.
Differential terms (¢)" are the fundamental logical device with which to enable
sound [25] and complete [29,30] reasoning about differential equations.

3.1 Syntax

This section defines the syntax of the differential refinement logic dRL. The set
of all variables is V. To each variable x € V is associated a differential symbol z’
which is also in V. Its purpose is to use ’ to refer to the time-derivative of vari-
able z during a differential equation, but also to cleverly relay that information
to surrounding formulas in a sound way [25]. It is this (crucial) presence of dif-
ferential symbols, that gives differential-form dRL a refined notion of refinement,

especially of differential equations, compared to its sequent calculus predecessor
[19].

Definition 1 (Terms). Terms are defined by the grammar below where x € V
is a variable, f is a function symbol of arity n and 0,m,64,...,60, are terms:

0,n:=x ’ f(b1,...,0,) ’ 0+n ’ 0-n | (0)
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Terms have the usual arithmetic operations and function symbols. They also
have differentials of terms (6)’ which describe how the value of 6 changes locally
depending on the values of the differential symbols associated to the variables
of 0.

Definition 2 (Formulas). Formulas are defined by the grammar below where
0,n,01,...,0, are terms, p is a predicate symbol of arity n, P,y are formulas
and «, B are hybrid programs (Definition 3):

pp=0<n|pr,....00) | "0 | oAV |Vao | [a]¢ | a<p

In addition to the operators of first-order logic of real arithmetic, formulas
also contain the dL modality [a]¢ which expresses that the formula ¢ holds after
all possible runs of the hybrid program «. dRL extends dL with the refinement
operator a < 3 which expresses that « refines § as § has more behaviors than
a: it is true in a state v if all states reachable by hybrid program « from v can
be reached by hybrid program (. The program equivalence v = § is shorthand
for @« < B A < «. This will be made explicit by axiom (=) in Sect. 5.

Note the fundamental difference between dRL modal formula [a]¢, which
expresses that all runs of hybrid program « satisfy dRL formula ¢, compared
to the dRL refinement formula o < 3, which expresses that all runs of hybrid
program « are also runs of hybrid program (. Both dRL formulas refer to the
runs of a hybrid program «, but only the former states a property of the (final)
states reached, while only the latter relates the overall transition behavior of
hybrid program « to that of another program. Just like [o]¢, formula a < 3 is
a dRL formula and not just a judgment, so it can be true in some states and
false in others. This makes it possible to easily express conditional refinement as
¢ — «a < 0 meaning that if ¢ is true initially, then « refines 5. The logic dRL
is closed under all operators. For example the dRL formula [a]8 < v expresses
that after all runs of « it is the case that all runs of [ are also runs of ~.
Just like in an ordinary implication, ¢ — «a < [ says nothing about what
happens when the initial state does not satisfy ¢. Just like ordinary dynamic
logic modalities, [@]3 < « says nothing about what happens before program «
ran. Indeed, this extended capabilities that dRL is closed under all operators
will add to its expressibility and the eloquence of its uniform substitution proof
calculus.

Definition 3 (Hybrid Programs). Hybrid programs are defined by the gram-
mar below where x is a variable, 8 is a term, a is a program constant, ¥ is a
differential-free formula and o, B are hybrid programs:

o Bu=a||z=0|z=x]2'=0&y |aUB|aB]|a

The test 71 behaves like a skip if the formula ) is true in the current state and
blocks the system otherwise. The assignment x := € instantaneously updates
the value of the variable x to the value of the term 6. The nondeterministic
assignment x := % updates the value of the variable x to an arbitrary value.
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The differential equation =’ = 6 & 1) behaves like a continuous evolution where
both the differential equation ' = 6 and the evolution domain % holds. The
nondeterministic choice aU (3 can behave like either o or 8. The sequence a; 3
behaves like « followed by (. The nondeterministic repetition o behaves like «
repeated an arbitrary natural number of times.

Ezample 1 (Modelling safe breaking). Let us consider a car that needs to stop
before a wall at distance m. It starts from a safe position and can accelerate with
acceleration A if some safety condition safer(z) is true or brake with braking
force B. The controller is run at most every T seconds. Proving its safety can
be achieved by proving the following dRL formula:

A>0AB>0Az+v%/2B <m — [carr|r <m
carr = (a:=—=BU?safer(z);a:= A);tg:=t;2" =v,v' =a, ! =1&t —tc <T

Such system, called time-triggered, can be refined to a event-triggered system
where the controller is sure to run before a critical event, leaving the domain
E(x), occurs. Event-triggered systems are easier to verify but less realistic. With
dRL and the axiom ([<]) below, the time-triggered system can be proved safe
by proving the safety of the event-triggered system and the refinement between
the two systems:

AZO/\BZO/\x+v2/2B§m—>ca7"TgcarE/\[carE]xgm

carg == (a:=—BU safeg(z);a:= A);tg:=t;2' =v,0v' =a,t’ =1& E(x)

3.2 Semantics

A state v is a mapping V — R. The state v agrees with the state v except for
the variable x whose value is r € R. State w is a U-variation of v if w and v
are equal on the complement U C of that set of variables U. For instance, v} is
an {x}-variation of v. The set of all states is S. The interpretation of a function
symbol of arity n in interpretation I is a smooth function I(f) : R™ — R.

Definition 4 (Term semantics). The semantics of a term 6 in interpretation
I and state v is its value Iv[0] € R and is defined as follows:

Iv[z] = v(x)

Wf(6r,...,0.)] = I(f)Iv]6], ... Iv[8,])
Iv[f + n] = Iv[0] + Iv[n]

1[0 -n] = Iv[6] - Iv[n]

oY= ¥ v@) 2Bl w) = ¥ v(a) 2

zeV eV

CUs Codo

The partial derivative 8153[5[0]] corresponds to the derivative of the one-dimensional
function X + IvX[0] at X = v(z). Since Iv[f] denotes a smooth function, the
derivative always exists.
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Since hybrid programs appear in formulas and vice versa, the interpretation
of hybrid programs and formulas is defined by simultaneous induction. The inter-
pretation of a predicate symbol of arity n in interpretation I is an n-ary relation
I(p) € R™. The interpretation of a program constant symbol @ in interpretation
I is a state-transition relation I(a) C S x S where (v,w) € I[a] iff the program
constant a can reach the state w starting from the state v.

Definition 5 (dRL semantics). The semantics of a formula ¢ for an inter-
pretation I is the subset I[¢] C S of states in which ¢ is true and defined as:

v e I[0 <n] iff Iv[0] < Iv[n]
veIp(by,...,0,)] iff (Iv[b1],...,Iv[0.]) € 1(p)
ve 18] iff v ¢ 116]

vellpnd] iff vellg] and v € IY]

v e I[Vz @] iff vl € I[¢] for allr € R

v € I[[a]d] iff w € I[¢] for all (v,w) € I]c]

v e Ifa < 8] iff (v,w) € I[F] for all (v,w) € I[a]

NS O o~

A formula ¢ is valid in I if I[¢] = S. A formula ¢ is valid if it is valid in all
interpretations.

Definition 6 (Transition semantics of programs). The semantics of a
hybrid program « for an interpretation I is the transition relation Ifa] C S xS
and is defined as follows:

1. I[a] = I(a)

2. 1[W] =A{(v,v) : velly]}

3. Iz =+« ={(v,v]) : forallr € R}

4. Iz :=0] ={(v,v%) : r=1v[0}]

5. I =0&y] = {(v,w) : @(0) is a {z'}-variation of v and w = @(r)for

some function o : [0,r] — S where ¢(t) is a {z,2'}-variation of v,
satisfiesp(t) € Iz’ = 0 A] and % = Ip(t)[0] for allt €]0,7]}
6. IfaUG] = I[a] UI[5]
7. 1Mo 8] = Il o T[8] = {(%w) : (v, 1) € Ta], () € T[6] for some p € S}
8. 1[0*] = Upex I[0”]

Most importantly, o < 3 is true in a state v iff all states w reachable from v by
running program « are also reachable by running 3 from v.

The transition for a differential equation =’ = 6 & 1) synchronizes the differ-
ential symbol 2’ with the current time-derivative of x, i.e. 6, and then evolves
the system continuously along the solution ¢ of the differential equation z’ = 6
within the domain 1. Differential equations are the only hybrid programs that
intrinsically relate variables with their associated differential symbol.

As differential equations effectively change the value of differential symbols,
this is taken into account in the semantics of refinements. The differential equa-
tions '’ = 1 and 2’ = 2 are not equivalent: although both can reach the same
values for z, their respective end states will always have a different value for z’.
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This behavior differs from the original semantics of dRL [19]. Intuitively, this
notion of refinement corresponds to assuming that differential equations evolve
with a global time ¢’ = 1. Other extensions of dL like dLcyp [7] already assume
the presence of such global time. This property allows to express refinements of
differential equations as a dL formula as shown in the axiom (ODE) below.

3.3 Static Semantics

Uniform substitution relies on the notions of free and bound variables to prevent
any unsound substitution attempts. Static semantics gives a definition for free
and bound variables of terms, formulas and hybrid programs based on their
(dynamic) semantics, which can be defined as in dL [25]:

Definition 7 (Static semantics). The static semantics defines the free vari-
ables V(0), V(@) and PV («), which are the variables whose values the expression
depends on, and the bound variables BV(«), which are the variables whose values
may change during the execution of a. They are defined formally as follows:

(O) ={x €V : 3I,v,va {x}-variation of v such that Iv][0] # ID][0]}
(@) ={x €V : 3I,v,va {x}-variation of v such that v € I[¢] # v}
(o) ={z eV : 3I,v,w,va {z}-variation of v such that (v,w) € I[c]
and ¥ &{x}-variation of w such that (7,0) ¢ I[a]}
BV(a) ={x €V : 3I,v,wsuch that (v,w) € I[a] and v(z) # w(zx)}

Free and bounds variables are the only information needed about the logic to
ensure that the result of uniform substitution is only defined when sound. The
coincidence lemmas [25] show that the truth-values of formulas only depend on
their free variables and the interpretation of the symbols appearing in them
(similarly for terms and hybrid programs). The set of function, predicate, and

program symbols appearing in a formula, term or hybrid program is denoted
().

Lemma 1 (Coincidence for terms [25]). The set FV(0) is the smallest set
with the coincidence property for 0: If v =0 on' V 2 IV (0) and I = J on X(0),
then Iv[0] = Jo[6].

Lemma 2 (Coincidence for formulas [25]). The set FV(¢) is the smallest
set with the coincidence property for ¢: If v =0 on' V2 V(@) and I = J on
X(p), then v € I[¢] iff v € J[¢].

Lemma 3 (Coincidence for hybrid programs [25]). The set FV(«a) is the
smallest set with the coincidence property for a: If v = U on V 2 NV (a) and
I=J on X(«a), then (v,w) € I[a] implies (7,0) € J[a] for some & with w = &
on V.
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The proof [25] requires a mutual induction on the structure of the formula and
hybrid program to show that I[¢] = J[¢] and I[a] = J[«] which extends to the
refinement case. The rest is done by induction on the set of variables S where
the states v and U can differ.

Lemma 4 (Bound effect [25]). The set BV(«a) is the smallest set with the
bound effect property for a: If (v,w) € I[a], then v =w on B\/(a)c,

These sets are the smallest sets with the coincidence property, which means
that all conservative extensions of these sets can also be used soundly. We define
FV(0),FV(¢),FV(«) and BV(«) as such overapproximations that can be com-
puted syntactically. Computing the free variables for a formula [a]¢ requires the
must-bound variables of the hybrid program «, written MBV(«). They represent
the variables that will be written in all executions of a. These sets are given in
[31] and are constructed in a standard way [25], except for the new refinement
operator.

Since the behavior of hybrid program « and § only depends on their respec-
tive free variables (Lemma 3), it would be tempting to define FV(a < ) =
FV(a) UFV(() stating that the refinement depends on the variables for which
either program depends on. Somewhat surprisingly, this would be unsound for
reasons that truly touch on the nature of refinement. Take the refinement formula
?true < z:=1 and a state v with v(z) = 0. Then v ¢ I[?true < z := 1]. However
if the initial value of z is 1, then the refinement holds: v} € I[?true < xz:=1],
because the assignment z := 1 has no effect. In fact FV(?true < x:=1) = {z}
even though FV(?true) = FV(z := 1) = . To obtain a sound definition of
FV(a < ), one needs to take into account the variables that may be written
in one program, BV(«) UBV(3), but that can also remain unmodified (which
makes them depend on their initial values), so not in MBV (o) "\MBV(3). Hence,
the (syntactic) free variables of a refinement are defined as follows:

FV(a < 8) = FV(e) UFV(8) U ((BV(a) UBV(3)) \ (MBV(a) N MBV(3)))

With this definition for refinements as the only but notable outlier to an other-
wise standard definition of the syntatic computations for a static semantics [25],
the static semantics FV(¢) etc. can be proved to be sound overapproximations of
the static semantics FV(¢) from Definition 7 and thereby enjoy the coincidence
Lemmas 1-3 and the bound effect Lemma 4, respectively.

Lemma 5 (Soundness of static semantics). For all terms 0, formulas ¢ and
hybrid programs o:

FV(6) 2PV(6) FV(¢)2FV(¢) FV(a) 2PV(a) BV(a) 2 BV(a)

The proof of FV(-) 2 FV(-) for formulas and hybrid programs is the only case
affected by the addition of refinement operators compared to prior proofs [25,
Lem. 17]. It is proved by induction on the structure of the formulas and hybrid
programs. For hybrid programs, the property shown for FV(«) is stronger than
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the coincidence property from Lemma 3, enforcing w = @ on VUMBV(«) rather
than V.

For the case of the refinement operator a@ < (3, the main insight is visible
when proving that o € J]a < ] implies v € IJa < ] with v = 7 on V and
I'=Jon X(a < ). For any (v,w) € I[a], we have (v,@) € J[a], (7,@) € J[F]
and (v, ) € I[Q] for some states @, 1 by repeated use of the induction hypothesis
and the definition of refinement. Both the induction hypothesis and Lemma 4
give us information on @ and p. As V' 2 FV(a < 3), the definition of FV(a < )
is crucial for ensuring that this knowledge is enough to fully determine @ and p
from v,w and 7, and then that w = pu.

4 Uniform Substitution

A wuniform substitution o is a mapping from terms of the form f(-) to terms
o(f(+)), from formulas of the form p(:) to formulas o(p(+)), and from program
constants a to hybrid programs o(a). The reserved 0-ary function symbol - marks

o (z) = o(z) forx €V
oV (1(6) = {+ = 06} o (/(-)) it FV(e(f(-)NU =10
c’(O0+n) =c"0+0Yy

o (p(6) = {- = 0”0} o (p(-) it FV(a(p(:)))NU =0

U
UW(Om@ UV(%UWﬂ
ol (a") = (ova) where ol o is defined

Fig. 1. Recursive application of uniform substitution with input taboos U C V
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the position where the argument, e.g. 6 in p(#), will be substituted in the result-
ing expression. Soundness of such substitutions requires that the substitution
does not introduce new free variables in a context where they are bound [10].
Figurel defines the result oU¢ of applying a uniform substitution ¢ with
taboo set U C V to a formula ¢ (or term 6, or hybrid programs « respectively)
[28]. For hybrid programs «, the substitution result o/« for input taboo U C V
also outputs a taboo set V' C V| written in subscript notation, that will be
tabooed after program «. Taboos U,V are sets of variables that cannot be sub-
stituted in free during the application of the substitution, because they have
been bound within the context and, thus, potentially changed their meaning
compared to the original substitution ¢. The difference is that the input U is
already taboo when the substitution ¢ is applied to a while V is the new out-
put taboo after a. Finally, o(¢) is short for 6%¢ started without initial taboos.
The key advantage to working with uniform substitution applications with taboo
passing is that they enable an efficient one-pass substitution [28] compared to the
classical Church-style uniform substitution application mechanism that checks
admissibility at every binding operator along the way [25]. One-pass uniform
substitution postpones admissibility checks till the actual substitutions of func-
tion and predicate symbols according to explicit taboos carried around.
Despite the surprising definition of the free variables of a refinement, defining
uniform substitution for the refinement case is standard, the input taboo U is
given to both programs except that their output taboos V, W are discarded:

oV (a<p)=cla<olp
The reason is two-fold:

1. Unlike quantifiers and modalities, refinements do not subsequently bind any
variables.

2. The free variables of a refinement introduced by a substitution can only be
introduced free in the programs, and thus checking these against the input
taboo set U is sufficient.

This last statement is a consequence of BV(ca) C BV(a) and MBV(ca) D
MBV(«), which is proved by a direct induction.

4.1 Uniform Substitutions and Adjoint Interpretations

The proof of the soundness of uniform substitution follows the same structure
as the proof of the uniform substitution lemma for dGL [28] but adapted to
hybrid programs instead of hybrid games and generalized to the presence of
refinements. The output taboo V of a uniform substitution o will include the

original taboo set U and all variables bound in the program «.

Lemma 6 (Taboo set computation [28]). If o/« is defined, then V 2O U U
BV(a¥a).
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Whereas uniform substitutions are syntactic transformations on expressions,
their semantic counterparts are semantic transformations on interpretations. The
two are related by Lemmas 7 and 8. Let I¢ denote the interpretation that agrees
with interpretation I except for the constant function symbol - which is inter-
preted as the constant d € R.

Definition 8 (Adjoint interpretation). For an interpretation I and a state
w, the adjoint interpretation oI modifies the interpretation of each function
symbol f € o, predicate symbol p € o and program constant a € o as follows:

ofI(f) : R — Ryd — I%w[of(-)]
oil(p) ={deR : we Ilop(-)]}
orI(a) =I[od]

Lemma 7 (Uniform substitution for terms [28]). The uniform substitution
o for taboo U C V and its adjoint interpretation oI for I,w have the same
semantics on U-variations v of w for all terms 6:

Iv[o¥0] = o Iv[0]

Lemma 8 (Uniform substitution for formulas, programs). Uniform sub-
stitution o for taboo U C V and its adjoint interpretation o1 for I,w have the
same semantics on U-variations v of w for all formulas ¢ and hybrid programs
o

for all U-variations v of w: v € I[oV @] iff v € o I[¢]
for all states p and all U-variations v of w : (v, ) € I[o¥a] iff (v, ) € o 1[a]

The proof is done by simultaneous induction on the structure of o, a and ¢
for all U,v,w and p [31]. The use of U-variations is critical when the induction
hypothesis needs to be used in a state other than v, e.g. for quantifiers and
modalities. Without considering the extension of the refinement operator, this
result was previously proved in a weaker form (U = () for dL [25] or for more
complex semantics like hybrid games [28].

4.2 Soundness of Uniform Substitution

Lemma 8 is essentially all that is required to ensure the sound application of
uniform substitution. First, uniform substitution can be used to have a sound
instantiation of the axioms, using the uniform substitution rule (US). A proof
rule is sound if the validity of the premises implies the validity of the conclusion.

Theorem 1 (Soundness of uniform substitution [28]). The proof rule (US)
is sound.
¢
US)——
T
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Uniform substitution can also be used on rules or whole inferences, as long as
they are locally sound, i.e. the conclusion is valid in any interpretation where the
premises are valid. Locally sound inferences are also sound.

Theorem 2 (Soundness of uniform substitution for rules [28]). All locally
sound inferences remain locally sound when substituted with a uniform substitu-

tion o with taboo set V.

¢1 O-V(Z)l LI O'V ¢n

oV

" locally sound implies locally sound.

P
5 Proof Calculus

Most notably, uniform substitution makes it possible to use concrete dRL formu-
las as axioms instead of axiom schemata that accept infinitely many formulas
as axioms. Axioms are finite syntactic objects, and are thus easy to implement,
while axiom schemata are ultimately algorithms accepting certain formulas as
input while rejecting others [25]. Figure 2 lists the axioms of dRL. dRL also satis-
fies the axioms of KAT [17], Schematic KAT [4] and the axioms of dL [31]. Some
axioms use the reverse implication ¢ < v instead of ¥ — ¢ for emphasis.

In the axiom ([<]), & stands for the (finite) vector of all relevant variables
(alternative treatments [25,28] of p(Z) use quantifier symbols or additional pro-
gram constants instead, but are not necessary for this paper). This characteristic
axiom of dRL expresses that if formula p(Z) holds after all runs of hybrid pro-
gram b, then it also holds after any refinement a. Thus, as long as a proof of the
refinement is given, it is possible to replace hybrid programs inside modalities.
In general, axioms are meant to be applied to the axiom key (marked blue).

Refinement is transitive (<;), allowing the introduction of intermediate
refinements ¢ similar to the role that cuts play in first-order logic.

Axioms (U;) and (U,) decompose the choice operator using logical connec-
tives. As the choice aUb can behave like either subprograms, whenever it refines a
program ¢, both a and b must refine ¢. Axiom (U,) is not an equivalence though.
a < bV a < csays that for each initial state, one of the two refinement holds.
However, when a is nondeterministic, and so can have multiple end states for
one initial state, it may not be the case despite the left-hand side being true.

Axiom (;) helps proving a refinement between two sequences of programs
(a;b < ¢;d) by proving the refinement of the first programs (a < ¢) and the
refinement of the second programs, but only after all executions of a ([a]b <
d). Axioms (74et) and (:=qet) are particular cases of the axiom (;) where the
implication can be strengthened to an equivalence. As such, the implication
from right to left is not required for both axioms [31].

Axioms (loop;), (loop,.) and (unloop) are used to prove refinements of loops.
The first two state that if adding a program before or after only leads to less
executions, then adding an unbounded number of executions, i.e. a loop, will also
lead to less executions. The axiom (unloop) is useful for comparing two loops,
as it allows to reduce the problem to comparing the loop bodies. Both axioms
(loop;) and (unloop) need a box modality when proving the refinement of the
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(<h)a<b+a<cAc<b (U)aUub<c+a<cAb<c
(=)a=b+a<bAb<a (U)a<bUc+a<bVa<ec
([£]) a < b— ([alp(z) + [blp(T)) G)asb<cd<a<cAlalb<d
(M) (’p<?q) & (p = q) (loop;) a*;b < b < [a"]a;b < b
(=)ax=f=x=xTc="7f (loop,) a;b* <a+ a;b<a
(Pdet) 7p;a <?p;b 4> [?pla < b (unloop) a* < b* « [a*](a < b)
(stutter) z :=z = ?true ((=det) z:=fra<z:=f;b [z:=fla<b

(tmerge) T 1= %; 7p(x); =% = x:=%; 73y p(y)
(t=%merge) @ :=#; Tp(x); 2= f(x) = =73y (p(y) Az = f(y))
(ODE) 2’ = f(z) &p(z) < 2’ = g(z) &q(z) [ = f(z) &p(@)|(’ = g(z) A q(z))
(DW=) 2’ = f(z) &p(z) = p(x);a’ = f(z) &p(z); ?p(z)
(DE=) 2’ = f(x) &p(x) = 2’ = f(z) &p(z); 2’ = f(x)
(DX) 2’ = f(2); ?p(z) < 2’ = f(x)&p(x)

(ODEidemp) @ = f(z) & p(a)ia’ = f(2) &p(a) = @' = f(2) &p(z)

Fig. 2. Axioms of dRL

loop body, as the refinement must be proved after any number of iterations of
a.

The axiom (ODE) describes how to prove refinements between differential
equations. A refinement 2’ = f(x) &p(x) < 2’ = g(x) & g(x) is true iff through-
out the execution of the former ODE, it always satisfies the latter differential
equation and evolution domain. Along with the axioms (DW.) and (DE.),
these axioms subsume differential cut (DC), differential weakening (DW) and
differential effect (DE) from dL [31]. The equivalence in the axiom (ODE) effec-
tively means that refinements of differential equations can always be reduced to
standard dL formulas, which is essential to our decidability result.

The axiom (DX) states that a differential equation always has a solution for
the interval [0,0]. In that case, the execution succeeds only if the domain holds,
and the correct value f(x) is assigned to the differential variable 2. The axiom
(ODEidemp) states that following the same differential equation twice in a row
is equivalent to following it only once, because the concatenation of solutions of
the same differential equation is still a solution of the same differential equation.

Compared to the original sequent calculus for dRL [19], the proof rule
schemata matching infinitely many instances are now replaced by a finite number
of axioms that are concrete dRL formulas rather than standing for infinitely many
instances. The infinitely many possible instances can then be recovered soundly
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using the uniform substitution rule (US). Because of this two-step mechanism,
reasoning with the axioms can be done without considering the possible instanti-
ations. Take for instance the sound equivalence x := f; x := % = x := *. The proof
can be done by transitivity (<;) with z:=x; 7z = f;x := % as intermediate step
[31]. But the same proof cannot be done by replacing f by any term 6: the inter-
mediate program is not always equivalent to the other two (e.g. for § = x + 1).
On the other hand, by proving the equivalence for f and then using rule (US),
the equivalence can be proved for all terms 6.

The dRL axioms are also more modular than its cast-in-stone sequent calcu-
lus rules. For instance, with rule (G) and axiom (K), any implication ¢ — 1,
e.g. (Uy), can be used to prove [a]¢ — [a]tp. This would not fit the shape of
the corresponding sequent rule, which requires 1 at the top level. The lack of
differential symbols in the original sequent calculus [19] changes the soundness
of some rules: the match direction field rule (MDF) would allow rescaling the
right-hand side of a differential equation, which is unsound here as it would
change the resulting differential symbols. Conversely, only the reverse implica-
tion of the axiom (ODE) would be sound in the original calculus, again for lack
of differential symbols. The dRL axioms are proved sound [31]:

Theorem 3 (Soundness of dRL axioms). All azioms of dRL are sound.

6 Decidability of Refinement for a Fragment of dRL

This section identifies a subset of hybrid programs for which the refinement
problem is decidable. It is focused on concrete programs, i.e. programs without
function symbols, predicate symbols or program constants. They have the follow-
ing high-level structure: (ctrl;plant)” where a discrete, loop-free program ctrl,
modelling a controller that sets some parameters @, then a continuous program
plant that describes the dynamics of the variables § according to the choice of
the parameters @. These steps are then repeated nondeterministically. The con-
tinuous variables § (and by extension ') are expected to be distinct from the
discrete variables # and also contain a global clock ¢ which follows the differen-
tial equation ¢’ = 1. The presence of the clock ¢ is not needed for comparing the
differential equations, but to distinguish between discrete executions and hybrid
executions.

For two such programs, (ctrl,;plant,)” and (ctrly; plant,)”, a canonical proof
of the refinement has the following shape (omitting uses of MP for brevity):

ctrly <ctrly  [ctrlg](plant, < planty)
' ctrly; plant, < ctrly; plant,
[(ctrly; plant,) ™) (ctrly; plant, < ctrly; planty)

unloo
P (ctrlq; planty,)” < (ctrly; planty)”

This means that proving the refinement of the whole programs is reduced to
proving the refinement of the controllers, ctrl, < ctrl, and the refinement of the
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plants after all ctrl, executions, [ctrl,|(plant, < planty). With our restrictions
on the controllers, the first refinement is always decidable.

Lemma 9. For concrete, discrete and loop-free controllers ctrl, and ctrly, the
validity of ctrl, < ctrly is decidable by dRL proof.

Given a controller ctrl,, it is possible to synthesize a first-order formula ¢, (x, zT)
that characterizes the behavior of ctrl,, where z (resp. x%) corresponds to
the variables after (resp. before) the controller [21]. Using the dRL axioms,
ctrl, < ctrly is provable from ¢, (x,2%) — ¢p(z,27). The validity of the lat-
ter is decidable as it is first-order real arithmetic [33]. The full proof is in [31].

The second refinement, [ctrl,](plant, < planty), is more complex. Let us
write the two plants as plant, = ¢’ = p(y,u) & Q and plant, =y = q(y,u) & R
for some polynomials p(g, @), ¢(g, @) and formulas @, R. The axiom ODE entails
that we must prove [ctrl,][plant,](p(y, @) = q(y, @) AR), which no longer contains
any refinement. For the decidability result (Theorem 4) to hold, we require that
the validity of this formula is decidable.

There are two cases which always ensure this. First, if the differential equa-
tion plant, admits a solution expressible in dRL (e.g. a polynomial), then using
standard dL reasoning, the formula can be reduced to a first-order formula
and thus its validity can be decided. The differential equation from Example
1, 2’ = v,v' = a, is such a case.

The second case is when domain R is algebraic, i.e. of the form A; V/; pi;(z) =
0 for some polynomial p;; and @, the domain of plant,, is a semialgebraic set
[30].

The remaining question is now to show that the approach presented above
is complete, meaning it always succeeds when the refinement holds. The only
additional constraint we require is that the controller ctrl;, is idempotent.

Definition 9. (Idempotent controller). A controller ctrl is idempotent if it
satisfies ctrl; ctrl = ctrl.

An idempotent controller cannot reach more states by executing multiple times
without any continuous dynamics happening. Pure reactive controllers, i.e. con-
trollers for which the parameters’ values only depend on the values of the con-
tinuous variables, are always idempotent. This is the case for the controllers in
Example 1: z := —BU7?safer(x);  := A. On the other hand, counting the number
of times the controller has been executed would not be idempotent.

Lemma 10. This derived rule is invertible, if ctrly, is idempotent.

ctrilg; plant, < ctriy; planty

(ctrlq; planty,)™ < (ctrly; planty)”

The derivation of the rule is given in the canonical proof. The converse, that the
conclusion implies the premise, is more involved [31]. Proving ctri,; plant, <
(ctrly; planty)” from (ctriy;plant,)” < (ctrly; plant,)™ is done by unfolding the
loop on the left. To get rid of the loop on the right, we use the fact that ctril,
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is idempotent. It means that if the global time is not modified, then we can
assume without loss of generality that the controller (and thus also the plant)
is executed only once. The case when the global time is modified additionally
considers the value of the derivative to ensure that there is an execution of the
right program that does not require looping.

With the above lemma, we can now state the decidability result.

Theorem 4 (Decidability of refinement for idempotent controllers).
For concrete hybrid programs ctrl,; plant, and ctrly; plant, discrete loop-free
ctrly, ctrly and with plant, = ¢ = p(§,a) & Q and plant, = §' = q(g,u) & R, if
ctrly is idempotent, and the validity of [ctrl,][planty](p(y,a) = q(y,a) A R) is
decidable, then the validity of (ctrly;plant,)™ < (ctrly; planty)” is also decidable.

In particular, the theorem applies to the event-triggered model and the time-
triggered model templates used to show how to prove that the latter refines the
former [19]. Indeed, their controller template is loop-free and idempotent and
the differential equation are assumed to be solvable. Theorem 4 strengthens their
result by showing the completeness of the approach.

7 Conclusion

This paper introduced a uniform substitution proof calculus for differential
refinement logic dRL. This yields a parsimonious prover microkernel for hybrid
systems verification that simultaneously works for properties of and relations
between hybrid systems. The handling of refinement relations between hybrid
systems is subtle even only in its static semantics, which makes the correctness
proofs of this paper particularly interesting. The uniform substitution is one-pass
[28] giving it respectable performance advantages compared to Church-style uni-
form substitutions. While the joint presence of differential equations reasoning
and refinement reasoning causes challenges, a resulting benefit besides soundness
is that a finer notion of differential equation refinement is obtained with logical
decidability properties on a fragment of hybrid systems refinements.

Future work involves improving the implementation of the uniform substi-
tution calculus in KeYmaera X. Although the prover microkernel was straight-
forward following the uniform substitution process and list of dRL’s uniform
substitution axioms, the prover would benefit from quality of life features, e.g.
using the axioms to rewrite on subprograms, and an implementation of the refine-
ment decision algorithm for the decidable fragment. Another axis of research is
to combine refinements with hybrid games, with a proper semantics and adapt
the new axioms of dRL to games, some of which would not be sound as is.

A Additional dRL Axioms

Axioms of dL also include the differential axioms, e.g. ()" = 2’ [25], to reason
on terms, which are omitted as it is not the main focus of this paper. Axioms
preceded by a star can be derived from other axioms [31].
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(a) Axioms of dL
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(unfold-1) ?true U (a;a™) = a* (unfold-r) ?true U (a*;a) = a”
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(¢) Axioms of SKAT with nondeterministic assignment

Fig. 3. Additional axioms of dRL
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Abstract. In this paper we explore the design of sequent calculi operating on
graphs. For this purpose, we introduce logical connectives allowing us to extend
the well-known correspondence between classical propositional formulas and
cographs. We define sequent systems operating on formulas containing such con-
nectives, and we prove, using an analyticity argument based on cut-elimination,
that our systems provide conservative extensions of multiplicative linear logic
(without and with mix) and classical propositional logic. We conclude by show-
ing that one of our systems captures graph isomorphism as logical equivalence
and that it is sound and complete for the graphical logic GS.

Keywords: Sequent Calculus + Graph Modular Decomposition * Analyticity

1 Introduction

In theoretical computer science, formulas play a crucial role in describing complex
abstract objects. At the syntactical level, the formulas of a logic describe complex struc-
tures by means of unary and binary operators, usually thought of as connectives and
modalities respectively. On the other hand, graph-based syntaxes are often favored in
formal representation, as they provide an intuitive and canonical description of proper-
ties, relations and systems. By means of example, consider the two graphs below:

a<—b——c—d or a b C d

It follows from results in [21,62] that describing any of the above graphs by means
of formulas only employing binary connectives would require repeating at least one
vertex. As a consequence, formulas describing complex graphs are usually long and
convoluted, and specific encodings are needed to standardize such formulas.

Since graphs are ubiquitous in theoretical computer science and its applications, a
natural question to ask is whether it is possible to define formalisms having graphs,
instead of formulas, as first-class terms of the syntax. Such a paradigm shift would
allow the design of efficient automated tools, reducing the need to handle the bureau-
cracy introduced in order to deal with the encoding required to represent graphs. At the
same time, a graphical syntax would provide a useful tool for investigations such as
the ones in [36] or [25,27], where the authors restrain their framework to sequential-
parallel orders, as these can be represented by means of formulas with at most binary
connectives.

Two recent lines of work have generalized proof theoretical methodologies to
graphs, extending the correspondence between classical propositional formulas and
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cographs. In these works, systems operating on graphs are defined via local and context-
free rewriting rules, similar to the approach in deep inference systems [8,33,34]. The
first line of research, carried out by Calk, Das, Rice and Waring in various works,
explores the use of maximal stable sets/cliques-preserving homomorphisms to define
notions of entailment!, and study the resulting proof theory [16,17,23,24,63]. Here,
the use of a deep inference formalism is natural, since the rules of the calculus are local
rewritings. The second line of research, investigated by the author, Horne, Mauw and
Stralburger in several contributions [3-5], studies the (sub-)structural proof theory of
arbitrary graphs, with an approach inspired by linear logic [29] and deep inference [33].
The main goal of this line of research, partially achieved with the system GV® operating
on mixed graphs [3], is to obtain a generalization of the completeness result of the logic
BV with respect to pomset inclusion. The logic BV contains a non-commutative binary
connective < allowing to represent series-parallel partial order multisets as formulas in
the syntax (as in Retoré’s Pomset logic [57]), and to capture order inclusion as logical
implication. However, as shown in [60], no cut-free sequent system for BV can exist —
therefore neither for Pomset logic, which strictly contains it [53,54]. For this reason,
the aforementioned line of work focused on deep inference systems, and the question
about the existence of a cut-free sequent calculus for GS (the restriction of GV® on
undirected graphs originally defined in [4]) was left open.

In this paper, we focus on the definition of sequent calculi for graphical logics, and
we positively answer the above question by providing, among other results, a cut-free
sound and complete sequent calculus for GS. By using standard techniques in sequent
calculus, we thus obtain a proof of analyticity for this logic which is simpler and more
concise with respect to the one in [5].

To achieve these results, we introduce graphical connectives, which are operators
that can be naturally interpreted as graphs. We then define the sequent calculi MGL,
MGL® and KGL, containing rules to handle these connectives. After showing that cut-
elimination holds for these systems, we prove that MGL, MGL® and KGL define con-
servative extensions of multiplicative linear logic, multiplicative linear logic with mix
and classical propositional logic respectively. We then prove that formulas interpreted
as the same graph are logically equivalent, thus justifying the fact that we consider
these systems as operating on graphs rather than formulas. We conclude by showing
that MGL® is sound and complete with respect to the logic GS, thus providing a simple
sequent calculus for the logic.

The paper is structured as follows. In Sect. 2 we show how to use the notion of mod-
ular decomposition for graphs from [28,41] to define graphical connectives. In this way,
we extend to general graphs the well-known correspondence between classical propo-
sitional formulas and cographs [21,28,41]. Then, in Sect. 3, we introduce the proof
systems MGL, MGL® and KGL, and we prove their cut-elimination and analyticity. This
section also discusses the conservativity results. In Sect.4 we show that formulas rep-
resenting isomorphic graphs are logically equivalent in these logics. Finally, in Sect. 5
we prove that MGL® is sound and complete with respect to the graphical logic GS. We
conclude with Sect. 6, by discussing future research directions and applications. Due
to space limitations, details of certain proofs have been omitted from this manuscript
However, detailed proofs can be found in [2].

' A similar approach was proposed in [56] for studying pomsets.
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2  From Graphs to Formulas

In this section we first recall standard results from the literature on graphs, the notion
of modular decomposition and the one of cographs, which are graphs whose modular
decomposition only contains two prime graphs which can be naturally interpreted as
(binary) conjunction and disjunction. We then introduce the notion of graphical con-
nectives, allowing us to extend the correspondence between cographs and propositional
formulas to general graphs, allowing us to represent graphs via formulas constructed
using graphical connectives.

2.1 Graphs and Modules

In this work are interested in using (labeled) graphs to represent patterns of interactions
by means of the binary relations (edges) between their components (vertices). We recall
the standard notion of identity on labeled graphs (i.e., isomorphism) and define the
rougher notion of similarity (isomorphism up-to vertex labels).

Definition 1. A L-labeled graph (or simply graph) G = (Vg,{g, f(i) is given by a
finite set of vertices Vi, a partial labeling function {;: Vs — L associating a label
£(v) from a given set of labels L to each vertex v € Vg (we may represent £ as a set of
equations of the form £(v) = €, and denote by @ the empty function), and a non-reflexive

symmetric edge relation £ C Vi X Vg whose elements, called edges, may be denoted
ww instead of (v,w). The empty graph (@, 2, D) is denoted @ and we define the edge

G
relation +~ = {(v, w)|v#wandvw ¢ g}

A similarity between two graphs G and G’ is a bijection f: Vg — Vg such that
xfg\y iﬂf(x)fcﬂf(y) for any x,y € V. A symmetry is a similarity of a graph with itself.
An isomorphism is a similarity f such that €(v) = €(f(v)) for any v € V. Two graphs
G and G’ are similar (denoted G ~ G’) if there is a similarity between G and G’. They
are isomorphic (denoted G = G’) if there is an isomorphism between G and G'. From
now on, we consider two isomorphic graphs to be the same graph.

Two vertices v and w in G are connected if there is a sequence v = ug, ..., u, = w

of vertices in G (called path) such that u;_; ,Qui foralli € {1,...,n}. A connected
component of G is a maximal set of connected vertices in G. A graph G is a clique

G
(resp. a stable set) iff ~ = @ (resp. L= D).

Note 1. When drawing a graph or an unlabeled graph we draw v—w whenever v—~w,
we draw no edge at all whenever v/~w. We may represent a vertex by using its label
instead of its name. For example, the single-vertex graph G = ({v}, {s, @) may be rep-
resented either by the vertex (name) v or by the vertex label {5(v) (in this case we may
write e if {;(v) is not defined).

Example 1. Consider the following graphs:
{ur, ug, uz, us} (1) = a,C(uz) = b, {(uz) = ¢, C(ug) = d}, {uruz, upuz, usuig})

F=(
G = ({v1,v2,v3, w4}, {€(v1) = b, £(v2) = a,£(v3) = ¢, €(vy) = d} , {viv2, V13, V3V4}) (1)
H = ({wi,wa, w3, w4}, {€(w1) = a,l(w2) = b, l(w3) = ¢, l(ws) = d}, {wiwz, wiws, wawg})



Sequent Systems on Undirected Graphs 219

Py (| a, b), &(c, d), @(e, f), (g2, ®(h, i)))
= or
Py (]a 3 b,c®d,e®f,g®(h®i)[)

Fig. 1. A graph and one of its modular and the corresponding formula-like representations.

Wehave F ~G ~ Hand G = F = a—b—c—d # b—a—c—d = H. .

Note 2. Whenever we say that two graphs are the same, we assume they share the same
set of vertices and labeling function, therefore implicitly assuming the isomorphism f
to be given. This allows us to verify whether two graphs are isomorphic (i.e., the same)
in polynomial time on the number of vertices.

We recall the notion of module [26,28,35,41,45,48], allowing us to represent a
graph using a tree-like syntax. A module is a subset of vertices of a graph having the
same edge-relation with any vertex outside the subset, generalizing what can usually be
observed in formulas, where, in the formula tree, each literal in a subformula has the
same least common ancestor with a given literal not belonging to the subformula itself.

Definition 2. Let G = (Vg, {g, Eg) be a graph and W C V. The graph induced by W

is the graph Gly = <W, CGlw, £ N(W x W)) where {glw(v) == €c(v) for allv e W.

A module of a graph G is a subset M of Vs such that x~z iff y—~z for any x,y € M,
7z € Vg \ M. A module M is trivial if M = @, M = Vg, or M = {x} for some x € V.
From now on, we identify a module M of a graph G with the induced subgraph G|y.

Remark 1. A connected component of a graph G is a module of G.
Note 3. We may optimize graph representations by bordering vertices of a same module
by a closed line. An edge connected to such a closed line denotes the existence of an

edge to each vertex inside it (see Fig. 1). By means of example, consider the following
graph and its more compact modular representation.

X> - i
g d @)

The notion of module is related to a notion of context, which can be intuitively
formulated as a graph with a “hole”.

Definition 3. A context C[O] is a (non-empty) graph containing a single occurrence of
a special vertex O (with €(0) undefined). It is trivial if C[O] = 0. If C[O] is a context
and G a graph, we define C[G] as the graph obtained by replacing O by G. Formally,

(Ve \ (O) w Vg,

ClG) = |teVic,
Clol Clol
{vw |v,w € Ve \ (O}, v — w} U {vw |ve Voo \{OLwe Vg, v— El}
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Remark 2. The notion of context and the one of module are interdefinable. In fact, a set
of vertices M is a module of a graph G iff there is a context C[O] such that G = C[M].

Note that M is a module of a graph G iff there is a context C[O] such that G = C[M].
We generalize this idea of replacing a vertex of a graph with a module by defining the
operations of composition-via a graph, where all vertices of a graph are replaced in a
“modular way” by modules.

Definition 4. Let G be a graph with Vg = {v{,...,v,} and let Hy, ..., H, be graphs.
We define the composition of H,, .. ., H, via G as the graph G(H,, . . ., H,)) obtained by
replacing each vertex v; of G with a module H; for all i € {1,...,n}. Formally,

n

@VH,, Og”"’ [U ﬁ]u{(&y)xe Viay € Vi vi 2y} ) 3)
i=1 i=1

i=1

G(Hi.....H,) =

The subgraphs Hy, ..., H, are called factors of G(H\, ..., H,)) and, by definition, are
(possibly not maximal) modules of G(Hy, . .., H,)).

Remark 3. The operation of composition-via G forgets the information carried by the
labeling function {¢. Moreover, if o is a similitude between two graphs G and G’, then
G(H\,...,Hy) = G (Hytys - - - » Homy)-

In order to establish a connection between graphs and formulas, from now on we
only consider graphs whose set of labels belong to the set £ = {a,at | a € A} where A
is a fixed set of propositional variables. We then define the dual of a graph.

Definition 5. Let G = (Vg, {g, Eg) be a graph. We define the dual graph of G as the
G
graph G+ = <Vg, A, €GL> with £ (v) = (Lc(V)* (assuming a** = a for all a € A).

2.2 Classical Propositional Formulas as Cographs

The set of classical (propositional) formulas is generated from a set of propositional
variable A using the negation (-)*, the disjunction v and the conjunction A using the
following grammar:

oy=aloViy | oAy | ot with a € A. 4)

We define a map from literals to single-vertex graphs, which extends to formulas via
the composition-via the unlabeled two-vertices stable set and two-vertices clique.

Definition 6. Ler ¢ be a classical formula, and let S, = ({vi,n}, @,@) and K, =
{1, va}, @, {v1va}). We define the graph [[¢]) as follows:

lal=a [¢*]=lel" [¢vul=S:(l¢l.11) [envl=Ke(lell1])

where we denote by a the single-vertex graph, whose vertex is labeled by a. A cograph
is a graph G such that there is a classical formula ¢ such that G = [¢]).
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Example 2. Let ¢ and y classical formulas containing occurrences of atoms {ay, ..., a,}
and {by,...by,} respectively. Then the graph [[¢ A ]| can be represented as follows:
1
1 1

¢ Ayl = = ([¢* vyt)*

Note that an equivalent definition of cographs can be given using only the graph S,
(or K,) and duality.

We can easily observe that the map [[-]] well-behaves with respect to the equivalence
over formulas generated by the associativity and commutativity of connectives and the
de Morgan laws below.

. pVY =y Ve PVU V=@V VY
Equivalence laws {¢/\l!/El!f/\¢ SAWAY) = (BAU) Ay )
De-Morgan laws {((lwl)L =¢ (@AY =gt VYt

Proposition 1. Let ¢ and  be classical formulas. Then ¢ =  iff [[¢]] = [v].

We finally recall an alternative definition of cographs as graphs containing no
induced subgraph of a specific shape, and we recall the theorem establishing the relation
between

Definition 7. A graph G is P4-free if there it contains no four vertices vy, vy, v3, vy such

that the induced subgraph G\, v, v,.v,) IS Similar to the graph a—b—c—d

Theorem 1 ([28]). Let G be a graph. Then G is a cograph iff G is P4-free.

2.3 Modular Decomposition of Graphs

We recall the notion of prime graph, allowing us to provide canonical representatives
of graphs via modular decomposition. (see e.g., [26,28,35,41,45,48]).

Definition 8. A graph G is prime if |Vg| > 1 and all its modules are trivial.
We recall the following standard result from the literature.

Theorem 2 ([41]). Let G be a graph with at least two vertices. Then there are non-
empty modules My, ..., M, of G and a prime graph P such that G = P(M,, ..., M,,).

This result allows us to describe graphs using its modular decomposition, that is,
using single-vertex graphs and operations of composition-via prime graphs only.

Definition 9. Let G be a non-empty graph. A modular decomposition of G is a way to
write G using single-vertex graphs and the operation of composition-via prime graphs:

— if G is a graph with a single vertex x labeled by a, then G = a;
— if Hy,..., H, are maximal modules of G such that V¢ = \{Ji_, Vu, then there is a
unique prime graph P such that G = P(Hy, ..., H,).
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Ambiguity arises in modular decomposition due to the presence of cliques or stable
sets with more than three vertices, graph symmetries, and the presence of symmetric
but non-isomorphic graphs. The first two ambiguities are akin to the one observed in
propositional logic, where conjunction and disjunction are considered associative and
commutative. These are addressed similarly in the framework we discuss in this paper.
However, to reduce the latter source of ambiguity, we introduce the notion of basis of
graphical connectives.

Definition 10. A graphical connective C = (V, /Q) (with arity n = |V¢|) is given by
a finite list of vertices Vo = (vi,...,v,) and a non-reflexive symmetric edge relation
A over the set of vertices occurring in Vo. We denote by G¢ the graph corresponding
to C, that is, the graph G¢ = ({v | vin V¢}, @, fQ). The composition-via a graphical
connective is defined as the composition-via the graph G¢. A graphical connective is
prime if G¢ is a prime graph. A set P of prime graphical connectives is a basis if for
each prime graph P there is a unique connective C € P such that P ~ G¢.

Given an n-ary connective C, we define the group® of symmetries of C (S(C)) and
the set of dualizing symmetries of C (S+(C)) as the following sets of permutations over
the set {1,...,n}:

S(C) Z={ o | Cqu, . ,H,,D = Cqu'(l)’ . ,Ho—(n)[)}
SHO)={ o | (C(Hh.... . Hy))* = C(H H-

a(l)’ > Fon)

D} (for any Hy, ..., H,). (6)

We introduce the following graphical connectives:

R(vi,v2) = (w1, v2), @) = &1, v2) = (w1, va), {viva}) =
Palvis. .o va) =i v vivi [ €{L,..n = 1)) =

V1 —V2TV3—V4

' (7)

Bull(vi,...,vs):=(vi,...,vs), {(Viva, vav3, v3v4, Vsv2, Vsv3)})=

We can reformulate the standard result on modular decomposition as follows.

Theorem 3. Let G be a non-empty graph and P a basis. Then there is a unique way (up
to symmetries of graphical connectives and associativity of 8 and ®) to write G using
single-vertex graphs and the graphical connectives in P.

Corollary 1. Two graphs are isomorphic iff they admit a same modular decomposition.

2.4 Graphs as Formulas

In order to represent graphs as formulas, we define new connectives beyond conjunc-
tion and disjunction to represent graphical connectives in a basis . From now on, we
assume to be fixed a basis P containing the graphical connectives in Eq. (7).

2 It can be easily shown that &, contains the identity permutation (denoted id) and is a subgroup
of the group of permutations over the set {1,...,n}.
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Definition 11. The set of formulas is generated by the set of propositional atoms ‘A, a
unit o, and a basis of graphical connective P using the following syntax:

1y-eny =0 lala | kp(p1s... P witha € Aand P € P (8)

We simply denote * (resp. ®) the binary connective k- (resp. kg) and we write ¢ '8
instead of k5 (P, V) (resp. d @y instead of ke (¢, ). The arity of the connective kp is
the arity np of P. A literal is a formula of the form a or a* for an atom a € A. The set of
literals is denoted L. A formula is unit-free if it contains no occurrences of o and vacu-
ous if it contains no atoms. A formula is pure if non-vacuous and such that its vacuous
subformulas are o. A MLL-formula is a formula containing only occurrences of con-
nectives ’g and ®. A context formula (or simply context) [[0] is a formula containing
an hole O taking the place of an atom. Given a context {[O), the formula {[¢] is defined
by simply replacing the atom O with the formula ¢. For example, if {[0] = Y ’2(0Q ),
then {[¢] = Y 9( @ ).
For each ¢ formula (or context), the graph [|p]| is defined as follows:

[ol=0 [el=0 [al=a [a*]=a* [kp(pr,....0u)] = P([g1].--.[&:1]) (9

Note 4. We may consider a formula ¢ over the set of occurrences of literals {xi, ..., x,}
as a synthetic connective ¢ with arity n. That is, we may denote by ¢(y, ..., ,) the
formula obtained by replacing each literal x; (withi € {1,...,n}) with a formula ;. The
set of symmetries of ¢ (denoted S(¢)) is the set of permutations o over {1,...,n} such

that [¢(x, . ... x:)] = [o(xe)s - - - » Xomw) -

Definition 12. The equivalence relation = over formulas is generated by the following:

kp(P1s s bupl) = Kp(Dorr)s - - - s Pornm)

Equivalence laws PRWRY) = (¢p®Y)®)
PRW B x) = (BFY) B )
ot = o ¢t =

De-Morgan laws { only if S*(P)= @ (kp(p1, ... ¢n,))" = ke (B2 1) > Do)
only if S+ PY £ @1 (kp(d1.- .. du )" = kp(d)s - 82,0

for each P € P (with arity np = |Vp|), and for each o € S(P) and p € S*+(P).
The (linear) negation over formulas is defined by letting

ot =o and gt =¢ and (KPG¢17"'?¢HPD)l = KQ(]¢$(1)7 e 7¢$(n,,)|)

where Q is the (unique) prime connective in P such that we have [[kp(ai,...,a,)] =
Q(]a;(l), e, a;(n)l)for a permutation o over the set {1,...,n}. 3
The linear implication ¢ —  is defined as ¢* "2, while the logical equivalence

¢ oo Y is defined as (¢ — Y)W — §).

3 Note that the permutation o~ may be not unique. If we consider formulas up-to the equivalence
relation =, this is irrelevant. Otherwise, in the definition of the linear negation we should also
provide a specific permutation o p for each prime connective P € P.
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Remark 4. As explained in [5] (Sect.9), the graphical connectives we discuss in this
paper are multiplicative connectives (in the sense of [6,22,32,47]) but they are not the
same as the connectives-as-partitions discussed in these works. In fact, there is a unique
4-ary graphical connective P4, which has the symmetry group {id, (1, 4)(2, 3)}, while, as
shown in [6,47], there is a unique pair of dual non-decomposable (i.e., which cannot be
described using smaller connectives) 4-ary multiplicative connectives-as-partitions Gy
and Gy, and S(P,) ¢ S(Gy) = S(Gy).

The following result is a consequence of Theorem 2.

Proposition 2. Let ¢ and y be formulas. If ¢ = ¢, then [[¢]] = [y]. Moreover, if ¢ and
¥ are unit-free, then ¢ =y iff [¢] = [v]

For an example of why the equivalence result does not hold in the presence of units,
consider the (non-equivalent) formulas o® o and o’ o.

3 Sequent Calculi over Graphs-as-Formulas

We assume the reader to be familiar with the definition of sequent calculus derivations
as trees of sequents (see, e.g., [61]) but we recall here some definitions.

Definition 13. A sequent is a set of occurrences of formulas. A sequent system S is a
set of sequent rules as the ones in Fig. 2. A derivation (resp. open derivation) over S
is a tree of sequents such that each node (resp. each node except some leaves, called
open premises) is the conclusion of a rule with premises its children. In a sequent rule
r, we say that a formula is active (resp. principal) if it occurs in one of its premises
(resp. in its conclusion) but not in its conclusion (resp. but in none of its premises) A
Fl
proof of a sequent I is a derivation with root I' denoted ”}[S. We denote by ' ||'s an open
r
derivation with conclusion I' and a single open premise I''. A rule is admissible in S if
there is a derivation of the conclusion of the rule whenever all premises of the rule are
derivable. A rule is derivable in S, if there is a derivation in S from the premises to the
conclusion of the rule.

Definition 14. We define the following sequent systems using the rules axiom (ax), par
(’9), tensor (®), weakening (w), contraction (c), mix (mix), dual connectives (d-k)
unitor (U, ), and weak-distributivity (wds) in Fig. 2.

Multiplicative Graphical Logic : MGL ={ax,®,®,d-P| P € P}
Multiplicative Graphical Logic with mix: MGL® = MGL U {mix, wdg,u,}  (10)
Classical Graphical Logic KGL = MGL U {w,c}

Remark 5. Rules axiom (ax), par (’9), tensor (®), cut (cut), and mix (mix) are the
standard as in multiplicative linear logic with mix. Note that ax is restricted to atomic
formulas. The rule d-« handles a pair of dual connectives at the same time, as it may
be done by rules in focused proof systems (see, e.g. [9,50,51]) or rules for modalities
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FLo0 FL¢ iy 4a FL
ax aceA % ® w
Fa,at FLLo By FLoQy, A F1L
. F 11, by Yety F Ly, oy Weiny o€ S(k) C" Ie,¢
'_F]?""FII’KQ¢]7""¢)‘1D7KLQW15-~-$)1D T e S0 '_F7¢

S AT . FL g FAK(D1s .o Doty 00 Prats - -, B0
Wi
FIL, T N LA k(s .., b))

. F EX(]¢0(1) """" ¢o'(n)|) o€ C(y)
K|—]",KQ¢1,..,,¢k,o,¢k+l,...,¢nD [«(b1. - s 0n fresrs - Bl = I (borys - - - oD # @

mix

Fig. 2. Sequent rules.

in modal logic and linear logic (see, e.g., [12,14,31,44]). Intuitively, while in standard
two-sided sequent calculi the right-conjunction rule (Ag below) internalizes a meta-
conjunction between the premises of the rule, that is,

Iy, ¢ -y, 41 “and” (1, ¢ F o, 4r

[, 12, 01,62 F i A, A1, 4y (11)

the rule d-« internalizes a meta-k-connective between the premises by introducing the
same connective on both sides of the sequent, as shown below in the case k = Py.

AR

Py q[rl,¢1 F lh,l@, [1"2#/’2 F 902,112], [1"3,¢3 F lﬂs,l@, [1"4»¢4 F Wml@b
T, Do, T3, T ke (D10 92, 63, 0al) v kp, (W1, W2, 3, a)), A1, 42, 43, 44 (12)

Note that in the rule Ag in Eq. (11) only a single occurrence of the connective A occurs
in the conclusion, on the right-hand side of . This because the absence of the conjunc-
tion A on the left-hand side is irrelevant since a two-sided sequent I + 4 is interpreted
as the formula (/\¢er ¢l) \Y (VwEA w).

The names of the rules unitor (u,) and weak-distributivity (Wdg) are inspired by the
literature of monoidal categories [46] and weakly distributive categories [19,20,59].
The rule u, internalizes the fact that the unit o is the neutral element for all connectives
(its side condition prevents the creation of non-pure formulas). Under the assumption
of the existence of a o which is the unit of both ® and ’®, the rule wdg generalizes the
weak-distributive law of the ® over the @, that is,

PR x) — (#®Y) T x 13)

to the weak-distributive law of ® over any connective (see below on the top)

X®K(]¢17'°"¢k7¢7¢k+la-"9¢11D i K(]¢17"'7¢k’w®/\/7¢k+l’-"’¢nl) (14)
K(P1s s B8 X Bt s Pu) — K(1s o i ¥ Prsts e B B X

Note that an additional law is required to formalize the weak-distributive law of all
connectives over ¥ (see the bottom of Eq. (14)). This law corresponds to the rule wds
in Fig. 3.
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tf'r17¢ F 1o, ¢t ; FL k(b )

AX ————— ¢ pure cu wdzp ¢ #o
F o, ot AW L FLk(o, Y, .t
"E A9 "F, o (1)s Yo "rm o(n)s Y1(n 3
oo ¢ ¥ L Poys Yrry . Botny> Yrw {ae:wj
"I_;A,Z[Qb] '_r'?’"?FIHX(]¢17~"7¢H[)7X (]d/l’v”l/’nD TEGKT)

Fig. 3. Admissible rules in MGL"°.

3.1 Properties of the Sequent Systems

We start by observing that these systems are initial coherent [10,50], that is, we can
derive the implication ¢ — ¢ for any pure formula ¢ only using atomic axioms. To
prove this result we observe that the generalized version of d-« (that is, the rule d-y) is
derivable by induction on the structure of y using the rule d-«

Lemma 1. Let y be a pure formula. Then rule d-y is derivable.

Corollary 2. The rule AX is derivable in MGL and in MGL®.

Theorem 4. MGL, MGL®, and KGL are initial coherent w.r.t. pure formulas.
The admissibility of cut is proven via cut-elimination.

Theorem 5. Let X € {MGL, MGL°, KGL}. The rule cut is admissible in X.

Proof. We define the size of a formula as the sum of the number of o, connectives and
twice the number of literals in it. The size of a derivation is the sum of the sizes of
the active formulas in all cut-rules. In Fig.4 we only provide the less standard cut-
elimination steps: the ones for ax, w, ¢, and ®-vs-’9 are the standard ones, while
d-x-vs-d-«x and u,-vs-u, (where both u, rules introduce a o in the same “position”)
are as expected, that is, by cutting each of the corresponding premises of the rules. The
result for MGL and MGL" follows by the fact that each cut-elimination step applied to
any cut-rule reduces the size of a derivation, while for KGL we have to consider also
weak-normalization result via a cut-elimination strategy prioritizing the elimination of
top-most cut-rules.

Note that to ensure that both active formulas of a cut-rule are principal with respect
to the rule immediately above it, we also need to consider among the standard com-
mutative cut-elimination steps (independent rule permutations) and the special step in
Fig. 5. The treatment of these steps, as well as the definition of a size taking into account
them, is not covered in detail here because it is standard in the literature.

Corollary 3. Let X € {(MGL, MGL®, KGL}. If x ¢ —o i and rx ¥ —o x, then x ¢ —o x.

The admissibility of the cut-rule implies analyticity of MGL and KGL via the stan-
dard sub-formula property, that is, all formulas occurring in a premise of a rule are
subformulas of the ones in the conclusion. However, as already observed in [3-5], the
same result does not hold for MGL® because the rule u, and more-than-binary con-
nectives introduce the possibility of having sub-connectives, that is, connectives with
smaller arity behaving as if certain entries of the connective are fixed to be units.
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FOLgr v Dokp(o, ¢, ..., ¢ AL F Ay kpi(o, by, ... b))
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Fig. 4. The cut-elimination steps for the structural rules.
. FLx(ers s Dits Pists s ity Pjrtse s &) . FLx(es s Gits Pists - Di1sPjts---s )|
N T N N
Ug Uk
F Tkp(dr, ..., G150, Pir1s e D150, Pji1s s @n) FLokp(drs. .., Di-1,0, Pivts ooy G150, Pjitss )|
Fig. 5. Special commutative cut-elimination step for u,.
Definition 15. Let P and Q be prime graphs and let iy < ... < i, be integers in

{1,...,|PI}. If P(o,...,0,v;,0,...,0,V;,0,...,0) ~ Q(vi,...,v,) for (any) single-
vertex graphs vi, ..., v, then we say that the connective kg is a sub-connective of kp
= kg. A quasi-subformula of a formula ¢ = kp(Y1, ..., ¢¥n)

ijE{i],...,ik}.

Corollary 4 (Conservativity). MGL is a conservative extension of MLL = {ax,’®, ®}.
MGL® is a conservative extension of MLL® = {ax,’®,®, mix}. KGL is a conservative
extension of LK = MLL U {w, c}.

Proof. The results for MGL and KGL follow from the fact that these systems satisfy the
standard sub-formula property for cut-free derivations, therefore no connective other
than ’® and ® can be introduced during proof search. The result for MGL® follows from
the fact that it satisfies the quasi-subformula property (i.e., every formula in the premise
of a rule is a quasi-subformula a formula in its conclusion), and that *® and ® have no
sub-connectives.

For both MGL and MGL® we have the following splitting result, ensuring that it
is always possible, during proof search, to apply a rule removing a connective after
having applied certain rules in the context. Note that, in the literature of linear logic, the
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Fig. 6. Steps to eliminate wdsy rules.

splitting lemma is usually formulated as a special case of the next lemma, ensuring that
an occurrence of the connective ® can be removed (by applying a ®-rule), but without
requiring the possibility of the need of applying rules to the context.

Lemma 2 (Splitting). Let I, k(1 . . ., d,) be a sequent and let X € {MGL, MGL"}. If
tx I,k (@1, - . ., &), then there is a derivation of the following shape

mﬂ ﬂ]” nnn
T x(B1s - Gt Brrts D) L A, ¢y o kA,
Uy .
F r,’Kq¢l’-~"¢k—l’oa¢k+l»¢nl) or F r’,K(]¢1,...,¢nD withr € {?,@, d—K} .
ol mo |
l_F’K(]¢ls~--7¢k—1’ov¢k+1,¢n[) FF,K(]QS],...,(]S,,D

Proof. By case analysis of the last rule occurring in a proof & of I, k (¢1, . . . , §,).
We conclude this section by proving the admissibility of rules wd,, and deep.

Lemma 3. The rule wdsp is admissible in MGL®.
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Fig. 7. Deep inference structural rules, the atomic contraction and the generalized medial rule.

Proof. In Fig. 6 we provide a procedure to remove (top-down) all occurrences of wdss.
Similar to cut-elimination, this procedure requires the use the commutative steps to
ensure that the active formula of a wd,, we aim at removing is principal with respect to
the rule immediately above it.

Lemma 4. The rule deep is admissible in MGL®.

Proof. By induction on the structure of [0]. The case with {[O] = O is an application
of wdg, otherwise we conclude using Lemma 2.

3.2 A Decomposition Result for KGL

We can extend the decomposition result for deep inference systems in the context of
classical logic [13,15] to KGL using the deep inference (structural) rules from Fig. 7,
including the generalized medial rule proposed in [17].

Theorem 6 (Decomposition). Let I" be a sequent. If +xgL I, then:

1. there is a sequent I such that rmaL I Fwycpy I
2. there are sequent I'', A', and 4 such that FyeL IV imy 4 Fiacyy AFwyy I

Proof. The proof of Item 1 is immediate by replacing structural rules with deep ones,
and applying rule permutations. Item 2 is a consequence of the previous point after
showing (by induction) that each instance of c|-rule can be replaced by a derivation
containing m and ac| only, and conclude by applying rule permutations to push ac-
rules below m-rules, and w to the bottom of a derivation. For a reference, see [7].

4 Graph Isomorphism as Logical Equivalence

In this section we show that two pure formulas ¢ and ¢ are interpreted by the same
graph (i.e., [#]] = [[w]]) iff they are logically equivalent (i.e., ¢ o—o ).

Theorem 7. Let ¢ and ¥ be formulas.

1. If ¢ and ¥ are unit-free, then [[¢] = [¥] iff FmeL ¢ o— ¥.
2. If ¢ and yr are pure, then 9] = [y] iff *maLe ¢ o— ¥

Proof. After Proposition 2, to prove Item 1 it suffices to show that each De Morgan law
¢ = ¢ in Definition 12 (with ¢ and ¥ unit-free) corresponds to a logical equivalence
¢ o—  which is derivable in MGL. We then conclude by Corollary 3. To prove Item
2, we first show that we can find unit-free formulas ¢’ and ¢’ such that ¢ oo ¢’ and
Y o— Y/ are derivable in MGL® (using AX, d-«, and u, only), and we then conclude
using the previous point.
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Fig. 8. Inference rules in GS, with P any prime graph and M; # @ # M foralli € {1,...,n}.

5 Soundness and Completeness of MGL® with Respect to GS

In this section, we show that the graphical logic GS from [4,5], defined by a deep
inference system operating on graphs, is the set of graphs corresponding to formulas
that are provable in MGL®. Note that we here consider the system GS = {ail, S», Sg, pl}
defined by the rules in Fig. 8, which have a slightly different formulation with respect
to [4,5]: we consider p-rules with a stronger side condition which is balanced by the
presence of S in the system.*

To prove the main result of this section, we use the admissibility of wd» and deep
(Lemmas 3 and 4) to prove that if H and G are graphs such that there is an application
of arule si, Sg, or p| (even deep in a context) with premise H and conclusion G, then
there are formulas ¢ and y, with [¢]] = H and [[y]] = G, such that y — ¢.

H
Lemma 5. Let 1 € {Si, Sg, pl}. If r—, then there are formulas ¢ and ¥ with [¢] = G
and [[¥]) = H such that rygLe ¥, ¢.

Proof. If C[O] = O, then the following implications trivially hold in MGL":

K1, ooy i1 17DV, i s - ) =0 i K (M1 oy Jin1, OV, fik s - - - i)
i @K1, vy i1, OOV, ity o v ) =0 K1, - ooy Min1s i @V fin1s -« - - Hn)
172V ® @y 78 Vi) =0 Kkpr (U1 .o s i) 8 kp (V1. .., Vi)

If C[O] = «p(C’[O], My,...,M,) # O, then we assume w.l.0.g., there is a context
formula £[O] = «p(Z’'[O], 41, . . ., 4a) such that [£[O]]] = C[O] and [¢’[D]]] = C’'[O] .
We conclude since, by inductive hypothesis on C[O], there is a derivation as follows:

”'f‘ AX AX
FCWDE ) e e F o,

e (@D pts o)) ke (10T 1 i)

We are now able to prove the main result of this section, that is, establishing a
correspondence between graphs provable in GS and graphs which are the image via [[-]|
of formulas provable in MGL®.

Theorem 8. Let ¢ a pure formula and let G = [[¢]] # @. Then +gs G iff FmaLe ¢-

4 The proof that the formulation we consider in this paper, where all factors M; and N; are
required to be non-empty is equivalent to the ones in the literature, where is either asked that
only all factors M; (as in [5]) or M;’® N; (as in [4]) are non-empty, is provided in [2].
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Proof. 1f there is a derivation 7 of I" in MGL®, then we define a derivation [[r]] of [I'] in
GS by induction by induction on the last rule r in . The translation translates a ax into
an instance of ail, a ’®, mix and u, into no rule (using properties of the open deduction
formalism, and the fact premise and conclusion sequents correspond to the same graph),
® and d-« into an instance of p|, and wdg into an instance of p|.

Conversely, if D is a proof of G # @ in GS, then we define a proof 7y of ¢ by
induction on the number n of rules in 9, where n # 0 because we are assuming G # @.

ax
—Ifn=1,thenG=a®atandnp = Fa,a* .
9

Fawat ol
— If n > 1, then the derivation D is of the form D = H  and by inductive hypoth-
r
G

esis we have a proof 7o of a formula ¢ such that [y]] = H. If r € {s5, Sg, pl}, then
by Lemma 5 we have a derivation with cut as the one below on the left of a formula
¢ such that [¢]] = G. Thus we conclude by Theorem 5.

ax
Fa,at
TH TLLemma 5 rheorem5 TaLs o 7y J[IH
ooy e S Fagat 1/
cut—M8M8 o} deep—— T
¢ F¢la®at]
= T3

Otherwise r = ai|, then it must have been applied deep inside a context C[O] =
[£[T]] # O such that C[@] = H = [[y/]. Therefore ¢ = {[a’® a*]. We conclude by
applying Lemma 4 to the derivation above on the right.

Remark 6. In a different line of work [17] the authors define the boolean graphical
logic (or GBL), as a graphical logic conservatively extending LK defined by maximal-
clique-preserving graph morphisms. As a consequence of Corollary 4 and theorem 8,
we conclude that KGL and GBL are not the same since the following counterexample
a/ b—CL\ bt
from [5] (for GS) is in GBL but not in KGL =~ ~c—a*—

6 Conclusion and Future Works

In this paper we have provided foundations for the design of proof systems operating on
graphs by defining graphical connectives, a class of logical operators generalizing the
classical conjunction and disjunction, and whose semantics is solely defined by their
interpretation as prime graphs. We introduced cut-free sequent calculi operating on for-
mulas containing graphical connectives, where graph isomorphism can be captured by
logical equivalence. We also discussed the relationship of these systems with graphical
logics studied in the literature [4,5,17].

We illustrate below a number of future research directions originating from this
work different from the suggestions of the respective authors of using the graphical
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logic GS to extend the works in [11,18,49], where the authors suggest the possibility
of extending their current results by generalizing their methods based on “classical”
formulas to graphs.

Categorical Semantics. Unit-free star-autonomous and IsoMix categories [19,20] pro-
vide categorical models of MLL and MLL® respectively. We conjecture that categorical
models for MGL and MGL® can be defined by enriching such structures with addi-
tional n-ary monoidal products and natural transformations, reflecting the symmetries
observed in the symmetry groups of prime graphs.

Digraphs, Games and Event Structures. In this work we have extended the corre-
spondence between classical propositional and cographs from [21] to the case of gen-
eral (undirected) graphs using graphical connectives, and the same idea can be found
in [3] where mixed graphs generalize relation webs used to encode BV-formulas [33].
Similarly, we foresee the definition of proof systems operating on directed graphs as
conservative extensions of intuitionistic propositional logic beyond arenas — directed
graphs used in Hyland-Ong game semantics [40] to encode propositional intuitionistic
formulas, which are characterized by the absence of induced subgraphs of a specific
shape. This would provide new insights on the proof theory connected to concurrent
games [1,58,64], and could be used to define automated tools operating on event struc-
tures [55].

@) [ | |
bLb bt alr:z—b ct—at—d*—bt g—b—

~ \\//

Oz Og OpL 0
roS ': 2

b*®at a®b r= le ps e,

Fig. 9. On the left: the same proof net in the original Girard’s syntax and Retoré’s one. On the
right: an RB-proof net of «p, (a, b, ¢, d)) — «p, (a, b, ¢, d) containing the chorded @-cycle a-b-b* -
dt-d-c-ct-a*.

Proof Nets and Automated Proof Search. We plan to design proof nets [22,29,30]
for MGL and MGL®, as well as combinatorial proofs [38,39] for KGL. For this pur-
pose, we envisage extending Retoré’s handsome proof net syntax, where proof nets
are represented by two-colored graphs (see the left of Fig.9). In Retoré’s syntax, the
graph induced by the vertices corresponding to the inputs of a *¥-gate (or a ®-gate) is
similar to the corresponding prime graph & (resp. ®). Thus, gates for graphical con-
nectives could be easily defined by extending this correspondence (see the proof net
on the right of Fig.9). The standard correctness condition defined via acyclicity fails
for these proof nets, as shown in the right-hand side of Fig.9: the (correct) proof-net
of the sequent Py4(a, b, c,d) — P4(a, b, c,d) contains a cycle. We foresee the possibil-
ity of using results on the primeval decomposition of graphs [37,42] to isolate those
cycles witnessing unsoundness, as proposed in [52]. This may provide a methodology
to develop machine-learning guided automated theorem provers using the methods in
[43].
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Abstract. We investigate the proof theory of regular expressions with
fixed points, construed as a notation for (w-)context-free grammars.
Starting with a hypersequential system for regular expressions due to Das
and Pous [15], we define its extension by least fixed points and prove the
soundness and completeness of its non-wellfounded proofs for the stan-
dard language model. From here we apply proof-theoretic techniques to
recover an infinitary axiomatisation of the resulting equational theory,
complete for inclusions of context-free languages. Finally, we extend our
syntax by greatest fixed points, now computing w-context-free languages.
We show the soundness and completeness of the corresponding system
using a mixture of proof-theoretic and game-theoretic techniques.

Keywords: Proof theory - Context-free languages -
Omega-languages - Games - Chomsky algebra + Non-wellfounded proofs

1 Introduction

The characterisation of context-free languages (CFLs) as the least solutions of
algebraic inequalities, sometimes known as the ALGOL-like theorem, is a folk-
lore result attributed to several luminaries of formal language theory including
Ginsburg and Rice [21], Schutzenberger [52], and Gruska [23]. This induces a
syntax for CFLs by adding least fixed point operators to regular expressions, as
first noted by Salomaa [51]. Leifs [38] called these constructs “pu-expressions” and
defined an algebraic theory over them by appropriately extending Kleene alge-
bras, which work over regular expressions. Notable recent developments include a
generalisation of Antimirov’s partial derivatives to p-expressions [54] and criteria
for identifying p-expressions that can be parsed unambiguously [34].

Establishing axiomatisations and proof systems for classes of formal lan-
guages has been a difficult challenge. Many theories of regular expressions,
such as Kleene algebras (KA) were proposed in the late 20" century (see, e.g.,
[6,28,29]). The completeness of KA for the (equational) theory of regular lan-
guages, due to Kozen [29] and Krob [35] independently, is a celebrated result that
has led to several extensions and refinements, e.g. [7,31-33]. More recently the
proof theory of KA has been studied via infinitary systems. On one hand, [49]
proposed an w-branching sequent calculus and on the other hand [12,15,25] have
studied cyclic ‘hypersequential’ calculi.
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Fig.1. Summary of our main contributions. Each arrow — denotes an inclusion of
equational theories, over an appropriate language of p-expressions. The gray arrow,
Theorem 11, is also a consequence of the remaining black ones. (Color figure online)

Inclusion of CFLs is IT?-complete, so any recursive (hence also cyclic) axioma-
tisation must necessarily be incomplete. Nonetheless various theories of u-
expressions have been extensively studied, in particular Chomsky algebras and
u-semirings [17,18,39,40], giving rise to a rich algebraic theory. Indeed Grath-
wohl, Henglein, and Kozen [22] have given a complete (but infinitary) axioma-
tisation of the equational theory of p-expressions, by extending these algebraic
theories with a continuity principle for least fixed points.

Contributions. In this paper, we propose a non-wellfounded system pHKA™
for p-expressions. It can be seen as an extension of the cyclic system of [15] for
regular expressions. Our first main contribution is the adequacy of this system
for CFLs: uHKA®™ proves e = f just if the CFLs computed by e and f, L(e)
and L(f) respectively, are the same. We use this result to obtain an alternative
proof of completeness of the infinitary axiomatisation uCA of [22]|, comprising
our second main result. Our method is inspired by previous techniques in non-
wellfounded proof theory, namely [11,53], employing ‘projections’ to translate
non-wellfounded proofs to wellfounded ones. Our result is actually somewhat
stronger than that of [22], since our wellfounded proofs are furthermore cut-free.

Finally we develop an extension ur¢HKA of (leftmost) pHKA by adding great-
est fixed points, v, for which £(-) extends to a model of w-context-free languages.
Our third main contribution is the soundness and completeness of ur¢/HKA for
L(+). Compared to puHKA, the difficulty for metalogical reasoning here is to con-
trol interleavings of p and v, both for soundness argument and in controlling
proof search for completeness. To this end, we employ game theoretic techniques
to characterise word membership and control proof search.

All our main results are summarised in Fig. 1. Due to space constraints many
proofs and auxiliary material are omitted, but may be found in a full version [9].
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2 A Syntax for Context-Free Grammars

Throughout this work we make use of a finite set A (the alphabet) of letters,
written a,b,..., and a countable set V of variables, written X,Y,.... When
speaking about context-free grammars (CFGs), we always assume non-terminals
are from V and the terminals are from A.

We define (u-)expressions, written e, f, etc., by:

efoo.. u=0|1|X|ale+fle-f|uXe (1)

We usually simply write ef instead of e- f. u is considered a variable binder, with

the free variables FV(e) of an expression e defined as expected. We sometimes

refer to expressions as formulas, and write C for the subformula relation.
p-expressions compute languages of finite words in the expected way:

Definition 1 (Language Semantics). Let us temporarily expand the syntax
of expressions to include each language A C A* as a constant symbol. We inter-
pret each closed expression (of this expanded language) as a subset of A* as

)
— {a} - L(ef) ={vw:v e L(e),w e L(f)}
Ry - L(Xe(X)) = (A 2 L(e(4))]

Note that all the operators of our syntax correspond to monotone operations on
P(A*), with respect to C. Thus L(uXe(X)) is just the least fixed point of the
operation A — L(e(A)), by the Knaster-Tarski fixed point theorem.

The productive expressions, written p, g etc. are generated by:

0o < L{et )= Lle) UL(S
(a)

pg... == a | p+tq | p-e | ep | uXp (2)

We say that an expression is guarded if each variable occurrence occurs free in
a productive subexpression. Left-productive and left-guarded are defined in
the same way, only omitting the clause e - p in the grammar above. For conve-
nience of exposition we shall employ the following convention throughout:

Convention 2. Henceforth we assume all expressions are guarded.

Ezample 8. (Empty language). In the semantics above, note that the empty
language @ is computed by several expressions, not only 0 but also uXX and
1X (aX). Note that whle the former is unguarded the latter is (left-)guarded. In
this sense the inclusion of 0 is somewhat ‘syntactic sugar’, but it will facilitate
some of our later development.

Ezxample 4. (Kleene star and universal language). For any expression e we can
compute its Kleene star e* := uX(14+eX) or e* := uX(1+Xe). These definitions
are guarded just when e is productive. Now, note that we also have not included
a symbol T for the universal language A*. We can compute this by the expression
(3= A)*, which is guarded as Y A is productive.
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Non-logical it . -5 y — 5 o -5
rules: =] — 5, [4] “a,I" = aS “I'a— Sa
7= S e, [, 17— 8
Left logical ! ,0, 1" — S i , L, 1" — S B sef, I"— S
rules: e, [V — S 1 — S se(uXe(X)), I — S
A e+ f, 1" =S - JuXe(X), 1" — S
— S — 5,4, 4] — S, [A,e, [, 4]
Right logical TTSSA,04]  ToSALA] T SS[Aef, A
rules: — S, [A,e, A, [A, f, 4] — S5, [4,e(uXe(X)), A
T TS S At [, A T S S, A pXe(X), A

Fig. 2. Rules of the system pHKA.

It is well-known that u-expressions compute just the context-free (CF) lan-
guages [21,23,52]. In fact this holds even under the restriction to left-guarded
expressions, by simulating the Greibach normal form:

Theorem 5. (Adequacy, see, e.g., [17,18]). L is context-free (and e ¢ L)
<= L= L(e) for some e left-guarded (and left-productive, respectively).

Ezample 6. Consider the left-guarded expressions Dyck; := pX (1 + (X)X) and
{a™b"},, = uX (14 aXb). As suggested, Dyck; indeed computes the language of
well-bracketed words over alphabet {(,)}, whereas {a"b™},, computes the set of
words ab with |a| = |b]. We can also write (a*b*) := pX (1 + aX + Xb), which
is guarded but not left-guarded. However, if we define Kleene * as in Example
4, then we can write a* and b* as left-guarded expressions and then take their
product for an alternative representation of (a*b*). Note that the empty language
@ is computed by the left-guarded expression puX (aX), cf. Example 3.

3 A Non-wellfounded Proof System

In this section we extend a calculus HKA from [15] for regular expressions to all -
expressions, and prove soundness and completeness of its non-wellfounded proofs
for the language model £(-). We shall apply this result in the next section to
deduce completeness of an infinitary axiomatisation for £(-), before considering
the extension to greatest fixed points later.

A hypersequent has the form I" — S where I" (the LHS) is a list of expres-
sions (a cedent) and S (the RHS) is a set of such lists. We interpret lists by the
product of their elements, and sets by the sum of their elements. Thus we extend
our notation for language semantics by £(I") := L([[I") and L(S) := U L(I).

res

The system pHKA is given by the rules in Fig.2. Here we use commas to
delimit elements of a list or set and square brackets [,] to delimit lists in a set.
In the k rules, we write aS := {[a, '] : I' € S} and Sa := {[[,a] : I' € S}.
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For each inference step, as typeset in Fig.2, the principal formula is the
distinguished magenta formula occurrence in the lower sequent, while any dis-
tinguished magenta formula occurrences in upper sequents are auxiliary. (Other
colours may be safely ignored for now).

Our system differs from the original presentation of HKA in [15] as (a) we have
general fixed point rules, not just for the Kleene *; and (b) we have included both
left and right versions of the k rule, for symmetry. We extend the corresponding
notions of non-wellfounded proof appropriately:

Definition 7 (Non-wellfounded Proofs). A preproof (of tHKA) is gener-
ated coinductively from the rules of uHKA i.e. it is a possibly infinite tree of
sequents (of height < w) generated by the rules of ptHKA. A preproof is regu-
lar or cyclic if it has only finitely many distinct subproofs. An infinite branch
of a preproof is progressing if it has infinitely many u-l steps. A preproof is
progressing, or a co-proof, if all its infinite branches are progressing. We write
pHKA > ' — S if ' — S has a co-proof in uHKA, and sometimes write
uHKA® for the class of co-proofs of pHKA.

Note that our progress condition on preproofs is equivalent to simply checking
that every infinite branch has infinitely many left-logical or k steps, as p-I is the
only rule among these that does not decrease the size of the LHS. This is simpler
than usual conditions from non-wellfounded proof theory, as we do not have
any alternations between the least and greatest fixed points. Indeed we shall
require a more complex criterion later when dealing with w-languages. Note
that, as regular preproofs may be written naturally as finite graphs, checking
progressiveness for them is efficiently decidable (even in NL, see e.g. [8,15]).

The need for such a complex hypersequential line structure is justified in
[15] by the desideratum of regular completeness for the theory of regular expres-
sions: intuitionistic ‘Lambek-like’ systems, cf. e.g. [16,26,49] are incomplete (wrt
regular cut-free proofs). The complexity of the RHS of sequents in HKA is
justified by consideration of proof search for, say, a* — (aa)* + a(aa)* and
(a+b)* — a*(ba*)*, requiring reasoning under sums and products, respectively.

In our extended system, we gain more regular proofs of inclusions between
context-free languages. For instance:

Ezample 8. Recall the guarded expressions {a™b"},, and (a*b*) from Example 6.
We have the regular oo-proof R in Fig. 3 of {a"b"},, — [(a*b*)], where e marks
roots of identical subproofs. Note that indeed the only infinite branch, looping
on e, has infinitely many u-I steps.

Remark 9 (Impossibility of General Regular Completeness). At this juncture let
us make an important point: it is impossible to have any (sound) recursively
enumerable system, let alone regular cut-free proofs, complete for context-free
inclusions, since this problem is IT{-complete (see e.g. [27]). In this sense exam-
ples of regular proofs are somewhat coincidental.

It is not hard to see that each rule of uHKA is sound for language semantics:
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pelop

) T {anbn}n — (a*b*) °

"""}, b — [(a*b*), b]
-

{a"b"} b — [(a™b™)b]

-7, 4-T,wW-r
g ("0} b — [(a*b)]
init
=] “a,{a"b"} b — [a, (a*b)]
1-1,1-r l,e-r
1—[1] a{a”b" },b — [a(a™b")]

W-T,4--7

W-T, -7
1—=[14a(ad)+ (a™b")b] a{a"b"},b = 14+ a(a™d™) + (a™b")b]
T+ a{a"b"},b— 14 a(a™d) + (a™b")b]
°
{(I,”()”’},, N [((L*b*)]

+-1

-l p-r
Fig. 3. A regular co-proof R of {a"b"}, — [(a*b")].

Lemma 10 (Local Soundness). For each inference step,
rfo — 8y o Tpo1— Skt
r—=S
for some k < 2, we have: Vi < k L(I;) C L(S;) = L(I') C L(S).

Consequently wellfounded pHKA proofs are also sound for £(-), by induction on
their structure. For non-wellfounded proofs, we must employ a less constructive
argument, typical of non-wellfounded proof theory:

Theorem 11 (Soundness). pHKAF>*T'— S = L(I') C L(S).

3)

Proof (Sketch). For contradiction, we use (the contrapositive of) Lemma 10 to
construct an infinite ‘invalid’ branch B, along with an associated sequence of
words (w;);<, of non-increasing length separating the LHS from the RHS. Now,
either B has infinitely many k steps, meaning (|w;|);<. has no least element, or
there are only finitely many k steps, in which case |w;| is eventually dominated
by the number of productive expressions in the sequent, by guardedness.

By inspection of the rules of uHKA we have:
Lemma 12 (Invertibility). Letr be a logical step as in (3). L(I') C L(S) =
L(I;) C L(S;), for each i < k.
Theorem 13 (Completeness). L£(I') C L(S) = uHKAF>* T — S.
In fact, we can obtain a stronger result for left-guarded sequents, namely the

‘leftmost completeness’ as we will see later in Sect. 5. There leftmostness is nec-
essary for soundness, but here completeness is rather straightforward.

Proof (Sketch). We describe a bottom-up proof search strategy:

1. Apply left logical rules maximally, preserving validity by Lemma 12. Any
infinite branch is necessarily progressing.

2. This can only terminate at a sequent of the form aqy,...,a, — S with a €
L(S), whence we mimic a ‘leftmost’ parsing derivation for @ wrt S.
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4 Completeness of an Infinitary Cut-Free Axiomatisation

While our completeness result above was relatively simple to establish we can use

it, along with proof theoretic techniques, to deduce completeness of an infinitary

axiomatisation of the theory of p-expressions. In fact we obtain an alternative

proof of the result of [22], strengthening it to a ‘cut-free’ calculus pHKA,,.
Write pCA for the set of axioms consisting of:

- (0,1,4,-) forms an idempotent semiring (aka a dioid).
— (p-continuity) euX f(X)g = > ef"(0)g.

n<w

We are using the notation f(0) defined by f°(0) := 0 and f**1(0) := f(f™(0)).
We also write e < f for the natural order given by e+ f = f. Now define uHKA,,
to be the extension of pHKA by the ‘w-rule’:

{I,e"(0), " — Sthew
I'puXe(X), I"— S

By inspection of the rules we have soundness of uHKA,, for uCA:

Proposition 14. yHKA, T — S = puCAF[II < 3 [1A.
AeS
Here the soundness of the w-rule above is immediate from p-continuity in pCA.

Note, in particular, that 4CA already proves that uXe(X) is indeed a fixed point
of e(+), i.e. e(uXe(X)) = pXe(X) [22]. The main result of this section is:

Theorem 15. yHKA+F>* e — f = uHKA,Fe< f

Note that, immediately from Theorem 13 and Proposition 14, we obtain:
Corollary 16. L(e) C L(f) = pHKA, Fe< f = puCAkLe<f

To prove Theorem 15 we employ similar techniques to those used for an
extension of linear logic with least and greatest fixed points [11], only specialised
to the current setting.

Lemma 17 (Projection). For each oo-proof P of I pXe(X),I" — S there
are oco-proofs P(n) of I',e™(0), " — S, for each n < w.

The definition of P(n) is somewhat subtle, relying on a form of ‘signature’
common in fixed point logics, restricted to w. See [11, Definition 15, Proposition
18] for a formal definition and proof of the analogous result. We shall thus use
the notation P(n) etc. freely in the sequel.

From here it is simple to provide a translation from pHKA oo-proofs to
uHKA,, preproofs, as in Definition 22 shortly. However, to prove the image of the
translation is wellfounded, we shall need some structural proof theoretic machin-
ery, which will also serve later use when dealing with greatest fixed points in
Sects. 5 and 6.
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4.1 Intermezzo: Ancestry and Threads

Given an inference step r, as typeset in Fig. 2, we say a formula occurrence f in
an upper sequent is an immediate ancestor of a formula occurrence e in the
lower sequent if they have the same colour; furthermore if e and f are occur in a
cedent I, I, A, A’, they must be the matching occurrences of the same formula
(i.e. at the same position in the cedent); similarly if e and f occur in the RHS
context S, they must be matching occurrences in matching lists.

Construing immediate ancestry as a directed graph allows us to characterise
progress by consideration of its paths:

Definition 18 ((Progressing) Threads). Fiz a preproof P. A thread is a
mazximal path in the graph of immediate ancestry. An infinite thread on the LHS
is progressing if it is infinitely often principal (i.0.p.) for a p-l step.

Our overloading of terminology is suggestive:
Proposition 19. P is progressing < each branch of P has a progressing thread.

This has a somewhat subtle proof, relying on Ko6nig’s lemma on the ancestry
graph of a progressing branch in order to recover a progressing thread.

Ezxample 20. Recall the oo-proof in Example 8. The only infinite branch, looping
on e, has a progressing thread indicated in magenta.

Fact 21 (See, e.g., [30,36]) Any i.o.p. thread has a unique smallest i.0.p. for-
mula, under the subformula relation. This formula must be a fixed point formula.

4.2 Translation to w-Branching System
We are now ready to give a translation from pHKA™ to uHKA,,.

Definition 22 (w-Translation). For preproofs P define P¥ by coinduction:

— ¥ commutes with any step not a p-l.

w

Ie(uXe(X)),I" — S Le"(0),I"—5) .
I uXe(X),I"— S T uXe(X),I' = S

Theorem 15 now follows immediately from the following result, obtained by
analysis of progressing threads in the image of the w-translation:

Lemma 23. P is progressing =—> P* is wellfounded.

The proof of Lemma 23 follows the same argument as for the analogous result
in [11, Lemma 23].
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Ezxample 24. Recalling Example 8, let us see the w-translation of R in 3. First,
let us (suggestively) write {a*b*}., for the n'!' approximant of {a"b"},, i.e.
{akV*} <o == 0 and {a*b*}pcpi1 == 1 + a{a*b*} o ,b. Now RY is given below,

left, where recursively R(0) := o0-l and R(n+1) is given below, right:

0 — (a*b*)
" {a"bF Y2 — (a*D¥)
i {(1 VY, b — [(a*b¥), D]
; M+W {a"VF Yoo b — [(a*b%)b]
i {a"VF e — [(a*b7)] <o " ' " {aF ¥} 20 b — [(a*b")]
S = ()] s a, {a" 0} i0b = fa, (@'57)]
RN [1] T a{d" a0 — [a(a* b))
]1 — [(a*b*)] a{abvoF Yo b — [(a*b*)]
-1

1+ a{d"o" b — [(a*0)]

5 Greatest Fixed Points and w-Languages

We extend the grammar of expressions from (1) by:
e,f... == ... | vXeX)

We call such expressions pv-expressions when we need to distinguish them from

ones without v. The notions of a (left-)productive and (left-)guarded expression

are defined in the same way, extending the grammar of (2) by the clause v Xp.
As expected pv-expressions denote languages of finite and infinite words:

Definition 25 (Intended Semantics of uv-Expressions). We extend the
notation vw to allv,w € AS® by setting vw = v when |v| = w. We extend the def-
ingtion of L(-) from Definition 1 to all pv-expressions by setting L(vXe(X)) 1=
U{A C L(e(A))} where now A varies over subsets of AS®.

Again, since all the operations are monotone, L(r¥Xe(X)) is indeed the great-
est fixed point of the operation A — L(e(A)), by the Knaster-Tarski theorem.
In fact (w-)languages computed by pv-expressions are just the ‘w-context-free
languages’ (w-CFLs), cf. [5,42], defined as the ‘Kleene closure’ of CFLs:

Definition 26 (w-Context-Free Languages). For A C AT we write A“ :=
{wowrws -+ : Vi < ww; € A}. The class of w-CFLs (CF¥) is defined by:

= {U A;BY : n<w; A;, B; context-free and € ¢ A;, B, Vi < n}

<n

It is not hard to see that each w-CFL is computed by a pvr-expression, by
noting that L£(e)¥ = L(vX (eX)):
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Proposition 27. L € CFY = L = L(e) for some left-productive e.

We shall address the converse of this result later. First let us present our
system for uv-expressions, a natural extension of uHKA earlier:

Definition 28 (System). The system uvHKA extends pHKA by the rules:

ye(wXe(X)), I" — S — 5,[4,e(vXe(X), A )
v-l v-r
vXe(X),I"— S — 5, [A,vXe(X), A

Preproofs for this system are defined just as for yHKA before. The definitions of
immediate ancestor and thread for uvHKA extends that of ptHKA from Definition
18 according to the colouring above in (4).

However we must be more nuanced in defining progress, requiring a definition
at the level of threads as in Sect. 4. Noting that Fact 21 holds for our extended
language with vs as well as us, we call an i.0.p. thread a y-thread (or v-thread)
if its smallest i.0.p. formula is a p-formula (or v-formula, respectively).

Definition 29 (Progress). Fiz a preproof P. We say that an infinite thread
7 along a (infinite) branch B of P is progressing if it is i.0.p. and it is a p-
thread on the LHS or it is a v-thread on the RHS. B is progressing if it has
a progressing thread. P is a co-proof of uvHKA if each of its infinite branches
has a progressing thread.

Ezample 30. Write e := vZ(abZ) and f = pY (b + vX(aY X)). The sequent
e — [f] has a preproof given in Fig. 4. This preproof has just one infinite branch,
looping on e, which indeed has a progressing thread following the magenta formu-
las. The only fixed point infinitely often principal along this thread is v X (af X),
which is principal at each e. Thus this preproof is a proof and e — [f] is a
theorem of pfHKA.

Note that, even though this preproof is progressing, the infinite branch’s
smallest i.0.p. formula on the RHS is not a v-formula, e.g. given by the magenta
thread, as f is also i.0.p. Let us point out that (a) the progressiveness condition
only requires existence of a progressing thread, even if other threads are not
progressing (like the unique LHS thread above).

Some Necessary Conventions: Left-Guarded and Leftmost

Crucially, due to the asymmetry in the definition of the product of infinite words,
we must employ further conventions to ensure soundness and completeness of
oo-proofs for £(+). Our choice of conventions is inspired by the usual ‘leftmost’
semantics of ‘w-CFGs’, which we shall see in the next section.

First, we shall henceforth work with a lefmost restriction of urHKA in order
to maintain soundness for £(-):
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kyir e — [vX(afX)] *

b,e = [b,v X (afX)]
- be = [b,vX(afX)],[vX(aYX),vX (afX)]
X(
)]

T bhe— b+ vX (@Y X), vX (afX)]
bye = [f,vX(afX
a b,e —

-7

[a, f,v X (afX)]
[a fl/X afX)]
— VX (afX)]
W e — b, VX wx ]
e— [b+vX(afX)]

p-r

3 =T
abe —
v-r

e—[/]

Fig.4. A puvflHKA oco-preproof of e — [f], where e := vZ(abZ) and f := pY (b +
vX(aY X)).

Definition 31. A uvHKA preproof is leftmost if each logical step has principal
formula the leftmost formula of its cedent, and there are no k"-steps. Write
uvlHKA for the restriction of uvHKA to only leftmost steps and uvfHKA™ for
the class of oco-proofs of uvlHKA.

We must also restrict ourselves to left-guarded expressios in the sequel:
Convention 32 Henceforth, all expressions are assumed to be left-guarded.

Let us justify both of these restrictions via some examples.

Remark 33 (Unsound for Non-leftmost). Unlike the p-only setting it turns out
that urHKA® is unsound without the leftmost restriction, regardless of left-
guardedness. For instance consider the preproof,

oz [a, v X (aX)] ¢
T [av X (aX)]
— [vX (aX)]

where a, ® roots the same subproof as e, but for an extra a on the left of every

RHS. Of course the endsequent is not valid, as the LHS denotes {¢} while the
RHS denotes {a“}. Note also that, while it is progressing thanks to the thread
in magenta, it is not leftmost due to the topmost displayed v-r step.

Remark 34 (Incomplete for Unguarded). On the other hand, without the left-
guardedness restriction, purf/HKA® is not complete. For instance the sequent
vXX — [],{la,vX X]}aca is indeed valid as both sides compute all of P(A=):
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Position Available move(s)
(aw, [a, A]) (w, A)
(w,[1, 4]) (w,A)
(w:[e+va]) (’LU, [evA])7(w7 [va])
(w, [ef, A]) (w, [e, f, A])
(w, [pX f(X), AD) | (w, [f(pX f(X)), A])
(w, VX f(X), A (w, [f(vX f(X)), A])

Fig. 5. Rules of the evaluation puzzle.

any word is either empty or begins with a letter. However the only available
(leftmost) rule application, bottom-up, is v-I, which is a fixed point of leftmost
proof search, obviously not yielding a progressing preproof.

6 Metalogical Results: A Game-Theoretic Approach

Now we return to addressing the expressiveness of both the syntax of pw-
expressions and our system ur/HKA®, employing game-theoretic methods.

6.1 Evaluation Puzzle and Soundness

As an engine for our main metalogical results about ur¢HKA, and for a converse
to Proposition 27, we first characterise membership via games:

Definition 35. The evaluation puzzle is a puzzle (i.e. one-player game)
whose positions are pairs (w,I") where w € AS* and I is a cedent, i.e. a list
of puv-expressions. A play of the puzzle runs according to the rules in Fig. 5:
puzzle-play is deterministic at each state except when the expression is a sum, in
which case a choice must be made. During a play of the evaluation puzzle, for-
mula ancestry and threads are defined as for uvlHKA preproofs, by associating
each move with the LHS of a left logical rule. A play is winning if:

— it terminates at the winning state (g,[]); or,
- it is infinite and has a v-thread (along its right components).

Ezample 36. Define d := puX () + (X)X), the set of non-empty well-bracketed
words. Let d“ := vYdY. Let us look at a play from ((“, [d“]).

— (%[@¥]) — ((*,[dd*]) — ((*,[d.d”]) — (*,[0+(d)d,d”]) — (“,[{d)d,d"])
1
e (B[d)dd?]) < (% [d)d,d]) < (*.[(d)d,d¥])

The play continues without d“ ever being principal (essentially, going into
deeper and deeper nesting to match a ( with a )). Since even the first match is
never made there is no hope of progress. The play (and, in fact, any play) is thus
losing. On the other hand the following play from (u,[d*]), where u = ({))* is
indeed winning, with progressing v-thread indicated in magenta.
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= ([0 2 (w,]d,d]) = (O] = (w,[0,d7]) — (w,[(,),d°]) = Ow,[),d*])

Theorem 37 (Evaluation). w € L(I") < there is a winning play from (w, ).

The proof is rather involved, employing the method of ‘signatures’ common
in fixed point logics, cf. e.g. [48], which serve as ‘least witnesses’ to word mem-
bership via carefully managing ordinal approximants for fixed points. Here we
must be somewhat more careful in the argument because positions of our puzzle
include cedents, not single formulas: we must crucially assign signatures to each
formula of a cedent. Working with cedents rather than formulas allows the eval-
uation puzzle to remain strictly single player. This is critical for expressivity:
alternating context-free grammars and pushdown automata compute more than
just CFLs [4,45].

We can now prove the soundness of purfHKA® by reduction to Theorem 37:

Theorem 38 (Soundness). uvlHKAF>* ' — S = L(I') C L(S5).

Proof (Sketch). Let P be a co-proof of I' — S and w € L(I"). We show w € L(S).
First, since w € L(I") there is a winning play 7 from (w,I") by Theorem 37,
which induces a unique (maximal) branch B, of P which must have a progressing
thread 7. Now, since 7 is a winning play from (w, e), 7 cannot be on the LHS; so it
is an RHS v-thread following, say, a sequence of cedents [I;];<,. By construction
[I]i<. has an infinite subsequence, namely whenever it is principal, that forms
(the right components of) a winning play from (w, I'y), with Iy € S. Thus indeed
w € L(S) by Theorem 37.

6.2 w-Context-Freeness via Muller Grammars

We can now use the adequacy of the evaluation puzzle to recover a converse of
Proposition 27. For this, we need to recall a grammar-formulation of CF“, due
to Cohen and Gold [5] and independently Nivat [46,47].

A Muller (w-)CFG (MCFG) is a CFG G, equipped with a set F' C P(V)
of accepting sets of productions. We define a rewrite relation —g C (VU.A)* x
(VU A)*, leftmost reduction, by aXv —¢g auv whenever a € A*, X — u is
a production of G and v € (VU A)*. A leftmost derivation is just a maximal
(possibly infinite) sequence along —¢. We say G accepts w € A=Y if there is a
leftmost derivation § such that § converges to w and the set of infinitely often
occurring states that are LHSs of productions along 0 is in F'. We write £(G) for
the set of words G accepts.

Theorem 39 ([5,46,47]). Let L C A“. L € CF¥ & L = L(G) for a MCFG G.

Now we have a converse of Proposition 27 by:

Proposition 40. For each expression e there is a MCFG G s.t. L(e) = L(G).
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Proof (sketch). Given a uv-expression e, we construct a grammar just like in the
proof of Theorem 5, but with extra clause X, xr(x) — Xywxs(x))- We maintain
two copies of each non-terminal, one magenta and one normal so that a derivation
also ‘guesses’ a v-thread ‘on the fly’. Now set F, the set of acceptable sets, to
include all sets extending some {X; : f € E}, for E with the smallest expression
a v-formula, by normal non-terminals. Now any accepting leftmost derivation of
a word w from X, describes a winning play of the evaluation puzzle from (w,e)
and vice-versa.

6.3 Proof Search Game and Completeness

In order to prove completeness of urfHKA™, we need to introduce a game-
theoretic mechanism for organising proof search, in particular so that we can
rely on determinacy principles thereof.

Definition 41 (Proof Search Game). The proof search game (for uv¢HKA)
is a two-player game played between Prover (P), whose positions are inference
steps of uwlHKA, and Denier (D), whose positions are sequents of uvlHKA. A
play of the game starts from a particular sequent: at each turn, P chooses an
inference step with the current sequent as conclusion, and D chooses a premiss
of that step; the process repeats from this sequent as long as possible.

An infinite play of the game is won by P (aka lost by D) if the branch
constructed has a progressing thread; otherwise it is won by D (aka lost by P).
In the case of deadlock, the player with no valid move loses.

Proposition 42 (Determinacy (30#)). The proof search game is deter-
mined, i.e. from any sequent I' — S, either P or D has a winning strategy.

Note that the winning condition of the proof search game is (lightface) ana-
lytic, i.e. X}: “there ewists a progressing thread”. Lightface analytic determinacy
lies beyond ZFC, as indicated equivalent to the existence of 0# [24]. Further
consideration of our metatheory is beyond the scope of this work.

It is not hard to see that P-winning-strategies are ‘just’ co-proofs. Our goal
is to show a similar result for D, a sort of ‘countermodel construction’.

Lemma 43. D has a winning strategy from I' — S — L(I')\ L(S) # 2.

Before proving this, let us point out that Lemma 12 applies equally to the system
uvHKA. We also have the useful observation:

Proposition 44 (Modal). L(al') C{c}U |J L(aS,) = L(I") C L(S,).
acA

This follows directly from the definition of £(-). Now we can carry out our
‘countermodel construction’ from D-winning-strategies:

Proof (Sketch, of Lemma 43). Construct a P-strategy p that is deadlock-free
by always preserving validity, relying on Lemma 12 and Proposition 44. Now,
suppose 0 is a D-winning-strategy and play p against it to construct a play
B = (8)i<w = (I'; — S;)i<w- Note that indeed this play must be infinite since
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(a) p is deadlock-free; and (b) 9 is D-winning. Now, let w = [ a be the
kLeB

product of labels of k steps along B, in the order they appear bottom-up. We

claim w € L(I") \ L(S):

— w € L(I'). By construction [I;]; has a subsequence forming an infinite play 7
of the evaluation puzzle from (w, I"). Since the play B is won by D, B cannot
have a p-thread so it must have a v-thread (since it is i.0.p.), and so 7 is
winning. Thus w € £(I") by Theorem 37.

— w ¢ L(S). Take an arbitrary play 7 of the evaluation puzzle from some (w, A)
with A € S. This again induces an infinite sequence of cedents [A;];<,, along
the RHSs of B. Now, [A;];<w cannot have a v-thread by assumption that B
is winning for D, and so 7 is not a winning play of the evaluation puzzle from
(w, A). Since the choices of A € S and play 7 were arbitrary, indeed we have
w ¢ L(S) by Theorem 37.

Now from Proposition 42 and Lemma 43, observing that P-winning-strategies
are just oo-proofs, we conclude:

Theorem 45 (Completeness). L£(I') C L(S) = pvlHKAF>® I' — S.

7 Complexity Matters and Further Perspectives

In this section we make further comments, in particular regarding the complexity
of our systems, at the level of arithmetical and analytical hierarchies. These
concepts are well-surveyed in standard textbooks, e.g. [44,50], as well as various
online resources.

Complexity and Irregularity for Finite Words. The equational theory of
p-expressions in £(-) is I17-complete, i.e. co-recursively-enumerable, due to the
same complexity of universality of context-free grammars (see, e.g., [27]). In this
sense there is no hope of attaining a finitely presentable (e.g. cyclic, inductive)
system for the equational theory of u-expressions in £(-). However it is not hard
to see that our wellfounded system pHKA,, enjoys optimal IT{ proof search,
thanks to invertibility and termination of the rules, along with decidability of
membership checking. Indeed a similar argument is used by Palka in [49] for the
theory of ‘s-continuous action lattices’. Furthermore let us point out that our
non-wellfounded system also enjoys optimal proof search: yHKA > I" — S is
equivalent, by invertibility, to checking that every sequent a — S reachable by
only left rules in bottom-up proof search has a polynomial-size proof (bound
induced by length of leftmost derivations). This is a IT{ property.

Complexity and Inaxiomatisability for Infinite Words. It would be natu-
ral to wonder whether a similar argument to Sect. 4 gives rise to some infinitary
axiomatisation of the equational theory of uv-expressions in £(-). In fact, it turns
out this is impossible: the equational theory of w-CFLs is I13-complete [19], so
there is no hope of a IT{ (or even X1) axiomatisation. In particular, the projec-
tion argument of Sect.4 cannot be scaled to the full system ur¢/HKA because -
does not distribute over [ in £(-), for the corresponding putative ‘right w steps’
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for v. For instance 0 = ((aa)* N a(aa)*)a* # (aa)*a* Na(aa)*a* = aa*. Indeed
let us point out that here it is crucial to use our hypersequential system HKA
as a base rather than, say, the intuitionistic systems of other proof theoretic
works for regular expressions (and friends) [16,49|: the appropriate extension of
those systems by us and vs should indeed enjoy an w-translation, due to only
one formula on the right, rendering them incomplete.

Again let us point out that oco-provability in urfHKA, in a sense, enjoys
optimal complexity. By determinacy of the proof search game, pr/HKA +*°
I' — S if and only if there is no D-winning-strategy from I" — S. The latter is
indeed a I1} statement: “for every D-strategy, there exists a play along which
there exists a progressing thread”.

Comparison to [22]. Our method for showing completeness of pHKA,, is quite
different from the analogous result of [22] which uses the notion of ‘rank’ for p-
formulas, cf. [1]. Our result is somewhat stronger, giving cut-free completeness,
but it could be possible to use ranks directly to obtain such a result too. More
interestingly, the notion of projections and w-translation should be well-defined
(for LHS p formulas) even in the presence of vs, cf. [11], whereas the rank method
apparently breaks down in such extensions. This means that our method should
also scale to uvHKA oo-proofs where, say, each infinite branch has a LHS pu-
thread. It would be interesting to see if this method can be used to axiomatise
some natural fragments of w-context-free inclusions.

Note that, strictly speaking, our completeness result for ;CA was only given
for the guarded fragment. However it is known that puCA (and even weaker
theories) already proves the equivalence of each expression to one that is even
left-guarded, by formalising conversion to Greibach normal form [18].

8 Conclusions

In this work we investigated of the proof theory of context-free languages (CFLs)
over a syntax of u-expressions. We defined a non-wellfounded proof system
uHKA™ and showed its soundness and completeness for the model L£(-) of
context-free languages. We used this completeness result to recover the same
for a cut-free w-branching system uHKA,, via proof-theoretic techniques. This
gave an alternative proof of the completeness for the theory of p-continuous
Chomsky algebras from [22]. We extended p-expressions by greatest fixed points
to obtain a syntax for w-context-free languages. We studied an extension by
greatest fixed points, urfHKA™ and showed its soundness and completeness for
the model L£(-) of context-free languages, employing game theoretic techniques.

Since inclusion of CFLs is ITY-complete, no recursively enumerable (r.e.)
system can be sound and complete for their equational theory. However, by
restricting products to a letter on the left one can obtain a syntax for right-
linear grammars. Indeed, for such a restriction complete cyclic systems can be
duly obtained [10]. It would be interesting to investigate systems for related
decidable or r.e. inclusion problems, e.g. inclusions of context-free languages in
regular languages, and inclusions of wisibly pushdown languages [2,3].
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The positions of our evaluation puzzle for uv-expressions use cedents to
decompose products, similar to the stack of a pushdown automaton, rather than
requiring an additional player. Previous works have similarly proposed model-
checking games for (fragments/variations of ) context-free expressions, cf. [37,43],
where more complex winning conditions seem to be required. It would be inter-
esting to compare our evaluation puzzle to those games in more detail.

Note that our completeness result, via determinacy of the proof search game,
depends on the assumption of (lightface) analytic determinacy. It is natural to
ask whether this is necessary, but this consideration is beyond the scope of this
work. Let us point out, however, that even w-context-free determinacy exceeds
the capacity of ZFC [20,41].

Finally, it would be interesting to study the structural proof theory arising
from systems pHKA™ and purHKA™| cf. [16]. It would also be interesting to see if
the restriction to leftmost co-proofs can be replaced by stronger progress condi-
tions, such as the ‘alternating threads’ from [13,14], in a similar hypersequential
system for predicate logic. Note that the same leftmost constraint was employed
in [25] for an extension of HKA to w-regular languages.
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Abstract. Guarded Kleene Algebra with Tests (GKAT for short) is an
efficient fragment of Kleene Algebra with Tests, suitable for reasoning
about simple imperative while-programs. Following earlier work by Das
and Pous on Kleene Algebra, we study GKAT from a proof-theoretical per-
spective. The deterministic nature of GKAT allows for a non-well-founded
sequent system whose set of regular proofs is complete with respect to
the guarded language model. This is unlike the situation with Kleene
Algebra, where hypersequents are required. Moreover, the decision pro-
cedure induced by proof search runs in NLOGSPACE, whereas that of
Kleene Algebra is in PSPACE.

Keywords: Kleene Algebra - Guarded Kleene Algebra with Tests *
Cyclic proofs

1 Introduction

Guarded Kleene Algebra with Test (GKAT) is the fragment of Kleene Algebra
with Tests (KAT) comprised of the deterministic while programs. Those are the
programs built up from sequential composition (e - f), conditional branching
(if-b-then-e-else-f) and loops (while b do e). For an introduction to KAT
we refer the reader to [10]. The first papers focusing on the fragment of KAT that
is nowadays called GKAT are Kozen’s [11] and Kozen & Tseng’s [12], where it is
used to study the relative power of several programming constructs.

As GKAT is a fragment of KAT, it directly inherits a rich theory. It admits a lan-
guage semantics in the form of guarded strings and for every expression there is
a corresponding KAT-automaton. Already in [12] it was argued that GKAT expres-
sions are more closely related to so-called strictly deterministic automata, where
every state transition executes a primitive program. Smolka et al. significantly
advanced the theory of GKAT in [22], by studying various additional semantics,
identifying the precise class of strictly deterministic automata corresponding
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to GKAT-expressions (proving a Kleene theorem), giving a nearly linear decision
procedure of the equivalence of GKAT-expressions, and studying its equational
axiomatisation. Since then GKAT has received considerable further attention, e.g.
in [17,20,21,24].

One of the most challenging and intriguing aspects of GKAT is its proof theory.
The standard equational axiomatisation of KAT from [10] does not simply restrict
to GKAT, since a derivation of an expression that lies within the GKAT-fragment
might very well contain expressions that lie outside of it. Moreover, the axioma-
tisation of KAT contains a least fixed point rule that relies on the equational
definability of inclusion, which does not seem to be available in GKAT.

In [22], this problem is circumvented by introducing a custom equational
axiomatisation for GKAT that uses a unique fixed point rule. While a notable
result, this solution is still not entirely satisfactory. First, completeness is only
proven under the inclusion of a variant of the unique fixed point rule that oper-
ates on entire systems of equations (this problem was recently addressed for
the so-called skip-free fragment of GKAT in [21]). Moreover, even the ordinary,
single-equation, unique fixed point rule contains a non-algebraic side-condition,
analogous to the empty word property in Salomaa’s axiomatisation of Kleene
Algebra [18]. Because of this, a proper definition of ‘a GKAT’ is still lacking.

In recent years the proof theory of logics with fixed point operators (such
as while-b-do-e) has seen increasing interest in non-well-founded proofs. In
such proofs, branches need not to be closed by axioms, but may alternatively
be infinitely deep. To preserve soundness, a progress condition is often imposed
on each infinite branch, facilitating a soundness proof by infinite descent. In
some cases non-well-founded proofs can be represented by finite trees with back-
edges, which are then called cyclic proofs. See e.g. [2,4,5,8,13] for a variety
of such approaches. Often, the non-well-founded proof theory of some logic is
closely related to its corresponding automata theory. Taking the proof-theoretical
perspective, however, can be advantageous because it is more fine-grained and
provides a natural setting for establishing results such as interpolation [3,14],
cut elimination [1,19], and completeness by proof transformation [6,23].

In [7], Das & Pous study the non-well-founded proof theory of Kleene Alge-
bra, a close relative of GKAT (for background on Kleene Algebra we refer the
reader to [9]). They show that a natural non-well-founded sequent system for
Kleene Algebra is not complete when restricting to the subset of cyclic proofs.
To remedy this, they introduce a hypersequent calculus, whose cyclic proofs are
complete. They give a proof-search procedure for this calculus and show that it
runs in PSPACE. Since deciding Kleene Algebra expressions is PSPACE-complete,
their proof-search procedure induces an optimal decision procedure for this prob-
lem. In a follow-up paper together with Doumane, left-handed completeness of
Kleene Algebra is proven by translating cyclic proofs in the hypersequent calcu-
lus to well-founded proofs in left-handed Kleene Algebra [6].

The goal of the present paper is to study the non-well-founded proof theory
of GKAT. This is interesting in its own right, for instance because, as we will
see, it has some striking differences with Kleene Algebra. Moreover, we hope it



A Cyclic Proof System for Guarded Kleene Algebra with Tests 259

opens up new avenues for exploring the completeness of algebraic proof systems
for GKAT, through the translation of our cyclic proofs.

Outline. Our paper is structured as follows.

In Sect. 2 we introduce preliminary material: the syntax of GKAT and its lan-
guage semantics.

Sect. 3 introduces our non-well-founded proof system SGKAT for GKAT.

In Sect. 4 we show that (possibly infinitary) proofs in SGKAT are sound. That
is, the interpretation of each derivable sequent - a GKAT-inequality - is true
in the language model (which means that a certain inclusion of languages
holds).

In Sect. 5 we show that proofs are finite-state: each proof contains only finitely
many distinct sequents. More precisely, by employing a more fine-grained
analysis than in [7], we give a quadratic bound on the number of distinct
sequents occurring in a proof, in terms of the size of its endsequent. It follows
that the subset of cyclic proofs proves exactly the same sequents as the set
of all non-well-founded proofs.

Sect. 6 deals with completeness and complexity. We first use a proof-search
procedure to show that SGKAT is complete: every sequent whose interpreta-
tion is valid in the language model, can be derived. We then show that this
proof-search procedure runs in coNLOGSPACE. This gives an NLOGSPACE
upper bound on the complexity of the language inclusion problem for GKAT-
expressions.

Our Contributions. Our paper closely follows the treatment of Kleene Algebra
in [7]. Nevertheless, we make the following original contributions:

Structure of sequents: we devise a form of sequents bespoke to GKAT, by
labelling the sequents by sets of atoms. This is similar to how the appropriate
automata for GKAT are not simply KAT-automata. In contrast to Kleene Alge-
bra, it turns out that we do not need to extend our sequents to hypersequents
in order to obtain completeness for the fragment of cyclic proofs.

Soundness argument: our modest contribution here is the notion of priority of
rules and the fact that our rules are all invertible when they have priority. The
soundness argument for finite proofs is, of course, slightly different, because
our rules are different. (The step from the soundness of finite proofs, towards
the soundness of infinite proofs, is completely analogous to that of [7].)
Regularity: this concerns showing that every proof contains only finitely many
distinct sequents. As in [7], our argument views each expression in a proof as
a subexpression of an expression in the proof’s root. A modest contribution
is that our argument is made more formal by considering these expressions
as nodes in a syntax tree. More importantly, the bound on the number of
distinct cedents we obtain is sharper: where in [7] it is exponential in the size
of the syntax tree, our bound is linear (yielding a quadratic bound on the
number of sequents).
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— Completeness: the structure of the argument is identical to that in [7], but
the details differ due to the different rules and different type of sequents. This
for instance shows in our proof of Lemma 9 (which is analogous to Lemma 20
in [7]), where we make crucial use of the set of atoms annotating a sequent.

— Complexity: our complexity argument is necessarily different because it
applies to a different system and is designed to give a different upper bound.

Due to space limitations several proofs are only sketched or omitted entirely. Full
versions of these proofs can be found in the extended version of this paper [15].

2 Preliminaries

2.1 Syntax

The language of GKAT has two sorts, namely programs and a subset thereof
consisting of tests. It is built from a finite and non-empty set T" of primitive tests
and a non-empty set X of primitive programs, where T and X' are disjoint. For
the rest of this paper we fix such sets T" and Y. We reserve the letters ¢ and p to
refer, respectively, to arbitrary primitive tests and primitive programs. The first
of the following grammars defines the tests, and the second the expressions.

beu=0]1]t|b|bVel|b-c e,fu=blple-fledsf|e®,

where t € T and p € X. Intuitively, the operator +, stands for the if-then-else
construct, and the operator (—)(® stands for the while loop. Note that the
tests are simply propositional formulas. It is convention to use - instead of A
for conjunction. As usual, we often omit - for syntactical convenience, e.g. by
writing pq instead of p - q.

Ezxample 1. The idea of GKAT is to model imperative programs. For instance, the
expression (p 44 ¢)(*) represents the following imperative program:

while a do (if b then p else q)

Remark 1. As mentioned in the introduction, GKAT is a fragment of Kleene Alge-
bra with Tests, or KAT [10]. The syntax of KAT is the same as that of GKAT, but
with unrestricted union + instead of guarded union +;, and unrestricted itera-
tion (—)* instead of the while loop operator (—)®). The embedding ¢ of GKAT
into KAT acts on guarded union and guarded iteration as follows, and commutes
with all other operators: (e+y f) = b-p(e)+b-@(f), and p(e®) = (b-p(e))* -b.

2.2 Semantics

There are several kinds of semantics for GKAT. In [22], a language semantics, a
relational semantics, and a probabilistic semantics are given. In this paper we
are only concerned with the language semantics, which we shall now describe.
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We denote by At the set of atoms of the free Boolean algebra generated
by T = {t1,...t,}. That is, At consists of all tests of the form ¢; - - ¢,, where
ci € {t;,t;} for each 1 < i < n. Lowercase Greek letters (o, 3,7,...) will be
used to denote elements of At. A guarded string is an element of the regular
set At- (X - At)*. That is, a string of the form a1piasps -+ PRy 11. We will
interpret expressions as languages (formally just sets) of guarded strings. The
sequential composition operator - is interpreted by the fusion product ¢, given
by Lo K := {zay | za € L and ay € K}. For the interpretation of +;, we
define for every set of atoms B C At the following operation of guarded union on
languages: L+p5 K := (BoL)U(BoK), where B is At\ B. For the interpretation
of (—)®), we stipulate:

L0 := At Lt =L"o L L?:=J(BoL)"oB

n>0

Finally, the semantics of GKAT is inductively defined as follows:

[b] ={aeAt:a<b} [p] :={apf:a,8€ At} [e-[f]:=1[e]lelf]
[e+o f1:=lel + [T [ := [e]™

Note that the interpretation of - between tests is the same whether they are
regarded as tests or as programs, i.e. [b] N [c] = [8] < []-

Remark 2. While the semantics of expressions is explicitly defined, the semantics
of tests is derived implicitly through the free Boolean algebra generated by T'. It
is standard in the GKAT literature to address the Boolean content in this manner.

Ezample 2. In a guarded string, atoms can be thought of as states of a machine,
and programs as executions. For instance, in case of the guarded string apg,
the machine starts in state «, then executes program p, and ends in state (3.
Let us briefly check which guarded strings of, say, the form apBqy belong to the
interpretation [(p +4 q)(a)]] of the program of Example 1. First, we must have
a < a, for otherwise we would not enter the loop. Moreover, we have a < b, for
otherwise ¢ rather than p would be executed. Similarly, we find that 8 < a,b.
Since the loop is exited after two iterations, we must have v < @. Hence, we find

apBay € [(p+59) ] & a < a,band < a,b and y < @.

We state two simple facts that will be useful later on.

Lemma 1. For any two languages L, K of guarded strings, and primitive pro-
gram p, we have:

(i) L"™' = Lo L™, (i) [p] o L= [p] oK implies L = K.

Remark 3. The fact that GKAT models deterministic programs is reflected in the
fact that sets of guarded strings arising as interpretations of GKAT-expressions
satisfy a certain determinacy property. Namely, for every xay and xaz in L,
either y and z are both empty, or both begin with the same primitive program.
We refer the reader to [22] for more details.
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Remark 4. The language semantics of GKAT is the same as that of KAT (see [10]),
in the sense that [e] = [e(e)], where ¢ is the embedding from Remark 1, the
semantic brackets on the right-hand side denote the standard interpretation in
KAT, and e is any GKAT-expression.

3 The Non-well-founded Proof System SGKAT®

In this section we commence our proof-theoretical study of GKAT. We will present
a cyclic sequent system for GKAT, inspired by the cyclic sequent system for Kleene
Algebra presented in [7]. In passing, we will compare our system to the latter.

Definition 1 (Sequent). A sequent is a triple (I, A, A), written I' =4 A,
where A C At and I' and A are (possibly empty) lists of GKAT-expressions.

The list on the left-hand side of a sequent is called its antecedent, and the list
on the right-hand side its succedent. In general we refer to lists of expressions as
cedents. The symbol e refers to the empty cedent.

Remark 5. As the system in [7] only deals with Kleene Algebra, it does not
include tests. We choose the deal with the tests present in GKAT by augmenting
each sequent by a set of atoms. This tucks away the Boolean content, as is usual
in the GKAT literature, allowing us to omit propositional rules.

Definition 2 (Validity). We say that a sequent eq,...,€n =a f1,..-, fm 18
valid whenever Ao ey --ep] C[f1--- fn]-

We often abuse notation writing [I'] instead of [e; - - - €,], where I' = ey, ..., €,.

Ezample 3. An example of a valid sequent is given by (cp)® =a; (p(cp+41))®).
The antecedent denotes guarded strings ajpasp - - - o pa,+1 where o; < b, ¢ for
each 1 <i < n,and apy1 < b. The succedent denotes such strings where o; < ¢
is only required for those 1 < ¢ < n where 7 is even.

Remark 6. Like the sequents for Kleene Algebra in [7], our sequents express
language inclusion, rather than language equivalence. For Kleene Algebra this
difference is insignificant, as the two notions are interdefinable using unrestricted
union: [e] C [f] < [e + f] = [f]- For GKAT, however, it is not clear how to define
language inclusion in terms of language equivalence. As a result, an advantage
of axiomatising language inclusion rather than language equivalence, is that the
while-operator can be axiomatised as a least fixed point, eliminating the need
for a strict productivity requirement as is present in the axiomatisation in [22].

Given a set of atoms A and a test b, we write A [ b for A ¢ [b], i.e. the set of
atoms {a € A : o < b}. The rules of SGKAT are given in Fig. 1. Importantly, the
rules are always applied to the leftmost expression in a cedent. As a result, we
have the following lemma, that later will be used in the completeness proof.

Lemma 2. Let I' =4 A be a sequent, and let r be any rule of SGKAT. Then
there is at most one rule instance of r with conclusion I' = 4 A.
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Left logical rules

bl =ad ety f, I =4 A o
e, g, = A ; 6,6(b),F:>AN,A F:>A[3A "
e g =4 A e® M=, A (b)-

Right logical rules

I'=4A I'=sape A I's, 314
() =" br Fo-r
I'=a0,4 Isae+p f,A
I=aefA F=apee? A T's,5A ,
T=ac [, A =, 0. A ®)-r

Axioms and modal rules

=0 p T =ap, A p I =4 A

€ =4 € 0

Fig. 1. The rules of SGKAT. The side condition (}) requires that A [ b = A.

Remark 7. Following [7], we call k a ‘modal’ rule. The reason is simply that it
looks like the rule k (sometimes called K or O) in the standard sequent calculus
for basic modal logic. Our system also features a second modal rule, called kg.
Like k, this rule adds a primitive program p to the antecedent of the sequent.
Since the premiss of ko entails that [I'] = [0], the antecedent of its conclusion
will denote the empty language, and is therefore included in any succedent A.

Remark 8. Note that the rules of SGKAT are highly symmetric. Indeed, the only
rules that behave differently on the left than on the right, are the b-rules and
ko. Note that b-I changes the set of atoms, while b-r uses a side condition. The
asymmetry of ko is clear: the succedent of the premiss has a 0, whereas the
antecedent does not. A third asymmetry will be introduced in Definition 3, with
a condition on infinite branches that is sensitive to (b)-I but not to (b)-r.

Remark 9. The authors of [20] study a variant of GKAT that omits the so-called
early termination axiom, which equates all programs that eventually fail. They
give a denotational model of this variant in the form of certain kinds of trees.
We conjecture that omitting the rule kg from our system will make it sound and
complete with respect to this denotational model.
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(b)or p=ap 1,10, p (o) p=0D -
Ly P 10 e=pe
p=n 1,10, p (o) P=ag P ¢
P )r
p=ml1®p
p=ac 1?0 p

Fig. 2. An SGKAT-derivation that is not a proof.

An SGKAT®-derivation is a (possibly infinite) tree generated by the rules of
SGKAT. Such a derivation is said to be closed if every leaf is an axiom.

Definition 3 (Proof). A closed SGKAT™-derivation is said to be an
SGKAT*-proof if every infinite branch is fair for (b)-l, i.e. contains infinitely
many applications of the rule (b)-.

We write SGKAT % I" = 4 A if there is an SGKAT*-proof of I' = 4 A.

Ezxample 4. Not every SGKAT*-derivation is a proof. Consider for instance the
following derivation, where (o) indicates that the derivation repeat itself (Fig. 2).

Ezample 5. Let Ay := (p(ep+51))® and Ay := c¢p+4 1, A;. The following proof
IT; is an example SGKAT**-proof of the sequent of Example 3. We again use (o)
to indicate that the proof repeats itself at this leaf and, for the sake of readability,
omit branches that can be closed immediately by an application of L (Fig.3).
To illustrate the omission of branches that can be immediately closed by an
application of L, let us write out the two applications of +-r in 1.
€ = Atfbe CP, A1 e=p 1,4 € =g cp, Ay € = At1p 1,4,

+o-T +o-7
€ =Attbe Ao € = ppp A2 '

It can also be helpful to think of the set of atoms as selecting one of the premisses.

We close this section with a useful definition and a lemma.

Definition 4 (Exposure). A list I' of expressions is said to be exposed if it is
either empty or begins with a primitive program.

Recall that the sets of primitive tests and primitive programs are disjoint. Hence
an exposed list I' cannot start with a test. The following easy lemma will be
useful later on.

Lemma 3. Let I' and A be exposed lists of expressions. Then:

(i) ax € [I'] & Bz € [I] for all o, B € At
(1) T’ =pa A is valid if and only if I' =4 A is valid for some A # ().
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() =a A1 (o)
D, (Cp)(b) = Atlbe P, Ay
p, (Cp)<b) = Atlbe C, P, Ay

P, (ep)” =acppe cp, A =g d
A (b)r

P, (Cp)(b) :>At[bc A2 € :>At[5 Al ( )

N R = v v

-l ——— 41
cp, (cp)” =aup Ao € = pp A2

+b-T
c-l

(cp) ) =ae Az

P, (cp)® = atpbe p, (cp 41 1), A1
D, (CP)(b) =atpoe P(ep +5 1), Ay
b, (Cp)(b> = At[be Al

(b)-r

D, (Cp)(b> =ty A1 € = pp € id
-l ®) ——— ()
ep, (ep)'” =aep Ar € = purp

(p)® =a A1 (o)

Fig. 3. The SGKAT*°-proof I1;.

4 Soundness

In this section we prove that SGKAT® is sound. We will first prove that well-
founded (that is, finite) SGKAT*-proofs are sound. The following straightfor-
ward facts will be useful in the soundness proof.

Lemma 4. For any set A of atoms, test b, and cedent @, we have:

(i) le +o f, 0] = ([b] © [e, 01) U ([8] < [f. O);
(ii) [, 0] = ([b]  [e,e®, ©]) U ([0] © [E]).-

We prioritise the rules of SGKAT in order of occurrence in Fig. 1, reading left-
to-right, top-to-bottom. Hence, each left logical rule is of higher priority than
each right logical rule, which is of higher priority than each axiom or modal rule.
Recall that a rule is sound if the validity of all its premisses implies the validity
of its conclusion. Conversely, a rule is invertible if the validity of its conclusion
implies the validity of all of its premisses.

We say that a rule application has priority of there is no higher-priority rule
with the same conclusion. Conveniently, the following proposition entails that
every rule instance which has priority is invertible. This will aid our proof search
procedure in Sect. 6.

Proposition 1. Every rule of SGKAT is sound. Moreover, every rule is invert-
ible except for k and kg, which are invertible whenever they have priority.
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Proof (sketch). We treat two illustrative cases. For the rule +,-r, we find
Ao [IT C e+ fIo[A]
& Ao IS (B o [e, A U (T  [£. AI)
& ATbo[I] C e, A or A15C[f, 4],

where the first equivalence holds due to Lemma 4.(ii), and the second due to
Aol = ([p] ¢ Ao [I']) U ([b] ¢ Ao [I']) and Lemma 4.(i).

The other rule we will treat is k. Suppose first that some application of k
does not have priority. The only rule of higher priority than k which can have
a conclusion of the form p,I" =4 p, A is L. In this case A = @), which means
that the conclusion must be valid. Hence any application of k that does not have
priority is vacuously sound. It need, however, not be invertible, as the following

rule instance demonstrates
1=a0

p,1 =4 p,0

Next, suppose that some application of k does have priority. This means that
the set A of atoms in the conclusion p, I" = 4 p, A is not empty. We will show
that under this restriction the rule is both sound and invertible. Let o € A. We
have

Aolp, I Cp, A) & Ao [p] o [I] C [p] ¢ [A4] (seq. int.)
S ao[p]e [l C [p]e[A] (o € A, Lem.3)
< [plo [T <€ [p] o [A] (Lem. 3)
< [ <[4l (1)

as required. The step marked by 7 is the following property of guarded languages:
[p] ¢ L = [p] ¢ K implies L = K.

Proposition 1 entails that all finite proofs are sound. We will now extend this
result to non-well-founded proofs, closely following the treatment in [7]. We first
recursively define a syntactic abbreviation: [e(®]? := b and [e®]* ! := be[e®]".

Lemma 5. For every n € N: if we have SGKAT F* e®) " = 4 A, then we also
have SGKAT F> [e®]* ' =4 A.

We let the while-height wh(e) be the maximal nesting of while loops in a given
expression e. Formally,
— wh(b) = wh(p) = 0; — wh(e - f) = wh(e +; f) = max{wh(e),wh(f)};
— wh(e®) = wh(e) + 1.
Given a list I', the weighted while-height wwh(I") of I' is defined to be the
multiset [wh(e) : e € I']. We order such multisets using the Dershowitz-Manna
ordering (for linear orders): we say that N < M if and only if N # M and for
the greatest n such that N(n) # M (n), it holds that N(n) < M(n).

Note that in any SGKAT-derivation the weighted while-height of the
antecedent does not increase when reading bottom-up. Moreover, we have:
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Lemma 6. wwh([e®]", I') < wwh(e®  T") for every n € N.
Finally, we can prove the soundness theorem using induction on wwh(I").

Theorem 1 (Soundness). If SGKAT - I' =4 A, then A< [I'] C [4].

Proof. We prove this by induction on wwh(I"). Given a proof w of I' =4 A, let
B contain for each infinite branch of 7 the node of least depth to which a rule
(b)-1 is applied. Note that B must be finite, for otherwise, by Koénig’s Lemma,
the proof 7 cut off along B would have an infinite branch that does not satisfy
the fairness condition.

Note that Proposition 1 entails that of every finite derivation with valid leaves
the conclusion is valid. Hence, it suffices to show that each of the nodes in B is
valid. To that end, consider an arbitrary such node labelled e®, I"" = 4, A’ and
the subproof 7’ it generates. By Lemma 5, we have that [e®]" " =4 A’ is
provable for every n. Lemma 6 gives wwh([e®]™, I'") < wwh(e®, I'") < wwh(T"),
and thus we may apply the induction hypothesis to obtain

Ao [ o [I] € [4]
for every n € N. Then by

U o [0 1) = <>U [e®1"]) o [T = A" o [e]“T o [T,

n

we obtain that e® I = 4 A’ is valid, as required.

5 Regularity

Before we show that SGKAT™ is not only sound, but also complete, we will
first show that every SGKAT-proof is finite-state, i.e. that it contains at most
finitely many distinct sequents.

The results of this section crucially depend on the fact that we are only
applying rules to the leftmost expressions of cedents. Indeed, otherwise one could
easily create infinitely many distinct sequents by simply unravelling the same
while loop e® infinitely often.

Our treatment differs from that in [7] in two major ways. First, we formalise
the notion of (sub)occurrence using the standard notion of a syntax tree. Sec-
ondly, and more importantly, we obtain a quadratic bound on the number of
distinct sequents occurring in a proof, rather than an exponential one. In fact,
we will show that the number of distinct antecedents (succedents) is linear in
the size of the syntax tree of the antecedent (succedent) of the root. We will do
this by showing that each leftmost expression of a cedent in the proof (given
as node of the syntax tree of a root cedent) can only occur in the proof as the
leftmost expression of that unique cedent.

Definition 5. The syntax tree (Te,l.) of an expression e is a well-founded,
labelled and ordered tree, defined by the following induction on e.
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— If e is a test or primitive program, its syntax tree only has a root node p, with
label l.(p) == e.

- Ife= f10 fy where o =+ or o = +y, its syntax tree again has a root node p
with label l.(p) = e, and with two outgoing edges. The first edge connects p
to (Ty,,1ly,), the second edge connects it to (Ty,,ly,).

~ Ife = f) its syntax tree again has a root node p with label l.(p) = e, but
now with just one outgoing edge. This edge connects p to (Ty,ly).

Definition 6. An e-cedent is a list of nodes in the syntax tree of e. The reali-
sation of an e-cedent uy, ..., u, is the cedent lo(u1),. .., le(un).

Given the leftmost expression of a cedent, we will now explicitly define the cedent
that it must be the leftmost expression of.

Definition 7. Let u be a node in the syntax tree of e. We define the e-cedent
tail(u) inductively as follows:

— For the root p of T., we set tail(p) to be the empty list e.
— For every node u of T, we define tail on its children by a case distinction on
the main connective mc of u:
e if mc = -, let uy and uy be, respectively, the first and second child of .
We set tail(uy) := uo, tail(u) and tail(ug) := tail(u).
e if mc = +y, let uy and us again be its first and second child. We set
tail(uq) = tail(ug) := tail(u).
o ifmc= (=), let v be the single child of u. We set tail(v) := u, tail(u).

An e-cedent is called tail-generated if it is empty or of the form w,tail(u) for
some node u in the syntax tree of e.

Ezample 6. Below is the syntax tree of (p(p+31))®) and a calculation of tail (uz).

us Ug
\x// W(u1) = (p(p +5 1))

(u1)
ug 4 Wuz) =p(PHo D) ) = g, tail ()
\ / l(uz) =p ’ :ujul tai2|(u1)
U lug) =p+p 1 "
(us) =p
(ug) =1

= Ug, Uy

Uy

The following lemma embodies the key idea for the main result of this section:
every leftmost expression is the leftmost expression of a unique cedent.

Lemma 7. Let w be an SGKAT-derivation of a sequent of the form e =4 f.
Then every antecedent in 7 is the realisation of a tail-generated e-sequent, and
every succedent is the realisation of a tail-generated f-sequent or 0-sequent.
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Proof. We first prove the following claim.

Let e be an expression and let u be a node in its syntax tree. Then tail(u)
is a tail-generated e-sequent.

We prove this by induction on the syntax tree of e. For the root p, we have
tail(p) = €, which is tail-generated by definition. Now suppose that the thesis
holds for some arbitrary node u in the syntax tree of e. We will show that the
thesis holds for the children of u by a case distinction on the main connective
mc of w.

— mc = . Let u; and us be the first and second child of u, respectively. We
have tail(u1) = ug, tail(u) = ue, tail(uz), which is tail-generated by definition.
Moreover, we have that tail(ug) = tail(u) is tail-generated by the induction
hypothesis.

— mc = +4. Then for each child v of u, we have tail(v) = tail(u) and thus we
can again invoke the induction hypothesis.

— mc = (—)®. Then for the single child v of u, it holds that tail(v) = u, tail(u),
which is tail-generated by definition.

Using this claim, the lemma follows by bottom-up induction on 7. For the base
case, note that e and f are realisations of the roots of their respective syntax
trees. Such a root p is tail-generated, since p = p,e = p,tail(p). The induction
step follows by direct inspection of the rules of SGKAT.

The number of realisations of tail-generated e-sequents is clearly linear in the
size of the syntax tree of e, for every expression e. Hence we obtain:

Corollary 1. The number of distinct sequents in an SGKAT-proof of e = 4 f
is quadratic in |T.| + |Ty|.

Note that the above lemma and corollary can easily be generalised to arbitrary
(rather than singleton) cedents, by rewriting each cedent ey, ..., e, as ey ---ey,.

Recall that a non-well-founded tree is regular if it contains only finitely many
pairwise non-isomorphic subtrees. The following corollary follows by a standard
argument in the literature (see e.g [16, Corollary 1.2.23]).

Corollary 2. If I' = 4 A has an SGKAT*-proof, then it has a reqular one.

We define a cyclic SGKAT -proof as a regular SGKAT *-proof. Cyclic proofs can
be equivalently described using finite trees with back edges, but this is not needed
for the purposes of the present paper.

6 Completeness and Complexity

In this section we prove the completeness of SGKAT®. Our argument uses a
proof search procedure, which we will show to induce a NLOGSPACE decision
procedure for the language inclusion problem of GKAT expressions. The material
in this section is again inspired by [7], but requires several modifications to treat
the tests present in GKAT.

First note the following fact.
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Lemma 8. Any valid sequent is the conclusion of some rule application.
Note that in the following lemma A and B may be distinct.

Lemma 9. Let 7 be a derivation using only right logical rules and containing a
branch of the form.:

I'=p e(b), A

: (b) v

— (b)-r

I'=4 e(b)7 A
such that (1) I =4 e®, A is valid, and (2) every succedent on the branch has
G(b), A as a final segment. Then I' =g 0 is valid.

Proof. We claim that e(®) =5 0 is provable. We will show this by exploiting the
symmetry of the left and right logical rules of SGKAT (cf. Remark 8). Since on the
branch (*) every rule is a right logical rule, and e(® A is preserved throughout,
we can construct a derivation 7’ of e(*) =5 0 from 7 by applying the analogous
left logical rules to e(®. Note that the set of atoms B precisely determines the
branch (*), in the sense that for every leaf I =¢ © of 7 it holds that CN B = 0.
Hence, as the root of 7’ is e(®) =5 0, every branch of =’ except for the one
corresponding to (*) can be closed directly by an application of L. The branch
corresponding to (*) is of the form

(V) =50

: " ()
6(b) =0 )

and can thus be closed by a back edge. The resulting finite tree with back
edges clearly represents an SGKAT*“-proof.

Now by soundness, we have B o [e(®)] = (). Moreover, by the invertibility of
the right logical rules and hypothesis (1), we get

Bo[I'] C Bo[e®]o[A] =0,
as required.

Lemma 10. Let (I, =4, An)new be an infinite branch of some SGKAT™-
derivation on which the rule (b)-r is applied infinitely often. Then there are n,m
with n < m such that the following hold:

(i) the sequents I, = 4, Ay, and Iy, =4, Ay, are equal;
(i) the sequent I, = 4, A, is the conclusion of (b)-r in w;
(#ii) for every i € [n,m) it holds that A, is a final segment of A;.

Proof. First note that kg is not applied on this branch, because if it were then
there could not be infinitely many applications of (b)-r.

Since the proof is finite-state (cf. Corollary 1), there must be a k > 0 be such
that every A; with ¢ > k occurs infinitely often on the branch above. Denote by
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|A| the length of a given list A and let I be minimum of {|4;| : i > k}. In other
words, [ is the minimal length of the A; with i > k.

To prove the lemma, we first claim that there is an n > k such that |A,| =1
and the leftmost expression in A,, is of the form e(®) for some e. Suppose, towards
a contradiction, that this is not the case. Then there must be a u > k such that
|Au| = 1 and the leftmost expression in A, is not of the form e® for any e.
Note that (b)-r is the only rule apart from ko that can increase the length of
the succedent (when read bottom-up). It follows that for no w > u the leftmost
expression in A, is of the form e(®), contradicting the fact that (b)-r is applied
infinitely often.

Now let n > k be such that |A,| = [ and the leftmost expression of A,
is (). Since the rule (b)-r must at some point after A, be applied to e®), we
may assume without loss of generality that I3, =4, A, is the conclusion of an
application of (b)-r. By the pigeonhole principle, there must be an m > n such
that I, =4, A, and [, =4, A, are the same sequents. We claim that these
sequents satisfy the three properties above. Properties (i) and (ii) directly hold
by construction. Property (iii) follows from the fact that A, is of minimal length
and has e®) as leftmost expression.

With the above lemmas in place, we are ready for the completeness proof.

Theorem 2 (Completeness). Fvery valid sequent is provable in SGKAT™.

Proof. Given a valid sequent, we do a bottom-up proof search with the following
strategy. Throughout the procedure all leaves remain valid, in most cases by an
appeal to invertibility.

1. Apply left logical rules as long as possible. If this stage terminates, it will be
at a leaf of the form I' =4 A, where I" is exposed. We then go to stage (2).
If left logical rules remain applicable, we stay in this stage (1) forever and
create an infinite branch.

2. Apply right logical rules until one of the following happens:

(a) We reach a leaf at which no right logical rule can be applied. This means
that the leaf must be a valid sequent of the form I" =4 A such that I" is
exposed, and A is either exposed or begins with a test b such A | b # A.
We go to stage (4).

(b) If (a) does not happen, then at some point we must reach a valid sequent
of the I' = 4 e® A which together with an ancestor satisfies properties
(i) - (iii) of Lemma 10. In this case Lemma 9 is applicable. Hence we must
be at a leaf of the form I" =4 e®, A such that e® =4 0 is valid. We
then go to stage (3).

Since at some point either (a) or (b) must be the case, stage (2) always

terminates.

3. We are at a valid leaf of the form I = 4 e(® | A, where I' is exposed. If A = 0,
we apply L. Otherwise, if A # (0, we use the validity of I' =4 e®, A and
e® = 4 0 to find:

Ao[I'] C Ao[e®]o[A] = 0.
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We claim that [I'] = (). Indeed, suppose towards a contradiction that ax €
[I']- By the exposedness of I" and item (i) of Lemma 3, we would have Sz €
[I'] for some 3 € A, contradicting the statement above. Therefore, the sequent
I' = 0 is valid. We apply the rule ko and loop back to stage (1).
Stage (3) only comprises a single step and thus always terminates.

4. Let I' =4 A be the current leaf. By construction I' =4 A is valid, I" is
exposed, and A is either exposed or begins with a test b such that A [ b # A.
Note that only rules id, L, k, and kg can be applicable. By Lemma 8, at least
one of them must be applicable. If id is applicable, apply id. If | is applicable,
apply L. If k is applicable, apply k and loop back to stage (1). Note that this
application of k will have priority and is therefore invertible.

Finally, suppose that only kg is applicable. We claim that, by validity, the list
I' is not €. Indeed, since A is non-empty, and A either begins with a primitive
program p or a test b such that A [ b # A, the sequent

€:>AA

must be invalid. Hence I" must be of the form p, ©. We apply kg, which has
priority and thus is invertible, and loop back to stage (1).

Similarly to stage (3), stage (4) only comprises a single step and thus always
terminates.

We claim that the constructed derivation is fair for (b)-I. Indeed, every stage
except stage (1) terminates. Therefore, every infinite branch must either eventu-
ally remain in stage (1), or pass through stages (3) or (4) infinitely often. Since k
and ko shorten the antecedent, and no left logical rule other than (b)-/ lengthens
it, such branches must be fair.

By Corollary 2 we obtain that the subset of cyclic SGKAT-proofs is also complete.

Corollary 3. Fvery valid sequent has a reqular SGKAT *° -proof.

Proposition 2. The proof search procedure of Theorem 2 runs in
coNLOGSPACE. Hence proof search, and thus also the language inclusion problem
for GKAT-expressions, is in NLOGSPACE.

Proof (sketch). Assume without loss of generality that the initial sequent is of
the form e =4 f. We non-deterministically search for a failing branch, at each
iteration storing only the last sequent. By Lemma 7 this can be done by storing
two pointers to, respectively, the syntax trees T, and T, together with a set of
atoms. The loop check of stage (2) can be replaced by a counter. Indeed, stage
(2) must always hit a repetition after |At| - |T%| steps, where m is the number
of nodes in the syntax tree. After this repetition there must be a continuation
that reaches a repetition to which Lemma 9 applies before this stage has taken
2-|At|-|Ty| steps in total. Finally, a global counter can be used to limit the depth
of the search. Indeed, a failing branch needs at most one repetition (in stage (2),
to which kg is applied) and all other repetitions can be cut out. Hence if there
is a failing branch, there must be one of size at most 4 - |T,| - |At| - |T|.
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7 Conclusion and Future Work

In this paper we have presented a non-well-founded proof system SGKAT> for
GKAT. We have shown that the system is sound and complete with respect to
the language model. In fact, the fragment of regular proofs is already complete,
which means one can view SGKAT as a cyclic proof system. Our system is similar
to the system for Kleene Algebra in [7], but the deterministic nature of GKAT
allows us to use ordinary sequents rather than hypersequents. To deal with
the tests of GKAT every sequent is annotated by a set of atoms. Like in [7],
our completeness argument makes use of a proof search procedure. Here again
the relative simplicity of GKAT pays off: the proof search procedure induces an
NLOGSPACE decision procedure, whereas that of Kleene Algebra is in PSPACE.

The most natural question for future work is whether our system could be
used to prove the completeness of some (ordered)-algebraic axiomatisation of
GKAT. We envision using the original GKAT axioms (see [22, Figure 1]), but basing
it on inequational logic rather than equational logic. This would allow one to
use a least fixed point rule of the form

eg+y f<g
ef<yg

eliminating the need for a Salomaa-style side condition. We hope to be able to
prove the completeness of such an inequational system by translating cyclic
SGKAT-proofs into well-founded proofs in the inequational system. This is
inspired by the paper [6], where a similar strategy is used to give an alternative
proof of the left-handed completeness of Kleene Algebra.

Another relevant question is the exact complexity of the language inclu-
sion problem for GKAT-expressions. We have obtained an upper bound of
NLOGSPACE, but do not know whether it is optimal.

Finally, it would be interesting to verify the conjecture in Remark 9 above.
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Abstract. Unification has been introduced in Description Logic (DL)
as a means to detect redundancies in ontologies. In particular, it was
shown that testing unifiability in the DL £L is an NP-complete problem,
and this result has been extended in several directions. Surprisingly, it
turned out that the complexity increases to PSpace if one disallows the
use of the top concept in concept descriptions. Motivated by features of
the medical ontology SNOMED CT, we extend this result to a setting
where the top concept is disallowed, but there is a background ontology
consisting of restricted forms of concept and role inclusion axioms. We
are able to show that the presence of such axioms does not increase the
complexity of unification without top, i.e., testing for unifiability remains
a PSpace-complete problem.

Keywords: Unification - Description Logics -+ Complexity

1 Introduction

Description Logics (DLs) [10] are a prominent family of logic-based knowledge
representation languages, which offer their users a good compromise between
expressiveness and complexity of reasoning, and constitute the formal and algo-
rithmic foundation of the standard Web Ontology Language OWL2.! The DL
EL, which provides the concept constructors conjunction (1), existential restric-
tion (Fr.C'), and top concept (T), is a rather inexpressive, but nevertheless very
useful member of this family. On the one hand, the important reasoning prob-
lems, such as the subsumption and the equivalence problem, in ££ and some of
its extensions are decidable in polynomial time [8,22]. On the other hand, ££
and its tractable extensions are frequently used to define biomedical ontologies,
such as the large medical ontology SNOMED CT.2 To illustrate the use of the
top concept, whose absence plays an important role in this paper, consider the

! https://www.w3.org/ TR /owl2-overview/.
2 https://www.ihtsdo.org/snomed-ct /.
© The Author(s) 2024
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EL concept descriptions Man M 3child. T and Man M Jchild. Female of the con-
cepts Father and Father of a daughter, respectively. In the former description,
the top concept is used since no further properties of the child are to be required.

Unification in DLs has been introduced in [17] as a new inference service,
motivated by the need for detecting redundancies in ontologies, in a setting
where different ontology engineers (OEs) constructing the ontology may model
the same concepts on different levels of granularity. For example, assume that
(using the style of SNOMED CT definitions) one OE models the concept of a
viral infection of the lung as

Virallnfection M 3findingSite. LungStructure,
whereas another one models it as
LungInfection M JcausativeAgent. Virus.

Here Virallnfection and Lunglnfection are used as atomic concepts with-
out further defining them, i.e., the two OEs made different decisions
when to stop the modelling process. The resulting concept descriptions
are not equivalent, but they are nevertheless meant to represent the same
concept. They can be made equivalent by treating the concept names
Virallnfection and Lunglnfection as variables, and then substituting the first
one by Infection M causativeAgent. Virus and the second one by Infection MM
dfindingSite. LungStructure. In this case, we say that the descriptions are unifi-
able, and call the substitution that makes them equivalent a unifier. Intuitively,
such a unifier proposes definitions for the concept names that are used as vari-
ables. In [7], unification and its extension to disunification are used to construct
new medical concepts from SNOMED CT.

Unification in £L was first investigated in [14], where it was proved that decid-
ing unifiability is an NP-complete problem. The NP upper bound was shown in
that paper using a brute-force “guess and then test” NP algorithm. More practi-
cal algorithms for solving this problem and for computing unifiers were presented
in [16] and [15], where the former describes a goal-oriented transformation-based
algorithm and the latter is based on a translation to SAT. Implementations of
these two algorithms are provided by the system UEL? [13], which is also avail-
able as a plug-in for the ontology editor Protégé. At the time these algorithms
were developed, SNOMED CT was an £L ontology consisting of acyclic concept
definitions. Since such definitions can be encoded into the unification problem
(see Sect. 2.3 in [16]), algorithms for unification of ££ concept descriptions (with-
out background ontology) could be applied to SNOMED CT.

There was, however, one problem with employing these algorithms in the
context of SNOMED CT: the top concept is not used in SNOMED CT, but the
concepts generated by €L unification might contain T, even if applied to concept
descriptions not containing T. Thus, the concept descriptions produced by the

3 https:/ /sourceforge.net /projects/uel/.
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unifier are not necessarily in the style of SNOMED CT. For example, assume
that we are looking for a unifier satisfying the two subsumption constraints®

3findingSite. LungStructure T° 3findingSite. X,

IfindingSite. HeartStructure C° 3findingSite. X

It is easy to see that there is only one unifier of these two constraints, which
replaces X with T. Unification in E£7T, i.e., the fragment of ££ in which the top
constructor is disallowed, was investigated in [1,18]. Surprisingly, it turned out
that the absence of T makes unification considerably harder, both from a con-
ceptual and a computational complexity point of view. In fact, the complexity
of deciding unifiability increases from NP-complete for ££ to PSpace-complete
for ££77. The unification algorithm for ££7" introduced in [1,18] basically
proceeds as follows. It first applies the unification algorithm for ££ to com-
pute so-called local unifiers. If none of them is an ££~ " -unifier, then it tries to
augment the images of the variables by conjoining concept descriptions called
particles. The task of finding appropriate particles is reduced to solving certain
systems of linear language inclusions, which can be realized in PSpace using an
automata-based approach.

The current version of SNOMED CT consists not only of acyclic concept
definitions, but also contains more general concept inclusions (GCIs). In addi-
tion, properties of the part-of relation are no longer encoded using the so-called
SEP-triplet encoding [27], but are directly expressed via role axioms [29], which
can, for instance, be used to state that the part-of relation is transitive and that
proper-part-of is a subrole of part-of. Decidability of unification in ££ w.r.t.
a background ontology consisting of GCIs is still an open problem. In [2], it
is shown that the problem remains in NP if the ontology is cycle-restricted,
which is a condition that the current version of SNOMED CT satisfies. Exten-
sions of this result to the DL £LH g+, which additionally allows for transi-
tive roles and role inclusion axioms, were presented in [3,5], where the former
introduces a SAT-based algorithm and the latter a transformation-based one.
However, in all these algorithms, unifiers may introduce concept descriptions
containing T. In our example with the different finding site, however, the pres-
ence of the GCIs LungStructure © UpperBodyStructure and HeartStructure T
UpperBodyStructure would yield a unifier not using T, namely the one that
replaces X with UpperBodyStructure.

The purpose of this paper is to combine the approach for unification in
EL7" [1,18] with the one for unification in ELHg+ w.r.t. cycle-restricted ontolo-
gies [2,3,5], to obtain a unification algorithm for EEH;J w.r.t. cycle-restricted

ontologies. This algorithm follows the line of the one for £~ in that it basically
first generates £LH+-unifiers, which it then tries to augment with particles.

4 Instead of equivalence constraints, as in our above example and in early work on
unification in DLs, we consider here a set of subsumption constraints as unification
problem. It is easy to see that these two kinds of unification problems can be reduced
to each other [2].
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Appropriate particles are found as solutions of certain linear language inclu-
sions. However, due to the presence of GCIs and role axioms, quite a number
of non-trivial changes and additions are required. In particular, the solutions of
the systems of linear language inclusions as constructed in [1,18] cannot capture
particles that are appropriate due to the presence of an ontology. For instance, in
our example, UpperBodyStructure would be such a particle. To repair this prob-
lem, we first need to show that, in 5[17-[7721, unifiability w.r.t. a cycle-restricted
ontology can be characterized by the existence of a special type of unifiers. After-
wards, we exploit the properties of this kind of unifiers to define more sophisti-
cated systems of language inclusions, which encode the semantics of GCIs and
role axioms occurring in a background ontology. The solutions of such systems
then yield also particles that are appropriate only due to the presence of this
ontology.

While the unification problem investigated in this paper is motivated by
an application in ontology engineering, it is also of interest for unification the-
ory [19], which is concerned with unification-related properties of equational
theories. In fact, unification in DLs can be seen as a special case of unification
modulo equational theories, where the respective equational theory axiomatizes
equivalence in the DL under consideration. For ££ and £LH i+, the correspond-
ing equational theories can be found in [28]. The ones for the case without top
can be obtained from them by removing the constant 1 from the signature,
and all identities containing it from the axiomatization. The results in [1,18]
and in the present paper show that the seemingly harmless removal of a con-
stant from the equational theory may increase the complexity of the unification
problem considerably. Considering unification w.r.t. a background ontology cor-
responds to adding a finite set of ground identities to the corresponding equa-
tional theory. For the word problem, it was shown that decidability is stable
under adding finite sets of ground identities to theories such as commutativ-
ity or associativity-commutativity [11,20,24,25]. For unification, it was shown
in [12] that adding finite sets of ground identities to the theory ACUI of an
associativity-commutativity-idempotent symbol with a unit leaves the unifica-
tion problem decidable. The results in [2,3,5] can be seen as such transfer results,
but they require a restriction on the ground identities corresponding to cycle-
restrictedness.

Due to space constraints, we cannot give detailed proof of our results here.
They can be found in [9].

2 Subsumption and Unification in ELHz+ and 857‘(7_{1

First, we briefly introduce syntax and semantics of the DLs investigated in this
paper. Then, we recall a useful characterization of subsumption for these logics,
and finally define the unification problem.
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2.1 The DLs ELHyr+ and ELHL,

Starting with countably infinite sets N¢ and Ng of concept names and role
names, ELHp+-concept descriptions (for short, concepts) are built using the
concept constructors conjunction (1), existential restriction (Ir.C), and top
(T). When building EﬁH%TF—concepts, the constructor T is not available. An
ELHR+-ontology O is a finite set of general concept inclusions (GCIs) C C D,
role hierarchy axioms r C s, and transitivity axioms r or T r, where C, D are
ELHp+-concepts and 7, s are role names. In an EﬁH;;—ontology, the concepts
occurring in GCIs must be EEH;J—concepts.

The following two notions will play an important réle in our unification algo-
rithm. An atom is either a concept name or an existential restriction, and a parti-
cle is an atom of the form 3r;.3rs. - - - Ir,,. A for a concept name A, which we write
as Jw.A, where w = r1...7, is viewed as a word over the alphabet Ng. Every
ELHp+-concept C is a conjunction of atoms, where the empty conjunction repre-
sents T. These atoms are called the top-level atoms of C. The set Ats(C') consists
of all atoms (not just top-level ones) occurring in C, and Ats(O) for an ontology
O consists of the atoms of all concepts occurring in O. The set of particles of an
&CH;;—concept is defined inductively: Part(A) := {A} for each concept name
A, Part(Ir.C) := {3r.P | P € Part(C)}, and Part(CMD) := Part(C)JPart(D).
For example, if C = 3r.(3s.A N Ir.B), then Part(C) = {Irs.A,Irr.B} and
Ats(C) = {C,3s.A,3r.B, A, B}, where C' is the only top-level atom.

The semantics of £ELH+-concepts and ontologies is defined using the notion
of an interpretation T = (AZ,.7), which has a set AT # () as interpretation
domain, and assigns a subset AZ C AT to each concept name A and a binary
relation 77 C A% x AZ to each role name r. The interpretation function .7 is
extended to ELHp+-concepts as usual: TZ := AL, (C 1 D)? := CT N D%, and
(3r.C)? :={d € AT | Je.((d,e) € 77 Ne € CT)}. The interpretation Z is a model
of the ELH g +-ontology O if C £ D € O implies CT C DT, r C s € O implies
rT C st and ror C r € O implies that 7 is transitive.

2.2 Subsumption in ELH i+ and EL',H,,_;L

Given an ELHp+-ontology O and ELHp+-concepts C, D, we say that C is
subsumed by D w.r.t. O (written C Cp D) if CT C D? for all models Z of O.
They are equivalent w.r.t. O (written C =p D) if C Ep D and D Cp C.

Subsumption (and thus also equivalence) between &LHp+-concepts w.r.t.
arbitrary £LHxr+-ontologies can be decided in polynomial time [8]. In the con-
text of unification, a recursive characterization of subsumption turns out to be
useful, which for ELH i+ was first given in [5], and later reformulated in [3]. In
this paper we use the one given in [3], but before we can formulate this character-
ization, we must introduce the role hierarchy induced by an £LHx+-ontology
O: given role names r, s, we say that r is a subrole of s (written r <o s) if
rT C s holds for all models Z of O. It is easy to see that the relation <p
is the reflexive-transitive closure of the explicitly stated subrole relationships
{(r,s) | r € s € O}. We call a role name r transitive if ror Cr € O.
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The characterization of subsumption in [3] uses the notion of structural sub-
sumption: given atoms C, D, we say that C' s structurally subsumed by D w.r.t.
an ELHy+-ontology O (written C C§, D) if one of the following cases applies:

1. ¢ = D is a concept name.

2. C=3r.C',D=3s.D',r<p s, and C' Ep D'.

3. C = 3Ir.C', D = 3s.D’, and C' Cp It.D’ for some transitive role name ¢
satisfying r <o t Jp s.

Lemma 1 [3]. Let O be an ELHR+-ontology and C1,...,Cn, D1, ..., Dy atoms.
Then, C1M+--MCp Ep Dy M---M Dy, iff for every j € {1,...,m}:

1. there is an index i € {1,...,n} such that C; T, D;, or

2. there are atoms Aty, ..., Atg, At' of O (k> 0) such that:
(a) Aty M- Aty Co At
(b) for every £ € {1,...,k} there exists i € {1,...,n} with C; TF, Ate, and
(C) At/ Efg Dj.

If O is empty, then the second case in the definition of structural subsumption
can be modified to require that r = s and C’ Ty D’, whereas the third case in
the same definition as well as the second case in Lemma 1 can be removed. This
then yields the characterization of subsumption in £L£ of [16]. Since 5[:7'[7_%1 isa
fragment of ELH+, this characterization also applies to subsumption between
EEH%Z—concepts w.r.t. gﬁHﬁz—ontologies. However, in this setting, the case
k =0 in 2. cannot occur. This is a direct consequence of the following result.

Lemma 2. If O is an EEH;; -ontology and At an atom of O, then T Lo At.

2.3 Unification in ELH i+ and SﬁH,I_J_

When defining unification, we assume that the set of concept names is partitioned
into a set N¢ of concept constants and a set Ny of concept variables. Given a DL
L e {5£HR+,5£H7_J}, an L-substitution o is a mapping from a finite subset
of Ny to the set of L-concepts. The application of ¢ to an arbitrary £-concept is
defined inductively in the usual way. A concept (ontology) is ground if it does not
contain variables. A substitution o is ground if o(X) is ground for all variables
X that have an image under o.

Definition 1. Let O be a ground ontology. An L-unification problem w.r.t. O
is of the form I' = {C, C* Dy,...,C, C7 D,}, where C1,Dy,...,Cpn, D, are
L-concepts. An L-substitution o is an L-unifier of I" w.r.t. O if 0(C;) Co o(D;)
foralli € {1,...,n}. The unification problem I' is called L-unifiable w.r.t. O if
it has an L-unifier w.r.t. O.

The following example illustrates that unifiability of a given unification prob-
lem may depend on the considered DL £ and on the presence of a non-empty
ontology.
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Ezample 1. Let O = () and consider the following unification problem:
N ={3rAC’ X, u.BC'Y, 3s.XMALC Y}

Viewed as an ELHp+-unification problem, it has the unifier o with o(X) =
o(Y) = T. However, Iy does not have an SEH;';—uniﬁer w.r.t. O = (. To see
this, suppose that ¢ is such a unifier. Using Lemma 1 for the special case of an
empty ontology, we can deduce from Ju.B Ty 6(Y") that every top-level atom
of §(Y) is an existential restriction for the role u. However, we can also deduce
from 3s.6(X) M A Cy 6(Y) that every top-level atom of 6(Y) is either A or
an existential restriction for the role s. Since not both is possible, 6(Y) cannot
have any top-level atoms, and thus must be T, contradicting our assumption
that ¢ is an 5£H7;1—uniﬁer. If we define @’ := {B C 3r.A, u C s}, then the
EEH;JF—uniﬁability status of Iy changes to unifiable since ¢ with §(X) = 3r.A
and 6(Y) =3s.3r. A is an 5£H7_21—uniﬁer of Il wrt. O.

In the next section we will show how to decide unifiability of an EEH;J—
unification problem w.r.t. a cycle-restricted €£H;z1—ontology.

Definition 2. An ELHR+-ontology O is called cycle-restricted if there is no
sequence of n > 0 role names r1,...,7, € Ng and ELHR+-concept C' such that
CLCo Jdri.3ry.---3r,.C.

As stated in [5] (and proved in [6]), one can test in polynomial time whether a
given ELHxp+-ontology is cycle-restricted or not.

According to [5,18], we can without loss of generality assume that the given
ontology and the unification problem are flat. An €£H7_21—atom is flat if it is a
concept name or of the form 3r. A for a concept name A. A GCI C1M---1NC,, € D
or subsumption constraint C; M---MC, C’ D is flat if Cy,...,C, and D are flat
EEH;JF—atoms. Finally, an EEH;J—ontology or SEH;JF—uniﬁcation problem is
flat if all it elements are flat.

The following result for flat, cycle-restricted £ LHx+-ontologies will turn out
to be quite useful in the next section. It basically follows from the proof of
Lemma 8 in [4].

Lemma 3. Let O be a flat, cycle-restricted ELHp+-ontology, A € N¢ and Ir.C
an ELHR+-atom. Then, A Cp Ir.C iff there exists Ju.B € Ats(O) such that
BLCpC, and

- ACop Ju.B and u <p r, or
- A Cp 3t.B for a transitive role t with u <o t 1o r.

3 The Unification Algorithm for ¢‘,'L’,7'L,_;JI_r

In the following, we assume that O is a flat and cycle-restricted £ £H7E1—ontology
and [ is a flat £ E'H;J-uniﬁcation problem. We introduce an algorithm that can
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test whether I" has an £ EH;J -unifier and needs only polynomial space for this
task. This algorithm follows the approach developed in [18] for unification in
EL7T, but must take the ontology into account, which means that it must deal
with a considerably more complex characterization of subsumption (see Lemma
1 and our remarks on how the characterization can be simplified if O = 0).

Before presenting our new approach, we briefly sketch the one employed
in [18]. The original NP procedure for unification in ££ [16] is based on the
(non-trivial) observation that an £L-unification problem I" has a unifier iff it
has a local unifier, i.e., one that is built using only atoms occurring in the unifi-
cation problem. The procedure guesses an appropriate representation of a local
substitution, and then checks by £L reasoning whether it really is a unifier.
Basically, to guess a local substitution o, one must guess for every variable X
and non-variable atom C of I whether o(X) Cy o(C) is supposed to hold. A
subsumption mapping T describing a local unifier o more generally guesses for
every pair C, D of atoms whether o(C) Ty o(D) is supposed to hold. The restric-
tions imposed on such subsumption mappings ensure that the local substitution
induced by such a mapping is indeed an £L-unifier of I" [18], i.e., the subsequent
EL reasoning testing this can be dispensed with. The local unifier obtained from
a subsumption mapping 7 need not be an EL " -unifier. To test for the exis-
tence of an EL~ " -unifier related to 7, the subsumption mapping 7 together with
the original unification problem I" is then used to construct a new unification
problem Ap ., in which only variables can occur on the right-hand side of sub-
sumption constraints. Existence of an ££7 -unifier of A r,» that is compatible
with 7 is then reduced in [18] to the existence of an admissible solution of a
corresponding set Jr, of linear language inclusions. The latter problem can in
turn be reduced in polynomial time to checking emptiness of alternating finite
automata with e-transitions [18], which is a PSpace-complete problem [23].

In this section we show how this approach can be extended from £ to
&CH;; w.r.t. cycle-restricted ontologies. We start by introducing subsumption
mappings and the induced unification problems of the form A .

3.1 The Subsumption Mapping

Let Ats(I',O) be the set of atoms occurring in I" or O. Due to the third case in
the definition of structural subsumption, we also need to consider certain atoms
that are not explicitly present in the input:

Atsy (I, O) := Ats(I,O) U {3t.C | 3s.C € Ats(I,0), t Jo s, t is transitive}.

A non-variable atom is an atom in Ats. (I, O) that is not a variable. We denote
the set of all such atoms as At,, (I, O). A mapping of the form 7 : Ats;, (I, O) x
Ats (I O) — {0, 1} induces an assignment S that maps variables in I" to sets
of non-variable atoms in Ats;,. (I", O):

ST(X) = {D € Ato, (I, 0) | 7(X, D) = 1}.
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This assignment induces the relation
>gr:={(X,Y) € Vars(I') x Vars(I') | Y occurs in an atom of S7(X)}.

We say that S7 is acyclic if the transitive closure of >g- is irreflexive, and thus
a strict partial order, which we denote as >,. If S7 is acyclic, then it induces a
substitution o, defined by induction on >:

— If X is minimal w.r.t. >,, then o,(X) := HDGST(X) D.

— Otherwise, assuming that o, (Y") has already been defined for all Y such that
X >-Y, one defines 0. (X) :=[pegr(x) 0- (D).

The conditions imposed on a subsumption mapping 7 ensure that the induced
substitution o, is an ELHz+-unifier of I'. In order to simplify the definition of
these conditions, we introduce the following notation (for atoms 3r.C, 3s.D):

F(3r.C,3s.D):={D |if r Qo s} U{3t.D | r 4o t Jp s, t transitive}.

Basically, this set collects all concepts F' such that C' T F implies Ir.C' ¢, 3s.D
(see the second and third case in the definition of CJ)).

Definition 3. The mapping 7 : Atsy (I, O) x Atsy, (I, O) — {0,1} is called a
subsumption mapping for I" w.r.t. O if it satisfies the following conditions:

1. It respects the properties of subsumption w.r.t. O:
(a) 7(D,D) =1, for each D € Ats (I, O).
(b) For all Dy,Dy,Ds € Atsy.(I',O), if 7(D1,D3) = 7(Ds,D3) = 1 then
T(Dl, Dg) =1.
(¢) T(C,D) =1 iff C Cp D, for all ground atoms C,D € Ats;(I', O).
(d) For each concept constant A € Ats(I,O), role name r, and variable X
with Ir. X € Atsy(I'):
i. (A, 3r.X) =1 iff> there is an atom Ju.B of O such that (B, X) =
1, and
- ACp Ju.B and u <o r, or
- A Cp 3t.B for a transitive role t with u <o t <o r.
. T(Ir. X, A) =1 iff
— there are atoms Iry. Ay, ..., Irg. Ax of O (k> 0) and atoms F; €
F(Tr.X,3re.Ap) (1 <L <E) such that:
T(X,Fz) =1 (]. <t < k) and Jri A0 N 3rg. A Co A
(e) For all role names r,s € Ngr, variables X, and atoms Ir.C,3s.D €
Atsy (I') with C =X or D=X: 7(3r.C,3s.D) =1 iff
- there exists F' € F(3r.C,3s.D) such that 7(C,F) =1, or
— there are atoms Ir1.Aq, ..., rg. Ak, Ju.B of O (k > 0), atoms F; €
F(3r.C,3re.Ay) (1 < £ < k), and an atom F € F(Fu.B,3s.D),
such that: T(C,Fy) = 1(1 < € < k), FIr. A0 N 3Irg. A Co
Ju.B, 7(B,F)=1.

5 This condition is justified by Lemma 3.
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2. The assignment S7 is acyclic. Note that this means that T induces the
ELHp+-substitution o7 .

3. The substitution o is an ELHR+ -unifier of I' w.r.t. O. In combination with
the conditions already introduced, this is expressed by the following conditions
for each subsumption constraint C;1---MNC, C' D e I':

(a) If D is a non-variable atom, then either 7(C;, D) = 1 for some i €
{1,...,n}, or there are atoms Aty,..., At, At' of O (k > 0) such that:
— Aty M- Aty Ce At
— for each £ € {1,...,k} there isi € {1,...,n} s.t. 7(C;, Aty) =1, and
- 7(At',D) = 1.
(b) If D is a variable and 7(D,C) = 1 for a non-variable atom C €
Aty (I,0), then C1 T---MC,, CF C must satisfy the previous case.

By using the close relationship between this definition and the characterization
of subsumption in Lemma 1, one can show that I" has an ££LH z+-unifier w.r.t.
O iff there is a subsumption mapping for I" w.r.t. O. In the proof of the if-
direction, one shows that the substitution induced by the subsumption mapping
is indeed a unifier. For the other direction, one takes a unifier o and shows
that the mapping 7 satisfying 7(C, D) = 1 iff 6(C) Cp o(D) is a subsumption
mapping for I' w.r.t. O.

However, using subsumption mappings to characterize unifiability in £ ﬁH;J
requires more effort. Together with the unification problem I', a subsumption
mapping 7 yields a simpler unification problem Ap, := Ar U A, where

Ar={Cin---NC,C"Xel'|XeNy} and A, :={CC’ X |7(C,X)=1}.
In addition, any substitution ¢ induces an assignment S of the form:
S9(X):={D € At,, (I, 0) | 0(X) CEp a(D)}.

We write S™ < 57 if S7(X) C S7(X) holds for all variables X. In this case we
say that o is compatible with 7.
The following result gives a characterization of the existence of an £ EH;J—

unifier w.r.t. an EEH;;—ontology.

Proposition 1. Let O be a flat and cycle-restricted EEH,,ETF -ontology and I' a

flat EEH;J -unification problem. Then, I' has an 5£H7_J -unifier w.r.t. O iff
there exists a subsumption mapping T for I' w.r.t. O such that Ar,. has an

5[,7'[7721 ~unifier v w.r.t. O that is compatible with T.
Ezample 2. Let O = () and consider the following unification problem:
Ip:={3r.B C’3rY, Is.XN3IrAC’ Y}.

Due to Condition 3 in Definition 3 and the fact that O is empty, any subsump-
tion mapping 7 must satisfy 7(3r.B,3r.Y) = 1. Condition le then implies that
7(B,Y) = 1 must hold as well. We can conclude that, for any subsumption map-
ping 7, the set Ar, . contains at least the subsumption constraints B C* Y and
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35.X M 3Ir.AC?Y. Using an argument similar to the one employed in Example
1, one can show that such a set A, » cannot have an 5£H721—uniﬁer w.r.t. 0.

Definition 3 also tells us that Condition 3b does not apply to the constraints
BC?’Y and 3s. XM 3Ir.AC’Y as long as there is no non-variable atom C with
7(Y,C) = 1. Hence, it is easy to see that there also is a subsumption mapping
7 that has only these two constraints in Ap, - since the only other mandatory
values 1 are the ones required by la. For the ontology O” = {B C Jr.A}, the
set Ap, » then has an EEH;Q—uniﬁer w.r.t. O, which maps Y to Jr.A. This
unifier is compatible with 7 since the subsumption mapping 7 that yields value
1 only if required satisfies ST(X) = S7(Y) = (). Thus, by Lemma 1, I'; has an
5£H7_;r—uniﬁer w.r.t. O”. Note that this unifier is not o, since o, in this case
assigns T to X and Y.

3.2 Translation into Language Inclusions

Linear language inclusions are a special case of the linear language equations
considered in [17] in the context of unification in the DL FLy. In contrast to the
general case, where solvability is an ExpTime-complete problem [17], the linear
language inclusions introduced in [18] in the context of unification in E£~' have
a PSpace-complete solvability problem [18].

Definition 4. Let X1,...,X, be a finite set of indeterminates. A linear lan-
guage inclusion over this set of indeterminates and the alphabet Ng is an expres-

sion of the form
X; CLoULX U ---UL,X,,

where i € {1,...,n} and each L; C {e}UNg (0 < j <n). As usual, the symbol e
denotes the empty word. A solution 0 of such an inclusion assigns sets of words
0(X;) € NR" to each indeterminate X; such that 6(X;) C LoU L1-6(X;)U---U
L,-0(X,), where “” denotes concatenation of languages. The solution 6 is finite
if 0(X;) is a finite set for alli € {1,...,n}.

Checking whether Ap; has an EﬁH;;—uniﬁer w.r.t. O that is compatible
with a given subsumption mapping 7 can be reduced to solving a system jlqj of
such linear language inclusion. The basic idea is that, for each concept variable
X and concept constant A, we introduce an indeterminate X 4. Intuitively, the
system 31(277 is constructed such that the following holds:

— if y is an EEH;J—uniﬁer of A, compatible with 7, then there is an assign-
ment 6, satisfying 0,(Xa) = {w | Jw.A € Part(y(X))} that is a finite
solution of the system 3(1277.

Since v is an & EH;';—uniﬁer, of which we can assume without loss of generality
that it is ground [19], the solution 6, satisfies an additional property: for every
variable X there is a concept constant A such that 6.(Xa) # 0. We call a
solution of ﬁlqﬁ satisfying this property admissible. Conversely, finite, admissible
solutions of FJQ’T yield an appropriate unifier of Ar ;:
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— if 3?7 has a finite, admissible solution, then it has such a solution # that

yields an SﬁH;ﬁ—uniﬁer vo of Ap; that is compatible with 7. This unifier is

defined similarly to o, but using particles provided by @ for padding:
e if X is minimal w.r.t. >,, then

wX) = [1 pn[] [1 3wa

DeS7™(X) AeNc web(Xa)
e if v5(Y) has already been defined for all Y such that X >, Y, then

wX) =[] woOn[] [] Fwa

DeS7(X) A€ENc web(X 4)

Basically, to define the linear language inclusions in 31(2,7, we consider the follow-
ing situation: given a particle Jw.A € Part(y(X)) and a constraint Cy M- -1
Cn, C" X € Ar,, we know (by Lemma 2 in [18]) that v(C1)M- - -My(C,,) Co 3w.A
holds. Hence, the idea is to encode, within the inclusions in TI]Q’T, whether a con-
junction of atoms and a particle satisfy the characterization of subsumption in
Lemma 1.

For the case of an empty ontology, the construction of the system 3%7 is rel-
atively straightforward since the characterization of subsumption is quite simple
in this case. As described in [18], for each concept constant A € N¢ and each
subsumption constraint s = C; M---MC, C’ X in Ap 7, alinear inclusion i4(s)
of the following form is added to J%T:

{r}fa(C’) if C =3Fr.C",

X4 C fa(Cr)U---U fa(Cy), where fa(C) = Ya if C =Y €Ny,
A C falCy 4(Cy), where fy — ) fooa
0 if C'e Nc \ {4}.

Ezample 3. Consider the system Ap,, = {B C7 V,3s.X N 3IrA C’ Y,...}
from Example 2. The first subsumption constraint yields the language inclusions
Y4 C 0 and Y C {e}, and the second yields Y4 C {s} X4 U {r}{ec} and Y C
{s}Xp U {r}0. There are no language inclusions constraining X4 or Xp. Any
solution 6 of 3%2,7 thus must satisfy 8(Ya) = 0. If 6 is admissible, then 6(Yg)
must be non-empty. The first inclusion for Y says that 6(Ypg) consists of the
empty word, whereas the second says that every element of 8(Yp) must start
with the letter s. Thus, J?ﬂzﬁ cannot have an admissible solution.

To take a non-empty ontology into account, the right-hand sides of the lan-
guage inclusions must be extended. Our new translation yields linear language
inclusions 1% (s) of the form

Xa CfA(C)U--- U fA(Cn) U Uals), (1)
where f%(C) differs from f4(C) in the way existential restrictions are treated:

[a@r.C") = L,.fa(C") where L, := {s € Nr | r <o s}.
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This modification of f4 to f} takes care of the role hierarchy.

Example 4. For instance, if in the system of Example 3 we replace B C’ Y
with Ju.X C7 Y, then the language inclusions corresponding to this constraint
are Y4 C {u}X4 and Yp C {u}Xp. The new system again does not have an
admissible solution. However, if we consider an ontology O containing u C s,
then the new translation yields the language inclusions Y4 C {u,s}X4 and
Y C {u,s}Xp for this constraint. Consequently, the new system of language
inclusions has a finite, admissible solution, which reflects the fact that the system
of subsumption constraints has an SEH;;—uniﬁer w.r.t. O.

The GCIs and transitivity axioms of the ontology are taken care of by the
additional term U4 (s) in (1). This term uses additional types of indeterminates
whose meaning is encoded using additional language inclusions. Indeterminates
of the form Zp_, 4, where A, B are concept constants occurring in I" or O, are
supposed to represent languages containing only words w such that B Cp Jw.A.
This intuition is formalized by the set of linear inclusions J¢, which consists of
one language inclusion for each indeterminate Zg_, 4 having the following form:

ZpACLU U {T}ZB’HA> (2)

(r,B")eI(B)
where I(B) := {(r,B’) € Ng x (Ats(O) N N¢) | B Cp In.B'} and L := {e}
if B Co A, and L := () otherwise. The set of linear inclusions Jp captures

subsumptions of the form B C» Jw.A in the following sense.
Lemma 4. Let O be a flat, cycle-restricted ELHyp+-ontology.

1. If 0 is a solution of Jo, then w € (Zp_, 4) implies B Cp Jw.A.
2. If we define 0(Zp—a) := {w € NR* | B Cp Jw.A}, then 0 is a finite solution

Of :‘o.

Ezample 5. Consider again the system Ar, . of Example 3, but replace B C’ Y
with 3r.B C’ Y. The language inclusions corresponding to this constraint are
Y4 C {r}0 and Yg C {r}{e}. The new system again does not have an admissible
solution. However, if we consider the ontology O = {B C A}, then there are
solutions 6 of Jp that satisfy ¢ € 6(Zp_.4). Thus, if we extend the inclusion
Y4 C {r}0 obtained from Ir.B C* Y to Y4 C {r}0 U {r}Zp_ , then the new
system has a solution 6 such that r € 6(Y,) since the other inclusion for Yy is
Y4 C {s}X4 U {r}{e}. This implies that there is an admissible solution since
there are no language inclusions constraining X 4 or Xp.

To deal with transitivity axioms, we introduce additional indeterminates of
the form X 4 ;, which are constrained by the following linear language inclusions:
ia4(s) = Xat C far(Cr)U U fa(Cn) U Ua(s) where

fa(C) HC=3r.C"Ar<ot,
fas(C):=qYa, fC=Y €Ny,

0 otherwise.
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Intuitively, the difference between i*(s) and i .(s) is that, given a particle
3t.3w. A satistying o(C1)M---No(Cp) Co It.3w. A, the right-hand side of i4 ,(s)
is designed to recognize w instead of tw.

Example 6. Assume that
Ar,={3rBC"Y,3s.XN3rAC’Y,3t.BC’ X}.

In addition, consider the ontology O = {s C ,t C r}. Since 3r.B C’ Y yields
the language inclusion Y4 C {r}@, any solution 6 of 3?7 must satisfy 6(Ya) =
(. Hence, if 0 is admissible, then 8(Yg) # 0. In the presence of O, the new

translation also yields the inclusions:
Y C {rHe}, Y C {s,t,r}XpU{r}l and Xp C {t,r}H{c}.

Together with 8(Yg) # (), the first of these inclusions yields 6(Yg) = {r}. Thus,
the second inclusion implies that € € §(X ), and thus 6 does not solve the third
inclusion. Thus, 3?7 cannot have an admissible solution, corresponding to the

fact that Ar, does not have an EEH;J—uniﬁer w.r.t. O.

However, if we add the transitivity axiom t ot T t to O, then Ap . has
an S,CH;J—uniﬁer ~ with y(X) = 3¢t.B and v(Y) = 3r.B w.r.t. this ontology.
The inclusion ip4(s) = Xps C {e}, obtained from s = J.B C’ X, admits
solutions 0 with 0(Xp ;) = {c}. Hence, if we extend the language inclusion
Y C {s,t,7}Xp U {r}d to the new one

Y C {s,t,r} XpgU{r}0u{r}Xp.

that takes transitivity of ¢ into account, then the new system of language inclu-
sions has an admissible solution with 6(Yz) = {r} and 6(Xp) = {t}, which
corresponds to the unifier ~.

Since the definitions of the terms U4 (s) and U4 +(s) are quite long and tech-
nical, we refer to [9] for exact definitions and detailed explanations motivating
them. Let TJ?T be the system of linear language inclusions consisting of J» and
the inclusions % (s) and i4 ;(s) for every subsumption constraint s in A .. Note
that the definition of these language inclusions does not only depend on Ap .,
but also on 7 itself (see Definition 4.17 in [9] for the exact definition).

Proposition 2. Let T be a subsumption mapping for I' w.r.t. O. The unification
problem Ap . has an 557'(7_21 -unifier v w.r.t. O that is compatible with T iff the
system of linear language inclusions 31(277 has a finite, admissible solution.

The proof of the only-if direction of this proposition makes use of the fact
that we can assume without loss of generality that v is a simple unifier. In fact,
this is already taken into account in the definition of qu,T (see [9]).

Definition 5. The EEH;J -unifier v of Arr w.r.t. O is called simple if, for all
c,n---NC,C" X e Ap . and 3w.A € Part(vy(X)), the following holds:
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1. there exists i,1 < i < n such that
(a) C; is a ground atom and C; T, Jw. A, or
(b) C; =Y is a variable and Jw.A € Part(y(C;)), or
(c) C; =3rY for a variable Y, w = sw’ for some s € Ng and w’ € NR*, and
- Jw'.A € Part(v(Y)) and r <o s, or
- 3t.3w".A € Part(v(Y)) for a transitive role t s.t. r 4o t <o s; or
2. There are atoms Aty, ..., Aty, At' of O (k >0) such that:
(a) Aty M---1 Aty Co At
(b) forallt € {1,... k}, there exists i € {1,...,n} s.t. 7(C;, Aty) =1, and
(c) At' T Fw.A.

Lemma 5. If I' is an SEH;;: -unification problem that is unifiable w.r.t. O,
then there exists a subsumption mapping T for I' w.r.t. O such that Ar; has a
simple EEH;J -unifier o w.r.t. O that is compatible with T.

3.3 The PSpace Algorithm

Using the results described in the previous two subsections, we can construct
an NPSpace decision procedure for unification in £ EH;Q w.r.t. cycle-restricted
SCH%Z—ontologies. Due to Savitch’s theorem [26], this implies that the problem
is also in PSpace.

Given an input consisting of an EﬁHﬁz—uniﬁcation problem and a cycle-
restricted 5/5’}-[7_;—ontology, the algorithm transforms the ontology and the uni-
fication problem into flat ones, which we denote as I' and O. It then proceeds
as follows:

1. It guesses a subsumption mapping 7 for I" w.r.t. O. If no such mapping exists,
then it fails.

2. It transforms I into A -, and then translates the latter into the set of linear
language inclusions TJ]Q’T.

3. Finally, the algorithm answers “yes” iff HIQJ has a finite, admissible solution.

Flattening can be done in polynomial time and preserves unifiability [5,18].
A mapping 7 : Atsy (I, O) x Atsy(I,0O) — {0,1} can be guessed in non-
deterministic polynomial time, and checking whether it satisfies the properties
of a subsumption mapping (see Definition 3) can clearly also be realized within
polynomial space, as can the translations into Ap; and 31(2,7. Finally, as shown
in [18], testing for the existence of a finite, admissible solution of 31(277 can be
reduced in polynomial time to checking emptiness of alternating finite automata
with e-transitions, which is a PSpace-complete problem [23]. This shows that
the introduced algorithm really is an NPSpace algorithm. Its correctness is an
immediate consequence of Propositions 1 and 2. Since PSpace-hardness already
holds for the special case of an empty ontology, we thus have shown the following
main result of this paper.

Theorem 1. Deciding unifiability of EEH;J -unification problems w.r.t. cycle-
restricted EEH;Q -ontologies is PSpace-complete.
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4 Conclusion

We have shown that the approach for obtaining a PSpace decision procedure for
EL " -unification without a background ontology [18] can be