

University of Birmingham

Mechanised Uniform Interpolation for Modal Logics
K, GL, and iSL
Férée, Hugo; van der Giessen, Iris; van Gool, Sam; Shillito, Ian

DOI:
10.1007/978-3-031-63501-4_3

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Férée, H, van der Giessen, I, van Gool, S & Shillito, I 2024, Mechanised Uniform Interpolation for Modal Logics
K, GL, and iSL. in C Benzmüller, MJH Heule & RA Schmidt (eds), Automated Reasoning: 12th International Joint
Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part II. vol. 2, Lecture Notes in Computer
Science, vol. 14740, Springer, pp. 43-60. https://doi.org/10.1007/978-3-031-63501-4_3

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 04. Aug. 2024

https://doi.org/10.1007/978-3-031-63501-4_3
https://doi.org/10.1007/978-3-031-63501-4_3
https://birmingham.elsevierpure.com/en/publications/f5aa8753-b509-40bb-a909-185230af1fb1

Christoph Benzmüller
Marijn J. H. Heule
Renate A. Schmidt (Eds.)

 123

LN
AI

 1
47

40

12th International Joint Conference, IJCAR 2024
Nancy, France, July 3–6, 2024
Proceedings, Part II

Automated Reasoning

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14740
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Christoph Benzmüller · Marijn J. H. Heule ·
Renate A. Schmidt
Editors

Automated Reasoning
12th International Joint Conference, IJCAR 2024
Nancy, France, July 3–6, 2024
Proceedings, Part II

Editors
Christoph Benzmüller
Otto-Friedrich-Universität Bamberg
Bamberg, Germany

Renate A. Schmidt
University of Manchester
Manchester, UK

Marijn J. H. Heule
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-63500-7 ISBN 978-3-031-63501-4 (eBook)
https://doi.org/10.1007/978-3-031-63501-4

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3392-3093
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.1007/978-3-031-63501-4
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers of the 12th International Joint Conference on Auto-
mated Reasoning (IJCAR) held in Nancy, France, during July 3–6, 2024. IJCAR is the
premier international joint conference on all aspects of automated reasoning, including
foundations, implementations, and applications, comprising several leading conferences
and workshops. IJCAR 2024 brought together the Conference on Automated Deduction
(CADE), the International Symposium on Frontiers of Combining Systems (FroCoS),
and the International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX).

Previous IJCAR conferences were held in Siena, Italy (2001), Cork, Ireland (2004),
Seattle, USA (2006), Sydney, Australia (2008), Edinburgh, UK (2010), Manchester, UK
(2012), Vienna, Austria (2014), Coimbra, Portugal (2016), Oxford, UK (2018), Paris,
France (2020, virtual), and Haifa, Israel (2022).

IJCAR 2024 received 115 submissions (130 abstracts) out of which 45 papers were
accepted (with an overall acceptance rate of 39%): 39 regular papers (out of 96 regular
papers submitted, resulting in a regular paper acceptance rate of 41%) and 6 short
papers (out of 19 short papers submitted, resulting in a short paper acceptance rate of
31%). Each submission was assigned to at least three Program Committee members and
was reviewed in single-blind mode. All submissions were evaluated according to the
following criteria: relevance, originality, significance, correctness, and readability. The
review process included a feedback/rebuttal period, during which authors had the option
to respond to reviewer comments.

In addition to the accepted papers, the IJCAR 2024 program included three invited
talks:

• Jeremy Avigad (Carnegie Mellon University, USA) on “Automated Reasoning for
Mathematics”,

• Laura Kovács (TU Wien, Austria) on “Induction in Saturation”, and
• Geoff Sutcliffe (University ofMiami, USA) on “Stepping Stones in the TPTPWorld”.

This year marks the 30th anniversary of the CADE ATP System Competition
(CASC), which was conceived in 1994 after CADE-12 in Nancy, France, when Christian
Suttner and Geoff Sutcliffe were sitting on a bench under a tree in Parc de la Pépinière. In
the 28 competitions since then, CASC has been a catalyst for research and development,
providing an inspiring environment for personal interaction between ATP researchers
and users. A special event took place to celebrate this anniversary.

In addition to the main programme, IJCAR 2024 hosted ten workshops, which
took place on July 1–2, and two systems competitions (CASC and Termination). The
SAT/SMT/AR 2024 Summer School was held in Nancy the week prior to IJCAR 2024.

The Best Paper Award of IJCAR 2024 went to Hugo Férée, Iris van der Giessen,
Sam van Gool, and Ian Shillito for the paper “Mechanised Uniform Interpolation for

vi Preface

Modal Logics K, GL, and iSL”. The Best Student Paper Award went to Johannes Nieder-
hauser (with Chad E. Brown and Cezary Kaliszyk) for the paper entitled “Tableaux for
Automated Reasoning in Dependently-Typed Higher-Order Logic”.

Another highlight of the conference was the presentation of the 2024 Herbrand
Award for DistinguishedContributions toAutomatedReasoning toArminBiere (Albert-
Ludwigs-University Freiburg, Germany) in recognition of “his outstanding contributions
to satisfiability solving, including innovative applications, methods for formula pre- and
in-processing and proof generation, and a series of award-winning solvers, with deep
impact on model checking and verification.”

The 2024 Bill McCune PhD Award was given to Katherine Kosaian for the PhD
thesis “Formally Verifying Algorithms for Real Quantifier Elimination”, completed at
Carnegie Mellon University, USA, in 2023.

The main institutions supporting IJCAR 2024 were the University of Lorraine and
the Inria research center at the University of Lorraine. We also thank as sponsors: the
research laboratory for computer science in Nancy (LORIA), a joint research unit of the
University of Lorraine,CNRS, and Inria, its FormalMethodsDepartment, andMétropole
du Grand Nancy. For hosting the conference, we thank IDMC Nancy.

We would also like to acknowledge the generous sponsorship of Springer and Iman-
dra Inc., and the support by EasyChair. Finally, we are indebted to the entire IJCAR 2024
OrganizingTeam for their assistancewith the local organization andgeneralmanagement
of the conference, especially Didier Galmiche, Stephan Merz, Christophe Ringeissen
(Conference Co-Chairs), Sophie Tourret (Workshop, Tutorial and Competition Chair),
Peter Lammich (PublicityChair) andAnne-LiseCharbonnier andSabrinaLemaire (main
administrative support).

May 2024 Christoph Benzmüller
Marijn J. H. Heule
Renate A. Schmidt

Organization

Conference Chairs

Didier Galmiche University of Lorraine, France
Stephan Merz Inria, University of Lorraine, France
Christophe Ringeissen Inria, University of Lorraine, France

Program Committee Chairs

Christoph Benzmüller Otto-Friedrich-Universität Bamberg and FU
Berlin, Germany

Marijn J. H. Heule Carnegie Mellon University, USA
Renate A. Schmidt University of Manchester, UK

Workshop, Tutorial and Competition Chair

Sophie Tourret Inria, France and Max Planck Institute for
Informatics, Germany

Publicity Chair

Peter Lammich University of Twente, The Netherlands

Local Arrangements

Anne-Lise Charbonnier Inria, France
Sabrina Lemaire Inria, France

Steering Committee

Arnon Avron Tel-Aviv University, Israel
Franz Baader TU Dresden, Germany
Jürgen Giesl RWTH Aachen University, Germany
Marijn J. H. Heule Carnegie Mellon University, USA

viii Organization

Lawrence Paulson University of Cambridge, UK
Elaine Pimentel University College London, UK
Christophe Ringeissen Inria, University of Lorraine, France
Renate A. Schmidt University of Manchester, UK

Program Committee

Franz Baader TU Dresden, Germany
Haniel Barbosa Universidade Federal de Minas Gerais, Brazil
Christoph Benzmüller Otto-Friedrich-Universität Bamberg and FU

Berlin, Germany
Armin Biere University of Freiburg, Germany
Nikolaj Bjørner Microsoft, USA
Jasmin Blanchette Ludwig-Maximilians-Universität München,

Germany
Maria Paola Bonacina Università degli Studi di Verona, Italy
Florent Capelli Université d’Artois, France
Agata Ciabattoni TU Wien, Austria
Clare Dixon University of Manchester, UK
Pascal Fontaine Université de Liège, Belgium
Carsten Fuhs Birkbeck, University of London, UK
Didier Galmiche University of Lorraine, France
Silvio Ghilardi Università degli Studi di Milano, Italy
Jürgen Giesl RWTH Aachen University, Germany
Arie Gurfinkel University of Waterloo, Canada
Marijn J. H. Heule Carnegie Mellon University, USA
Andrzej Indrzejczak University of Lodz, Poland
Moa Johansson Chalmers University of Technology, Sweden
Daniela Kaufmann TU Wien, Austria
Patrick Koopmann Vrije Universiteit Amsterdam, The Netherlands
Konstantin Korovin University of Manchester, UK
Peter Lammich University of Twente, The Netherlands
Martin Lange University of Kassel, Germany
Tim Lyon Technische Universität Dresden, Germany
Kuldeep S. Meel University of Toronto, Canada
Stephan Merz Inria, University of Lorraine, France
Cláudia Nalon University of Brasília, Brazil
Aina Niemetz Stanford University, USA
Albert Oliveras Universitat Politècnica de Catalunya, Spain
Xavier Parent TU Wien, Austria
Nicolas Peltier CNRS, Laboratory of Informatics of Grenoble,

France

Organization ix

Rafael Peñaloza University of Milano-Bicocca, Italy
Elaine Pimentel University College London, UK
André Platzer Karlsruhe Institute of Technology, Germany
Andrei Popescu University of Sheffield, UK
Florian Rabe FAU Erlangen-Nürnberg, Germany
Giles Reger Amazon Web Services, USA and University of

Manchester, UK
Giselle Reis Carnegie Mellon University, Qatar
Andrew Reynolds University of Iowa, USA
Christophe Ringeissen Inria, University of Lorraine, France
Philipp Rümmer University of Regensburg, Germany
Uli Sattler University of Manchester, UK
Tanja Schindler University of Basel, Switzerland
Renate A. Schmidt University of Manchester. UK
Claudia Schon Hochschule Trier, Germany
Stephan Schulz DHBW Stuttgart, Germany
Roberto Sebastiani University of Trento, Italy
Martina Seidl Johannes Kepler University Linz, Austria
Viorica Sofronie-Stokkermans University of Koblenz, Germany
Alexander Steen University of Greifswald, Germany
Martin Suda Czech Technical University in Prague, Czech

Republic
Yong Kiam Tan Institute for Infocomm Research, A*STAR,

Singapore
Sophie Tourret Inria, France and Max Planck Institute for

Informatics, Germany
Josef Urban Czech Technical University in Prague, Czech

Republic
Uwe Waldmann Max Planck Institute for Informatics, Germany
Christoph Weidenbach Max Planck Institute for Informatics, Germany
Sarah Winkler Free University of Bozen-Bolzano, Italy
Yoni Zohar Bar-Ilan University, Israel

Additional Reviewers

Noah Abou El Wafa
Takahito Aoto
Martin Avanzini
Philippe Balbiani
Lasse Blaauwbroek
Frédéric Blanqui
Thierry Boy de La Tour

Marvin Brieger
Martin Bromberger
James Brotherston
Chad E. Brown
Florian Bruse
Filip Bártek
Julie Cailler

x Organization

Cameron Calk
Christophe Chareton
Jiaoyan Chen
Karel Chvalovský
Tiziano Dalmonte
Anupam Das
Martin Desharnais
Paulius Dilkas
Marie Duflot
Yotam Dvir
Chelsea Edmonds
Sólrún Halla Einarsdóttir
Clemens Eisenhofer
Zafer Esen
Camillo Fiorentini
Mathias Fleury
Stef Frijters
Florian Frohn
Nikolaos Galatos
Alessandro Gianola
Matt Griffin
Alberto Griggio
Liye Guo
Raúl Gutiérrez
Xavier Généreux
Hans-Dieter Hiep
Jochen Hoenicke
Jonathan Huerta y Munive
Ullrich Hustadt
Cezary Kaliszyk
Jan-Christoph Kassing
Michael Kinyon
Lydia Kondylidou
Boris Konev
George Kourtis
Francesco Kriegel
Falko Kötter
Timo Lang
Jonathan Laurent
Daniel Le Berre
Jannis Limperg
Xinghan Liu

Anela Lolic
Etienne Lozes
Salvador Lucas
Andreas Lööw
Kenji Maillard
Sérgio Marcelino
Andrew M. Marshall
Gabriele Masina
Marcel Moosbrugger
Barbara Morawska
Johannes Oetsch
Eugenio Orlandelli
Jens Otten
Adam Pease
Bartosz Piotrowski
Enguerrand Prebet
Siddharth Priya
Long Qian
Jakob Rath
Colin Rothgang
Reuben Rowe
Jan Frederik Schaefer
Johannes Schoisswohl
Marcel Schütz
Florian Sextl
Ian Shillito
Nicholas Smallbone
Giuseppe Spallitta
Sergei Stepanenko
Georg Struth
Matteo Tesi
Guilherme Toledo
Patrick Trentin
Hari Govind Vediramana Krishnan
Laurent Vigneron
Renaud Vilmart
Dominik Wehr
Tobias Winkler
Frank Wolter
Akihisa Yamada
Michal Zawidzki

Contents – Part II

Intuitionistic Logics and Modal Logics

Model Construction for Modal Clauses . 3
Ullrich Hustadt, Fabio Papacchini, Cláudia Nalon, and Clare Dixon

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic
with the Subformula Property . 24

Camillo Fiorentini and Mauro Ferrari

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 43
Hugo Férée, Iris van der Giessen, Sam van Gool, and Ian Shillito

Skolemisation for Intuitionistic Linear Logic . 61
Alessandro Bruni, Eike Ritter, and Carsten Schürmann

Local Intuitionistic Modal Logics and Their Calculi . 78
Philippe Balbiani, Han Gao, Çiğdem Gencer, and Nicola Olivetti

Non-iterative Modal Resolution Calculi . 97
Dirk Pattinson and Cláudia Nalon

A Logic for Repair and State Recovery in Byzantine Fault-Tolerant
Multi-agent Systems . 114

Hans van Ditmarsch, Krisztina Fruzsa, Roman Kuznets,
and Ulrich Schmid

Calculi, Proof Theory and Decision Procedures

A Decision Method for First-Order Stream Logic . 137
Harald Ruess

What Is Decidable in Separation Logic Beyond Progress, Connectivity
and Establishment? . 157

Tanguy Bozec, Nicolas Peltier, Quentin Petitjean, and Mihaela Sighireanu

Sequents vs Hypersequents for Åqvist Systems . 176
Agata Ciabattoni and Matteo Tesi

Uniform Substitution for Differential Refinement Logic . 196
Enguerrand Prebet and André Platzer

xii Contents – Part II

Sequent Systems on Undirected Graphs . 216
Matteo Acclavio

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded
Proofs . 237

Anupam Das and Abhishek De

A Cyclic Proof System for Guarded Kleene Algebra with Tests 257
Jan Rooduijn, Dexter Kozen, and Alexandra Silva

Unification, Rewriting and Computational Models

Unification in the Description Logic ELHR+ Without the Top Concept
Modulo Cycle-Restricted Ontologies . 279

Franz Baader and Oliver Fernández Gil

Confluence of Logically Constrained Rewrite Systems Revisited 298
Jonas Schöpf, Fabian Mitterwallner, and Aart Middeldorp

Equational Anti-unification over Absorption Theories . 317
Mauricio Ayala-Rincón, David M. Cerna,
Andrés Felipe González Barragán, and Temur Kutsia

The Benefits of Diligence . 338
Victor Arrial, Giulio Guerrieri, and Delia Kesner

A Dependency Pair Framework for Relative Termination of Term Rewriting . . . 360
Jan-Christoph Kassing, Grigory Vartanyan, and Jürgen Giesl

Solving Quantitative Equations . 381
Georg Ehling and Temur Kutsia

Equivalence Checking of Quantum Circuits by Model Counting 401
Jingyi Mei, Tim Coopmans, Marcello Bonsangue, and Alfons Laarman

Author Index . 423

Contents – Part I

Invited Contributions

Automated Reasoning for Mathematics . 3
Jeremy Avigad

Induction in Saturation . 21
Laura Kovács, Petra Hozzová, Márton Hajdu, and Andrei Voronkov

Stepping Stones in the TPTP World . 30
Geoff Sutcliffe

Theorem Proving and Tools

An Empirical Assessment of Progress in Automated Theorem Proving 53
Geoff Sutcliffe, Christian Suttner, Lars Kotthoff, C. Raymond Perrault,
and Zain Khalid

A Higher-Order Vampire (Short Paper) . 75
Ahmed Bhayat and Martin Suda

Tableaux for Automated Reasoning in Dependently-Typed Higher-Order
Logic . 86

Johannes Niederhauser, Chad E. Brown, and Cezary Kaliszyk

The Naproche-ZF Theorem Prover (Short Paper) . 105
Adrian De Lon

Reducibility Constraints in Superposition . 115
Márton Hajdu, Laura Kovács, Michael Rawson, and Andrei Voronkov

First-Order Automatic Literal Model Generation . 133
Martin Bromberger, Florent Krasnopol, Sibylle Möhle,
and Christoph Weidenbach

Synthesis of Recursive Programs in Saturation . 154
Petra Hozzová, Daneshvar Amrollahi, Márton Hajdu, Laura Kovács,
Andrei Voronkov, and Eva Maria Wagner

xiv Contents – Part I

Synthesizing Strongly Equivalent Logic Programs: Beth Definability
for Answer Set Programs via Craig Interpolation in First-Order Logic 172

Jan Heuer and Christoph Wernhard

Regularization in Spider-Style Strategy Discovery and Schedule
Construction . 194

Filip Bártek, Karel Chvalovský, and Martin Suda

Lemma Discovery and Strategies for Automated Induction 214
Sólrún Halla Einarsdóttir, Márton Hajdu, Moa Johansson,
Nicholas Smallbone, and Martin Suda

Control-Flow Refinement for Complexity Analysis of Probabilistic
Programs in KoAT (Short Paper) . 233

Nils Lommen, Éléanore Meyer, and Jürgen Giesl

On the (In-)Completeness of Destructive Equality Resolution
in the Superposition Calculus . 244

Uwe Waldmann

SAT, SMT and Quantifier Elimination

Model Completeness for Rational Trees . 265
Silvio Ghilardi and Lia M. Poidomani

Certifying Phase Abstraction . 284
Nils Froleyks, Emily Yu, Armin Biere, and Keijo Heljanko

Verifying a Realistic Mutable Hash Table: Case Study (Short Paper) 304
Samuel Chassot and Viktor Kunčak

Booleguru, the Propositional Polyglot (Short Paper) . 315
Maximilian Heisinger, Simone Heisinger, and Martina Seidl

Quantifier Shifting for Quantified Boolean Formulas Revisited 325
Simone Heisinger, Maximilian Heisinger, Adrian Rebola-Pardo,
and Martina Seidl

Satisfiability Modulo Exponential Integer Arithmetic . 344
Florian Frohn and Jürgen Giesl

SAT-Based Learning of Computation Tree Logic . 366
Adrien Pommellet, Daniel Stan, and Simon Scatton

Contents – Part I xv

MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver (Short
Paper) . 386

Thomas Hader, Daniela Kaufmann, Ahmed Irfan,
Stéphane Graham-Lengrand, and Laura Kovács

Certified MaxSAT Preprocessing . 396
Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg,
Matti Järvisalo, Magnus O. Myreen, and Jakob Nordström

A Formal Model to Prove Instantiation Termination for E-matching-Based
Axiomatisations . 419

Rui Ge, Ronald Garcia, and Alexander J. Summers

Fast and Verified UNSAT Certificate Checking . 439
Peter Lammich

Generalized Optimization Modulo Theories . 458
Nestan Tsiskaridze, Clark Barrett, and Cesare Tinelli

Author Index . 481

Intuitionistic Logics and Modal Logics

Model Construction for Modal Clauses

Ullrich Hustadt2(B) , Fabio Papacchini3 , Cláudia Nalon1 ,
and Clare Dixon4

1 Department of Computer Science, University of Braśılia, Braśılia, Brazil
nalon@unb.br

2 Department of Computer Science, University of Liverpool, Liverpool, UK
U.Hustadt@liverpool.ac.uk

3 School of Computing and Communications, Lancaster University in Leipzig,
Leipzig, Germany

f.papacchini@lancaster.ac.uk
4 Department of Computer Science, University of Manchester, Manchester, UK

clare.dixon@manchester.ac.uk

Abstract. We present deterministic model construction algorithms for
sets of modal clauses saturated with respect to three refinements of the
modal-layered resolution calculus implemented in the prover KSP. The
model construction algorithms are inspired by the Bachmair-Ganzinger
method for constructing a model for a set of ground first-order clauses
saturated with respect to ordered resolution with selection. The chal-
lenge is that the inference rules of the modal-layered resolution calculus
for modal operators are more restrictive than an adaptation of ordered
resolution with selection for these would be. While these model construc-
tion algorithms provide an alternative means to proving completeness of
the calculus, our main interest is the provision of a ‘certificate’ for sat-
isfiable modal formulae that can be independently checked to assure a
user that the result of KSP is correct. This complements the existing
provision of proofs for unsatisfiable modal formulae.

1 Introduction

Propositional modal logics can be applied to formalise and reason about a wide
range of applications, including programming languages [22], knowledge repre-
sentation and reasoning [4,9,23], verification of distributed systems [8,10,11]
and terminological reasoning [26]. For such applications, it is expected that the
underlying reasoning tool may be able to provide certification for their answer
with respect to a particular problem. While at least one kind of certificate is
expected to be produced, either in the form of a proof or a model, the production
of both not only helps with the task related to the particular application (e.g.
the generation of counter-examples in verification problems) but also assures the
user that a reasoning tool has produced the right result as those certificates can
be independently and automatically checked. Given the complexity of reasoning
tools, with most of them implementing sophisticated optimization procedures
which are very difficult to check for correctness, it is not surprising that the
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 3–23, 2024.
https://doi.org/10.1007/978-3-031-63501-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_1&domain=pdf
http://orcid.org/0000-0002-0455-0267
http://orcid.org/0000-0002-0310-7378
http://orcid.org/0000-0002-9792-5346
http://orcid.org/0000-0002-4610-9533
https://doi.org/10.1007/978-3-031-63501-4_1

4 U. Hustadt et al.

community in automated reasoning has been encouraging the extraction of both
kind of certificates: some tracks in the SAT competition1 require both proofs
and models; the same approach is argued for QBF reasoning tools [29]; and this
is also required in some tracks of the CASC competition [32,33], with standards
being currently under discussion2.

There are several implemented tools for basic propositional modal logic Kn,
the logic considered in this paper. However, and somehow surprisingly, most of
state-of-the-art tools do not produce any kind of certificate (e.g. CEGARBOX
[6]); produce only partial information on models (e.g. Spartacus [7], InKreSAT
[12]; see also discussion in [14]); or, as in our case, produce only proofs (KSP [17]).
There are fully certified tools that do produce models and proofs (e.g. [34]), but
their performance is usually not comparable to state-of-the-art provers.

In this paper we present the needed theoretical results that will allow us to
implement certification for satisfiable problems in KSP [19]. Our prover imple-
ments both the resolution calculi presented in [16] as well as the modal layered
calculus MLR presented in [17]. Refinements, such as negative, positive, and
ordered resolution are also implemented. As with other resolution-based sys-
tems, proofs produced by KSP are easily readable and verifiable. However, as
mentioned, model extraction has never been implemented. One of the reasons is
that although the completeness proofs for the calculi in [16,17] are constructive
they do not yield efficient procedures. Very briefly, those proofs are similar to
canonical constructions for axiomatic proof systems and rely on the construction
of some structures over the subsets of consistent formulae of an input formula
(in clausal form), and even in the best case require exponential time and space.

Here we present novel model construction algorithms from saturated sets
of clauses produced by the positive, negative or order resolution refinements
of MLR. These refinements require different normal forms: SNF−

ml, SNF
+
ml, and

SNF++
ml , respectively. We first show how to obtain models from sets of SNF++

ml

clauses saturated with respect to ordered resolution refinement of MLR (Sect. 3).
This results in a deterministic procedure inspired by the Bachmair-Ganzinger
model construction for ground first-order clauses [2]. For positive resolution,
we adapt the procedure for SNF++

ml clauses by constructing separate orderings
for each world in a model (Sect. 4). We then obtain a procedure for negative
resolution by flipping the polarity of literals in SNF+

ml clauses and reusing the
procedure for positive resolution (Sect. 5). From these procedures we obtain alter-
native completeness proofs for ordered and negative resolution; and provide the
first completeness proof for positive resolution. Moreover, all procedures are
deterministic and suitable for implementation.

The paper is structured as follows. In Sect. 2 we give details of the logic,
resolution rules and resolution refinements. Sections 3, 4 and 5 provide the model
construction algorithms for each refinement. We discuss our approach in relation
to the Bachmair-Ganzinger method and consider complexity in Sect. 6. Section 7
presents how to perform model construction for extensions of basic modal logic.
Finally, we draw conclusions and discuss future work in Sect. 8.

1 https://satcompetition.github.io/2022/rules.html.
2 https://www.tptp.org/TPTP/Proposals/InterpretationsModels.shtml.

https://satcompetition.github.io/2022/rules.html
https://www.tptp.org/TPTP/Proposals/InterpretationsModels.shtml

Model Construction for Modal Clauses 5

2 Preliminaries

Let P be a denumerable set of propositional symbols. Let An = {1, . . . , n}, with
n ∈ N, be a finite, fixed set of agents. The set of modal formulae over P and An

is then the least set containing the two propositional constants true and false,
all elements of P , and the formulae ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), [a]ϕ, and
〈a〉ϕ provided ϕ and ψ are modal formulae and a ∈ An. The set of literals over
P is LP = {p,¬p | p ∈ P}. For p ∈ P , a literal p is a positive literal and a literal
¬p is a negative literal. A modal literal is [a]l or 〈a〉l, for a ∈ An and l ∈ LP .

The semantics of modal formulae is provided by Kripke structures. A Kripke
structure M over P and An is a tuple 〈W, {Ra}a∈An

, V 〉 where W is a non-empty
set of worlds, each accessibility relation Ra, a ∈ An, is a binary relation on W ,
and the valuation V is a function mapping each propositional symbol in P to a
subset V (p) of W . If (w,w′) ∈ Ra, written wRaw′, we say w′ is an a-successor
of w; we may omit the index a when there is no need to distinguish the relation
Ra and just say w′ is a successor world of w.

Satisfaction (or truth) of a formula at a world w of a Kripke structure M =
〈W, {Ra}a∈An

, V 〉 is inductively defined by:

〈M,w〉 |= true; 〈M,w〉 �|= false;
〈M,w〉 |= p iff w ∈ V (p), where p ∈ P ;
〈M,w〉 |= ¬ϕ iff 〈M,w〉 �|= ϕ;
〈M,w〉 |= (ϕ ∧ ψ) iff 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ ∨ ψ) iff 〈M,w〉 |= ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ → ψ) iff 〈M,w〉 |= ¬ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= [a]ϕ iff for every v, wRav implies 〈M,v〉 |= ϕ;
〈M,w〉 |= 〈a〉ϕ iff there is v, wRav and 〈M,v〉 |= ϕ.

If 〈M,w〉 |= ϕ holds then M is a model of ϕ, ϕ is true at w in M and M satisfies
ϕ. A modal formula ϕ is (locally) satisfiable iff there exists a Kripke structure
M and a world w in M such that 〈M,w〉 |= ϕ.

A tree Kripke structure M is an ordered pair 〈〈W, {Ra}a∈An
, V 〉, w0〉 where

w0 ∈ W and
⋃

a∈An
Ra is a tree, that is, a directed acyclic connected graph

where each node has at most one predecessor, with root w0. Finally, M is
a tree Kripke model of a modal formula ϕ iff 〈〈W, {Ra}a∈An

, V 〉, w0〉 |= ϕ.
To simplify notation, in the following we write 〈W, {Ra}a∈An

, V, w0〉 instead of
〈〈W, {Ra}a∈An

, V 〉, w0〉. In a tree Kripke structure with root w0 for every world
wk ∈ W there is exactly one path w connecting w0 and wk; the modal level of
wk (in M), denoted by mlM (wk), is given by len(w). By M [ml] we denote the
set of worlds that are at a modal level ml in M , that is, M [ml] = {w ∈ W |
mlM (w) = ml}.

In [18], we have introduced the Separated Normal Form with Modal Levels,
SNFml, for modal formulae. For the local satisfiability problem, clauses in SNFml

are in one of the following forms:

– Literal clause ml :
∨r

b=1 lb

6 U. Hustadt et al.

– Positive a-clause ml : l′ → [a]l
– Negative a-clause ml : l′ → 〈a〉l
where ml ∈ N and l, l′, lb ∈ LP , 1 ≤ b ≤ r, r ∈ N. We denote by ml : false an
empty clause, that is, a literal clause with r = 0. Positive and negative a-clauses
are together known as modal a-clauses. By a positive (negative) modal clause
we mean a positive (negative) a-clause for an arbitrary agent a ∈ An. We also
use ml : l′ → (a)l to denote a modal a-clause that can either be a positive or a
negative a-clause.

A tree Kripke structure M satisfies a clause ml : ψ in SNFml, written M |=
ml : ψ iff for every w ∈ M [ml], 〈M,w〉 |= ψ. M satisfies a finite set Φ of clauses
in SNFml iff for every ml : ψ in Φ, M satisfies ml : ψ. We then call M a Kripke
model of Φ. Finally, a set Φ of clauses in SNFml is satisfiable if there exists a
tree Kripke structure M that satisfies Φ.

Theorem 1 ([17,18]). Let ϕ be a modal formula. Then there exists a finite set
Φ of clauses in SNFml such that ϕ is satisfiable iff Φ is satisfiable and if a tree
Kripke structure M is a Kripke model of Φ then M is also a Kripke model of ϕ.

The transformation of a modal formula ϕ into an equi-satisfiable set Φ of clauses
in SNFml proceeds by replacing complex subformulae by new surrogate proposi-
tional symbols and including into Φ clauses defining those new symbols.

Given a finite set Φ of SNFml clauses, by PΦ and LΦ
P we denote the set of

propositional symbols occurring in Φ and the set of propositional literals over
PΦ, respectively. For ml ∈ N, by Φ[ml] we denote {ml : ψ | ml : ψ ∈ Φ}. Then
by Φlit[ml], Φpos[ml], and Φneg[ml] we denote the set of all literal clauses, all
positive modal clauses, and all negative modal clauses in Φ[ml], respectively.
The maximal modal level maxML(Φ) of Φ is max({ml + 1 | ml : ψ ∈ Φ and ml :
ψ is a modal clause}) and we assume max(∅) = 0.

In [18] we have also introduced a resolution calculus to reason with SNFml,
the modal-layered resolution (MLR) calculus. Table 1 shows the inference rules
of this calculus restricted to the labels occurring in the normal form defined
above. We require that clauses are kept in simplified form, that is, if ml ∈ N and
D is a (possibly empty) disjunction of literals, and l ∈ LP , then: ml : D ∨ l ∨ l
simplifies to ml : D ∨ l; ml : D ∨ false simplifies to ml : D; and ml : D ∨ l ∨ ¬l
and ml : D ∨ true simplify to ml : true.

Let C and D be disjunctions of propositional literals. A clause ml : C sub-
sumes a clause ml : D if and only if D is of the form C ∨ C ′ where C ′ is a
possibly empty disjunction of propositional literals.

Let Φ be a set of clauses in SNFml. A derivation by MLR from Φ is a sequence
of sets Φ = Φ0, Φ1, . . . where for each i > 0, either (i) Φi+1 = Φi ∪{ml : ψ} where
ml : ψ is the resolvent obtained by an application of one of the rules in Table 1
to premises in Φi, ml : ψ is in simplified form, ml : ψ is not subsumed by a
clause in Φi, and ml : ψ is not a tautology, or (ii) Φi+1 = Φi − {ml : ψ} where
ml : ψ is subsumed by a clause in Φi − {ml : ψ}.

A set of clauses Φ in SNFml is saturated with respect to MLR if any further
application of the inference rules LRES, MRES, GEN1, GEN2 and GEN3 generates

Model Construction for Modal Clauses 7

Table 1. Inference rules of the Modal Layered Resolution (MLR) calculus

LRES :

ml : D ∨ l

ml : D′ ∨ ¬l

ml : D ∨ D′ MRES :

ml : l1 → [a]l

ml : l2 → 〈a〉¬l
ml : ¬l1 ∨ ¬l2

GEN2 :

ml : l′1 → [a]l1

ml : l′2 → [a]¬l1
ml : l′3 → 〈a〉l2

ml : ¬l′1 ∨ ¬l′2 ∨ ¬l′3

GEN1 :

ml : l′1 → [a]¬l1
.
..

ml : l′m → [a]¬lm
ml : l′ → 〈a〉¬l

ml + 1 : l1 ∨ . . . ∨ lm ∨ l

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′
GEN3 :

ml : l′1 → [a]¬l1
.
..

ml : l′m → [a]¬lm
ml : l′ → 〈a〉l

ml+ 1 : l1 ∨ . . . ∨ lm

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

a clause already in Φ or subsumed by a clause in Φ. A set of clauses Φ′ in SNFml is
the saturation of Φ with respect to MLR if there is a derivation Φ = Φ0, . . . , Φn =
Φ′ by MLR from Φ such that Φ′ is saturated with respect to MLR.

Just as for propositional clausal logic, to improve the efficiency of the MLR
calculus it is important to restrict applications of the LRES rule, that is, to use a
refinement of this rule. However, when doing so it is not enough to ensure that
from a set of literal clauses that logically implies a clause of the form ml : false we
can derive that clause. Instead we have to make sure that all literal clauses that
could be used as premises for GEN1 and GEN3 can still be derived. A sufficient,
though not necessary, condition for that is to ensure that the refinement of LRES
is consequence complete.

In [17] we have considered three refinements of propositional resolution as a
basis for refinements of LRES:

– Negative Resolution [24] is a special case of semantic resolution [30], which
restricts clause selection by using an interpretation as a guide. For the clas-
sical case, given an interpretation I, the (binary) semantic resolution rule
allows to derive D ∨ D′ from D ∨ l and D′ ∨ ¬l provided one of the clauses
in the premises is an electron, that is, a clause which evaluates to false under
I. By taking I(p) = true, for all propositional symbols p, semantic resolution
corresponds to negative resolution, that is, the electron is a clause contain-
ing only negative literals. Semantic resolution is complete irrespective of the
interpretation chosen to guide the search for a proof [30]. Moreover, semantic
resolution is also consequence complete [31]. The following theorem, which
follows directly from the consequence completeness of semantic resolution,
holds:

Theorem 2 ([31, Theorem 8]). If a clause C is a prime consequence of a
finite set Φ of clauses and contains no negative (positive) literals, then there is
a positive (negative) resolution derivation of C from Φ.

8 U. Hustadt et al.

Theorem 2 ensures that all clauses containing only negative literals and which
are consequences of a set of clauses are generated by applications of negative
resolution to the clause set.

Our calculus for SNFml can be restricted to negative resolution with a small
change in the normal form by allowing only positive literals in the scope of
modal operators. Given a set Φ of clauses in SNFml, we exhaustively apply the
following transformations to Φ (where ml ∈ N, t ∈ LP , p ∈ P , and t′ is a new
propositional symbol):

Φ′ ∪ {ml : ¬p → (a)t} ⇒ Φ′ ∪ {ml : t′ → (a)t,ml : t′ ∨ p}
Φ′ ∪ {ml : t → (a)¬p} ⇒ Φ′ ∪ {ml : t → (a)t′,ml + 1 : ¬t′ ∨ ¬p}

Note that the transformation rules are not mutually exclusive. The first trans-
formation ensures that resolvents of the modal inference rules are negative literal
clauses. The second transformation rule ensures that only positive literals are in
the scope of modal operators. It can be shown that the resulting set of clauses
is satisfiable if, and only if, the original set of clauses is satisfiable. We call the
resulting normal form, where there are no negative literals below modal opera-
tors, SNF+

ml.

– Positive Resolution is then the analogous special case of semantic resolu-
tion for an interpretation in which all propositional symbols are false. Elec-
trons then must be clauses in which all literals are positive.
SNFml can be restricted to positive resolution if we only allow negative lit-
erals in the scope of modal operators. Given a set Φ of clauses in SNFml, we
exhaustively apply the following transformation to Φ (where ml ∈ N, t ∈ LP ,
p ∈ P , and t′ is a new propositional symbol):

Φ′ ∪ {ml : p → (a)t} ⇒ Φ′ ∪ {ml : ¬p ∨ ¬t′,ml : ¬t′ → (a)t}
Φ′ ∪ {ml : t → (a)p} ⇒ Φ′ ∪ {ml : t → (a)¬t′,ml + 1 : t′ ∨ p}

These transformation rules are analogous to those for SNF+
ml. It can be shown

that the resulting set of clauses is satisfiable if, and only if, the original set
of clauses is satisfiable. We call the resulting normal form SNF−

ml.
– Ordered Resolution is a refinement of resolution where inferences are

restricted to maximal literals in a clause, with respect to a well-founded order-
ing on literals. Formally, let ≺ be a well-founded and total ordering on PΦ.
This ordering can be extended to literals LΦ

P occurring in Φ by setting p ≺ ¬p
and ¬q ≺ p whenever q ≺ p, for all p, q ∈ PΦ. A literal l is said to be maximal
with respect to a clause C ∨ l if, and only if, there is no l′ occurring in C such
that l ≺ l′. In the case of classical binary resolution, the ordering refinement
restricts the application to clauses C ∨ l and D ∨ ¬l where l is maximal with
respect to C and ¬l is maximal with respect to D.

The key idea for achieving completeness when restricting LRES to ordered
resolution is to introduce new literals in the scope of the modal operators

Model Construction for Modal Clauses 9

Fig. 1. Auxiliary functions isTrue and isProductive used in Fig. 2 and Fig. 4

and set their ordering to be “low enough” so that the relevant literal clauses
needed for the modal hyper-resolution rules (i.e., the GEN rules) are gener-
ated. Given a set of clauses Φ in SNFml and a well-founded and total ordering
≺ on PΦ, we exhaustively apply the following transformations to Φ (where
ml ∈ N, t, l ∈ LΦ

P and t′ is a new propositional symbol):

Φ′ ∪ {ml : t → [a]l} ⇒ Φ′ ∪ {ml : t → [a]t′,ml + 1 : ¬t′ ∨ l}
Φ′ ∪ {ml : t → 〈a〉l} ⇒ Φ′ ∪ {ml : t → 〈a〉t′,ml + 1 : ¬t′ ∨ l}

and extend the given ordering by setting t′ ≺ p, for all p occurring in Φ. Recall
that Φ already includes surrogate propositional symbols from the transfor-
mation of a modal formula ϕ to SNFml. We call the resulting normal form
SNF++

ml . Note that we only need to apply the rewriting rule to the clauses in
Φ, but not to the generated clauses in SNF++

ml . Thus, the rewriting procedure
is terminating. Two characteristics of SNF++

ml that we will use in our proofs is
that (i) the only positive occurrence of a symbol t′ introduced by the trans-
formation is below a modal operator, all other occurrences of t′ are negative;
and (ii) there are no two modal clauses with the same propositional symbol
below a modal operator.

Theorem 3. Let ϕ be a satisfiable modal formula, let Φ be the corresponding
finite set of clauses in SNFml, SNF

−
ml, SNF

+
ml, or SNF++

ml . If M is a Kripke model
of Φ then M is a Kripke model of ϕ.

Proof. Follows from the proofs of Lemmata 3.6 and 3.9 to 3.13 in [17].

Theorem 4. Let Φ be a finite set of clauses in SNFml, SNF−
ml, SNF+

ml, or
SNF++

ml . Let Φ′ be the saturation of Φ with respect to MLR or one of its refine-
ments. If M is a Kripke model of Φ′ then M is a Kripke model of Φ.

10 U. Hustadt et al.

3 Deterministic Model Construction for SNF++
ml Clauses

We first describe a model construction algorithm for a set of SNF++
ml clauses.

Let Φ′ be a satisfiable set of SNF++
ml clauses. Let ≺ be a total ordering on the

propositional symbols in PΦ′ compliant with the conditions set out in Sect. 2.
Let Φ be the saturation of Φ′ wrt the ordered resolution refinement of MLR with
ordering ≺. Let maxlit be the function that maps a propositional clause C to
the ≺-maximal literal in C.

For our model construction procedure we need to extend ≺ to a well-founded
total ordering on SNF++

ml clauses that we will also denote by ≺. Recall that
p ≺ ¬p for every p ∈ PΦ and ¬p ≺ q iff p ≺ q for every p, q ∈ PΦ. We now extend
≺ to propositional clauses (sets of propositional literals) such that C1 ≺ C2 iff (i)
C1 �= C2, and (ii) whenever l1 ∈ C1 but l1 �∈ C2 then there exists l2 with l1 ≺ l2,
l2 ∈ C2, l2 �∈ C1. Finally, on SNF++

ml clauses we allow any well-founded total
ordering such that ml1 : ψ1 ≺ ml2 : ψ2 if (i) ml1 < ml2 or (ii) ml1 = ml2, ψ1

and ψ2 are propositional clauses, and ψ1 ≺ ψ2. Strictly, the procedure itself only
relies on the ordering on literal clauses but the correctness proof also requires
an ordering between literal and modal clauses.

Figure 2 shows our deterministic model construction procedure for satu-
rated sets of SNF++

ml clauses. The procedure uses auxiliary functions isTrue and
isProductive that are shown in Fig. 1. The procedure constructs a Kripke struc-
ture starting at modal level 0 with a root world and proceeds in much the
same way as a classic tableau procedure [13]. The main difference is that the
valuation for each world is constructed deterministically using the Bachmair-
Ganzinger model construction (Lines 9–12). Once the valuation for a world w
at modal level ml has been constructed, first each modal clause ml : l′ → 〈a〉l
is considered (Lines 14–19). If the literal l′ is true at w, then a new successor
world w′ is created, using an auxiliary function newml,a,l(w), and a pair (w,w′)
added to the accessibility relation Ra for agent a. If the literal l is positive, then
it will be added to the valuation for world w′ After all those negative modal
clauses have been considered, all successor worlds of w′ necessary for a model
have been created and each positive modal clause ml : l′ → [a]l is considered
(Lines 20–22). If the literal l′ is true at w and the literal l is positive, then l
is added to the valuation of each successor world w′ of w for Ra. Crucially, for
both positive and negative modal clauses in SNF++

ml , the literal l below the modal
operator is always positive. Since a world is never removed from the valuation
V , later modifications of V will not result in a situation where l becomes false
at a successor world w′.

Theorem 5. Let ϕ be a satisfiable modal formula and let Φ′ be the corresponding
finite set of SNF++

ml clauses. Let Φ be the saturation of Φ′ wrt the ordered refine-
ment of MLR with an ordering ≺. Let M be the Kripke structure constructed by
the algorithm in Fig. 2 for Φ. Then M is a model of Φ′, Φ, and ϕ.

Example 1. Consider the satisfiable set Φ1 of SNFml clauses consisting of the
three clauses 0 : q, 0 : q → 〈a〉¬r and 1 : q ∨ r. The transformation to SNF++

ml

Model Construction for Modal Clauses 11

Fig. 2. Local Model Construction for SNF++
ml

introduces an additional propositional symbol t¬r and the resulting set Φ++
1 of

SNF++
ml clauses consists of

(1) 0 : q (2) 0 : q → 〈a〉t¬r (3) 1 : q ∨ r

(4) 1 : ¬t¬r ∨ ¬r
In the ordering on propositional symbol on PΦ++

1
, t¬r must be smaller than q

and r. We assume t¬r ≺ q ≺ r. Saturation only derives one additional clause

(5) 1 : q ∨ ¬t¬r

by application of LRES to Clauses (3) and (4). The order between the three
literal clauses at level 1 is 1 : q ∨ ¬t¬r ≺ 1 : q ∨ r ≺ 1 : ¬t¬r ∨ ¬r. The model
construction process then proceeds as follows.

12 U. Hustadt et al.

Kripke Structure M

Clause C W Ra V Consideration of C

w0 0 : q {w0} ∅ ∅
Because 〈M,w1〉 �|= C

and q is maximal:

V (q) = V (q) ∪ {w0}

w0 0 : q → 〈a〉t¬r {w0} ∅ {(q, {w0})}

Because w0 ∈ V (q):

W = W ∪ {w1}
Ra = Ra ∪ {(w0, w1)}
V (t¬r) = V (t¬r) ∪ {w1}

w1 1 : q ∨ ¬t¬r {w0, w1} {(w0, w1)} {(q, {w0}),

(t¬r, {w1})}

Because 〈M,w1〉 �|= C

and q is maximal:

V (q) = V (q) ∪ {w1}

w1 1 : q ∨ r {w0, w1} {(w0, w1)} {(q, {w0, w1}),

(t¬r, {w1})}
Because 〈M,w1〉 |= C:

no change

w1 ¬t¬r ∨ ¬r {w0, w1} {(w0, w1)} {(q, {w0, w1}),

(t¬r, {w1})}
Because C is negative:

no change

The constructed Kripke structure is

W = {w0, w1} Ra = {(w0, w1)} V (q) = {w0, w1} V (r) = ∅ V (t¬r) = {w1}

which is a model of both Φ++
1 and Φ1.

4 Deterministic Model Construction for SNF−
ml Clauses

The model construction for sets of SNF++
ml clauses saturated with respect to

the ordered refinement of MLR used the same ordering ≺ as was used by the
calculus. However, the positive resolution refinement of MLR is not based on
an ordering and therefore there is no pre-existing ordering that can be used in
the model construction for sets of SNF−

ml clauses saturated with respect to the
positive resolution refinement of MLR. So, to adapt the procedure presented
in Sect. 3 to sets of SNF−

ml clauses, we need to construct an ordering. The fact
that below operators we now only have negative propositional literals further
complicates things as we have to make sure that we do not unnecessarily produce
corresponding positive literals from literal clauses.

Suppose we have a world w at modal level ml and we have determined that
〈a〉¬p1, . . . , 〈a〉¬pm, [a]¬q1, . . . , [a]¬qn, 0 < m, 0 ≤ n are all the modal literals
that have to be true at w. For each 〈a〉¬pi, 1 ≤ i ≤ m, we have to create a
successor world wi of w at modal level ml + 1. Then we have to make sure that
pi, q1, . . . , qn are smaller than all other propositional symbols for wi, 1 ≤ i ≤ m,
in order to ensure that literal clauses ml +1 : ψ do not unnecessarily produce pi

or one of the qj , 1 ≤ j ≤ n, when considered for the world wi. For this purpose,

Model Construction for Modal Clauses 13

Fig. 3. Auxiliary function constructOrdering used in Fig. 4

first we use a function-valued variable PS that for each successor world wi keeps
track of the propositional symbols pi, q1, . . . , qn. Second we use a function
constructOrdering (Fig. 3) that, given PS(wi) for some world wi, constructs
an ordering ≺wi

on propositional symbols specifically for wi that has the desired
property.

This ordering is then extended to literals and to literal clauses with the
same modal level as in Sect. 3. This is sufficient for the model construction pro-
cedure in Fig. 4. Except for the function-valued variable PS and the function
constructOrdering the only other difference to the model construction pro-
cedure for SNF++

ml in Fig. 2 is that literals below modal operators are always
negative and therefore never change the valuation.

However, for our correctness proof we need to combine and extend these
orderings into a total ordering. This total ordering will not be on the clauses
themselves but on ordered pairs 〈w,ml : ψ〉 consisting of a world w at modal
level ml in a Kripke structure M and a clause ml : ψ ∈ Φ. We use H(Φ,M) to
denote the set of all such ordered pairs.

Let W be the set of worlds in a Kripke structure M produced by the algorithm
in Fig. 4. We can use the order in which the worlds in W were generated to impose
a total ordering ≺W on W . Note that mlM (w1) < mlM (w2) implies w1 ≺w w2.
Then on H(Φ,M) we allow any well-founded total ordering ≺H(Φ,M) such that
〈w1,ml1 : ψ1〉 ≺ 〈w2,ml2 : ψ2〉 if (i) ml1 < ml2 or (ii) ml1 = ml2 and w1 ≺w w2,
or (iii) ml1 = ml2, w1 = w2, ψ1 and ψ2 are propositional clauses, and ψ1 ≺w1 ψ2.

Theorem 6. Let ϕ be a satisfiable modal formula and let Φ′ be the correspond-
ing finite set of SNF−

ml clauses. Let Φ be the saturation of Φ′ wrt the positive
resolution refinement of MLR. Let M be the Kripke structure constructed by the
algorithm in Fig. 4 for Φ. Then M is a model of Φ′, Φ, and ϕ.

14 U. Hustadt et al.

Fig. 4. Local Model Construction for SNF−
ml

Example 2. Consider the satisfiable set of clauses Φ−
2 in SNF−

ml:

(6) 0 : q (7) 0 : ¬q → 〈a〉¬q
(8) 0 : ¬p → 〈a〉¬r

(9) 0 : ¬p → [a]¬t1
(10) 1 : t1 ∨ q ∨ r

where ¬t1 is a surrogate introduced for (q∨r). This set of clauses is saturated with
respect to the positive resolution refinement of MLR. The model construction
for Φ−

2 proceeds as before:

Model Construction for Modal Clauses 15

Clause C Kripke Structure M Consideration of C

W Ra V

w0 0 : q {w0} ∅ ∅
Because 〈M,w1〉 �|= C

and q is maximal in C:

V (q) = V (q) ∪ {w0}

w0 0 : ¬q → 〈a〉¬q {w0} ∅ {(q, {w0})} Because w0 ∈ V (q):

no change

w0 0 : ¬p → 〈a〉¬r {w0} ∅ {(q, {w0})}
Because w0 �∈ V (p):

W = W ∪ {w1}
Ra = Ra ∪ {(w0, w1)}

w0 0 : ¬p → [a]¬t1 {w0, w1} {(w0, w1)} {(q, {w0})}
Because w0 �∈ V (p)

but ¬t1 is negative:

no change

Before the model construction proceeds to w1, we now determine the ordering
≺w1 . The literals ¬r and ¬t1 ‘contribute’ to the construction of w1, so r and
t1 must be smaller in ≺w1 than the other propositional symbols p and q. Let
us assume t1 ≺w1 r ≺w1 p ≺w1 q. So, when we proceed to w1 and the clause
1 : t1 ∨ q ∨ r, it will be q that will be made true not r:

Clause C Kripke Structure M Consideration of C

W Ra V

w1 1 : t1 ∨ q ∨ r {w0, w1} {(w0, w1)} { (q, {w0})}
Because 〈M,w1〉 �|= C

and q is maximal in C:

V (q) = V (q) ∪ {w1}

The constructed Kripke structure M2 is

W = {w0, w1}
Ra = {(w0, w1)}

V (p) = ∅ V (q) = {w0, w1} V (r) = ∅

which is a model of Φ−
2 .

5 Deterministic Model Construction for SNF+
ml Clauses

Our model construction for a set Φ of SNF++
ml clauses saturated wrt the ordered

resolution refinement of MLR started with a valuation in which every proposi-
tional symbol is false at every world and successively makes propositional sym-
bols true at certain worlds in order to ensure all clauses of Φ are true in the
constructed model.

16 U. Hustadt et al.

For propositional clauses, negative resolution corresponds to semantic reso-
lution wrt the valuation V� in which all propositional symbols are true. A model
construction for a set Φ of SNF+

ml clauses saturated wrt the negative resolution
refinement of MLR would therefore naturally start with a valuation in which
every propositional symbol is true at every world and successively make propo-
sitional symbols false at certain worlds to obtain a model of Φ.

However, instead of devising a new model construction procedure that does
so, we take advantage of the fact that we can simply reverse the polarity of all
literals in Φ, to again start with a valuation in which every propositional symbol
is false at every world.

More formally, let ι� be a function on propositional literals such that for
every propositional symbol p ∈ P , ι�(p) = ¬p and ι�(¬p) = p. The function ι�

can be homomorphically extended to clauses and set of clauses as follows:

ι�(ml : l1 ∨ · · · ∨ lm) = ml : ι�(l1) ∨ · · · ∨ ι�(lm)
ι�(ml : l′ → [a]l) = ml : ι�(l′) → [a]ι�(l)
ι�(ml : l′ → 〈a〉l) = ml : ι�(l′) → 〈a〉ι�(l)

and ι�(Φ) = {ι�(ml : ψ) | ml : ψ ∈ Φ}. Let I+ be a function on Kripke structures
such that for M = 〈W, {Ra}a∈An

, V 〉, I+(M) = 〈W, {Ra}a∈An
, V +〉, such that

V +(p) = W − V (p) for every p ∈ P .

Lemma 1. Let Φ be a set of clauses in SNFml. Let Mf be a tree Kripke model
of Φf = ι�(Φ). Then I+(Mf) is a tree Kripke model of Φ.

Lemma 2. Let Φ+ be a set of clauses in SNF+
ml that is saturated with respect

to the negative resolution refinement of MLR. Then Φf = ι�(Φ+) is (i) a set
of clauses in SNF−

ml and (ii) saturated with respect to the positive resolution
refinement of MLR.

Theorem 7. Let ϕ be a satisfiable modal formula, let Φ′ be the corresponding
finite set of clauses in SNF+

ml, and let Φ be the saturation of Φ′ wrt the negative
resolution refinement of MLR. Let Φf = ι�(Φ), let Mf be the Kripke structure
constructed by the algorithm in Fig. 4 for Φf , and let M = I+(Mf). Then M is
a model of Φ′, Φ, and ϕ.

Example 3. Consider the satisfiable SNF+
ml clause set Φ+

3 = {0 : p, 0 : p →
〈a〉r, 0 : q → [a]q, 1 : q ∨ ¬r}. Reversing the polarity of all literals in Φ+

3 gives us
the SNF−

ml clause set Φf
3

(11) 0 : ¬p (12) 0 : ¬p → 〈a〉¬r
(13) 0 : ¬q → [a]¬q

(14) 1 : ¬q ∨ r

which is saturated with respect to the positive resolution refinement of calculus
MLR.

Model Construction for Modal Clauses 17

Clause C Kripke Structure M Consideration of C

W Ra V

w0 0 : ¬p {w0} ∅ ∅ Because 〈MC , w0〉 |= ¬p:
no change

w0 0 : ¬p → 〈a〉¬r {w0} ∅ ∅
Because 〈MC , w0〉 |= ¬p:
W = W ∪ {w1}
Ra = Ra ∪ {(w0, w1)}

w0 0 : ¬q → [a]¬q {w0, w1} {(w0, w1)} ∅ Because 〈MC , w0〉 |= ¬q:
no change

Before the model construction proceeds to w1, we now fix the ordering ≺w1 .
The literals ¬q and ¬r ‘contributed’ to the construction of w1, so q and r must
both be smaller in ≺w1 than the only other propositional symbol p, while we
can impose an arbitrary order between q and r, e.g., q ≺w1 r ≺w1 p.

Clause C Kripke Structure M Consideration of C

W Ra V

w1 1 : ¬q ∨ r {w0, w1} {(w0, w1)} ∅ Because 〈MC , w1〉 |= C:

no change

The resulting Kripke structure Mf
3 is

W = {w0, w1} Ra = {(w0, w1)} V (p) = V (q) = V (r) = ∅
which is a model of Φf

3 . We obtain M+
3 by reversing the valuation in Mf

3 :

W = {w0, w1}
Ra = {(w0, w1)}

V (p) = V (q) = V (r) = W − ∅ = {w0, w1}

It is straightforward to check that M+
3 is a model of Φ+

3 = {0 : p, 0 : p → 〈a〉r, 0 :
q → [a]q, 1 : q ∨ ¬r}.

6 Discussion

The model construction procedures presented in this paper are inspired by and
closely related to the Bachmair-Ganzinger model construction procedure [2,15].
The primary purpose of this model construction procedure is to prove the com-
pleteness of resolution and superposition calculi, in particular, ordered resolution
with selection for first-order clausal logic. But it can also be used to construct a
Herbrand model of a specific saturated set of propositional or ground first-order
clauses.

Commonalities and differences between the two approaches are best illus-
trated by an example. Consider the following set of clauses in SNF++

ml .

18 U. Hustadt et al.

(15) 0 : p0 (16) 0 : p0 → [a]q1
(17) 0 : p0 → 〈a〉q2

(18) 1 : ¬q2 ∨ ¬q1 ∨ q0

The corresponding set of first-order clauses, using the relational translation and
ignoring the specific modal levels at which each SNF++

ml clause is meant to hold,
is as follows.

(19) p0(w0) (20) ¬p0(x) ∨ ¬r(x, y) ∨ q1(y)

(21) ¬p0(x) ∨ q2(f(x))

(22) ¬p0(x) ∨ r(x, f(x))

(23) ¬q2(x) ∨ ¬q1(x) ∨ q0(x)

Following [28] on resolution-based decision procedures for the relational trans-
lation of basic modal logic, we choose an ordering that ensures that ¬r(x, y),
q2(f(x)) and r(x, f(x)) are maximal in Clauses (20), (21) and (22), respectively.
We are free to impose an arbitrary order on unary literals and we choose an
ordering such that p0(x) ≺ q0(x) ≺ q1(x) ≺ q2(x). We can then derive the
following additional clauses:

[ORes,20(2),22(2)] (24) ¬p0(x) ∨ ¬p0(x) ∨ q1(f(x))

[ORes,21(2),23(1)] (25) ¬p0(x) ∨ ¬q1(f(x)) ∨ q0(f(x))

[ORes,24(3),25(2)] (26) ¬p0(x) ∨ ¬p0(x) ∨ ¬p0(x) ∨ q0(f(x))

Here ‘ORes’ denotes an inference by ordered resolution, followed by the iden-
tifying numbers of the clauses that are the premises of the inference. The num-
ber in parentheses identifies the literal in each premise on which we resolve. The
Bachmair-Ganzinger model construction operates on ground clauses, in partic-
ular, all ground instances of the first-order clauses here, and it views clauses as
multisets of literals. However, the Herbrand universe for this set of clauses is
infinite. Given that a Kripke model for the set of SNF++

ml clauses has at most
depth 1, we can restrict ourselves to the terms w0 and f(w0).

The constructed model consists of p(w0), r(w0, f(w0)), q0(f(w0)), q1(f(w0))
and q2(f(w0)). In particular, q0(f(w0)) is produced by an instance of Clause (26).

For this particular example, our own procedure will arrive at the same model,
but the way it does so differs in a number of ways. First, we are more constrained
regarding the order we can use. Regarding the propositional symbols q0, q1 and
q2 we have to ensure that the propositional symbols q1 and q2 that appear
below modal operators are smaller than the other propositional symbols. So, the
ordering p0 ≺ q0 ≺ q1 ≺ q2 corresponding to the one we used in the first-order
setting is not admissible. Instead we have to use, for example, q1 ≺ q2 ≺ p0 ≺ q0.

Second, irrespective of the ordering, no inferences by MLR are possible on
Clauses (15) to (18). This also means no equivalent of Clause (26) will be derived.
Consequently, our model construction procedure has fewer clauses available and
less explicit information about which propositional symbols have to be true.

Third, the order in which clauses are considered by the Bachmair-Ganzinger
procedure for ground first-order clauses is solely down to the ordering. In con-
trast our model construction procedure considers literal clauses according to
the ordering, but negative and positive modal clauses are handled separately.

Model Construction for Modal Clauses 19

This design choice is mainly down to the fact that the effects of existential and
universal quantifiers are dealt with at different times. In the first-order setting,
existential quantifiers are dealt with by the use of Skolem functions in first-order
clauses while universal quantifiers are dealt with by instantiation when ground
clauses are computed. In the modal setting, 〈a〉- and [a]-operators are only dealt
with by the model construction procedure.

Regarding the complexity of our approach we can observe the following.

Theorem 8. Let ϕ be a satisfiable modal formula, let Φ′ be the corresponding
finite set of clauses in one of the three normal forms SNF++

ml , SNF+
ml or SNF−

ml,
let Φ be the saturation of Φ′ wrt to the corresponding refinement of MLR, and let
M be model generated by the corresponding model construction procedure. Then

a. the computation of Φ′ from ϕ requires linear time in the size of ϕ and the
number of clauses in Φ′ as well as the size of Φ′ is linear in the size of ϕ;

b. the computation of Φ from Φ′ requires at most exponential time in the size of
Φ and the number of literal clauses in Φ is at most exponential in the number
of propositional symbols in Φ′;

c. the generation of M requires at most exponential time in the size of Φ and
the size of M is also at most exponential in the size of Φ′.

Theorem 8a follows from the fact that the normal form transformation introduces
at most two clauses for each occurrence of a logical operator in ϕ. Regarding
Theorem 8b, the resolution procedure for propositional clauses runs in determin-
istic exponential time in the number of literals occurring in the clause set [25].
The refinements we use and the additional modal inference rules in MLR do not
change the overall complexity, in particular, no new modal clauses are generated
by any of the inference rules. For Theorem8c, the number of worlds in a tree
Kripke model of ϕ is at most exponential in the size of ϕ [9]. For each of the
worlds in the model we have to consider exponentially many literal clauses to
determine the valuation of the model. The consideration of each clause takes at
most linear time in the number of propositional symbols in Φ′.

It is worth pointing out that the Bachmair-Ganzinger procedure only takes
time O(|Φ|l log(|Φ|)) for a set of ground clauses Φ [15]. In the context of the
translation of modal formulae to first-order clausal logic, the size of the set N ′

of non-ground clauses obtained from the translation of ϕ is linear in the size
of ϕ. But the size of the set N of ground clauses obtained by instantiation can
be exponential in the size of N ′ and therefore in the size of ϕ. So, while the
construction of a Herbrand model then only requires polynomial time in the size
of N , it takes exponential time in the size of N ′ and of ϕ. This then aligns with
Theorem 8.

7 Extension to the Modal Cube

A multitude of extensions of the basic modal logic Kn can be formed by adding
one or more axioms to the axiomatisation of Kn itself. The most extensively

20 U. Hustadt et al.

Fig. 5. Model Construction for modal logic L

studied axioms are ψ → [a]〈a〉ψ (B), [a]ψ → 〈a〉ψ (D), [a]ψ → ψ (T), [a]ψ →
[a][a]ψ (4), and 〈a〉ψ → [a]〈a〉ψ (5). Model-theoretically, these additional axioms
correspond to properties of the accessibility relation Ra for the agent a ∈ An. For
the above axioms, the properties are symmetry, seriality, reflexivity, transitivity
and Euclideaness, respectively.

In [20] we have presented reductions ρsml
L (ϕ) for logics L that are extensions

of the mono-modal logic K with these axioms and their combinations. We have
shown that a formula ϕ in simplified negation normal form is L-satisfiable iff
the set ρsml

L (ϕ) of clauses in SNFml is satisfiable. In particular, we have shown
that given a tree Kripke structure M = 〈W,R, V,w0〉 that satisfies ρsml

L (ϕ) we
can obtain a Kripke structure ML = 〈W,RL, V, w0〉 that satisfies ϕ where RL is
obtained by computing the closure of R corresponding to the additional axioms
in L.

Putting these ingredients together gives us the algorithm in Fig. 5 where
we are using ordered resolution refinement of MLR together with our model
construction algorithm for sets of clauses in SNF++

ml . Here, simplifiedNNF is a
function that computes the simplified negation normal form of a modal formula,
SNF2SNF++ is a function that transforms a set of clauses in SNFml into a set
of clauses in SNFml using additional renaming steps as described in Sect. 2,
constructOrderSNF++ constructs an ordering on the propositional symbols in
a set of clauses in SNF++

ml compliant with the conditions set out in Sect. 2, and
closure is a function that computes the closure of a binary relation R with
respect to the relation properties corresponding to the additional axioms in a
modal logic L.

The Kripke structure returned by the algorithm in Fig. 5 is then an L-model
of the formula ϕ.

8 Conclusion and Future Work

In this paper we have presented deterministic model construction algorithms for
satisfiable sets of modal clauses saturated with respect to three refinements of
the modal-layered resolution calculus. These algorithms are meant to comple-
ment the provision of refutations for unsatisfiable sets of modal clauses that is
a standard byproduct of resolution-based calculi.

Model Construction for Modal Clauses 21

In future work we intend to implement these algorithms in the prover KSP
and to evaluate their effectiveness. For this it will be necessary to define a format
in which Kripke models will be provided. Such a format was presented in [14].
Regarding an evaluation, a challenge will be to find other solvers for basic modal
logic that can produce models. While there are range of solvers for basic modal
logic available, few output models. As found in [14], even where a solver claims
to output models, those might be incomplete. The main cause appears to be the
use of simplification during pre-processing and reasoning (pure literal elimina-
tion, tautology elimination, simplification to true) that may remove propositional
symbols without the produced model then indicating a valuation for these sym-
bols even where that valuation is not arbitrary. This kind of interaction between
simplification and model generation is also an issue that we will need to pay
close attention to when implementing our algorithms.

A potential improvement of the algorithms is to reuse existing worlds during
the model construction. In tableau decision procedures this technique is known
as blocking [1,3,5,21,27]. What complicates its application in our context is that
each SNFml clause only holds at a certain modal level instead of universally.

Acknowledgments. C. Dixon was partially supported by the EPSRC funded Pros-
perity Partnership, CRADLE, EP/X02489X/1.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artif.
Intell. 88, 195–213 (1996)

2. Bachmair, L., Ganzinger, H., McAllester, D., Lynch, C.: Resolution theorem prov-
ing. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
chap. 2, pp. 19–99. North-Holland, Amsterdam (2001)

3. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up
model generation methods. J. Autom. Reason. 64(2), 197–251 (2020). https://doi.
org/10.1007/s10817-019-09515-1

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

5. Glimm, B., Horrocks, I., Motik, B.: Optimized description logic reasoning via core
blocking. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp.
457–471. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-
1 39

6. Goré, R., Kikkert, C.: CEGAR-tableaux: improved modal satisfiability via modal
clause-learning and SAT. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS
(LNAI), vol. 12842, pp. 74–91. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86059-2 5

7. Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: a tableau prover for hybrid
logic. Electron. Notes Theor. Comput. Sci. 262, 127–139 (2010)

https://doi.org/10.1007/s10817-019-09515-1
https://doi.org/10.1007/s10817-019-09515-1
https://doi.org/10.1007/978-3-642-14203-1_39
https://doi.org/10.1007/978-3-642-14203-1_39
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-030-86059-2_5

22 U. Hustadt et al.

8. Hailpern, B.T.: Verifying Concurrent Processes Using Temporal Logic. LNCS,
vol. 129. Springer, Berlin/New York (1982). https://doi.org/10.1007/3-540-
11205-7

9. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

10. Halpern, J.Y.: Using reasoning about knowledge to analyze distributed systems.
Annu. Rev. Comput. Sci. 2, 37–68 (1987)

11. Halpern, J., Manna, Z., Moszkowski, B.: A hardware semantics based on temporal
intervals. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 278–291. Springer,
Heidelberg (1983). https://doi.org/10.1007/BFb0036915

12. Kaminski, M., Tebbi, T.: InKreSAT: modal reasoning via incremental reduction to
SAT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 436–442.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 31

13. Kripke, S.A.: Semantical analysis of modal logic I: normal modal propositional
calculi. Zeitschr. f. math. Logik und Grundlagen d. Math. 9, 67–96 (1963)

14. Lagniez, J.M., Berre, D.L., de Lima, T., Montmirail, V.: On checking Kripke mod-
els for modal logic K. In: PAAR 2016, pp. 69–81. No. 1635 in CEUR Workshop
Proceedings (2016)

15. Lynch, C.: Constructing Bachmair-Ganzinger models. In: Voronkov, A., Weiden-
bach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 285–301. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37651-1 12

16. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms
62, 117–134 (2007)

17. Nalon, C., Dixon, C., Hustadt, U.: Modal resolution: proofs, layers, and refine-
ments. ACM Trans. Comput. Log. 20(4), 23:1–23:38 (2019)

18. Nalon, C., Hustadt, U., Dixon, C.: A modal-layered resolution calculus for K. In:
De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 185–200.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2 13

19. Nalon, C., Hustadt, U., Dixon, C.: KSP: architecture, refinements, strategies and
experiments. J. Autom. Reason. 64(3), 461–484 (2020)

20. Nalon, C., Hustadt, U., Papacchini, F., Dixon, C.: Buy one get 14 free: evaluating
local reductions for modal logic. In: Pientka, B., Tinelli, C. (eds.) CADE 2023.
LNCS (LNAI), vol. 14132, pp. 382–400. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-38499-8 22

21. Papacchini, F., Schmidt, R.A.: Terminating minimal model generation procedures
for propositional modal logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.)
IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 381–395. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08587-6 30

22. Pratt, V.R.: Application of modal logic to programming. Stud. Logica. 39(2/3),
257–274 (1980)

23. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture.
In: Fikes, R., Sandewall, E. (eds.) KR 1991, pp. 473–484. Morgan Kaufmann,
Burlington (1991)

24. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math.
1, 227–234 (1965)

25. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

26. Schild, K.: A correspondence theory for terminological logics. In: Mylopoulos, J.,
Reiter, R. (eds.) IJCAI 1991, pp. 466–471. Morgan Kaufmann, Burlington (1991)

https://doi.org/10.1007/3-540-11205-7
https://doi.org/10.1007/3-540-11205-7
https://doi.org/10.1007/BFb0036915
https://doi.org/10.1007/978-3-642-38574-2_31
https://doi.org/10.1007/978-3-642-37651-1_12
https://doi.org/10.1007/978-3-319-24312-2_13
https://doi.org/10.1007/978-3-031-38499-8_22
https://doi.org/10.1007/978-3-031-38499-8_22
https://doi.org/10.1007/978-3-319-08587-6_30

Model Construction for Modal Clauses 23

27. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full
role negation and identity. ACM Trans. Comput. Log. 15(7), 1–31 (2014). https://
doi.org/10.1145/2559947

28. Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp.
345–391. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-
1 15

29. Seidl, M.: Never trust your solver: certification for SAT and QBF. In: Dubois, C.,
Kerber, M. (eds.) CICM 2023. LNCS (LNAI), vol. 14101, pp. 16–33. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-42753-4 2

30. Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution.
J. ACM 14(4), 687–697 (1967)

31. Slagle, J.R., Chang, C.L., Lee, R.C.T.: Completeness theorems for semantic reso-
lution in consequence-finding. In: Walker, D.E., Norton, L.M. (eds.) IJCAI 1969,
pp. 281–286. William Kaufmann, New York (1969)

32. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

33. Sutcliffe, G., Desharnais, M.: The 11th IJCAR automated theorem proving system
competition - CASC-J11. AI Commun. 36(2), 73–91 (2023)

34. Wu, M., Goré, R.: Verified decision procedures for modal logics. In: Harrison,
J., O’Leary, J., Tolmach, A. (eds.) ITP 2019. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 141, pp. 31:1–31:19. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ITP.
2019.31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2559947
https://doi.org/10.1145/2559947
https://doi.org/10.1007/978-3-642-37651-1_15
https://doi.org/10.1007/978-3-642-37651-1_15
https://doi.org/10.1007/978-3-031-42753-4_2
https://doi.org/10.4230/LIPIcs.ITP.2019.31
https://doi.org/10.4230/LIPIcs.ITP.2019.31
http://creativecommons.org/licenses/by/4.0/

A Terminating Sequent Calculus
for Intuitionistic Strong Löb Logic
with the Subformula Property

Camillo Fiorentini1(B) and Mauro Ferrari2

1 Department of Computer Science, Università degli Studi di Milano, Milan, Italy
fiorentini@di.unimi.it

2 Department of Theoretical and Applied Sciences, Università degli Studi
dell’Insubria, Varese, Italy

mauro.ferrari@uninsubria.it

Abstract. Intuitionistic Strong Löb logic iSL is an intuitionistic modal
logic with a provability interpretation. We introduce GbuSL�, a termi-
nating sequent calculus for iSL with the subformula property. GbuSL�
modifies the sequent calculus G3iSL� for iSL based on G3i, by annotat-
ing the sequents to distinguish rule applications into an unblocked phase,
where any rule can be backward applied, and a blocked phase where only
right rules can be used. We prove that, if proof search for a sequent σ in
GbuSL� fails, then a Kripke countermodel for σ can be constructed.

1 Introduction

Intuitionistic Strong Löb Logic iSL is the intuitionistic modal logic obtained by
adding both the Gödel-Löb axiom �(�ϕ → ϕ) → �ϕ and the completeness
axiom ϕ → �ϕ to K�, the �-fragment of Intuitionistic Modal Logic. Equiva-
lently, iSL is the extension of K� with the Strong Löb axiom (�ϕ → ϕ) → ϕ.
Logic iSL has prominent relevance in the study of provability of Heyting Arith-
metic HA. It is well known that the Gödel-Löb Logic, obtained by extending
classical modal logic with Gödel-Löb axiom, is the provability logic of Peano
Arithmetic [11]. However, it is an open problem what the provability logic of HA
should be; a solution to this problem is claimed in a preprint paper [8]. In [16],
it is shown that iSL is the provability logic of an extension of HA with respect
to slow provability. Moreover, iSL plays an important role in the Σ1-provability
logic of HA [1]. We stress that iSL, as well as other related logics (such as the
logics iGL, mHC and KM investigated in [13,14]), only treats the �-modality,
connected with the provability interpretation; it is not clear what interpretation
♦ should have and which laws it should obey.

In this paper we investigate proof search for iSL. Recently, in [13,15] some
sequent calculi for iSL have been introduced, obtained by enhancing the sequent
calculus G3i [12] for IPL (Intuitionistic Propositional Logic) with the rule R�
to treat right � (actually, four variants of such a rule are proposed). We start

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 24–42, 2024.
https://doi.org/10.1007/978-3-031-63501-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_2&domain=pdf
http://orcid.org/0000-0003-2152-7488
http://orcid.org/0000-0002-7904-1125
https://doi.org/10.1007/978-3-031-63501-4_2

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 25

by presenting the sequent calculus G3iSL+� (see Fig. 1), a polished version of
the calculus G3iSL� [13,15] where rule R� avoids some redundant duplications
of formulas. The calculus G3iSL+� has the subformula property, namely: every
formula occurring in a G3iSL+�-tree is a subformula of a formula in the root
sequent. However, G3iSL+� is not well-suited for proof search. This is mainly due
to the rule L → for left implication, which has applications where the sequent
α → β, Γ ⇒ α is both the conclusion and the left premise, and this yields loops
in backward proof search. We are interested in a sequent calculus C where back-
ward proof search always terminates, that is: given a sequent of C and repeatedly
applying the rules of C upwards, proof search eventually halts, no matter which
strategy is used. A calculus of this kind is called (strongly) terminating and can
be characterized as follows: there exists a well-founded relation ≺ on sequents
of C such that, for every application ρ of a rule of C, if the sequent σ is the
conclusion of ρ and σ′ is any of the premises, then σ′ ≺ σ. Clearly, any calculus
containing rule L→ is not terminating; in this case, to get a terminating proof
search procedure for C some machinery must be introduced (for instance, loop-
checking). A calculus C is weakly terminating if it admits a terminating proof
search strategy. The calculus G3i is weakly terminating. A well-known terminat-
ing calculus for IPL is G4i [2]; this is obtained from G3i by replacing the looping
rule L→ with more specialized rules: basically, the left rule with main formula
α → β is defined according to the structure of α. The same approach is used
in [13,15], where the G4-variants of the G3-calculi for iSL are introduced. The
obtained calculi are weakly (but not strongly) terminating and the proof search
procedure yields a countermodel in case of failure. This means that, if proof
search for a sequent σ = Γ ⇒ δ fails, one gets a Kripke model for σ (as defined
in [1,7]) certifying that δ is not an iSL-consequence of Γ . These results have been
definitely improved in [10], where the G4-style (strongly) terminating calculus
G4iSLt for iSL is presented. Notably, the proofs of termination and completeness
(via cut-admissibility) have been formalized in the Coq Proof Assistant.

So far, it seems that the only way to design a (weakly or strongly) terminat-
ing calculus for iSL is to throw rule L→ away and to comply with G4-style. As
a side effect, the obtained calculi lack the subformula property. Now, an intrigu-
ing question is: is it possible to get a terminating variant of G3iSL+� still pre-
serving the subformula property? To address this issue, we follow the approach
discussed in [4,5], where (strongly) terminating variants of the intuitionistic cal-
culus G3i are introduced: the crucial expedient is to decorate the sequents with
one of the labels b (blocked) and u (unblocked). In backward proof search, if a
sequent has label b, the (backward) application of left rules is blocked, so that
only right rules can be applied. Accordingly, bottom-up proof search alternates
between an unblocked phase, where both left and right rules can be applied,
and a blocked phase, where the focus is on the right formula (the application
of left rules is forbidden). We call the obtained calculus GbuSL� (see Fig. 2).
The subformula property for GbuSL� can be easily checked; to ascertain that
GbuSL� is terminating, we introduce the well-founded relation ≺bu on labelled
sequents (Definition 2). We show that a GbuSL�-derivation can be translated

26 C. Fiorentini and M. Ferrari

into a G3iSL+�-derivation; as a corollary, the calculus G3iSL+� is weakly termi-
nating. To prove the completeness of GbuSL�, we show that, if proof search
for a sequent σ with label u fails, then a countermodel for σ can be built. An
implementation of the proof search procedure, based on the Java framework
JTabWb [6], is available at https://github.com/ferram/jtabwb_provers/tree/
master/isl_gbuSL; the repository also contains the online appendix we refer to
henceforth.

2 The Logic iSL

Formulas, denoted by lowercase Greek letters, are built from an enumerable set
of propositional variables V, the constant ⊥ and the connectives ∧, ∨, → and
�; ¬α is an abbreviation for α → ⊥. Let α be a formula and Γ a multiset of
formulas. By �Γ we denote the multiset {�α | α ∈ Γ}. By Sf(α) we denote
the set of the subformulas of α, including α itself; Sf(Γ) is the union of the sets
Sf(α), for every α in Γ . The size of α, denoted by |α|, is the number of symbols
in α; the size of Γ , denoted by |Γ |, is the sum of the sizes of formulas α in Γ ,
taking into account their multiplicity. A relation R is well-founded iff there is
no infinite descending chain . . . Rx2Rx1Rx0; R is converse well-founded if the
converse relation R−1 is well-founded.

An iSL-(Kripke) model K is a tuple 〈W,≤, R, r, V 〉 where W is a non-empty
set (worlds), ≤ (the intuitionistic relation) and R (the modal relation) are subsets
of W ×W , r (the root) is the minimum element of W w.r.t. ≤, V (the valuation
function) is a map from W to 2V such that:

(M1) ≤ is reflexive and transitive;
(M2) R is transitive and converse well-founded;
(M3) R is a subset of ≤;
(M4) if w0 ≤ w1 and w1Rw2, then w0Rw2;
(M5) V is persistent, namely: w0 ≤ w1 implies V (w0) ⊆ V (w1).

Given an iSL-model K, the forcing relation � between worlds of K and formulas
is defined as follows:

K, w � p iff p ∈ V (w), ∀p ∈ V K, w � ⊥
K, w � α ∧ β iff K, w � α and K, w � β K, w � α ∨ β iff K, w � α or K, w � β

K, w � α → β iff ∀w′ ≥ w, if K, w′ � α then K, w′ � β

K, w � �α iff ∀w′ ∈ W , if wRw′ then K, w′ � α.

We write w � ϕ instead of K, w � ϕ when the model K at hand is clear from
the context. One can easily prove that forcing is persistent, i.e.: if w � ϕ and
w ≤ w′, then w′ � ϕ. Let Γ be a (multi)set of formulas. By w � Γ we mean that
w � ϕ, for every ϕ in Γ . The iSL-consequence relation |=iSL is defined as follows:

Γ |=iSL ϕ iff ∀K ∀w (K, w � Γ =⇒ K, w � ϕ) .

https://github.com/ferram/jtabwb_provers/tree/master/isl_gbuSL
https://github.com/ferram/jtabwb_provers/tree/master/isl_gbuSL

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 27

Fig. 1. The calculus G3iSL+
� (p ∈ V, k ∈ {0, 1}).

The logic iSL is the set of formulas ϕ such that ∅ |=iSL ϕ. Accordingly, if ϕ �∈ iSL,
there exists an iSL-model K such that r � ϕ, with r the root of K; we call
K a countermodel for ϕ. We stress that iSL satisfies the finite model prop-
erty [16]; thus, we can assume that iSL-models are finite and condition (M2)
can be rephrased as “R is transitive and irreflexive”.

Example 1. Figure 5 defines a formula ψ and a countermodel K for ψ. The worlds
of K are w2 (the root), w7, w12, w15, w19, w24. The relations ≤ and R of K can
be inferred by the displayed arrows, as accounted for in the figure. For instance
w2 ≤ w19, since there is a path from w2 and w19 (actually, a unique path);
w2 ≤ w15 and w2Rw15, since the path from w2 and w15 ends with the solid
arrow →. However, it is not the case that w2Rw19, since the path from w2 to
w19 ends with the dashed arrow ���. In each world wk, the first line displays the
value of V (wk), the remaining lines report (separated by commas) some of the
formulas forced and not forced in wk. Since w2 � ψ, K is a countermodel for ψ.

We remark that, if we replace a dashed arrow with a solid arrow, or vice-
versa, we get w2 � ψ, thus K is no longer a countermodel for ψ. For instance,
let us set w2 → w7. Then, w2Rw7 and, since w7 � s, we get w2 � �s, hence
w2 � α. Since w7 � γ and w12 � β, it follows that w2 � ψ. Similarly, assume
w15 → w19, which implies w15Rw19. Then w15 � �¬p (indeed, w15Rw19 and
w19 � ¬p) and, by the fact that w2Rw15, we get w2 � ��¬p, thus w2 � α; as in
the previous case, we conclude w2 � ψ. Let us set w2 → w12. Since w12 � �¬p
and w2Rw12, we get w2 � ��¬p; this implies that w2 � ψ. ♦

In the paper we introduce some sequent calculi for iSL. For the notation
and the terminology about a generic calculus C (e.g., the notions of C-tree, C-
derivation, branch, depth of a C-tree), we refer to [12]. By �C σ we mean that
the sequent σ is derivable in the calculus C. Let C be a calculus and let ≺ be a
relation on the sequents of C. A rule R of C is decreasing w.r.t. ≺ iff, for every
application ρ of R, if σ is the conclusion of ρ and σ′ is any of the premises of ρ,
then σ′ ≺ σ. A calculus C is terminating iff there exists a well-founded relation
≺ such that every rule of C is decreasing w.r.t. ≺.

The calculus G3iSL+� in Fig. 1 is obtained by adding the rule R� to the
intuitionistic calculus G3i [12]. Sequents of G3iSL+� have the form Γ ⇒ δ, where Γ
is a finite multiset of formulas and δ is a formula. The calculus is very close to the

28 C. Fiorentini and M. Ferrari

variant G3iSLa
� of the calculus G3iSL� for iSL presented in [13,15]. The notable

difference is in the presentation of rule R�: given the conclusion Γ,�Δ ⇒ �α,
in G3iSLa

� the premise is �α, Γ,�Δ,Δ ⇒ α, in G3iSL+� the redundant multiset
�Δ is omitted. The calculus G3iSL+� is sound and complete for iSL:

Theorem 1. �G3iSL+
�

Γ ⇒ δ iff Γ |=iSL δ.

The soundness of G3iSL+� (the only-if side of Theorem 1) immediately follows
from the soundness of G3iSLa

� (for a semantic proof, see the online appendix);
the completeness is discussed in Sect. 4.1 It is easy to check that G3iSL+� enjoys
the subformula property; however, as discussed in the Introduction, G3iSL+� is
not terminating, due to the presence of rule L→.

3 The Sequent Calculus GbuSL�

The sequent calculus GbuSL� is obtained from G3iSL+� by refining the sequent
definition: we decorate sequents by a label l, where l can be b (blocked) or u
(unblocked). Thus, a GbuSL�-sequent σ has the form Γ l⇒ δ, with l ∈ {b,u}; Γ
and δ are referred to as the lhs and the rhs (left/right hand side) of σ respectively.
We call l-sequent a sequent with label l; Sf(Γ l⇒ δ) denotes the set Sf(Γ ∪ {δ}).
To define the calculus, we introduce the following evaluation relation.

Definition 1 (Evaluation). Let Γ be a multiset of formulas and ϕ a formula.
We say that Γ evaluates ϕ, written Γ ϕ, iff ϕ matches the following BNF:

ϕ := γ | ϕ ∧ ϕ | ϕ ∨ α | α ∨ ϕ | α → ϕ | �ϕ with γ ∈ Γ and α any formula.

By Γ Δ we mean that Γ δ, for every δ ∈ Δ. We state some properties of
evaluation.

Lemma 1.

(i) If Γ ϕ and Γ ⊆ Γ ′, then Γ ′ ϕ.
(ii) If Γ ∪ Δ ϕ and Γ ′ Δ, then Γ ∪ Γ ′ ϕ.
(iii) If Γ ϕ, then Γ ∩ Sf(ϕ) ϕ.
(iv) If Γ ϕ, then �G3iSL+

�
Γ ⇒ ϕ.

(v) If Γ ϕ and K, w � Γ , then K, w � ϕ.

Proof. All the assertions are proved by induction on the structure of ϕ.
(i). Let Γ ϕ and Γ ⊆ Γ ′; we prove Γ ′ ϕ. If ϕ ∈ Γ , then ϕ ∈ Γ ′, hence Γ ′ ϕ.
Let us assume ϕ �∈ Γ . If ϕ = α ∧ β, then Γ α and Γ β. By the induction
hypothesis, we get Γ ′ α and Γ ′ β, hence Γ ′ α∧β. The other cases are similar.
(ii). Let Γ ∪ Δ ϕ and Γ ′ Δ; we prove Γ ∪ Γ ′ ϕ. Let us assume ϕ ∈ Γ ∪ Δ.
If ϕ ∈ Γ , then Γ ∪ Γ ′ ϕ. Otherwise, it holds that ϕ ∈ Δ. Since Γ ′ Δ, we
1 We stress that the completeness of G3iSL+

� is not a consequence of the one of G3iSLa
�,

since rule R� of G3iSL+
� is a restriction of rule R� of G3iSLa

�.

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 29

get Γ ′ ϕ; by point (i), we conclude Γ ∪ Γ ′ ϕ. Let us assume ϕ �∈ Γ ∪ Δ. If
ϕ = α ∧ β, then Γ ∪ Δ α and Γ ∪ Δ β. By the induction hypothesis we get
Γ ∪ Γ ′ α and Γ ∪ Γ ′ β, hence Γ ∪ Γ ′ α ∧ β. The other cases are similar.
(iii). Let Γ ϕ: we prove Γ ∩Sf(ϕ)ϕ. If ϕ ∈ Γ , then ϕ ∈ Γ ∩Sf(ϕ), which implies
Γ ∩ Sf(ϕ) ϕ. Let ϕ �∈ Γ . If ϕ = α ∧ β, then Γ α and Γ β. By the induction
hypothesis, we get Γ ∩ Sf(α) α and Γ ∩ Sf(β) β. Since Sf(α) ⊆ Sf(α ∧ β) and
Sf(β) ⊆ Sf(α ∧ β), by point (i) we get Γ ∩ Sf(α ∧ β) α and Γ ∩ Sf(α ∧ β) β;
we conclude Γ ∩ Sf(α ∧ β) α ∧ β. The other cases are similar.
(iv). We prove the assertion by outlining an effective procedure to build a G3iSL+�-
derivation of the sequent Γ ⇒ ϕ. We start by showing that:

(∗) �G3iSL+
�

ϕ, Γ ⇒ ϕ, for every formula ϕ and every multiset of formulas Γ .

We prove (*) by induction on the structure of ϕ. If ϕ ∈ V ∪ {⊥}, a G3iSL+�-
derivation of ϕ, Γ ⇒ ϕ is obtained by applying rule Id or rule L⊥. Otherwise, a
G3iSL+�-derivation of ϕ, Γ ⇒ ϕ can be built as follows, according to the form of
ϕ, where the omitted G3iSL+�-derivations are given by the induction hypothesis:

...

α, β, Γ ⇒ α
L∧

α ∧ β, Γ ⇒ α

...

α, β, Γ ⇒ β
L∧

α ∧ β, Γ ⇒ β
R∧

α ∧ β, Γ ⇒ α ∧ β

...

α, Γ ⇒ α
R∨0

α, Γ ⇒ α ∨ β

...

β, Γ ⇒ β
R∨1

β, Γ ⇒ α ∨ β
L∨

α ∨ β, Γ ⇒ α ∨ β
...

α, α → β, Γ ⇒ α

...

α, β, Γ ⇒ β
L →

α, α → β, Γ ⇒ β
R →

α → β, Γ ⇒ α → β

...

�α, α, Γ ⇒ α
R��α, Γ ⇒ �α

Let Γ ϕ; we show that Γ ⇒ ϕ is provable in G3iSL+�. If ϕ ∈ Γ , the assertion
follows by (*). Let us assume ϕ �∈ Γ . According to the shape of ϕ, a G3iSL+�-
derivation of Γ ⇒ ϕ can be built as follows:

...

Γ ⇒ α

...

Γ ⇒ β
R∧

Γ ⇒ α ∧ β

...

Γ ⇒ αk
R∨k

Γ ⇒ α0 ∨ α1

...

α, Γ ⇒ β
R →

Γ ⇒ α → β

...

�α, Γ ⇒ α
R�

Γ ⇒ �α

The omitted G3iSL+�-derivations exist by the induction hypothesis; for instance,
if ϕ = α ∧ β, then Γ α and Γ β, hence both Γ ⇒ α and Γ ⇒ β are provable
in G3iSL+�. In the cases ϕ = α → β and ϕ = �α, we also have to use point (i).
For instance, let ϕ = α → β; then, Γ β and, by point (i), we get Γ ∪ {α} β,
hence the G3iSL+�-derivation of α, Γ ⇒ β exists by the induction hypothesis.
(v). Let Γ ϕ and w � Γ (in K); we prove that w � ϕ. The case ϕ ∈ Γ is trivial.
Let ϕ �∈ Γ . If ϕ = α ∧ β, then Γ α and Γ β. By the induction hypothesis, we
get w � α and w � β, hence w � α ∧ β. The other cases are similar. �

30 C. Fiorentini and M. Ferrari

Fig. 2. The calculus GbuSL� (l ∈ {b, u}, k ∈ {0, 1}).

The calculus GbuSL� (see Fig. 2) consists of the axiom rules Ax� and L⊥,
together with left/right rules for each logical operator. The calculus is oriented
to backward proof search, where rules are applied bottom-up. If the conclusion of
a rule has label b, the (bottom-up) application of left rules is blocked. There are
two rules for right implication, namely R �→ and R �→; the choice between them is
settled by the evaluation relation . Right �-formulas are handled by rules R�

u

and R�
b ; here the choice is determined by the label of the conclusion. We remark

that if σ = Γ,�Δ b⇒�α and Γ ∪ �Δ �α, then σ is an axiom sequent (see rule
Ax�) and an application of rule R�

b to σ is prevented by the side condition of
R�

b . Rule R�
b is similar to rule R� of G3iSL+�: both rules introduce in the lhs

of the premise a copy of the main formula �α (also called diagonal formula); in
rule R�

u such a duplication is not required. In backward proof search, a b-sequent
starts the construction of a branch only containing b-sequents, where only right
rules are applied. This phase ends either when an axiom sequent is obtained or
when no rule can be applied or when one of the rules turning a label b into u is
applied (namely, rules R �→ and R�

b).

Example 2. We show a GbuSL�-derivation of the u-sequent σ0 = u⇒ ¬¬�p.

Ax�

�p, ¬�p b⇒ �p (4)

L⊥
�p, ⊥ u⇒ p (5)

L→
�p, ¬�p u⇒ p (3)

R�
b¬�p b⇒ �p (2)

L⊥
⊥ u⇒ ⊥ (6)

L→
¬�p u⇒ ⊥ (1)

R �→u⇒ ¬¬�p (0)

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 31

In the derivations each sequent is marked with an index (n) so that we can
refer to it as σn. The above derivation highlights some of the peculiarities of
GbuSL�. In backward proof search, σ2 is obtained by a (backward) application
of rule L → to σ1; the label b in σ2 is crucial to block the application of rule
L →, which would generate an infinite branch. The sequent σ3 is obtained by
the application of rule R�

b to σ2. In this case, the key feature is the presence
of the diagonal formula �p; without it, the sequent σ3 would be ¬�p u⇒ p and,
after the application of L → (the only applicable rule), the left premise would
be σ4 = ¬�p b⇒�p, which yields a loop (σ4 = σ2). ♦

We state the main properties of GbuSL�.

Theorem 2.

(i) GbuSL� has the subformula property.
(ii) GbuSL� is terminating.
(iii) �GbuSL� Γ l⇒ δ implies Γ |=iSL δ (Soundness).
(iv) Γ |=iSL δ implies �GbuSL� Γ u⇒ δ (Completeness).

We remark that in soundness l is any label; instead, in completeness the label is
set to u. For instance, since p ∨ q |=iSL q ∨ p, completeness guarantees that the
u-sequent σu = p ∨ q u⇒ q ∨ p is provable in GbuSL�. A GbuSL�-derivation of σu

is obtained by first (upwards) applying rule L∨ to σu and then one of the rules
R∨0 or R∨1; if we first apply a right rule, we are stuck (e.g., if we apply R∨0

to σu, we get the unprovable sequent p ∨ q u⇒ q). On the contrary, the b-sequent
p ∨ q b⇒ q∨p is not provable in GbuSL�, since the label b inhibits the application
of rule L∨ and forces the application of a right rule.

The subformula property of GbuSL� can be easily checked by inspecting
the rules; termination is discussed below and completeness in the next section.
Soundness can be proved in different ways. One can exploit semantics, relying
on the fact that rules preserve the consequence relation |=iSL (see the online
appendix). Here we prove the soundness of GbuSL� by showing that GbuSL�-
derivations can be mapped to G3iSL+�-derivations.

Proposition 1. If GbuSL� � Γ l⇒ δ, then G3iSL+� � Γ ⇒ δ.

Proof. Let T be a GbuSL�-tree with root sequent σ = Γ l⇒ δ; T can be translated
into a G3iSL+�-tree T̃ having root sequent σ̃ = Γ ⇒ δ by erasing the labels and
weakening the lhs of sequents when rules R �→ and R�

u are applied. Assume now
that the GbuSL�-tree T is a GbuSL�-derivation of σ and let σ� = Δ ⇒ ϕ be a
leaf of T̃ which is not an axiom of G3iSL+�. Note that Δϕ, hence by Lemma 1(iv)
we can build a G3iSL+�-derivation D� of σ�. By replacing in T̃ every leaf σ� with
the corresponding derivation D�, we eventually get a G3iSL+�-derivation of σ̃. �

To prove the termination of GbuSL� we have to introduce a proper well-
founded relation ≺bu on labelled sequents. As mentioned in the Introduction,
the main problem stems from rule L→. Let σ and σ′ be the conclusion and the

32 C. Fiorentini and M. Ferrari

left premise of an application of rule L →; we stipulate that σ′ ≺bu σ since σ′

has label b and σ has label u; thus, we establish that b weighs less than u. Now,
we need a way out to accommodate rules R �→ and R�

b that, read bottom-up,
switch b with u. In both cases, we observe that the lhs of the premise evaluates
a new formula; e.g., in the application of rule R �→ having premise α, Γ u⇒β and
conclusion Γ l⇒α → β, it holds that Γ � α (side condition) and Γ ∪ {α} α
(definition of); this suggests that here we can exploit the evaluation relation.
Let Ev be defined as follows:

Ev(Γ l⇒ δ) = {ϕ | ϕ ∈ Sf(Γ ∪ {δ}) and Γ ϕ }

Note that Ev(σ) ⊆ Sf(σ). We also have to take into account the size of a sequents,
where |Γ l⇒ δ| = |Γ | + |δ|. This leads to the definition of ≺bu:

Definition 2 (≺bu). σ′ ≺bu σ iff one of the following conditions holds:

(a) Sf(σ′) ⊂ Sf(σ);
(b) Sf(σ′) = Sf(σ) and Ev(σ′) ⊃ Ev(σ);
(c) Sf(σ′) = Sf(σ) and Ev(σ′) = Ev(σ) and label(σ′) = b and label(σ) = u;
(d) Sf(σ′) = Sf(σ) and Ev(σ′) = Ev(σ) and label(σ′) = label(σ) and |σ′| < |σ|.

Proposition 2. The relation ≺bu is well-founded.

Proof. Assume, by contradiction, that there is an infinite descending chain of the
kind . . . ≺bu σ1 ≺bu σ0. Since Sf(σ0) ⊇ Sf(σ1) ⊇ . . . and Sf(σ0) is finite, the sets
Sf(σj) eventually stabilize, namely: there is k ≥ 0 such that Sf(σj) = Sf(σk) for
every j ≥ k. Since Ev(σj) ⊆ Sf(σj), we get Ev(σk) ⊆ Ev(σk+1) ⊆ . . . ⊆ Sf(σk).
Since Sf(σk) is finite, there is m ≥ k such that Ev(σj) = Ev(σm) for every j ≥ m.
This implies that there exists n ≥ m such that all the sequents σn, σn+1, . . . have
the same label; accordingly |σn| > |σn+1| > |σn+2| > . . . ≥ 0, a contradiction.
We conclude that ≺bu is well-founded. �

To prove that the rules of GbuSL� are decreasing w.r.t.≺bu, we need the
following property.

Lemma 2. Let ρ be an application of a rule of GbuSL�, let σ be the conclusion
of ρ and σ′ any of the premises. For every formula ϕ, if lhs(σ)ϕ then lhs(σ′)ϕ.

Proof. The assertion can be proved by applying Lemma 1. For instance, let σ =
Γ,�Δ u⇒�α and σ′ = Γ,Δ u⇒ α be the conclusion and the premise of rule R�

u ;
assume that Γ ∪ �Δ ϕ. Since Δ �Δ, by Lemma1(ii) get Γ ∪ Δ ϕ. �

Proposition 3. Every rule of the calculus GbuSL� is decreasing w.r.t. ≺bu.

Proof. Let σ and σ′ be the conclusion and one of the premises of an application
of a rule of GbuSL�. Note that Sf(σ′) ⊆ Sf(σ); moreover, if Sf(σ′) = Sf(σ), by
Lemma 2 we get Ev(σ′) ⊇ Ev(σ). We can prove σ′ ≺bu σ by a case analysis; we
only detail two significant cases.

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 33

Fig. 3. The refutation calculus RbuSL� (l ∈ {b, u}, k ∈ {0, 1}).

σ′ = α → β, Γ b⇒ α β, Γ u⇒ δ
L→

σ = α → β, Γ u⇒ δ

If Sf(σ′) ⊂ Sf(σ), then σ′ ≺bu σ by point (a) of the definition. Otherwise, it holds
that Sf(σ′) = Sf(σ) and Ev(σ′) ⊇ Ev(σ). If Ev(σ′) ⊃ Ev(σ), then σ′ ≺bu σ by
point (b); otherwise, σ′ ≺bu σ follows by point (c).

σ′ = �α, Γ, Δ u⇒ α
R�

b
σ = Γ, �Δ l⇒ �α

Γ ∪ �Δ � �α

If Sf(σ′) ⊂ Sf(σ), then σ′ ≺bu σ by point (a). Otherwise, Sf(σ′) = Sf(σ) and
Ev(σ′) ⊇ Ev(σ). Note that �α ∈ Ev(σ′) and, by the side condition, �α �∈ Ev(σ).
This implies that Ev(σ′) ⊃ Ev(σ), hence σ′ ≺bu σ by point (b). �

By Proposition 2 and 3, we conclude that the calculus GbuSL� is terminating.

4 The Refutation Calculus RbuSL�

A common technique to prove the completeness of a sequent calculus C consists
in showing that, whenever a sequent σ is not provable in C, then a counter-
model for σ can be built (see, e.g., the proof of completeness of G4iSL� dis-
cussed in [13,15]); we prove the completeness of GbuSL� according with this
plan. Following the ideas in [3–5,9], we formalize the notion of “non-provability
in GbuSL�” by introducing the refutation calculus RbuSL�, a dual calculus to
GbuSL�. Sequents of RbuSL�, called antisequents, have the form Γ l

� δ. Intu-
itively, a derivation in RbuSL� of Γ l

� δ witnesses that the sequent Γ l⇒ δ is

34 C. Fiorentini and M. Ferrari

refutable, that is, not provable, in GbuSL�. Henceforth, Γ at denotes a finite
multiset of propositional variables, Γ→ denotes a finite multiset of →-formulas
(i.e., formulas of the kind α → β). The axioms of RbuSL� are the irreducible
antisequents, namely the antisequents Γ l

� δ such that the corresponding dual
sequents Γ l⇒ δ are not the conclusion of any of the rules of GbuSL�. Irreducible
antisequents are characterized as follows:

Definition 3. An antisequent σ is irreducible iff σ = Γ at, Γ→,�Δ l
� δ and

both (i) δ ∈ (V ∪ {⊥}) \ Γ at and (ii) l = b or Γ→ = ∅.

The rules of RbuSL� are displayed in Fig. 3. In rules SAt
u , S∨

u and S�
u (we call

Succ rules) the notation {Γ b
� α}α→β∈Γ → means that, for every α → β ∈ Γ→,

the b-antisequent Γ b
� α is a premise of the rule. Note that all of the Succ rules

have at least one premise (in rule SAt
u this is imposed by the condition Γ→ �= ∅).

The next theorem, proved below, states the soundness of RbuSL�:

Theorem 3 (Soundness of RbuSL�). If �RbuSL� Γ u
� δ, then Γ �|=iSL δ.

Example 3. Figure 4 displays the RbuSL�-derivation D of σ0 = u
� ψ. The (back-

ward) application of rule S∨
u to σ2 has three premises, the left-most one is related

to the formula p → q in Θ. The application of rule SAt
u to σ7 has only the

premise σ8, generated by the formula ¬s in Λ. To σ13 we must apply R �→, since
Σ q. The application of rule SAt

u to σ24 gives rise to two premises, correspond-
ing to the formulas ¬¬q and ¬p in Ω. By Theorem3, we get �|=IPL ψ, namely
ψ �∈ iSL. ♦

Countermodel Extraction. An iSL-model K with root r is a countermodel for
σ = Γ u

� δ iff r � Γ and r � δ; thus K certifies that Γ �|=iSL δ. Let D be an
RbuSL�-derivation of a u-antisequent σu

0 ; we show that from D we can extract
a countermodel Mod(D) for σu

0 . A u-antisequent σ of D is prime iff σ is the
conclusion of rule Irr or of a Succ rule. We introduce the relations �, ≺ and ≺R

between antisequents occurring in D:

– σ1 ≺ σ2 iff σ1 and σ2 belong to the same branch of D and σ1 is below σ2;
– σ1 � σ2 iff either σ1 = σ2 or σ1 ≺ σ2;
– σ1 ≺R σ2 iff there exists a u-antisequent σ′ such that σ1 ≺ σ′ � σ2 and σ′ is

either the premise of rule R�
b or the rightmost premise of S�

u .

We define Mod(D) as the structure 〈W,≤, R, σu
r , V 〉 where:

– W is the set of the prime antisequents of D;
– ≤ and R are the restrictions of � and ≺R to W respectively;
– σu

r is the ≤-minimum prime antisequent of D;
– V (Γ u

� δ) = Γ ∩ V.

It is easy to check that Mod(D) is an iSL-model; in particular, σu
r exists since

the antisequent at the root of D has label u. We introduce a canonical map Ψ
between the u-antisequents of D and the worlds of Mod(D):

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 35

Fig. 4. The RbuSL�-derivation D of σ0 = u
� ψ (see Example 3).

– Ψ(σu) = σu
p iff σu

p is the �-minimum prime antisequent σ such that σu � σ.

One can easily check that Ψ is well-defined and Ψ(σp) = σp, for every prime σp.
We state the main properties of Mod(D).

Theorem 4. Let D be an RbuSL�-derivation of a u-antisequent σu
0 .

(i) For every u-antisequent σu = Γ u
� δ in D, Ψ(σu) � Γ and Ψ(σu) � δ.

(ii) Mod(D) is a countermodel for σu
0 .

Point (ii) follows from (i) and the fact that Ψ(σu
0) is the root of Mod(D). The

proof of (i) is deferred below. We remark that point (ii) of Theorem 4 immediately
implies the soundness of RbuSL� (Theorem 3).

36 C. Fiorentini and M. Ferrari

Example 4. At the top of Fig. 5 we represent the structure of the RbuSL�-
derivation D of Fig. 4, displaying the information relevant to the definition of
Mod(D). The countermodel Mod(D) for σ0 coincides with the iSL-model in the
figure and described in Example 1; the figure also reports the canonical map Ψ .
♦

Fig. 5. The countermodel Mod(D) for ψ (see Examples 1, 4).

Proof Search. We investigate more deeply the duality between GbuSL� and
RbuSL�. A sequent σ = Γ l⇒ δ is regular iff l = u or Γ = Γ at, Γ→,�Δ; by σ we

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 37

denote the antisequent Γ l
� δ. Let σ be a regular sequent; in the next proposition

we show that either σ is provable in GbuSL� or σ is provable in RbuSL�. The
proof conveys a proof search strategy to build the proper derivation, based on
backward application of the rules of GbuSL�. We give priority to the invertible
rules of GbuSL�, namely: L∧, R∧, L∨, R �→, R �→, R�

b ; as discussed in the proof
of Proposition 4, the application of such rules does not require backtracking. If
the search for a GbuSL�-derivation of σ fails, we get an RbuSL�-derivation of σ.
The proof search procedure is detailed in the online appendix.

Proposition 4. Let σ be a regular sequent. One can build either a GbuSL�-
derivation of σ or an RbuSL�-derivation of σ.

Proof. Since ≺bu is well-founded (Proposition 2), we can inductively assume that
the assertion holds for every regular sequent σ′ such that σ′ ≺bu σ (IH). If σ or
σ is an axiom (in the respective calculus), the assertion immediately follows. If
an invertible rule ρ of GbuSL� is (backward) applicable to σ, we can build the
proper derivation by applying ρ or its dual image in RbuSL�. For instance, let us
assume that rule L∨ of GbuSL� is applicable with conclusion σ = α0 ∨ α1, Γ

u⇒ δ
and premises σk = αk, Γ u⇒ δ. Let k ∈ {0, 1}; since σk ≺bu σ (see Proposition 3),
by (IH) there exists either a GbuSL�-derivation Dk of σk or an RbuSL�-derivation
Ek of σk. According to the case, we can build one of the following derivations:

D0

α0, Γ
u⇒ δ

D1

α1, Γ
u⇒ δ

L∨
α0 ∨ α1, Γ

u⇒ δ

E0

α0, Γ
u
� δ

L∨0
α0 ∨ α1, Γ

u
� δ

E1

α1, Γ
u
� δ

L∨1
α0 ∨ α1, Γ

u
� δ

Let us assume that no invertible rule can be applied to σ; then:

– σ = Γ u⇒ δ with Γ = Γ at, Γ→,�Δ and δ ∈ V ∪ {⊥, δ0 ∨ δ1, �δ0 }.

We only discuss the case δ = �δ0. Let σ0 = Γ at, Γ→,Δ u⇒ δ0 be the premise
of the application of rule R�

u of GbuSL� to σ; for every α → β ∈ Γ→, let
σα = Γ b⇒ α and σβ = Γ \ {α → β}, β u⇒ δ be the two premises of an application
of rule L → of GbuSL� to σ with main formula α → β. By the (IH):

– we can build either a GbuSL�-der. D0 of σ0 or an RbuSL�-der. E0 of σ0.
– for every α → β ∈ Γ→ and for every ω ∈ {α, β}, we can build either a
GbuSL�-derivation Dω of σω or an RbuSL�-derivation Eω of σω.

One of the following four cases holds:

(A) We get D0.
(B) There is α → β ∈ Γ→ such that we get both Dα and Dβ .
(C) There is α → β ∈ Γ→ such that we get Eβ .
(D) We get E0 and, for every α → β ∈ Γ→, Eα.

According to the case, we can build one of the following derivations:

(A)
D0

σ0
R�

uσ
(B)

Dα

σα

Dβ

σβ
L→σ

(C)
Eβ

σβ
L→

σ

(D)
Eα

. . . σα . . .

E0

σ0
S�
uσ

38 C. Fiorentini and M. Ferrari

In the proof search strategy, this corresponds to a backtrack point, since we
cannot predict which case holds. �

Let us assume Γ |=iSL δ and let σ = Γ u⇒ δ. By Soundness of RbuSL� (The-
orem3) σ is not provable in RbuSL�, hence, by Proposition 4, σ is provable in
GbuSL�; this proves the Completeness of GbuSL� (Theorem 2(iv)). By Proposi-
tion 1 it follows that G3iSL+� is complete as well.

Properties of RbuSL�. It remains to prove point (i) of Theorem 4. By Sf−(α) we
denote the set Sf(α) \ {α}; w < w′ means that w ≤ w′ and w �= w′.

Lemma 3. Let T b be an RbuSL�-tree only containing b-antisequents having
root Γ at, Γ→,�Δ b

� δ; let K = 〈W,≤, R, r, V 〉 and w ∈ W such that:

(I1) w � δ′, for every leaf Γ at, Γ→,�Δ b
� δ′ of T b;

(I2) w � (Γ→ ∩ Sf−(δ)) ∪ �Δ;
(I3) V (w) = Γ at.

Then, w � δ.

Proof. By induction on depth(T b). The case depth(T b) = 0 is trivial, since the
root of T b is also a leaf. Let depth(T b) > 0; we only discuss the case where

T b =
T b
0

σb
0 = Γ b

� β
R �→

Γ b
� α → β

Γ = Γ at, Γ →, �Δ
Γ 	 α

By applying the induction hypothesis to the RbuSL�-tree T b
0 , having root σb

0

and the same leaves as T b, we get w � β. Let Γα = Γ ∩ Sf(α); by Lemma1(iii),
Γα α. Since Sf(α) ⊆ Sf−(α → β), by hypotheses (I2)– (I3) we get w � Γα,
which implies w � α (Lemma 1(v)). This proves w � α → β. �

Let D be an RbuSL�-derivation having a Succ rule at the root. To display
D, we introduce the schema (1) below; at the same time, we define the relations
� and �R between u-antisequents in D (for exemplifications, see Fig. 5).

D =
Dχ

· · · σb
χ = Γ at, Γ →, �Δ b

� χ · · ·

...

σu
ψ = Γ at, Γ →, Δ u

� ψ
Succ

σu = Γ at, Γ →, �Δ u
� δ

(1)

• σb
χ is any of the premises of Succ having label b.

• σu
ψ is only defined if Succ is S�

u (thus δ = �ψ); in this case we set σu �R σu
ψ.

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 39

• The RbuSL�-derivation Dχ of σb
χ has the form

...

σu
1 ρ1

σb
1 · · ·

...

σu
m ρn

σb
m

Irr . . .
τb
1

Irr
τb

n

T b
χ

σb
χ = Γ b

� χ

m + n ≥ 0

T b
χ only contains

b-antisequents
Γ = Γ at, Γ →, �Δ

– The RbuSL�-tree T b
χ has root σb

χ and leaves σb
1 , . . . , σb

m, τb
1 , . . . , τb

n .
– For every i ∈ {1, . . . , m}, either (A) ρi = R �→ or (B) ρi = R�

b , namely:

(A)
σu

i = α, Γ u
� β

R �→
σb

i = Γ b
� α → β

or

(B)
σu

i = �α, Γ at, Γ →, Δ u
� α

R�
b

σb
i = Γ b

� �α
In case (A) we set σu � σu

i , in case (B) we set σu �R σu
i .

Lemma 4. Let D be an RbuSL�-derivation of σu = Γ u
� δ having form (1)

where Γ = Γ at, Γ→,�Δ; let K = 〈W,≤, R, r, V 〉 and w ∈ W such that:

(J1) for every w′ ∈ W such that w < w′, it holds that w′ � Γ→.
(J2) For every w′ ∈ W such that wRw′, it holds that w′ � Δ.
(J3) For every σ′ = α, Γ u

� β such that σu � σ′, there exists w′ ∈ W such that
w ≤ w′ and w′ � α and w′

� β.
(J4) For every σ′ = �α, Γ at, Γ→,Δ u

� α such that σu �R σ′, there exists
w′ ∈ W such that wRw′ and w′

� α.
(J5) V (w) = Γ at.

Then, w � Γ and w � δ.

Proof. We show that:

(P1) w � χ, for every premise σb
χ = Γ b

� χ of Succ;
(P2) w � α → β, for every α → β ∈ Γ→.

We introduce the following induction hypothesis:

(IH1) to prove Point (P1) for a formula χ, we inductively assume that Point (P2)
holds for every formula α → β such that |α → β| < |χ|;

(IH2) to prove Point (P2) for a formula α → β, we inductively assume that
Point (P1) holds for every formula χ such that |χ| < |α → β|.

We prove Point (P1). Let σb
χ be the premise of Succ displayed in schema (1).

We show that the RbuSL�-tree T b
X and w match the hypotheses (I1)–(I3) of

Lemma 3, so that we can apply the lemma to infer w � χ.
We prove (I1). Assume m ≥ 1 and let i ∈ {1, . . . ,m}; then either (A) σb

i =
Γ b

� α → β or (B) σb
i = �α, Γ at, Γ→,Δ b

� �α. In case (A) we have σu
i =

α, Γ u
� β and σu � σu

i ; by hypothesis (J3), there is w′ ∈ W such that w ≤

40 C. Fiorentini and M. Ferrari

w′ and w′ � α and w′
� β, hence w � α → β. In case (B), we have σu

i =
�α, Γ at, Γ→,Δ u

� α and σu �R σu
i ; by hypothesis (J4), there is w′ such that

wRw′ and w′
� α, hence w � �α. Assume n ≥ 1, let j ∈ {1, . . . , n} and

τb
j = Γ b

� δj . Since τb
j is irreducible and V (w) = Γ at (hypothesis (J5)), we get

w � δj . This proves that hypothesis (I1) holds.
We prove (I2). Let γ ∈ Γ→ ∩ Sf−(χ); since |γ| < |χ|, by (IH1) we get w � γ.

Moreover, w � �Δ by (J2), thus (I2) holds. Finally, (I3) coincides with (J5).
We can apply Lemma 3 and conclude w � χ, and this proves Point (P1).

We prove Point (P2). Let α → β ∈ Γ→, let w′ ∈ W be such that w ≤ w′

and w′ � α; we show that w′ � β. Note that σb
α = Γ b

� α is a premise of Succ;
since |α| < |α → β|, by (IH2) we get w � α. This implies that w < w′. By
hypothesis (J1), w′ � α → β, hence w′ � β; this proves (P2).

We prove the assertion of the lemma. By (P2) and hypotheses (J2) and (J5),
we get w � Γ . The proof that w � δ depends on the specific rule Succ at hand
and follows from Point (P1) and hypothesis (J5). �

Proof (Theorem 4(i)). By induction on the depth of the sequent σu = Γ u⇒ δ
in D. Let ρ be the rule of RbuSL� having conclusion σu. We proceed by a case
analysis, only detailing some significant cases.

If ρ = Irr, then Γ = Γ at,�Δ and δ ∈ (V ∪ {⊥}) \ Γ at and Ψ(σu) = σu. Since
V (σu) = Γ at and σu is R-maximal, it follows that Ψ(σu) � Γ and Ψ(σu) � δ.

Let us assume that ρ = R �→. Then, σu = Γ u
� α → β, where Γ α, and

the premise of ρ is σu
1 = Γ u

� β. By the induction hypothesis, Ψ(σu
1) � Γ and

Ψ(σu
1) � β. By Lemma 1(v) we get Ψ(σu

1) � α, which implies Ψ(σu
1) � α → β.

Since Ψ(σu) = Ψ(σu
1), we conclude Ψ(σu) � Γ and Ψ(σu) � α → β.

Let us assume ρ = S�
u . We have σu = Γ u

� �δ, where Γ = Γ at, Γ→,�Δ,
and Ψ(σu) = σu. Let Du be the subderivation of D having root sequent σu; we
apply Lemma 4 setting D = Du, K = Mod(D) and w = σu. We check that
hypotheses (J1)–(J5) hold.

Let w′ be a world of Mod(D) such that σu < w′. There exists an u-sequent
σ′ = Γ ′ u⇒ δ′ such that σu ≺ σ′ � w′ and Γ→ ⊆ Γ ′. Since depth(σ′) < depth(σu),
by the induction hypothesis we get Ψ(σ′) � Γ ′, hence Ψ(σ′) � Γ→. Since Ψ(σ′) ≤
w′, we conclude w′ � Γ→, and this proves hypothesis (J1).

Let w′ be a world of Mod(D) such that σuRw′. There exists an u-sequent
σ′ = Γ ′ u⇒ δ′ such that σu ≺ σ′ � w′ and Δ ⊆ Γ ′. Reasoning as in the previous
case, we get w′ � Δ, and this proves hypothesis (J2).

Let σu � σ′ = α, Γ u
� β. By the induction hypothesis, Ψ(σ′) � α and

Ψ(σ′) � β. Since σu = Ψ(σu) ≤ Ψ(σ′), hypothesis (J3) holds. The proof for
hypothesis (J4) is similar. Hypothesis (J5) holds by the definition of V . By
applying Lemma 4, we conclude that σu � Γ and σu

� δ. �

Conclusions. In this paper we have presented a terminating sequent calculus
GbuSL� for iSL enjoying the subformula property; iSL is obtained by adding
labels to G3iSL+�, a variant of the calculus G3iSL� [13,15]. If a sequent σ is not
derivable in GbuSL�, then σ is derivable in the dual calculus RbuSL�, and from

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic 41

Fig. 6. Overview of the main sequent calculi for iSL. Cut: syntactic proof of cut-
admissibility; Count: proof search procedure with countermodel generation.

the RbuSL�-derivation we can extract a countermodel for σ. In Fig. 6 we compare
the known sequent calculi for iSL. We leave as future work the investigation of
cut-admissibility for GbuSL�; this is a rather tricky task since labels impose strict
constraints on the shape of derivations. We also aim to extend our approach to
other provability logics related with iSL, such as the logics iGL, mHC and KM
(for an overview, see e.g. [13]).

Acknowledgments. We thank the reviewers for their valuable and constructive com-
ments. Camillo Fiorentini is member of the Gruppo Nazionale Calcolo Scientifico-
Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References

1. Ardeshir, M., Mojtahedi, S.M.: The Σ1-provability logic of HA. Ann. Pure Appl.
Log. 169(10), 997–1043 (2018). https://doi.org/10.1016/J.APAL.2018.05.001

2. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbol.
Logic 57(3), 795–807 (1992). https://doi.org/10.2307/2275431

3. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth sequent calculi
for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. J. Autom. Reason. 51(2), 129–149 (2013). https://doi.org/
10.1007/s10817-012-9252-7

4. Ferrari, M., Fiorentini, C., Fiorino, G.: A terminating evaluation-driven variant
of G3i. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS
(LNAI), vol. 8123, pp. 104–118. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40537-2_11

5. Ferrari, M., Fiorentini, C., Fiorino, G.: An evaluation-driven decision procedure for
G3i. ACM Trans. Comput. Log. 16(1), 8:1–8:37 (2015). https://doi.org/10.1145/
2660770

6. Ferrari, M., Fiorentini, C., Fiorino, G.: JTabWb: a Java framework for imple-
menting terminating sequent and tableau calculi. Fundam. Informaticae 150(1),
119–142 (2017). https://doi.org/10.3233/FI-2017-1462

7. Litak, T.: Constructive modalities with provability smack. In: Bezhanishvili, G.
(ed.) Leo Esakia on Duality in Modal and Intuitionistic Logics. OCL, vol. 4, pp.
187–216. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-8860-
1_8

https://doi.org/10.1016/J.APAL.2018.05.001
https://doi.org/10.2307/2275431
https://doi.org/10.1007/s10817-012-9252-7
https://doi.org/10.1007/s10817-012-9252-7
https://doi.org/10.1007/978-3-642-40537-2_11
https://doi.org/10.1007/978-3-642-40537-2_11
https://doi.org/10.1145/2660770
https://doi.org/10.1145/2660770
https://doi.org/10.3233/FI-2017-1462
https://doi.org/10.1007/978-94-017-8860-1_8
https://doi.org/10.1007/978-94-017-8860-1_8

42 C. Fiorentini and M. Ferrari

8. Mojtahedi, M.: On provability logic of HA (2022). https://doi.org/10.48550/arXiv.
2206.00445

9. Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic
propositional logic. In: Behara, M., Fritsch, R., Lintz, R. (eds.) Symposia Gaus-
siana, Conference A, pp. 225–232. Walter de Gruyter, Berlin (1995)

10. Shillito, I., van der Giessen, I., Goré, R., Iemhoff, R.: A new calculus for intu-
itionistic strong Löb logic: strong termination and cut-elimination, formalised. In:
Ramanayake, R., Urban, J. (eds.) TABLEAUX 2023. LNCS, vol. 14278, pp. 73–93.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43513-3_5

11. Solovay, R.M.: Provability interpretations of modal logic. Israel J. Math. 25, 287–
304 (1976). https://doi.org/10.1007/BF02757006

12. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in The-
oretical Computer Science, 2nd edn, vol. 43. Cambridge University Press, Cam-
bridge (2000). https://doi.org/10.1017/CBO9781139168717

13. van der Giessen, I.: Uniform interpolation and admissible rules: proof-theoretic
investigations into (intuitionistic) modal logics. Ph.D. thesis, Utrecht University
(2022). https://dspace.library.uu.nl/handle/1874/423244

14. van der Giessen, I.: Admissible rules for six intuitionistic modal logics. Ann. Pure
Appl. Log. 174(4), 103233 (2023). https://doi.org/10.1016/J.APAL.2022.103233

15. van der Giessen, I., Iemhoff, R.: Proof theory for intuitionistic strong Löb logic.
In: Special Volume of the Workshop Proofs! held in Paris in 2017 (2020)

16. Visser, A., Zoethout, J.: Provability logic and the completeness principle. Ann.
Pure Appl. Log. 170(6), 718–753 (2019). https://doi.org/10.1016/J.APAL.2019.
02.001

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.48550/arXiv.2206.00445
https://doi.org/10.48550/arXiv.2206.00445
https://doi.org/10.1007/978-3-031-43513-3_5
https://doi.org/10.1007/BF02757006
https://doi.org/10.1017/CBO9781139168717
https://dspace.library.uu.nl/handle/1874/423244
https://doi.org/10.1016/J.APAL.2022.103233
https://doi.org/10.1016/J.APAL.2019.02.001
https://doi.org/10.1016/J.APAL.2019.02.001
http://creativecommons.org/licenses/by/4.0/

Mechanised Uniform Interpolation
for Modal Logics K, GL, and iSL

Hugo Férée1 , Iris van der Giessen2 , Sam van Gool1(B) ,
and Ian Shillito3

1 Université Paris Cité, CNRS, IRIF, 75013 Paris, France
vangool@irif.fr

2 University of Birmingham, Birmingham, UK
3 Australian National University, Canberra, Australia

Abstract. The uniform interpolation property in a given logic can be
understood as the definability of propositional quantifiers. We mecha-
nise the computation of these quantifiers and prove correctness in the
Coq proof assistant for three modal logics, namely: (1) the modal logic
K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for
which our formalisation clarifies an important point in an existing, but
incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic
iSL, for which this is the first proof-theoretic construction of uniform
interpolants. Our work also yields verified programs that allow one to
compute the propositional quantifiers on any formula in this logic.

Keywords: provability logic · uniform interpolation · propositional
quantifiers · formal verification · proof theory

1 Introduction

Uniform interpolation is a strong form of interpolation, which says that propo-
sitional quantifiers can be defined inside the logic. More precisely, a left uniform
interpolant of a formula ϕ with respect to a variable p is a p-free formula, denoted
∀pϕ, which entails ϕ, and is a consequence of any p-free formula that entails ϕ.
The dual notion is that of a right uniform interpolant, denoted ∃pϕ, and a logic
is said to have uniform interpolation if both left and right uniform interpolants
exist for any formula. Said otherwise, uniform interpolation means that for any ϕ
and p, the logic has a strongest formula without p that implies ϕ, and a weakest
formula without p that is implied by ϕ.

The uniform interpolation property was first established for intuitionistic
propositional logic IL by Pitts [23], and then for a number of modal logics,
including basic modal logic K and Gödel-Löb provability logic GL [10,25,27].
Since then, uniform interpolation has been shown to hold in various modal fix-
point logics [1,22] and substructural logics [2], and connections have been devel-
oped with description logic [11], proof theory [12,18], model theory [10,19], and
universal algebra [16,20].
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 43–60, 2024.
https://doi.org/10.1007/978-3-031-63501-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_3&domain=pdf
http://orcid.org/0000-0003-3103-5612
http://orcid.org/0009-0008-4908-2496
http://orcid.org/0000-0002-6360-6363
http://orcid.org/0009-0009-1529-2679
https://doi.org/10.1007/978-3-031-63501-4_3

44 H. Férée et al.

Existing proof methods for uniform interpolation can be divided, roughly,
into two strands: one is syntactic and relies on the existence of a well-behaved
sequent calculus for the logic (see e.g. [18]), the other is semantic and uses
Kripke models to establish definability of bisimulation quantifiers (see e.g. [10]).
An advantage of the syntactic method over the semantic one is that, at least in
theory, it provides better bounds on the complexity of computing uniform inter-
polants. In practice, however, it is not feasible to compute uniform interpolants
by hand, as the calculations quickly become complex even on small examples.
The algorithms for computing uniform interpolants are often intricate, and it is a
non-trivial task to implement them correctly. The first- and third-named author
recently developed the first verified implementation of Pitts’ algorithm for com-
puting uniform interpolants in the case of IL, using The Coq Proof Assistant in
order to formally prove the correctness of the implementation [9].

In this article, we provide mechanised proofs of the uniform interpolation
property for the classical modal logics K and GL and for an intuitionistic version
of strong Löb logic, iSL. Of these three contributions, we discuss the first one in
Sect. 3, which serves as a warm-up for what follows. The formalisation of uniform
interpolation for GL starts from a sequent-style proof of this theorem [5]. During
our work on formalising this proof in Coq, we uncovered an incompleteness in
it, and our formalisation contains a corrected version of the construction of [5],
as we will explain further in Sect. 4. Finally, the uniform interpolation result for
iSL is new to this paper, and resolves an open question of [13]. (T. Litak and
A. Visser have shared a draft paper with us in which they obtain a different,
semantic, proof of the same result, available in preprint [28].) The proof we
give extends the syntactic method of Pitts, while taking advantage both of the
robustness of the earlier Coq formalisation for the case of IL, and of a recently
developed sequent calculus for iSL [26].

All definitions and proofs that we describe in this paper are implemented in
the constructive setting of the Coq proof assistant; the code is available online at
https://github.com/hferee/UIML. In particular, this means that the definitions
of the uniform interpolants for the three logics at hand here are effective, which
allows us to extract from the Coq implementation an OCaml program that
can generate interpolants from input formulas. Throughout the paper, links to
an online-readable version of the Coq proofs are given by a clickable symbol .
Finally, a demonstration webpage is available at https://hferee.github.io/UIML/
demo.html where the uniform interpolants for each logic can be computed.

2 Sequent Calculi and Uniform Interpolation

In this section, we recall some standard notions that we need in this paper,
pertaining to the classical modal logics K and GL, and intuitionistic modal logic
iSL. We mostly follow the same notations as in [12, Ch. 1], and we refer the
reader to that chapter for more details.

It will be convenient to use a more economical language for the classical
setting than for the intuitionistic setting, so we define the precise syntax in some

https://github.com/hferee/UIML
https://hferee.github.io/UIML/demo.html
https://hferee.github.io/UIML/demo.html

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 45

detail now. Both languages contain boolean constant ⊥, connective →, modality
◻ and a set V of countably many (propositional) variables, denoted p, q,

In the classical modal language we use the following standard classical con-
structors, ¬, ∨, ∧, and ◇, which should be read as abbreviations: ¬ϕ := ϕ → ⊥,
ϕ ∨ ψ := (ϕ → ⊥) → ψ, ϕ ∧ ψ := (ϕ → (ψ → ⊥)) → ⊥, and ◇ϕ := ◻(ϕ →
⊥) → ⊥. The intuitionistic modal language, instead contains the connectives ∧,
∨ (no ◇) ; only ¬ and � are abbreviations: ¬ϕ := ϕ → ⊥, � := ¬⊥. In both
the classical and intuitionistic setting, we denote modal formulas by lowercase
Greek letters ϕ,ψ, . . . and we write Vars (ϕ) to denote the set of all propositional
variables occurring as subformulas in the formula ϕ.

We briefly recall the axiomatisation of logics K, GL, and iSL. The logics K
and GL are defined over the considered classical modal language and iSL over
the intuitionistic modal language. To do so, we recall three axioms:

– the normal axiom (k) ◻ (p → q) → ◻p → ◻q,
– the Gödel-Löb axiom (gl) ◻ (◻p → p) → ◻p, and
– the strong Löb axiom (sl) (◻p → p) → p.

Also recall the rules modus ponens (from ϕ and ϕ → ψ infer ψ), necessitation
(from ϕ infer ◻ϕ), and substitution (from ϕ infer σϕ, for any uniform substitution
σ). Now, logic K is defined by the classical propositional tautologies, axiom k,
and the rules modus ponens, necessitation, and substitution. The logic GL is
the extension of K by the axiom gl. Furthermore, intuitionistic propositional
logic IL is defined by the intuitionistic tautologies, and the rules modus ponens,
necessitation, and substitution; intuitionistic modal logic iSL is the extension of
IL with axioms k and sl.

2.1 Sequent Calculi

A sequent is a pair of finite multisets of formulas Γ and Δ, which we denote by
Γ ⇒ Δ. In the intuitionistic case, Δ will necessarily be a singleton. A sequent
Γ ⇒ Δ is empty, if Γ and Δ are empty multisets. Given two multisets Γ and Δ,
we write Γ,Δ for the multiset addition of Γ and Δ, and, when ϕ is a formula, we
write Γ, ϕ as notation for Γ, {ϕ}. Analogously to formulas, we write Vars (Γ) to
denote the set of all propositional variables occurring as subformulas in formulas
in Γ . For p ∈ V, we define Γp := Γ \ {p} for any multiset Γ .

In the intuitionistic setting we use the following notation ◻−1 on formulas:

◻
−1ψ :=

{
ϕ if ψ = ◻ϕ for some formula ϕ,

ψ otherwise.

This notation is naturally overloaded to also apply to (multi)sets of formulas:
◻

−1Γ := {◻−1ϕ | ϕ ∈ Γ}.
Now we define the sequent calculi that we use throughout the paper. The

sequent calculus KS consists of two initial rules (IdP) and (⊥L), left and right
implication rules (→ R) and (→ L), and the modal rule (KR); all are displayed

46 H. Férée et al.

Fig. 1. Classical sequent rules. Here, Φ does not contain boxed formulae.

in Fig. 1. The sequent calculus GLS is the variant of the calculus KS in which
the rule (KR) is replaced by the rule (GLR) in Fig. 1. The sequent calculus KS
is well-known to be sound and complete for K, and GLS is sound and complete
for GL [24]. In the rule (GLR), the formula ◻ψ is called the diagonal formula. We
denote by KP(s) the multiset of all possible (KR)-premises for a given sequent s,
and by GP(s) the multiset of all (GLR)-premises for s.

For iSL, we work with the calculus G4iSLt from [26], which was specifically
designed with the aim to prove uniform interpolation for iSL. The calculus is an
extension of the calculus G4iP for IL [7]. We show the calculus G4iSLt in Fig. 2,
using the ◻−1 operator to rephrase its definition slightly compared to [26].

For every sequent calculus S, we denote by �S the set of sequents that are
derivable using the rules in S. For a sequent Γ ⇒ Δ, we then write �S Γ ⇒ Δ
to mean that Γ ⇒ Δ is an element of the set �S.

The crucial fact for proving uniform interpolation is that each of the three
calculi KS, GLS, and G4iSLt has a complete and terminating backward proof
search strategy, which may only depend on a local loop-check. Completeness
means that the strategy finds a proof for any sequent provable in the calculus.
Termination means that the strategy always ends in a finite proof search tree.
By a local loop-check we mean: the criterion for deciding whether or not to stop
the proof search for a given sequent only depends on the sequent itself, and does
not depend on other sequents, encountered earlier by the proof search strategy.
Termination for KS, GLS, and G4iSLt is discussed in detail in Sects. 3.1, 4.1 and
5.1 respectively.

2.2 Uniform Interpolation

Definition 1. A logic L has the uniform interpolation property if, for every
L-formula ϕ and variable p, there exist L-formulas, denoted by ∀pϕ and ∃pϕ,
satisfying the following three properties:

1. p-freeness: Vars (∃pϕ) ⊆ Vars (ϕ) \ {p} and Vars (∀pϕ) ⊆ Vars (ϕ) \ {p},
2. implication: �L ϕ → ∃pϕ and �L ∀pϕ → ϕ, and
3. uniformity: for each formula ψ with p /∈ Vars (ψ):

�L ϕ → ψ implies �L ∃pϕ → ψ,

�L ψ → ϕ implies �L ψ → ∀pϕ.

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 47

Fig. 2. The sequent calculus G4iSLt. The sequent calculus G4iP is the restriction
of G4iSLt obtained by omitting the two rules involving ◻.

Lemma 1. Both classically and intuitionistically, the formulas ∀p(ϕ → ψ) and
∃p(ϕ) → ∀p(ϕ → ψ) are equivalent.

Proof. The left-to-right direction is clear. For the right-to-left direction, note
that the formula ∃pϕ → ∀p(ϕ → ψ) is p-free by definition. Moreover, one easily
obtains that ∃pϕ → ∀p(ϕ → ψ) implies ϕ → ψ, using the implication rules and
the implication properties of ∃p and ∀p. Now uniformity ensures that ∃pϕ →
∀p(ϕ → ψ) implies ∀p(ϕ → ψ). �

To show uniform interpolation of the logics in the paper, we employ a stan-
dard proof-theoretic approach via the sequent calculi. The following definition
merges the well-known definitions for intuitionistic logic from [23] and classical
modal logic from [3].

Definition 2. A set of provable sequents, denoted �, has the uniform interpo-
lation property if, for any sequent Γ ⇒ Δ and variable p, there exist modal
formulas Ep(Γ) and Ap(Γ ⇒ Δ) such that the following three properties hold:

1. p-freeness: (a) Vars (Ep(Γ)) ⊆ Vars (Γ) \ {p} and (b) Vars (Ap(Γ ⇒ Δ)) ⊆
Vars (Γ,Δ) \ {p},

2. implication: (a) � Γ ⇒ Ep(Γ) and (b) � Γ,Ap(Γ ⇒ Δ) ⇒ Δ, and
3. uniformity: for any finite multisets of formulas Π and Σ such that p /∈

Vars (Π,Σ), if it holds that � Π,Γ ⇒ Δ,Σ, then it also holds that:

(a) � Π,Ep(Γ) ⇒ Δ,Σ if p /∈ Vars (Δ), and
(b) � Π,Ep(Γ) ⇒ Ap(Γ ⇒ Δ), Σ.

48 H. Férée et al.

In the intuitionistic setting, we require Δ to be a singleton and Σ to be empty.
In this paper, we say that a sequent calculus S has uniform interpolation if

�S has the uniform interpolation property.

We provide some observations and facts in the following remarks.

Remark 1. When proving uniform interpolation in the classical setting, we prove
a stronger statement in clause (b) of uniformity:

(b) � Π ⇒ Ap(Γ ⇒ Δ), Σ

where we omit the occurrence of Ep(Γ) on the left-hand side of the sequent.
In fact, now we can take Ep(Γ) := ¬Ap(Γ ⇒ ∅) and we only have to consider
clauses (b) in every property of Definition 2 as in [3]. This will be the route
taken in this paper for KS and GLS.

Remark 2. It is well-known that the uniform interpolation property for a sequent
calculus results in the uniform interpolation property for its corresponding logic
[4,23]. Both classically and intuitionistically, we can define ∀pϕ := Ap(∅ ⇒ ϕ).
In classical modal logic, we can define ∃pϕ as its dual, i.e., ∃pϕ := ¬∀p(¬ϕ). For
intuitionistic modal logic, we define ∃pϕ := Ep({ϕ}). One may then show that,
for these definitions of ∀p and ∃p, the three properties from Definition 1 follow
from those in Definition 2, where, in the intuitionistic case, one needs to use the
fact that Ep(∅) = �.

Remark 3. In the sequel of the paper we explicitly construct operators Ap(·) (and
also Ep(·) in the intuitionistic case) using the terminating sequent calculi for the
logics. These operators have the following properties which could be viewed as
Remark 2 applied to sequents instead of formulas. In both the classical and intu-
itionistic setting, Ep(Γ) serves as the formula ∃p(

∧
Γ). In the classical case, the

formula Ap(Γ ⇒ Δ) will be equivalent to ∀p(
∧

Γ → ∨
Δ). However, intuition-

istically, Ap(Γ ⇒ ϕ) is not equivalent to ∀p(
∧

Γ → ϕ), but it is computed as
Ep(Γ) → Ap(Γ ⇒ ϕ). The latter does not contradict Remark 2 by Lemma 1.
See also Remark 5 in [23].

3 Basic Modal Logic K

We start our investigations on uniform interpolation for provability logics by
showcasing a simple example: the modal logic K. We follow the strategy in [3]
using calculus KS and provide a formalisation in Coq.

3.1 Termination of the Sequent Calculus KS

To compute the uniform interpolants for sequent calculus KS, we provide a com-
plete and terminating proof search strategy for it. For this, we define some useful
notions for sequents Γ ⇒ Δ. The size of Γ ⇒ Δ is the total number of sym-
bols in the multiset Γ,Δ. We call a sequent critical if there is no formula of the

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 49

form ϕ → ψ in Γ,Δ, and we call a critical sequent initial if either ⊥ ∈ Γ or
Γ ∩ Δ ∩ V �= ∅, that is, if the sequent Γ ⇒ Δ can be proved with an initial rule.

A complete and terminating strategy for proof search in KS can easily be
defined in three steps, as follows. Given a sequent, we first saturate it by maxi-
mally iterating applications of the rules (→ L) and (→ R). This step computes
a finite multiset Can(s) of critical sequents, called the canopy of s. Note that,
if s is not critical, then all sequents in Can(s) have strictly smaller size than s.
Second, we try to apply the rules (IdP) and (⊥L), and close any branches where
we have an initial sequent. Third, we try to apply the rule (KR) on any remain-
ing sequents which are not initial. Since the size of sequents decreases during
the execution of this strategy as long as sequents are not initial, this strategy
clearly terminates.

3.2 Uniform Interpolation for KS

Definition 3 (). Let p ∈ V be a variable and s = (Γ,◻Γ ′ ⇒ Δ) a sequent,
where no ϕ ∈ Γ is a boxed formula. We define AK

p(s) recursively, as follows:

if then AK
p(s) equals:

(AK
p1) s is empty ⊥

(AK
p2) s is not critical

∧
s′∈Can(s)

AK
p(s

′)

(AK
p3) s is initial �

(AK
p4) none of the above

∨
q∈Δp

q ∨ ∨
r∈Γp

¬r ∨ ∨
s′∈KP(s)

◻AK
p(s

′) ∨◇AK
p(Γ

′ ⇒)

Termination of this function is proved by an induction on the size of sequents.
This definition mirrors the termination of the proof search strategy for KS. The
first case corresponds to a default where the sequent bares no content. The
remaining cases obviously correspond to steps of the strategy: (AK

p2) postpones
the computation of the interpolant to the sequents in the canopy via recursive
calls; (AK

p3) checks for initiality; (AK
p4) is the case where we apply (KR). As this

last case is the most complex, we motivate that definition in more detail now.
Because an application of the (KR) rule on a sequent s deletes the non-boxed

formulas in s, we need to first record all these formulas in AK
p(s): this is the role of

the first two disjuncts,
∨

q∈Δp

q and
∨

r∈Γp

¬r, which notably discard all occurrences

of variable p. The third disjunct,
∨

s′∈KP(s)

◻AK
p(s

′), contains recursive calls on all

(KR)-premises of s, and prefixes them with a ◻ to reflect the logical strength
of the rule. The last disjunct ◇AK

p(Γ
′ ⇒) is needed to obtain the uniformity

from Definition 2. It considers the possibility that our sequent s = (Γ,◻Γ ′ ⇒
Δ) becomes provable once the context is extended, i.e., that a sequent of the
form Φ,◻Φ′, Γ,◻Γ ′ ⇒ Δ,Δ′ is provable. In a proof of the latter, suppose that

50 H. Férée et al.

the last rule applied was (KR), triggered by a formula ◻ϕ in Δ′. In the premise
Φ′, Γ ′ ⇒ ϕ of that application, what remains of our sequent Γ,◻Γ ′ ⇒ Δ is the
sequent Γ ′ ⇒, on which we then perform the recursive call AK

p(Γ
′ ⇒). So, the

last disjunct uses a ◇ to record the possibility for a “step aside” of the proof
search tree, by considering a recursive call on what remains of s through a (KR)
application in an extended context.

The complexity of the function AK
p lies in its recursive calls on multisets of

sequents, and in the use of the canopy function which contains similar recur-
sive calls. Since only computable functions can be defined in Coq, termination
needs to be proved whenever Coq cannot automatically derive it. In order to
formalise our two functions in Coq, we synchronously need to define them and
convince Coq that all recursive calls are justified, by exhibiting a quantity which
decreases along a well-founded order. Because of the complex recursive calls of
our two functions, the traditional pen-and-paper definition of such an order is
rather intricate to formalise, involving a well-founded order on multi-sets, cf.
[9, Section 3]. To circumvent this difficulty in our formalisation of Definition 3
(), we use the Braga method [21] of Larchey-Wendling and Monin, which sep-
arates the definition of the function from the termination proof. More precisely,
using this method we can first define a function as a relation which captures the
computational graph of the function, and then prove that this relation is indeed
functional and terminates. While this method was initially designed to capture
partial functions in Coq, we here apply this method to the definition of AK

p and
the canopy. This allows us to separate the concerns of defining these functions
and proving that the definition terminates.

Given that AK
p is connected to the proof search tree, and its definition tailored

to satisfy the three correctness properties for uniform interpolants, we can now
prove the correctness of the definition, and formalise it in Coq.

Theorem 1. The sequent calculus KS has the uniform interpolation property.

Proof. We have formalised in the Coq proof assistant the proof from [3] with
no major changes. We have to check the three properties from Definition 2,
i.e., p-freeness, implication, and uniformity. It is evident that Ap(s) is p-free for
every sequent s, as the computations in AK

p all make sure to discard p whenever
propositional variables are recorded (). Second, as AK

p(Γ ⇒ Δ) follows closely
the proof search tree of Γ ⇒ Δ, we obtain rather straightforwardly that AK

p(Γ ⇒
Δ), Γ ⇒ Δ is provable (), hence proving the implication property. Finally, we
make a crucial use of the disjunct ◇AK

p(Γ ⇒) of the case (AK
p4) in the proof of

uniformity (). �

4 Classical Provability Logic GL

We now shift our focus to the logic GL. We will first provide a complete and
terminating strategy for GLS. Then, in order to construct uniform interpolants
for GL, we take inspiration from [5], but we modify the definition given there in
order to fix an incompleteness in the correctness proof.

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 51

4.1 Terminating Strategy for Sequent Calculus GLS

In the rule (GLR), the multiset ◻Γ on the left of the premise is preserved, while
the diagonal formula ◻ψ moves diagonally from the left to the right when moving
from premise to conclusion. These features are known to be an obstacle to the
termination of a strategy for GLS, which can be overcome by a local loop-check.
Consider the following rule, labelled (IdB) for ‘Identity Box’.

◻ϕ,Γ⇒Δ,◻ϕ
(IdB)

Our proof search strategy for GLS extends the one for KS: first apply (→ L)
and (→ R), then the initial rules (IdP), (⊥L) and (IdB), and finally the rule
(GLR). When following this strategy, any application of the rule (GLR) is such
that its conclusion is critical but not initial, where our definition of initial sequent
now also includes sequents that allow for an application of (IdB). Note a subtlety
of our strategy: while (IdB) is not a rule of GLS its presence in our strategy is
justified by its admissibility [17], ensuring the completeness of this strategy.

To show termination, we define a measure on sequents which decreases, in a
well-founded order, as we move upwards by applying rules according to the proof
strategy. Given a sequent Γ ⇒ Δ, its measure Θ(Γ ⇒ Δ) is a pair of natural
numbers (imp(Γ ⇒ Δ) , β(Γ ⇒ Δ)), where the first component is the number
of occurrences of the symbol → in Γ ⇒ Δ and the second component is what
we call the number of usable boxes, β(Γ ⇒ Δ), defined as the cardinal of the set
{◻ϕ | ◻ϕ ∈ Sub(Γ ∪Δ)} \ {◻ϕ | ◻ϕ ∈ Γ}. The idea is that β counts the number
of boxed formulas of a sequent Γ ⇒ Δ which might later become the diagonal
formula of an instance of (GLR) in a derivation of this sequent, when following
the proof search strategy. To show termination of our strategy via Θ, we use the
lexicographic order << on pairs of natural numbers, noting that, for any GLS
rule with conclusion s and any premise s′ of that rule, we have Θ(s′) << Θ(s).

4.2 Computing Uniform Interpolants for GLS

We now replicate the argument for K for GL, using the sequent calculus GLS
and the terminating and complete proof search strategy for it. A first try would
be to use the modified notion of initiality, and to change the function AK

p into a
function AGL

p by exchanging the rule (AK
p4) for a similar rule that follows the rule

(GLR) instead of (KR). However, this approach leads to a termination problem
in the fourth case of the definition of the function, as was noticed in [3], and as
we briefly explain now. In this case Γ,◻Γ ′ ⇒ Δ is critical, not empty and not
initial, so we would require a recursive call of the function on Γ ′

◻ Γ ′ ⇒ in the
last disjunct. However, this recursive call could fail to terminate, as we do not
have in general that Θ(Γ ′,◻Γ ′ ⇒) << Θ(Γ,◻Γ ′ ⇒ Δ). To address this problem,
[3] used an auxiliary function N in the definition of AGL

p for GL.
We recall the definition of the function N as given in [5] in Fig. 3; in Defini-

tion 4 below, we will modify this table to obtain a mutually recursive definition
of the function AGL

p . Given the function N, the idea is, then, to replace the rule

52 H. Férée et al.

Fig. 3. Definition of function Np(·, ·) from [3], where t = (Σ ⇒ Π).

(AK
p4) in Definition 3 by a rule which says that, if s = (Γ,◻Γ ′ ⇒ Δ) and s is

critical, not empty, and not initial, then AGL
p (s) equals

∨
q∈Δp

q ∨
∨

r∈Γp

¬r ∨
∨

s′∈GP(s)

◻AGL

p (s′) ∨◇
∧

t∈Can(Γ ′,◻Γ ′⇒)

Np(s, t) . (AGL
p 4)

Here, in the last disjunct of (AGL
p 4), we apply the function N to all elements

of the canopy of the sequent Γ ′,◻Γ ′ ⇒, which is exactly what remains of the
sequent s after applying (GLR) upwards. The purpose of the function N is to
attempt another unfolding of AGL

p in the canopy of Γ ′,◻Γ ′ ⇒. Indeed, the defi-
nition of N first checks whether any recursive call is necessary via the initiality
check in (N1), and then proceeds in (N2) to recursively call AGL

p if we are ensured
that Θ decreases via the first component, or goes to (N3) if there is no such
decrease. Notice that, in this last case, the definition of N is a truncation of
(AGL

p 4), which omits the problematic last disjunct, as it cannot be guaranteed to
decrease in the recursion. The termination of AGL

p is obviously ensured by defini-
tion. However, the correctness is no longer obvious, due to the truncation in the
rule (N3). The key insight for proving the correctness is the following fixed point
equivalence [5] which is valid in GL:

◇

(∧
i

[
αi ∨◇

(∧
i

αi ∧ β

)]
∧ β

)
↔ ◇

(∧
i

αi ∧ β

)
.

This equivalence can be used to prove that the diamond disjunct from the rule
(AGL

p 4) may be omitted in the rule (N3). In order to make this work formally, one
needs the following equivalence to be derivable in GLS:

◇

∧
s′∈Can(Γ ′,◻Γ ′⇒)

Np(s, s′) ↔ ◇AGL

p (Γ ′,◻Γ ′ ⇒) . (1)

Assuming this equivalence, one can show that the uniform interpolation prop-
erty holds for GLS. To justify (1), [5] relies on another equivalence between two
formulas Np(s, t1) and Np(s, t2), where ti = Γi,◻Γi ⇒ for i = 1, 2, where the
multisets Γ1 and Γ2 are known to be equal only when considered as sets, i.e.,
not counting multiplicities. This equivalence is not formally proved, but only

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 53

“observe[d]” [5, p. 17]. Since the sequents t1 and t2 are identical modulo contrac-
tion, and contraction is an admissible rule in GLS, this sounds reasonable, but
we were unable to formally derive this equivalence, even after consulting with
the author of [5].

The difficulty in formally proving the observation primarily lies in the fact
that the function N includes computations of the canopy of our two sequents t1
and t2. However, the canopies of two sequents can vastly differ, even if they are
identical modulo contraction. We give a minimal example of such a situation in
Fig. 4, where the sequents q ⇒ p on the right find no counterparts on the left.
This mismatch in canopies, then, makes it hard to prove that any call to AGL

p in
one canopy has a counterpart in the other canopy.

Fig. 4. Two sequents that are equivalent up to contraction, but the canopies are not.

In order to overcome this problem, we propose to modify the mutually recur-
sive definition of AGL

p and N with respect to the one given in [5]: in strategic places,
we fully contract sequents, notably before computing canopies. We denote by s
the fully contracted version of the sequent s; that is, when s = (Γ ⇒ Δ), s
denotes the sequent (Γ ′ ⇒ Δ′), where Γ ′ and Δ′ are the multisets obtained
from Γ and Δ, respectively, by removing duplicates.

Definition 4 (). Let p ∈ V be a variable. We define AGL
p and Np by a mutual

recursion, as follows. Let s = (Γ,◻Γ ′ ⇒ Δ) be a sequent, where no ϕ ∈ Γ is a
boxed formula. If s is empty or initial, then AGL

p (s) equals AK
p(s), and

if then AGL
p (s) equals

(AGL
p 2) s is not critical

∧
s′∈Can(s)

AGL
p (s′)

(AGL
p 4) otherwise

∨
q∈Δp

q ∨ ∨
r∈Γp

¬r ∨ ∨
s′∈GP(s)

◻AGL
p (s′)

∨◇ ∧
t∈Can(Γ,◻Γ⇒)

Np(s, t)

Let t = (Σ ⇒ Π) be a sequent. We also define () the formula Np(s, t) as in
Fig. 3, but replacing the formula in the last row of the table with:∨

q∈Πp

q ∨
∨

r∈Σp

¬r ∨
∨

t′∈GP(t)

◻AGL

p (t′) ,

where we note that the last disjunction is indexed by GP(t) instead of GP(t).

54 H. Férée et al.

With this new definition, we obtain a proof of correctness of the equiva-
lence (1), as we always fully contract sequents before computing their canopies.
In our formalisation of Definition 4, we again made use of the Braga method
already described in Sect. 3.

4.3 Syntactic Correctness Proof

Theorem 2. The sequent calculus GLS has the uniform interpolation property.

Proof. We refer to the formalised proofs of the first (), second () and third
() property. �

5 Intuitionistic Strong Löb iSL

The aim of this section is to give a sequent-based proof of the uniform interpo-
lation property for intuitionistic strong Löb logic, iSL. We will simultaneously
explain the proof method of this new result, and report on our mechanisation of
the definition of the propositional quantifiers in Coq. The work in this section
builds on an earlier formalisation [9] of Pitts’ theorem [23] that uniform interpo-
lation holds for IL. In order to make the explanation below for iSL understand-
able, we first briefly review some important points of that work. We subsequently
explain how to extend that definition to deal with the modality of the logic iSL,
and how the correctness proof can be extended to work for that logic.

As for the classical modal logics considered above, the definitions of the
propositional quantifiers Ap(·) and Ep(·) for IL are guided by the terminating
sequent calculus, G4iP (see Fig. 2). In [9,23], Ap(·) and Ep(·) are defined for G4iP
as follows. Based on the rows (EIL

p 0)-(EIL
p 8) and (AIL

p 1)-(AIL
p 13) in Fig. 5, the sets

Ap(Γ ⇒ ϕ) and Ep(Γ) are defined by pattern matching. Based on this we define,

AIL
p (Γ ⇒ ϕ) :=

∨
Ap(Γ ⇒ ϕ) and EIL

p (Γ) :=
∧

Ep(Γ). (2)

Theorem 3. The sequent calculus for IL has the uniform interpolation property.

5.1 Termination of Sequent Calculus G4iSLt

The calculus G4iSLt has already been shown to be terminating [26], but we find
it convenient to provide a different termination ordering here, which is closer to,
and compatible with, the termination ordering used by Pitts in the context of
the sequent calculus G4iP, also see [7,8]. In particular, this lets us re-use some
earlier Coq engineering work [9, Thm. 3.3] that was needed to be able to apply
the theorem of Dershowitz and Manna [6] that the natural order on the set of
multisets of well-founded order is again well-founded. The weight of a formula
is inductively defined, by adding a given weight for each symbol: ⊥,◻,→ and
variables count for 1, ∧ for 2 and ∨ for 3. This naturally defines a well-founded
strict preorder on the set of formulas: ϕ ≺f ψ iff weight(ϕ) < weight(ψ).

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 55

Fig. 5. The top part of each table, i.e., (EIL
p 0)-(EIL

p 8) and (AIL
p 1)-(AIL

p 13) define Ep(Γ)
and Ap(Γ ⇒ ϕ) for IL as defined in [23]. The complete table provides definitions for
Ep(Γ) and Ap(Γ ⇒ ϕ) for iSL. In all clauses, q �= p.

In [7], the preorder on sequents used to prove the termination of G4iP is the
Dershowitz-Manna ordering on multisets induced by this ordering on formulas:
Γ ⇒ ϕ ≺ Δ ⇒ ψ if the multiset Γ, ϕ is smaller than the multiset Δ,ψ. However,
the �R-rule of G4iSLt is not always compatible with this ordering. Indeed, with
Γ = ∅ and ϕ = ⊥, note that {◻⊥,⊥} �≺ {◻⊥}. The reason is that this rule both
replaces a boxed formula on the right hand side with its unboxed version, which
is a strict subformula, but also moves the boxed formula to the left-hand side.

56 H. Férée et al.

We fix this issue by counting twice the right-hand side of the sequent in
the multiset, accounting for the fact that a formula on the right-hand side of a
sequent might be duplicated using a �R rule.

Definition 5 (Sequent ordering). Γ ⇒ ϕ ≺ Δ ⇒ ψ whenever Γ, ϕ, ϕ is
smaller than Δ,ψ, ψ for the multiset ordering induced by ≺f .

The ordering is again well-founded, as follows from an application of the
Dershowitz-Manna theorem to the fact that the weight ordering on formulas is
well-founded. Also, any hypothesis of an G4iSLt rule is smaller than its conclu-
sion. This ensures the termination of proof search for G4iSLt, but we will also
use this ordering to construct the uniform interpolants.

Note that, although this order does not strictly speaking contain the original
order, it is the case that, if two sequents were comparable for the original one in
Pitts proof, then they still are for this modified order. This means that changing
the definition of the ordering does not break the proof structure for the exist-
ing cases with no modality involved. This allows us to adapt the existing Coq
formalisation for G4iP at minimal cost.

5.2 Computing Uniform Interpolants for G4iSLt

Following the same proof scheme as Pitts’ for IL, we now define EiSL
p (Γ) and

AiSL
p (Γ ⇒ ϕ).

Definition 6. The formulas EiSL
p (Γ) and AiSL

p (Γ ⇒ ϕ) are defined by mutual
induction on the ≺ ordering, respectively as a conjunction of a multiset of for-
mulas Ep(Γ) and as a disjunction of a multiset of formulas Ap(Γ ⇒ ϕ), both
defined by the rules from Fig. 5.

Remark 4. Our adaptation of Pitts’ construction for IL to iSL adds formulas to
the sets Ep and Ap only in the cases where some formula in Δ, θ contains a boxed
subformula. As a consequence, AiSL

p (Γ ⇒ ϕ) = AIL
p (Γ ⇒ ϕ) and EiSL

p (Γ) = EIL
p (Γ)

whenever Γ and ϕ do not contain the ◻ modality.

Remark 5. Rule (EiSL
p 9) can be read as adding ◻EiSL

p (◻−1Γ) to the set Ep(Γ)
whenever Γ contains at least one boxed formula (otherwise, ◻−1Γ = Γ and this
definition would not be well-founded). An efficient implementation of this rule
should then take care not to add multiple copies of ◻EiSL

p (◻−1Γ), i.e. for each
boxed formula in Γ .

In order to prove the implication and uniformity properties of uniform inter-
polation (Definition 2) we will first require some admissibility lemmas for G4iSLt,
in particular weakening and contraction. Note that, as for Pitts’ proof for IL, the
admissibility of cut is not necessary here and indeed, we do not use nor prove it
in our Coq mechanisation. However, since cut is in fact admissible in G4iSLt [26],
we allow ourselves to use this fact in our ‘paper’ explanations below. In addition,
iSL satisfies the strongness property.

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 57

Lemma 2 (Strongness). For any formula ϕ, �iSL ϕ ⇒ ◻ϕ.
However, we will actually use the following stronger, dual lemma instead,

provable by induction on the proof derivation of �iSL Δ,ϕ ⇒ ϕ.

Lemma 3. If �iSL Δ,ϕ ⇒ ψ then �iSL Δ,◻−1ϕ ⇒ ψ.

The following lemma highlights how the interpolant interacts with the ◻
modality and its dual ◻−1.

Lemma 4. For any multiset of formulas Δ, �iSL EiSL
p (Δ) ⇒ ◻EiSL

p (◻−1Δ).

Proof. If Δ contains no boxed formulas, then ◻−1Δ = Δ and Lemma 2 lets
us conclude. Otherwise, Δ is multiset-equivalent to Δ′,◻δ for some Δ′ and δ.
Then, by rule (EiSL

p 9), EiSL
p (Δ) is a conjunction containing ◻(EiSL

p (◻−1Δ′, δ)) which
is equivalent to ◻(EiSL

p (◻−1Δ)) since the definition of EiSL
p (·) is invariant under

multiset-equivalence. �
Theorem 4. The sequent calculus G4iSLt has uniform interpolation.

Proof. The p-freeness property is easily proved (). The implication property is
proved () by well-founded induction of ≺ on the sequent Δ ⇒ ϕ and mostly
relies on weakening. The proof of uniformity () is by structural induction on
the derivation of �iSL Γ,Δ ⇒ ϕ. If the last rule is an IL rule, then Pitts’ proof
of uniform interpolation for IL still applies. The cases for the modal rules are
handled similarly, with a critical use of Lemmas 3 and 4. We postpone a detailed
pen-and-paper version to a forthcoming journal publication. �

6 Conclusion and Future Work

We have provided formalised sequent-style proofs of three uniform interpolation
results, one well-known (K), a second subtle (GL), and a third new (iSL). One
recent application of the verified implementation of uniform interpolation of IL [9]
was to prove non-definability results in intuitionistic logic [19]. We hope that the
implementations given in this paper and the accompanying online demo can be
similarly useful in the future.

As explained in detail in Sect. 4, our effort made in formalising the argument
of [5] in Coq exposed an incompleteness in the paper proof, which we were
eventually able to correct. This incompleteness would not have been discovered
(nor corrected) as quickly without the formalisation effort. The work in that
section thus provides a further example of the usefulness of such efforts when
subtle correctness proofs of algorithms in logic are concerned.

We leave to future work a more modular formal development of uniform
interpolation proofs. In particular, one could formalise the theoretical results
of [18] in order to obtain a general algorithm which, given as input a suffi-
ciently well-behaved sequent calculus, produces a verified calculation of uniform
interpolants for the corresponding logic. A further piece of evidence that such a

https://hferee.github.io/UIML/demo.html

58 H. Férée et al.

general development might be possible is that the generalisation from the known
result for the logic IL to the new result for the logic iSL was relatively frictionless.
This shows another strength of the formalisation endeavour, allowing for an easy
experimentation with the boundaries of the formalised results.

A concrete logic that we would like to capture with our work is the intu-
itionistic version of GL, often referred to as iGL, for which it is an open problem
whether or not uniform interpolation holds [12].

A final problem that we leave to future work is the formalisation of the
semantic approach to uniform interpolation, via the definability of bisimulation
quantifiers, as e.g. in [10,14,15,27]. This would allow for a comparison of the two
approaches, both in terms of algorithmic complexity and ease of formalisation.

Acknowledgments. We thank Marta B́ılková, Dominique Larchey-Wendling, and
Tadeusz Litak for fruitful discussions. This research received funding from the Agence
Nationale de la Recherche, project ANR-23-CE48-0012. This work was partially sup-
ported by a UKRI Future Leaders Fellowship, ‘Structure vs Invariant in Proofs’, project
reference MR/S035540/1.

References

1. D’Agostino, G., Hollenberg, M.: Logical questions concerning the µ-calculus:
interpolation. Lyndon and �Loś-Tarski. J. Symbolic Logic 65(1), 310–332 (2000).
https://doi.org/10.2307/2586539

2. Alizadeh, M., Derakhshan, F., Ono, H.: Uniform interpolation in substruc-
tural logics. Rev. Symbol. Logic 7(3), 455–483 (2014). https://doi.org/10.1017/
S175502031400015X

3. B́ılková, M.: Interpolation in modal logics. Ph.D. thesis, Univerzita Karlova, Prague
(2006)

4. B́ılková, M.: Uniform interpolation and propositional quantifiers in modal logics.
Studia Logica: Int. J. Symbol. Logic 85(1), 1–31 (2007). http://www.jstor.org/
stable/40210757

5. B́ılková, M.: Uniform interpolation in provability logics (2022). https://arxiv.org/
pdf/2211.02591.pdf

6. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979). https://doi.org/10.1145/359138.359142

7. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbol.
Logic 57(3), 795–807 (1992). https://doi.org/10.2307/2275431

8. Dyckhoff, R., Negri, S.: Admissibility of structural rules for contraction-free sys-
tems of intuitionistic logic. J. Symbol. Logic 65(4), 1499–1518 (2000). https://doi.
org/10.2307/2695061

9. Férée, H., van Gool, S.: Formalizing and computing propositional quantifiers. In:
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs. CPP 2023, pp. 148–158. Association for Computing Machinery
(2023). https://doi.org/10.1145/3573105.3575668

10. Ghilardi, S., Zawadowski, M.: Sheaves, Games, and Model Completions, A Cate-
gorical Approach to Nonclassical Propositional Logics, vol. 14. Springer, Dordrecht
(2002). https://doi.org/10.1007/978-94-015-9936-8

https://doi.org/10.2307/2586539
https://doi.org/10.1017/S175502031400015X
https://doi.org/10.1017/S175502031400015X
http://www.jstor.org/stable/40210757
http://www.jstor.org/stable/40210757
https://arxiv.org/pdf/2211.02591.pdf
https://arxiv.org/pdf/2211.02591.pdf
https://doi.org/10.1145/359138.359142
https://doi.org/10.2307/2275431
https://doi.org/10.2307/2695061
https://doi.org/10.2307/2695061
https://doi.org/10.1145/3573105.3575668
https://doi.org/10.1007/978-94-015-9936-8

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 59

11. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conserva-
tive extensions in description logics. In: Doherty, P., Mylopoulos, J., Welty, C.A.
(eds.) Proceedings, Tenth International Conference on Principles of Knowledge
Representation and Reasoning, Lake District of the United Kingdom, 2–5 June
2006, pp. 187–197. AAAI Press (2006). http://www.aaai.org/Library/KR/2006/
kr06-021.php

12. van der Giessen, I.: Uniform interpolation and admissible rules. Proof-
theoretic investigations into (intuitionistic) modal logics. Ph.D. thesis, Utrecht
University (2022). https://dspace.library.uu.nl/bitstream/handle/1874/423244/
proefschrift%20-%206343c2623d6ab.pdf

13. van der Giessen, I., Iemhoff, R.: Proof theory for intuitionistic strong Löb
logic. In: Accepted for publication in Special Volume of the Workshop Proofs!
held in Paris in 2017 (2020). https://doi.org/10.48550/arXiv.2011.10383, preprint
arXiv:2011.10383v2

14. van der Giessen, I., Jalali, R., Kuznets, R.: Uniform interpolation via nested
sequents. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021.
LNCS, vol. 13038, pp. 337–354. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88853-4 21

15. van der Giessen, I., Jalali, R., Kuznets, R.: Extensions of K5: proof theory and
uniform Lyndon interpolation. In: Ramanayake, R., Urban, J. (eds.) Automated
Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2023, pp.
263–282. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43513-3 15

16. van Gool, S., Metcalfe, G., Tsinakis, C.: Uniform interpolation and compact con-
gruences. Ann. Pure Appl. Logic 168(10), 1927–1948 (2017). https://doi.org/10.
1016/j.apal.2017.05.001

17. Goré, R., Ramanayake, R., Shillito, I.: Cut-elimination for provability logic by ter-
minating proof-search: formalised and deconstructed using Coq. In: Das, A., Negri,
S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 299–313. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86059-2 18

18. Iemhoff, R.: Uniform interpolation and sequent calculi in modal logic. Arch. Math.
Logic 58(1–2), 155–181 (2019)

19. Kocsis, Z.A.: Proof-theoretic methods in quantifier-free definability (2023).
https://doi.org/10.48550/arXiv.2310.03640, preprint arXiv:2310.03640

20. Kowalski, T., Metcalfe, G.: Uniform interpolation and coherence. Ann. Pure Appl.
Logic 170(7), 825–841 (2019). https://doi.org/10.1016/j.apal.2019.02.004

21. Larchey-Wendling, D., Monin, J.F.: The Braga method: extracting certified algo-
rithms from complex recursive schemes in Coq, Chapter 8, pp. 305–386. World
Scientific, Singapore (2021). https://doi.org/10.1142/9789811236488 0008

22. Marti, J., Seifan, F., Venema, Y.: Uniform interpolation for coalgebraic fixpoint
logic. In: Moss, L.S., Sobocinski, P. (eds.) 6th Conference on Algebra and Coal-
gebra in Computer Science (CALCO 2015). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 35, pp. 238–252. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2015). https://doi.org/10.4230/LIPIcs.CALCO.
2015.238

23. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symbol. Log. 57(1), 33–52 (1992). https://doi.org/
10.2307/2275175

24. Sambin, G., Valentini, S.: The modal logic of provability. The sequential approach.
J. Philos. Logic 11(3), 311–342 (1982). http://www.jstor.org/stable/30226252

http://www.aaai.org/Library/KR/2006/kr06-021.php
http://www.aaai.org/Library/KR/2006/kr06-021.php
https://dspace.library.uu.nl/bitstream/handle/1874/423244/proefschrift%20-%206343c2623d6ab.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/423244/proefschrift%20-%206343c2623d6ab.pdf
https://doi.org/10.48550/arXiv.2011.10383
http://arxiv.org/abs/2011.10383v2
https://doi.org/10.1007/978-3-030-88853-4_21
https://doi.org/10.1007/978-3-030-88853-4_21
https://doi.org/10.1007/978-3-031-43513-3_15
https://doi.org/10.1016/j.apal.2017.05.001
https://doi.org/10.1016/j.apal.2017.05.001
https://doi.org/10.1007/978-3-030-86059-2_18
https://doi.org/10.48550/arXiv.2310.03640
http://arxiv.org/abs/2310.03640
https://doi.org/10.1016/j.apal.2019.02.004
https://doi.org/10.1142/9789811236488_0008
https://doi.org/10.4230/LIPIcs.CALCO.2015.238
https://doi.org/10.4230/LIPIcs.CALCO.2015.238
https://doi.org/10.2307/2275175
https://doi.org/10.2307/2275175
http://www.jstor.org/stable/30226252

60 H. Férée et al.

25. Shavrukov, V.Y.: Subalgebras of diagonalizable algebras of theories containing
arithmetic. Dissertationes Mathematicae 323 (1993). http://matwbn.icm.edu.pl/
ksiazki/rm/rm323/rm32301.pdf

26. Shillito, I., van der Giessen, I., Goré, R., Iemhoff, R.: A new calculus for intu-
itionistic strong Löb logic: strong termination and cut-elimination, formalised. In:
Ramanayake, R., Urban, J. (eds.) Automated Reasoning with Analytic Tableaux
and Related Methods. TABLEAUX 2023, pp. 73–93. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-43513-3 5

27. Visser, A.: Uniform interpolation and layered bisimulation. In: Hájek, P. (ed.)
Gödel ’96 proceedings. LNL, vol. 6, pp. 139–164. Springer, Heidelberg (1996).
http://projecteuclid.org/download/pdf 1/euclid.lnl/1235417019

28. Visser, A., Litak, T.: Lewis and Brouwer meet Strong Löb (2024). https://arxiv.
org/abs/2404.11969, preprint arXiv:2404.11969

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://matwbn.icm.edu.pl/ksiazki/rm/rm323/rm32301.pdf
http://matwbn.icm.edu.pl/ksiazki/rm/rm323/rm32301.pdf
https://doi.org/10.1007/978-3-031-43513-3_5
http://projecteuclid.org/download/pdf_1/euclid.lnl/1235417019
https://arxiv.org/abs/2404.11969
https://arxiv.org/abs/2404.11969
http://arxiv.org/abs/2404.11969
http://creativecommons.org/licenses/by/4.0/

Skolemisation for Intuitionistic Linear
Logic

Alessandro Bruni1, Eike Ritter2(B), and Carsten Schürmann1

1 Department of Computer Science, IT University of Copenhagen,
Copenhagen, Denmark
{brun,carsten}@itu.dk

2 School of Computer Science, University of Birmingham, Birmingham, UK
E.Ritter@bham.ac.uk

Abstract. Focusing is a known technique for reducing the number of
proofs while preserving derivability. Skolemisation is another technique
designed to improve proof search, which reduces the number of back-
tracking steps by representing dependencies on the term level and instan-
tiate witness terms during unification at the axioms or fail with an
occurs-check otherwise. Skolemisation for classical logic is well under-
stood, but a practical skolemisation procedure for focused intuitionistic
linear logic has been elusive so far. In this paper we present a focused
variant of first-order intuitionistic linear logic together with a sound and
complete skolemisation procedure.

1 Introduction

Modern proof search paradigms are built on variants of focused logics first intro-
duced by Andreoli [1]. Focused logics eliminate sources of non-determinism while
preserving derivability. In this paper we consider the focused logic LJF [2]. By
categorising the logical connectives according to the invertibility of its left or
right rules, we obtain a so-called polarised logic [2]. For example, the ∀-right
rule is invertible, making ∀ a negative (or asynchronous) connective, and the
∃-left rule is invertible, making ∃ a positive (or synchronous) connective.

But even a focused proof system does not eliminate all non-determinism.
There is still residual non-determinism in-between focusing steps. It is well
known that we can control this non-determinism using different search strategies,
such as forcing backward-chaining and forward-chaining using the atom polarity.
Another remaining source of non-determinism comes from the order of quantifier
openings, as choosing the wrong order may lead to additional back-tracking.

For example, consider the following judgment in multiplicative linear logic:

∀x.A(x)−◦B(x),∀y.∃u.A(u) � ∃z.B(z)

Variables u introduced by the well-known rules ∃Lu and ∀Ru (and written next
to the rule name) are fresh and called Eigen-variables, which we can use to
construct witness terms for the universal variables on the left or the existential
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 61–77, 2024.
https://doi.org/10.1007/978-3-031-63501-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-63501-4_4

62 A. Bruni et al.

variables on the right. Because quantifier rules do not permute freely with other
rules, one needs to resolve quantifiers in a particular order, or otherwise risk an
exponential blow-up in the proof search. This fact has already been observed by
Shankar [8] for LJ, who proposed to capture the necessary dependencies using
Skolem functions to encode the permutation properties of LJ inference rules,
guaranteeing reconstruction of LJ proofs from their skolemised counterparts.

However, näıve Skolemisation is unsound in linear logic. As first noted by
Lincoln [3], the sequent

∀x.A ⊗ B(x) � A ⊗ ∀u.B(u)

does not admit a derivation in linear logic, but its näıve skolemisation does:
A ⊗ B(x) � A ⊗ B(u()), where x denotes an existential and u() a universal
variable that must not depend on x. Introducing replication creates a similar
problem, where the following sequent does not admit a derivation:

∀x.!A(x) �!∀u.A(u)

however again its näıve skolemisation loses the relative order between quantifier
openings and replication, thus admitting a proof: !A(x) �!A(u()).

In this paper we show that the ideas of skolemisation for classical logic and
intuitionistic logic for LJ [8] carry over quite naturally to focused intuitionistic
linear logics (LJF) [2]. We propose a quantifier-free version of LJF that encodes
the necessary constraints called skolemised intuitionistic linear logic (SLJF). Our
main contribution is to define a skolemisation procedure from LJF to SLJF that
we show to be both sound and complete: any derivation in LJF is provable in
SLJF after skolemisation and, vice versa, any derivation in SLJF of a skolemised
formula allows to reconstruct a proof of the original formula. Hence we eliminate
back-tracking points introduced by first-order quantifiers. We do not eliminate
any back-tracking points introduced by propositional formulae.

The paper proceeds as follows: Sect. 2 introduces focused intuitionistic linear
logic (LJF), Sect. 3 presents skolemised focused intuitionistic linear logic (SLJF),
Sect. 4 presents a novel skolemisation procedure, Sect. 5 presents soundness and
completeness results, and Sect. 6 presents our conclusion and related work.

Contributions: This work is to our knowledge the first work that successfully
defines skolemisation for a variant of linear logic. The benefit is that during proof
search any back-tracking caused by resolving quantifiers in the wrong order is
eliminated and replaced by an admissibility check on the axioms.

2 Focused Intuitionistic Linear Logic

We consider the focused and polarised formulation of linear logic LJF [2] that
we now present. The syntactic categories are defined as usual: we write u, v for
Eigen-variables and x, y for existential variables that may be instantiated by
other terms, finally N for negative formulas and P for positive formulas. We

Skolemisation for Intuitionistic Linear Logic 63

also distinguish between negative and positive atoms, written as A− and A+.
We write ↑ to embed a positive formula into a negative, and ↓ for the inverse.
The rest of the connectives should be self-explanatory.

Atom A,B ::= q(t1 . . . tn)
Negative formula N ::= A− | P−◦N | ∀x.N |↑ P
Positive formula P ::= A+ | P1 ⊗ P2 |!N | ∃x.P |↓ N

We use the standard two-zone notation for judgments with unrestricted con-
text Γ and linear context Δ: we write Γ;Δ � N for the judgment, where at most
one formula [N] ∈ Δ or N = [P] can be in focus. All formulas in Γ are negative
and all other formulas in Δ are positive. When [N] ∈ Δ we say that we focus on
the left, whereas when N = [P] we focus on the right, and we are in an inversion
phase when no formula is in focus. To improve readability, we omit the leading ·;
when the unrestricted context is empty. The rules defining LJF [2] are depicted
in Fig. 1. We comment on a few interesting aspects of this logic. There are two
axiom rules ax− and ax+ where, intuitively, ax− triggers backwards-chaining,
and ax+ forward-chaining [6]. Hence we can assign polarities to atoms to select
a particular proof search strategy. Once we focus on a formula, the focus is
preserved until a formula with opposite polarity is encountered, in which case
the focus is lost or blurred. After blurring, we enter a maximal inversion phase,
where all rules without focus are applied bottom-up until no more invertible
rules are applicable. The next focusing phase then commences.

Focusing is both sound and complete. i.e. every derivation (written as
Γ;Δ �ILL F) can be focused and every focused derivation can be embedded
into plain linear logic [2]. In particular, in our own proofs in Sect. 5, we make
use of the soundness of focusing.

Theorem 1 (Focusing). If Γ;Δ �ILL F and Γ′, Δ′ and F ′ are the result of
polarising Γ, Δ and F respectively by inserting ↑ and ↓ appropriately, then
Γ′;Δ′ � F ′ in focused linear logic [2].

We now present three examples of possible derivations of sequents in LJF. We
will use these examples to illustrate key aspects of our proposed skolemisation.

Example 1. Consider the motivating formula from the introduction that we
would like to derive in LJF, assuming that the term algebra has a term t0.

↓ (∀x.(↓ A(x)−)−◦B(x)−), ↓ (∀x. ↑ ∃u. ↓ A(u)−) �↑ (∃x. ↓ B(x)−)

All formulas are embedded formulas, which means that there is a non-
deterministic choice to be made, namely on which formula to focus next. As
this example shows, it is quite important to pick the correct formula, otherwise
proof search will get stuck and back-tracking is required. This observation also
holds if we determine the instantiation of universal quantifiers on the left and
existential quantifiers on the right by unification instead of choosing suitable
terms when applying the ∀L or ∃R rule.

64 A. Bruni et al.

Fig. 1. Focused intuitionistic linear logic (LJF)

Focusing on the first assumption before the second will not yield a proof. The
Eigen-variable that eventually is introduced by the nested existential quantifier
inside the second assumption is needed to instantiate the universal quantifier in
the first assumption. If we start by focusing on the first assumption then none
of the subsequent proof states is provable, as the following two proof states (↓
A(t0)

−)−◦B(t0)
−

, A(t1)
− � B(t0)

− and (↓ A(t0)
−)−◦B(t0)

−
, A(t1)

− � B(t1)
−

demonstrate. Back-tracking becomes inevitable.
To construct a valid proof we must hence focus on the second assumption

before considering the first. The result is a unique and complete proof tree that
is depicted in Fig. 2.
�
Example 2. Consider the sequent ↓ (∀x. ↑ (↓ A−⊗ ↓ B−(x))) �↑ (↓ A−⊗ ↓
∀u.B−(u)). This sequent is not derivable in LJF: note that ∀L needs to be
above the ∀R rule, but this step requires that ⊗R is applied first. However, to
apply ⊗R, we would need to have applied ⊗L first, which requires that ∀L is
applied first. This cyclic dependency cannot be resolved.
�
Example 3. Consider the sequent ↓ ∀x. ↑!A−(x) �↑!∀u.A−(u). This sequent is
not derivable in LJF either: note that the ∀L-rule needs to be above the ∀R rule,
but this step requires the !R rule to be applied first. However, to apply the !R
rule we would need to apply the ∀L rule first to ensure that the linear context
is empty when we apply the !R rule. This is another cyclic dependency.
�

Skolemisation for Intuitionistic Linear Logic 65

Fig. 2. Example 1, unique and complete proof

Focusing removes sources of non-determinism from the propositional layer,
but not from quantifier instantiation. In the next section we present a quantifier-
free skolemised logic, SLJF, where quantifier dependencies are represented
through skolemised terms. This way, proof search no longer needs to back-track
on first-order variables, as the constraints capture all dependencies. Instead,
unification at the axioms will check if the proof is admissible.

3 Skolemised Focused Intuitionistic Linear Logic

We begin now with the definition of a skolemised, focused, and polarised intu-
itionistic linear logic (SLJF), with the following syntactic categories:

Atom A,B ::= q(t1 . . . tn)
Negative formula N ::= A−

Φ | P−◦N |↑ P
Positive formula P ::= A+

Φ | P ⊗ P |!(a;Φ;σ)N |↓ N

Variable v ::= x | u | a
Term t ::= v | f(t) | (t, . . . , t)
Variable context Φ ::= · | Φ, v
Modal context Γ ::= · | Γ, (a; Φ;σ) : N
Linear context Δ ::= · | Δ, P

Parallel substitution σ ::= · | σ, t/x | σ, u(t)/u | σ, t/a

Following the definition of LJF, we distinguish between positive and negative
formulas and atoms. Backward and forward-chaining strategies are supported in
SLJF, as well.

SLJF does not define any quantifiers as they are removed by skolemisation
(see Sect. 4). Yet, dependencies need to be captured in some way. Quantifier

66 A. Bruni et al.

Fig. 3. Typing rules for substitutions

rules for ∀Ru and ∃Lu introduce Eigen-variables written as u. Quantifier rules
for ∀L and ∃R introduce existential variables, which we denote with x. And
finally other rules, such as ⊗R, −◦L, and !R are annotated with special variables
a capturing the dependencies between rules that do not freely commute. These
special variables are crucial during unification at the axiom level to check that
the current derivation is admissible.

The semantics of the bang connective ! in SLJF is more involved than in LJF
because we have to keep track of the variables capturing dependencies and form
closures: One way to define the judgmental reconstruction of the exponential
fragment of SLJF is to introduce a validity judgment (a; Φ;σ) : N , read as N
is valid in world (a; Φ;σ), which leads to a generalised, modal Γ that no longer
simply contains negative formulas N , but also closures of additional judgmental
information. The special variable a is the “name” of the world in which Nσ is
valid, where all possible dependencies are summarised by Φ. Φ consists of vari-
ables, where we assume tacit variable renaming to ensure that no variable name
occurs twice. We write �Φ� for all existential and special variables declared in
Φ. In contrast to LJF, atomic propositions A−

Φ and A+
Φ are indexed by Φ cap-

turing all potential dependencies, which we will inspect in detail in Definition 2
where we define admissibility, the central definition of this paper, resolving the
non-determinism related to the order in which quantifier rules are applied. The
linear context remains unchanged.

Terms t are constructed from variables (existential, universal, and special)
and function symbols f that are declared in a global signature Σ ::= · | Σ, f .
Well-built terms are characterised by the judgment Φ � t. Substitutions con-
structed by unification and communicated through proof search capture the
constraints on the order of application of proof rules, which guarantee that a
proof in SLJF gives rise to a proof in LJF. Their definition is straightforward,
and the typing rules for substitutions are depicted in Fig. 3. For a substitution
σ such that σ : Φ → Φ′, we define the domain of σ to be Φ and the co-domain
of σ to be Φ′. For any context Φ and substitution σ with co-domain Ψ we write
σ↑Φ for the substitution σ restricted to Φ ∩ Ψ, i.e. vσ↑Φ is defined iff v ∈ Φ ∩ Ψ,
and vσ↑Φ = vσ in this case. We write σ \ Φ for the substitution σ restricted to
Ψ \ Φ, i.e. vσ \ Φ is defined iff v ∈ Ψ \ Φ, and vσ \ Φ = vσ in this case. For any
substitution σ we define the substitution σn by induction over n to be σ1 = σ,
and vσn+1 = (vσn)σ.

Skolemisation for Intuitionistic Linear Logic 67

Definition 1 (Free Variables). We define the free variables of a skolemised
formula K, written FV (K) by induction over the structure of formulae by

FV (A−
Φ) = FV (A+

Φ) = Φ
FV (P1 ⊗ P2) = FV (P1) ∪ FV (P2)
FV (P−◦N) = FV (P) ∪ FV (N)

FV (!(a;Φ;σ)N) = Φ

Now we turn to the definition of admissibility, which checks whether the
constraints on the order of ∀L-and ∃R-rules (which instantiate quantifiers)
and application of non-invertible propositional rules can be satisfied when re-
constructing a LJF-derivation from an SLJF-derivation.

Definition 2 (Admissibility). We say σ is admissible for Φ if firstly for all
existential and special variables v and for all n, v does not occur in vσn, and
secondly for all special variables aL and aR respectively and for all n, if xσn

contains a variable aL or aR for any x in the co-domain of σ, then the variable
aR or aL respectively does not occur in Φ.

The first condition in the definition of admissibility ensures that there are no
cycles in the dependencies of ∀L-and ∃R-rules and non-invertible propositional
rules. The second condition ensures that for each rule with two premises any
Eigen-variable which is introduced in one branch is not used in the other branch.
Examples of how this definition captures dependency constraints are given below.

Next, we define derivability in SLJF. The derivability judgment uses a sub-
stitution which captures the dependencies between ∀L-and ∃R-rules and non-
invertible propositional rules.

Definition 3 (Proof Theory). Let Φ be a context of variables, Γ the modal
context (which refined the notion of unrestricted context from earlier in this
paper), Δ the linear context, P a positive and N a negative formula, and σ
a substitution. We define two mutually dependent judgments Γ;Δ � N ;σ and
Γ;Δ � [P];σ to characterise derivability in SLJF. The rules defining these judg-
ments are depicted in Fig. 4.

The !R-rule introduces additional substitutions which capture the dependency
of the !R-rule on the ∀L-and ∃R-rules which instantiate the free variables in
the judgment. An example of this rule is given below. The copy-rule performs a
renaming of all the bound variables in N .

Example 4. We give a derivation of the translation of the judgment of Exam-
ple 1 in skolemised intuitionistic linear logic. We omit the modal context Γ = ·.
Furthermore, let the goal of proof search be the following judgment:

·; ↑ (↓ A(x1)−
(x1,aL))−◦B(x1)−

(x1,aR), ↑ A(u)−
(x2,u) � B(x3)−

(x3)
;σ

where σ must contain the substitution u(x2)/u, which arises from skolemisation.

68 A. Bruni et al.

Fig. 4. Skolemised intuitionistic linear logic

We observe that only focusing rules are applicable. Focusing on A will not suc-
ceed, since A was assumed to be a negative connective, so we focus on the
right. Recall, that we will not be able to remove the non-determinism intro-
duced on the propositional level. We obtain the derivation in Fig. 5, where
σ = ·, u/x1, x1/x3, u(x2)/u. This derivation holds because σ is admissible for
x1, aL, x2 and x1, aR, x3. The constraint that the variable x2 can be instantiated
only after the ∀R-rule for u has been applied is captured by the substitution
u(x2)/u.

Example 5. Next, consider the sequent ↓ (∀x. ↑ (↓ A−⊗ ↓ B−x)) �↑ (↓ A−⊗ ↓
∀u.B−(u)) from Example 2. To learn if this sequent is provable, we translate it
into ↓ A−

x ⊗ ↓ B(x)−
x �↑ (↓ AaL

⊗ ↓ B(u)−
aR;u). The only possible proof yields an

axiom derivation [B−
x] � B−

aR;u; ·, u(aR)/x , which is not valid, as ·, u/x, u(aR)/u
is not admissible for x, aL. More precisely, the second condition of admissibility
is violated.
�

Skolemisation for Intuitionistic Linear Logic 69

Fig. 5. Example 4, unique complete proof

Fig. 6. Polarity adjustments

Example 6. Now, consider the sequent ↓ ∀x. ↑!A−(x) �↑!∀u.A−(u) from Exam-
ple 3. The skolemised sequent is !(a;x;·)Aa,x

− �↑!(b;u;u(b)/u)A
−(u)u,b). The only

possible derivation produces the substitution ·, u/x, x/b, u(b)/u, which is not
admissible for ·, x, u, b, a. More precisely, the first condition of admissibility is
violated for the variable b. This expresses the fact that in any possible LJF-
derivation the instantiation of x has to happen before the !R-rule and the !R
-rule has to be applied before the instantiation of x, which is impossible.

4 Skolemisation

To skolemise first-order formulas in classical logic, we usually compute prenex
normal forms of all formulas that occur in a sequent, where we replace all quan-
tifiers that bind “existential” variables by Skolem constants. This idea can also
be extended to intuitionistic logic [8]. This paper is to our knowledge the first
to demonstrate that skolemisation can also be defined for focused, polarised,
intuitionistic, first-order linear logic, as well. In this section, we show how.

Skolemisation transforms an LJF formula F (positive or negative) closed
under Φ into an SLJF formula K and a substitution, which collects all variables
introduced during skolemisation. Formally, we define two mutual judgments:
skL(Φ, F) = (K;σ) and skR(Φ, F) = (K;σ). K is agnostic to polarity infor-
mation, hence we prepend appropriate ↑ and ↓ connectives to convert K to the
appropriate polarity by the conversion operations pos(·) and neg(·), depicted in
Fig. 6. Alternatively, we could have chosen to distinguish positive and negative
Ks syntactically, but this would have unnecessarily cluttered the presentation
and left unnecessary backtrack points because of spurious ↑↓ and ↓↑ conversions.

We return to the definition of skolemisation, depicted in Fig. 7. The main
idea behind skolemisation is to record dependencies of quantifier rules as explicit

70 A. Bruni et al.

substitutions. More precisely, if an Eigen-variable u depends on an existential
variable x, a substitution u(x)/u is added during skolemisation. We do not extend
the scope of an Eigen-variable beyond the !-operator as we have to distinguish
between an Eigen-variable for which a new instance must be created by the
copy-rule and one where the same instance may be retained.

Explicit substitutions model constraints on the order of quantifiers. The sat-
isfiability of the constraints is checked during unification at the leaves via the
admissibility condition (see Definition 2) which the substitution has to satisfy.
Potential back-track points are marked by special variables a, which are associ-
ated with the ! connective. These annotations need to store enough information
so that the set of constraints can be appropriately updated when copying a
formula from the modal context into the linear context.

In our representation, any proof of the skolemised formula in SLJF captures
an equivalence class of proofs under different quantifier orderings in LJF. Only
those derivations where substitutions are admissible, i.e. do not give rise to cycles
like u(x)/x or introduce undue dependencies between the left and right branches
of a ⊗ or −◦, imply the existence of a proof in LJF.

The judgments can be easily extended to the case of contexts Γ and Δ for
which we write skL(Φ; Γ) and skL(Φ;Δ). Note that tacit variable renaming is
in order, to make sure that no spurious cycles are accidentally introduced in the
partial order defined by the constraints.

Example 7. We return to Example 1 and simply present the skolemisation of the
three formulas that define the judgment:

↓ (∀x.(↓ A(x))−◦B(x)), ↓ (∀x. ↑ ∃u. ↓ A(u)) �↑ (∃x. ↓ B(x))

First, we skolemise each of the formulas individually.

skL(·; ↓ (∀x.(↓ A(x))−◦B(x))) = (↓ A(x)(x,aL))−◦B(x)(x,aR); ·
skL(·; ↓ (∀x. ↑ ∃u. ↓ A(u))) = A(u)(x,u);u(x)/u

skR(·; ↑ (∃x. ↓ B(x))) = B(x)(x); ·
Second, we assemble the results into a judgment in SLJF, which then looks as
follows. To this end, we α-convert the variables,

(↓ A(x1)(x1,aL))−◦B(x1)(x1,aR), A(u)(x2,u) � B(x3)(x3);u(x2)/u

The attentive reader might have noticed that we already gave a proof of this
judgment in the previous section in Example 1, after turning the first two for-
mulas positive, because they constitute the linear context.

5 Meta Theory

We begin now with the presentation of the soundness result (see Sect. 5.1) and
the completeness result (see Sect. 5.2). Together they imply that skolemisation
preserves provability. These theorems also imply that proof search in SLJF will
be more efficient than in LJF since it avoids quantifier level back-tracking. Proof
search in skolemised form will not miss any solutions.

Skolemisation for Intuitionistic Linear Logic 71

Fig. 7. Skolemisation

5.1 Soundness

For the soundness direction, we show that any valid derivation in LJF can be
translated into a valid derivation in SLJF after skolemisation.

Lemma 1 (Weakening).

(i) Assume Γ;Δ � K;σ Then also Γ, (a; Φ;σ′) : N ;Δ � K;σ.
(ii) Assume Γ;Δ � [K];σ Then also Γ, (a; Φ;σ′) : N ;Δ � [K];σ.
(iii) Assume Γ;Δ, [K ′] � K;σ Then also Γ, (a; Φ;σ′) : N ;Δ, [K ′] � K;σ.

Proof. The proof is a simple induction over derivation in all three cases.

Next, we prove three admissibility properties for ⊗R, −◦L, and copy, respec-
tively, that we will invoke from within the proof of the soundness theorem. In
the interest of space, we provide a proof only for the first of the three lemmas.

Lemma 2 (Admissibility of ⊗R). Assume Γ;Δ1 � neg(K1);σ and Γ;Δ2 �
neg(K2);σ with proofs of height at most n such that the first application of the
focus-rule is the focus R-rule. Then also Γ;Δ1,Δ2 � neg(pos(K1)⊗pos(K2));σ.

Proof. We prove this property by induction over n. There are several cases.
Firstly, assume that there is any positive formula in Δ1 or Δ2 which is not an

72 A. Bruni et al.

atom. Again, there are several cases. We start by assuming Δ1 = K ′
1 ⊗ K ′

2,Δ
′
1

and the derivation is
Γ;K ′

1,K
′
2,Δ

′
1 � neg(K1);σ

Γ;K ′
1 ⊗ K ′

2,Δ
′
1 � neg(K1);σ

Hence by induction hypothesis we have Γ;K ′
1,K

′
2,Δ

′
1,Δ2 � neg(pos(K1) ⊗

pos(K2));σ and hence also Γ;K ′
1 ⊗ K ′

2,Δ
′
1,Δ2 � neg(pos(K1) ⊗ pos(K2));σ .

Now assume that Δ1 =!(a;Φ;σ′)N,Δ′
1 and the derivation is

Γ, (a; Φ;σ′) : N ;Δ′
1 � neg(K1);σ

Γ; !(a;Φ;σ′)N,Δ′
1 � neg(K1);σ

By Lemma 1, we also have Γ, (a; Φ;σ′) : N ;Δ2 � neg(K2);σ. By induction
hypothesis we have Γ, (a; Φ;σ′) : N ;Δ′

1,Δ2 � neg(pos(K1) ⊗ pos(K2));σ and
hence also Γ; !(a;Φ;σ′)N,Δ′

1,Δ2 � neg(pos(K1) ⊗ pos(K2));σ.
Secondly, assume that K1 = N1, where N1 is a negative formula and K2 = P2,

where P2 is a positive formula. By assumption there is a derivation

Γ,Δ2 � [P2]σ
Γ;Δ2 �↑ P2;σ

There is also a derivation
Γ;Δ1 � N1;σ

Γ;Δ1 � [↓ N1];σ

Hence we also have the following derivation:

Γ;Δ1 � N1;σ
Γ;Δ1 � [↓ N1];σ Γ;Δ2 � [P2];σ

Γ;Δ1,Δ2 � [↓ N1 ⊗ P2];σ
Γ;Δ1,Δ2 �↑ (↓ N1 ⊗ P2);σ

By assumption we obtain Γ;Δ1,Δ2 �↑ (↓ N1 ⊗P2);σ. All other cases of K1 and
K2 being positive or negative are similar.

Lemma 3 (Admissibility of −◦L). Assume

Γ;Δ1 � neg(K1);σ and Γ;Δ2, pos(K2) � K;σ

with proofs of height at most n such that the first application of the focus-rule is
the focus L-rule for K1. and the focus R-rule for K2. Then also

Γ;Δ1,Δ2, neg(pos(K1)−◦ pos(K2)) � K;σ

Skolemisation for Intuitionistic Linear Logic 73

Proof. Similar to the proof of Lemma 2.
�
Lemma 4 (Admissibility of copy). Assume

Γ, (a; Φ;σ′) : N ; pos(N{�v′/�v}),Δ � neg(K);σ, σ′{�v′/�v}
with a proof of height at most n such that the first application of the focus-
rule is the focus L-rule applied to pos(N{�v′/�v}). Then also Γ, (a; Φ;σ′) : N ;Δ �
neg(K);σ.

Proof. Similar to the proof of Lemma 2.
�
Theorem 2 (Soundness). Let Φ be a context which contains all the free
variables of Γ, Δ and F . Let σ : Φ → Φ be a substitution. Assume
Γσ↑�Φ�;Δσ↑�Φ� � Fσ↑�Φ� in focused intuitionistic linear logic. Let skL(Φ; Γ) =
Γ′;σΓ′ , skL(Φ;Δ) = Δ′;σΔ′ and skR(Φ;F) = K;σK . Let τ = σΓ′ , σΔ′ , σK . Let
Φ′ = (FV (Γ′) ∪ FV (Δ′) ∪ FV (ΦF)) \ Φ. Assume that σ does not contain any
bound variables of Γ, Γ′, Δ, Δ′, F or K. Moreover, assume whenever Φ contains
a variable aL or aR, then the corresponding variable aR or aL respectively does
not occur in Φ. Then there exists a substitution σ′ : Φ,Φ′ → Φ′ such that

neg(Γ′);Δ′ � K;σ, τ, σ′ .

Proof. Induction over the derivation of Γσ↑�Φ�;Δσ↑�Φ� � Fσ↑�Φ�. The axiom
case follows from the definition of admissibility, ⊗R follows from Lemma 2,
and −◦L from Lemma 3. Now we consider the case of ∀L. By definition,
skL(Φ;∀x.F) = skL((x,Φ);F). Moreover, t contains only variables in Φ. Hence
we can apply the induction hypothesis with replacing Φ by Φ, x. The next case
is ∀R. Consider any formula ∀u.F . Skolemisation introduces another Eigen-
variable u. Hence we can apply the induction hypothesis with replacing Φ by
Φ, u. The case for copy is a direct consequence of Lemma 4. All other cases are
immediate.
�

5.2 Completeness

We now prove the completeness direction of skolemisation, which means that we
can turn a proof in SLJF directly into a proof in LJF, by inserting at appropriate
places quantifier rules, as captured by the constraints. We introduce an order
relation to capture constraints on the order of rules in the proof.

Definition 4. For any substitution σ, define an order < by x < u or x < a
if a or u occur in xσ, and u < x or u < a if the variable x or a occurs in
u(z1, . . . , zn).

Lemma 5 (Strengthening).

(i) Assume Γ, (a′; Φ;σ′) : K;Δ1 � K ′;σ and there exists a free variable x in K
such that aR occurs in xσ. Moreover assume that aL occurs in every axiom
of K ′. Then also Γ;Δ1 � K ′σ.

74 A. Bruni et al.

(ii) Assume Γ, (a′; Φ;σ′) : K;Δ2 � K ′;σ and there exists a free variable x in K
such that aL occurs in xσ. Then also Γ;Δ2 � K ′;σ.

Proof. (i) If the copy-rule for K is applied during the derivation, the linear con-
text contains the free variable x such that aR occurs in xσ. As aL occurs in
all atoms of K ′, the variable x must not occur in any of the linear formulae
in the axioms in the derivation of Γ, (a′; Φ;σ′) : K;Δ1 � K ′;σ because of the
admissibility condition. Hence no subformula of K can occur in the linear for-
mulae in the axioms in this derivation either. Hence there is also a derivation of
Γ;Δ1 � K ′;σ, which does not involve K. (ii) A similar argument applies.
�
Lemma 6. Assume Γ;Δ1,Δ2 �↑ (K1 ⊗ K2);σ. Furthermore assume that each
formula K in Δ1 and Δ2 is either a formula ↓ K ′, or there exists a free existential
variable x in K such that aL or aR occurs in xσ, where aL and aR are the
special variables introduced by the skolemisation of K1 ⊗ K2. Moreover assume
that the first focusing rule applied is the focus R-rule. Then Γ;Δ1 � K1;σ and
Γ;Δ2 � K2;σ.

Proof. We use an induction over the structure of Δ1 and Δ2. Firstly, consider
the case Γ; K ′

1 ⊗ K ′
2,Δ1,Δ2 �↑ (K1 ⊗ K2);σ. We have a derivation

Γ;K ′
1,K

′
2,Δ1,Δ2 �↑ (K1 ⊗ K2)′σ

Γ;K ′
1 ⊗ K ′

2,Δ1,Δ2 �↑ (K1 ⊗ K2);σ

By induction hypothesis we have Γ;Δ′
1;� K1;σ and Γ;Δ′

2 � K2;σ. Assume aL

occurs in xσ. Because σ is admissible for Γ;Δ′
2, K ′

1 and K ′
2 must be part of

Δ′
1. Hence Δ′

1 = K ′
1,K

′
2,Δ1 and Δ′

2 = Δ2. An application of the ⊗L-rule now
produces Γ;K ′

1 ⊗ K ′
2,Δ1;� K1;σ.

Next we consider the case Γ; !(a′Φ;σ′)K,Δ1,Δ2 �↑ (K1 ⊗ K2);σ. Assume
without loss of generality aR occurs in xσ. We have a derivation

Γ, (a′; Φ;σ′) : K;Δ1,Δ2 �↑ (K1 ⊗ K2);σ
Γ; !(a′;Φ;σ′)K,Δ1,Δ2 �↑ (K1 ⊗ K2);σ

By induction hypothesis we have Γ, (a′; Φ;σ′) : K;Δ1;� K1;σ and Γ, (a′; Φ;σ′) :
K;Δ2 � K2;σ. An application of the !L-rule yields Γ; !(a′;Φ;σ′)K,Δ1;� K1;σ and
Lemma 5 yields Γ;Δ2 � K2;σ.
�
Lemma 7. Assume Γ;Δ1,Δ2, ↓ (K1−◦K2) � K;σ. Furthermore assume that
each formula K ′ in Δ1, Δ2 and K is either a formula ↓ K ′′, or there exists
a free existential variable x in K ′ such that aL or aR occurs in xσ. Moreover
assume that the first focusing rule applied is the focus L-rule for K1−◦K2. Then
Γ;Δ1 � K1;σ and Γ;Δ2,K2 � K;σ.

Proof. Similar to the proof of Lemma 6.
�
Lemma 8. Assume Γ;Δ �↓!(a,φ;σ′)K;σ and the first occurrence of the focus-
rule is the focus R-rule followed by !R with Γ′ containing the side formulae. Let
x be a free variable x of Γ, Δ or !(a,φ;σ′)K.

Skolemisation for Intuitionistic Linear Logic 75

(i) If the variable u occurs in xσ, then u is a free variable of Γ′ or !(a,φ;σ′)K.
(ii) The variable a does not occur in xσ.

Proof. (i) By induction over the number of steps before application of the focus
R-rule. Assume that the first rule applied is the focus R-rule. There are several
cases. Firstly, assume u occurs bound in Γ. We consider here only the case that
u occurs in (a1,Φ1, σ1) : N1, which is part of Γ; all other cases are similar.
By assumption we have u < a1 and x < u. The !R-rule implies a1 < a. If x
occurs freely in Γ, we also have a < x via the !R-rule, which is a contradiction.
If x occurs freely in K, then we also have a1 < x via the !R-rule, which is a
contradiction. Secondly, assume u occurs bound in K. Hence x cannot be a free
variable of K. In this case we have u < a and x < u by assumption, together
with a < x by the !R-rule, which is a contradiction. The step case is true because
there are fewer free variables in the conclusion of a rule than in the premises.

(ii) Assume x < a. Then there must exist a u such that x < u and u < a.
The latter implies u is a bound variable in K, which is a contradiction to (i).

Theorem 3 (Completeness). Let Φ be a set of Eigen-, special, and existential
variables which contains all the free variables of Γ, Δ and F . Let σ : Φ → Φ be a
substitution. Let skL(Φ; Γ) = (Γ′;σΓ′), skL(Φ;Δ) = (Δ′;σΔ′) and skR(Φ;F) =
(K;σK). Let Φ′ = (FV (Γ′) ∪ FV (Δ′) ∪ FV (K)) \ Φ and τ = σΓ′ , σΔ′ , σK . Let
σ′ : Φ,Φ′ → Φ′ be a substitution.

(i) If neg(Γ′);Δ′ � K;σ, τ, σ′ then Γσ↑�Φ�;Δσ↑�Φ� � Fσ↑�Φ� in focused intu-
itionistic linear logic.

(ii) If Δ′ = Δ′′, ↓ K ′ and neg(Γ′);Δ′′, [K ′] � K;σ, τ, σ′ then Γσ↑�Φ�;Δσ↑�Φ� �
Fσ↑�Φ� in focused intuitionistic linear logic.

(iii) If neg(Γ′);Δ′ � [K];σ, τ, σ′ then Γσ↑�Φ�;Δσ↑�Φ� � Fσ↑�Φ� in focused intu-
itionistic linear logic.

Proof. We use firstly an induction over the derivation of neg(Γ′);Δ′ � K;σ, τ, σ′

and secondly an induction over the structure of Δ, F . Let Δ = F1, . . . , Fn and
Δ′ = K1, . . . ,Kn. Let V = {x1, . . . , xk, u1, . . . , um} be the set of outermost
bound variables of Δ′,K (including names). There are several cases. Firstly, if
there exists a i such that 1 ≤ i ≤ n and Fi is a tensor product or a formula !N ,
or F is a linear implication, we apply the corresponding inference rule and then
the induction hypothesis.

Secondly, assume there exists an Eigen-variable u ∈ V . Assume F = ∀u.F ′.
Hence by induction hypothesis we have Γσ↑�Φ�;Δσ↑�Φ� � F ′σ↑�Φ�. By assump-
tion, u does not occur in xσ for any variable x in the co-domain of σ. Now the
∀R-rule yields the claim. Now assume F = ∃u.F ′. This case is similar to ∀R.

Thirdly, assume there exists an existential variable in V . Let x be an exis-
tential variable which is maximal in V . Assume F = ∃x.F ′. We show that every
Eigen-variable u of xσ′ is a free variable of Δ, F . By definition, we have x < u.
Assume u is a bound variable in Δ, F . If u is a bound variable of F , we would
have u < x, which is a contradiction. Hence u is a bound variable of Δ. Because
u is not an outermost bound variable, there exists a bound existential variable

76 A. Bruni et al.

y such that u < y. Hence x is not a maximal bound variable. By induction
hypothesis we have Γσ↑�Φ�;Δσ↑�Φ� � F ′σ↑�Φ�, and now we apply the ∃R-rule.
Now assume F1 = ∀x.F ′

1. Similar to the ∃R-case.
Next, assume there are no maximal first-order variables in V . By definition,

the special variables corresponding to the last rule applied to the skolemised
version where the principal formula is asynchronous are now the only maximal
elements in V . ⊗R and −◦L are direct consequences of Lemma 6 and Lemma 7,
respectively. For !R, let x be any outermost bound variable in Γ, Δ or K which
is not maximal in V . Because x �< a, there exists a variable y or u in V such
that x < y or x < u, which is a contradiction. Hence we can use the !R-rule of
the skolemised calculus and the induction hypothesis. Finally, the axiom rule in
the skolemised calculus implies n = 1, and hence Γσ↑�Φ�;F1σ↑�Φ� � Fσ↑�Φ�.
�

6 Conclusion

In this paper, we revisit the technique of skolemisation and adopt it for proof
search in first-order focused and polarised intuitionistic linear logic (LJF). The
central idea is to encode quantifier dependencies by constraints, and the global
partial order in which quantifier rules have to be applied by a substitution. We
propose a domain specific logic called SLJF, which avoids back-tracking during
proof search when variable instantiations are derived by unification.

Related Work: Shankar [8] first propose an adaptation of skolemisation to LJ.
Our paper can be seen as a generalisation of this work to focused and polarised
linear logic. Reis and Paleo [7] propose a technique called epsilonisation to char-
acterise the permutability of rules in LJ. Their approach is elegant but impracti-
cal, because it trades an exponential growth in the search space with an exponen-
tial growth in the size of the proof terms. McLaughlin and Pfenning [4] propose
an effective proof search technique based on the inverse method for focused and
polarised intuitionistic logic. To our knowledge, the resulting theorem prover
Imogen [5] would benefit from the presentation of skolemisation in our paper,
since it requires backtracking to resolve the first-order non-determinism during
proof search.

Applications: There are ample of applications for skolemisation. To our knowl-
edge, proof search algorithms for intuitionistic or substructural logic are good
at removing non-determinism from the propositional level, but don’t solve the
problem at the first-order level. Skolemisation can also be applied to improve
intuitionistic theorem provers further, such as Imogen. With the results in this
paper we believe that we are able to achieve such results without much of a
performance penalty.

Skolemisation for Intuitionistic Linear Logic 77

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992)

2. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical
logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)

3. Lincoln, P.D.: Deciding Provability of Linear Logic Formulas. London Mathematical
Society Lecture Note Series, pp. 109–122 (1995)

4. McLaughlin, S., Pfenning, F.: Imogen: focusing the polarized inverse method for
intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89439-1 12

5. McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the polar-
ized inverse method. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 230–244. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02959-2 19

6. Pfenning, F.: Lecture notes on focusing, lectures 1–4, June 2010
7. Giselle Reis and Bruno Woltzenlogel Paleo: Epsilon terms in intuitionistic sequent

calculus. IFCoLog J. Logic Appl. 4(2), 402–427 (2017)
8. Shankar, N.: Proof search in the intuitionistic sequent calculus. In: Kapur, D. (ed.)

CADE 1992. LNCS, vol. 607, pp. 522–536. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55602-8 189

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-89439-1_12
https://doi.org/10.1007/978-3-642-02959-2_19
https://doi.org/10.1007/978-3-642-02959-2_19
https://doi.org/10.1007/3-540-55602-8_189
https://doi.org/10.1007/3-540-55602-8_189
http://creativecommons.org/licenses/by/4.0/

Local Intuitionistic Modal Logics
and Their Calculi

Philippe Balbiani1 , Han Gao2(B) , Çiğdem Gencer1 ,
and Nicola Olivetti2

1 CNRS-INPT-UT3, IRIT, Toulouse, France
{philippe.balbiani,cigdem.gencer}@irit.fr

2 Aix-Marseille University, CNRS, LIS, Marseille, France
{gao.han,nicola.olivetti}@lis-lab.fr

Abstract. We investigate intuitionistic modal logics with locally inter-
preted � and ♦. The basic logic LIK is stronger than constructive modal
logic WK and incomparable with intuitionistic modal logic IK. We pro-
pose an axiomatization of LIK and some of its extensions. Additionally,
we present bi-nested calculi for LIK and these extensions, providing both
a decision procedure and a procedure of finite countermodel extraction.

Keywords: Intuitionistic Modal Logic · Axiomatization · Sequent
Calculus · Decidability

1 Introduction

Intuitionistic modal logic (IML) has a long history, starting from the pioneering
work by Fitch [10] and Prawitz [16]. Along the time, two traditions have emerged.
The first tradition, called intuitionistic modal logics [7–9,15,17], aims to define
modalities justified by an intuitionistic meta-theory. In this tradition, the fun-
damental logic is IK, considered as the intuitionistic counterpart of the minimal
normal modal logic K. The second tradition, known as constructive modal logics,
is mainly motivated by computer science applications like Curry-Howard corre-
spondence, verification and contextual reasoning, etc. In this tradition, the basic
logics are CCDL [19] and CK [3].

However, there are other intuitionistic modal logics with natural interpreta-
tions of modalities that have received little interest and deserve to be studied.
One approach can be to study intuitionistic modal logic on a common semantic
ground in terms of a bi-relational model (W,≤, R, V) combining an intuitionis-
tic pre-order ≤ on states/worlds and an accessibility relation R for modalities.
The present work aims to study several intuitionistic modal logics where, in a
bi-relational model, the modal operators are classically interpreted:

(1) x � �A iff for all y such that Rxy it holds y � A;
(2) x � ♦A iff there exists y such that Rxy and y � A.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 78–96, 2024.
https://doi.org/10.1007/978-3-031-63501-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_5&domain=pdf
http://orcid.org/0000-0002-3569-9160
http://orcid.org/0009-0004-1095-3347
http://orcid.org/0000-0002-2003-9012
http://orcid.org/0000-0001-6254-3754
https://doi.org/10.1007/978-3-031-63501-4_5

Local Intuitionistic Modal Logics and Their Calculi 79

We call these forcing conditions “local” as they do not involve worlds ≤-greater
or ≤-smaller than x. Meanwhile, we require that all the intuitionistic axioms
remain valid in the full logic. This is conveyed by the hereditary property (HP),
which says for any formula A, if A is forced by a world x, it will also be forced
by any upper world of x. In order to ensure (HP), we need to postulate two
frame conditions which relate ≤ and R in a bi-relational model: the conditions
of downward confluence (DC) and forward confluence (FC) [1,4,9,17]. We call
the basic K-style logic LIK by local IK.

In the literature, Božić and Došen [4] studied separately the �-fragment and
the ♦-fragment of LIK and also considered a logic combining � and ♦. However,
the logic they obtained is stronger than LIK, since they considered a restricted
class of frames. Moreover, in their setting, ♦ becomes definable in terms of �,
which is inappropriate from an intuitionistic point of view. In other respect,
Božić and Došen did not tackle the decidability issue. Besides, a logic related
to LIK has been considered in [5] in the context of substructural logics. More
recently, the S4-extension of LIK has been shown to be decidable [1].

In this paper, we consider LIK and some of its extensions with axioms char-
acterizing seriality, reflexivity and transitivity of the accessibility relation R in a
bi-relational model. We provide complete axiomatizations for them with respect
to appropriate classes of models. The basic logic LIK is stronger than Wije-
sekera’s CCDL as well as another intuitionistic modal logic FIK which only
assumes forward confluence on models [2]. But LIK is incomparable with IK. It
is noteworthy that LIK fails to satisfy the disjunction property. However, unex-
pectedly, its extension with axioms characterizing either seriality or reflexivity
of the accessibility relation possesses this property.

Turning to proof theory, we propose bi-nested sequent calculi for LIK and its
extensions. A bi-nested calculus uses two kinds of nestings in the syntax: the first
one is used for ≥-upper worlds proposed by Fitting in [11]. Recently a nested
sequent calculus using Fitting’s nesting to capture an extension of CCDL has
been presented in [6]. The second one is for R-successors, which is used in several
nested sequent calculi for other IMLs [12,14,18]. A calculus for IK intended to
combine the two nestings was also preliminarily considered in [13]. A bi-nested
sequent calculus with the same bi-nested structure is proposed for the logic FIK
in [2] where the frame condition of forward confluence is captured by a suitable
“interaction” rule. A calculus for LIK can be obtained from the calculus for
FIK by adopting a “local” �, or by adding another “interaction” rule capturing
the downward confluence frame condition. Calculi for the extensions of LIK are
defined by adding suitable modal rules.

We prove that these calculi provide a decision procedure for the logic LIK
and some of its extensions. Moreover, we show the semantic completeness of these
calculi: from a single failed derivation under a suitable strategy, it is possible to
extract a finite countermodel for the given sequent at the root. In addition, for
the extensions of LIK with (D) or (T), a syntactic proof of the disjunction
property via the calculi is provided. These results demonstrate that bi-nested

80 P. Balbiani et al.

sequent calculus is a powerful and flexible tool which constitutes an alternative to
other formalisms like labelled sequent calculus and is capable to treat uniformly
various IMLs.1

2 Local Intuitionistic Modal Logic

Let At be a set (with members called atoms and denoted p, q, etc.).

Definition 1 (Formulas). Let L be the set (with members called formulas and
denoted A, B, etc.) of finite words over At∪{⊃,�,⊥,∨,∧,�,♦, (,)} defined by

A ::= p | (A ⊃ A) | � | ⊥ | (A ∨ A) | (A ∧ A) | �A | ♦A

where p ranges over At. We follow the standard rules for omission of the paren-
theses. For all A ∈ L, we write ¬A as A ⊃ ⊥.

For all sets Γ of formulas, let �Γ = {A ∈ L : �A ∈ Γ} and ♦Γ = {♦A ∈ L :
A ∈ Γ}.

Definition 2 (Frames). A frame is a relational structure (W,≤, R) where W
is a nonempty set of worlds, ≤ is a preorder on W and R is a binary relation on
W . A frame (W,≤, R) is forward (resp. downward) confluent if ≥ ◦R ⊆ R◦ ≥
(resp. ≤ ◦R ⊆ R◦ ≤). For all X ⊆ {D,T,4}, an X-frame is a frame (W,≤, R)
such that R is serial if D ∈ X, R is reflexive if T ∈ X and R is transitive if
4 ∈ X. Let CX

fdc be the class of forward and downward confluent X-frames. We
write “Cfdc” instead of “C∅

fdc”.

We can see that Cref
fdc ⊆ Cser

fdc ⊆ Cfdc.

Definition 3 (Valuations, Models and Truth Conditions). For all frames
(W,≤, R), a subset U of W is ≤-closed if for all s, t ∈ W , if s ∈ U and s ≤ t
then t ∈ U . A valuation on (W,≤, R) is a function V : At −→ ℘(W) such that
for all p ∈ At, V (p) is ≤-closed. A model based on (W,≤, R) is a model of the
form (W,≤, R, V). In a model M = (W,≤, R, V), for all x ∈ W and for all
A ∈ L, the satisfiability of Aat xin M (in symbols M, x � A) is defined as
usual when A’s main connective is either �, ⊥, ∨ or ∧ and as follows otherwise:

– M, x � p if and only if x ∈ V (p),
– M, x � A ⊃ B if and only if for all x′ ∈ W with x ≤ x′, if M, x′ � A then

M, x′ � B,
– M, x � �A if and only if for all y ∈ W such that Rxy, M, y � A,
– M, x � ♦A if and only if there exists y ∈ W such that Rxy and M, y � A.

When M is clear from the context, we simply write x � A. The notions of truth
and validity are defined as usual.

Lemma 1 (Hereditary Property). Let (W,≤, R, V) be a forward and down-
ward confluent model. For all A ∈ L and x, x′ ∈ W , if x � A and x ≤ x′ then
x′ � A.
1 The full version with proofs is available on ArXiv: https://arxiv.org/abs/2403.06772.

https://arxiv.org/abs/2403.06772

Local Intuitionistic Modal Logics and Their Calculi 81

Note that our definition of � differs from the definitions proposed by Fischer
Servi [9] and Wijesekera [19]. In both settings,

x � �A iff for all x′ ∈ W with x ≤ x′ and for all y ∈ W with Rx′y, it
holds y � A;

whereas in [19],

x � ♦A iff for all x′ ∈ W with x ≤ x′, there exists y ∈ W such that Rx′y
and y � A.

However, these satisfiability relations collapse on forward and downward conflu-
ent frames.

Proposition 1. In Cfdc, our definition of � determines the same satisfiability
relation as the relations determined by definitions in [9] and [19].

From now on in this section, when we write frame (resp. model), we mean for-
ward and downward confluent frame (resp. model).

Obviously, validity in Cfdc is closed under the following inference rules:

A ⊃ B A (MP)
B

A (NEC)�A

Moreover, the following axiom schemes are valid in Cfdc:

(K�) �(A ⊃ B) ⊃ (�A ⊃ �B) (K♦) �(A ⊃ B) ⊃ (♦A ⊃ ♦B)
(DP) ♦(A ∨ B) ⊃ ♦A ∨ ♦B (RV) �(A ∨ B) ⊃ ♦A ∨ �B
(N) ¬♦⊥

In CD
fdc (resp. CT

fdc, C4
fdc), modal axiom D (resp. T, 4) is valid:

(D) ♦� (T) (�A ⊃ A) ∧ (A ⊃ ♦A) (4) (�A ⊃ ��A) ∧ (♦♦A ⊃ ♦A)

Axiom (RV) is also considered in [1] where it is called (CD) for constant domain,
since it is related with the first-order formula ∀x.(P (x) ∨ Q(x)) ⊃ ∃x.P (x) ∨
∀x.Q(x) which is intuitionistically valid when models with constant domains are
considered.

Definition 4 (Axiom System). For all X ⊆ {D,T,4}, let LIKX be the
axiomatic system consisting of all standard axioms of IPL, the inference rules
(MP) and (NEC), the axioms K�, K♦, N, DP and RV and containing in
addition the axioms from X. We write LIK for LIK∅. Derivations are defined
as usual. We write �LIKX A when A is LIKX-derivable. The set of all LIKX-
derivable formulas is also denoted as LIKX.

From now on in this section, let X ⊆ {D,T,4}.

Lemma 2. If D ∈ X or T ∈ X then �p ⊃ ♦p and ¬�⊥ are in LIKX.

82 P. Balbiani et al.

Theorem 1 (Soundness). LIKX-derivable formulas are CX
fdc-validities.

Next we prove completeness, which is the converse of soundness, saying that
every formula valid in CX

fdc is LIKX-derivable. At the heart of our completeness
proof lies the concept of theory. Let L = LIKX.

Definition 5 (Theories). A theory is a set of formulas containing L and closed
with respect to MP. A theory Γ is proper if ⊥ �∈ Γ . A proper theory Γ is prime
if for all formulas A,B, if A ∨ B ∈ Γ then either A ∈ Γ , or B ∈ Γ .

Lemma 3. If D ∈ X or T ∈ X then for all theories Γ , we have ♦�Γ ⊆ Γ .

Definition 6 (Canonical Model). The canonical model (WL,≤L, RL, VL) is
a tuple where

– WL is the nonempty set of all prime theories,
– ≤L is the partial order on WL defined by: Γ ≤L Δ iff Γ ⊆ Δ,
– RL is the binary relation on WL defined by: RLΓΔ iff �Γ ⊆ Δ and ♦Δ ⊆ Γ ,
– VL is the valuation on WL defined by: VL(p) = {Γ ∈ WL : p ∈ Γ}.
Lemma 4. 1. (WL,≤L, RL, VL) is forward confluent,
2. (WL,≤L, RL, VL) is downward confluent,
3. if D ∈ X (resp. T ∈ X, 4 ∈ X) then (WL,≤L, RL, VL) is serial (resp.

reflexive, transitive).

The proof of the completeness is based on the following lemmas.

Lemma 5 (Existence Lemma). Let Γ be a prime theory.

1. If B ⊃ C �∈ Γ then there exists a prime theory Δ such that Γ ⊆ Δ, B ∈ Δ
and C �∈ Δ,

2. if �B �∈ Γ then there exists a prime theory Δ such that RLΓΔ and B �∈ Δ,
3. if ♦B ∈ Γ then there exists a prime theory Δ such that RLΓΔ and B ∈ Δ.

Lemma 6 (Truth Lemma). For all formulas A and all Γ ∈ WL, we have
A ∈ Γ if and only if (WL,≤L, RL, VL), Γ � A.

From Lemma 6, we conclude

Theorem 2 (Completeness). All CX
fdc-validities are LIKX-derivable.

In [17, Chapter 3], Simpson discusses the formal features that might be expected
for an intuitionistic modal logic L:

– L is conservative over Intuitionistic Propositional Logic,
– L contains all substitution instances of axioms of Intuitionistic Propositional

Logic and is closed under modus ponens,
– L has the disjunction property: for each formula A ∨ B, if A∨B is in L then

either A is in L, or B is in L,
– by adding the law of excluded middle to L it yields modal logic K,
– � and ♦ are independent in L.

Local Intuitionistic Modal Logics and Their Calculi 83

Now, we show that LIKX possesses the formal features that might be expected
of an intuitionistic modal logic.

Proposition 2. 1. LIKX is conservative over IPL,
2. LIKX contains all substitution instances of IPL and is closed with respect

to modus ponens,
3. LIKX has the disjunction property if and only if D∈X or T∈X,
4. the addition of the law of excluded middle to LIKX yields modal logic K,
5. � and ♦ are independent in LIKX.

3 Bi-nested Sequent Calculi

In this section we present bi-nested calculi for LIK and its extensions LIKD and
LIKT. These calculi are called bi-nested in the sense that they make use of two
kinds of nesting representing ≤-upper worlds and R-successors in the semantics,
similar to the calculus for FIK presented in [2]. In a basic system for LIK, two
rules encoding forward and downward confluence are contained. We will show
that the latter rule called (inter↓) is admissible in a smaller system without it,
thus by dropping out this rule we still have a complete calculus for LIK. However,
as we will see, the (inter↓) rule is required to prove the semantic completeness of
the calculus and further allows us to obtain counter-model extraction. We also
prove the disjunction property for LIKD and LIKT using the calculi.

In order to define the calculi we first give some preliminary notions.

Definition 7 (Bi-Nested Sequent). A bi-nested sequent S is defined as:

– The empty sequent ⇒ is a bi-nested sequent;
– Γ ⇒ Δ, 〈T1〉, . . . , 〈Tn〉, [S1], . . . , [Sm] is a bi-nested sequent if both Γ and Δ

are multisets of formulas, all the S1, . . . , Sm, T1, . . . , Tn are bi-nested sequents
where m,n ≥ 0.

We use S and T to denote a bi-nested sequent and simply call it “sequent” in the
rest of this paper. The antecedent and consequent of a sequent S are denoted
by Ant(S) and Con(S). Syntactic objects of the shape 〈S〉 and [T] are called
implication and modal blocks respectively.

The notion of modal degree can be extended from a formula to a sequent.

Definition 8 (Modal Degree). Modal degree md(F) for a formula F is defined
as usual. Let Γ be a finite (multi)set of formulas, define md(Γ) = md(

∧
Γ).

For a sequent S = Γ ⇒ Δ, 〈T1〉, . . . , 〈Tn〉, [S1], . . . , [Sm], we define md(S) =
max{md(Γ),md(Δ),md(T1), . . . ,md(Tn),md(S1) + 1, . . . ,md(Sm) + 1}.

Context is defined as usual in standard nested calculi which can be regarded
as a placeholder to be filled by a sequent.

Definition 9 (Context). A context G{ } is inductively defined as follows:

– The empty context { } is a context.

84 P. Balbiani et al.

– if Γ ⇒ Δ is a sequent and G′{ } is a context, then both Γ ⇒ Δ, 〈G′{ }〉 and
Γ ⇒ Δ, [G′{ }] are contexts.

Example 1. Given a context G{ } = p ∧ q,�r ⇒ ♦p, 〈�p ⇒ [⇒ q]〉, [{ }] and a
sequent S = p ⇒ q ∨ r, [r ⇒ s], we have G{S} = p ∧ q,�r ⇒ ♦p, 〈�p ⇒ [⇒
q]〉, [p ⇒ q ∨ r, [r ⇒ s]].

Definition 10 (∈〈·〉,∈[·],∈+-Relation). Let Γ1 ⇒ Δ1, Γ2 ⇒ Δ2 be two
sequents. We denote Γ1 ⇒ Δ1 ∈〈·〉

0 Γ2 ⇒ Δ2 if 〈Γ1 ⇒ Δ1〉 ∈ Δ2 and let
∈〈·〉 be the transitive closure of ∈〈·〉

0 . Relations ∈[·]
0 and ∈[·] for modal blocks

are defined similarly. Besides, let ∈+
0 = ∈〈·〉

0 ∪ ∈[·]
0 and finally let ∈+ be the

reflexive-transitive closure of ∈+
0 .

When we say S′ ∈+ S, it is equivalent to say that S = G{S′} for some context
G.

As we will see, some rules in the calculi propagate formulas in the antecedent
(“positive part”) or the consequent (“negative part”) of sequents into a modal
block. The two operators in the following definition single out these formulas of
a sequent.

Definition 11 (�-Operator and �-Operator). Let Λ ⇒ Θ be a sequent and
Fm(Θ) the multiset of formulas directly belonging to Θ.

Let Θ� = ∅ if Θ is [·]-free; Θ� = [Φ1 ⇒ Ψ �
1], . . . , [Φk ⇒ Ψ �

k], if Θ = Θ0, [Φ1 ⇒
Ψ1], . . . , [Φk ⇒ Ψk] and Θ0 is [·]-free.

Dually let ⇒ Θ� = ⇒ Fm(Θ) if Θ is [·]-free; ⇒ Θ� = ⇒ Fm(Θ0), [⇒
Ψ �
1], . . . , [⇒ Ψ �

k] if Θ = Θ0, [Φ1 ⇒ Ψ1], . . . , [Φk ⇒ Ψk] and Θ0 is [·]-free.
Example 2. Consider the sequent G{S} = p ∧ q,�r ⇒ ♦p, 〈�p ⇒ [⇒ q]〉, [p ⇒
q ∨ r, [r ⇒ s]] of Example 1, denote Ant(G{S}) and Suc(G{S}) by Λ and Θ
respectively, we can see by definition, Λ ⇒ Θ� = p ∧ q,�r ⇒ [p ⇒ [r ⇒]] while
⇒ Θ� = ⇒ ♦p, [⇒ q ∨ r, [⇒ s]].

Definition 12. Rules for the basic logic LIK and its modal extensions are given
in Fig. 1, which consists of the basic calculus CLIK and modal rules correspond-
ing to axioms (D), (T♦) and (T�). We define CLIKD = CLIK + (D) and
CLIKT = CLIK + (T�) + (T♦).

The notions of derivation and proof in a calculus are defined as usual. We
say a formula A is provable if the sequent ⇒ A has a proof in the calculus.

Here are some remarks on the rules. First, the rule (id) which only concerns
atoms can be easily generalized to arbitrary formulas. Reading the rule upwards,
the rule (⊃R) introduces an implication block 〈·〉 while the rules (♦L) and (�R)
introduce a modal block [·]. Observe that the (�R) rule corresponds to the
“local” interpretation of �. The rule (inter→) is intended to capture Forward
Confluence, whereas the rule (inter↓) Downward Confluence. Finally the (trans)
rule captures the Hereditary Property. All the rules of CLIK, except (�R) and
(inter↓) belong to the calculus CFIK for the logic FIK [2], we will discuss the
relation between the two calculi later in the section.

Local Intuitionistic Modal Logics and Their Calculi 85

Fig. 1. Bi-nested rules for local intuitionistic modal logics

We can verify that each axiom of LIK in Sect. 2 is provable in CLIK. An
example of axiom (RV) is given below.

Example 3. We show �(p ∨ q) ⇒ ♦p ∨ �q is provable.

(id)�(p ∨ q) ⇒ ♦p, [p ⇒ q, p]
(id)�(p ∨ q) ⇒ ♦p, [q ⇒ q, p]
(∨L)�(p ∨ q) ⇒ ♦p, [p ∨ q ⇒ q, p]

(�L)�(p ∨ q) ⇒ ♦p, [⇒ q, p]
(♦R)�(p ∨ q) ⇒ ♦p, [⇒ q]

(�R)�(p ∨ q) ⇒ ♦p,�q
(∨R)�(p ∨ q) ⇒ ♦p ∨ �q

We now show that CLIK is sound with respect to the semantics. The first
step is to extend the forcing relation � to sequents and blocks therein.

Definition 13. Let M = (W,≤, R, V) be a bi-relational model and x ∈ W . The
satisfiability relation � is extended to sequents as follows:

86 P. Balbiani et al.

– M, x �� ∅
– M, x � [T] if for every y with Rxy, M, y � T
– M, x � 〈T 〉 if for every x′ with x ≤ x′, M, x′ � T
– M, x � Γ ⇒ Δ if either M, x �� A for some A ∈ Γ or M, x � O for some

O ∈ Δ, where O is a formula or a block.

We say S is valid in M iff ∀w ∈ W , we have M, w � S. We say S is valid iff
it is valid in every model.

Definition 14. For a rule (r) of the form G{S1} G{S2}
G{S} or G{S1}

G{S} , we say (r)
is valid if the following holds: if for each i, x � G{Si}, then it follows x � G{S}.

We can easily verify the validity of each rule and then obtain the soundness
of CLIK by a standard induction on a derivation. The soundness of CLIKD and
CLIKT can be proven similarly.

Theorem 3 (Soundness of CLIK). If a formula A is provable in CLIK, then
it is valid in LIK.

Next, we show that the rule (inter↓) is admissible in the calculus CLIK−=
CLIK\{(inter↓)}. The proof can be easily extended to the modal extensions as
well. In order to prove this, we need some preliminary facts. First, weakening and
contraction rules (wL)(wR)(cL)(cL) defined as usual are height-preserving (hp)
admissible in CLIK− , not only applied to formulas but also blocks. Moreover,
extended weakening rules S

G{S} , G{Γ⇒Δ�}
G{Γ⇒Δ} , G{Γ⇒Δ�}

G{Γ⇒Δ} are hp-admissible as well.

Proposition 3. The (inter↓) rule is admissible in CLIK− . Consequently, a
sequent S is provable in CLIK if and only if S is provable in CLIK− .

As mentioned above, all the rules in CLIK, except (�R) and (inter↓), belong
to the calculus CFIK for the logic FIK [2]. As a difference with LIK, the logic
FIK adopts the “global” forcing condition for � as in [9,17,19] and only forward
confluence on the frame. The (�R) rule in CFIK is G{Γ⇒Δ,〈⇒[⇒A]〉}

G{Γ⇒Δ,�A} . It can be
proved that this rule is admissible in CLIK− and on the opposite direction, the
“local” (�R) rule in CLIK is admissible in CFIK+ (inter↓). Thus CFIK+ (inter↓)
can be regarded as another equivalent variant of CLIK, which is obtained in a
modular way from the one for FIK.

We end this section by considering the disjunction property. For simplicity,
we only work in CLIK− and its extensions. Let CLIKD− = CLIK− + (D) and
CLIKT− = CLIK− + (T�) + (T♦). Consider the formula �⊥ ∨ ♦� which is
provable in CLIK− , but it is easy to see neither �⊥ nor ♦� are provable.2

However, this counterexample does not hold in LIKD or LIKT since ♦� is
provable in both calculi. We show that the disjunction property indeed holds for
both CLIKD− and CLIKT− . The key fact is expressed by the following lemma:

2 We thank Tiziano Dalmonte for suggesting this counterexample.

Local Intuitionistic Modal Logics and Their Calculi 87

Lemma 7. Suppose S = ⇒ A1, . . . , Am, 〈G1〉, . . . , 〈Gn〉, [H1], . . . , [Hl] is prov-
able in CLIKD− (resp. CLIKT−), where Ai’s are formulas, Gj and Hk’s are
sequents. Further assume that each Hk is of the form ⇒ Θk and for each sequent
T ∈[·] Hk, T has an empty antecedent. Then either ⇒ Ai or ⇒ 〈Gj〉 or ⇒ [Hk]
is provable in CLIKD− (resp. CLIKT−) for some i ≤ m, j ≤ n, k ≤ l.

We obtain the disjunction property by an obvious application of the lemma.

Proposition 4 (Disjunction Property for CLIKD− and CLIKT−). For any
formulas A,B, if ⇒ A ∨ B is provable in CLIKD− (resp. CLIKT−), then either
⇒ A or ⇒ B is provable CLIKD− (resp. CLIKT−).

4 Termination

In this section we define decision procedure for LIK as well as its extensions
LIKD and LIKT based on the calculi in Sect. 3. We treat first LIK, then at
the end of the section we will briefly describe how to adopt the the procedure
to the extensions. The terminating proof-search procedure is essential for the
semantic completeness of the calculi, as well as for countermodel construction,
as we will demonstrate in the following section.

We have introduced two calculi for LIK, namely CLIK and CLIK− . For
CLIK− , we can obtain a terminating proof-search procedure by adapting the
one in [2] for the calculus of FIK. Actually, the decision procedure for CLIK− is
remarkably simpler than that for FIK, as “blocking” is not needed to prevent
loops. For CLIK, however, some extra work needs to be done. Despite the equiv-
alence of CLIK and CLIK− in terms of provability, constructing a countermodel
from a failed proof in CLIK− poses a challenge due to the absence of a rule
capturing downward confluence. Therefore, we need to explore a terminating
proof-search procedure for CLIK to further advance our goal of proving seman-
tic completeness.

Recall our ultimate aim is to build a countermodel from a failed derivation, in
which the main ingredient is the pre-order relation ≤ in the model construction.
This relation is specified by the following notion of structural inclusion between
sequents, which is also used in defining the saturation conditions required for
termination.

Definition 15 (Structural Inclusion ⊆S). Let S1 = Γ1 ⇒ Δ1, S2 = Γ2 ⇒
Δ2 be two sequents. We say that S1 is structurally included in S2, denoted by
S1 ⊆S S2, when all the following holds:

– Γ1 ⊆ Γ2;
– for each [Λ1 ⇒ Θ1] ∈ Δ1, there exists [Λ2 ⇒ Θ2] ∈ Δ2 such that Λ1 ⇒ Θ1 ⊆S

Λ2 ⇒ Θ2;
– for each [Λ2 ⇒ Θ2] ∈ Δ2, there exists [Λ1 ⇒ Θ1] ∈ Δ1 such that Λ1 ⇒ Θ1 ⊆S

Λ2 ⇒ Θ2.

88 P. Balbiani et al.

It is easy to see ⊆S is both reflexive and transitive.
We now define an equivalent variant CCLIK of CLIK which adopts a cumu-

lative version of the rules along with some bookkeeping. Moreover the (⊃R) rule
is modified in order to prevent loops. This calculus will be used as a base for
the following decision procedure and then semantic completeness. At first we
reformulate the �-operator as below, annotating the generated �-sequents by the
full sequent where it comes from.

Definition 16. Let Fm(Θ) be the multiset of formulas directly belonging to Θ.
We define the �-operator with annotation as follows:

– ⇒Λ⇒Θ Θ� = ⇒ Fm(Θ) if Θ is [·]-free;
– ⇒Λ⇒Θ Θ� = ⇒ Fm(Θ0), [⇒Φ1⇒Ψ1 Ψ �

1], . . . , [⇒Φk⇒Ψk
Ψ �

k] if Θ = Θ0, [Φ1 ⇒
Ψ1], . . . , [Φk ⇒ Ψk] and Θ0 is [·]-free.
The �-sequents are generated only by applications of (inter↓), and we use the

annotation (the subscript of ⇒) to “track” the implication block from which
a �-sequent is generated. The annotation can be omitted and we simply write
⇒ Θ� whenever we do not need to track an (inter↓) application.

Definition 17 (The �-Annotated Cumulative Calculus CCLIK). The
cumulative calculus CCLIK operates on set-based sequents, where a set-based
sequent S = Γ ⇒ Δ is defined as in definition 7, with the distinction that Γ is
a set of formulas and Δ is a set of formulas and/or blocks (containing set-based
sequents). The rules are as follows:

– (⊥L), (�R), (id), (�L), (♦R), (trans) and (inter→) as in CLIK.
– (⊃R) is replaced by two rules for A ∈ Γ or A /∈ Γ :

G{Γ ⇒ Δ,A ⊃ B,B}
(A ∈ Γ)

G{Γ ⇒ Δ,A ⊃ B}
G{Γ ⇒ Δ,A ⊃ B, 〈A ⇒ B〉}

(A /∈ Γ)
G{Γ ⇒ Δ,A ⊃ B}

– (inter↓) is replaced by the following annotated rule:

G{Γ ⇒ Δ, 〈Σ ⇒ Π, [Λ ⇒ Θ]〉, [⇒Λ⇒Θ Θ�]}
(inter↓)

G{Γ ⇒ Δ, 〈Σ ⇒ Π, [Λ ⇒ Θ]〉}
– The other rules in CLIK are modified by keeping the principal formula in the

premises. For example, the cumulative versions of (∧L), (�R) are:

G{A,B,A ∧ B,Γ ⇒ Δ}
(∧L)

G{A ∧ B,Γ ⇒ Δ}
G{Γ ⇒ Δ,�A, [⇒ A]}

(�R)
G{Γ ⇒ Δ,�A}

Given the admissibility of weakening and contraction in CLIK, the following
proposition is a direct consequence.

Proposition 5. A sequent S is provable in CLIK iff S is provable in CCLIK.

Next, we introduce saturation conditions for each rule in CCLIK. They are
needed for both termination and counter-model extraction.

Local Intuitionistic Modal Logics and Their Calculi 89

Definition 18 (Saturation Conditions). Let S = Γ ⇒ Δ be a sequent. We
say S satisfies the saturation condition on the top level with respect to
(⊃R) : If A ⊃ B ∈ Δ, then either A ∈ Γ and B ∈ Δ, or there is 〈Σ ⇒ Π〉 ∈ Δ

with A ∈ Σ and B ∈ Π.
(♦R) : If ♦A ∈ Δ and [Σ ⇒ Π] ∈ Δ, then A ∈ Π.
(♦L) : If ♦A ∈ Γ , then there is [Σ ⇒ Π] ∈ Δ with A ∈ Σ.
(�R) : If �A ∈ Δ, then there is [Λ ⇒ Θ] ∈ Δ with A ∈ Θ.
(�L) : If �A ∈ Γ and [Σ ⇒ Π] ∈ Δ, then A ∈ Σ.
(inter↓) : If 〈Σ ⇒ Π, [Λ ⇒ Θ]〉 ∈ Δ, then there is [Φ ⇒ Ψ] ∈ Δ s.t. Φ ⇒ Ψ ⊆S Λ ⇒ Θ.
(inter→) : If 〈Σ ⇒ Π〉, [Λ ⇒ Θ] ∈ Δ, then there is [Φ ⇒ Ψ] ∈ Π s.t. Λ ⇒ Θ ⊆S Φ ⇒ Ψ .
(trans) : If 〈Σ ⇒ Π〉 ∈ Δ, then Γ ⊆ Σ.
Saturation conditions for the other propositional rules are defined as usual.

We say a sequent is saturated with a rule (r) if it satisfies the saturation
condition associated with (r). We say a backward application of a rule (r) to a
sequent S is redundant if S already satisfies the corresponding saturation condi-
tion associated with (r).

Proposition 6. Let S = Γ ⇒ Δ be a sequent. If S is saturated with (trans),
(inter→) and (inter↓), then for 〈Σ ⇒ Π〉 ∈ Δ, we have Γ ⇒ Δ ⊆S Σ ⇒ Π.

In order to define a terminating proof-search strategy based on CCLIK, we
first impose the following constraints:

(i) No rule is applied to an axiom and (ii) No rule is applied redundantly.
However there is a problem: backward proof search only respecting these basic

constraints does not necessarily ensure that any leaf of a derivation, to which
no rule can be applied non-redundantly, satisfies all the saturation conditions of
rules in CCLIK. This is a significant difference from the calculus of FIK in [2].
The problematic case is the saturation condition for the (inter↓) rule.

Example 4. Let us consider the sequent �(p ∨ q) ⇒ �r ⊃ �s. After some pre-
liminary steps, we obtain two sequents:

(i). �(p ∨ q) ⇒ �r ⊃ �s, 〈�(p ∨ q),�r ⇒ �s, [p ∨ q, p, r ⇒ s]〉
(ii). �(p ∨ q) ⇒ �r ⊃ �s, 〈�(p ∨ q),�r ⇒ �s, [p ∨ q, q, r ⇒ s]〉
Suppose we select (i) and then apply (inter↓) obtaining (i’): �(p ∨ q) ⇒ �r ⊃
�s, 〈�(p ∨ q),�r ⇒ �s, [p ∨ q, p, r ⇒ s]〉, [⇒ s]. After applying (�L), (∨L) and
(inter→), we further obtain:

(iii). �(p ∨ q) ⇒ �r ⊃ �s, 〈�(p ∨ q),�r ⇒ �s, [p ∨ q, p, r ⇒ s]〉, [p ∨ q, p ⇒ s]
(iv). �(p ∨ q) ⇒ �r ⊃ �s, 〈�(p ∨ q),�r ⇒ �s, [p ∨ q, p, r ⇒ s], [p ∨ q, q ⇒]〉,

[p ∨ q, q ⇒ s]

We can see that (iii) satisfies the saturation condition for (inter↓), as p ∨ q, p ⇒
s ⊆S p ∨ q, p, r ⇒ s but (iv) does not, since there is no [Φ ⇒ Ψ] s.t. Φ ⇒ Ψ ⊆S

p ∨ q, p, r ⇒ s. Sequent (iv) would not give in itself a model satisfying (DC) and
it is not obvious how to extend it in order to satisfy (DC).3 This example also
3 Observe that a disallowed redundant application of (inter↓) to the block [p ∨ q, q ⇒]
would not help, as it would reproduce the branching.

90 P. Balbiani et al.

shows the inadequacy of CLIK− for semantic completeness, as sequent expansion
in CLIK− terminates with (i) and (ii), from which we do not know how to define
a model satisfying (DC).

This means that certain branches in a derivation may lead to unprovable sequents
from which we do not know how to build a “correct” counter-model directly.
Hence, to obtain a “correct” counter-model, we require a mechanism that chooses
the suitable branch which ensures the saturation condition for (inter↓). This is
provided by the tracking mechanism and realization procedure defined below.

Definition 19 (Tracking Record Based on ∈[·]). Let S be a set-based
sequent which is saturated with respect to all the left rules in CCLIK. Take
an arbitrary set of formulas, denoted as Γ . Let Ω = {T | T = S or T ∈[·] S}.
For each T ∈ Ω, we define GS(T, Γ), the ∈[·]-based tracking record of Γ in S,
which is a subset of Ant(T) as follows:

– GS(S, Γ) = Γ ∩ Ant(S);
– If T ∈[·]

0 T ′ for some T ′ ∈ Ω, let GS(T, Γ) be the minimal set such that
• if �A ∈ GS(T ′, Γ), then A ∈ GS(T, Γ);
• if ♦A ∈ GS(T ′, Γ) and A ∈ Ant(T), then A ∈ GS(T, Γ);
• if A ∧ B ∈ GS(T, Γ), then A,B ∈ GS(T, Γ);
• if A ∨ B ∈ GS(T, Γ) and A ∈ Ant(T), then A ∈ GS(T, Γ);
• if A ⊃ B ∈ GS(T, Γ) and B ∈ Ant(T), then B ∈ GS(T, Γ).

Tracking record is used to control rule applications to and within a block
created by (inter↓), preserving the saturation condition associated to it.

Definition 20 (Realization). Let S = Γ ⇒ Δ, 〈S1〉, [S2], where S1 = Σ ⇒
Π, [Λ ⇒ Θ], S2 = ⇒Λ⇒Θ Θ� and Γ ⊆ Σ. Moreover, we assume that S1 is
saturated with respect to all the left rules in CCLIK. Using the ∈[·]-based tracking
record of Γ in S1, we define the realization of the block [S2] in S as follows:

(i). First for each T ∈+ S2, define the realization function fS1(T).
By definition, T is of the form ⇒Φ⇒Ψ Ψ � for some Φ ⇒ Ψ ∈+ Λ ⇒ Θ.
fS1(T) is defined inductively on the structure of Ψ � as follows:
– if Ψ � is block-free, then fS1(T) = G(Φ ⇒ Ψ, Γ) ⇒ Ψ �.
– otherwise Ψ � = Ψ0, [T1], . . . , [Tk] where Ψ0 is a set of formulas, then

fS1(T) = G(Φ ⇒ Ψ, Γ) ⇒ Ψ0, [fS1(T1)], . . . , [fS1(Tk)].
(ii). With fS1(S2), the realization of [S2] in S is Γ ⇒ Δ, 〈S1〉, [fS1(S2)].

As the next proposition shows the expansion produced by a realization pro-
cedure is not an additional logical step; rather, it can be obtained by applying
the rules of the calculus while selecting the appropriate branch.

Proposition 7. Let S = Γ ⇒ Δ, 〈S1〉, [S2], where S1 = Σ ⇒ Π, [Λ ⇒ Θ] and
S2 = ⇒Λ⇒Θ Θ� and Γ ⊆ Σ. If S1 is saturated with respect to all the left rules
in CCLIK, then for the sequent S′ = Γ ⇒ Δ, 〈S1〉, [fS1(S2)] which is obtained
by the realization procedure in Definition 20, we have

Local Intuitionistic Modal Logics and Their Calculi 91

(i). S′ is saturated with respect to all the left rules applied to or within [fS1(S2)];
(ii). fS1(S2) ⊆S Λ ⇒ Θ;
(iii). S′ can be obtained by applying left rules of CCLIK to [S2] in S.

Example 5. We go back to sequent (i’) in Example 4. Let

S = �(p ∨ q) ⇒ �r ⊃ �s, 〈�(p ∨ q),�r ⇒ �s, [p ∨ q, p, r ⇒ s]〉, [⇒ s]
S1 = �(p ∨ q),�r ⇒ �s, [p ∨ q, p, r ⇒ s]
S2 = ⇒ s, T = p ∨ q, p, r ⇒ s

Since [S2] is produced by (inter↓) from T , we have S2 = ⇒T s. We are
intended to realize the block [S2] in S by the tracking record of Ant(S) in S1.
By definition, we have

GS1(S1, Ant(S)) = Ant(S) = {�(p ∨ q)}
GS1(T,Ant(S)) = {p ∨ q, p}

According to realization, by applying fS1(·) to S2, we get fS1(⇒T s) = p∨q, p ⇒
s. Thus, the entire output sequent is

�(p ∨ q) ⇒ �r ⊃ �s, 〈�(p ∨ q),�r ⇒ �s, [p ∨ q, p, r ⇒ s]〉, [p ∨ q, p ⇒ s]

And this is just (iii) in Example 4, which is the right expansion of (i’).

In order to define the proof-search procedure, we first divide all the rules of
CCLIK into four groups as (R1): all propositional and modal rules except (⊃R);
(R2): (trans) and (inter→); (R3): (⊃R); and (R4): (inter↓).

Let S = Γ ⇒ Δ, we denote by Δ̄ the sequent obtained by removing all the
(nested) occurrences of 〈·〉-blocks in Δ.4

Definition 21 (Saturation). Let S = Γ ⇒ Δ be a sequent and not an axiom.
S is called:

– R1-saturated if Γ ⇒ Δ̄ satisfies all the saturation conditions of R1 rules;
– R2-saturated if S is R1-saturated and S satisfies saturation conditions of R2

rules for blocks 〈S1〉, [S2] s.t. S1 ∈〈·〉
0 S and S2 ∈[·]

0 S;
– R3-saturated if S is R2-saturated and S satisfies saturation conditions of R3

rules for formulas A ⊃ B ∈ Δ;
– R4-saturated S is R3-saturated and S satisfies saturation conditions of R4

rule for each implication block 〈Σ ⇒ Π, [S1]〉 s.t. Σ ⇒ Π, [S1] ∈〈·〉
0 S.

Definition 22 (Global Saturation). Let S be a sequent and not an axiom.
S is called global-Ri-saturated if for each T ∈+ S, T is Ri-saturated where
i ∈ {1, 2, 3}; global-saturated if for each T ∈+ S, T is R4-saturated.

In order to specify the proof-search procedure, we make use of the following
four macro-steps that extend a given derivation D by expanding a leaf S. Each
procedure applies rules non-redundantly to some T = Γ ⇒ Δ ∈+ S.
4 For example, let Δ = B, 〈Σ ⇒ Π〉, [Λ ⇒ [D ⇒ E, 〈P ⇒ Q〉]], then Δ̄ = B, [Λ ⇒
[D ⇒ E]].

92 P. Balbiani et al.

Algorithm 1: PROC0(S0)
Input: S0

1 initialization D = ⇒ S0;
2 repeat
3 if all the leaves of D are axiomatic then
4 return “PROVABLE” and D
5 else if there is a non-axiomatic leaf of D which is global-R3-saturated then
6 return D
7 else
8 select one non-axiomatic leaf S of D
9 if S is global-R2-saturated then

10 for all non-R3-saturated T ∈+ S, let D = EXP3(D, S, T)
11 else if S is global-R1-saturated then
12 for all non-R2-saturated T ∈+ S, let D = EXP2(D, S, T)
13 else
14 for all non-R1-saturated T ∈+ S, let D = EXP1(D, S, T)

15 until FALSE ;

– EXP1(D, S, T) = D′ where D′ is the extension of D obtained by applying
R1-rules to every formula in Γ ⇒ Δ̄.

– EXP2(D, S, T) = D′ where D′ is the extension of D obtained by applying
R2-rules to blocks 〈Ti〉, [Tj] ∈ Δ.

– EXP3(D, S, T) = D′ where D′ is the extension of D obtained by applying
R3-rules to formulas A ⊃ B ∈ Δ.

– EXP4(D, S) = D′ where D′ is the extension of D obtained by applying (i)
R4-rule to each implication block T ′ ∈+ S and (ii) realization procedures to
modal blocks produced in (i). This step extends D by a single branch whose
leaf is denoted by S′.

It can be proved that each of these four macro-steps terminates. The claim
is almost obvious except for EXP1 (see [2, Proposition 46]).

Proposition 8. Given a finite derivation D, a finite leaf S of D and T ∈+ S,
then for i ∈ {1, 2, 3, 4}, each EXPi(D, S, T) terminates by producing a finite
expansion of D where all sequents are finite.

Now we define the procedure. We first demonstrate the preliminary procedure
PROC0(S0) (see Algorithm 1)which builds a derivation with root S0 and only
uses the macro-steps EXP1(·) to EXP3(·), thus only the rules in CLIK−are
applied. It follows that PROC0(A) decides whether a formula A is valid in LIK.
Additionally, the procedure PROC0(·) is then used as a subroutine in the full
procedure PROC(⇒ A) to obtain either a proof of A or a global-saturated
sequent, see Algorithm 2.

Proposition 9. Given a sequent S0, PROC0(S0) produces a finite derivation
with all the leaves axiomatic or at least one global-R3-saturated leaf.

Local Intuitionistic Modal Logics and Their Calculi 93

Algorithm 2: PROC(A)
Input: A

1 initialization D = PROC0(⇒ A);
2 if all the leaves of D are axiomatic then
3 return “PROVABLE” and D
4 else
5 while (No global saturated leaf of D is found) do
6 select one global-R3-saturated leaf S of D
7 let D = EXP4(D, S)
8 let S′ be the leaf of the unique branch of D expanded by EXP4(D, S)

extend D by applying PROC0(S
′)

9 return “UNPROVABLE” and D

Lastly, we show that PROC(A) terminates.

Theorem 4 (Termination for CCLIK). Proof-search for a formula A in
CCLIK terminates with a finite derivation in which either all the leaves are
axiomatic or there is at least one global-saturated leaf.

We can also obtain decision procedures for CLIKD and CLIKT in a similar
way. Consider a cumulative version CCLIKD and CCLIKT of the respective
calculi and define suitable saturation conditions associated the extra modal rules,
for a sequent S = Γ ⇒ Δ:
(D): if Γ� ∪ Δ♦ is non-empty. then Δ is not [·]-free.
(T�/T♦): if �A ∈ Γ (resp. ♦A ∈ Δ), then A ∈ Γ (resp. A ∈ Δ).

The saturation condition for (D) prevents a useless generation of infinitely
nested empty blocks of the form [⇒ [. . . ⇒ [⇒] . . .]], which can be created by
the backward application of the (D)-rule. The procedure PROC0(·) integrates
the rules for (D) or (T)’s accordingly: the rule (D) is applied immediately after
each round of EXP2(·) while the two (T) rules are integrated in EXP1(·). As
a result, we can obtain:

Theorem 5 (Termination for CCLIKD and CCLIKT). Proof-search for a
formula A in CCLIKD and CCLIKT terminates with a finite derivation in which
either all the leaves are axiomatic or there is at least one global-saturated leaf.

5 Completeness

Using the decision procedure from the previous section, we show how to build
a countermodel for an unprovable formula, which entails the completeness of
CCLIK. Subsequently, we adapt this construction to CCLIKD and CCLIKT as
well.

Given a global-saturated sequent S in CCLIK, we define a model MS for it
as below.

94 P. Balbiani et al.

Definition 23. The model MS = (WS ,≤S , RS , VS) is a quadruple where
- WS = {xΦ⇒Ψ | Φ ⇒ Ψ ∈+ S};
- xS1 ≤S xS2 if S1 ⊆S S2;
- RSxS1xS2 if S2 ∈[·]

0 S1;
- for each p ∈ At, let VS(p) = {xΦ⇒Ψ | p ∈ Φ}.
Proposition 10. MS satisfies (FC) and (DC).

Lemma 8 (Truth Lemma for CCLIK). Let S be a global-saturated sequent
in CCLIK and MS = (WS ,≤S , RS , VS) defined as above. (a). If A ∈ Φ, then
MS , xΦ⇒Ψ � A; (b). If A ∈ Ψ , then MS , xΦ⇒Ψ � A.

By the truth lemma we obtain as usual the completeness of CCLIK.

Theorem 6 (Completeness of CCLIK). If A is valid in LIK, then A is
provable in CLIK.

Example 6. We show how to build a countermodel for the formula (♦p ⊃ �q) ⊃
�(p ⊃ q) which is not provable in CCLIK. Ignoring the first step, we initialize
the derivation with ♦p ⊃ �q ⇒ �(p ⊃ q). By backward application of rules, one
branch of the derivation ends up with the following saturated sequent

S0 = ♦p ⊃ �q ⇒ �(p ⊃ q),♦p, [⇒ p ⊃ q, p, 〈p ⇒ q〉]

and we further let S1 = ⇒ p ⊃ q, p, 〈p ⇒ q〉 while S2 = p ⇒ q. We then get the
model MS0 = (W,≤, R, V) where

– W = {xS0 , xS1 , xS2};
– xS1 ≤ xS2 , xS0 ≤ xS0 , xS1 ≤ xS1 , xS2 ≤ xS2 ;
– RxS0xS1 ;
– V (p) = {xS2} and V (q) = ∅.

It is easy to see that xS0 �� (♦p ⊃ �q) ⊃ �(p ⊃ q).

Next, we consider the completeness of CCLIKD and CCLIKT. We consider
the model MS = (WS ,≤S , RS , VS) for a global-saturated sequent S in either
calculi, where WS ,≤S and VS as in Definition 23, RS modified as follows:

– For CCLIKD: RSxS1xS2 if S2 ∈[·]
0 S1 or Suc(S1) is [·]-free and xS1 = xS2 ;

– For CCLIKT: RSxS1xS2 if S2 ∈[·]
0 S1 or xS1 = xS2 .

Trivially the relation RS is serial or reflexive according to CLIKD or CLIKT,
moreover models for CCLIKD and CCLIKT still satisfy (FC) and (DC). Finally,

Theorem 7 (Completeness of CCLIKD and CCLIKT). If A is valid in
LIKD (resp. LIKT), then A is provable in CCLIKD (resp. CCLIKT).

Local Intuitionistic Modal Logics and Their Calculi 95

6 Conclusion

We studied LIK, the basic intuitionistic modal logic with locally defined modali-
ties as well as some of its extensions. In further research, we intend to investigate
both axiomatizations and calculi of extensions to the whole modal cube. For
instance, we would like to provide a (terminating) calculus for the S4 extension
of LIK (the logic is studied in [1]). Since LIK is incomparable with IK, we may
also wonder what the “super” intuitionistic modal logic obtained by combining
both is. Our broader goal is to establish a framework of axiomatization and
uniform calculi for a wide range of IMLs, including other natural variants that
have been little studied or remain entirely unexplored so far.

References

1. Balbiani, P., Diéguez, M., Fernández-Duque, D.: Some constructive variants of
S4 with the finite model property. In: 36th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS, pp. 1–13. IEEE (2021). https://doi.org/10.1109/
LICS52264.2021.9470643

2. Balbiani, P., Gao, H., Gencer, c., Olivetti, N.: A natural intuitionistic modal logic:
axiomatization and bi-nested calculus. In: 32nd EACSL Annual Conference on
Computer Science Logic (CSL 2024). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 288, pp. 13:1–13:21 (2024). https://doi.org/10.4230/LIPIcs.
CSL.2024.13

3. Bellin, G., De Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a
basic constructive modal logic. In: Proceedings of Methods for Modalities, vol. 2
(2001)

4. Božić, M., Došen, K.: Models for normal intuitionistic modal logics. Stud. Logica.
43, 217–245 (1984)

5. D’agostino, M., Gabbay, D.M., Russo, A.: Grafting modalities onto substructural
implication systems. Stud. Logic. 59, 65–102 (1997)

6. Das, A., Marin, S.: On intuitionistic diamonds (and lack thereof). In: Ramanayake,
R., Urban, J. (eds.) TABLEAUX 2023. LNCS, vol. 14278, pp. 283–301. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-43513-3 16

7. Fischer-Servi, G.: On modal logic with an intuitionistic base. Stud. Logic. 36(3),
141–149 (1977). https://doi.org/10.1007/BF02121259

8. Fischer-Servi, G.: Semantics for a Class of Intuitionistic Modal Calculi, pp. 59–72.
Springer, Dordrecht (1981).https://doi.org/10.1007/978-94-009-8937-5 5

9. Fischer-Servi, G.: Axiomatizations for some intuitionistic modal logics. Rendiconti
del Seminario Matematico Università e Politecnico di Torino 42 (1984). https://
cir.nii.ac.jp/crid/1371132818982119684

10. Fitch, F.B.: Intuitionistic modal logic with quantifiers. Portugaliae mathematica
7(2), 113–118 (1948). http://eudml.org/doc/114664

11. Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Formal Log.
55(1), 41–61 (2014).https://doi.org/10.1215/00294527-2377869

12. Galmiche, D., Salhi, Y.: Label-free natural deduction systems for intuitionistic
and classical modal logics. J. Appl. Non-Classical Logics 20(4), 373–421 (2010).
https://doi.org/10.3166/jancl.20.373-421

13. Marin, S., Morales, M.: Fully structured proof theory for intuitionistic modal logics.
In: AiML 2020 - Advances in Modal Logic (2020). https://hal.science/hal-03048959

https://doi.org/10.1109/LICS52264.2021.9470643
https://doi.org/10.1109/LICS52264.2021.9470643
https://doi.org/10.4230/LIPIcs.CSL.2024.13
https://doi.org/10.4230/LIPIcs.CSL.2024.13
https://doi.org/10.1007/978-3-031-43513-3_16
https://doi.org/10.1007/BF02121259
https://doi.org/10.1007/978-94-009-8937-5_5
https://cir.nii.ac.jp/crid/1371132818982119684
https://cir.nii.ac.jp/crid/1371132818982119684
http://eudml.org/doc/114664
https://doi.org/10.1215/00294527-2377869
https://doi.org/10.3166/jancl.20.373-421
https://hal.science/hal-03048959

96 P. Balbiani et al.

14. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuition-
istic modal logics. In: Advances in Modal Logic, vol. 10 (2014)

15. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Proceed-
ings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK), pp. 399–406 (1986). https://doi.org/10.5555/1029786.1029823

16. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover Publications,
Mineola (1965). https://doi.org/10.2307/2271676

17. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic.
Ph.D. Thesis, University of Edinburgh (1994). https://api.semanticscholar.org/
CorpusID:2309858

18. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics.
In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 14

19. Wijesekera, D.: Constructive modal logics I. Ann. Pure Appl. Log. 50(3), 271–301
(1990). https://doi.org/10.1016/0168-0072(90)90059-B

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5555/1029786.1029823
https://doi.org/10.2307/2271676
https://api.semanticscholar.org/CorpusID:2309858
https://api.semanticscholar.org/CorpusID:2309858
https://doi.org/10.1007/978-3-642-37075-5_14
https://doi.org/10.1016/0168-0072(90)90059-B
http://creativecommons.org/licenses/by/4.0/

Non-iterative Modal Resolution Calculi

Dirk Pattinson1(B) and Cláudia Nalon2

1 School of Computing, The Australian National University, Canberra, Australia
dirk.pattinson@anu.edu.au

2 Department of Computer Science, University of Braśılia, Braśılia, Brazil

nalon@unb.br

Abstract. Non-monotonic modal logics are typically interpreted over
neighbourhood frames. For unary operators, this is just a set of worlds,
together with an endofunction on predicates (subsets of worlds). It is
known that all systems of not necessarily monotonic modal logics that
are axiomatised by formulae of modal rank at most one (non-iterative
modal logics) are Kripke-complete over neighbourhood semantics. In this
paper, we give a uniform construction to obtain complete resolution cal-
culi for all non-iterative logics. We show completeness for generative
calculi (where new clauses with new literals are added to the clause set)
by means of a canonical model construction. We then define absorp-
tive calculi (where new clauses are generated by generalised resolution
rules) and establish completeness by translating between generative and
absorptive calculi. Instances of our construction re-prove completeness
for already known calculi, but also give rise to a number of previously
unknown complete calculi.

Keywords: Modal Logics · Automated Reasoning · Resolution

1 Introduction

There are two standard ways to define modal logics. The syntactic approach
specifies a logic by means of its axioms and proof rules. One way of defining
the modal logic K is as the least set of formulae that contains all instances of
propositional tautologies and the K-axioms, and is closed under modus ponens
and necessitation. Alternatively, we can take a semantic approach, and define
a logic as the set of formulae that is valid over a given class of frames. For
the modal logic K, this is typically the class of formulae valid over all Kripke
frames, but we can alternatively define K as the class of all formulae that are
valid in all neighbourhood frames where neighbourhoods are closed under finite
intersections. More often than not, the frame class under consideration is also
described using logical formulae as axioms.

No matter whether we take a syntactic or semantic approach, the questions
remain the same: can we define a proof calculus that allows us to derive all
formulae of the logic? Can we decide whether a formula is in the logic?

In this paper, we answer these questions uniformly for the class of all non-
iterative modal logics and resolution calculi. Non-iterative logics are defined

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 97–113, 2024.
https://doi.org/10.1007/978-3-031-63501-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_6&domain=pdf
http://orcid.org/0000-0002-5832-6666
http://orcid.org/0000-0002-9792-5346
https://doi.org/10.1007/978-3-031-63501-4_6

98 D. Pattinson and C. Nalon

(either syntactically or semantically) by axioms without nesting of modal oper-
ators. While this excludes e.g. logics with (generalised) transitivity axioms, it
still covers a large class of specimens. Examples include various classical modal
logics of Chellas [8], all standard conditional logics treated in [19], extensions
of the modal logic K with reflexivity, seriality and functionality [6], graded and
probabilistic modal logic [13,14], Pauly’s coalition logic [22], a variety of deontic
logics [24] and logics of agency [11]. For all these logics, we construct a complete
resolution system that can be turned into a decision procedure. From a syn-
tactic viewpoint, we cannot restrict ourselves to normal modal logics. That is,
our basic modal systems will only include modal congruence (from φ ↔ ψ infer
�φ ↔ �ψ, or its multi-argument, multi-modal generalisation). Consequently
on the semantic side, we adopt neighbourhood semantics as the most general
semantic framework. For this semantics, Lewis [16] has already shown that non-
iterative logics are complete with respect to the class of neighbourhood frames
that are defined by their axioms. Here, completeness is understood with respect
to a Hilbert-style system, where deduction is defined as the closure of propo-
sitional tautologies and axioms under substitution, modus ponens, and modal
congruence. Here, we use the same classes of frames (that are defined by modal
axioms), and show that our resolution systems are complete with respect to these
frames. Considering the same semantics, this builds a bridge between syntacti-
cally defined logics, and the resolution systems that we introduce.

Our technical contribution is the definition, and analysis, of two different
types of resolution calculi for each non-iterative logic. The first system that we
call generative extends propositional resolution with modal rules that produce
new clauses with possibly new modal literals. For example, the modal congruence
rule above introduces the clause ¬�p ∨ �q, i.e. �p → �q, in contrast to more
standard calculi that are based on resolving conflicting literals. In these calculi
that we call absorptive, the modal congruence rule would identify �p and ¬�q
as conflicting, and – assuming that p and q are equivalent – adds the clause
D ∨ E if D ∨ ¬�p and E ∨ �q are already derived. The reason for introducing
both calculi is technical: generative calculi are much more suited to a canonical
model construction that we use to prove completeness. In particular, maximally
consistent sets behave in the expected way (they contain every literal or its
negation). On the other hand, absorptive calculi are the calculi de rigeur, and
transforming generative proofs to absorptive proofs, we obtain completeness for
absorptive calculi by translation.

Methodologically, we make an interesting, but not entirely unexpected dis-
covery. While in propositional logic, we can derive completeness of resolution
directly from completeness of a cut-free sequent calculus (e.g. [10]), this method
fails for modal logic: for example, the set Φ = {p,¬p ∨ q,�p,¬�q} is evidently
satisfiable (at a world, in a neighbourhood or Kripke model), but Φ � ⊥ in a
sequent calculus for classical (or normal) modal logic where Δ ∈ Φ are treated
as additional axioms or initial sequents. Because the additional initial sequents
Φ play the role of global assumptions, Φ �Γ means that Γ is valid in all models
where all Δ ∈ Φ are true globally (at all worlds). Hence Φ �⊥ as there is no

Non-iterative Modal Resolution Calculi 99

model where all φ ∈ Φ are globally true. Despite the fact that we do not obtain
a resolution calculus directly from a sequent calculus (by forgetting the propo-
sitional rules), both calculi are still closely related. To ensure completeness of
the resolution systems, we employ the same technical condition that guarantees
cut elimination in sequent calculi: in both cases, we require that modal rules
are cut-closed, i.e. two applications of modal rules, followed by a resolution step
between their conclusions, can be replaced by a single modal rule (whose pre-
misses are derivable from the premisses of the original rule). In cut-elimination
proofs, this is what allows us to propagate cut towards the leaves of a proof
tree. For resolution calculi, this property ensures that a consistent set remains
consistent if we extend the language: an inconsistency in the larger system would
involve new variables, and cut-closure allows us to eliminate them. We discuss
this phenomenon more in the conclusion.

Related Work. As far as we are aware, our paper is the first to study the con-
struction of resolution calculi from a more general perspective, i.e. focusing on
properties such as non-iterative axioms rather than on concretely given logical
systems. There is a large body of work on resolution calculi on normal modal log-
ics [1–3,7,9,12,17,18] but [20] appears to be the only paper on modal resolution
for non-normal calculi. All of the above approaches focus on concretely given
calculi in contrast to this paper that uniformly applies to all calculi with non-
iterative axioms. The notion of cut-closure has been used to construct cut-free
sequent calculi in [21]. Indeed, the results of op.cit. will give complete, cut-free
sequent calculi that have precisely the same modal rules as our generative sys-
tems. Of course, we are not the first to observe this deep relationship between
sequent calculi and resolution, although our paper appears to be the first that
follows a semantic route to directly express completeness of resolution. Avron [4]
has discussed the relationship between resolution and sequent calculi for propo-
sitional and first order logic, and Mints [17] has considered modal calculi; both
from the perspective of syntactical translation. To our knowledge, there is no
work that relates sequent calculi and resolution for non-normal modal logics, or
on methods that apply to a range of logics in a uniform way.

2 Preliminaries

Definition 1. Let V be a set of propositional variables that we fix throughout.
The language L of modal logic is given by the grammar

L � φ ::= p | ¬φ | φ ∨ φ | �φ

where p ∈ V. A substitution is a mapping σ : V → L, and we denote the result
of uniformly substituting each p ∈ V with σ(p) in a formula φ by φσ. A global
formula is of the form G(φ) where φ is a formula. Propositional and modal
literals are given by PL(V) =

⋃{p,¬p | p ∈ V} and ML(V) =
⋃{�p,¬�p |

p ∈ V}, respectively. We denote the set of literals over V by Lit(V) = PL(V) ∪
ML(V). Two literals are disparate if the variables that occur in them are different.

100 D. Pattinson and C. Nalon

A clause is a finite disjunction of (propositional or modal) literals. We identify a
clause with the set of its literals, and sometimes say that a literal is an element
of a clause, or write D0 ⊆ D1 to indicate that clause D0 is a subclause of D1.
In particular, we consider two clauses as equal if they have the same literals.
A clause is propositional if all literals are propositional. We distinguish local
clauses, written l1 ∨ · · · ∨ ln, and global clauses, written G(l1 ∨ · · · ∨ ln). We
sometimes refer to formulae and clauses as local formulae or local clauses to
emphasise the distinction to their global counterparts. We write Cl(V) = {l1 ∨
· · · ∨ ln | l1, . . . , ln ∈ Lit(V)} for the set of clauses with literals in Lit(V).

The following notion of truth distinguishes local and global clauses.

Definition 2. A neighbourhood frame is a pair (W,N) where W is a set (of
worlds) and N : W → PP(W) is a (neighbourhood) function where P(X)
denotes the powerset of a set X. A neighbourhood model is a triple (W,N, θ)
where (W,N) is a neighbourhood frame, and θ : V → P(W) is a (valuation)
function. We say that the model (W,N, θ) is based on the frame (W,N). Truth
w |= φ of a formula φ at a world w ∈ W is given by

w |= p iff w ∈ θ(p) w |= ¬φ iff w �|= φ

w |= φ ∨ ψ iff w |= φ or w |= ψ w |= �φ iff �φ� ∈ N(w)

where �φ� = {w ∈ W | w |= φ} is the truth set of φ ∈ L. We occasionally
write M,w |= φ or even (M,N, θ), w |= φ if we want to emphasise the (carrier
of) the model. This defines the interpretation of local formulae and clauses. For
global formulae and clauses, we have w |= G(φ) iff w′ |= φ for all w′ ∈ W . We
use standard terminology, and write (W,N, θ) |= φ if (W,N, θ), w |= φ for all
w ∈ W , and (W,N) |= φ if (W,N, θ) |= φ for all θ : V → P(W). If F is a class of
neighbourhood frames, we write F |= φ if F |= φ for all frames F ∈ F. A formula
φ is satisfiable in a class F of neighbourhood frames if there is a neighbourhood
model (W,N, θ) with (W,N) ∈ F, and w ∈ W such that (W,N, θ), w |= φ;
otherwise, φ is unsatisfiable in F. The notion of (un)satisfiability is extended as
usual to sets of formulae.

It is standard that every formula can be converted to an equi-satisfiable set of
global and local clauses in linear time.

Proposition 3 (Normal Form [20]). Every (local or global) formula can be
converted to an equisatisfiable set of (global and local) clauses.

Proof. Let φ ∈ L be a formula and p ∈ V be a fresh propositional variable
(that does not occur in φ). We write R(p ≡ φ) for R(p)(φ) where the function
R : V → L → Cl(V) is given by

R(p≡φ1 ∧ φ2) = R(p1≡φ1) ∪ R(p2≡φ2) ∪ {¬p ∨ p1,¬p ∨ p2,¬p1 ∨ ¬p2 ∨ p}
R(p≡φ1 ∨ φ2) = R(p1≡φ1) ∪ R(p2≡φ2) ∪ {¬p ∨ p1 ∨ p2,¬p1 ∨ p,¬p2 ∨ p}

R(p≡�φ) = R(q≡φ) ∪ {¬p ∨ �q,¬�q ∨ p}
R(p≡¬φ) = R(q≡φ) ∪ {¬p ∨ q,¬q ∨ p}

Non-iterative Modal Resolution Calculi 101

where, in each of the clauses, p1, p2 and q are fresh. It is a routine induction to
show that φ and {p} ∪ {G(D) | D ∈ R(p ≡ φ)} are equi-satisfiable when p does
not occur in φ. The same holds for G(φ) and {G(p)} ∪ {G(D) | D ∈ R(p≡φ)}. ��

3 Non-iterative Logics and Their Calculi

Definition 4. A formula φ ∈ L is non-iterative if, for every subformula �ψ of
φ, the formula ψ is purely propositional, i.e. does not contain a modal operator.
If Ax is a set of (not necessarily non-iterative) formulae, then Frm(Ax) is the
class of neighbourhood frames (W,N) so that (W,N) |= φ for all φ ∈ Ax.

A rule is an n + 1-tuple (φ1, . . . , φn, φ0), written as φ1 . . . φn/φ0 where the
φi are formulae, and φ1, . . . , φn are the premisses, and φ0 is the conclusion. It
is non-iterative if all the premisses are propositional clauses, and the conclusion
is a (not necessarily propositional) clause. If Rl is a set of (not necessarily non-
iterative) rules, then the class of Frm(Rl) is the class (W,N) of neighbourhood
frames such that (W,N, θ) |= φ0 whenever (W,N, θ) |= φi (all i = 1, . . . , n), for
all θ : V → P(W).

A set Ax of formulae (thought of as axioms) and a set Rl of rules are equivalent
if they define the same frames, i.e. Frm(Ax) = Frm(Rl).

It is easy to convert between non-iterative rules and axioms [23].

Definition 5. We write cnf(φ) for a (chosen) conjunctive normal form of a
formula φ. The rules induced by the non-iterative axiom φ are the rules induced
by the (non-iterative) clauses γ1, . . . , γn that constitute the conjunctive normal
form of φ, that is, cnf(φ) = γ1 ∧ · · · ∧ γn.

A non-iterative clause γ = l1 ∨ . . . ∨ ln ∨ ♥φ1 ∨ · · · ∨ ♥φn induces the rule
ι(γ) = δ1 . . . δk/l1∨· · ·∨ln∨♥p1∨· · ·∨♥pn where p1, . . . , pn are pairwise distinct,
fresh, propositional variables, ♥ ∈ {�,¬�} and δ1 ∧ · · · ∧ δk is a conjunctive
normal form of (p1 ↔ φ1) ∧ · · · ∧ (pn ↔ φn).

If on the contrary, ρ = γ1 . . . γn/γ0 is a non-iterative rule, the axiom induced
by ρ is ι(ρ) = γ0σ where σ is the most general unifier of γ1 ∧ · · · ∧ γn.

The above construction ensures that induced axioms and rules are equivalent in
the sense of Definition 4.

Proposition 6. Every set Ax of axioms is equivalent to the set of
⋃{ι(α) | α ∈

Ax} of induced rules, and every set Rl of non-iterative rules is equivalent to the
set {ι(ρ) | ρ ∈ Rl} of induced axioms.

In examples, the situation is as follows.

Example 7. The classical modal logic E is defined by the empty set of (extra)
axioms that induce an empty set of rules. The K-axiom �(p → q) → (�p → �q)
induces the rule ¬r ∨ ¬p ∨ q, p ∨ r,¬q ∨ r/¬�r ∨ ¬�p ∨ �q. In the presence of
the congruence rule, necessitation can be replaced by the axiom �� which gives
the rule p/�p. One can show that the (simplified) set of rules N = {¬p ∨ ¬q ∨

102 D. Pattinson and C. Nalon

r/¬�p ∨ ¬�q ∨ �r; p/�p}, as well as the set S = {¬p1 ∨ · · · ∨ ¬pn ∨ p0/¬�p1 ∨
· · · ∨ ¬�pn ∨ �p0 | n ≥ 0} are equivalent to the K-axiom and ��. We call N
and S the non-standard and standard rules for K. As we are demonstrating in
Example 19 the non-standard rules will not give us completeness as they are not
cut-closed (Definition 20).

As our calculi apply to all non-iterative logics, we are parametric in a set of
(non-iterative) rules. For a set Rl of rules, we define an generative calculus that
adds new clauses with possibly new literals, and an absorptive variant, where
clauses are combined and conflicting literals are removed.

Definition 8. Let Rl be a set of non-iterative rules. The rules

D ∨ l D′ ∨ ¬l

D ∨ D′
G(D)

D

G(D ∨ l) G(D′ ∨ ¬l)
G(D ∨ D′)

¬p ∨ q p ∨ ¬q

¬�p ∨ �q

are called local resolution (LR), the global-local rule (GL), global resolution (GR),
and the modal congruence rule (MC), respectively. We write RlC = Rl ∪ {(MC)}
for the extension of Rl with the modal congruence rule.
The generative calculus given by Rl has the rules (GR), (GL), (LR) and all rules

G(Ds
1) . . . G(Ds

n)
G(D0)

for which D1 . . . Dn/D0 ∈ RlC and Ds
1, . . . , D

s
n are subclauses of D1, . . . , Dn. The

absorptive calculus defined by Rl has the rules (GR), (GL), (LR) and the rules

G(Ds
1) . . . G(Ds

n) G(E1 ∨ ¬l1) . . . G(Ek ∨ ¬lk)
G(E1 ∨ · · · ∨ Ek)

G(Ds
1) . . . G(Ds

n) E1 ∨ ¬l1 . . . Ek ∨ ¬lk
E1 ∨ · · · ∨ Ek

where D1 . . . Dn/D0 ∈ RlC and Ds
i ⊆ Di is a subclause of Di, for all i = 1, . . . , n.

If Γ is a set of local and global clauses, we write Γ �G (resp. Γ �A) for the
least set of (local and global) clauses that contains Γ and is closed under all
instances of the rules of generative (resp. absorptive) rules defined by Rl. We
write Γ �∗ γ if γ ∈ Γ �∗ for ∗ = G,A.

Generative and absorptive calculi serve a different purpose: we are going to
prove semantic completeness for generative calculi, and then show that derivation
in absorptive calculi can be translated to generative calculi, thus establishing
completeness for absorptive calculi as well. In particular, we only consider notions
like maximal consistency for generative calculi.

Example 9. The modal logic E just has the congruence rule. The generative
and absorptive local version of the congruence rule are

(GC)
G(D0) G(D1)
G(¬�p ∨ �q)

(ACL)
G(D0) G(D1) C1 ∨ �p C2 ∨ ¬�q

C1 ∨ C2

Non-iterative Modal Resolution Calculi 103

where D0 ⊆ ¬p ∨ q and D1 ⊆ ¬q ∨ p are subclauses. In the global version
(ACG) of the absorptive rule, all clauses of the rightmost rule are under a global
modality. For the standard rule set of modal K, the generative version looks like
the sequent rule on the left

G(D)
G(¬�p1 ∨ · · · ∨ ¬�pn ∨ �p0)

G(D) D1 ∨ �p1 . . . Dn ∨ �pn D0 ∨ ¬�p0
D1 ∨ · · · ∨ Dn ∨ D0

with the local absorptive rule on the right. Again D ⊆ ¬p1 ∨ · · · ∨ pn ∨ p0 is a
subclause, and all clauses are under a global modality in the global absorptive
variant of the rule.

It is easy to see that both the generative and the absorptive calculus are sound.

Proposition 10 (Soundness). Let Rl be a set of non-iterative rules. Then
Γ �∗ ε for both ∗ = G,A only if Γ is unsatisfiable in the class Frm(Rl) of Rl-
frames.

Proof. We show that γ is satisfiable whenever Γ is by induction on Γ �∗ γ. ��
In particular, if Rl is equivalent to a set Ax of non-iterative axioms, the calculus
�Rl is sound with respect to Frm(Ax). We collect some elementary results on the
calculi just introduced. The most important one is the trichotomy theorem for
generative calculi:

Theorem 11 (Trichotomy). Let l be a modal or propositional literal, and let
Φ be a set of local and global clauses, and D a local clause with Φ ∪ {l} �G D.
Then (1) D = l or (2) Φ �G D or (3) Φ ∪ {¬l} �G D.

Proof. By induction on the proof of Φ ∪ {l} �G D. Note that the format of the
rules guarantees us that Φ �G G(D) whenever Φ ∪ {l} �G G(D), as rules with
global conclusions only have global premisses. ��
Remark 12. The trichotomy fails for absorptive calculi. Over the empty set of
rules Rl = ∅, i.e. for the modal logic E, consider Φ = {G(¬p∨q),G(¬q∨p),¬�q}.
Then Φ ∪ {�p} �A ε but neither ε = �p nor Φ �A ε or Φ �A ¬�p hold.

The trichotomy property is a stepping stone to prove negation completeness for
maximally consistent sets. As trichotomy fails for absorptive calculi, negation
completeness only holds for generative calculi, too.

Definition 13. Let G be a set of global clauses over a (finite or infinite) set V
of variables, and let Φ be a set of local clauses over the same set of variables.
Then Φ is G-inconsistent if G ∪ Φ �G ε, and G-consistent, otherwise. The set Φ
is G-maximally consistent if Φ is G-consistent, and for every clause D ∈ Cl(V)
with D /∈ Φ, we have that Φ ∪ {D} is G-inconsistent.

Technically speaking, it would be more appropriate to speak of generatively
(maximally) consistent sets, but we elide the qualifier ‘generative’ as we never
consider these notions for absorptive calculi.

104 D. Pattinson and C. Nalon

Lemma 14. Let M be G-maximally consistent and l be a (propositional or
modal) literal. Then l ∈ M or ¬l ∈ M .

Proof. If neither l ∈ M nor ¬l ∈ M , then M ∪ {l} �G ε and M ∪ {¬l} �G ε.
Using the trichotomy lemma, this entails that M �G ε, contradiction to M being
consistent. ��
Moreover, this gives a characterisation of maximally consistent sets as given by
a set of singleton clauses.

Lemma 15. Let G be a set of global clauses over a set V0 of propositional
variables. Let L ⊂ V0 ∪ {�p | p ∈ V} be a set of positive literals, and
L¬ = L ∪ {¬l | l ∈ Lit(V0) \ L}. Then there is a 1-1 correspondence

{M | M G-maximally consistent} f−→ {L ⊆ V0 | L¬ G-consistent}
given by f(M) = M ∩ Lit(V0) from left to right, and f−1(L) = {D ∨ l | D ∈
Cl(V0), l ∈ L¬}. Moreover,

∧
M and

∧
(f(M)) are logically equivalent.

The trichotomy law also allows us to show a limited form of deductive complete-
ness for propositional resolution which is known in the literature, consequence
completeness [15], although our proof appears to be new. We state the theorem
for the generative calculi of Definition 8. It evidently remains true for proposi-
tional resolution.

Lemma 16. Let Φ be a set of local clauses, and let D be a local clause with
pairwise disparate literals such that

∧
Φ → D is a propositional tautology. Then

there is a subclause D0 ⊆ D of D such that Φ �G D0.

Proof. We use completeness of propositional resolution (which is the only rule
applicable) and assume that D = l1 ∨ · · · ∨ ln with the li pairwise disparate. If∧

Φ → D is a tautology, then Φ∪{¬l1, . . . ,¬ln} is unsatisfiable. By completeness
of propositional resolution, Φ ∪ {¬l1, . . . ,¬ln} �G ε. Repeated application of the
trichotomy lemma yields a subclause D0 ⊆ D such that Φ �G D0. ��
Remark 17. The above theorem fails without the assumption that the literals
that occur in D are pairwise disparate. Take for example Φ = ∅ and D =
q ∨ ¬q. Then clearly

∧
Φ → q ∨ ¬q is a tautology, but Φ �G q ∨ ¬q is false.

The reason is that repeated application of the trichotomy lemma fails: we have
Φ ∪ {q} ∪ {¬q} �G ⊥. Hence by trichotomy, either Φ ∪ {q} �G ⊥, or Φ ∪ {q} �G q
as ¬q = ε is impossible. In the first case, we can apply trichotomy again. In the
second, another application leaves the evident possibility that q = q.

4 Completeness

Throughout the section, we fix a set Rl of non-iterative rules. Our first goal is
to show completeness for the generative calculus. That is, if Φ is a finite and
consistent set of local and global clauses, then Φ is satisfiable in Frm(Rl).

Non-iterative Modal Resolution Calculi 105

As Φ is finite, only a finite number of variables will appear in (clauses in) Φ.
Our construction has two stages. We start with a finite set V0 of propositional
variables. This allows us to consider maximally consistent sets of clauses over
V0. We then extend the language with new variables V1. The purpose of these
new variables is to give names to collections of maximally consistent sets. For
example, for every maximally consistent set M , we will have a variable pM such
that pM =

∧
M , and for a set S of maximally consistent sets, we add a variable

with the interpretation pS =
∨

M∈S

∧
M .

Definition 18. Let V0 be a finite set of variables, and G0 be a finite set of
global clauses over variables in V0. The extension of V0 and G0 are the sets V1

of variables, and G1 of global clauses where the set V1 extends V0 with

– a variable pD for every clause D over V0

– a variable pM for every set M of clauses over V0

– a variable pS for every set of clause sets over V0.

The set G1 extends G0 with the clauses G(E) where E is in one of the following:

– {¬pS ∨ ∨
M∈S pM} ∪ {¬pM ∨ pS | M ∈ S}, to express that pS ↔ ∨

M∈S pM ;
– {∨

D∈M ¬pD ∨ pM} ∪ {¬pM ∨ pD | D ∈ M}, to express pM ↔ ∧
D∈M pD;

– {¬pD ∨ pM} ∪ {¬l ∨ pD | l ∈ D}, to express that pD ↔ D.

We let Wi = {M ⊆ Cl(Vi) | M G0-maximally consistent}, defining two sets of
maximally consistent sets of clauses: W0 are clauses over the original variables
V0 and W1 are maximally consistent sets over the extended language.

To define the structure of the canonical model, we would like to extend every
G0-maximally consistent set M to a G1-maximally consistent set M̂ , and define
N0(M) = {S ⊆ W0 | �pS ∈ M̂}. While this will allow us to establish that the
frame conditions (defined by the rules of the calculus) hold, it is not true that
every G0-consistent set is G1-consistent.

Example 19. Let V0 = {p, q, r, s} and consider generative rules corresponding
to the nonstandard rules for K from Example 7, that is

G(D)
G(¬�p ∨ ¬�q ∨ �r)

(D ⊆ ¬p ∨ ¬q ∨ r)
G(D)
G(�p)

(D ⊆ p)

Consider the set G0 = {¬p∨¬q∨¬r∨s} and let H = {�p,�q,�r,¬�s}. Then H
is G0-consistent (no resolution rule can be applied), but it is not G1-consistent.
If S = {M ∈ W0 | {p, q} ⊆ M}, then pS is equivalent to p ∧ q under G1. Hence
we have that G1 �G G(¬p ∨ ¬q ∨ pS), and also G1 �G G(¬pS ∨ ¬r ∨ s). Applying
the K-rule to both, we obtain G(¬�p ∨ ¬�q ∨ �pS) and G(¬�pS ∨ ¬�r ∨ �s).
Applying resolution, and converting to a local clause, we have that G1 �G ¬�p∨
¬�q ∨ ¬�r ∨ �s so that H is clearly G1-inconsistent.

The key here is that in G1 we have more propositional variables and defining
axioms that allow us to make more modal deductions. The crucial point in the

106 D. Pattinson and C. Nalon

above example is that we could apply the modal rule in two different ways, and
the apply cut to the rule conclusions. Had we chosen the standard rules for K,
i.e. ¬p1 ∨ · · · ∨ ¬pn ∨ p0/¬�p1 ∨ · · · ∨ ¬�pn ∨ �p0 for all n ≥ 0, the above set
H would not have been G0-consistent. The requirement of cut-closure addresses
this problem, and also ensures that G0-consistency implies G1-consistency.

Definition 20. Let Rl be a set of non-iterative rules. Then Rl is cut-closed if,
for any two instances on the left

D1 ∨ · · · ∨ Dn

l ∨ D0

E1 ∨ · · · ∨ Em

¬l ∨ E0
� F1 ∨ · · · ∨ Fk

D0 ∨ E0

there exists a rule instance in Rl (on the right) such that {D1,. . . ,Dn,E1,. . . ,
Em}�Fi in propositional resolution for all i = 1, . . . , k.

Clearly, the paradigmatic example is the rule set of K.

Example 21. The nonstandard set of rules for K from Example 7 is not cut-
closed: a cut between two instances of the binary K-rule gives a conclusion of
the form ¬�p ∨ ¬�q ∨ ¬�r ∨ ¬�t which is clearly not an instance of any of the
rules. We therefore need to generalise the rule to ¬p1 ∨ · · · ∨ ¬pn ∨ p0/¬�p1 ∨
· · · ∨ ¬�pn ∨ �p0, i.e. the standard set of rules is cut-closed.

Crucially, cut-closed sets guarantee preservation of consistency.

Lemma 22. Let Rl be a cut-closed set of non-iterative rules, and let G0 and G1

be as in Definition 18. Then every G0-consistent set is G1-consistent.

Proof. We use the fact that resolution is confluent, i.e. that we can change the
order of resolution steps ad libitum. That is, given clauses D ∨ l1 ∨ l2, ¬l1 ∨ E1

and ¬l2 ∨E2, we can resolve with ¬l1 ∨E1 first (to obtain D ∨E1 ∨ l2) and then
resolve with ¬l2 ∨ E2 to get D ∨ E1 ∨ E2, which we also obtain if we change the
order of resolution steps.

Now assume that H is G0-consistent, but G1-inconsistent. Then the derivation
of ε from G1 ∪ H needs to contain a modal rule, as the extension G1 of G0 is
purely definitional.

Using the confluence property of resolution, we may permute resolution steps
so that cuts between conclusions of modal rules are performed first. Using cut-
closure, we can replace modal rules, and the cuts between their conclusions, by a
single modal rule. We now claim that the ensuing proof is already a proof in G0.
This follows, as we can establish by induction that every proof that uses at least
one G1-axiom (with variables in V1\V0) has a clause with at least one variable
in V0\V1 as a conclusion. ��
Definition 23 (Canonical Model). In the terminology of the previous defi-
nition and now assuming that Rl is cut-closed, for M ∈ W0, let M̂ ∈ W1 be a
maximally consistent extension of M , that is, we require that M ⊆ M̂ .

The canonical model over the set G0 of global clauses and V0 of variables is
M = (W0, N0, θ0) where θ0(p) = {M ∈ W0 | p ∈ M} and N0(M) = {S ⊆ W0 |
�pS ∈ M̂}.

Non-iterative Modal Resolution Calculi 107

In the sequel, we fix V0 and G0 and speak of the canonical model. Maximally
consistent sets are closed under resolution:

Lemma 24. Let G be a set of global clauses, and let M be a G-maximally con-
sistent set. Then D ∈ M ⇐⇒ M �G D and D1∨D2 ∈ M whenever both D1∨¬l
and D2 ∨ l ∈ M .

Proof. The second item is immediate from the first. Assume for a contradiction
that M �G D but D /∈ M . If D = l1 ∨ · · · ∨ ln, then ¬l1, . . . ,¬ln ∈ M . But then
M �G ε, contradicting the consistency of M . ��
The truth lemma requires us to establish the premisses of the modal rules. This
is split into two lemmas.

Lemma 25. Let q ∈ V0 and let S = �q� = {M ∈ W0 | q ∈ M}. Then G1 �G
G(¬pS ∨ q).

Proof. We have that G1 �G G(¬pM ∨ pq) for all M ∈ S by definition of S.
We also have G1 �G G(¬pS ∨ ∨

M∈S pM). By propositional resolution, we have
G1 �G G(¬pS ∨ pq). As we also have G(¬pq ∨ q) ∈ G1 by construction, we apply
resolution again to obtain G1 �G G(¬pS ∨ q). ��
The reverse implication is more difficult, and we need the following which essen-
tially capitalises on the fact that all our rules with global conclusions have global
premisses only.

Lemma and Definition 26. Let G be a set of global clauses. The global clo-
sure of G is the set GG = {G(D) | G �G G(D)} of global clauses that are deriv-
able from D. The boundary of G is the set GB = {D | G(D) ∈ GG} of local
clauses that are derived from their global counterpart. With this terminology,
GB = {D | G �G D}.
Proof. This is immediate from the shape of the rules, as there are no rules with
local premisses and global conclusions. It can be proved straightforwardly using
induction on the derivation of G �G D. ��
Lemma 27. Let G be a set of global clauses, and suppose that G �G D, for a
local clause D. Then also G �G G(D).

Proof. By induction on the derivation of D. More precisely, we show that if
G �G C, for a local or global clause C, then G �G C0, where C0 = C if C is
global, and C0 = G(C), if C is local. The key here is that all rules that only deal
with local clauses (propositional resolution) have a global counterpart. ��
The following is the companion to Lemma 25.

Lemma 28. Let q ∈ V0 and let S = �q� = {M ∈ W0 | q ∈ M}. Then G1 �G
G(D), for a subclause D ⊆ ¬q ∨ pS.

108 D. Pattinson and C. Nalon

Proof. The formula q → ∨{∧
L¬ | q ∈ L ⊆ V0} is a tautology. As any G1-

inconsistent set is inconsistent with GB
1 , the same applies to q ∧GB

1 → ∨{∧
L¬ |

q ∈ L ⊆ V0G1-consistent}. By Lemma 15 we get that q ∧ GB
1 → ∨{∧

M | q ∈
M ∈ W0}. As pS is equivalent to the last disjunction under GB

1 , we finally obtain
that q ∧ GB

1 → pS is a tautology. Lemma 26 then yields the claim. ��
This gives us enough ammunition to establish the truth lemma:

Lemma 29 (Truth Lemma). In the canonical model, we have D ∈ M ⇐⇒
M |= D, for all M ∈ W1 and all local clauses D over V0.

Proof. By Lemma 14 we just need to show the claim for singleton clauses. For
propositional literals, this is immediate from the definition of the valuation θ:
we have M |= p iff M ∈ θ(p) iff p ∈ M . For the modal case, we have to show
that �q ∈ M iff �pS ∈ M̂ where S = �q� = {M ∈ W0 | q ∈ M}.

By Lemma 25 and Lemma 28, we have that G1 �G G(D0) and G1 �G G(D1),
where D0 is a subclause of ¬pS ∨ q and D1 is a subclause of ¬q ∨ pS . The modal
rule allows us to conclude that G1 �G G(¬�ps ∨ �q) as well as G(¬�q ∨ �ps).

We can now argue that �q ∈ M iff �q ∈ M̂ (as M is G0-maximally consistent
and M ⊆ M̂) iff �pS ∈ M̂ (by resolving with the derivable clauses ¬�ps ∨ �q
and ¬�q ∨ �ps). ��
For completeness, we still need to establish that the canonical model satisfies all
axioms in A. We use Lemma 15.

Lemma 30. Let (W0, N0) be the frame of the canonical modal, and let θ : V →
P(W0) be any valuation. Moreover, let D be a local propositional clause such that
(W0, N0, θ) |= D. Then there is a subclause D0 ⊆ D of D such that G1 �G G(D0σ)
where σ(q) = pθ(q).

Proof. This is similar in spirit to the proof of Lemma 28. We know that
� → ∨{∧

L¬ | L ⊆ V0} is a tautology. As every G0-inconsistent set is incon-
sistent with the boundary GB

1 , we obtain that GB
1 → {∧ L¬ | q ∈ L ⊆ V0

G0-inconsistent}. Using Lemma 15, we may replace L¬ with maximally consis-
tent sets, i.e. GB

1 → ∨{∧
M | M ∈ W0} is a tautology. As (W0, N0, θ) |= D,

any maximally consistent M ∈ W0 is either an element of θ(q) for q ∈ D, or
an element of W0 \ θ(q), for ¬q ∈ D. As pS is equivalent to

∨{M | M ∈ S}
under GB

1 , we obtain that {GB
1 → ∨

pθ(q) | q ∈ D} ∨ ∨{¬pθ(q) | ¬q ∈ D} are
tautologies, which entails the claim as in Lemma 28. ��
The previous lemma has shown that we can derive the substituted premiss of a
rule in A. The next lemma shows that derivability of the substituted conclusion
turns into semantic validity in the canonical model.

Lemma 31. In the canonical model, for M ∈ W0 and S ⊆ W0, we have that
pS ∈ M̂ ⇐⇒ M ∈ S and �pS ∈ M̂ ⇐⇒ S ∈ N0(M).

This allows us to show that the canonical model is in the right frame class.

Non-iterative Modal Resolution Calculi 109

Lemma 32. Let Ax be a set of non-iterative axioms and Rl an equivalent set of
rules. Then M ∈ Frm(A) for the canonical model M given by Rl.

Proof. Let θ be any valuation, and let π/γ be a rule in Rl such that (W0, N0, θ) |=
π. We show that (W0, N0, θ) |= γ, and the result follows from Lemma 15. Assum-
ing that π = D1 . . . Dn, the previous lemma gives us subclauses Ds

i ⊆ Di such
that G1 �G G(Ds

i σ) where σ(q) = pθ(q). Applying the rule π/γ ∈ A, this gives
G1 �G G(D0σ) where D0 = γ is the conclusion of the rule π/γ. Let M ∈ W0,
and showing that (W0, N0, θ),M |= D0 implies the claim. As M̂ is maximally
consistent, there is a literal l ∈ D0σ with l ∈ M̂ . It follows from Lemma 31 that
(W0, N0, θ) |= l, hence (W0, N0, θ) |= D0. As D0 = γ was the conclusion of the
rule π/γ, this is all we had to show. ��
Finally:

Theorem 33 (Generative Completeness). Let Φ be a set of local and global
clauses, and let Rl be a set of non-iterative, cut-closed rules. If Φ is unsatisfiable
in Frm(Rl), then Φ �G ε.

Proof. As usual, by contraposition: Let G0 denote the global clauses of Φ, and
let M be a maximally G-consistent set that contains all the local clauses of Φ.
In the canonical model, we have that M |= φ for all φ ∈ Φ, so Φ is satisfiable.
By the last lemma, we have M ∈ Frm(A) so that Φ is satisfiable in Frm(A). ��
The criticism of generative calculi is that they are not very “resolution-like”. In
particular, the “spirit” of resolution is the removal of conflicting literals, i.e. the
absorptive calculi. We now show that both are equivalent.

Lemma 34. Suppose that Φ is a set of local or global clauses, and assume that
Φ �G ε. Then Φ �A ε whenever �G and �A are induced by a cut-closed set of rules.

Proof. We demonstrate how to successively replace a generative instance of a
rule in RlC by an absorptive one. If the derivation Φ �G ε contains an instance of
a modal rule (or the congruence rule), assume that there is no other modal rule
further below. As the derivation ends in ε, every literal must either be resolved
against the conclusion of a modal rule (in which case, we can use cut-closure to
replace the two rule instances with a new one), or it must be resolved against
a clause that is not. Successively applying cut-closure, we are left with just the
second case, i.e. with a proof tree of the following form if the last clause is local:

G(Ds
1) . . . G(Ds

n)
G(l1 ∨ · · · ∨ ln)

l1 ∨ · · · ∨ ln ¬l1 ∨ E1

E1 ∨ l2 · · · ∨ ln ¬l2 ∨ E2

. . .
E1 ∨ · · · ∨ En

110 D. Pattinson and C. Nalon

This proof tree can be replaced by its absorptive variant, i.e. the rule instance

G(Ds
1) . . . G(Ds

n) ¬l1 ∨ E1 . . . ¬ln ∨ En

E1 ∨ · · · ∨ En

thus reducing the number of applications of generative rules by one. If the con-
clusion of the cascade of cuts is global, we use the global variant of the absorptive
rule instead. ��
This gives us completeness for the absorptive calculus, too.

Theorem 35 (Absorptive Completeness). Let Φ be a set of local and global
clauses, and let Rl be a set of cut-closed, non-iterative rules. If Φ is unsatisfiable
in Frm(A), then Φ �A ε.

Using Lewis’ theorem, i.e. completeness of a Hilbert system for non-iterative
axioms over the class of neighbourhood frames defined by the axioms, we can
now also close the loop between syntactically defined logics, and their resolution
systems.

Theorem 36. Let Ax be a set of non-iterative axioms, and let Rl be a cut-closed,
equivalent set of rules. If �H φ is the provability predicate in the Hilbert system
given by Ax, and Φ is the result of translating φ into an equisatisfiable set of
clauses, then �H φ → ⊥ iff Φ �A ε iff Φ �G ε iff φ is unsatisfiable in Frm(Ax).

Proof. Lewis [16] shows completeness of �H with respect to Frm(Ax), and we
apply Theorem 35 and Theorem 33. ��
The task of finding a complete resolution calculus then boils down to exhibiting
a cut-closed set of rules for a given modal logic. We demonstrate this using the
example of functional roles in description logic, and role inclusions [5].

Example 37. We consider a modal logic with two normal operators, � and �.
In description logic parlance, they correspond to two different roles. We assume
that the role corresponding to � is functional (R(i, j) ∧ R(i, k) → j = k).
Axiomatically, this means that � is a K-modality and additionally satisfies
�p ∧ �q → �(p ∧ q). The second modality, �, just satisfies the K-axioms. A
role inclusion is expressed using a transfer axiom �p → �p. While the natural
semantics here are Kripke frames (with two relations, the first functional, and
a subset of the second), the semantics in terms of neighbourhood frames (with
two neighbourhood functions) is equivalent (for weak completeness).

1. The axiom of functionality is equivalent to the rule
¬p ∨ q ∨ r

¬�p ∨ �q ∨ �r

¬p0 ∨ p1 ∨ · · · ∨ pn

¬�p0 ∨ �p1 ∨ · · · ∨ �pn

which readily generalises to the rule scheme (for n ≥ 1) above. Note that the
rule p/�p is not an instance of functionality. Cuts between the conclusion of
the K-rule and the above scheme yield the rule

(†1) ¬a1 ∨ · · · ∨ ¬an ∨ b1 ∨ · · · ∨ bk

¬�a1 ∨ · · · ∨ ¬�an ∨ �b1 ∨ · · · ∨ �bk

where n ≥ 0 and k ≥ 1. It is easy to see that this set is cut-closed.

Non-iterative Modal Resolution Calculi 111

2. The rule for the K-modality � in Example 19, that is

(†2) ¬a1 ∨ · · · ∨ ¬an ∨ a0

¬�a1 ∨ · · · ∨ ¬�an ∨ �a0

is already cut-closed.
3. To incorporate the role inclusion axiom �p → �p, we need to modify the

above rules by resolving their conclusions with the axiom ¬�p ∨ �p. This
changes the above rules to

(†3) ¬a1 ∨ · · · ∨ ¬an ∨ b1 ∨ · · · ∨ bk

¬ © a1 ∨ · · · ∨ ¬ © an ∨ �b1 ∨ · · · ∨ �bk

where n, k are as above and © ∈ {�,�}, and

(†4) ¬a1 ∨ · · · ∨ ¬an ∨ a0

¬�a1 ∨ · · · ∨ ¬�an ∨ ©a0

where © ∈ {�,�}. To this, we add the axiom as a rule without premiss, viz

(†5)¬�p ∨ �q

4. One now checks that the rules (†3), (†4) and (†5) together are cut-closed and
equivalent to the respective axioms. This means that we can apply Theo-
rem 36 to obtain a complete resolution calculus.

5 Conclusion and Further Work

We have given a general method to construct complete resolution calculi for the
class of all non-iterative modal logics. In doing so, we have defined, for each logic,
a generative and an absorptive calculus that can be translated into one another.
Conceptually, the generative calculus can be seen as a stripped-down sequent
calculus that only consists of the modal rule and the cut rules, and we have
proved completeness for this calculus, under the same condition, cut-closure,
that would also give rise to cut elimination in a sequent calculus. The naive
method to convert a sequent calculus to resolution (elide all propositional rules
and just keep cut and the modal rules) is bound to fail. For example, consider
the clauses (viewed as sequents) Φ = {p,�p,¬�q,¬p ∨ q}. With sequents in Φ
as additional axioms in the sequent calculus for the modal logic E, we can derive
the empty sequent (clause) using just cut, weakening and the congruence rule.
However, Φ is evidently satisfiable in the class of neighbourhood frames: we need
a world that validates both p and q, where p and q have different truth sets in
the model, and stipulate the truth set of p to be the only neighbourhood. The
reason is that proving ⊥ in a sequent calculus with additional assumptions Φ,
means that ⊥ is valid in all models that satisfy Φ globally whereas the notion of
consistency of interest in modal logic is local. A fortiori, this is the reason why we
needed to distinguish between local and global clauses in the calculus we have

112 D. Pattinson and C. Nalon

given. This points to a deeper question on the relationship between sequent
calculi and resolution systems. Can we just take any cut-free sequent calculus
and turn it into a resolution system (with a suitable notion of global clause)?
Can we use more liberal notions of cut-closure? Is there a purely syntactic way
to translate between sequent calculi and resolution systems? Can we use this
to lift the restriction to non-iterative axioms? Can we employ a more general
notion of cut-closure, e.g. as in [21] which would immediately give resolution
calculi for several conditional logics? We plan on discussing these questions in
further work.

Acknowledgments. This research was partially supported by a gift from Northrop
Grumman Corporation.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Abadi, M., Manna, Z.: Modal theorem proving. In: Siekmann, J.H. (ed.) CADE
1986. LNCS, vol. 230, pp. 172–189. Springer, Heidelberg (1986). https://doi.org/
10.1007/3-540-16780-3 89

2. Areces, C., de Nivelle, H., de Rijke, M.: Prefixed resolution: a resolution method
for modal and description logics. In: CADE 1999. LNCS (LNAI), vol. 1632, pp.
187–201. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 13

3. Auffray, Y.: Linear strategy for propositional modal resolution. Inf. Process. Lett.
28(2), 87–92 (1988)

4. Avron, A.: Gentzen-type systems, resolution and tableaux. J. Autom. Reason.
10(2), 265–281 (1993)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

7. Chan, M.-C.: The recursive resolution method for modal logic. N. Gener. Comput.
5, 155–183 (1987)

8. Chellas, B.: Modal Logic. Cambridge (1980)
9. del Cerro, L.F.: A simple deduction method for modal logic. Inf. Process. Lett.

14(2), 49–51 (1982)
10. Dowek, G.: Axioms vs. rewrite rules: from completeness to cut elimination. In:

Kirchner, H., Ringeissen, C. (eds.) FroCoS 2000. LNCS (LNAI), vol. 1794, pp.
62–72. Springer, Heidelberg (2000). https://doi.org/10.1007/10720084 5

11. Elgesem, D.: The modal logic of agency. Nord. J. Philos. Log. 2, 1–46 (1997)
12. Enjalbert, P., del Cerro, L.F.: Modal resolution in clausal form. Theoret. Comput.

Sci. 65, 1–33 (1989)
13. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13(4), 516–520

(1972)
14. Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games Econom. Behav.

35, 31–53 (2001)

https://doi.org/10.1007/3-540-16780-3_89
https://doi.org/10.1007/3-540-16780-3_89
https://doi.org/10.1007/3-540-48660-7_13
https://doi.org/10.1007/10720084_5

Non-iterative Modal Resolution Calculi 113

15. Lee, R.C.T.: A completeness theorem and computer program for finding theorems
derivable from given axioms. Ph.D. thesis, Berkeley (1967)

16. Lewis, D.: Intensional logics without interative axioms. J. Philos. Log. 3(4), 457–
466 (1974)

17. Mints, G.: Gentzen-type systems and resolution rules part I propositional logic.
In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52335-9 55

18. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms
62, 117–134 (2007)

19. Olivetti, N., Pozzato, G.L., Schwind, C.B.: A sequent calculus and a theorem prover
for standard conditional logics. ACM Trans. Comput. Logic 8(4) (2007)

20. Pattinson, D., Olivetti, N., Nalon, C.: Resolution calculi for non-normal modal log-
ics. In: Ramanayake, R., Urban, J. (eds.) TABLEAUX 2023. LNCS, vol. 14278, pp.
322–341. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43513-3 18

21. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional
logics. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol.
5607, pp. 280–294. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02716-1 21

22. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12(1),
149–166 (2002)

23. Schröder, L.: A finite model construction for coalgebraic modal logic. In: Aceto,
L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 157–171. Springer,
Heidelberg (2006). https://doi.org/10.1007/11690634 11

24. Straßer, C.: A deontic logic framework allowing for factual detachment. J. Appl.
Log. 9, 61–80 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-52335-9_55
https://doi.org/10.1007/978-3-031-43513-3_18
https://doi.org/10.1007/978-3-642-02716-1_21
https://doi.org/10.1007/978-3-642-02716-1_21
https://doi.org/10.1007/11690634_11
http://creativecommons.org/licenses/by/4.0/

A Logic for Repair and State Recovery
in Byzantine Fault-Tolerant Multi-agent

Systems

Hans van Ditmarsch1 , Krisztina Fruzsa2 , Roman Kuznets2(B) ,
and Ulrich Schmid2

1 CNRS, University of Toulouse, IRIT, Toulouse, France
2 Embedded Computing Systems Group, TU Wien, Vienna, Austria
krisztina.fruzsa@tuwien.ac.at, {rkuznets,s}@ecs.tuwien.ac.at

Abstract. We provide novel epistemic logical language and semantics
for modeling and analysis of byzantine fault-tolerant multi-agent sys-
tems, with the intent of not only facilitating reasoning about the agents’
fault status but also supporting model updates for repair and state recov-
ery. Besides the standard knowledge modalities, our logic provides addi-
tional agent-specific hope modalities capable of expressing that an agent
is not faulty, and also dynamic modalities enabling change to the agents’
correctness status. These dynamic modalities are interpreted as model
updates that come in three flavors: fully public, more private, and/or
involving factual change. Tailored examples demonstrate the utility and
flexibility of our logic for modeling a wide range of fault-detection, iso-
lation, and recovery (FDIR) approaches in mission-critical distributed
systems. By providing complete axiomatizations for all variants of our
logic, we also create a foundation for building future verification tools
for this important class of fault-tolerant applications.

Keywords: byzantine fault-tolerant distributed systems · FDIR ·
multi-agent systems · modal logic

1 Introduction and Overview

State of the Art. A few years ago, the standard epistemic analysis of distributed
systems via the runs-and-systems framework [13,18,28] was finally extended [22–
24] to fault-tolerant systems with (fully) byzantine agents [25]. Byzantine agents
constitute the worst-case scenario in terms of fault-tolerance: not only can they
arbitrarily deviate from their respective protocols, but the perception of their
own actions and observed events can be corrupted, possibly unbeknownst to
them, resulting in false memories. Whether byzantine agents are actually present

K. Fruzsa—Was a PhD student in the FWF doctoral program LogiCS (W1255) and
also supported by the FWF project DMAC [10.55776/P32431].
R. Kuznets—Funded by the FWF ByzDEL project [10.55776/P33600].

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 114–134, 2024.
https://doi.org/10.1007/978-3-031-63501-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_7&domain=pdf
http://orcid.org/0000-0003-4526-8687
http://orcid.org/0000-0002-2013-1003
http://orcid.org/0000-0001-5894-8724
http://orcid.org/0000-0001-9831-8583
https://doi.org/10.1007/978-3-031-63501-4_7

A Logic for Repair and State Recovery 115

in a system, the very possibility of their presence has drastic and debilitating
effects on the epistemic state of all agents, including the correct (i.e., non-faulty)
ones, due to the inability to rule out so-called brain-in-a-vat scenarios [29]: a
brain-in-a-vat agent is a faulty agent with completely corrupted perceptions
that provide no reliable information about the system [23]. In such a system,
no agent can ever know certain elementary facts, such as their own or some
other agent’s correctness, no matter whether the system is asynchronous [23] or
synchronous [34]. Agents can, however, sometimes know their own faultiness or
obtain belief in some other agents’ faultiness [33].

In light of knowledge Kiϕ often being unachievable in systems with byzan-
tine agents, [23] also introduced a weaker epistemic notion called hope. It was
initially defined as Hiϕ := correcti → Ki(correcti → ϕ), where the designated
atom correcti represents agent i’s correctness. In this setting, one can define belief
as Biϕ := Ki(correcti → ϕ) [33]. Hope was successfully used in [15] to analyze
the Firing Rebels with Relay (FRR) problem, which is the core of the well-known
consistent broadcasting primitive [36]. Consistent broadcasting has been used as
a pivotal building block in fault-tolerant distributed algorithms, e.g., for byzan-
tine fault-tolerant clock synchronization [10,16,31,36,39], synchronous consen-
sus [37], and as a general reduction of distributed task solvability in systems
with byzantine failures to solvability in systems with crash failures [26].

The hope modality was first axiomatized in [14] using correcti as designated
atoms. Whereas the resulting logic turned out to be well-suited for modeling and
analyzing problems in byzantine fault-tolerant distributed computing systems
like FRR [15], it is unfortunately not normal. Our long-term goal of also creating
the foundations for automated verification of such applications hence suggested
to look for an alternative axiomatization. In [6], we presented a normal modal
logic that combines KB4n hope modalities with S5n knowledge modalities, which
is based on defining correcti := ¬Hi⊥ via frame-characterizable axioms. This
logic indeed unlocks powerful techniques developed for normal modal logics both
in model checkers like DEMO [11] or MCK [17] and, in particular, in epistemic
theorem proving environments such as LWB [20].

Still, both versions [6,14] of the logic of hope target byzantine fault-tolerant
distributed systems only where, once faulty, agents remain faulty and cannot
be “repaired” to become correct again. Indeed, solutions for problems like FRR
employ fault-masking techniques based on replication [35], which prevent the
adverse effects of the faulty agents from contaminating the behavior of the cor-
rect agents but do not attempt to change the behavior of the faulty agents.
Unfortunately, fault masking is only feasible if no more than a certain fraction f
of the overall n agents in the system may become faulty (e.g., n ≥ 3f + 1 in
the case of FRR). Should it ever happen that more than f agents become faulty
in a run, no properties can typically be guaranteed anymore, which would be
devastating in mission-critical applications.

Fault-detection, isolation, and recovery (FDIR) is an alternative fault-toler-
ance technique, which attempts to discover and repair agents that became faulty
in order to subsequently re-integrate them into the system. The primary target

116 H. van Ditmarsch et al.

here are permanent faults, which do not go away “by themselves” after some time
but rather require explicit corrective actions. Pioneering fault-tolerant systems
implementations like MAFT [21] and GUARDS [30] combined fault-masking
techniques like byzantine agreement [25] and FDIR approaches to harvest the
best of both worlds.

Various paradigms have been proposed for implementing the steps in FDIR:
Fault-detection can be done by a central FDIR unit, which is implemented in
some very reliable technology and oversees the whole distributed system. Alter-
natively, distributed FDIR employs distributed diagnosis [38], e.g., based on
evidence [1], and is typically combined with byzantine consensus [25] to ensure
agreement among the replicated FDIR units. Agents diagnosed as faulty are
subsequently forced to reset and execute built-in self tests, possibly followed by
repair actions like hardware reconfiguration. Viewed at a very abstract level, the
FDI steps of FDIR thus cause a faulty agent to become correct again. Becoming
correct again is, however, not enough to enable the agent to also participate
in the (on-going) execution of the remaining system. The latter also requires a
successful state recovery step R, which makes the local state of the agent con-
sistent with the current global system state. Various recovery techniques have
been proposed for this purpose, ranging from pro-active recovery [32], where the
local state of every agent is periodically replaced by a majority-voted version,
to techniques based on checkpointing & rollback or message-logging & replay,
see [12] for a survey. The common aspect of all these techniques is that the local
state of the recovering agent is changed based on information originating from
other agents.

Our Contribution. In this paper,1 we provide the first logic that not only enables
one to reason about the fault status of agents, but also provides mechanisms for
updating the model so as to change the fault status of agents, as well as their
local states. Instead of handling such dynamics in the byzantine extension of the
runs-and-systems framework [22–24], i.e., in a temporal epistemic setting, we
do it in a dynamic epistemic setting: we restrict our attention to the instants
where the ultimate goal of (i) the FDI steps (successfully repairing a faulty
processor) and (ii) the R step (recovering the repaired processor’s local state) is
reached, and investigate the dynamics of the agents’ correctness/faultiness and
its interaction with knowledge at these instants.

Our approach enables us to separate the issue of (1) verifying the correctness
of the specification of an FDIR mechanism from the problem of (2) guaranteeing
the correctness of its protocol implementation, and to focus on (1). Indeed, veri-
fying the correctness of the implementation of some specification is the standard
problem in formal verification, and powerful tools exist that can be used for
this purpose. However, even a fully verified FDIR protocol would be completely
useless if the FDIR specification was erroneous from the outset, in the sense
that it does not correctly identify and hence repair faulty agents in some cases.

1 An extended version of the paper, which also provides the proofs and additional
details that had to be dropped here, can be found in [7].

A Logic for Repair and State Recovery 117

Our novel logics and the underlying model update procedures provide, to the
best of our knowledge, the first suitable foundations for (1), as they allow to
formally specify (1.a) when a model update shall happen, and (1.b) the result
of the model update. While we cannot claim that no better approach exists,
our various examples at least reveal that we can model many crucial situations
arising in FDIR schemes.

In order to introduce the core features of our logic and its update mechanisms,
we use a simple example: Consider two agents a and b, each knowing their own
local states, where global state ij, with i, j ∈ {0, 1}, means that a’s local state
is i and b’s local state is j. To describe agent a’s local state i we use an atomic
proposition pa, where pa is true if i = 1 in global state ij and pa is false if i = 0,
and similarly for b’s local state j and atomic proposition pb.

00 10

01 11

b

b

a a a becomes more correct=⇒

00 10

01 11

b

b

a a

Knowledge and hope of the agents is represented in a Kripke model M for
our system consisting of four states (worlds), shown in the left part of the figure
above. Knowledge Ki is interpreted by a knowledge relation Ki and hope Hi

is interpreted by a hope relation Hi. Worlds that are Ki-indistinguishable, in
the sense that agent i cannot distinguish which of the worlds is the actual one,
are connected by an i-labeled link, where we assume reflexivity, symmetry, and
transitivity. Worlds ij that are in the non-empty part of the Hi relation, where
agent i is correct, have i outlined as 0 or 1. For example, in the world depicted
as 01 above, agent a is faulty and agent b is correct.

Now assume that we want agent a to become correct in states 01 and 11
where pb is true. For example, this could be dictated by an FDIR mechanism
that caused b to diagnose a as faulty. Changing the fault status of a accordingly
(while not changing the correctness of b) results in the updated model on the
right in the above figure. Note that a was correct in state 00 in the left model,
but did not know this, whereas agent a knows that she is correct in state 00
after the update. Such a model update will be specified in our approach by
a suitable hope update formula for every agent, which, in the above example,
is ¬Ha⊥ ∨ pb for agent a and ¬Hb⊥ for agent b. Note carefully that every
hope update formula implicitly specifies both (a) the situation in the original
model in which a change of the hope relation is applied, namely, some agent i’s
correctness/faultiness status encoded as ¬Hi⊥/Hi⊥, and (b) the result of the
respective update of the hope relation.

Clearly, different FDIR approaches will require very different hope update
formulas for describing their effects. In our logic, we provide two basic hope
update mechanisms that can be used here: public updates, in which the agents
are certain about the exact hope updates occurring at other agents, and private

118 H. van Ditmarsch et al.

updates (strictly speaking, semi-private updates [5]), in which the agents may
be uncertain about the particular hope updates occurring at other agents. The
former is suitable for FDIR approaches where a central FDIR unit in the sys-
tem triggers and coordinates all FDIR activities, the latter is needed for some
distributed FDIR schemes.

Moreover, whereas the agents’ local states do not necessarily have to be
changed when becoming correct, FDIR usually requires to erase traces of erro-
neous behavior before recovery from the history in the R step. Our logic hence
provides an additional factual change mechanism for accomplishing this as well.
For example, simultaneously with or after becoming correct, agents may also
need to change their local state by making false the atomic proposition that
records that step 134 of the protocol was (erroneously) executed. Analogous to
hope update formulas, suitable factual change formulas are used to encode when
and how atomic propositions will change. Besides syntax and semantics, we pro-
vide complete axiomatizations of all variants of our logic, and demonstrate its
utility and flexibility for modeling a wide range of FDIR mechanisms by means
of many application examples. In order to focus on the essentials, we use only 2-
agent examples for highlighting particular challenges arising in FDIR. We note,
however, that it is usually straightforward to generalize those for more than two
agents, and to even combine them for modeling more realistic FDIR scenarios.

Summary of the Utility of Our Logic. Besides contributing novel model update
mechanisms to the state-of-the-art in dynamic epistemic logic, the main util-
ity of our logic is that it enables epistemic reasoning and verification of FDIR
mechanism specifications. Indeed, even a fully verified protocol implementation
of some FDIR mechanism would be meaningless if its specification allowed unin-
tended effects. Our hope update/factual change formulas formally and exhaus-
tively specify what the respective model update accomplishes, i.e., encode both
the preconditions for changing some agent’s fault status/atomic propositions and
the actual change. Given an initial model and these update formulas, our logic
thus enables one to check (even automatically) whether the updated model has
all the properties intended by the designer, whether certain state invariants are
preserved by the update, etc. Needless to say, there are many reasons why a
chosen specification might be wrong in this respect: the initial model might not
provide all the required information, undesired fault status changes could be trig-
gered in some worlds, or supporting information required for an agent to recover
its local state might not be available. The ability to (automatically) verify the
absence of such undesired effects of the specification of an FDIR mechanism is
hence important in the design of mission-critical distributed systems.

Paper Organization. Section 2 recalls the syntax and semantics of the logic for
knowledge and hope [6]. Section 3 expands this language with dynamic modalities
for publicly changing hope. Section 4 generalizes the language to private updates.
In Sect. 5, we add factual change to our setting. Some conclusions in Sect. 6
complete our paper.

A Logic for Repair and State Recovery 119

2 A Logic of Hope and Knowledge

We succinctly present the logic of hope and knowledge [6]. Throughout our
presentation, let A := {1, . . . , n} be a finite set of agents and let Prop be a
non-empty countable set of atomic propositions.

Syntax. The language LKH is defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Hiϕ, (1)

where p ∈ Prop and i ∈ A. We take 	 to be the abbreviation for some fixed
propositional tautology and ⊥ for ¬	. We also use standard abbreviations for the
remaining boolean connectives, ̂Kiϕ for the dual modality ¬Ki¬ϕ for ‘agent a
considers ϕ possible’, ̂Hiϕ for ¬Hi¬ϕ, and EGϕ for mutual knowledge

∧

i∈G Kiϕ
in a group G ⊆ A. Finally, we define belief Biϕ as Ki(¬Hi⊥ → ϕ); we recall
that ¬Hi⊥ means that i is correct.

Structures. A Kripke model is a tuple M = (W,π,K,H) where W is a non-empty
set of worlds (or states), π : Prop → P(W) is a valuation function mapping each
atomic proposition to the set of worlds where it is true, and K : A → P(W ×W)
and H : A → P(W × W) are functions that assign to each agent i a knowledge
relation Ki ⊆ W × W respectively a hope relation Hi ⊆ W × W , where we have
written Ki resp. Hi for K(i) and H(i). We write Hi(w) for {v | (w, v) ∈ Hi} and
wHiv for (w, v) ∈ Hi, and similarly for Ki. We require knowledge relations Ki

to be equivalence relations and hope relations Hi to be shift-serial (that is, if
wHiv, then there exists a z ∈ W such that vHiz). In addition, the following
conditions should also be satisfied:

HinK : Hi ⊆ Ki,

oneH : (∀w, v ∈ W)(Hi(w) �= ∅ ∧ Hi(v) �= ∅ ∧ wKiv =⇒ wHiv).

It can be shown that all Hi relations are so-called partial equivalence relations:
they are transitive and symmetric binary relations [27].

The class of Kripke models (W,π,K,H) (given A and Prop) is named KH.

Semantics. We define truth for formulas ϕ ∈ LKH at a world w of a model M =
(W,π,K,H) ∈ KH in the standard way: in particular, M,w |= p iff w ∈ π(p)
where p ∈ Prop; boolean connectives are classical; M,w |= Kiϕ iff M,v |= ϕ for
all v such that wKiv; and M,w |= Hiϕ iff M,v |= ϕ for all v such that wHiv.
A formula ϕ is valid in model M , denoted M |= ϕ, iff M,w |= ϕ for all w ∈ W ,
and it is valid, notation |= ϕ (or KH |= ϕ) iff it is valid in all models M ∈ KH.
The axiom system KH for knowledge and hope is given below.

P all propositional tautologies TK Kiϕ → ϕ
H† Hi¬Hi⊥ KH Hiϕ ↔ (¬Hi⊥ → Ki(¬Hi⊥ → ϕ)

)

KK Ki(ϕ → ψ) ∧ Kiϕ → Kiψ MP from ϕ and ϕ → ψ, infer ψ

4K Kiϕ → KiKiϕ NecK from ϕ, infer Kiϕ
5K ¬Kiϕ → Ki¬Kiϕ

Theorem 1 ([6]). KH is sound and complete with respect to KH.

120 H. van Ditmarsch et al.

3 Public Hope Update

3.1 Syntax and Semantics

Definition 2 (Logical language). Language Lpub
KH is obtained by adding the

construct [ϕ, . . . , ϕ
︸ ︷︷ ︸

n

]ϕ to BNF (1).

We read a formula of the shape [ϕ1, . . . , ϕn]ψ, often abbreviated as [�ϕ]ψ as
follows: after revising or updating hope for agent i with respect to ϕi for all
agents i ∈ A simultaneously, ψ (is true). We call the formula ϕi the hope update
formula for agent i.

Definition 3 (Semantics of public hope update). Let a tuple �ϕ ∈ (Lpub
KH)n,

a model M = (W,π,K,H) ∈ KH, and a world w ∈ W be given. Then

M,w |= [�ϕ]ψ iff M �ϕ, w |= ψ,

where M �ϕ := (W,π,K,H�ϕ) such that for each agent i ∈ A:

wHχ
i v iff wKiv, M,w |= χ, and M,v |= χ

and where we write Hχ
i for (H�ϕ)i if the i-th formula in �ϕ is χ.

If M,w �|= χ, then Hχ
i (w) = ∅: agent i is faulty in state w after the update,

i.e., Hi⊥ is true. Whereas if M,w |= χ, then Hχ
i (w) �= ∅: agent i is correct

in state w after the update, i.e., ¬Hi⊥ is true. If the hope update formula for
agent i is ¬Hi⊥, then ¬Hi⊥ is true in the same states before and after the
update. Therefore, H¬Hi⊥

i = Hi: the hope relation for i does not change. On the
other hand, if the hope update formula for agent i is Hi⊥, then HHi⊥

i (w) = ∅

iff Hi(w) �= ∅: the correctness of agent i flips in every state. If we wish to model
that agent i becomes more correct (in the model), then the hope update formula
for agent i should have the shape ¬Hi⊥ ∨ ϕ: the left disjunct ¬Hi⊥ guarantees
that in all states where i already was correct, she remains correct. We write

[ϕ]iψ for [¬H1⊥, . . . ,¬Hi−1⊥, ϕ, ¬Hi+1⊥, . . . ,¬Hn⊥]ψ

Similarly, we write [ϕ]Gψ if the hope update formulas for all agents i ∈ G is ϕ
and other agents j have the trivial hope update formula ¬Hj⊥.

Proposition 4. If �ϕ ∈ (Lpub
KH)n and M = (W,π,K,H) ∈ KH then M �ϕ ∈ KH.

Proof. Let i ∈ A and χ be the ith formula in �ϕ. We need to show that relation Hχ
i

is shift-serial and that it satisfies properties HinK and oneH.

– [shift-serial]: Let w ∈ W . Assume v ∈ Hχ
i (w), that is, wKiv, and M,w |= χ

and M,v |= χ. Now vKiw follows by symmetry of Ki. Therefore, Hχ
i (v) �= ∅

since w ∈ Hχ
i (v).

– [HinK]: This follows by definition.

A Logic for Repair and State Recovery 121

– [oneH]: Let w, v ∈ W . Assume that Hχ
i (w) �= ∅, that Hχ

i (v) �= ∅, and that
wKiv. It follows that there exists some w′ ∈ Hχ

i (w), implying that M,w |= χ,
and v′ ∈ Hχ

i (v), implying that M,v |= χ. Now wHχ
i v follows immediately. ��

The hope update ϕ for an agent a is reminiscent of the refinement semantics
of public announcement ϕ [4]. However, unlike a public announcement, the hope
update installs an entirely novel hope relation and discards the old one.

3.2 Applications

In this section, we apply the logical semantics just introduced to represent some
typical scenarios that occur in FDIR applications. We provide several simple
two-agent examples.

Example 5 (Correction based on agent b having diagnosed a as faulty). To cor-
rect agent a based on KbHa⊥, we update agent a’s hope relation based on
formula ¬Ha⊥ ∨ KbHa⊥ (and agent b’s hope relation based on formula ¬Hb⊥).
We recall that the disjunct ¬Ha⊥ guarantees that agent a will stay correct if he
already was. The resulting model transformation is:

00 10

01 11

b

b

a a (¬Ha⊥∨KbHa⊥, ¬Hb⊥)
=⇒

00 10

01 11

b

b

a a

After the update, in states 00 where a was correct and 10 where a was faulty:

M, 00 |= [¬Ha⊥ ∨ KbHa⊥]a¬Ha⊥ a is still correct
M, 00 |= [¬Ha⊥ ∨ KbHa⊥]aKa¬Ha⊥ a now knows he is correct
M, 10 |= [¬Ha⊥ ∨ KbHa⊥]aHa⊥ a is still faulty
M, 10 |= [¬Ha⊥ ∨ KbHa⊥]a ̂Ka¬Ha⊥ a now considers possible he is correct
M, 10 |= [¬Ha⊥ ∨ KbHa⊥]aKb

̂Ka¬Ha⊥ . . . b now knows that

A straightforward generalization of this hope update is correction based on dis-
tributed fault detection, where all agents in some sufficiently large group G need
to diagnose agent a as faulty. If G is fixed, ¬Ha⊥ ∨ EGHa⊥ achieves this goal.
If any group G of at least k > 1 agents is eligible, then ¬Ha⊥ ∨ ∨|G|=k

G⊆A EGHa⊥
is the formula of choice.

Unfortunately, Example 5 cannot be applied in byzantine settings in general,
since knowledge of other agents’ faults is usually not attainable [23]. Hence, one
has to either resort to a weaker belief-based alternative or else to an important
special case of Example 5, namely, self-correction, where G = {a}, i.e., agent a
diagnoses itself as faulty. This remains feasible in the byzantine setting because
one’s own fault is among the few things an agent can know in such systems [23].
We illustrate this in Example 6.

122 H. van Ditmarsch et al.

Example 6 (Self-correction under constraints). Self-correction of agent a with-
out constraints is carried out on the condition that a knows he is faulty (KaHa⊥).
The hope update formula for self-correction of agent a with an optional addi-
tional constraint ϕ is

¬Ha⊥ ∨ (ϕ ∧ KaHa⊥)

where the ¬Ha⊥ part corresponds to the worlds where agent a is already cor-
rect and the ϕ ∧ KaHa⊥ part says that, if he knows that he is faulty (KaHa⊥),
then he attempts to self-correct and succeeds if, additionally, a (possibly exter-
nal) condition ϕ holds. Very similarly to Example 5 we now add an additional
constraint ϕ = pb. Notice that the update is indeed slightly different than in
Example 5, as a no longer becomes correct in world 01.

00 10

01 11

b

b

a a
(

¬Ha⊥∨(pb∧KaHa⊥), ¬Hb⊥
)

=⇒

00 10

01 11

b

b

a a

After the update, we get in states 00 and 10 (where a was correct resp. faulty):

M, 00 |= [¬Ha⊥ ∨ (pb ∧ KaHa⊥)]a¬Ha⊥ a is still correct
M, 00 |= [¬Ha⊥ ∨ (pb ∧ KaHa⊥)]a ̂KaHa⊥ a still cons. poss. he is faulty
M, 10 |= [¬Ha⊥ ∨ (pb ∧ KaHa⊥)]aHa⊥ a is still faulty
M, 10 |= [¬Ha⊥ ∨ (pb ∧ KaHa⊥)]a ̂Ka¬Ha⊥ a now cons. poss. he is correct
M, 10 |= [¬Ha⊥ ∨ (pb ∧ KaHa⊥)]aKb

̂Ka¬Ha⊥ . . . b now knows that

Byzantine Agents. We now turn our attention to a different problem that
needs to be solved in fault-tolerant distributed systems like MAFT [21] and
GUARDS [30] that combine fault-masking approaches with FDIR. What is
needed here is to monitor whether there are at most f faulty agents among
the n agents in the system, and take countermeasures when the formula

Byzf :=
∨

G⊆A
|G|=n−f

∧

i∈G

¬Hi⊥

is in danger of getting violated or even is violated already. The most basic way
to enforce the global condition Byzf in a hope update is by a constraint on the
hope update formulas, rather than by their actual shape. All that is needed here
is to ensure, given hope update formulas �ϕ = (ϕ1, . . . , ϕn), that at least n − f
of those are true, which can be expressed by the formula

�ϕn−f :=
∨

G⊆A
|G|=n−f

∧

i∈G

ϕi.

A Logic for Repair and State Recovery 123

We now have the validity

|= �ϕn−f → [�ϕ]Byzf .

In particular, we also have the weaker |= Byzf ∧�ϕn−f → [�ϕ]Byzf . In other words,
M,w |= Byzf ∧ �ϕn−f implies M �ϕ, w |= Byzf . We could also consider generalized
schemas such as: M |= Byzf ∧ �ϕn−f implies M �ϕ |= Byzf . In all these cases, the
initial assumption Byzf is superfluous.

Such a condition is, of course, too abstract for practical purposes. What would
be needed here are concrete hope update formulas by which we can update a
model when Byzf might become false resp. is false already, in which case it must
cause the correction of sufficiently many agents to guarantee that Byzf is still
true resp. becomes true again after the update. Recall that belief Biψ is defined
as Ki(¬Hi⊥ → ψ). If we define

B≥fψ :=
∨

G⊆A
|G|=f

∧

i∈G

Biψ,

it easy to see by the pigeonhole principle that |= Byzf ∧ B≥f+1ψ → ψ. Using
ψ = Ha⊥ will hence result in one fewer faulty agent. To the formula B≥f+1Ha⊥
we add a disjunct ¬Ha⊥ to ensure correct agents remain correct.

|= Byzf ∧ B≥f+1Ha⊥ → [¬Ha⊥ ∨ B≥f+1Ha⊥]aByzf−1.

3.3 Axiomatization

Axiomatization KH pub of the logical semantics for Lpub
KH extends axiom sys-

tem KH with axioms describing the interaction between hope updates and
other logical connectives. The axiomatization is a straightforward reduction sys-
tem, where the interesting interaction happens in hope update binding hope.

Definition 7 (Axiomatization KH pub). KH pub extends KH with

[�ϕ]p ↔ p [�ϕ]Kiψ ↔ Ki[�ϕ]ψ
[�ϕ]¬ψ ↔ ¬[�ϕ]ψ [�ϕ]Hiψ ↔ (

ϕi → Ki(ϕi → [�ϕ]ψ)
)

[�ϕ](ψ ∧ ξ) ↔ [�ϕ]ψ ∧ [�ϕ]ξ [�ϕ][�χ]ψ ↔ [

[�ϕ]χ1, . . . , [�ϕ]χn

]

ψ

where �ϕ = (ϕ1, . . . , ϕn) ∈ (Lpub
KH)n, �χ = (χ1, . . . , χn) ∈ (Lpub

KH)n, ψ, ξ ∈ Lpub
KH ,

p ∈ Prop, and i ∈ A.

Theorem 8 (Soundness). For all ϕ ∈ Lpub
KH , KH pub � ϕ implies KH |= ϕ.

Proof. Out of all additional axioms, we only show the most interesting case of
hope being updated: we show the validity of [�ϕ]Hiψ ↔ (

ϕi → Ki(ϕi → [�ϕ]ψ)
)

:
M,w |= [�ϕ]Hiψ iff
M �ϕ, w |= Hiψ iff
(∀v ∈ Hϕi

i (w)
)

M �ϕ, v |= ψ iff

124 H. van Ditmarsch et al.

(∀v ∈ W)
(

v ∈ Ki(w) & M,w |= ϕi & M,v |= ϕi =⇒ M �ϕ, v |= ψ
)

iff
M,w |= ϕi =⇒ (∀v ∈ W)

(

v ∈ Ki(w) & M,v |= ϕi =⇒ M �ϕ, v |= ψ
)

iff
M,w |= ϕi =⇒ (∀v ∈ Ki(w)

)

(M,v |= ϕi =⇒ M �ϕ, v |= ψ) iff
M,w |= ϕi =⇒ (∀v ∈ Ki(w)

)

(M,v |= ϕi =⇒ M,v |= [�ϕ]ψ) iff
M,w |= ϕi =⇒ (∀v ∈ Ki(w)

)

M,v |= ϕi → [�ϕ]ψ iff
M,w |= ϕi =⇒ M,w |= Ki(ϕi → [�ϕ]ψ) iff
M,w |= ϕi → Ki(ϕi → [�ϕ]ψ). ��
Every formula in Lpub

KH is provably equivalent to a formula in LKH (Lemma
13). To prove this, we first define the weight or complexity of a given formula
(Definition 9) and show a number of inequalities comparing the left-hand side to
the right-hand side of the reduction axioms in axiomatization KH pub (Lemma
10). Subsequently, we define a translation from Lpub

KH to LKH (Definition 11) and
finally show that the translation is a terminating rewrite procedure (Proposition
12).

Definition 9. The complexity c : Lpub
KH → N of Lpub

KH -formulas is defined recur-
sively, where p ∈ Prop, i ∈ A, and c(�ϕ) := max{c(ϕi) | 1 ≤ i ≤ n}:

c(p) := 1 c(Kiϕ) := c(ϕ) + 1
c(¬ϕ) := c(ϕ) + 1 c(Hiϕ) := c(ϕ) + 4
c(ϕ ∧ ξ) := max{c(ϕ), c(ξ)} + 1 c

(

[�ϕ]ξ
)

:=
(

c(�ϕ) + 1
) · c(ξ)

Lemma 10. For each axiom θl ↔ θr from Definition 7, c(θl) > c(θr).

Definition 11. The translation t : Lpub
KH → LKH is defined recursively, where

p ∈ Prop, i ∈ A, and the i-th formula of �ϕ is ϕi:

t(p) := p t
(

[�ϕ]p
)

:= p

t(¬ϕ) := ¬t(ϕ) t
(

[�ϕ]¬ξ
)

:= ¬t
(

[�ϕ]ξ
)

t(ϕ ∧ ξ) := t(ϕ) ∧ t(ξ) t
(

[�ϕ](ξ ∧ χ)
)

:= t
(

[�ϕ]ξ ∧ [�ϕ]χ
)

t(Kiϕ) := Kit(ϕ) t
(

[�ϕ]Kiξ
)

:= t
(

Ki[�ϕ]ξ
)

t(Hiϕ) := Hit(ϕ) t
(

[�ϕ]Hiξ
)

:= t
(

ϕi → Ki(ϕi → [�ϕ]ξ)
)

t
(

[�ϕ][χ1, . . . , χn]ξ
)

:= t
([

[�ϕ]χ1, . . . , [�ϕ]χn

]

ξ
)

Proposition 12 (Termination). For all ϕ ∈ Lpub
KH , t(ϕ) ∈ LKH .

Proof This follows by induction on c(ϕ). ��
Lemma 13 (Equiexpressivity). Language Lpub

KH is equiexpressive with LKH .

Proof. It follows by induction on c(ϕ) that KH pub � ϕ ↔ t(ϕ) for all ϕ ∈ Lpub
KH ,

where, by Proposition 12, t(ϕ) ∈ LKH . ��
Theorem 14 (Soundness and completeness). For all ϕ ∈ Lpub

KH ,

KH pub � ϕ ⇐⇒ KH |= ϕ.

A Logic for Repair and State Recovery 125

Proof. Soundness was proven in Theorem 8. To prove completeness, assume
KH |= ϕ. According to Lemma 13, we have KH pub � ϕ ↔ t(ϕ). Therefore, by
Theorem 8, KH |= ϕ ↔ t(ϕ) follows. Since KH |= ϕ (by assumption), we obtain
KH |= t(ϕ). By applying Theorem 1, KH � t(ϕ) further follows. Consequently,
KH pub � t(ϕ). Finally, since KH pub � ϕ ↔ t(ϕ), KH pub � ϕ. ��
Corollary 15 (Necessitation for public hope updates).

KH pub � ψ =⇒ KH pub � [�ϕ]ψ.

4 Private Hope Update

In the case of the public hope update mechanism introduced in Sect. 3, after the
update there is no uncertainty about what happened. In some distributed FDIR
schemes, including self-correction, however, the hope update at an agent occurs
in a less public way. To increase the application coverage of our logic, we therefore
provide the alternative of private hope updates. For that, we use structures
inspired by action models. Strictly speaking, such updates are known as semi-
private (or semi-public) updates, as the agents are aware of their uncertainty
and know what they are uncertain about, whereas in fully private update the
agent does not know that the action took place [5] and may, in fact, believe that
nothing happened. The resulting language can be viewed as a generalization
of Lpub

KH , where the latter now becomes a special case.

4.1 Syntax and Semantics

Definition 16 (Hope update model). A hope update model for a logical
language L is a tuple U = (E, ϑ,KU), where E is a non-empty set of actions,
ϑ : E → (A → L) is a hope update function, and KU : A → P(E × E)
such that all KU

i are equivalence relations. For ϑ(e)(i) we write ϑi(e). As before,
formulas ϑi(e) ∈ L are hope update formulas. A pointed hope update model is
a pair (U, e) where e ∈ E.

Definition 17 (Language Lpriv
KH). We obtain language Lpriv

KH by adding the
construct [U, e]ϕ to BNF (1), where (U, e) is a pointed hope update model.

Definition 17 is given by mutual recursion as usual: all hope update models U
are for the language Lpriv

KH .

Definition 18 (Semantics of private hope update). Let U = (E, ϑ,KU)
be a hope update model, M = (W,π,K,H) ∈ KH, w ∈ W , and e ∈ E. Then:

M,w |= [U, e]ϕ iff M × U, (w, e) |= ϕ,

where M × U = (W×, π×,K×,H×) is such that:

W× := W × E
(w, e) ∈ π×(p) iff w ∈ π(p)
(w, e)K×

i (v, f) iff wKiv and eKU
i f

(w, e)H×
i (v, f) iff (w, e)K×

i (v, f),M,w |= ϑi(e), and M,v |= ϑi(f)

126 H. van Ditmarsch et al.

Public hope updates can be viewed as singleton hope update models. Given
formulas �ϕ ∈ (Lpub

KH)n, define pub := ({e}, ϑ,Kpub), where ϑi(e) := ϕi and
Kpub := {(e, e)}.

Difference with Action Models. Although our hope update models look like
action models, they are not really action models in the sense of [2]. Our actions
do not have executability preconditions, such that the updated model is not
a restricted modal product but rather the full product. Another difference is
that, by analogy with Kripke models for knowledge and hope, we would then
have expected a hope relation in the update models. But there is none in our
approach.

Proposition 19. M × U ∈ KH for any hope update model U and M ∈ KH.

Proof. The proof is somewhat similar to that of Proposition 4. It is obvious that
all K×

i are equivalence relations. Let us show now that for all i ∈ A relations H×
i

are shift-serial and that they satisfy the properties HinK and oneH.

– H×
i is shift-serial: Let (w, e) ∈ W×. Assume (w, e)H×

i (v, f), that is,
(w, e)K×

i (v, f), and M,w |= ϑi(e), and M,v |= ϑi(f). (v, f)K×
i (w, e) follows

by symmetry of K×
i . Therefore, H×

i

(

(v, f)
) �= ∅ since (w, e) ∈ H×

i

(

(v, f)
)

.
– H×

i satisfies HinK: This follows by definition.
– H×

i satisfies oneH: Let (w, e), (v, f) ∈ W×. Assume that H×
i

(

(w, e)
) �= ∅,

H×
i

(

(v, f)
) �= ∅, and (w, e)K×

i (v, f). As H×
i

(

(w, e)
) �= ∅, M,w |= ϑi(e). As

H×
i

(

(v, f)
) �= ∅, M,v |= ϑi(f). Therefore, (w, e)H×

i (v, f). ��

Definition 20. Let U = (E, ϑ,KU) and U ′ = (E′, ϑ′,KU ′
) be hope update mod-

els. The composition (U ;U ′) is (E′′, ϑ′′,KU ;U ′
) such that:

E′′ := E × E′

(e, e′)KU ;U ′
i (f, f ′) iff eKU

i f and e′KU ′
i f ′

ϑ′′(e, e′) := [U, e]ϑ′(e′)

Since KU
i and KU ′

i are equivalence relations, KU ;U ′
i is also an equivalence relation,

so that (U ;U ′) is a hope update model.

4.2 Applications

The arguably most important usage of private updates in distributed FDIR is to
express the uncertainty of agents about whether an update affects other agents.

Example 21 (Private correction). We reconsider the example from Sect. 1, only
this time we privately correct agent a based on pb such that agent b is uncertain
whether the hope update happens. This can be modeled by two hope update
formulas for agent a: ¬Ha⊥ ∨ pb and ¬Ha⊥. With ¬Ha⊥ ∨ pb we associate an
event cpb

where the correction takes place based on the additional constraint pb,

A Logic for Repair and State Recovery 127

and with ¬Ha⊥ we associate an event noc where correction does not take place.
Writing ϑ(e) =

(

(ϑa(e), ϑb(e)
)

, we get U := (E, ϑ,KU), where:

E := {cpb
, noc} KU

a := the identity relation {(e, e) | e ∈ E}
ϑ(cpb

) := (¬Ha⊥ ∨ pb,¬Hb⊥) KU
b := the universal relation E × E

ϑ(noc) := (¬Ha⊥,¬Hb⊥)

00

01

10

11

b

a

b

a

×
cpb

noc

b

=
00

00

01

01

10

10

11

11

b

b

b

a

a a

b

b

b

b

b

a

When naming worlds, we have abstracted away from the event being executed in
a world. Having the same name therefore does not mean being the same world.
For example, the world 11 at the front of the cube ‘really’ is the pair (11, cpb

)
with Ha

(

(11, cpb
)
) �= ∅ and Hb

(

(11, cpb
)
) �= ∅. We now have for example that:

M, 01 |= Ha⊥ ∧ [U, cpb
](¬Ha⊥ ∧ Ka¬Ha⊥) a knows it became correct

M, 01 |= [U, cpb
]¬KbKa¬Ha⊥ . . . but b doesn’t know that

M, 01 |= KbHa⊥ ∧ [U, cpb
]¬(KbHa⊥ ∨ Kb¬Ha⊥) b is ignorant of a’s fault

4.3 Axiomatization

Definition 22 (Axiomatization KH priv). KH priv consists of KH and

[U, e]p ↔ p
[U, e]¬ϕ ↔ ¬[U, e]ϕ
[U, e](ϕ ∧ ψ) ↔ [U, e]ϕ ∧ [U, e]ψ
[U, e]Kiϕ ↔ ∧

eKU
i f Ki[U, f]ϕ

[U, e]Hiϕ ↔
(

ϑi(e) → ∧

eKU
i f Ki

(

ϑi(f) → [U, f]ϕ
)

)

[U, e][U ′, e′]ϕ ↔ [

(U ;U ′), (e, e′)
]

ϕ

Theorem 23 (Soundness). For all ϕ ∈ Lpriv
KH , KH priv � ϕ implies KH |= ϕ.

Similarly to the previous section, one can show that every formula in Lpriv
KH is

provably equivalent to a formula in LKH , by defining Lpriv
KH -formulas complexity,

showing complexity inequalities concerning the reduction axioms in axiomatiza-
tion KH priv, defining a translation from Lpriv

KH to LKH , and observing that this
translation is a terminating rewrite procedure. We thus obtain:

Proposition 24 (Termination). For all ϕ ∈ Lpriv
KH , t(ϕ) ∈ LKH .

128 H. van Ditmarsch et al.

Lemma 25 (Equiexpressivity). Language Lpriv
KH is equiexpressive with LKH ,

i.e., for all ϕ ∈ Lpriv
KH , KH priv � ϕ ↔ t(ϕ).

Theorem 26 (Soundness and completeness). For all ϕ ∈ Lpriv
KH ,

KH priv � ϕ ⇐⇒ KH |= ϕ.

Necessitation for private hope update is an admissible inference rule in KH priv.

5 Factual Change

In this section, we provide a way to add factual change to our model updates.
This is going along well-trodden paths in dynamic epistemic logic [3,8,9].

5.1 Syntax, Semantics, and Axiomatization

Definition 27 (Hope update model with factual change). To obtain a
hope update model with factual change U = (E, ϑ, σ, KU) from a hope update
model (E, ϑ,KU) for a language L we add parameter σ : E → (Prop → L). We
require that each σ(e) is only finitely different from the identity function.

The finitary requirement is needed in order to keep the language well-defined. In
this section, by hope update models we mean hope update models with factual
change.

Definition 28 (Language Lf
KH). Language Lf

KH is obtained by adding the
construct [U, e]ϕ to the BNF of the language LKH , where (U, e) is a pointed hope
update model with factual change for the language Lf

KH .

As in the previous section, Definition 28 is given by mutual recursion and from
here on all hope update models are for language Lf

KH .

Definition 29 (Semantics). Let U = (E, ϑ, σ, KU), M = (W,π,K,H) ∈ KH,
w ∈ W ,
and e ∈ E. Then, as in Definition 18, M,w |= [U, e]ϕ iff M × U, (w, e) |= ϕ,
only now M × U = (W×, π×,K×,H×) is such that:

W× := W × E; (w, e) ∈ π×(p) ⇐⇒ M,w |= σ(e)(p);

(w, e)K×
i (v, f) ⇐⇒ wKiv and eKU

i f ;

(w, e)H×
i (v, f) ⇐⇒ (w, e)K×

i (v, f),M,w |= ϑi(e), and M,v |= ϑi(f).

The only difference between Definitions 18 and 29 is that the clause for the
valuation of the former is: (w, e) ∈ π×(p) iff w ∈ π(p). In other words, then
the valuation of facts does not change, and the valuation in the world w is
carried forward to that in the updated worlds (w, e). It is easy to see that
KH |= [U, e]p ↔ σ(e)(p), as we immediately obtain that: M,w |= [U, e]p iff
M ×U, (w, e) |= p iff (w, e) ∈ π×(p) iff M,w |= σ(e)(p). This turns out to be the
only difference:

A Logic for Repair and State Recovery 129

Definition 30 (Axiomatization KH f). Axiom system KH f is obtained
from KH priv by replacing the first equivalence in Definition 22 with
[U, e]p ↔ σ(e)(p).

Theorem 31 (Soundness). For all ϕ ∈ Lf
KH , KH f � ϕ implies KH |= ϕ.

In itself it is quite remarkable that the required changes are fairly minimal, given
the enormously enhanced flexibility in specifying distributed system behavior.
With techniques quite similar to those employed for the hope update model
logic without factual change, we can also get completeness for the hope update
logic with factual change. Lacking space did not allow us to include many of the
details; the interested reader is referred to the extended version [7] of this paper.

Lemma 32 (Equiexpressivity). Language Lf
KH is equiexpressive with LKH .

Theorem 33 (Soundness and completeness). For all ϕ ∈ Lf
KH ,

KH f � ϕ ⇐⇒ KH |= ϕ.

5.2 Applications

The importance of adding factual change to our framework comes from the fact
that, in practical protocols implementing FDIR mechanisms, agents usually take
decisions based on what they recorded in their local states. We demonstrate the
essentials of combined hope updates and state recovery in Example 34, which
combines the variant of self-correction introduced in Example 6 with state recov-
ery needs that would arise in the alternating bit protocol [19].

Example 34 (Private self-correction with state recovery). The alternating bit
protocol (ABP) for transmitting an arbitrarily generated stream of consecutive
data packets from a sender to a receiver over an unreliable communication chan-
nel uses messages that additionally contain a sequence number consisting of 1
bit only. The latter switches from one message to the next, by alternating atomic
propositions qs and qr containing the next sequence number to be used for the
next message generated by the sender resp. receiver side of the channel. In addi-
tion, the ABP maintains atomic propositions ps and pr holding the last sequence
number used by sender resp. receiver side. In more detail, the sending of data
packet dn, starting from (qs, qr) = (0, 0) and (ps, pr) = (1, 1), is completed in
three phases ([19]): (i) if qs �= ps, sender s sets ps := qs = 0 and generates a
message (dn, ps) to be repeatedly sent; (ii) when receiver r receives (dn, qr) (with
qr = 0 here), it records dn, sets pr := qr = 0, generates a message (ack, pr) to
be repeatedly sent back to s, and switches to the next sequence number qr := 1;
(iii) if sender s receives (ack, ps) (with ps = 0 here), it switches to the next
sequence number qs := ¬ps = 1. Note that the next sequence numbers (qs, qr)
have moved from (0, 0) via (0, 1) to (1, 1), whereas the last sequence numbers
(ps, pr) moved from (1, 1) to (0, 1) to (0, 0). From here, the above phases are just
repeated (with all sequence numbers flipped) for sending dn+1. Thus, during a

130 H. van Ditmarsch et al.

correct run of the ABP, (qs, qr) continuously cycles through (0, 0), (0, 1), (1, 1),
(1, 0), (0, 0),

If, however, a transient fault would flip the value of either qs or qr, the
ABP deadlocks and therefore requires correction. Due to the asymmetry of the
ABP regarding sender and receiver, the need for a correction of the receiver can
be conveniently determined by checking the equality of pr and qr, and can be
performed by just setting qr := ¬pr.

We model agent r successfully self-correcting and recovering its state from
pr = qr, that is, based on pr ↔ qr. At the same time, s is uncertain whether
r has corrected itself (event scrpr=qr) or not (event noscr). Again writing ϑ(e)
as

(

(ϑa(e), ϑb(e)
)

, this is encoded in the hope update model U := (E, ϑ, σ, KU),
where:

E := {scrpr=qr , noscr} σ(scrpr=qr)(qr) := ¬pr

ϑ(scrpr=qr) := (¬Hs⊥, pr ↔ qr) KU
s := E × E

ϑ(noscr) := (¬Hs⊥,¬Hr⊥) KU
r := {(e, e) | e ∈ E}

Note that Hr⊥ is equivalent to pr ↔ qr, making Hr⊥ locally detectable by r
and resulting in ϑ(scrpr=qr) = (¬Hs⊥,Hr⊥). All atoms for noscr and all atoms
other than qr for scrpr=qr remain unchanged. Coding the atoms in each state as
psqs.prqr, the resulting update is:

00.00

00.01

01.00

01.01

r

s

r

s

×
scrpr=qr

noscr

s

=
00.01

00.00

00.01

00.01

01.01

01.00

01.01

01.01

r

r

r

s

s s

s

s

s

s

r

s

The only change happens in global states 00.00 and 01.00 where pr ↔ qr causes
the hope update and qr is set to be the opposite of pr. After the update, we get:

M, 00.00 |= [U, scrpr=qr](¬Hr⊥ ∧ Krqr) r is correct and learned qr

M, 00.00 |= [U, scrpr=qr]Kr¬Hr⊥ r is now sure she is correct
M, 00.00 |= [U, scrpr=qr](¬Krqs ∧ ¬Kr¬qs) r remains unsure regarding qs

M, 00.00 |= [U, scrpr=qr] ̂KsHr⊥ s consid. possible r is faulty

6 Conclusions and Further Research

We gave various dynamic epistemic semantics for the modeling and analysis of
byzantine fault-tolerant multi-agent systems, expanding a known logic contain-
ing knowledge and hope modalities. We provided complete axiomatizations for

A Logic for Repair and State Recovery 131

our logics and applied them to fault-detection, isolation, and recovery (FDIR)
in distributed computing. For future research we envision alternative dynamic
epistemic update mechanisms, as well as embedding our logic into the (temporal
epistemic) runs-and-systems approach.

Acknowledgments. We thank the anonymous reviewers for the suggestions on how
to improve the paper. We are grateful for multiple fruitful discussions with and enthu-
siastic support from Giorgio Cignarale, Stephan Felber, Rojo Randrianomentsoa, Hugo
Rincón Galeana, and Thomas Schlögl.

References

1. Adams, J.C., Ramarao, K.V.S.: Distributed diagnosis of byzantine processors and
links. In: Proceedings, The 9th International Conference on Distributed Computing
Systems: Newport Beach, California, 5–9 June 1989, pp. 562–569. IEEE (1989).
https://doi.org/10.1109/ICDCS.1989.37989

2. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Gilboa, I. (ed.) Theoretical Aspects of Ratio-
nality and Knowledge: Proceedings of the Seventh Conference (TARK 1998), pp.
43–56. Morgan Kaufmann (1998). http://tark.org/proceedings/tark jul22 98/p43-
baltag.pdf

3. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Inf.
Comput. 204(11), 1620–1662 (2006). https://doi.org/10.1016/j.ic.2006.04.006

4. van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. J. Appl. Non-
Classical Logics 17(2), 157–182 (2007). https://doi.org/10.3166/jancl.17.157-182

5. van Ditmarsch, H.: Description of game actions. J. Logic Lang. Inform. 11(3),
349–365 (2002). https://doi.org/10.1023/A:1015590229647

6. van Ditmarsch, H., Fruzsa, K., Kuznets, R.: A new hope. In: Fernández-Duque,
D., Palmigiano, A., Pinchinat, S. (eds.) Advances in Modal Logic, vol. 14, pp.
349–369. College Publications (2022). http://www.aiml.net/volumes/volume14/
22-vanDitmarsch-Fruzsa-Kuznets.pdf

7. van Ditmarsch, H., Fruzsa, K., Kuznets, R., Schmid, U.: A logic for repair and
state recovery in byzantine fault-tolerant multi-agent systems. Eprint 2401.06451,
arXiv (2024). https://doi.org/10.48550/arXiv.2401.06451

8. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with
assignment. In: AAMAS 2005: Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pp. 141–148. Association
for Computing Machinery (2005). https://doi.org/10.1145/1082473.1082495

9. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In:
Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Logic and the Founda-
tions of Game and Decision Theory (LOFT 7). Texts in Logic and Games, vol. 3,
pp. 87–118. Amsterdam University Press (2008). https://www.jstor.org/stable/j.
ctt46mz4h.6

10. Dolev, D., Függer, M., Posch, M., Schmid, U., Steininger, A., Lenzen, C.: Rig-
orously modeling self-stabilizing fault-tolerant circuits: an ultra-robust clocking
scheme for systems-on-chip. J. Comput. Syst. Sci. 80(4), 860–900 (2014). https://
doi.org/10.1016/j.jcss.2014.01.001

https://doi.org/10.1109/ICDCS.1989.37989
http://tark.org/proceedings/tark_jul22_98/p43-baltag.pdf
http://tark.org/proceedings/tark_jul22_98/p43-baltag.pdf
https://doi.org/10.1016/j.ic.2006.04.006
https://doi.org/10.3166/jancl.17.157-182
https://doi.org/10.1023/A:1015590229647
http://www.aiml.net/volumes/volume14/22-vanDitmarsch-Fruzsa-Kuznets.pdf
http://www.aiml.net/volumes/volume14/22-vanDitmarsch-Fruzsa-Kuznets.pdf
https://doi.org/10.48550/arXiv.2401.06451
https://doi.org/10.1145/1082473.1082495
https://www.jstor.org/stable/j.ctt46mz4h.6
https://www.jstor.org/stable/j.ctt46mz4h.6
https://doi.org/10.1016/j.jcss.2014.01.001
https://doi.org/10.1016/j.jcss.2014.01.001

132 H. van Ditmarsch et al.

11. van Eijck, J.: DEMO—a demo of epistemic modelling. In: van Benthem, J., Gab-
bay, D., Löwe, B. (eds.) Interactive Logic: Selected Papers from the 7th Augustus
de Morgan Workshop, London. Texts in Logic and Games, vol. 1, pp. 303–362.
Amsterdam University Press (2007). https://www.jstor.org/stable/j.ctt45kdbf.15

12. Elnozahy, E.N.M., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–
408 (2002). https://doi.org/10.1145/568522.568525

13. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995). https://doi.org/10.7551/mitpress/5803.001.0001

14. Fruzsa, K.: Hope for epistemic reasoning with faulty agents! In: Pavlova, A., Ped-
ersen, M.Y., Bernardi, R. (eds.) ESSLLI 2019. LNCS, vol. 14354, pp. 93–108.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-50628-4 6

15. Fruzsa, K., Kuznets, R., Schmid, U.: Fire! In: Halpern, J., Perea, A. (eds.) Pro-
ceedings of the Eighteenth Conference on Theoretical Aspects of Rationality and
Knowledge, Beijing, China, 25–27 June 2021. Electronic Proceedings in Theoreti-
cal Computer Science, vol. 335, pp. 139–153. Open Publishing Association (2021).
https://doi.org/10.4204/EPTCS.335.13

16. Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and
systems-on-chip. Distrib. Comput. 24(6), 323–355 (2012). https://doi.org/10.
1007/s00446-011-0151-7

17. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 41

18. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990). https://doi.org/10.1145/79147.79161

19. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: knowledge-based
derivations and correctness proofs for a family of protocols. J. ACM 39(3), 449–478
(1992). https://doi.org/10.1145/146637.146638

20. Heuerding, A., Jäger, G., Schwendimann, S., Seyfried, M.: A Logics Workbench.
AI Commun. 9(2), 53–58 (1996). https://doi.org/10.3233/AIC-1996-9203

21. Kieckhafer, R.M., Walter, C.J., Finn, A.M., Thambidurai, P.M.: The MAFT
architecture for distributed fault tolerance. IEEE Trans. Comput. 37(4), 398–404
(1988). https://doi.org/10.1109/12.2183

22. Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K.: Causality and epistemic rea-
soning in byzantine multi-agent systems. In: Moss, L.S. (ed.) Proceedings of the
Seventeenth Conference on Theoretical Aspects of Rationality and Knowledge,
Toulouse, France, 17–19 July 2019. Electronic Proceedings in Theoretical Com-
puter Science, vol. 297, pp. 293–312. Open Publishing Association (2019). https://
doi.org/10.4204/EPTCS.297.19

23. Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K.: Epistemic reasoning with
byzantine-faulty agents. In: Herzig, A., Popescu, A. (eds.) FroCoS 2019. LNCS
(LNAI), vol. 11715, pp. 259–276. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29007-8 15

24. Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K., Gréaux, L.: Knowledge in Byzan-
tine message-passing systems I: Framework and the causal cone. Technical Report
TUW-260549, TU Wien (2019). https://publik.tuwien.ac.at/files/publik 260549.
pdf

25. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

https://www.jstor.org/stable/j.ctt45kdbf.15
https://doi.org/10.1145/568522.568525
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1007/978-3-031-50628-4_6
https://doi.org/10.4204/EPTCS.335.13
https://doi.org/10.1007/s00446-011-0151-7
https://doi.org/10.1007/s00446-011-0151-7
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1145/79147.79161
https://doi.org/10.1145/146637.146638
https://doi.org/10.3233/AIC-1996-9203
https://doi.org/10.1109/12.2183
https://doi.org/10.4204/EPTCS.297.19
https://doi.org/10.4204/EPTCS.297.19
https://doi.org/10.1007/978-3-030-29007-8_15
https://doi.org/10.1007/978-3-030-29007-8_15
https://publik.tuwien.ac.at/files/publik_260549.pdf
https://publik.tuwien.ac.at/files/publik_260549.pdf
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176

A Logic for Repair and State Recovery 133

26. Mendes, H., Tasson, C., Herlihy, M.: Distributed computability in Byzantine asyn-
chronous systems. In: STOC 2014, 46th Annual Symposium on the Theory of Com-
puting: 31 May–3 June 2014, New York, New York, USA, pp. 704–713. Association
for Computing Machinery (2014). https://doi.org/10.1145/2591796.2591853

27. Mitchell, J.C., Moggi, E.: Kripke-style models for typed lambda calculus. Ann. Pure
Appl. Logic 51(1–2), 99–124 (1991). https://doi.org/10.1016/0168-0072(91)90067-
V

28. Moses, Y.: Relating knowledge and coordinated action: the Knowledge of Precon-
ditions principle. In: Ramanujam, R. (ed.) Proceedings Fifteenth Conference on
Theoretical Aspects of Rationality and Knowledge, Carnegie Mellon University,
Pittsburgh, USA, 4–6 June 2015. Electronic Proceedings in Theoretical Computer
Science, vol. 215, pp. 231–245. Open Publishing Association (2016). https://doi.
org/10.4204/EPTCS.215.17

29. Pessin, A., Goldberg, S.: The Twin Earth Chronicles: Twenty Years of Reflection
on Hilary Putnam’s “The Meaning of ‘Meaning’”. M. E. Sharpe (1995). https://
doi.org/10.4324/9781315284811

30. Powell, D., et al.: GUARDS: a generic upgradable architecture for real-time
dependable systems. IEEE Trans. Parallel Distrib. Syst. 10(6), 580–599 (1999).
https://doi.org/10.1109/71.774908

31. Robinson, P., Schmid, U.: The Asynchronous Bounded-Cycle model. Theoret.
Comput. Sci. 412(40), 5580–5601 (2011). https://doi.org/10.1016/j.tcs.2010.08.
001

32. Rushby, J.: Reconfiguration and transient recovery in state machine architectures.
In: Proceedings of the Twenty-Sixth International Symposium on Fault-Tolerant
Computing: 25–27 June 1996, Sendai, Japan, pp. 6–15. IEEE (1996). https://doi.
org/10.1109/FTCS.1996.534589

33. Schlögl, T., Schmid, U.: A sufficient condition for gaining belief in byzantine fault-
tolerant distributed systems. In: Verbrugge, R. (ed.) Proceedings of the Nineteenth
conference on Theoretical Aspects of Rationality and Knowledge, Oxford, United
Kingdom, 28–30th June 2023. Electronic Proceedings in Theoretical Computer
Science, vol. 379, pp. 487–497. Open Publishing Association (2023). https://doi.
org/10.4204/EPTCS.379.37

34. Schlögl, T., Schmid, U., Kuznets, R.: The persistence of false memory: brain in a
vat despite perfect clocks. In: Uchiya, T., Bai, Q., Marsá Maestre, I. (eds.) PRIMA
2020. LNCS, vol. 12568, pp. 403–411. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-69322-0 30

35. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990). https://doi.org/10.
1145/98163.98167

36. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. J. ACM 34(3), 626–645
(1987). https://doi.org/10.1145/28869.28876

37. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987). https://doi.org/
10.1007/BF01667080

38. Walter, C.J., Lincoln, P., Suri, N.: Formally verified on-line diagnosis. IEEE Trans.
Software Eng. 23(11), 684–721 (1997). https://doi.org/10.1109/32.637385

39. Widder, J., Schmid, U.: The Theta-Model: achieving synchrony without clocks.
Distrib. Comput. 22(1), 29–47 (2009). https://doi.org/10.1007/s00446-009-0080-
x

https://doi.org/10.1145/2591796.2591853
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.4204/EPTCS.215.17
https://doi.org/10.4204/EPTCS.215.17
https://doi.org/10.4324/9781315284811
https://doi.org/10.4324/9781315284811
https://doi.org/10.1109/71.774908
https://doi.org/10.1016/j.tcs.2010.08.001
https://doi.org/10.1016/j.tcs.2010.08.001
https://doi.org/10.1109/FTCS.1996.534589
https://doi.org/10.1109/FTCS.1996.534589
https://doi.org/10.4204/EPTCS.379.37
https://doi.org/10.4204/EPTCS.379.37
https://doi.org/10.1007/978-3-030-69322-0_30
https://doi.org/10.1007/978-3-030-69322-0_30
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/28869.28876
https://doi.org/10.1007/BF01667080
https://doi.org/10.1007/BF01667080
https://doi.org/10.1109/32.637385
https://doi.org/10.1007/s00446-009-0080-x
https://doi.org/10.1007/s00446-009-0080-x

134 H. van Ditmarsch et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Calculi, Proof Theory and Decision
Procedures

A Decision Method for First-Order
Stream Logic

Harald Ruess(B)

Entalus Computer Science Lab,
2071 Gulf of Mexico Drive, Longboat Key,

FL 34228, USA

harald.ruess@entalus.com

Abstract. Our main result is a doubly exponential decision procedure
for the first-order equality theory of streams with addition, convolution,
and control-oriented stream operations. This stream logic is shown to be
expressive for solving basic problems in stream calculus.

Keywords: Decision Procedures · First-Order Logic · Stream
Calculus · Formal Power Series · Real-Closed Rings · Quantifier
Elimination

1 Introduction

Quantified stream constraints are often used in the principled design of reac-
tive computing systems [7,8,10,25,26]. However, automated solutions to these
constraints can be challenging, as quantifying over streams effectively is second-
order.

Quantifying over sets of natural numbers, for instance, encodes quantifying
over streams in the monadic second-order logic MSO(ω) [19] of ω-infinite words
over a finite alphabet.1 This logic is decidable, but only non-elementarily so,
based on the well-known characterization of the set of models of any MSO(ω)
formula in terms of a finite-state machine [9]. Equivalently, the logic-automaton
connection yields a non-elementary decision procedure for a first-order equality
theory of streams [34].

Here we study a first-order stream logic that is not limited to finite alphabets,
and which includes an expressive combination of nonlinear arithmetic stream
operators, such as convolution, with control-oriented stream operators, such as
shifting. Compared to MSO(ω), however, this stream logic is restrictive in that
it only supports quantifying over streams, not over positions in streams.

Our main result is that the validity of first-order stream formulas (in the
language of ordered rings) in the structure of real-valued streams is decided in
doubly exponential time. In contrast to automata-based procedures for monadic
second-order logics, our decision procedure is not limited to streams over a finite
1 For example, the set of even numbers represents the Boolean-valued stream

(1, 0, 1, 0, 1, . . .), since the i-th position, for i ∈ N, is ’on’ if and only if i is even.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 137–156, 2024.
https://doi.org/10.1007/978-3-031-63501-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_8&domain=pdf
http://orcid.org/0000-0002-1405-2990
https://doi.org/10.1007/978-3-031-63501-4_8

138 H. Ruess

Fig. 1. Stream circuit.

alphabet, and the time complexity of our procedure is doubly exponential instead
of non-elementary as in [34]. Definitional extensions demonstrate the expressive
power of this stream logic in solving a number of fundamental problems in the
coalgebraic stream calculus [38].

The structure of the developments is as follows. Section 2 motivates quantified
stream logic with typical examples from stream calculus [38], and Sect. 3 summa-
rizes, with the intention of making the exposition largely self-contained, essential
properties of streams. Since we are targeting stream calculus, we restrict our-
selves to streams with real-numbered elements only. However, the results in this
paper clearly generalize to streams with elements from either a totally ordered
commutative integral ring or a totally ordered field. Streams are identified with
formal power series [32] and the superset of streams with finite history prefixes
is identified with formal Laurent series. Based on this identification of streams
with their generating function it is straightforward to establish that streams are
orderable and also Cauchy complete for the prefix distance.

Based on these developments it is shown in Sect. 4 that streams are a real
closed valuation ring and their extension with finite histories are a real closed
field. The main technical hurdle is the derivation of an intermediate value prop-
erty (IVP) for streams. As an ordered and complete non-Archimedean domain,
streams lack the least upper bound property. The usual dichotomic procedure for
proving IVP therefore does not apply. Ordered streams admit quantifier elimi-
nation as a consequence of real closedness.

The results in Sect. 5 therefore are direct consequences of the quantifier elim-
ination procedures for real closed valuation rings [12] and for real closed ordered
fields [44] together with the doubly exponential bound obtained by cylindrical
algebraic decomposition [18] in the case of real closed ordered fields. In Sect. 6,
the language of decidable stream logic is conservatively extended by shift oper-
ators, constants for rational and automatic streams, and stream projections.
Section 7 concludes with some remarks.

2 Examples

We motivate the rôle of quantified stream logic for encoding some typical prob-
lems from stream calculus.

Observational Equivalence. Two stream processors T1, T2 are observationally
equivalent if the first-order formula in Example 1 holds.

Deciding Stream Logic 139

Example 1 (Observational Equivalence).

(∀z, y1, y2)T1(z, y1) ∧ T2(z, y2) ⇒ y1 = y2

The logical variables z, y1, and y2 are interpreted over discrete and real-valued
streams, and Ti(z, yi), for i = 1, 2, are binary predicates for defining the possible
output streams yi of processor Ti on input stream z.

In stream calculus [38], the relations Ti(z, yi) are typically of the form yi =
fi · z, where the transfer function fi is a stream, and the output stream yi is
obtained by stream convolution of fi with the input stream z. These algebraic
specifications are expressive for the set of all stream circuits [40].

Functionality. A stream processor T is functional if the first-order stream for-
mula in Example 2 with one quantifier alternation holds.

Example 2 (Functionality).

(∀z)(∃y)T (z, y) ∧ (∀u)u �= y ⇒ ¬T (z, u)

Non-Interference. We now consider streams of system output that are divided
into a low and a high security part. In such an environment, a stream proces-
sor T is said to be non-interfering [22,29,30] if executing T always results in
indistinguishable low outputs at every step.

Example 3 (Non-Interference).

(∀z, y1, y2)T (z, y1) ∧ T (z, y2) ⇒ hd(y1) =L hd(y2) ⇒ y1 =L y2,

where hd(yi), for i = 1, 2, denote initial values, and hd(y1) =L hd(y2) is assumed
to hold if and only if the low parts of the two head elements hd(y1) and hd(y1) are
equal. Similarly, the (overloaded) relation y1 =L y2 on streams is assumed to hold
if all the respective projections to the low parts are equal. These non-interference
properties are prominent examples of a larger class of hyper-properties [14] for
comparing two or more traces. Quantifier alternation between existential and
universal quantifiers is required for the formalization of more general hyper-
properties.

Stream Circuits. We take into consideration some typical design steps for the
stream circuit in Fig. 1. At moment 0 this circuit inputs the first value z0. The
initial value 0 of the register D1 is added to this by A, and the result y0 =
z0 + 0 = z0 is the first value to be output. At the same time, this value z0 is
copied by C, and stored as the new value of the register D1. The next step is to
input the value z1, add the current value z0 of the register to it, and output the
resulting value y1 = z0 + z1. Simultaneously, this value is copied and saved as
the new value of the register. In the next step, the input is z2 and the output is
the value y2 = z0 + z1 + z2. In general, the output yk, for k ∈ N, of the circuit in
Fig. 1 is determined by the sum

∑k
i=0 zi of the finite history z0 . . . zk of inputs.

In other words, y = (1, 1, 1, . . .) · z, where ′·′ denotes stream convolution. This
input-output behavior of the stream circuit in Fig. 1 can be verified by showing
that the stream logic formula in Example 4 is valid.

140 H. Ruess

Example 4 (Analysis).

(∀z, y, h1, h2, h3)
h1 = D1(h2) ∧ h3 = A(z, h1) ∧ h2 = C(h3) ∧ y = C(h3)

⇒ y = (1, 1, 1, . . .) · z

The stream (1, 1, . . .) is considered to be an interpreted constant symbol in the
logic, and D1, A, and C are interpreted function symbols.

Finally, the formula in Example 5 with one quantifier alternation allows to
synthesize the transfer function by constructing explicit witnesses for existen-
tially quantified variables in an underlying proof procedure.

Example 5 (Synthesis).

(∀z, y, h1, h2, h3)
h1 = D1(h2) ∧ h3 = A(z, h1) ∧ h2 = C(h3) ∧ y = C(h3)

⇒ (∃u) y = u · z

3 On Streams

A real-valued stream is an infinite sequence (ai)i∈N with ai ∈ R, where R denotes
the real numbers. Depending on the context, streams are also referred to as
real-valued discrete streams or signals, ω-streams, ω-sequences, or ω-words. The
generating function [11] of a stream is a formal power series

∑

i∈N

aiX
i (1)

in the indefinite X. These power series are formal because the symbol X is not
instantiated and there is no notion of convergence. The element ai ∈ R is the
coefficient of Xi, and the set of formal power series with coefficients in R is
denoted by R�X�. We also write fi for the coefficient of Xi in the formal power
series. Now, a polynomial in R[X] of degree n ∈ N is a formal power series f
with fn �= 0 and fi = 0 for all i > n. We use the terms streams and formal power
series interchangeably for their one-to-one correspondence.

Addition of streams f, g ∈ R�X� is pointwise, and streams are multiplied by
convolution.

f + g :=
∑

i∈N

(fi + gi)Xi (2)

f · g :=
∑

i∈N

(
i∑

j=0

fjgi−j)Xi (3)

With these operations (R�X�,+, ·, 0, 1) becomes a commutative integral ring
with additive unit 0 := (0, 0, . . .) and multiplicative unit 1 := (1, 0, 0, . . .). The

Deciding Stream Logic 141

real number line R is embedded in the polynomial ring R[X], which itself is
embedded in R�X�. Moreover, the rational functions R(X) are defined as the
fraction field of the polynomials R[X]. R�X� and R(X) are incomparable in
that neither R�X� nor R(X) contains the other.

Proposition 1. For f ∈ R�X�, the multiplicative inverse f−1 ∈ R�X� exists
if only if f0 �= 0.

Proof. Let f, g ∈ R�X�. The identity f ·g = 1 holds, by the defining identity (3)
for convolution, if and only if f0g0 = 1 and

∑k
i=0 figk−i = 0 for all k ≥ 1. The

latter equality is rewritten as f0gk = −
∑k

i=1 figk−i. Now, f0g0 = 1 can be solved
for g0 if and only if f0 �= 0. In this case, g0 = 1/f0 and gk = −g0

∑k
i=1 figk−i, for

k ≥ 1, yielding a solution for g, which gives the multiplicative inverse of f .

We also write the quotient f/g instead of f · g−1, whenever g−1 exists.

Example 6.

1/(1−X) = (1, 1, 1, 1, . . .)
1/(1−X)2 = (1, 2, 3, 4, . . .)
1/(1−rX) = (1, r, r2, r3, . . .) for r ∈ R

These identities are easily verified by the defining identities for convolution (3)
and for the multiplicative inverse. The first stream identity, for instance, is ver-
ified by the identity (1,−1, 0, . . .) · (1, 1, 1, . . .) = (1, 0, 0, . . .), since 1 − X is
identified with (1,−1, 0, . . .).

A stream in R�X� is rational if it is expressible as a quotient p/q of polyno-
mials p, q ∈ R[X] such that q0 �= 0 [40]. Rational streams, as a subring of the
formal power series R�X�, are central to stream calculus because of their close
correspondence to stream circuits [40].

Example 7 ([37]). Let f, g be rational streams with real-valued coefficients.
Using the defining equations

D1(f) := X · f

A(f, g) := f + g

C(f) := f

for the unit delay register D1, addition A of two streams, and copying C of a
stream, we obtain from the stream circuit in Fig. 1 a system of defining equations
h1 = X ·h2, h3 = z+h1, h2 = h3, y = h3. Back substitution for the intermediate
streams h3, h1, and h2, in this order, yields an equational constraint y = z +
(X · y), which is equivalent to y = 1/(1−X) · z. Now, y = (

∑k
i=0 zi)k∈N as a result

of the identity for 1/(1−X) in Example 6.

Remark 1. Rational streams substantially differ from the rational functions. The
inverse 1/X, for example, is not a rational stream, and it is not even a formal
power series. But it is in R(X).

142 H. Ruess

Fig. 2. Commuting stream embeddings (‘∗’ denotes completion for valuation |.|, and
‘/’ the fraction field construction.

The field R((X)) of formal Laurent series is the fraction field of the formal power
series R�X�. Elements of R((X)) therefore are of the form

∞∑

i=−n

aiX
i, (4)

for n ∈ N and ai ∈ R. They can therefore be thought of as streams that are
preceded by a finite, and possibly empty, history, which are used for “rewinding
computations”. In fact, every formal Laurent series is of the form X−n · f , for
some n ∈ N and for f ∈ R�X� a formal power series.

The valuation v : R((X)) → Z ∪ {∞} with v(0) := ∞ and v(f), for f �= 0, is
the minimal index k ∈ Z with fk �= 0. In the latter case, fk is also said to be the
lead coefficient of f . Now, the set R((X)) of formal Laurent series is orderable (see
Appendix A) by the positive cone R((X))+ of formal Laurent series with positive
lead coefficient. This set determines a strict ordering f < g, for f, g ∈ R((X)),
which is defined to hold if and only if g − f ∈ R((X))+, and a total ordering
f ≤ g, which holds if and only if f < g or f = g. The restriction of ≤ to the
formal power series in R�X� is also a total order.

Proposition 2.

1. (R�X�; +, ·, 0, 1;≤) is a totally ordered commutative integral ring.
2. (R((X));+, ·, 0, 1;≤) is a totally ordered field.

As a consequence of Proposition 2.2, R((X)) is formally real (−1 can not be
written as a sum of nonzero squares in R((X))), R((X)) is not algebraically closed
(for example, the polynomial X2+1 has no root), and R((X)) is of characteristic
0 (0 can not be written as a sum of 1s). Moreover, the Archimedean property
(see [41]) fails to hold for R((X)), because X �< 1 + 1 + . . . + 1, no matter how
many 1’s we add together.

From the (normalized) valuation v one obtains, with the convention 2−∞ :=
0, the absolute value function |.| : R((X)) → R≥0 by setting

|f | := 2−v(f). (5)

By construction, |.| is the non-Archimedean absolute value on R((X)) correspond-
ing to the valuation v [31]. Now, the induced metric d : R((X))×R((X)) → R≥0

with

d(f, g) := |f − g| (6)

Deciding Stream Logic 143

measures the distance between f and g in terms of the longest common prefix.
Again, by construction, the strong triangle inequality

d(f, h) ≤ max(d(f, g), d(g, h)). (7)

holds for all f, g, h ∈ R((X)), and therefore d is ultrametric.

Proposition 3. (R((X)), d) is an ultrametric space.

Example 8. The scaled identity function If (x) := f · x, for f �= 0, is uniformly
continuous in the topology induced by the metric d.2 For given ε > 0, let δ :=
ε/|f |. Now, d(x, y) < δ implies d(f · x, f · y) = |f | d(x, y) < |f | δ = ε for all
x, y ∈ R((X)).

Proposition 4. Both addition and multiplication of formal Laurent series in
R((X)) are continuous in the topology induced by the prefix metric d.

The notions of Cauchy sequences and convergence in the metric space (R((X)), d)
are defined as usual. For example, limn→∞ Xn = 0 and limn→∞

∑n
k=0 Xk =

1/(1−X). For a given sequence (fk)k∈N of formal Laurent series, (1) the
sequence (fk)k∈N is Cauchy iff limk→∞ d(fk+1, fk) = 0, (2) the series∑∞

k=0 fk := limn→∞
∑n

k=0 fk converges iff limk→∞ fk = 0, and (3) suppose
that limk→∞ fk = f �= 0, then there exists an integer N > 0 such that for all
m ≥ N , |fm| = |fN | = |f |. These properties follow directly from the fact that |.|
is a non-Archimedean absolute value.

Proposition 5. (R((X)), d) is Cauchy complete.

Proof. Let (fk)k∈N be a Cauchy sequence with fk ∈ R((X)). Then, for all c ∈ N

there is Nc ∈ N such that d(fn, fm) < |Xc| for all n,m ≥ Nc. But this means
that fn − fm ∈ Xc · R((X)). Since fk are Laurent series, there are Mk ∈ Z and
ak,i ∈ R such that fk =

∑
i≥Mk

ak,iX
i. Consequently, (ak,i)k∈N is constant for

k large enough. Now, there exists J ∈ Z such that

lim
k→∞

fk =
∑

i≥J

(lim
k→∞

ak,i)Xi ∈ R((X)),

and therefore R((X)) is Cauchy complete.

Indeed, R((X)) can be shown to be the Cauchy completion of R(X), and the
stream embeddings discussed so far commute as displayed in Fig. 2.3 Finally, as a
non-Archimedean, Cauchy complete, and totally ordered field, R((X)) lacks the
least upper bound property, that is, there exists a non-empty subset of R((X))
with an upper bound and no least upper bound in R((X)).
2 The topology induced by the order ≤ on streams is identical to the topology induced

by the prefix metric d.
3 This story continues, as R((X)) is a subfield of the real closed Levi-Civita field, which

itself is the Cauchy completion of the Newton-Puiseux series ∪∞
l=1R((X1/l)) over the

reals, which can also be shown to be real closed.

144 H. Ruess

4 Real Closedness

R((X)) is a totally ordered field by Proposition 2. To show that R((X)) is real
closed, we therefore still need to demonstrate the existence of a square root for
streams and the existence of roots for all odd degree polynomials in R((X))[Y],
where Y is a single indeterminate (cmp. Appendix B). General results on the
preservation of real-closedness ([1], §6.23, (1)-(2); [42], p. 221) are not applicable
for demonstrating real-closedness of R((X)).

The main step for showing real-closedness of R((X)) is an intermediate value
property (IVP) for streams. It should be recalled that the standard proof of the
IVP for a continuous function over the field of real numbers essentially uses the
fact that intervals and connected subsets coincide in the real number field and
that continuous functions preserve connectedness. When working with the non-
Archimedean, complete, and ordered field R((X)), however, such an argument is
no longer applicable, as it lacks the least upper bound property and therefore
also the dichotomic procedure for proving IVP. In this case, not only do the
Archimedean proofs of the IVP not work, but the IVP does not hold in general.
It nevertheless holds for special cases [6].

Lemma 1 (IVP). For a polynomial P (Y) ∈ R�X�[Y] and α, β ∈ R�X� such
that P (α) < 0 < P (β), there exists γ ∈ R�X� ∩ (α, β) with P (γ) = 0.

Proof. Since R�X� is the Cauchy completion of R[X], there are sequences
(an)n∈N and (bn)n∈N of polynomials an, bn ∈ R[X] such that limn→∞ an = α
and limn→∞ bn = β. From the assumptions P (α) < 0 < P (β) and continuity of
the polynomial P in the topology induced by the prefix metric d, one can there-
fore find a, b ∈ R�X� in the sequences (an) and (bn) with α ≤ a < b ≤ β and
P (a) < 0 < P (b). For continuity of P , P (α) = P (limn→∞ an) = limn→∞ P (an).
Now, for 0 < ε := |P (α)|/2, there exists N ∈ N such that for d(P (an), P (α)) < ε
for all n ≥ N . Therefore, P (a) < 0 for a := aN . The construction for b is similar.

The proof proceeds along two cases. If there is γ ∈ R�X� ∩ (a, b) such that
P (γ) = 0 we are finished. Otherwise, f(γ) �= 0 for all γ ∈ R�X� ∩ (a, b). We
define α0 := a, β0 := b, and, for m ∈ N,

[αm+1, βm+1] =

{
[αm, δm] : if f(δm) > 0
[δm, βm] : if f(δm) < 0

,

where δm := 1/2(αm + βm) ∈ R�X�. By assumption, P (δm) �= 0, and, by con-
struction, (αm)m∈N is a non-decreasing and (βm)m∈N a non-increasing sequence
in R[X] such that, for all m ∈ N, αm < βm, d(αm, βm) ≤ 2−m, T (αm) < 0,
and T (βm) > 0. Therefore, both (αm)m∈N and (βm)m∈N are Cauchy, (αm)m∈N

converges from below, and (βm)m∈N converges from above to a point γ. Now,
γ ∈ R�X�, since R�X� is the Cauchy completion of R[X]. Since P is continuous
we obtain

lim
m→∞ P (αm)

︸ ︷︷ ︸
<0

= P (lim
m→∞ αm) = P (γ) = P (lim

m→∞ βm) = lim
m→∞ P (βm)

︸ ︷︷ ︸
>0

,

Deciding Stream Logic 145

and therefore P (γ) = 0. This establishes the claim.

A real closed ring is an ordered domain which has the intermediate value property
for polynomials in one variable. From the IVP for formal power series in Lemma 1
we immediately obtain the following three properties that characterize real closed
rings [12].

Proposition 6.

1. f divides g for all f, g ∈ R�X� with 0 < g < f ;
2. Every positive element in R�X� has a square root in R�X�;
3. Every monic polynomial in R�X�[Y] of odd degree has a root in R�X�.

Proof. In each of the three cases a certain polynomial changes sign, and hence
has a root. The relevant polynomials in R�X�[Y] are:

1. f · Y + g on [0, 1];
2. Y 2 − f on [0,max(f, 1)];
3. Y n + fn−1 · Y n−1 + . . . + f1 · Y + f0 on [−N,N], where n ∈ N is odd and

N := 1 + |fn−1| + . . . + |f0|.

Example 9.
√

(1, 2, 3, . . .) = (1, 1, 1, . . .), since, using the identities in Example 6,
(1, 1, 1, . . .)2 = (1/(1−X))2 = 1/(1−X)2 = (1, 2, 3, . . .).

Alternatively, square roots of streams are constructed as unique solutions of
corecursive identities.

Remark 2 (Corecursive definition of square root [39]). Assume f ∈ R�X� with
head coefficient f0 > 0 and tail f ′ ∈ R�X�. Then,

√
f ∈ R�X� is the unique

solution (for the unknown g) of the corecursive identity g′ = f ′
/(

√
f0+g), for the

tail g′ of g, and the initial condition g0 =
√

f0 for the head g0 of g. Now, for all
f, g ∈ R�X� with f ′ > 0, if g · g = f then either g =

√
f or g = −

√
f , depending

on whether the head g0 is positive or negative ([39], Theorem 7.1).

It is an immediate consequence of property (1) of Proposition 6 that the
formal power series R�X� is a proper valuation ring of its fraction field R((X));
that is, f or f−1 lies in R�X� for each nonzero f ∈ R((X)). Since R�X� also
satisfies the IVP (Lemma 1) we obtain:

Corollary 1. (R�X�; +, ·, 0, 1;≤) is a real closed ordered valuation ring.

Formal Laurent series, as the fraction field of formal power series, inherit the
properties (2) and (3) in Proposition 6.

Proposition 7.

1. Every positive stream in R((X)) has a square root in R((X)).
2. Every monic polynomial in R((X))[Y] of odd degree has a root in R((X)).

146 H. Ruess

Proof. Assume 0 < f/g ∈ R((X)). Then 0 < f ·g ∈ R�X�, and
√

f ·g/g is the square
root of f/g. For establishing (2), assume P (Y) ∈ R((X))[Y] be a polynomial of
odd degree n. Choose 0 �= h ∈ R((X)) such that h · P (Y) ∈ R�X�[Y]. Now,
Q(Y) := hn · P (Y/h) is a monic polynomial in R�X�[Y] of odd degree. Applying
Proposition (6.2) to q(Y) we see that p(Y) has a root in R((X)).

Formal Laurent series are real closed (see Appendix B) as an immediate
consequence of Proposition 7.

Corollary 2. (R((X));+, ·, 0, 1;≤) is a real closed ordered field.

Therefore the ordering ≤ on R((X)) is unique.

5 Decision Method

The first-order theory Trcf of ordered, real closed fields (see Appendix B) admits
quantifier elimination [16,44]. That is, for every formula φ in the language Lor

(cmp. Appendix B) of ordered rings/fields there exists a quantifier free formula
ψ in this language with FV (ψ) ⊆ FV (φ)4 such that Trcf |= (φ ⇐⇒ ψ). Thus,
Corollary 2 implies quantifier elimination for the streams in R((X)).

Theorem 1. Let ϕ be a first-order formula in the language Lor of ordered
fields; then there is a computable function for deciding whether ϕ holds in the
Lor-structure (R((X));+, ·, 0, 1;≤) of streams.

As an immediate consequence of the quantifier elimination property for R((X)),
the structure of formal Laurent series with real-valued coefficients is elemen-
tarily equivalent to the real numbers in that they satisfy the same first-order
Lor-sentences. Notice that decidability of R((X)) already follows from the devel-
opments in ([4], Corollary), since the field R is of characteristic 0. This observa-
tion, however, does not yield quantifier elimination.

There is an explicit quantifier elimination procedure for real closed valuation
rings, which uses quantifier elimination on its fraction field as a subprocedure
([12], Section 2). Therefore, by Corollary 1, we obtain a decision procedure for
first-order formulas and streams in R�X�, which has quantifier elimination for
R((X)) as a subprocedure.

Theorem 2. Let ϕ be a first-order formula in the language Lor ∪{|} of ordered
rings extended with divisibility; then there is a computable function for deciding
whether ϕ holds in the Lor ∪ {|}-structure (R�X�; +, ·, 0, 1; |,≤) of streams.

Tarski’s original algorithm for quantifier elimination has non-elementary com-
putational complexity [44], but cylindrical algebraic decomposition provides a
decision procedure of complexity d2

O(n)
[18], where n is the total number of vari-

ables (free and bound), and d is the product of the degrees of the polynomials
occurring in the formula.

4 FV (.) denotes the set of free variables in a formula.

Deciding Stream Logic 147

Theorem 3. Let ϕ be a first-order formula in the language Lor of ordered fields.
Then the validity of ϕ in the structure R((X)) of streams is decided with com-
plexity d2

O(n)
, where n is the total number of variables (free and bound), and d

is the product of the degrees of the polynomials occurring in ϕ.

This worst-case complexity is nearly optimal for quantifier elimination for real
closed fields [20]. For existentially quantified conjunctions of literals of the form
(∃x1, . . . , xk) ∧n

i=1 pi(x1, . . . , xk) �� 0, where �� stands for either <, =, or >
the worst-case complexity is nk+1 · dO(k) arithmetic operations and polynomial
space [5]. Various implementations of decision procedures for real closed fields
use virtual term substitution [46] or conflict-driven clause learning [24].

6 Definitional Extensions

We consider definitional extensions of the first-order theory Trcf of ordered real
closed fields for encoding some fundamental concepts of stream calculus. The
transfer function in Example 7 of the stream circuit in Fig. 1, for example, is
encoded as a first-order formula in the language Lor of (ordered) rings extended
with constant symbols X and 1/(1−X).

Example 10.

(∀z, y, h1) (h1 = X · y ∧ y = z + h1) ⇒ y = 1/(1−X) · z,

where the logical variables z, y, h1 are interpreted over streams in R�X�. To
obtain a decision procedure for these kinds of formula, we therefore

– Relativize quantification in Trcf to formal power series;
– Define constant symbols f for rational streams f (including X).

Relativization. There is a monadic formula with an ∃∀∃∀ quantifier prefix and
no parameters for uniformly defining the formal power series R�X� in R((X)), as
a direct consequence of Ax’s construction [4].5 Moreover, R�X� is ∀∃-definable
in R((X)) by ([35], Theorem 2 together with footnote 2), since the valuation
ring R�X� is Henselian. The model-theoretic developments in [35], however, do
not provide an explicit definitional formula. But explicit definitions of valuation
rings in valued fields are studied in [3,15,21].

From these considerations we obtain an explicit definition in R((X)) of the
monadic predicate S(x) for characterizing the set of streams in R�X�. By rela-
tivization of quantifiers with respect to this predicate S we therefore assume from
now on that all logical variables are interpreted over the streams in R�X�. In
addition, we are assuming definitions R(x) for given, and possibly finite, subsets
R of real number embeddings. For example, the algebraic definition

(∀x)F2(x) ⇐⇒ x = x2 (8)

defines the binary set {0, 1} of streams.
5 This observation holds for any field of coefficients.

148 H. Ruess

Shifting Streams. The fundamental theorem of stream calculus [38] states that
for every f ∈ R�X� there exist unique r ∈ R and f ′ ∈ R�X� with f = [r]+X ·f ′.
In this case, r is the head coefficient, [r] is the embedding of the real number r
as a stream in R�X�, and f ′ is the tail of the stream f . Therefore, the definition

(∀z)X = z ⇐⇒ (∀y) (∃1y0, y
′)R(y0) ∧ y = y0 + z · y′, (9)

for X a fresh constant symbol, yields a conservative extension Trcf[S,R,X] of the
theory Trcf, with X, as an element of R�X�, the only possible interpretation for
the constant symbol X. Notice that the definitional formula (9) for X requires
∀∃∀ quantifier alternation due to the ∃1 quantifier involved.

Example 11. The basic stream constructors of stream circuits for addition A,
multiplication Mq by a rational q ∈ Q, and unit delay D1 are defined by (the
universal closures of)

A(x1, x2) = y ⇐⇒ y = x1 + x2

Mn/m(x) = y ⇐⇒ my = nx

D1(x) = y ⇐⇒ y = X · x,

where D1, A, and Mn/m for n,m ∈ N with m �= 0, are new function symbols,
and the variables are interpreted over R((X)). Synchronous composition of two
stream circuits, say S(x, y) and T (y, z), is specified in terms of the quantified
conjunction (∃y)S(x, y) ∧ T (y, z), where existential quantification is used for
hiding the intermediate y stream [43].

Rational Streams. We are now extending the language of ordered rings with
constant symbols for rational streams (with rational coefficients). This extended
language is expressive, for example, for encoding equivalence of rational stream
transformers. We are considering rational streams f = p(X)/q(X) with rational
coefficients. In this case, the head for q(X) is nonzero and f ∈ R�X�. Multi-
plication by q(X) and by the least common multiple of the denominators of all
rational coefficients in p(X) and q(X) yields an equality constraint in the lan-
guage Lor[S,R,X]. More precisely, let RQ be a set of fresh constant symbols for
all rational streams (except for X) and Trcf[S,R,X,RQ] the extension of Trcf by
the definitions

(∀y) f = y ⇐⇒ p̃(X) · y = q̃(X) (10)

for each (but X) rational stream f , p̃(x) := c p(x), and q̃(x) := c q(x), for c ∈ N

the least common multiple of the denominators of coefficients of p(x) and q(x);
then: Trcf[S,R,X,RQ] is a conservative extension of Trcf, and all the symbols
f ∈ RQ have the rational stream interpretation f .

Remark 3. Alternatively, a rational stream f (with rational coefficients) can be
finitely represented in terms of linear transformations H : Q

d → Q and G :
Q

d → Q
d, where d is the finite dimension of the linear span of the iterated tails

Deciding Stream Logic 149

of f [40]. Constraints for the finite number d of linear independent iterated tails
are obtained from the anamorphism (H,G), which is the unique homomorphism
from the coalgebra 〈H, G〉 ∈ Q

d → Q × Q
d to the corresponding final stream

coalgebra.

Automatic Streams. We exemplify the encoding of a certain class of regular
streams as (semi-)algebraic constraints in stream logic. Consider the Prouhet-
Thue-Morse [2] stream ptm ∈ F2�X�, for F2 the finite field of characteristic 2.
The nth -coefficient of this stream is 1 if and only if the number of 1’s in the
2-adic representation [n]2 of n is even. In other words, the nth -coefficient is 1 if
and only if [n]2 is in 0∗(10∗10∗)∗. This regular expression yields an equivalent
deterministic finite automaton with two states, namely “odd number of 1s” and
“even number of 1s”. Such a stream is also said to be automatic [2].

Christol’s characterization [13] of algebraic (over the rational functions with
coefficients from a finite field) power series in terms of deterministic finite
automata (with outputs) implies that the stream ptm is algebraic over F2[X].
For instance, the stream ptm can be shown to be a root of the polynomial
X + (1 + X2) · Y + (1 + X)3 · Y 2 of degree 2 and coefficients in F2[X]. A
semi-algebraic constraint for ruling out other than the intended solution can
be read-off, say, from a Sturm chain.

In this way, Christol’s theorem supports the logical definition in stream logic
of all kinds of analytic functions (sin, cos, . . .) over finite fields. But not over the
reals, as otherwise we could define the natural numbers using expressions such
as sin (πx) = 0. And we could therefore encode undecidable identity problems
over certain classes of analytic functions [36], even without using π [28].

Heads and Tails. On the basis of the fundamental law of the stream calculus for
formal power series, we define operators for stream projection and consing. Now,
the theory Trcf[S,R,X, hd, tl, cons] with the new (compared with Trcf[S,R,X])
definitional axioms

(∀x, x′) tl(x) = x′ ⇐⇒ (∃x0)R(x0) ∧ x = x0 + X · x′ (11)

(∀x, x0)hd(x) = x0 ⇐⇒ R(x0) ∧ (∃x′)x = x0 + X · x′ (12)

(∀x0, x
′, y) cons(x0, x

′) = y ⇐⇒ R(x0) ∧ y = x0 + X · x′ (13)

is a conservative extension of Trcf. Moreover, hd(x) = y (tl(x) = y) holds in
the structure R�X� if and only if y is interpreted by the head (tail) of the
interpretation of x; similarly for consing.

With these definitions we may now also express corecursive identities in
a decidable first-order equality theory. The following example codifies the
Fibonacci recurrence (see Example 6) in our (extended) decidable logic.

150 H. Ruess

Example 12.

hd(x) = 0

hd(tl(x)) = 1

tl
2
(x) − tl(x) − x = 0.

These kinds of behavioral stream identities are ubiquitous in stream calculus [38],
for example, for specifying filter circuits.

Example 13 (3-2-filter). A 3-2-filter with input stream x and output y is spec-
ified in stream logic by three initial conditions and the difference equation

hd(y) = hd(tl(y)) = hd(tl
2
(y)) = 0

tl
3
(y) = c0x + c1tl(x) + tl

3
(x) + c2c3tl

2
(y) + c4tl(y),

for constants c0, . . . , c4 ∈ Z.

Example 14 (Timing Diagrams). The rising edge stream is specified in Scade-
like [17] programming notation using the combined equation

y = 0 → x ∧ ¬pre(x).

That is, the head of y is 0 and the tail of y is specified by the expression to the
right of the arrow. Notice that the Scade notation pre(x) is similar to the shift
operation in that pre(x) = (⊥, x0, x1, . . .), where ⊥ indicates that the head ele-
ment is undefined. The rising edge stream E is specified corecursively in stream
logic by

(∀x, y)E(x) = y ⇐⇒ (hd(y) = 0 ∧ tl(y) = and(x,not(tl(x)))),

for an arithmetic encoding of the logical stream operators and and not .

The decision procedure for stream logic may also be used in coinductive proofs
for deciding whether or not a given binary stream relation is a bisimulation.

Example 15 (Bisimulation). A binary relation B on streams, expressed as a
formula in stream logic with two free variables, is a bisimulation [38] if and only
if the Lor[S,R,X, hd, tl] formula

(∀x, y)B(x, y) ⇒ hd(x) = hd(y) ∧ B(tl(x), tl(y))

holds in the structure of streams.

Finally, we exemplify how corecursively defined stream functions are defined in
a conservative extension of Trcf.

Deciding Stream Logic 151

Example 16 (Stream Zip). The function Z for zipping the coefficients of two
streams is defined by the corecursive identities

(∀x, y) hd(Z(x, y)) = hd(x) ∧ tl(Z(x, y)) = Z(y, tl(x)).

Since there is a unique6 interpretation in R�X� satisfying these identities, the
function symbol Z is defined implicitly in the theory Trcf[S,R,X, hd, tl, Z]. Now,
by Beth’s definability theorem [23], Z is also explicitly definable, say, on the basis
of Craig interpolation.

Example 17. Assuming definitions E(x) and O(x) for sampling its stream argu-
ment x at even and at odd positions, respectively, we may now prompt our
verification procedure to establish stream equalities such as

(∀x)x = Z(E(x), O(x)),

without using the bisimulation principle and without the need for constructing
an explicit bisimulation relation.

The developments in Examples 16 and 17 generalize to all stream differential
equations ([38], Chapter 11).

7 Conclusions

First-order stream logic is expressive for encoding problems of stream calcu-
lus. It is decidable in doubly exponential time, and its decision procedure is
based on quantifier elimination for the theory of real closed ordered fields. Some
of the proposed encodings for the relativization of quantifiers, however, lead
to additional quantifier alternations (and variables and constraints) in problem
formulations, which significantly increases the computational effort required to
solve these constraints. Thus, it remains to be seen whether and how exactly
a decision procedure for stream logic based on quantifier elimination for real
closed fields makes practical progress compared to mature implementations of
the non-elementary logic-automaton connection [27,33].

Alternatively, the decision procedure for first-order stream logic can be based
directly, that is, without relativizing the stream quantifiers, on a quantifier elim-
ination procedure for real closed valuation rings [12]. But these algorithms have
not been studied and explored nearly as much as quantifier elimination for real
closed fields, and the author is not aware of a reasonable computer implementa-
tion.

6 See ([38], Theorem 252) for constructing unique solutions of corecursive identities
based on the uniqueness of anamorphisms into the final stream coalgebra.

152 H. Ruess

A Orderable Fields

A field K is orderable if there exists a non-empty K+ ⊂ K such that

1. 0 /∈ K+

2. (x + y), xy ∈ K+ for all x, y ∈ K+

3. Either x ∈ K+ or −x ∈ K+ for all x ∈ K \ {0}

Provided that K is orderable we can generate a strict order on K by x < y if and
only if (y − x) ∈ K+. Furthermore, a total ordering ≤ on K is defined by x ≤ y
if and only if x < y or x = y, and (K,≤) is said to be a (totally) ordered field.
Now, the absolute value of x ∈ K is defined by |x| := max(−x, x). The triangle
inequality

|x + y| ≤ |x| + |y| (14)

holds for ordered fields. As −|x|−|y| ≤ x+y ≤ |x|+|y|, we have |x+y| ≤ |x|+|y|,
because x + y ≤ |x| + |y| and −(x + y) ≤ |x| + |y|.

Let K be an ordered field and a ∈ K \{0} fixed. The scaled identity function
Ia(x) := ax is uniformly continuous in the order topology of K. For given ε ∈ K+,
let δ := ε/|a|. Indeed, for all x, y ∈ K, |x − y| < δ implies |ax − ay| = |a| |x − y| <
|a|δ = ε. Consequently, every polynomial in K is continuous.

A field K is orderable iff it is formally real (see [45], Chapter 11), that is, −1
is not the sum of squares, or alternatively, the equation x2

0 + . . . + x2
n = 0 has

only trivial (that is, xk = 0 for each k) solutions in K.

B Real Closed Fields

A field K is a real closed field if it satisfies the following.

1. K is formally real (or orderable).
2. For all x ∈ K there exists y ∈ K such that x = y2 or x = −y2.
3. For all polynomial P ∈ K[t] (over the single indeterminate t) with odd degree

there exists x ∈ K such that P (x) = 0.

Alternatively, a field K is real closed if K is formally real, but has no formally
real proper algebraic extension field.

Let K be a real closed totally ordered field and x ∈ K. Then x > 0 iff x = y2

for some y ∈ K. Suppose x > 0, then, by definition of real closedness, there exists
y ∈ K such that x = y2. Conversely, suppose x = y2 for some y ∈ K, then, by
the definition of K+, we have y2 ∈ K+ for all y ∈ K, and therefore x > 0. Thus
every real closed field is ordered in a unique way.

Artin and Schreier’s theorem gives us two equivalent conditions for a field K
to be real closed: for a field K, the following are equivalent

1. K is real closed.
2. K2 is a positive cone of K and every polynomial of odd degree has a root in

K.

Deciding Stream Logic 153

3. K(i) is algebraically closed and K �= K(i) (where i denotes
√

−1).

This characterization provides the basis (see axioms 16) and 17 below) for a first-
order axiomatization of (ordered) real closed fields. The language of ordered rings
(and fields), Lor consists of a binary relation symbols ≤, two binary operator
symbols, +, ·, one unary operator symbol −, and two constant symbols 0, 1.
Now, the first-order theory Trcf of ordered real closed fields consists of all Lor-
structures M satisfying the following set of axioms.

Field Axioms.

1. (∀x, y, z)x · (y + z) = x · y + x · z
2. (∀x, y, z)x + (y + z) = (x + y) + z
3. (∀x, y, z)x · (y · z) = (x · y) · z
4. (∀x, y)x + y = y + x
5. (∀x, y)x · y = y · x
6. (∀x)x + 0 = x
7. (∀x)x + (−x) = 0
8. (∀x)x · 1 = x
9. (∀x)x �= 0 ⇒ (∃y)x · y = 1

Total Ordering Axioms.

10. (∀x)x ≤ x
11. (∀x, y, z)x ≤ y ∧ y ≤ z ⇒ x ≤ z
12. (∀x, y)x ≤ y ∧ y ≤ x ⇒ x = y
13. (∀x, y)x ≤ y ∨ y ≤ x
14. (∀x, y, z)x ≤ y ⇒ x + z ≤ y + z
15. (∀x, y) 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x · y

Existence of Square Root.

16. (∀x)(∃y) y · y = x ∨ y · y = −x

Every polynomial of odd degree has a root.

17. (∀a0, . . . , an) an �= 0 ⇒ (∃x) a0 + a1 · x + . . . + an · xn = 0 for odd n ∈ N

If an Lor-structure M satisfies the axioms for ordered real closed fields above,
then M is called a model of Trcf. Any model of Trcf is elementarily equivalent to
the real numbers. In other words, it has the same first-order properties as the
field of ordered reals.

154 H. Ruess

References

1. Alling, N.L.: Foundations of Analysis Over Surreal Number Fields. Elsevier, Ams-
terdam (1987)

2. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

3. Anscombe, W., Koenigsmann, J.: An existential ∅-definition of Fq[[t]] in Fq((t)).
J. Symb. Log. 79(4), 1336–1343 (2014)

4. Ax, J.: On the undecidability of power series fields. In: Proceedings of the American
Mathematical Society, vol. 16, no. 846, p. 4 (1965)

5. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity
of quantifier elimination. J. ACM (JACM) 43(6), 1002–1045 (1996)

6. Bourbaki, N.: Eléments de Mathématiques, vol. Livre II, Algèbre, chap. 6, Groupes
et corps ordonnés. Hermann, Paris (1964)

7. Broy, M.: Specification and verification of concurrent systems by causality and
realizability. Theoret. Comput. Sci. 974(114106), 1–61 (2023)

8. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2012). https://doi.
org/10.1007/978-1-4613-0091-5

9. Buchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of
successor. J. Symb. Log. 34(2), 166–170 (1969)

10. Burge, W.H.: Stream processing functions. IBM J. Res. Dev. 19(1), 12–25 (1975)
11. Charalambides, C.A.: Enumerative Combinatorics. Chapman and Hall/CRC, Boca

Raton (2018)
12. Cherlin, G., Dickmann, M.A.: Real closed rings II. Model theory. Ann. Pure Appl.

Logic 25(3), 213–231 (1983)
13. Christol, G., Kamae, T., Mendès France, M., Rauzy, G.: Suites algébriques, auto-

mates et substitutions. Bull. Soc. Math. France 108, 401–419 (1980)
14. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–

1210 (2010)
15. Cluckers, R., Derakhshan, J., Leenknegt, E., Macintyre, A.: Uniformly defining

valuation rings in henselian valued fields with finite or pseudo-finite residue fields.
Ann. Pure Appl. Logic 164(12), 1236–1246 (2013)

16. Cohen, P.J.: Decision procedures for real and p-adic fields. Commun. Pure Appl.
Math. 22(2), 131–151 (1969)

17. Colaço, J.L., Pagano, B., Pouzet, M.: Scade 6: a formal language for embedded
critical software development. In: 2017 International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 1–11. IEEE (2017)

18. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

19. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-order Logic: A
Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge
(2012)

20. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1–2), 29–35 (1988)

21. Fehm, A.: Existential ∅-definability of henselian valuation rings. J. Symb. Log.
80(1), 301–307 (2015)

22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, p. 11. IEEE (1982)

https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/3-540-07407-4_17

Deciding Stream Logic 155

23. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge
(1997)

24. Jovanović, D., De Moura, L.: Solving non-linear arithmetic. ACM Commun. Com-
put. Algebra 46(3/4), 104–105 (2013)

25. Kahn, G.: The semantics of a simple language for parallel programming. Inf. Pro-
cess. 74, 471–475 (1974)

26. Kahn, G., MacQueen, D.: Coroutines and networks of parallel processes. Research
Report INRIA-00306565 (1976)

27. Klarlund, N., Møller, A., Schwartzbach, M.I.: Mona implementation secrets. Int.
J. Found. Comput. Sci. 13(04), 571–586 (2002)

28. Laczkovich, M.: The removal of π from some undecidable problems involving ele-
mentary functions. Proc. Am. Math. Soc. 131(7), 2235–2240 (2003)

29. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings 1988 IEEE Symposium on Security and Privacy, p. 177. IEEE Com-
puter Society (1988)

30. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Proceedings of 1994 IEEE Computer Society Symposium
on Research in Security and Privacy, pp. 79–93. IEEE (1994)

31. Neukirch, J.: Algebraic Number Theory, vol. 322. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-03983-0

32. Niven, I.: Formal power series. Am. Math. Mon. 76(8), 871–889 (1969)
33. Owre, S., Rueß, H.: Integrating WS1S with PVS. In: Emerson, E.A., Sistla, A.P.

(eds.) CAV 2000. LNCS, vol. 1855, pp. 548–551. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722167 42

34. Pradic, P.: Some proof-theoretical approaches to Monadic Second-Order logic.
Ph.D. thesis, Université de Lyon; Uniwersytet Warszawski. Wydzia�l Matematyki,
Informatyki (2020)

35. Prestel, A.: Definable henselian valuation rings. J. Symb. Log. 80(4), 1260–1267
(2015)

36. Richardson, D., Fitch, J.: The identity problem for elementary functions and con-
stants. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation, pp. 285–290 (1994)

37. Rutten, J.: On streams and coinduction. Technical report, CWI (2002)
38. Rutten, J.: The Method of Coalgebra: exercises in coinduction, vol. ISBN 978-90-

6196-568-8. CWI, Amsterdam (2019)
39. Rutten, J.J.: Elements of stream calculus: an extensive exercise in coinduction.

Electron. Notes Theor. Comput. Sci. 45, 358–423 (2001)
40. Rutten, J.J.: Rational streams coalgebraically. Log. Methods Comput. Sci. 4 (2008)
41. Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press, Cam-

bridge (1996)
42. Shamseddine, K., Comicheo, A.B.: On non-archimedean valued fields: a survey

of algebraic, topological and metric structures, analysis and applications. In:
Advances in Non-Archimedean Analysis and Applications: The p-adic Method-
ology in STEAM-H, pp. 209–254 (2021)

43. Srivas, M., Rueß, H., Cyrluk, D.: Hardware verification using PVS. In: Kropf,
T. (ed.) Formal Hardware Verification. LNCS, vol. 1287, pp. 156–205. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63475-4 4

44. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Springer,
Heidelberg (1998)

45. van der Waerden, B.: Algebra (1966)

https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/10722167_42
https://doi.org/10.1007/3-540-63475-4_4

156 H. Ruess

46. Weispfenning, V.: Quantifier elimination for real algebra-the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8, 85–101 (1997)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

What Is Decidable in Separation Logic Beyond
Progress, Connectivity and Establishment?

Tanguy Bozec1, Nicolas Peltier1 , Quentin Petitjean2(B) ,
and Mihaela Sighireanu2

1 Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France
2 Univ. Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,

91190 Gif-sur-Yvette, France
quentin.petitjean@ens-paris-saclay.fr

Abstract. The predicate definitions in Separation Logic (SL) play an important
role: they capture a large spectrum of unbounded heap shapes due to their induc-
tiveness. This expressiveness power comes with a limitation: the entailment prob-
lem is undecidable if predicates have general inductive definitions (ID). Iosif et
al. [8] proposed syntactic and semantic conditions, called PCE, on the ID of pred-
icates to ensure the decidability of the entailment problem. We provide a (possibly
nonterminating) algorithm to transform arbitrary ID into equivalent PCE defini-
tions when possible. We show that the existence of an equivalent PCE definition
for a given ID is undecidable, but we identify necessary conditions that are decid-
able. The algorithm has been implemented, and experimental results are reported
on a benchmark, including significant examples from SL-COMP.

Keywords: Separation logic · Inductive definitions · Bounded treewidth
fragment · PCE fragment · Symbolic heaps · Decision procedures

1 Introduction

Separation logic (SL) [9,11] is widely used in verification to reason about programs
manipulating dynamically allocated memory. Formulas in SL are defined from atoms
of the form x → (y1, . . . , yk), stating that at location (i.e., a memory address), x is
allocated a memory block containing the tuple built from values of y1, . . . , yk, and emp,
stating that the heap is empty, i.e., that there are no allocated locations. SL includes the
standard logical connectives and quantifiers, together with a special connective ϕ1�ϕ2,
called separating conjunction, asserting that formulas ϕ1 and ϕ2 are satisfied on disjoint
parts of the heap. This particular feature of the logic ensures the scalability of program
analyses by enabling local reasoning: the properties of a program may be asserted and
established by referring only to the part of the heap that is affected by the program. To
specify recursive data structures, the SL formulas include predicate atoms defined by
inductive rules with a fixpoint semantics. For instance, list segments from x to y may be
defined by the following rules:

This work has been partially funded by the French National Research Agency project
ANR-21-CE48-0011.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 157–175, 2024.
https://doi.org/10.1007/978-3-031-63501-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_9&domain=pdf
http://orcid.org/0000-0002-8943-7000
http://orcid.org/0009-0004-6504-8336
http://orcid.org/0000-0002-1925-089X
https://doi.org/10.1007/978-3-031-63501-4_9

158 T. Bozec et al.

ls(x, y)⇐ emp � x ≈ y , ls(x, y)⇐ ∃z. (x→ (z) � ls(z, y)
)
. (1)

Many problems in verification boil down to checking the validity of entailments
between formulas in SL. In general, unsurprisingly, entailment is undecidable. How-
ever, several fragments have been identified for which the entailment problem is decid-
able. Among these fragments, the so-called PCE fragment is one of the most expressive
ones [8]. Decidability was initially established by reduction to monadic second-order
logic on graphs with bounded treewidth. Later, more efficient algorithms were proposed
[4,10], and the problem turned out to be 2-Exptime-complete [3]. The PCE fragment is
defined by restricting the syntax and the semantics of the inductive rules defining the
predicates. Each rule is required to satisfy three properties (formally defined later):
(P)rogress, (C)onnectivity and (E)stablishment. Informally, the conditions respectively
assert that: (P) every rule allocates exactly one location; (C) the allocated locations have
a tree-shaped structure which mimics the call tree of the predicates, and (E) every loca-
tion not associated with a free variable is (eventually) allocated. A PCE formula is a
formula in which all predicates are defined by PCE rules. Most usual data structures
in programming can be defined using PCE rules. However, the PCE conditions impose
rigid constraints on the rules’ syntax, which are not necessarily satisfied in practice by
user-provided rules. For instance, the above rules of ls (Eq. (1)) are not PCE (because
the first rule of ls allocates no location), while the following ones, although specifying
non-empty list segments, are PCE:

ls+(x, y)⇐ x→ (y) , ls+(x, y)⇐ ∃z. (x→ (z) � ls+(z, y)) . (2)

The non-PCE formula ls(x, y) can then be written as a PCE formula (emp � x ≈
y) ∨ ls+(x, y). Other, rather natural, definitions of ls+ can be given, which are not
PCE (the second rule of lsm allocates no location, and the second rule of lse is not
connected):

lsm(x, y)⇐ x→ (y) , lsm(x, y)⇐ ∃z. (lsm(x, z) � lsm(z, y)) , (3)

lse(x, y)⇐ x→ (y) , lse(x, y)⇐ ∃z. (lse(x, z) � z→ (y)) . (4)

Similarly, the following definition of lists of odd length is not PCE:

ls1(x, y)⇐ x→ (y) , ls1(x, y)⇐ ∃z1, z2.
(
x→ (z1)�z1 → (z2)�ls1(z2, y)

)
, (5)

but it is clear that it can be transformed into a PCE definition by replacing the inductive
rule (at right) with the following ones:

ls1(x, y)⇐ ∃z1.
(
x→ (z1)�ls2(z1, y)

)
, ls2(z1, y)⇐ ∃z2.

(
z1 → (z2)�ls1(z2, y)

)
.

(6)
A natural question thus arises, which has not been investigated so far: can algorithms

be provided to identify whether a formula can be rewritten into an equivalent PCE
formula and to effectively compute such a formula (and the associated inductive rules)
if possible? The present paper aims to address these issues.

Contributions. We first observe that the PCE problem — i.e., the problem of testing
whether a given formula admits an equivalent PCE formula — is undecidable. The

What Is Decidable in Separation Logic Beyond PCE? 159

result follows from the undecidability of testing whether context-free grammar is regu-
lar. Then, we provide a procedure for transforming some formulas that do not satisfy the
PCE conditions into equivalent PCE formulas. Equivalence is guaranteed in all cases,
but the procedure does not always terminate. We also identify cases for which the for-
mulas cannot possibly admit any equivalent PCE formula. More precisely, we identify
a property called PCE-compatibility, which is strictly weaker than PCE, in the sense
that any formula that is equivalent to a PCE formula is PCE-compatible, but the con-
verse does not hold, and we prove that this property is decidable. To sum up, given
a formula ϕ, the procedure may either terminate with a negative answer (if ϕ is not
PCE-compatible) or may terminate with a positive answer and output a PCE formula
equivalent to ϕ or may diverge (if ϕ is PCE-compatible, but no equivalent PCE formula
can be obtained).

To our knowledge, there is no published work on this topic. In [7], the authors
proposed inductive definitions (ID, termed “recursive definitions” in [8]) with syntactic
restrictions incomparable to PCE since they require linearity and compositionality of
the ID to obtain decidability of the entailment problem. This class of ID (disregarding
data constraints) may be translated by our procedure into PCE form, i.e., they are PCE-
compatible. In [5], other decidable fragments of entailment problems are considered,
which do not fulfil the PCE conditions but can be reduced to PCE entailment. Unlike
the present approach, the reduction proposed in [5] does not preserve the equivalence of
formulas. In [4], the establishment condition is replaced by a condition on the equalities
occurring in the problem.

2 Separation Logic with Inductive Definitions

We recall the definition of the syntax and semantics of SL with inductive definitions.
Missing definitions, further explanations and examples can be found in [8]. We briefly
review standard notations: card(A) denotes the cardinality of set A, and A � B denotes
the disjoint union of sets A and B. The set {x ∈ Z | i ≤ x ≤ j} is denoted by �i, j�.
The domain of a function f is written dom(f). The equivalence class of an element x
w.r.t. some equivalence relation � is written [x]�, and the set {[x]� | x ∈ S } is written
S �. The relation � will sometimes be omitted if it is clear from the context. We often
identify an equivalence relation � with the set of its equivalence classes. For any binary
relation→, we denote by→∗ its reflexive and transitive closure. A set R is a set of roots
for → if for all elements x, y such that x → y, there exists r ∈ R such that r →∗ x. It
is minimal if, moreover, there is no set of roots R′ such that R′ ⊂ R (where ⊂ denotes
strict inclusion).

Definition 1 (SL formulas). Let V be a countably infinite set of variables, and let P
be a set of spatial predicate symbols, where each symbol p ∈ P is associated with a
unique arity #(p) (with countably infinite sets of predicate symbols of each arity). The
set of SL-formulas (or simply formulas) ϕ is inductively defined as follows:

ϕ := emp | x→ (y1, . . . , yk) | x ≈ y | x �≈ y | ϕ1∨ϕ2 | ϕ1�ϕ2 | p(x1, . . . , x#(p)) | ∃x. ϕ1

where ϕ1, ϕ2 are formulas, p ∈ P, k ∈ N and x, y, x1, . . . , x#(p), y1, . . . , yk ∈ V.

160 T. Bozec et al.

Note that negations are not supported. The considered fragment is similar to that
of [4] (with disjunctions added), with the slight difference that points-to atoms x →
(y1, . . . , yk) contain tuples of arbitrary length k ≥ 0. Let fv(ϕ) be the set of free variables
in ϕ. A substitution σ is a function from variables to variables; its domain dom(σ) is
the set of variables x such that σ(x) � x, and its image img(σ) = σ(dom(σ)). For
any expression (variable, tuple or set of variables, or formula) e, we denote by eσ the
expression obtained from e by replacing every free occurrence of a variable x by σ(x).
A symbolic heap is a formula containing no occurrence of ∨. By distributivity of � and
∃ over ∨, any formula ϕ can be reduced to an equivalent disjunction of symbolic heaps,
denoted by dnf (ϕ). An inductive rule associated with the predicate p has the form
p(x1, . . . , xn)⇐ ϕ, where x1, . . . , xn are pairwise distinct variables, n = #(p), and ϕ is a
formula with fv(ϕ) ⊆ {x1, . . . , xn}. If ϕ is not a symbolic heap, then p(x1, . . . , xn) ⇐ ϕ
may be replaced by the rules {p(x1, . . . , xn) ⇐ ϕi | i ∈ �1,m�}, where ϕ1, . . . , ϕm
are symbolic heaps such that

∨m
i=1 ϕi is dnf (ϕ). We assume in the following that this

transformation is applied eagerly to every rule. A set of inductive definitions (SID) R
is a set of inductive rules such that, for all predicates p, R contains finitely many rules
associated with p. We write p(y1, . . . , yn) ⇐R ψ if R contains a rule p(x1, . . . , xn) ⇐ ϕ,
with ψ = ϕ{xi �→ yi | i ∈ �1, n�}.
Definition 2 (SL structure). Let L be a countably infinite set of so-called locations.
An SL-structure is a pair (s, h) where s is a store, i.e., a partial function from V to L,
and h is a heap, i.e., a partial finite function from L to L∗, which can be written as a
relation: h(�) = (�1, . . . , �k) iff (�, �1, . . . , �k) ∈ h, k ∈ N.

For any heap h, we let ref (h) = {� | �0 ∈ dom(h), � occurs in h(�0)}, loc(h) = ref (h)∪
dom(h) and dgl(h) = loc(h)�dom(h) (for “dangling pointers”). Locations in dom(h) and
variables x such that s(x) ∈ dom(h) are allocated. We write � →h �

′ iff � ∈ dom(h), and
�′ occurs in h(�).

Definition 3 (SL semantics). Given a formula ϕ, a SID R and a structure (s, h) with
fv(ϕ) ⊆ dom(s), the satisfaction relation |=R is inductively defined as the least relation
such that (s, h) |=R ϕ iff one of the following conditions holds:

– ϕ = emp and h = ∅; or ϕ = (x→ (y1, . . . , yk)) and h = {(s(x), s(y1), . . . , s(yk))};
– ϕ = (x ≈ y), s(x) = s(y) and h = ∅; or ϕ = (x �≈ y), s(x) � s(y) and h = ∅;
– ϕ = ϕ1 ∨ ϕ2 and (s, h) |=R ϕi, for some i ∈ {1, 2}; or ϕ = ϕ1 � ϕ2 and there exist
disjoint domain heaps h1, h2 such that h = h1 � h2 and (s, hi) |=R ϕi, for all i ∈ {1, 2};

– ϕ = ∃x. ψ and (s′, h) |=R ψ, for some s′ matching s on all variables distinct from x;
– ϕ = p(x1, . . . , x#(p)), p ∈ P and (s, h) |=R ψ for some ψ such that ϕ⇐R ψ.
We write ϕ |=R ψ if for every structure (s, h) we have (s, h) |=R ϕ =⇒ (s, h) |=R ψ. If
both ϕ |=R ψ and ψ |=R ϕ hold, then we write ϕ ≡R ψ.
Definition 4 (SL model). An R-model of ϕ is a structure (s, h) such that (s, h) |=R ϕ.
Given two pairs (ϕ,R) and (ϕ′,R′), where ϕ, ϕ′ are formulas and R,R′ are SID, we
write (ϕ,R) ≡ (ϕ′,R′) iff (s, h) |=R ϕ ⇐⇒ (s, h) |=R′ ϕ′ holds for all structures (s, h).

What Is Decidable in Separation Logic Beyond PCE? 161

We emphasize that the atoms x ≈ y or x �≈ y only hold for empty heaps (this con-
vention simplifies notations as it avoids the use of standard conjunction). Formulas are
taken modulo the usual properties of SL connectives: associativity and commutativity
of � and ∨, neutrality of emp for �, commutativity of ≈, �≈, and also modulo prenex
form and α-renaming. We also assume that bound variables are renamed to avoid any
name collision. Rules are defined up to a renaming of free variables.

3 The PCE Problem

We now recall the conditions from [8], ensuring the decidability of the entailment prob-
lem.

Definition 5 (PCE rule and SID). Let r be a function mapping every spatial predi-
cate p ∈ P to an element of �1, #(p)�. For any atom p(x1, . . . , xn), the variable xr(p)

is the root of p(x1, . . . , xn), and the root of an atom x → (y1, . . . , yk) is x. A rule
p(x1, . . . , xn)⇐ ϕ is PCE w.r.t. some SID R if it is:

– progressing, i.e., ϕ is of the form ∃u1, . . . , um. (xi → (y1, . . . , yk) � ψ), where m ≥ 0,
ψ is a formula with no occurrence of→,∃,∨, and i = r(p);

– connected, i.e., moreover, all spatial predicate atoms occurring in ψ are of the form
q(z1, . . . , z#(q)) with zr(q) ∈ {y1, . . . , yk};

– established, i.e., moreover, for all i ∈ �1,m�, and for all structures (s, h) such that
(s, h) |=R ψ, either s(ui) ∈ dom(h) or s(ui) ∈ {s(x j) | j ∈ �1, n�}.

A SID R is PCE if every rule is PCE w.r.t. R. A formula ϕ is PCE if every predicate used
in ϕ is defined by PCE rules.

The problem we are investigating in the present paper is the following:

Definition 6 (PCE problem). Given a pair (ϕ,R), the PCE problem lies in deciding
whether there exists a formula ϕ′ and a PCE SID R′ such that (ϕ,R) ≡ (ϕ′,R′).

Assuming that ϕ is atomic is sufficient (complex formulas may be introduced by
inductive rules), but the possibility that ϕ′ is non-atomic allows for greater expressive-
ness. If one restricts oneself to list-shaped structures denoting words, then the PCE
conditions essentially state that the set of denoted words is regular. This entails the
following result, obtained by reduction from the regularity of context-free languages:

Theorem 1. The PCE problem is undecidable.

It may be observed that the structures (s, h) satisfying PCE pairs (ϕ,R) necessarily
satisfy two essential properties. First, due to the connectivity condition, these structures
necessarily admit a bounded number of roots, which correspond to locations assigned
by s to (possibly quantified) variables occurring inside ϕ (at some root position in a
predicate or points-to atom, as defined in Definition 5).

Structures with multiple roots are permitted (e.g., doubly linked lists), but due to the
connectivity condition, if x is the root of an atom ϕ, then, for every model (s, h) of ϕ, the
singleton {s(x)} is a set of roots for →h (i.e., all locations in loc(h) must be accessible

162 T. Bozec et al.

from s(x)). Disjoint structures built in parallel (such as two lists with the same length)
are not allowed1. Second, these structures also admit a bounded number of “dangling
pointers” (i.e., elements of dgl(h)), which again correspond (by s) to variables occurring
in ϕ, since all the variables introduced by unfolding rules must be allocated due to the
establishment property. The latter property turned out to be essential for decidability [6].
This yields the definition of a property called PCE-compatibility:

Definition 7 (PCE-compatibility). Let k ∈ N. A structure (s, h) is k-PCE-compatible
if (i) card(dgl(h)) ≤ k and (ii) there exists a set of roots R for →h with card(R) ≤ k. A
pair (ϕ,R) is k-PCE-compatible if every R-model of ϕ is k-PCE-compatible.
Proposition 1. Let ϕ be a formula, and R be a PCE SID. Every R-model (s, h) of ϕ is
k-PCE-compatible, where k is the number of (free or bound) variables in ϕ.

Example 1. Let us consider the formula ϕ = p(x, y) and the SID R1 below. For read-
ability, we employ the same variable names in predicate definitions and predicate calls
to avoid introducing the renaming of variables:

p(x, y)⇐ ∃z. z→ (x, y) ,

p(x, y)⇐ x→ (y) � q(y) ,

q(y)⇐ ∃z, u, t. (y→ (z, t) � r(z, u, t)
)
,

r(z, u, t)⇐ u �≈ t � z→ (u) � t → (t) .
(7)

The SID R1, and thus (ϕ,R1), are not PCE. In the first rule for p, z is root but not a
free variable, the rule defining q is not established for the existential variable u and the
rule defining r does not respect the progress condition as it has two points-to atoms.

4 Overview of Our Procedure

The (nonterminating) algorithm for transforming a pair (Φ,R) into an equivalent PCE
pair is divided into four main steps (from now on, we denote the target formula by Φ,
whereas the meta-variable ϕ is reserved for formulas occurring in inductive rules).

Step 1: We compute abstractions of the models of Φ (and of all relevant predi-
cate atoms). The aim is to extract relevant information about the constraints satisfied
by these models concerning (dis)equalities, heap reachability and allocated locations.
The abstractions are constructed over a set of variables that includes the variables freely
occurring in the formulas, together with some additional variables — the so-called invis-
ible variables — that correspond to existential variables that either occur in Φ or are
introduced by unfolding inductive rules. The usefulness of invisible variables will be
demonstrated later. The computation does not terminate in general, as the set of abstrac-
tions is infinite (due to the presence of invisible variables). However, we prove that the
computation terminates exactly when the considered formula is k-PCE-compatible (for
some k ∈ N). Furthermore, we introduce a technique — the so-called ISIV condition
— to detect when the formula is not k-PCE-compatible during the computation of the
abstractions. This ensures termination in all cases and also proves that the problem of

1 Indeed, to satisfy the connectivity condition the two lists must be defined in distinct atoms (as
they are not connected). But then it is impossible to ensure that they have the same number of
elements.

What Is Decidable in Separation Logic Beyond PCE? 163

deciding whether a given pair is k-PCE-compatible, for some k, is decidable. This step
is detailed in Sect. 5.

Step 2: We transform the set of rules in order to ensure that every predicate is asso-
ciated with a unique abstraction, in which all invisible variables are replaced by visible
ones. This step always terminates. It adds some combinatorial explosion that could be
reduced by a smart transformation, but it greatly simplifies the technical developments.
This step is detailed in Sect. 6.

Step 3: We apply some transformations on the SID to ensure that every abstraction
admits exactly one root. This step may fail in the case where the structures described
by the rules do not have this property. See Sect. 7.

Step 4: We recursively transform any rule p(#»x)⇐ ϕ into a PCE rule by decompos-
ing ϕ into a separating conjunction y→ (z1, . . . , zk)�ϕ1� · · ·�ϕk where y is the root of
the structure and every ϕi encodes a structure of root zi. Each of these formulas ϕi may
then be associated with fresh predicate atoms if needed. The process is repeated until
one gets a fixpoint. Equivalence is always preserved, but termination is not guaranteed.
This step is detailed in Sect. 8.

Before describing all these steps, we wish to convey some general explanations
about the difficulties that arise when one tries to enforce each condition in Definition 5.

The progress condition can often be enforced by introducing additional predicates to
ensure that each rule allocates exactly one location. For instance, the definition of lists
of odd length in Eq. (5) is not PCE, but it can be transformed into a PCE definition
by replacing the inductive rule (at right) with the two inductive rules given in Eq. (6)
(introducing a new predicate ls2(x, y)). The key point is that the root of the structure
must be associated with a parameter of the predicate, which sometimes requires the
addition of new existential variables in the formula. For instance, the formula p(x) with
p(x) ⇐ ∃y. y → (x) will be written: ∃y. p′(x, y) with p′(x, y) ⇐ y → (x). The set of
roots is computed in Step 1 above, and invisible roots (like y in the above example) are
made visible during Step 2. Note that this technique is applicable only if the number of
such roots is bounded; the ISIV condition will ensure that this constraint is satisfied.
The connectivity condition is enforced by using the abstract reachability relation com-
puted during Step 1 to identify the predicate atoms that do not satisfy this condition and
by modifying the rules to delay the call to these predicates until the connectivity condi-
tion is satisfied. For instance, the first rule below is modified into the second one:

q(x)⇐ ∃y1, y2, y3. (x→ (y1, y2) � ls+(y1, y3) � ls+(y3, y3) � ls+(y2, y2)) , (8)

q(x)⇐ ∃y1, y2, y3. (x→ (y1, y2) � q′(y1, y3) � ls+(y2, y2)) , (9)

where q′(y1, y3) is defined similarly to ls+(y1, y3) in Eq. (2) except the first rule:

q′(y1, y3)⇐ y1 → (y3)� ls+(y3, y3) , q′(y1, y3)⇐ ∃z. (y1 → (z)� q′(z, y3)) . (10)

The establishment condition may be enforced in two ways. If the considered exis-
tential variable only occurs in pure atoms (disequalities or equalities), then it can be
eliminated using usual quantifier elimination techniques. For instance, the predicate
r(x)⇐ ∃y. x→ ()� x �≈ y can be reduced into r(x)⇐ x→ () since a location y distinct
from x always exists (recall that the equational atom x �≈ y only holds for empty heaps).

164 T. Bozec et al.

Otherwise, one must collect the set of all variables that are reachable but not allocated
and associate them with new existential variables in ϕ (and parameters of predicates).
For instance, the formula r′(x) with r′(x)⇐ ∃y. x→ (y) is transformed into ∃y. r′′(x, y)
with r′′(x, y) ⇐ x → (y). These variables correspond to invisible variables computed
during Step 1 and transformed into visible variables in Step 2. Again, the ISIV condition
ensures that the number of such variables is bounded.

5 Abstracting Models and Formulas

We formalize the notion of abstraction that summarizes the main features (locations
defined and allocated, reachability, etc.) of models and SL-formulas. Then, we define
two relations between abstractions and SL-structures. Finally, we define the abstraction
process for a formula, i.e., how we attach a set of abstractions to an SL-formula.

Definition 8 (Abstraction). An abstraction is a tuple A = 〈V,�,�,Vv,Va, h,�〉 where:
(i) V is a set of variables and � is an equivalence relation on V; (ii) � (disequality
relation) is a symmetric and irreflexive binary relation on V; (iii) Vv ⊆ V is a finite
set of variables called visible variables; (iv) Va ⊆ V is a subset of classes of variables
called allocated variables; (v) h : Va −→ V

∗
is a partial heap mapping which associates

a tuple of classes of variables of arbitrary size to some class of allocated variables; (vi)
�⊆ V × V is a reachability relation which is a relation such that ∀ [x] ∈ Va and
∀ [y] ∈ h([x]), ([x] ,

[
y
]
) ∈�. The set of all abstractions is denoted by A. We designate

the components of an abstraction A using the dotted notation by A•V, A•Vv, etc. The set
of invisible variables of A is A•Vinv � A•V � A•Vv.

Abstractions are taken modulo renaming of invisible variables: two abstractions, A1

and A2, are considered equal, denoted A1 = A2, if there exists a renaming σ of invisible
variables such that A1 = A2σ.

Fig. 1. Examples of abstractions.

Example 2. Figure 1 graphically represents three abstractions denoted Ap
1 , Ar

1 and Aq
1.

Equivalence classes are represented by circles and are labelled by variable names. Allo-
cated classes are filled grey; invisible variables are prefixed with ∃, and [] are omitted.
Disequalities are represented with dashed lines, while heap and reachability relations
are represented with tick resp. snaked arrows.

What Is Decidable in Separation Logic Beyond PCE? 165

An SL-structure is a model of an abstraction if its store is coherent with the abstrac-
tion (i.e., it maps equal variables to the same location and disequal variables to different
locations) and its heap contains at least all the reachability relations of the abstraction.
However, the model may contain more allocated locations and paths between locations.
On the other hand, an abstraction of an SL-structure captures exactly the visibility of
variables in the store, the equivalence between variables and the reachability of loca-
tions in the heap; it abstracts the paths between locations labelled by (visible or invisi-
ble) variables and going through locations not labelled by some variable.

Definition 9 (Model and Abstraction). A structure (s, h) is a model of an abstraction
A, denoted by (s, h) |= A, if there exists a functional extension ṡ of s satisfying the
following conditions: (i) dom(ṡ) = A•V and dom(s) = A•Vv; (ii) If (x, y) ∈ A•�
then ṡ(x) = ṡ(y); (iii) If ([x] ,

[
y
]
) ∈ A•� then ṡ(x) � ṡ(y); (iv) For all x ∈ A•V, if

[x] ∈ A•Va then ṡ(x) ∈ dom(h); (v) For all [x] ∈ A•Va if A•h([x]) = (
[
y1
]
, . . . ,

[
yk
]
) then

h(ṡ(x)) = (ṡ(y1), . . . , ṡ(yk)); (vi) For all x, y ∈ V, if ([x] ,
[
y
]
) ∈ A•� then there exists a

path �0 →h · · · →h �n in h such that �0 = ṡ(x), �n = ṡ(y) and {�1, . . . , �n−1} ∩ img(ṡ) = ∅.
If (s, h) |= A and the converses of Items (ii), (iii) and (vi) hold, then A is an abstraction

of (s, h). The set of all abstractions of (s, h) is denoted by abs(s, h).

Example 3. Consider the structure (s1, h1) defined over the set of variables {x, y} with
s1(x) = �1, s1(y) = �2 � �1, h1(�0) = (�1, �2). Ap

1 from Fig. 1 is an abstraction of
(s1, h1) for ṡ1(z) = �0. Moreover, Ap

1 has as model (s2, h2) with s1(x) = s1(y) = �1,
h1(�0) = (�1, �1).

The following operations on abstractions are used in our abstraction process.

Definition 10 (Pure abstractions). The empty abstraction, denoted Aemp, has all its
components empty sets. Let V0 be a set of variables. The abstraction of equalities
over V0, denoted A≈(V0), is 〈V0, {V0}, ∅,V0, ∅, ∅, ∅〉, i.e., all variables are visible and
in the same equivalence class. The abstraction of disequalities over V0 is A�≈(V0) =
〈V0, IdV0 ,V

2
0 � IdV0 ,V0, ∅, ∅, ∅〉, i.e., all variables are visible and pairwise distinct, and

none is allocated.

Note that we identify equivalence relations with the set of their equivalence classes so
that {V0} denotes the relation {(x, y) | x, y ∈ V0}.
Definition 11 (Quantified abstractions). Let V0 ⊆ A•V be a set of variables. The
hiding of V0 in A, denoted by A∃(V0), is the abstraction having the same components as
A except the set of visible variables, i.e., A∃(V0) •Vv = A•Vv � V0.

Definition 12 (Separated abstractions). Let A1 and A2 be two abstractions; w.l.o.g.,
we consider that A1 •Vinv ∩ A2 •Vinv = ∅, i.e., the sets of invisible variables are disjoint
(modulo renaming). Let V� = A1 •V ∪ A2 •V and the equivalence relation �� over V�

defined by the transitive closure of A1 •�∪A2 •�. Consider now the relation �� over V���
(the set of equivalence classes of ��) defined by the symmetric closure of the relation:
{([x]�� ,

[
y
]
��) | x, y ∈ V�, ([x]Ai•� ,

[
y
]
Ai•�) ∈ Ai •�, i ∈ {1, 2}} ∪ {([x1]�� , [x2]��) | xi ∈

V�, [xi]Ai•� ∈ Ai •Va, i ∈ {1, 2}}. If �� is irreflexive, then A1 and A2 are separated.

166 T. Bozec et al.

Definition 13 (Separating abstractions). The separating composition A1 � A2 of two
separated abstractions A1 and A2 is the abstraction A� such that:

– A� •V = V�; A� •� =��; A� •� =��;
– A� •Vv = A1 •Vv ∪ A2 •Vv;
– A� •Va = {[x]A�•� | [x]Ai•� ∈ Ai •Va, i ∈ {1, 2}};
– A� •h = [[x]A�•� �→ (

[
y1
]
A�•� , . . . ,

[
yn
]
A�•�) | Ai •h([x]Ai•�) = (

[
y1
]
Ai•� , . . . ,[

yn
]
Ai•�), i ∈ {1, 2}];

– A� •� = {([x]A�•� ,
[
y
]
A�•�) | ([x]Ai•� ,

[
y
]
Ai•�)∈ Ai •�, i ∈ {1, 2}}.

The following definitions are used to build the reachability relation in abstractions
by replacing chains [x0] �→ [x1] �→ . . . �→ [xn−1] �→ [xn] related by A•h with the tuple
([x0] , [xn]) in A•� if the variables xi with i ∈ [1, n − 1] are not “special” for A.

Definition 14 (Roots). The roots of an abstraction A, root(A), is the set of minimal sets
of roots of A•�. We denote by x ∈∀ root(A) or [x] ∈∀ root(A) that [x] belongs to all
sets in root(A) and by x ∈∃ root(A) or [x] ∈∃ root(A) that [x] belongs to at least one set
in root(A).

As A•�may contain cycles, roots are not uniquely defined. However, the algorithm
for computing abstractions will ensure that root(A) is always non-empty.

Definition 15 (Special and persistent variables). A variable x ∈ A•Vinv is special
if its equivalence class is a singleton and it satisfies one of the following conditions:
(i) x ∈∀ root(A), i.e., x occurs in all sets of roots of A; (ii) [x] � A•Va, i.e., x is not
allocated, and there exists

[
y
] ∈ A•Va such that (

[
y
]
, [x]) ∈ A•�, i.e., x is reachable

from an allocated variable; (iii) there exists y ∈ A•Vv such that y ∈∃ root(A) and
[x] ∈ A•h(

[
y
]
), i.e., x is pointed to by a possible root that is visible; (iv) there exists

[
y
] ∈ A•Va such that

[
y
] ∈∀ root(A) and [x] ∈ A•h(

[
y
]
), i.e., x is pointed to by a

necessary root that is visible or invisible. An invisible variable is persistent if it satisfies
one of the items (i) or (ii) above. The set of persistent variables is denoted by A•Vper.

Example 4. Abstractions Ap
1 and Aq

1 in Fig. 1 have a singleton set of roots built from one
class: root(Ap

1) = {{[z]}} and root(Aq
1) = {{[y]}}, while Ar

1 has a unique set of roots but
containing two classes root(Ar

1) = {{[z] , [t]}}. The variable z is not visible in Ap
1 , but it is

special and persistent since it fulfils the condition (i) of Definition 15. All the variables
in Aq

1 are special, but only y and u are persistent.

Definition 16 (Disconnected variable). A variable x ∈ A•Vv is disconnected if it sat-
isfies the following two conditions: (1) [x] � A•Va, i.e., x is not allocated; and (2) for
all
[
y
] ∈ A•Va, (

[
y
]
, [x]) � A•�, i.e., x is not pointed by an allocated variable.

What Is Decidable in Separation Logic Beyond PCE? 167

If a variable is disconnected, any variable in its equivalence class is also discon-
nected. Moreover, a disconnected variable cannot be special. For any equivalence rela-
tion�, we denote by�� x the restriction of� to the elements distinct from x. Similarly,
S � x denotes the set {[y] | y ∈ S , y � x}, and for any relation→ on equivalence classes
of �,→ � x is the corresponding relation on equivalence classes of � � x.

Definition 17 (Deletion of variables not special). Let A be an abstraction and x ∈
A•Vinv a variable that is not special. We define rem(A, x), the abstraction obtained by
deleting x from A as follows: Arem = 〈A•V � {x}, A•�� x, A•�� x, A•Vv, A•Va � x, A•h�
x,�′ � x〉 with �′= {([y] , [z]) | [y] , [z] ∈ A•V ∧ (

[
y
]
, [x]) ∈ A•� ∧ ([x] , [z]) ∈

A•�} ∪ A•�. We denote by rem(A) the abstraction obtained by removing all variables
not special in A.

Definition 18 (Set of abstractions of a symbolic heap). Let ϕ be a symbolic heap
formula of SL. The set of abstractions of a formula ϕ, denoted abs(ϕ), is inductively
constructed using the rules in Tab. 1.

Example 5. Consider the pair (ϕ,R) introduced by Example 1. The abstractions of ϕ are
built by firstly building the abstractions of the predicates r(z, u, t) and then q(y) — that
calls r — defined by the rules in Eq. (7). Then ϕ = p(x, y) has two abstractions. The first
is Ap

1 from Fig. 1, obtained from the non-recursive rule of p. The second is Ap
2 in Fig. 2,

obtained from A2 by removing variables z and t using the procedure in Definition 17
because they are not special. The abstraction A2 is obtained by applying the rule [Sep]
on Aq

1 in Fig. 1, which is an abstraction of q(y), and the abstraction obtained by the rule
[Pto] for x→ (y).

Fig. 2. Abstraction A2

Given A ∈ abs(ϕ), we consider the implicit tree of construction of A using rules in
Definition 18: every node of this tree is an abstraction created by one of the rules [Ex],
[Pred] and [Sep], and every leaf is an abstraction of an atomic formula. Therefore, every
node of this tree is associated with a formula, which is a sub-formula of an unfolding
of ϕ.

168 T. Bozec et al.

Table 1. Computing Abstractions of a Symbolic Heap Formula

Emp
abs(emp) � Aemp

Eq
abs(x ≈ y) � A≈({x, y}) NEq

abs(x �≈ y) � A �≈({x, y})

Pto

A•V = A•Vv = {x, y1, . . . , yn} A•� = Id A•� = ∅
A•Va = {[x]} A•h = [[x] �→ (

[
y1
]
, . . . ,

[
yn
]
)] A•� = {([x] ,

[
yi
]
) | i ∈ �1, n�}

abs(x→ (y1, . . . , yn)) � A

Sep
abs(ψ1) � A1 abs(ψ2) � A2 A1, A2 are separated A = rem(A1 � A2)

abs(ψ1 � ψ2) � A

Ex
abs(ψ) � A′ A = rem(A′∃({x}))

abs(∃x. ψ) � A

Pred
abs(∃y1, . . . , yn. (y1 ≈ x1 � · · · � yn ≈ xn � ψ)) � A p(y1, . . . , yn)⇐ ψ ∈ R

abs(p(x1, . . . , xn)) � A

Definition 19 (Condition “Infinite Set of Invisible Variables” (ISIV)). The abstrac-
tion A ∈ abs(p(x1, . . . , xn)) satisfies the condition ISIV if there exists an abstraction A′
in the construction tree of A such that:

1. A′ is associated with a renaming p(y1, . . . , yn) of p(x1, . . . , xn);
2. A has strictly more persistent variables than A′: card(A′ •Vper) < card(A•Vper);
3. the projections of abstractions A and A′ on their visible variables are equal (modulo

a renaming of the arguments xi ← yi).

Intuitively, the condition asserts that a “loop” exists in the unfolding tree of p, where
persistent variables are introduced inside the loop. As one can go through the loop
an arbitrary number of times, this entails that some branch exists with an unbounded
number of persistent variables, which in turn entails that non-k-PCE-compatible models
exist. If this condition is satisfied by one abstraction built during this step, the algorithm
fails. The following theorem states that the algorithm is correct and complete:

Theorem 2. Let ϕ be a formula and let R be an SID. We suppose that the construction
of abstractions terminates without failing. If A ∈ abs(ϕ), then there exists a model (s, h)
of ϕ such that A is an abstraction of (s, h). Moreover, if ϕ admits a model (s, h), then
there exists an abstraction A of ϕ such that (s, h) |= A.

We also show that the algorithm terminates, provided the ISIV condition is used to
dismiss pairs (ϕ,R) that are not k-PCE-compatible (thus that cannot admit any equiva-
lent PCE pair, by Proposition 1):

Theorem 3. Let ϕ be a formula and let R be an SID. If there exists k ∈ N such that
(ϕ,R) is k-PCE-compatible, then the computation of abs(ϕ) terminates without failure
(hence the ISIV condition is never fulfilled). Otherwise, the ISIV condition eventually
applies during the computation of abs(ϕ). Consequently, the problem of testing whether
(ϕ,R) is k-PCE-compatible for some k ∈ N is decidable.

What Is Decidable in Separation Logic Beyond PCE? 169

6 Predicates with Exactly One Abstraction

We describe an algorithm reducing any pair (Φ,R) into an equivalent pair (Φ†,R†) such
that every predicate atom admits exactly one abstraction with no invisible variables.
We also get rid of some existential variables when possible. The eventual goal is to
ensure that the rules that were obtained are established (in the sense of Definition 5).
We need to introduce some definitions and notations. A disconnected set for an n-ary
predicate p and an abstraction A ∈ abs(p(x1, . . . , xn)) is any subset I of {1, . . . , n} such
that all variables xi for i ∈ I are disconnected in A. Let R be an SID. Let x1, . . . , xn, . . .
be an infinite sequence of pairwise distinct variables, which will be used to denote the
formal parameters of the predicates. For each n-ary predicate p occurring in R, for each
abstraction A ∈ abs(p(x1, . . . , xn)) and for all disconnected sets I for p, A, we introduce
a fresh predicate pAI , of arity n + m − card(I), where m = card(A•Vinv). Intuitively,
pAI will denote some “projection” of the structures corresponding to the abstraction A.
The additional arguments will denote the invisible variables. The removed arguments
correspond to disconnected variables.

Example 6. The predicate p, defined by rules on the left in Example 1, has two abstrac-
tions (one by rule), Ap

1 and Ap
2 , where all roots are connected. In the same example,

predicates q and r also have only one abstraction. For all these predicates, the sets I are
always ∅.

The rules associated with pAI are obtained from those associated with p as follows.
For every formula ϕ such that p(x1, . . . , xn)⇐R ϕ, where ϕ is of the form ∃ #»y . (q1(#»u1)�
· · · � qk(

#»uk) � ϕ′) and ϕ′ contains no predicate symbol, and for all abstractions Ai ∈
abs(qi(x1, . . . , x#(qi))) (for i ∈ �1, k�), we add the rule:

pAI (#»s , x′1, . . . , x
′
m)⇐ ∃ #»z . (q1

A1
J1

(#»t 1,
#»v1) � · · · � qk

Ak
Jk

(#»t k,
#»vk) � ϕ

′′)σ (11)

if all the following conditions hold:

– A is the abstraction computed from ϕ as explained in Definition 18, selecting Ai for
the abstraction of qi(x1, . . . , x#(qi)), i.e., A = rem(A′∃(z)), where {A′′} = abs(ϕ′) (since
ϕ′ contains no predicate) and A′ = A1 � · · · � Ak � A′′ is the abstraction computed
from the matrix (q1(#»u1) � · · · � qk(

#»uk) � ϕ′) of ϕ.
– #»s (resp. #»t i) is the subsequence of x1, . . . , xn (resp. of #»ui) obtained by removing all

components of rank j ∈ I (resp. j ∈ Ji). Intuitively, I and Ji denote the parameters
that are removed from the arguments of p and qi, respectively.

– Ji is a subset of {1, . . . , #(qi)}, and for all variables z occurring as the j-th component
of #»ui, the following equivalence holds: j ∈ Ji iff z ∈ #»z ∪ {xi | i ∈ I} and z is
disconnected in A′. Note that the last condition entails that the j-th component of #»ui
is also disconnected in Ai; hence the predicate qi

Ai
Ji

exists. Intuitively, a variable is
removed if it is disconnected, and either it is existentially quantified in the rule, or it
is a free variable that was removed from the argument of p.

– (x′1, . . . , x
′
m) and #»vi are the sequences of invisible variables in A and Ai, respectively

(the order is irrelevant and can be chosen arbitrarily). We assume by renaming that
the Ai •Vinv are pairwise disjoint.

170 T. Bozec et al.

– σ is any substitution with dom(σ) ⊆ #»y and img(σ) ⊆ #»y ∪ #»s such that for all y ∈ #»y
and for all y′ ∈ #»y ∪ #»s : σ(y) = σ(y′) ⇐⇒ (y, y′) ∈ A′ •�. Intuitively, σ is applied to
get rid of superfluous existential variables by instantiating them when it is possible,
i.e., when the variable is known to be equal to a free variable or another existential
variable2.

– ϕ′′ is obtained from ϕ′ by removing all pure atoms containing a variable that is
disconnected in A′ and does not occur in #»s .

– #»z is the sequence of variables occurring either in the formula ϕ′′ or in the sequences
#»t i or #»vi (for some i ∈ �1, k�) but not in {x1, . . . , xn, x′1, . . . , x

′
m} ∪ dom(σ) (again, the

order is irrelevant). These variables correspond to variables from #»y or #»vi that can be
eliminated during the computation of A using the rule introduced in Definition 17.

The obtained set of rules is denoted by R†. It is clear that R† is finite (up to α-
renaming) if R is finite and abs(p(x1, . . . , xn)) is finite for all n-ary predicates p in R.

Example 7. The new rules for p, q, and r defined in the SIDR1 in Ex. 1 are given below:

p
Ap

1

∅ (x, y, z)⇐ z→ (x, y) ,

p
Ap

2

∅ (x, y, u)⇐ ∃z, t. (x→ (y)�

q
Aq

1

∅ (y, z, t, u)) ,

q
Aq

1

∅ (y, z, t, u)⇐ y→ (z, t) � r(z, t, u) ,

r
Ar

1

∅ (z, t, u)⇐ u �≈ t � z→ (u) � t → (t) . (12)

The arity of predicates p
Ap

2

∅ and q
Aq

1

∅ has been changed to include the invisible but

special variable u, and the predicate p
Ap

1

∅ now does not have an invisible root any more.

Example 8. In this example, we show how disconnected variables may be elimi-
nated. Let p, q be predicates defined by the rules: p(x, y) ⇐ ∃z. (x → (y) � q(x, z)),
q(x, y) ⇐ x �≈ y. p(x1, x2) and q(x1, x2) both admit one abstraction, Ap and Aq, respec-
tively, defined by:

Ap = ({x1, x2}, {{x1}, {x2}}, ∅, {x1, x2}, {[x1]}{[x1] �→ [x2]}, ∅) , (13)

Aq = ({x1, x2}, {{x1}, {x2}}, {([x1] , [x2])}, {x1, x2}, ∅, ∅, ∅) . (14)

The above transformation produces the rules: p
Ap

∅ (x, y) ⇐ (x → (y) � q
Aq

{2}(x)) and

qAr

{2}(x) ⇐ emp. The variable z is eliminated, as it is disconnected in the abstraction

corresponding to x → (y) � q(x, z). This yields the introduction of a predicate qAr

{2} in
which the second argument of q is dismissed.

The above transformation may be applied to the formulas Φ occurring in pairs
(Φ,R). Since the establishment condition applies only to the variables occurring in
the rule and not to the existential variables of Φ, there is no need to eliminate any
predicate argument in this case; thus, we may simply take I = ∅ for the predicates

2 In the latter case several substitutions exist, one of them can be chosen arbitrarily (the resulting
rules are identical up to α-renaming, e.g., ∃x∃y(x ≈ y � q(x, y)) can be written ∃x(x ≈ y �
q(x, y)){y← x} or ∃y(x ≈ y � q(x, y)){x← y}).

What Is Decidable in Separation Logic Beyond PCE? 171

pAI such that p appears in Φ. Predicates of the form qBI with I � ∅ will never appear
at the root level in Φ, but they may appear in the rules of the predicates pA∅ (in prac-
tice, such rules will be computed on demand). More precisely, we denote by Φ† the
formula obtained from Φ by replacing every atom p(y1, . . . , yn) in Φ by the formula
∨

A∈abs(p(x1,...,xn)) ∃ #»yA. pA∅ (y1, . . . , yn,
#»yA), where #»yA is the sequence of variables in A•Vinv

(with arbitrary order). Note that in the case where abs(p(x1, . . . , xn)) = ∅, p(y1, . . . , yn)
is replaced by an empty disjunction, i.e., by false. The properties of this transformation
are stated by the following result:

Theorem 4. (Φ,R) ≡ (Φ†,R†). Moreover, for all predicates pAI defined in R†, the set
abs(pAI (#»y , x′1, . . . , x

′
m)) contains exactly one abstraction.

7 Abstractions with Exactly One Root

We introduce an algorithm that transforms the considered SID by introducing and
removing predicates such that the abstraction of each predicate p defined by the new
R has only one root. This transformation is done in two steps: first, change predicates
with an abstraction without roots, and then change predicates with an abstraction with
more than one root. The transformation may fail if the structures corresponding to a
given recursive predicate have multiple roots, as such structures cannot be defined by
PCE rules (e.g., two parallel lists of the same length).

Removal of Abstractions Without Root: Let us consider every predicate p such
that its abstraction Ap ∈ abs(p(#»x)) satisfies root(Ap) = ∅. Because the abstraction of
p has no root, the associated structure has no allocated locations, and the predicate can
only be unfolded into formulas that do not contain points-to. Thus, for each unfolding
of p of abstraction A, which cannot be unfolded any more, it only contains equalities
and disequalities that are abstracted in A by A•� and A•�. As a consequence, we can
create a formula ϕA = (�i, j∈I≈ai ≈ a j) � (�i, j∈I�≈bi �≈ b j) with {ai ≈ a j | i, j ∈ I≈} = A•�
and {bi �≈ b j | i, j ∈ I �≈} = A•�. We can then replace every occurrence of p with ϕA.

Removal of Abstractions With Several Roots: We suppose now that for all pred-
icates p, the abstraction Ap ∈ abs(p(#»x)) verifies root(Ap) � ∅. Now let us consider
every predicate p such that its abstraction Ap ∈ abs(p(#»x)) has at least two roots, i.e.,
for all R ∈ root(Ap), card(R) ≥ 2. If p does not call itself, we unfold p by replacing each
occurrence of p with its definition using the rules in SID. Otherwise, the transformation
is considered impossible, and it fails.

At this point, if the transformation does not fail, we obtain:

Proposition 2 (Every abstraction has a single root). After applying the transforma-
tion in this section, for all predicates p, for all abstractions A ∈ abs(p(#»x)), there exists
a set R ∈ root(A) such that card(R) = 1.

Remark 1. We wish to emphasize that the failure of the above operation does not imply
that the transformation is unfeasible. For instance, one could, in principle, define two
lists of arbitrary (possibly distinct) lengths using one single inductive predicate, adding
elements in one of the lists in a non-deterministic way, although such a definition is very
unlikely to occur in practice. Then, our algorithm would fail (as it will detect that the

172 T. Bozec et al.

structure has two roots), although a PCE presentation exists. Extending the algorithm
to cover such cases is part of future work.

8 Transformation into PCE Rules

The last step of the transformation is a procedure reducing any pair (Φ†,R†) into an
equivalent pair (Φ‡,R‡) such that Φ‡ and R‡ are PCE formula resp. SID.

To this aim, we first introduce so-called derived predicates (adapted and extended
from [4]), the rules of which can be computed from the rules defining predicate symbols.
The aim is to extract from the call tree of a spatial atom the part that corresponds to
another atom. Given a SID R and two spatial atoms γ and λ, we denote by γ −−• λ the
atom defined by the following rules:

γ −−• λ⇐ ∃ #»x . (ϕ � (γ −−• λ′)) ,
γ −−• λ⇐ x1 ≈ y1 � · · · � xn ≈ yn ,

for all ϕ, λ′ with λ⇐R ∃ #»x . (ϕ � λ′) (up to AC of �),

if γ = p(x1, . . . , xn) and λ = p(y1, . . . , yn), or

γ = x1 → (x2, . . . , xn) and λ = y1 → (y2, . . . , yn).
(15)

We assume that all such rules occur in R. Intuitively, γ −−• λ encodes a structure
defined as the atom λ but in which a call to γ is removed. It is easy to see that γ −−• λ
is unsatisfiable if λ is a points-to atom and γ is a predicate atom. By definition, (x1 →
(x2, . . . , xn)) −−• (y1 → (y2, . . . , ym)) is equivalent to x1 ≈ y1 � · · ·� xn ≈ yn if m = n and
unsatisfiable otherwise. These remarks can be used to simplify the rules above (e.g., by
removing rules with unsatisfiable bodies).

For instance, given the rules p(x) ⇐ ∃y. (x → (y) � p(y)) and p(x) ⇐ x → (), the
derived atoms p(x′) −−• p(x) and (x′ → ()) −−• p(x) both denote a list segment from x to
x′, whereas (x′ → (x′′)) −−• p(x) denotes a list with a “hole” at x′. The corresponding
rules are, after simplification:

p(x′) −−• p(x)⇐ ∃y. (x→ (y) � (p(x′) −−• p(y))) , p(x′) −−• p(x)⇐ x ≈ x′ , (16)
x′ → () −−• p(x)⇐ ∃y. (x→ (y) � (x′ → () −−• p(y))) , x′ → () −−• p(x)⇐ x ≈ x′ , (17)

(x′ → (x′′)) −−• p(x)⇐ ∃y. (x→ (y) � (x′ → (x′′) −−• p(y))) , (18)
(x′ → (x′′)) −−• p(x)⇐ x ≈ x′ � p(x′′) . (19)

The operator −−• can be nested, for instance (x1 → (x′1)) −−• (p(x2) −−• p(x)) denotes
a list segment from x to x2 with a hole at x1.

Consider a rule ρ = p(x1, . . . , xn)⇐ ϕ, where ϕ′ denotes the quantifier-free formula
such that ϕ = ∃ #»z . ϕ′. By Theorem 4, the formulas ϕ and ϕ′ have unique abstrac-
tions Aϕ and Aϕ′ , respectively (in what follows the notations [x] and � always refer
to abstraction Aϕ′). Recall that, at this point, establishment is ensured, and all roots are
visible. As ϕ only has a unique abstraction, there is a unique k ∈ �1, n� such that [xk]
is the root of Aϕ and the tuple pointed to by the location associated with xk contains
only locations associated with variables y1, . . . , ym that are visible or special in Aϕ, with
Aϕ •h([xk]) = (

[
y1
]
, . . . ,

[
ym
]
). To make the rule ρ PCE, it must be rewritten to have the

form p(x1, . . . , xn) ⇐ ∃ #»z . xk → (y1, . . . , ym) � q1(# »w1) � · · · � ql(
#»wl) � ψ, where ψ is a

pure formula, and the root of each atom qi(
#»wi) is in {y1, . . . , ym}. There are two cases:

What Is Decidable in Separation Logic Beyond PCE? 173

Case 1: Assume that ϕ contains a points-to atom x′k → (y′1, . . . , y
′
l), with

[
x′k
]
= [xk]

and
[
y′i
]
=
[
yi
]

for all i ∈ �1, l�. The formula ϕ′ is of the form x′k → (y′1, . . . , y
′
m)�ψ�ψ′,

where ψ contains only points-to and predicate atoms and ψ′ is a pure formula. The
formula ψ may be decomposed into ϕ1 � · · ·�ϕl′ , where each formula ϕi allocates only
variables z such that

[
y ji
]
�∗ [z], where y j1 , . . . , y jl′ are variables in {y1, . . . , yl} such that

the
[
y ji
]

are pairwise distinct. Such a decomposition necessarily exists3 since [xk] is the
root of�, and every class reachable from [xk] must be reachable from one of the

[
yi
]
.

For i ∈ �1, l′�, if ϕi is not a predicate atom, then we create a fresh predicate qi whose
arguments are all the variables #»wi that appear in ϕi, we create the rule qi(

#»wi) ⇐ ϕi, and
we replace in ϕ the formula ϕi by qi(

#»wi). We get a rule ρ′ that is now PCE.
Case 2: Now assume that ϕ contains no such points-to atom x′k → (y′1, . . . , y

′
l).

We have to extract this points-to from some rule that, when unfolded, creates it and
add it to a new rule equivalent to ρ. Because Aϕ is unique and because every predicate
also has a unique abstraction, only one atom can allocate xk, and this atom must be
a predicate atom (because of case 1). Thus ϕ′ is of the form q(w) � ϕ′′, where xk is
allocated in every model of q(w). By the previous construction, the atom q(w) may
be replaced by xk → (y1, . . . , yl) � (xk → (y1, . . . , yl) −−• q(w)). We get a new rule
ρ′ = p(x1, . . . , xn) ⇐ ∃ #»z . xk → (y1, . . . , yl) � (xk → (y1, . . . , yl) −−• q(w)) � ϕ′′ which
fulfils the previous condition, and we may apply the transformation described in the
previous item to ρ′. The new rules associated with xk → (y1, . . . , yl) −−• p′1(

#»

x′1) are
added to the set of rules.

The above transformations are applied until all rules are PCE. Note that termination
is not guaranteed (indeed, not all k-PCE-compatible pairs (Φ,R) admit an equivalent
PCE pair, and the existence of such a pair is undecidable by Theorem 1). To enforce
termination in some cases, a form of memoization may be used: the predicates intro-
duced above may be reused if the corresponding formulas are equivalent. As logical
equivalence is hard to test (undecidable in general), we only check that the rules asso-
ciated with both predicates are identical up to a renaming of existential variables and
spatial predicates. In practice, termination may be ensured by imposing limitations on
the number of rules or predicates. We show that if the transformation terminates, we
obtain the desired result.

Theorem 5. Let (Φ†,R†) be any pair obtained by applying the transformations in Secs.
6 and 7. If the computation of (Φ‡,R‡) terminates, then (Φ†,R†) ≡ (Φ‡,R‡). Also, the
SID R‡, and thus Φ‡, are PCE.

9 Experimental Evaluation and Conclusion

We devised an algorithm to construct PCE rules for a given formula (if possible). The
existence of such a presentation is undecidable, but we identify a property called PCE-
compatibility, which is decidable and weaker. Our algorithm helps to relax the rigid
conditions on the PCE presentations. It is also able to construct PCE rules in some
more complex cases by performing deep, global transformations on the rules. We have

3 If several decompositions exist, then one of them is chosen arbitrarily.

174 T. Bozec et al.

implemented an initial version of the algorithm in OCaml using the Cyclist [2] frame-
work and applied it to benchmarks taken from this framework and SL-COMP [1]. The
program comprises approximately 3000 lines of code. To ensure efficiency, the imple-
mented procedure is somewhat simplified compared to the algorithm described in this
paper: in Step Sect. 8, we avoid the use of derived predicates and instead employ a
fixed-depth unfolding of predicate atoms (the other sections strictly adhere to the theo-
retical definitions). All tests are performed with a timeout of 30 seconds. The running
time is low in most examples. In the 145 tested examples, 105 are successfully trans-
formed into equivalent PCE-formulas, 20 trigger the ISIV condition (the structures are
not k-PCE-compatible), 3 examples fail at Step Sect. 7 (recursive structures with mul-
tiple roots) and 17 other timeout. The program and input data are available at https://
hal.science/hal-04549937. We find the results highly encouraging, as about 86% of the
tested examples are successfully managed. Therefore, this tool may be used to provide
a measure of the difficulty of the examples in the SL-COMP benchmark.

We end the paper by identifying some lines of future work. For efficiency, we
first plan to refine the transformation by avoiding the systematic reduction to one-
abstraction predicates given in Sect. 6. Indeed, this transformation is very convenient
from a theoretical point of view but introduces some additional computational blow-
up, which could be avoided in some cases. We wish to strengthen the definition of k-
PCE-compatible ID in order to capture additional properties of PCE definitions. Notice
that the semi-decidability of the PCE problem is an open question. Finally, it could
also be interesting to extend the transformation to E-restricted IDs, a fragment of non-
established IDs introduced in [4], for which the entailment is decidable.

References

1. SL-COMP website. https://sl-comp.github.io/
2. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Jhala,

R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35182-2 25

3. Echenim, M., Iosif, R., Peltier, N.: Entailment checking in separation logic with inductive
definitions is 2-EXPTIME hard. In: Albert, E., Kovacs, L. (eds.) LPAR23. LPAR-23: 23rd
International Conference on Logic for Programming, Artificial Intelligence and Reasoning,
vol. 73. EPiC Series in Computing, pp. 191–211. EasyChair, May 2020. ISSN: 2398-7340.
https://easychair.org/publications/paper/DdNg, https://doi.org/10.29007/f5wh

4. Echenim, M., Iosif, R., Peltier., N.: Decidable entailments in separation logic with inductive
definitions: beyond establishment. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL
Annual Conference on Computer Science Logic (CSL 2021), vol. 183. Leibniz International
Proceedings in Informatics (LIPIcs), pp. 20:1–20:18, Dagstuhl, Germany, 2021. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik. https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.CSL.2021.20, https://doi.org/10.4230/LIPIcs.CSL.2021.20

5. Echenim, M., Iosif, R., Peltier, N.: Unifying decidable entailments in separation logic with
inductive definitions. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol.
12699, pp. 183–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 11

6. Echenim, M., Iosif, R., Peltier, N.: Entailment is Undecidable for Symbolic Heap Separation
Logic Formulæ with Non-Established Inductive Rules. Inf. Process. Lett. 173:106169, Jan-
uary 2022. https://www.sciencedirect.com/science/article/pii/S0020019021000843, https://
doi.org/10.1016/j.ipl.2021.106169

https://hal.science/hal-04549937
https://hal.science/hal-04549937
https://sl-comp.github.io/
https://doi.org/10.1007/978-3-642-35182-2_25
https://easychair.org/publications/paper/DdNg
https://doi.org/10.29007/f5wh
https://drops.dagstuhl.de/entities/document/10.4230/ LIPIcs.CSL.2021.20
https://drops.dagstuhl.de/entities/document/10.4230/ LIPIcs.CSL.2021.20
https://doi.org/10.4230/LIPIcs.CSL.2021.20
https://doi.org/10.1007/978-3-030-79876-5_11
https://www.sciencedirect.com/science/article/pii/ S0020019021000843
https://doi.org/10.1016/j.ipl.2021.106169
https://doi.org/10.1016/j.ipl.2021.106169

What Is Decidable in Separation Logic Beyond PCE? 175

7. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional sep-
aration logic with data constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 532–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 36

8. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive defi-
nitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 2

9. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In:
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2001, pp. 14–26. Association for Computing Machinery, New York,
January 2001. https://doi.org/10.1145/360204.375719

10. Matheja, C., Pagel, J., Zuleger, F.: A decision procedure for guarded separation logic com-
plete entailment checking for separation logic with inductive definitions. ACM Trans. Com-
put. Logic 24(1), 1:1–1:76 (2023). https://doi.org/10.1145/3534927

11. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–74, Copenhagen, Den-
mark, July 2002. ISSN: 1043-6871. https://ieeexplore.ieee.org/document/1029817, https://
doi.org/10.1109/LICS.2002.1029817

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/3534927
https://ieeexplore.ieee.org/document/1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
http://creativecommons.org/licenses/by/4.0/

Sequents vs Hypersequents for Åqvist
Systems

Agata Ciabattoni and Matteo Tesi(B)

Institute of Logic and Computation,
Vienna University of Technology, Vienna, Austria
agata@logic.at, matteo.tesi@tuwien.ac.at

Abstract. Enhancing cut-free expressiveness through minimal struc-
tural additions to sequent calculus is a natural step. We focus on Åqvist’s
system F with cautious monotonicity (CM), a deontic logic extension
of S5, for which we define a sequent calculus employing (semi) ana-
lytic cuts.The transition to hypersequents is key to develop modular
and cut-free calculi for F + (CM) and G, also supporting countermodel
construction.

1 Introduction

Normative reasoning is crucial across various fields, including law and artifi-
cial intelligence. It is effectively formalized by deontic logic, the branch of logic
that deals with obligations and related concepts. Numerous deontic logics have
emerged, and they can be broadly classified into preference-based and norm-
based systems [11]. The latter analyse deontic modalities with reference to a set
of explicit norms, while the former employ possible world semantics. Preference-
based systems are particularly useful to model contrary to duty obligations (i.e.,
obligations that come into force when some other obligation is violated) and
defeasible deontic conditionals. Åqvist’s landmark systems [1] E, F, and G, fall
into this category. Semantically, they are characterized by preference models
using relations to represent the betterness of states. They extend the modal
logic S5 with a dyadic obligation ©(B/A) (“B is obligatory, given A”) which
is true when the best A-worlds are all B-worlds. A more recent addition to
the family [27] is F with the addition of cautious monotonicity (CM) from the
non-monotonic literature [12,18]. E, F, F + (CM), and G are modular systems
with increasing deductive strength w.r.t. the sets of theorems they derive. The
last two systems correspond to well-known conditional logics: G is VTA [13],
one of Lewis’ logics, while F + (CM) corresponds to Preferential Conditional
Logic PCL [6] supplemented with the absoluteness axiom, that reflects the fact
that the ranking is not world-relative. PCL contains as a fragment the KLM
preferential logic P [18] for default reasoning.

Reasoning necessitates (finding) derivations and countermodels. The explo-
ration of the proof theory for these logics has only recently become a focal point.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 176–195, 2024.
https://doi.org/10.1007/978-3-031-63501-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-63501-4_10

Sequents vs Hypersequents for Åqvist Systems 177

Prior to that, the only available calculi for them were Hilbert systems, which
are unsuitable for the mentioned tasks. Since Gentzen’s introduction in 1935,
sequent calculi in which the cut rule is admissible (or eliminable) have been
employed for these purposes. Although crucial to simulate modus ponens, the
cut rule poses a hindrance to proof search. Cut-free sequent systems are not
available for Åqvist’s systems insofar as they contain an S5 modality which
impedes their formulation1. Many sequent calculus generalizations, like hyper-
sequents, nested, and labelled sequents, have been introduced to capture logics
without cut-free formulations. Notably, hypersequents are characterized by less
complex objects and expressiveness compared to nested sequents, which, in turn,
are less complex and expressive than labelled sequents, see e.g. [22]. Using hyper-
sequents, modular cut-free calculi have been introduced for E and F in [8,9]. The
situation for G and F + (CM) is less clear. Although G semantically arises by
imposing to F + (CM) totality on frames, this is not reflected in their calculi:
(forms of) labelled sequents [20,24] have been employed for PCL, and a hyper-
sequent calculus with blocks (incorporating a shallow form of nesting) [14] for
G.

This leaves open the question whether modular and cut-free calculi, using a
simpler framework, can be defined for F + (CM) and G. Simplicity in the proof
formalism is advantageous for proving meta-logical results and streamlining the
proof search space. Indeed the introduction of additional structure in the basic
objects manipulated by the formalism often poses obstacles in these endeavors.

Our positive answer to the question relies on the use of an alternative seman-
tics (w.r.t. preference models) [28]. We first introduce a sequent calculus SFcm
for F + (CM). Like the calculus in [25] for S5, SFcm lacks completeness without
cuts. Nevertheless, we show that a restricted form of cuts, we call them semi-
analytic, suffices. We present a syntactic procedure, akin to cut-elimination, to
transform SFcm proofs with arbitrary cuts into proofs with semi-analytic cuts,
simplifying the method in [7]. Extending SFcm to encompass G would be hard, if
possible at all. Sequent calculi, are indeed known to be inadequate for capturing
modal logics with linear frames (Ch.9 in [15]). To achieve modular and cut-free
calculi for F + (CM) and G, we shift from the sequent to the hypersequent
framework. The use of hypersequents (which are sequents working in parallel)
enables the definition of structural rules operating across multiple sequents. In
particular, adapting the peculiar hypersequent rule for S5 from [4] simplifies
the rules for SFcm, resulting in a cut-free hypersequent calculus for F + (CM).
A calculus for G is obtained by adding (a version of) the communication rule
from [3], designed to capture Gödel logic [10]. We prove cut-elimination for both
calculi and modify them into proof-search oriented calculi, providing proofs of
decidability and countermodel construction from failed derivations.

Similarly to the calculi for E and F in [8,9] we encode maximality by a (S4-
type) modal operator. ©(B/A) can be indirectly defined as �(A → ¬Bet¬(A ∧

1 The standard sequent calculus [25] for S5 is not cut-free but it is complete with
analytic cuts [30] (i.e. cuts whose cut-formula is a subformula of the conclusion [29]).

178 A. Ciabattoni and M. Tesi

Bet(A → B))). Bet is not part of the language of F + (CM) and G, but is used
at the meta-level in the calculi to define rules for the dyadic obligation.

2 F + (CM) and G in a Nutshell

We present the logics F + (CM) and G both syntactically and semantically. Let
PropVar be a countable set of atomic formulas. Their language is defined by the
following BNF:

A ::= p ∈ PropVar | ¬A | A → A | �A | ©(A/A)

�A is read as “A is settled as true”, and ©(B/A) as “B is obligatory, given A”.
The Boolean connectives other than ¬ and → are defined as usual.

Definition 1. F consists of any Hilbert system for S5 augmented with:
©(B → C/A) → (©(B/A) → ©(C/A)) (COK) ©(A/A) (Id)
©(C/A ∧ B) → ©(B → C/A) (Sh) �A → ©(A/B) (O-Nec)
©(B/A) → � © (B/A) (Abs) �A → ¬ © (⊥/A) (D�)
�(A ↔ B) → (©(C/A) ↔ ©(C/B)) (Ext)

F + (CM) and G extend F with axioms (CM) and (RM) respectively:

© (B/A) ∧ ©(C/A) → ©(C/A ∧ B) (CM)
¬ © (¬B/A) ∧ ©(C/A) → ©(C/A ∧ B) (RM)

(COK) is the analogue of axiom K, (Sh) expresses a “half” of deduction theorem
(or residuation property). The absoluteness axiom (Abs) of [21] corresponds
to the removal of world-relative accessibility relations. (O-Nec) is the deontic
counterpart of the necessitation rule. (Ext) enables the substitution of necessarily
equivalent sentences in the antecedent of deontic conditionals. (Id) is the deontic
analogue of the identity principle. These axioms define the logic E.

F extends E with (D�) that rules out conflicts between obligations for possible
antecedents. (CM) and (RM) are cautious and rational monotony from the non-
monotonic literature [18]. Introduced in [12] (CM) expresses a weakened form of
strengthening of the antecedent, while (RM) a stronger form: if B is permitted
given A, and C is obligatory given A, then C is obligatory given A ∧ B.

Semantics for the logics E, F, F + (CM) and G can be given in terms of
preference models, see [28]. This semantics was used in [8,9] to define cut-free
hypersequent calculi for E and F. With preference models, structures are easily
described, but they come with complex model theoretic conditions on the valua-
tion function. In this paper we adopt a different semantics. This semantics has a
more complex truth condition for the deontic operator, involving a ∀∃∀ nesting
of quantifiers [28], but simpler frame and valuation conditions.

The original language does not include the modality Bet, but we add it to
the semantic explanation of connectives for clarity.

Definition 2. A preference model for F + (CM) is a triple 〈W, ≤, v〉, where ≤
is a reflexive and transitive order on W and v : PropVar → P(W) a valuation
function. The truth conditions for a formula in a world are defined as:

Sequents vs Hypersequents for Åqvist Systems 179

– x � P if and only if x ∈ v(P).
– x � ¬A if and only if x � A.
– x � A → B if and only if x � A or x � B.
– x � BetA if and only if ∀y(x ≤ y ⇒ y � A).
– x � �A if and only if ∀y(y � A).
– x � ©(B/A) if and only if ∀y(y � A ⇒ ∃z(y ≤ z & z � A & ∀u(z ≤ u ⇒ u �

A → B))).

Models for G are obtained by imposing totality, i.e., ∀x∀y(x ≤ y ∨ y ≤ x).

Theorem 1 ([28]). F + (CM) (resp. G) is sound and complete with respect to
the semantics of (resp. total) preference models.

Note that the truth condition for the operator ©(B/A) can be rewritten, using
the conditions for �, →, ¬ and Bet, as:

x � ©(B/A) iff x � �(A → ¬Bet¬(A ∧ Bet(A → B)))

3 A Sequent Calculus for F + (CM)

We introduce a sequent calculus SFcm for F + (CM), whose completeness relies
on the use of cuts of a restricted form.

SFcm is obtained by adding the rules for the deontic modality and for the
betterness operator to a (slightly modified2 version of) the sequent calculus
in [25] for S5. The cuts required in SFcm are a generalization of analytic cuts
(arising from the calculus for S5 [30]), due to the shape of the rules for the
deontic modality3. We use Γ, Δ, Π, ... as metavariables for multisets of formulas.

Definition 3. The sequent calculus SFcm consists of a variant of Gentzen’s
calculus LK for classical logic, with axioms Γ, p ⇒ p, Δ, extended with the rules
below

Γ �© ⇒ A, Δ�©
R�

Γ ⇒ �A, Δ

A, Γ ⇒ Δ
L��A, Γ ⇒ Δ

Γ �©, Γ b ⇒ A, Δ�©
RBet

Γ ⇒ Δ,BetA

A, Γ ⇒ Δ
LBet

BetA, Γ ⇒ Δ

Γ �©, A,Bet¬(A ∧ Bet(A → B)) ⇒ Δ�©
R©

Γ ⇒ ©(B/A), Δ

Γ ⇒ Δ, A Γ ⇒ Δ,Bet¬(A ∧ Bet(A → B))
L©©(B/A), Γ ⇒ Δ

where Γ b = {BetA |BetA ∈ Γ} and Γ �© = {�A | �A ∈ Γ} ∪ {©(B/A) | ©
(B/A) ∈ Γ}.

2 Our R� rule derives the absoluteness axiom.
3 ©(B/A) could have been introduced as a defined operator. However, since our main

concern is the investigation of dyadic deontic logics we preferred to retain the obli-
gation connective as a primitive element, and generalize the notion of analytic cut.
.

180 A. Ciabattoni and M. Tesi

The notion of derivation, principal formulas and height of a derivation are as
usual. The derived rules for conjunction and disjunction are as in Genten’s LK
and the generalization of initial sequents to arbitrary formulas is provable. A
rule is (height-preserving) admissible if, whenever the premises are derivable, so
is the conclusion (with at most the same height). In SFcm the weakening rules
(Γ ⇒ Δ LW

A, Γ ⇒ Δ
and Γ ⇒ Δ RW

Γ ⇒ Δ, A
) are height-preserving admissible. The rules of

contraction (A, A, Γ ⇒ Δ
LC

A, Γ ⇒ Δ
and Γ ⇒ Δ, A, A

RC
Γ ⇒ Δ, A

) are explicitly present.

Theorem 2 (Soundness). SFcm is sound for F + (CM).

Proof. By induction on the height of the SFcm derivation distinguishing cases
according to the last rule applied. Initial sequents are clearly sound. We discuss
only the cases of the right rules for the modal operator Bet and ©(A/B).

RBet: Let us assume that the sequent Γ �©, Γ b ⇒ Δ�©, A is valid. Let
x, y be worlds such that x ≤ y and we assume that x �

∧
Γ . Hence we get

y �
∧

Γ �© ∧ ∧
Γ b (by transitivity of ≤) which yields (i) y �

∨
Δ�© or (ii)

y � A. In (i), we get x �
∨

Δ, in (ii) x � BetA, giving the desired conclusion.
R©: Assume that Γ �©, A,Bet¬(A ∧ Bet(A → B)) ⇒ Δ�© is valid. We

argue by contradiction assuming that the conclusion Γ ⇒ Δ, ©(B/A) is not
valid. Hence there is a world x which satisfies every formula in Γ and falsifies
every formula in Δ and ©(B/A). By definition there is y s.t.: y � A and there is
not a world z such that y ≤ z and z � A and z � Bet(A → B). Since x �

∧
Γ �©,

we get that y �
∧

Γ �©. We also have y � A and y � Bet¬(A ∧ Bet(A → B)).
As a consequence of the validity of Γ �©, A,Bet¬(A ∧ Bet(A → B)) ⇒ Δ�©,
we get that y �

∨
Δ�©, which entails x �

∨
Δ�©, a contradiction.

Theorem 3 (Completeness with cut). Each theorem of F + (CM) has a
proof in SFcm with the addition of the cut rule.

Proof. It suffices to show that all the axioms of F + (CM) are provable in SFcm.
Modus Ponens corresponds to the provability of A, A → B ⇒ B and two appli-
cations of cut. The necessity rule is a particular case of R�. The axioms of
classical logic are clearly derivable. In what follows, we omit to write trivially
derivable premises to increase the readability of the derivations.

– A derivation of (CM) is as follow (omitting trivially derivable premises)

A,Bet(A → C), A → B ⇒ A ∧ B ∧ Bet(A → C)
LBet, L¬

A,Bet(A → C), A → B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
LBet

A,Bet(A → C),Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
L∧

A ∧ Bet(A → C),Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
RBet, L¬

A,Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒ Bet¬(A ∧ Bet(A → C))
L©©(C/A), A,Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

L∧©(C/A), A ∧ Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
RBet, L¬©(C/A), A, B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒ Bet¬(A ∧ Bet(A → B))
L©©(C/A), ©(B/A), A, B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

L∧©(C/A), ©(B/A), A ∧ B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
R©©(C/A), ©(B/A) ⇒ ©(C/A ∧ B)

Sequents vs Hypersequents for Åqvist Systems 181

– The S4 axioms are trivially derivable. The characteristic axiom of S5 is deriv-
able using analytic cuts, as follows

A ⇒ A L¬
A, ¬A ⇒

L�
A, �¬A ⇒

R¬
A ⇒ ¬�¬A

�¬A ⇒ �¬A R¬⇒ ¬�¬A, �¬A
R�⇒ �¬�¬A, �¬A
L¬¬�¬A ⇒ �¬�¬A Cut

A ⇒ �¬�¬A

The cut on ¬�¬A is analytic because it is a subformula of �¬�¬A.
– The axiom (D∗) ©(⊥/A) → �¬A is derivable in SFcm as follow

A ⇒ A

©(⊥/A), A, A → ⊥,Bet(A → ⊥) ⇒
LBet©(⊥/A), A,Bet(A → ⊥) ⇒

L∧©(⊥/A), A ∧ Bet(A → ⊥) ⇒
RBet, R¬©(⊥/A),A ⇒ Bet¬(A ∧ Bet(A → ⊥))
L©©(⊥/A), A ⇒

R¬©(⊥/A) ⇒ ¬A
R�©(⊥/A) ⇒ �¬A

item The axiom (Sh) ©(C/A∧B) ⇒ ©(B → C/A) is derivable in SFcm. We
construct the following derivation (the topmost sequent is clearly derivable).

A ∧ B ∧ Bet(A ∧ B → C),Bet¬(A ∧ Bet(A → (B → C))) ⇒
RBet,R¬

A, B,Bet¬(A ∧ Bet(A → (B → C))) ⇒ C,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)))
L©©(C/A ∧ B), A, B,Bet¬(A ∧ Bet(A → (B → C))) ⇒ C

RBet, R→ (twice)©(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C))) ⇒ Bet(A → (B → C))
R∧©(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C)) ⇒ A ∧ Bet(A → (B → C))

LBet,L¬©(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C))),Bet¬(A ∧ Bet(A → (B → C))) ⇒
LC©(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C))) ⇒

R©©(C/A ∧ B) ⇒ ©(B → C/A)

– The axiom (COK) ©(B → C/A), ©(B/A) ⇒ ©(C/A) is derivable in SFcm.
We construct the following derivation.

A,Bet(A → (B → C)),Bet(A → B),Bet¬(A ∧ Bet(A → C)) ⇒
RBet, R¬, L∧

A,Bet(A → B),Bet¬(A ∧ Bet(A → C)) ⇒ Bet¬(A ∧ Bet(A → (B → C)))
L©©(B → C/A), A,Bet(A → B),Bet¬(A ∧ Bet(A → C)) ⇒

RBet, R¬, L∧©(B → C/A), A,Bet¬(A ∧ Bet(A → C)) ⇒ Bet¬(A ∧ Bet(A → B))
L©©(B → C/A), ©(B/A), A,Bet¬(A ∧ Bet(A → C)) ⇒

R©, L∧©(B → C/A), ©(B/A) ⇒ ©(C/A)

The topmost sequent is clearly derivable.

The derivations in SFcm of axioms (Id) ©(A/A) and (Abs) ©(B/A) → � ©
(B/A) are evident. Also the extensionality axiom �(A ↔ B) → (©(C/A) ↔
©(C/B)) is easy to derive.

182 A. Ciabattoni and M. Tesi

3.1 From Cuts to Semi-analytic Cuts

We provide a syntactic procedure to restrict cuts in SFcm to semi-analytic cuts,
where an instance of the cut rule

Γ ⇒ C, Δ Σ, C ⇒ Π

Γ, Σ ⇒ Δ, Π
cut

is semi-analytic if C is a generalized subformula of the conclusion, i.e. C ∈
SUB(Γ ∪ Σ ∪ Δ ∪ Π), where for any formula A, SUB(A) is inductively defined as

– A ∈ SUB(A); If B → C ∈ SUB(A), then B, C ∈ SUB(A)
– If �B, ¬B,BetB ∈ SUB(A), then B ∈ SUB(A)
– ©(C/B) ∈ SUB(A), then Bet¬(B ∧ Bet(B → C)) ∈ SUB(A)

The notion of generalized subformula naturally extends to multisets of formulas.
To restrict the use of cuts to semi-analytic cuts we reformulate, simplify and

also broaden the applicability of the method in [7] to apply to rules more general
than so-called simple rules. Specifically, the inherent (almost) local structure
of the proof below could seamlessly accommodate rules having more than one
principal formula, as well as rules that do not obey the subformula property.
Prior to [7], proofs of restriction of cuts to analytic cuts, e.g., [17,26,30,31] were
all logic-tailored and, with the exception of [30], relied on semantic arguments.

Proof Idea: We start considering an uppermost non semi-analytic cut (semi-
analytic cuts are left in the derivation). Cuts on boolean connectives are handled
using rule invertibilities (and reduced in the usual way). Non semi-analytic cuts
with cut-formulas �A, Bet A and ©(B/A) need a different approach as their
rules are not invertible; we shift them upwards until their cut formulas are prin-
cipal (and then reduced). Notice that the rules RBet, R� and R© do not allow
to shift any cut upwards; however they permit to permute upward any cut in
which (∗) the other premise is a right rule introducing the cut formula BetA, �A
or ©(B/A) (because of the “good” contexts of these rules). To reach the scenario
(∗) we need to bring the considered cut beyond the rules that do not allow the
permutation, jumping directly to the point where the cut-formula is introduced.
We do that by tracing (bottom up) all the ancestors4 of the cut formulas on the
right hand side (RHS), and replacing the cut (actually we consider mix) by new
semi-analytic cuts. Following [7], the premises of these new semi-analytic cuts
are obtained by replacing the cut-formulas in the original derivation with the
contexts of the right rules introducing the cut-formulas (switching their side of
the sequent), taking care that the resulting proof is still a correct derivation.

Smaller cuts are cuts of lesser degrees, according to the following definition.

Definition 4. The degree of a formula A, dg(A) is inductively defined:

– dg(p) = 0 if A = p atomic; dg(B → C) = dg(B) + dg(C) + 1
– dg(¬B) = dg(�B) = dg(BetB) = dg(B) + 1
4 This is the familiar parametric ancestor relation of [5].

Sequents vs Hypersequents for Åqvist Systems 183

– dg(©(C/B)) = 3 · dg(B) + dg(C) + 7

Definition 5. The non-analytic cut rank σ(D) of a proof is the maximal degree
+1 of non-semi analytic cut formulas in D. The cut rank of a proof ρ(D) is the
maximal degree +1 of cut formulas in D.

By An we denote n-repetitions of the formula A. As here we focus on the elimi-
nation of cuts that are non semi-analytic, we use the non-analytic cut rank.

Lemma 1. The rules for → and ¬ are height and (non-analytic) rank-
preserving invertible.

Lemma 2. Given derivations D1 and D2 of Γ ⇒ Δ, X and X, Π ⇒ Σ with
σ(D1), σ(D2) ≤ dg(X) and with X principal in the last rule applied in D1 and
D2, there is a derivation D of Γ, Π ⇒ Δ, Σ with σ(D) ≤ dg(X).

Proof. Easy in case of the propositional connectives, Bet, and �.
If the cut formula is principal in applications of the rule for ©, we have:

Γ �©, A,Bet¬(A ∧ Bet(A → B)) ⇒ Δ�©
R©

Γ ⇒ Δ, ©(B/A)
Π ⇒ Σ, A Π ⇒ Σ,Bet¬(A ∧ Bet(A → B))

L©©(B/A), Π ⇒ Σ
Cut

Γ, Π ⇒ Δ, Σ

We construct the following derivation:

Π ⇒ Σ,Bet¬(A ∧ Bet(A → B))
Π ⇒ Σ, A Γ �©, A,Bet¬(A ∧ Bet(A → B)) ⇒ Δ�©

Cut
Γ �©, Π,Bet¬(A ∧ Bet(A → B)) ⇒ Σ, Δ�©

Cut
Γ �©, Π2 ⇒ Δ�©, Σ2

LC,RC, LW,RW
Γ, Π ⇒ Δ, Σ

The modified version of the rules R�, R© and RBet in the lemma below will
be used to simplify the presentation of case (B) in the proof of Theorem 4: when
shifting upward a non semi-analytic cut over the right rules for �, Bet or ©.

Lemma 3. The versions R′�, R′© and R′Bet of the rules R�, R© and RBet
with

∨
Σ�©

1 , . . . ,
∨

Σ�©
m (resp.

∧
Π�©

1 , . . . ,
∧

Π�©
n) in their antecedent (resp.

consequent) are admissible.

Proof. (R′�): Given
∨

Σ�©
1 , . . . ,

∨
Σ�©

m , Γ �© ⇒ Δ�©,
∧

Π�©
1 , . . . ,

∧
Π�©

n , B, we
first apply the invertibility of the derived rules for

∧
and

∨
(Lemma 1). The

R′� conclusion
∨

Σ�©
1 , . . . ,

∨
Σ�©

m , Γ �© ⇒ Δ�©,
∧

Π�©
1 , . . . ,

∧
Π�©

n , �B is
obtained by multiple applications of R�, and of the logical rules. The proof for
R′© and R′Bet is analogous.

Theorem 4. Given the derivations D1 of Γ ⇒ Δ, Xm and D2 of Xn, Π ⇒ Σ
containing only semi-analytic cuts, there is a derivation D of Γ, Π ⇒ Δ, Σ with
σ(D) ≤ dg(X).

184 A. Ciabattoni and M. Tesi

Proof. We first replace all (analytic) cuts on X in D1 and D2, by applications of
contraction. The theorem’s claim is proved by induction on the sum of the height
of the derivations D1 and D2. If the cut-formula is a connective of classical logic
the claim follows by Lemmas 1 and 2. We consider D1 and distinguish two cases:
the cut formula is principal in the last rule applied or it is not.

(A) The cut formula is principal in the last rule applied in D1. We
consider cases according to the last rule (r) applied in D2:

– (r)is an initial sequent, hence the cut is analytic.
– (r)is a rule introducing the cut formula. We use Lemma 2 (with obvious

adjustments given by the use of mix).
– (r)is any rule different from R©, R�, and RBet. The cut can be per-

muted upwards.
– (r)is RBet, R�or R©. Note that these rules’ contexts permit moving the

cut upward in D2. As an example, consider the case in which the cut formula
is of the shape BetB and the last rule applied in D2 is RBet, as in:

Γ b, Γ �© ⇒ Δ�©, B
RBet

Γ ⇒ Δ,BetBn

BetBm, Πb, Π�© ⇒ Σ�©, C
RBet

BetBm, Π ⇒ Σ,BetC
Cut

Γ, Π ⇒ Δ, Σ,BetC

We proceed as follows:

Γ b, Γ �© ⇒ Δ�©, B
RBet

Γ b, Γ �© ⇒ Δ�©,BetB BetBm, Πb, Π�© ⇒ Σ�©, C
Cut

Γ b, Γ �©, Πb, Π�© ⇒ Δ�©, Σ�©, C
RBet

Γ, Π ⇒ Δ, Σ,BetC

(B) The cut formula is not principal in the last rule applied in D1. We
distinguish sub-cases according to the last rule (r) applied in D1.
– (r)is an initial sequent, then the required derivation follows by weakening.
– (r)is any rule different from R©, R�, and RBet, then we simply per-

mute the cut upwards.
– (r)is R©, R�, or RBet. This is the key case, which requires peculiar proof

transformations and the introduction of new semi-analytic cuts. We focus
on cases where the cut formula is �A or ©(B/A), as other cases are trivial
due to the removal of formulas from the RHS with different shapes by the
application of (r). We detail the case �A (the case with cut formula ©(B/A)
is analogous), assuming, for illustration purposes, that the last applied rule
is RBet. We trace the cut formula in D1, till it is introduced a first time (in
each branch), as in

Θ�©
i ⇒ Λ�©

i , �Al−1, A
. . . R� . . .

Θi ⇒ Λi, �Ali

...
Γ b, Γ �© ⇒ Δ�©, �An, B

RBet
Γ ⇒ Δ, �An,BetB �Am, Π ⇒ Σ

Cut
Γ, Π ⇒ Δ, Σ,BetB

Sequents vs Hypersequents for Åqvist Systems 185

For the sake of simplicity we first consider the case in which the cut formula
is principal only in one branch of D1 (w.l.o.g. the one displayed above); the
general case is handled in the same way with an additional combinatorial
argument. The cut is replaced by (Θ�©

i ⇒ ∧
Θ�©

i and
∨

Λ�©
i ⇒ Λ�©

i are
clearly derivable):

Θ�©
i ⇒ ∧

Θ�©
i LW,RW

Θi ⇒ Λi,
∧

Θ�©
i

...
Γ b, Γ �© ⇒ Δ�©, B,

∧
Θ�©

i R’Bet

Γ ⇒ Δ,BetB,
∧

Θ�©
i

∨
Λ�©

i ⇒ Λ�©
i LW,RW∨

Λ�©
i , Θi ⇒ Λi

...
∨

Λ�©
i , Γ b, Γ �© ⇒ Δ�©, B

R’Bet∨
Λ�©

i , Γ ⇒ Δ,BetB

Θ�©
i ⇒ Λ�©

i , �Ali−1, A
R�

Θ�©
i ⇒ Λ�©

i , �Ali �Am, Π ⇒ Σ
Cut

Θ�©
i , Π ⇒ Λ�©

i , Σ
L∧, R∨∧

Θ�©
i , Π ⇒ ∨

Λ�©
i , Σ

Cut∗
Γ, Γ, Π ⇒ Δ, Δ, Σ,BetB

LC,RC
Γ, Π ⇒ Δ, Σ,BetB

The first derivation above, say D′
1 is obtained from D1 by substituting all

occurrences of the cut formulas with
∧

Θ�©
i , and the second derivation D′′

1
by removing the cut formula from the RHS and adding

∨
Λ�©

i to the LHS.
The correctness of the application of the rules in these sub-derivations is guar-
anteed by Lemma 3. The cut between Θ�©

i ⇒ Λ�©
i , �Ali and �Am, Π ⇒ Σ

is handled by induction hypothesis. The rule Cut∗ can be replaced by new
semi-analytic cuts (see Lemma 4 below, in the particular case n = 1). The
argument which ensures the semi-analyticity of the new cuts is at the end of
the proof.
In the general case, there may be k branches in which the cut formula is
principal, with the following conclusions of R� rules introducing �A’s:

{Θ�©
j ⇒ Λ�©

j , �Alj | j ∈ {1, . . . , k}}.

We now need to construct - following the pattern detailed for D′
1 and D′′

1
- derivations with all the possible combinations of length k of the con-
texts

∧
Θ�©

k1
and

∨
Λ�©

k2
, with k1 �= k2 and k1, k2 ∈ {1, . . . , k}, invert-

ing their polarities, i.e. their position w.r.t. the sequent arrow. To wit-
ness a concrete example, if k = 2, we construct the derivations of the
sequents:

∨
Λ�©
1 ,

∨
Λ�©
2 , Γ ⇒ Δ,BetB;

∨
Λ�©
1 , Γ ⇒ Δ,BetB,

∧
Θ�©

2 ;
∨

Λ�©
2 , Γ ⇒ Δ,BetB,

∧
Θ�©

1 and Γ ⇒ Δ,BetB,
∧

Θ�©
1 ,

∧
Θ�©

2 .
In general, by suitably replacing all the occurrences of the cut formulas in D1
we obtain 2k derivations of Υ, Γ ⇒ Δ,BetB, Ξ, for any multiset Υ and Ξ s.t.
Cj ∈ Υ if and only if Cj =

∨
Λ�©

j and Cj ∈ Ξ if and only if Cj =
∧

Θ�©
j

for some j, |Υ ∪ Ξ| = k and if Cj , Cl ∈ Υ ∪ Ξ, then j �= l. The correctness
of the resulting derivations follows again by Lemma 3. The desired sequent
Γ, Π ⇒ Δ,BetB, Σ is obtained by using the derived rule Cut∗ (Lemma 4
below) also with the k derivations of Θ�©

j , Π ⇒ Λ�©
j , Σ obtained by the

induction hypothesis. It remains to show that all cut-formulas of the newly
introduced cuts are generalized subformulas, i.e. that E ∈ SUB(Γ, Δ) for
every E ∈ Θ�©

j ∪ Λ�©
j , and hence that the newly introduced cuts are semi-

analytic (by Lemma 4). Indeed, by assumption every formula in D1 is in
SUB(Γ, Δ, X). Therefore the only case to be excluded is that E is �A. Assume
by contradiction that this is the case. The �A cannot change side of the
sequent, and is not in SUB(Γ, Δ) by hypothesis. As there is no cut on �A
in D1 (being all these cuts replaced by contractions), the only remaining

186 A. Ciabattoni and M. Tesi

possibility is that �A has been removed by a cut on a formula containing �A
as a subformula, but this cannot be the case by hypothesis.

The lemma below shows that cuts on conjunctions and disjunctions of gen-
eralized subformulas can be simulated by semi-analytic cuts.

Lemma 4. Let Θ = A1, ..., An, Λ = B1, ..., Bn be conjunctions and disjunctions
of formulas in SUB(Γ, Π, Δ, Σ), the rule, with Λj ⊆ Λ, Θj ⊆ Θ, |Λj ∪ Θj | = n:

{Λj , Π ⇒ Σ, Θj | for all Cl, Ct ∈ Λj ∪ Θj(l �= t)} {Ai, Γ ⇒ Δ, Bi}i=1,...,n
Cut∗

Π, Γ ⇒ Δ, Σ

is admissible in SFcm without using non semi-analytic cuts.

Proof. We first show that the rule Cut∗ is admissible using arbitrary cuts on the
formulas Ai, Bis and the contraction rules. The proof is by induction on n.

– If n = 1, then the proof follows applying twice the cut rule:

Π ⇒ Σ, A1 A1, Γ ⇒ Δ, B1
Cut

Π, Γ ⇒ Δ, Σ, B1 B1, Π ⇒ Σ
Cut

Π, Π, Γ ⇒ Δ, Σ, Σ
LC,RC

Π, Γ ⇒ Δ, Σ

– Let n = k + 1 and assume that the claim holds for k. We have Θ =
A1, ..., Ak, Ak+1, Λ = B1, ..., Bk, Bk+1 and the 2k+1 left premises of the rule
can be rewritten as:

{Λj , Π ⇒ Σ, Θj , Ak+1 | for all Cl, Ct ∈ Λj ∪ Θj(l �= t)}∪
{Bk+1, Λj , Π ⇒ Σ, Θj | for all Cl, Ct ∈ Λj ∪ Θj(l �= t)}

with Θj ⊆ {A1, . . . , Ak} and Λj ⊆ {A1, . . . , Ak}. Hence we proceed as follows:

{Λj , Π ⇒ Σ, Θj , Ak+1 | for all Cl, Ct ∈ Λj ∪ Θj(l �= t)} {Ai, Γ ⇒ Δ, Bi}i=1,...,k
Cut∗

Π, Γ ⇒ Δ, Σ, Ak+1

the application of Cut∗ is admissible by induction hypothesis.
Analogously, we construct a derivation of Bk+1, Π, Γ ⇒ Δ, Σ:

{Bk+1, Λj , Π ⇒ Σ, Θj | for all Cl, Ct ∈ Λj ∪ Θj(l �= t)} {Ai, Γ ⇒ Δ, Bi}i=1,...,k
Cut∗

Bk+1, Π, Γ ⇒ Δ, Σ

applying the induction hypothesis.
The conclusion now follows from two applications of the cut rule with the
sequent Ak+1, Π ⇒ Σ, Bk+1 followed by contraction.

The claim of the lemma is now obtained observing that cuts on Ai and Bi can be
transformed into semi-analytic cuts by exploiting the invertibility of the derived
rules for ∧ and ∨, because by hypothesis Ai, Bj ∈ SUB(Γ, Π, Δ, Σ).

Theorem 5. Any SFcm proof with cuts can be transformed into a proof of the
same sequent that only uses semi-analytic cuts.

Sequents vs Hypersequents for Åqvist Systems 187

Proof. Let D be an SFcm proof with σ(D) > 0. We proceed by a double induc-
tion on 〈σ(D), nσ(D)〉, where nσ(D) is the number of applications of cut in D

with non-analytic cut rank σ(D). Consider an uppermost application of non-
analytic (cut) in D with rank σ(D). By applying Theorem 4 to its premises
either σ(D) or nσ(D) decreases.

Remark 1. The above result can be adapted to define sequent calculi with
restricted cuts for the sequent calculus version of the calculi for E and F in [8,9].
These calculi would be obtained by replacing in SFcm the rules for Bet and
©(B/A) with the corresponding sequent rules for E and F.

4 A Hypersequent Calculus for F + (CM) and G

The calculus SFcm uses semi-analytic cuts, and is not easily extendable to cap-
ture G5. Additionally, it would be challenging, if possible at all, to adapt it
into a proof-search-oriented calculus for F + (CM). Inspired by the transition
in [4,19,23] from sequent calculus with analytic cuts [25] for the logic S5 to a
cut-free hypersequent calculus, we shift from the sequent to the hypersequent
framework. Hypersequents are arguably the easiest generalization of sequents [2–
4], consisting of multisets of sequents (called components) working in parallel
and separated by the symbol “|”. We introduce a cut-free hypersequent calculus
HFcm for F + (CM). HFcm incorporates the sequent calculus for the logic S4
as a sub-calculus and adds an additional layer of information by considering a
single sequent to live in the context of hypersequents. Axioms and rules (includ-
ing cut) of HFcm are obtained by adding to each sequent in SFcm a context G
or H, standing for a (possibly empty) hypersequent, and simplifying the right
rules for �, Bet and ©, as follows (with explicit weakening rules):

G | Γ �© ⇒ A

G | Γ �© ⇒ �A

G | Γ �©, Γ b ⇒ A

G | Γ �©, Γ b ⇒ BetA

G | Γ �©, A,Bet¬(A ∧ Bet(A → B)) ⇒
G | Γ �© ⇒ ©(B/A)

To manipulate the additional structure w.r.t. sequents, any hypersequent calcu-
lus contains external structural rules that operate on whole sequents. Standard
rules are ext. weakening (ew) and ext. contraction (ec) (see below), which behave
like weakening and contraction over whole sequents. The hypersequent structure
opens the possibility to define new rules that allow the “exchange of informa-
tion” between different components. These rules increase the expressive power of
hypersequent calculi compared to sequent calculi, enabling the definition of cut-
free calculi for logics that escape a cut-free sequent formulation; in the case of S5
this is done using the rule (s5′) below (the © is added to deal with F + (CM))

G (ew)
G | Γ ⇒ Π

G | Γ ⇒ Π | Γ ⇒ Π
(ec)

G | Γ ⇒ Π

G | Γ �©, Γ ′ ⇒ Π ′
(s5′)

G | Γ ⇒ | Γ ′ ⇒ Π ′

5 The totality conditions, is the same as for Gödel logic [4] and S4.3 [16].

188 A. Ciabattoni and M. Tesi

Hence the crucial difference w.r.t. the calculus SFcm is that, due to the struc-
tural rules (ec) and (s5′), we can now restrict to single-succedent modal right
rules without impairing cut-free completeness.

Remark 2. A cut-free hypersequent calculus for F was introduced in [9] by
adding one rule to the calculus for E [8]. While F + (CM) extends F (and
E), our calculus is not a modular extension of these two. Indeed HFcm stems
from an alternative semantics definition. Note that the premise A,Bet¬A ⇒ B
of the right rule for © in these calculi would be trivially derivable in HFcm.

Given a hypersequent Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn, its interpretation ι is defined:
(Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn)ι := �(

∧
Γ1 → ∨

Δ1) ∨ . . . ∨ �(
∧

Γn → ∨
Δn)

Theorem 6. HFcm is sound and complete with cuts w.r.t. F + (CM).

Proof. The soundness proof follows the pattern detailed for SFcm. Completeness
is ensured by the derivation of (CM).

A calculus for G is obtained in a modular way by adding an external structural
rule to the calculus HFcm for F + (CM). The additional rule is a slightly mod-
ified version of the well known communication rule, introduced by Avron [3] for
capturing Gödel logic, and used in [16] for the modal logic S4.3:

G | Π�©, Πb, Γ ⇒ Δ G | Γ �©, Γ b, Π ⇒ Σ
com

G | Γ ⇒ Δ | Π ⇒ Σ

Theorem 7. HG is sound and complete in presence of cuts w.r.t. G

Proof. Soundness: By induction on the height of the derivation. We only consider
the case of the rule com. If the conclusion is not valid, then there are worlds x
and y where x (y) forces every formula in Γ (Π) and x (y) falsifies every formula
in Δ (Σ). By totality x ≤ y or y ≤ x. If x ≤ y, then y forces all the �, © and
Bet formulas in Γ and thus, by the validity of the premise G | Γ �©, Γ b, Π ⇒ Σ,
we get an immediate contradiction. The other case is symmetrical.

Completeness in Presence of Cuts: follows by the derivability of axiom (RM)
(the topmost sequent is derivable).

A, B,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)),Bet(A → C) ⇒ Bet(A ∧ B → C)
R∧

A, B,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)), Bet(A → C) ⇒ A ∧ B ∧ Bet(A ∧ B → C)
LBet,L¬

A, B,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)),Bet(A → C) ⇒
R∧, RBet, R¬

A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)), A,Bet(A → C) ⇒ A ∧ Bet(A → ¬B)
LBet,L¬

A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)), A,Bet(A → C) ⇒
RBet, R¬,L∧

A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒ Bet¬(A ∧ Bet(A → C))
L©©(C/A), A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

com©(C/A), A,Bet¬(A ∧ Bet(A → ¬B)) ⇒ | © (C/A), A ∧ B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
R© (twice)©(C/A) ⇒ ©(C/A ∧ B), ©(¬B/A) | © (C/A) ⇒ ©(C/A ∧ B), ©(¬B/A)

EC©(C/A) ⇒ ©(C/A ∧ B), ©(¬B/A)
L¬¬ © (¬B/A), ©(C/A) ⇒ ©(C/A ∧ B)

one premise of the rule com is omitted for space reasons.

Sequents vs Hypersequents for Åqvist Systems 189

5 Cut-Elimination for HFcm and HG

We prove that the calculus HG (and hence HFcm) admits cut-elimination. The
strategy is the same as for the hypersequent calculus for E in [8].

Proof idea: As for the cut-reduction proof of SFcm, cuts on a formula of the
form ¬A or A → B are reduced using invertibility. In contrast with SFcm, we
can shift cuts with cut-formulas of the form �A, Bet A and ©(B/A) upwards
until the cut formula is principal, using a specific order. First over the premise
containing the cut formula on the right hand side (Lemma 6), due to the change
made w.r.t. SFcm to the right rules of Bet, �, and ©. Afterwards, over the
other premise (Lemma 7). Note that when a rule introducing the cut formula on
the right hand side is reached, the context has a shape that matches with the
other premise of the cut and allows us to permute the cut upwards, similarly to
case (A) from Theorem 4. When the cut formula becomes principal also on the
left hand side, it can be replaced by cuts on smaller formulas.

Henceforth we use the same inductive measure of the degree of formulas as in
Sect. 3, while the rank of a derivation D is now ρ(D) (Definition 5). The following
lemmas refer to derivations in HG (and hence in HFcm).

The invertibility of the hypersequent version of the rules for → and ¬
(Lemma 1) also holds in HG and is rank-preserving.

Lemma 5. Given derivations D1 of G | Γ ⇒ Δ, X and D2 of H | X, Π ⇒ Σ
with X principal in a logical, modal or deontic rule in both premises and ρ(Di) ≤
dg(X), there is a derivation D of G | H | Γ, Π ⇒ Δ, Σ with ρ(D) ≤ dg(X).

Proof. As in Lemma 2 (the hypersequent structure plays no role).

The following lemmas are formulated in order to prove the admissibility of
cuts on multiple occurrences of formulas taking into account the presence of
explicit rules for contraction, both internal and external.

Lemma 6 (Right shift). Given D1 of H | Π1 ⇒ Σ1, Xn1 | . . . | Πm ⇒ Σm, Xnm

in HG(HFcm) and D2 of G | X, Γ ⇒ Δ with ρ(D1), ρ(D2) ≤ dg(X), there is a
derivation D, with ρ(D) ≤ dg(X), of

G | H | Γ n1 , Π1 ⇒ Σ1, Δn1 | . . . | Γ nm , Πm ⇒ Σm, Δnm

Proof. By induction on the height of D1. If it is an initial sequent or the last
applied rule acts on sequents in H, the proof is trivial. If the cut formula is
principal in a logical (modal, deontic) rule, then we use Lemma 7. Assume that
the cut formula is not principal. If the rule is R©, RBet and R�, then the claim
follows by internal and external weakening (because such rules permit a single
formula in the RHS). Otherwise, the cut is permuted and removed by induction
hypothesis (note that the RHS of the rules (s5′) and (com), if present, remains
unchanged in the premises, along with the associated context on the LHS).

Once we have reached the right rule introducing the cut formula BetA, ©(A/B),
or �A, we can shift the cut upward over the other premise of the cut, as shown
in the next lemma.

190 A. Ciabattoni and M. Tesi

Lemma 7 (Left shift). Given D2 of G | Xn1 , Γ1 ⇒ Δ1 | . . . | Xnm , Γm ⇒ Δm

and D1 of H | Π ⇒ Σ, X where X is principal in the last rule applied in D1 with
ρ(D1), ρ(D2) ≤ dg(X), there is a derivation D with ρ(D) ≤ dg(X) of

G | H | Πn1 , Γ1 ⇒ Δ1, Σn1 | . . . | Πnm , Γm ⇒ Δm, Σnm

Proof. By induction on the height of the derivation D2. The proof is similar to
case (A) in Theorem 4. The hypersequent structure does not alter the proof,
the only additional cases to consider are those involving hypersequent structural
rules. See, e.g. [8] for (s5′). We consider the case of (com) where the cut formula
moves from a component to another. W.l.o.g. we show a case in which we have
two components in D2, as in:

G | Π�©, Πb ⇒ B
RBet

G | Π ⇒ Σ,BetB

Γ1,BetBn2 , Γ b
2 ⇒ Δ1 BetBn2 , Γ2, Γ b

1 ⇒ Δ2 com
Γ1 ⇒ Δ1 |BetBn2 , Γ2 ⇒ Δ2

Cut
G | Γ1 ⇒ Δ1 | Πn2 , Γ2 ⇒ Δ2, Σn2

assuming that one of the active components does not contain the cut formula
(the other case is analogous). We construct the following derivation:

G | Π�©, Πb ⇒ B
RBet

G | Π�©, Πb ⇒ BetB Γ1,BetBn2 , Γ b
2 ⇒ Δ1

Cut
G | Γ1, (Π�©, Πb)n2 , Γ b

2 ⇒ Δ1
LC

G | Γ1, Π�©, Πb, Γ b
2 ⇒ Δ1

G | Π�©, Πb ⇒ B
RBet

G | Π�©, Πb ⇒ BetB G |BetBn2 , Γ2, Γ b
1 ⇒ Δ2

Cut
G | (Π�©, Πb)n2 , Γ2, Γ b

1 ⇒ Δ2
LC

G | Π�©, Πb, Γ2, Γ b
1 ⇒ Δ2 com

G | Π�©, Γ1 ⇒ Δ1 | Π�©, Πb, Γ2 ⇒ Δ2
LW,RW

G | Π�©, Γ1 ⇒ Δ1 | Πn2 , Γ2 ⇒ Δ2, Σn2

s5’
G | Π�© ⇒ | Γ1 ⇒ Δ1 | Πn2 , Γ2 ⇒ Δ2, Σn2

LW,RW
G | Πn2 , Γ2 ⇒ Δ2, Σn2 | Γ1 ⇒ Δ1 | Πn2 , Γ2 ⇒ Δ2, Σn2

EC
G | Γ1 ⇒ Δ1 | Πn2 , Γ2 ⇒ Δ2, Σn2

where cuts are removed by induction hypothesis on the height of the derivation.

Theorem 8. Any HFcm (HG) proof with cuts can be transformed into a proof
of the same hypersequent that does not use cuts.

Corollary 1. HFcm and HG are cut-free complete w.r.t. F + (CM) and G.

6 Proof Search Oriented Calculi for F + (CM) and G

We transform the hypersequent calculi HFcm and HG into proof-search ori-
ented calculi. The resulting systems feature reversible rules, with structural rules
absorbed into logical ones, allowing for the construction of countermodels. This
process follows the pattern established, e.g., for system E in [8].

Definition 6. The HFcmps calculus consists of the initial hypersequents of the
shape G | Γ, p ⇒ Δ, p, the (usual) rules for the propositional connectives that
repeat the introduced formulas in the premises, together with:

–
G | Γ ⇒ Δ, ©(B/A) | A,Bet¬(A ∧ Bet(A → B)) ⇒

R©
G | Γ ⇒ Δ, ©(B/A)

G | © (B/A), Γ ⇒ Δ, A G | © (B/A), Γ ⇒ Δ,Bet¬(A ∧ Bet(A → B))
L©1

G | © (B/A), Γ ⇒ Δ

G | © (B/A), Γ ⇒ Δ | Π ⇒ Σ, A G | © (B/A), Γ ⇒ Δ | Π ⇒ Σ,Bet¬(A ∧ Bet(A → B))
L©2

G | © (B/A), Γ ⇒ Δ | Π ⇒ Σ

Sequents vs Hypersequents for Åqvist Systems 191

–
G | Γ ⇒ Δ,BetA | Γ b ⇒ A

RBet
G | Γ ⇒ Δ,BetA

G | A,BetA, Γ ⇒ Δ
LBet

G |BetA, Γ ⇒ Δ

– G | Γ ⇒ �A, Δ | ⇒ A
R�

G | Γ ⇒ �A, Δ

G | �A, A, Γ ⇒ Δ
L�1

G | �A, Γ ⇒ Δ

G | �A, Γ ⇒ Δ | A, Π ⇒ Σ
L�2

G | �A, Γ ⇒ Δ | Π ⇒ Σ

The proof search oriented calculus HGps for G extends HFcmps with the rule:
G | Γ1, Γ b

2 ⇒ Δ1 | Γ2 ⇒ Δ2 G | Γ1 ⇒ Δ1 | Γ2, Γ b
1 ⇒ Δ2

com
G | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2

Notice the peculiar shape of the rules L©2 and L�2, designed to absorb the
hypersequent structural rule (s5′). The rule com acts only on Bet formulas.
This depends on the fact that © and � are governed by rules which introduce
bottom-up formulas in every component.

Lemma 8. The rules of (internal and external weakening) and contraction are
height-preserving admissible in HFcmps. Every rule of the calculus is height-
preserving invertible in HFcmps.

Proof. The height-preserving admissibility of internal and external weakening
follows from a straightforward induction on the height of the derivation. Invert-
ibility follows from weakening. The contraction rules are admissible due to the
repetition of every formula and component in each premise.

Theorem 9 (Soundness of HFcmps (HGps)). If a hypersequent G is deriv-
able in HFcmps (HGps), then so is in HFcm (HG).

Proof. Follows from the structural rules of HFcm.

6.1 Decidability and Countermodel Construction

We define a proof search procedure which terminates for every sequent. If the
proof search fails, we show how to extract a countermodel out of it.

Definition 7. A hypersequent H is saturated w.r.t. the system HFcmps if it is
not an initial sequent and for every component Γ ⇒ Δ in H, whenever Γ ⇒ Δ
contains the principal formulas in the conclusion of a rule (r), then H also
contains the formulas introduced by one of the premisses of (r) for every rule
(r). For example, in the case of Bet, we have:

– (LBet). If Γ,BetA ⇒ Δ ∈ H, then A ∈ Γ .
– (RBet). If Γ ⇒ Δ,BetA ∈ H, then Π, Γ b ⇒ Σ, A ∈ H for some Π, Σ.

The saturation condition w.r.t. HGps is defined adding the condition:

– (com). If Γ ⇒ Δ ∈ H and Π ⇒ Σ ∈ H then either Πb in Γ or Γ b in Π.

Theorem 10. Given ⇒ A there is a derivation or a saturated hypersequent.

192 A. Ciabattoni and M. Tesi

Proof. We start showing that the number of hypersequent components can be
bounded in any derivation D of ⇒ A. Indeed, the rules which introduce new
components are R�, R© and RBet. Consider first R�: we show that this rule
is applied exactly once to each formula (say �B), occurring in the consequent of
a component and creates only one new component, no matter if �B appears in
the consequent of many components. To illustrate the situation, consider, e.g.,

H | Γi ⇒ Δi, �B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ Δj , Σ, �B | ⇒ B
R�

H | Γi ⇒ Δi, �B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ Δj , Σ, �B

...D
H | Γi ⇒ Δi, �B | ⇒ B | . . . | Γj ⇒ Δj , �B

R�
H | Γi ⇒ Δi, �B | . . . | Γj ⇒ Δj , �B

�

H | Γi ⇒ Δi, �B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ Δj , Σ, �B | ⇒ B
LW,RW

H | Γi ⇒ Δi, �B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ Δj , Σ, �B | Θ ⇒ B, Λ
EC

H | Γi ⇒ Δi, �B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ Δj , Σ, �B

...D
H | Γi ⇒ Δi, �B | ⇒ B | . . . | Γj ⇒ Δj , �B

R�
H | Γi ⇒ Δi, �B | . . . | Γj ⇒ Δj , �B

Hence the number of components created by R� is bounded by the number of
boxed subformulas of A, whence it is O(n). The situation for R© is similar.

RBet requires more care, being Bet an S4 modality. In this case, having
bounded the number of applications of R� and R©, we assume that if there is
an infinite introduction bottom-up of components these are introduced by the
rule RBet. Hence, since the number of possible sequents is finite (in particular
2|2|SUB(A)||), there has to be a repetition. In this case, we have met the saturation
condition for the rule RBet. Thus the number of components is finite. Since we
can rule out rule applications for which the saturation condition has already been
met (due to the admissibility of contraction), every rule introduces bottom-up
a new component or new formulas in the components, hence the length of every
branch of a putative derivation of A is bounded and the derivation is finite.

The next theorem ensures the completeness of our calculi and show how to
extract countermodels out of a failed proof search.

Theorem 11. If A is valid in F + (CM) (G), is derivable in HFcmps (HGps).

Proof. By contraposition. If A is not derivable, by Theorem 10 there is a satu-
rated hypersequent: Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn. We assign labels to the compo-
nents i : Γi ⇒ Δi (i ∈ {1, . . . , n}) and consider the model: M = 〈{1, . . . , n}, ≤, v〉
with i ≤ j if and only if Γ b

i ⊆ Γj and i ∈ v(p) if and only if p ∈ Γi.
We have to check that the model is reflexive and transitive in the case of

HFcmps and total in the case of HGps. The relation ≤ is reflexive and transitive,
because set inclusion is reflexive and transitive. As regards totality, we observe
that the saturation condition for (com) ensures that for every i and j, Γ b

i ⊆ Γj

or Γ b
j ⊆ Γi which gives by definition i ≤ j or j ≤ i.

We now show that for every i in the model M we have i � B if B ∈ Γi and
i � B if B ∈ Δi. We argue by induction on the degree of the formulas.
– If B is atomic, the claim stems from the definition of the valuation function

and by the saturation condition.
– If B is a compound formula, the proof follows from the use of the induction

hypothesis and saturation. We deal with the case in which B is BetC; the
other cases are handled similarly. If BetC ∈ Γi, suppose i ≤ j, then Γ b

i ⊆
Γj . By the saturation condition for LBet, we get C ∈ Γj and by induction

Sequents vs Hypersequents for Åqvist Systems 193

hypothesis we have j � C, hence the desired conclusion. If BetC ∈ Δi, then
by definition of saturation there is Γj ⇒ Δj , C with Γ b

i ⊆ Γj so i ≤ j, and
by induction hypothesis i � C, so the desired conclusion follows.

Remark 3. The above countermodel construction can be adapted6 to define a
proof-search-oriented calculus for Gödel-Dummett logic [10].

Concluding Remark: we demonstrated that for F + (CM) (and Åqvist sys-
tems E and F), while it is possible to define sequent calculi that use semi-
analytic cuts, the hypersequent framework provides a modular and cut-free app-
roach, enabling the capture of F + (CM) and G, and supporting countermodel
construction.

Acknowledgements. Work supported by the FWF project I 6372-N.

References

1. Åqvist, L.: Deontic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic. Synthese Library, vol. 165, pp. 605–714. Springer, Dordrecht (1984).
https://doi.org/10.1007/978-94-009-6259-0 11

2. Avron, A.: A constructive analysis of RM. J. Symb. Logic 52(4), 939–951 (1987)
3. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-

rency. Ann. Math. Artif. Intell. 4, 225–248 (1991)
4. Avron, A.: The method of hypersequents in the proof theory of propositional non-

classical logics. In: Logic: From Foundations to Applications, pp. 1–32. OUP, New
York (1996)

5. Belnap, N.D., Jr.: Display logic. J. Philos. Logic 11(4), 375–417 (1982)
6. Burgess, J.: Quick completeness proofs for some logics of conditionals. Notre Dame

J. Formal Logic 22(3), 76–84 (1981)
7. Ciabattoni, A., Lang, T., Ramanayake, R.: Cut-restriction: from cuts to analytic

cuts. In: LICS, pp. 1–13 (2023)
8. Ciabattoni, A., Olivetti, N., Parent, X.: Dyadic obligations: proofs and counter-

models via hypersequents. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix,
V., Serramia, M. (eds.) PRIMA 2022. LNCS, vol. 13753, pp. 54–71. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-21203-1 4

9. Ciabattoni, A., Olivetti, N., Parent, X., Ramanayake, R., Rozplokhas, D.: Analytic
proof theory for Aqvist’s system F. In: Maranhão, J., Peterson, C., Straßer, C.,
van der Torre, L. (eds.) DEON 2023, pp. 79–98 (2023)

10. Dummett, M.: A propositional logic with denumerable matrix. J. Symb. Log. 24,
96–107 (1959)

11. Gabbay, D., Horty, J., Parent, X., van der Torre, L., van der Meyden, R. (eds.)
Handbook of Deontic Logic and Normative Systems, vol. 2. College Publications,
London (2021)

6 Using the multiple conclusion version of calculus in [3] (whose rule com moves any
multiset of formulas) in which the rules for → are replaced by:

G | Γ ⇒ Δ, A → B | Γ, A ⇒ B
R→

G | Γ ⇒ Δ, A → B

G | A → B, Γ ⇒ Δ, A G | B, A → B, Γ ⇒ Δ
L→

G | A → B, Γ ⇒ Δ
.

https://doi.org/10.1007/978-94-009-6259-0_11
https://doi.org/10.1007/978-3-031-21203-1_4

194 A. Ciabattoni and M. Tesi

12. Gabbay, D.M.: Theoretical foundations for non-monotonic reasoning in expert sys-
tems. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI
Series, vol. 13, pp. 439–457. Springer, Heidelberg (1985). https://doi.org/10.1007/
978-3-642-82453-1 15

13. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux calculi for
KLM logics of nonmonotonic reasoning. ACM Trans. Comput. Log. 10(3), 18:1–
18:47 (2009)

14. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Hypersequent calculi
for Lewis’ conditional logics with uniformity and reflexivity. In: Proceedings of
Tableaux (2017)

15. Indrzejczak, A.: Natural Deduction, Hybrid Systems and Modal Logics. Springer,
Dordrecht (2010). https://doi.org/10.1007/978-90-481-8785-0

16. Indrzejczak, A.: Cut-free hypersequent calculus for S4.3. Bull. Sect. Logic Univ.
�Lódź 41(1–2), 89–104 (2012)

17. Kowalski, T., Ono, H.: Analytic cut and interpolation for bi-intuitionistic logic.
Rev. Symb. Log. 10(2), 259–283 (2017)

18. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

19. Kurokawa, H.: Hypersequent calculi for modal logics extending S4. In: Nakano, Y.,
Satoh, K., Bekki, D. (eds.) JSAI-isAI 2013. LNCS (LNAI), vol. 8417, pp. 51–68.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10061-6 4

20. Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional log-
ics with cautious monotonicity. In: Wooldridge, M. Coelho, H., Studer, R. (eds.)
Proceedings of the 2010 conference on ECAI 2010: 19th European Conference on
Artificial Intelligence, pp. 707–712. IOS Press, Amsterdam (2010)

21. Lewis, D.: Counterfactuals. Blackwell, Oxford (1973)
22. Lyon, T.S., et al.: Internal and external calculi: ordering the jungle without being

lost in translations. CoRR, abs/2312.03426 (2023)
23. Minc, G.: Some calculi of modal logic. Trudy Mat. Inst. Steklov 98, 88–111 (1968)
24. Negri, S., Olivetti, N.: A sequent calculus for preferential conditional logic based

on neighbourhood semantics. In: Proceedings of Tableaux, vol. 9323, pp. 115–134
(2015)

25. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi. Osaka Math. J. 9,
113–130 (1957)

26. Ono, H., Sano, K.: Analytic cut and Mints’ symmetric interpolation method for
Bi-intuitionistic tense logic. In: Advances in Modal Logic, pp. 601–624. College
Publications (2022)

27. Parent, X.: Maximality vs. optimality in dyadic deontic logic. J. Philos. Log. 43(6),
1101–1128 (2014)

28. Parent, X.: Preference semantics for Hansson-type dyadic deontic logic: a survey
of results. In: Gabbay, et al. [11], pp. 7–70

29. Smullyan, R.M.: Analytic cut. J. Symb. Log. 33, 560–564 (1968)
30. Takano, M.: Subformula property as a substitute for cut-elimination in modal

propositional logics. Math. Japon. 37, 1129–1145 (1992)
31. Takano, M.: New modification of the subformula property for a modal logic. Bull.

Sect. Log. 49, 08 (2020)

https://doi.org/10.1007/978-3-642-82453-1_15
https://doi.org/10.1007/978-3-642-82453-1_15
https://doi.org/10.1007/978-90-481-8785-0
https://doi.org/10.1007/978-3-319-10061-6_4

Sequents vs Hypersequents for Åqvist Systems 195

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Uniform Substitution for Differential
Refinement Logic

Enguerrand Prebet and André Platzer(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany
{enguerrand.prebet,platzer}@kit.edu

Abstract. This paper introduces a uniform substitution calculus for
differential refinement logic dRL. The logic dRL extends the differential
dynamic logic dL such that one can simultaneously reason about prop-
erties of and relations between hybrid systems. Refinements are useful
e.g. for simplifying proofs by relating a concrete hybrid system to an
abstract one from which the property can be proved more easily. Uniform
substitution is the key to parsimonious prover microkernels. It enables
the verbatim use of single axiom formulas instead of axiom schemata
with soundness-critical side conditions scattered across the proof calcu-
lus. The uniform substitution rule can then be used to instantiate all
axioms soundly. Access to differential variables in dRL enables more con-
trol over the notion of refinement, which is shown to be decidable on a
fragment of hybrid programs.

Keywords: Uniform substitution · Differential dynamic logic ·
Refinement · Hybrid systems

1 Introduction

Hybrid systems modeled by joint discrete dynamics and continuous dynamics are
important and subtle systems in need of sound proofs [26] on account of their
important applications [15,16,20,22,32]. Since such systems are important to get
right, hybrid systems verification techniques themselves should be sound. Uni-
form substitution [24,25,27,28], originally phrased by Church for first-order logic
[10, §35,40], has been identified as the key technique reducing the soundness-
critical core to a prover microkernel and is behind the KeYmaera X prover [14].

This paper designs a corresponding uniform substitution proof calculus for
differential refinement logic (dRL) [19]. The logic dRL is unique in its capabilities
of proving simultaneous hybrid systems properties and hybrid systems refine-
ment relations. This ability of dRL has been shown to be beneficial for estab-
lishing refinement relations of system implementations to verification abstrac-
tions and for relating time-triggered implementation models to event-triggered

Funding has been provided by an Alexander von Humboldt Professorship and the pilot
program Core Informatics (KiKIT) of the Helmholtz Association (HGF).

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 196–215, 2024.
https://doi.org/10.1007/978-3-031-63501-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_11&domain=pdf
http://orcid.org/0009-0008-0160-5219
http://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-031-63501-4_11

Uniform Substitution for Differential Refinement Logic 197

verification models [18]. The latter relation overcomes a stark divide in embed-
ded system design principles while combining ease of verification with ease of
implementation in ways that neither design paradigm alone supports. But such
proving power only helps practical system verification if the theoretical proof
calculi are implemented in a sound way and, in fact, dRL has not yet been
implemented at all. Such an implementation is significantly simplified and sig-
nificantly easier to get sound by identifying a uniform substitution calculus,
which has no axiom schemata with their usual side conditions (and the algo-
rithms implementing them) but merely a finite list of concrete dRL formulas as
axioms. Reasoning directly with these concrete formulas also makes the proofs
easier as the conditions are checked only when uniform substitution is used.
This means that a direct consequence of the axioms could have more admissible
substitution instances than the axioms themselves, whereas with schemata, the
side conditions would pile up and not generalize as well. Other beneficial side
effects include the fact that dRL now acquires a Hilbert-style proof calculus that
is significantly more flexible and also more modular than dRL’s previous sequent
calculus.

Challenges include the fact that uniform substitution calculi for hybrid sys-
tems give a differential-form semantics to differentials and differential symbols
[25], which is critical to obtain logic-based decision procedures for differential
equation invariants [30], but also renders some sequent calculus proof rules of
dRL unsound due to the resulting finer-grained view on differential equations.
The flip side is that this finer view distinguishes widely different classes of differ-
ential equations better, thereby making it easier to tell apart different differential
equations that merely coincide on the overall reachable set while having differ-
ent temporal behavior. This difference is exploited here to obtain a decidability
result for refinement for a fragment of hybrid systems. Other challenges to over-
come are the unexpected definition of free variables of refinements, which are
required for soundness. The core of the resulting calculus has been implemented
in KeYmaera X1, extending the prover microkernel in 4 h of work with about
300 lines of code, mostly spent on writing down all the new axioms.

2 Related Work

Hybrid programs in dRL form a Kleene algebra with tests [17]. Program equiva-
lence for Kleene algebra with tests is known to be decidable for abstract atomic
programs. Refinement α ≤ β can be recovered and defined as α∪β = β, but that
duplicates reasoning about β. Certain classes of hypotheses can be added to the
theory, e.g. Hoare-like triples ?p;α; ?¬q = ?false, without breaking the decidabil-
ity [11]. This however does not extend when limited commutativity is allowed,
which arises even in the discrete fragment: (x := 2; y := 3) = (y := 3;x := 2) but
(x := 2;x := 3) �= (x := 3;x := 2). KAT with only discrete assignments has been
studied as Schematic KAT [4]. dRL can derive the axioms of Schematic KAT,
but also allows reasoning with continuous dynamics and differential equations.
1 https://github.com/LS-Lab/KeYmaeraX-release/tree/dRL.

https://github.com/LS-Lab/KeYmaeraX-release/tree/dRL

198 E. Prebet and A. Platzer

The Event-B method [1] is a formalism for reasoning about discrete models
where the primary mechanism is refinement to check the conformance between
abstract models and more detailed ones. Multiple different formalisms have been
proposed. Hybrid Event-B [2,5,6] is an extension with tool support [8] for hybrid
systems with events corresponding to discrete and continuous evolutions. These
continuous steps are however abstracted by the invariants they are assumed to
satisfy. Event-B can also be extended with theories [9]. By adding some axioms
about differential equations, it allows refinement reasoning with some continuous
dynamics [3,12]. In contrast, dRL captures the continuous dynamics directly and
proves the invariants as a consequence of the continuous dynamics.

Uniform substitution was proposed by Alonzo Church for first-order logic to
capture axioms instead of axiom schemata [10, §35,40]. Modern uniform substi-
tution originated for dL to support hybrid systems theorem proving in simple
ways [25], extended to hybrid games in differential game logic dGL [27], and to
communicating parallel programs dLCHP [7]. This work is complementing the
approach by adding refinement reasoning in a uniform substitution calculus for
hybrid systems. Developing uniform substitution calculi are key to the design of
small soundness-critical prover microkernels such as KeYmaera X [14].

3 Differential Refinement Logic dRL

Differential refinement logic dRL [19] extends the differential dynamic logic dL for
hybrid systems [23] with a first-class refinement operator ≤ on hybrid systems.
This section presents differential-form dRL, which prepares dRL for the features
needed for dL’s uniform substitution axiomatization, most notably the inclusion
of differential terms alongside function symbols, predicate symbols, and program
constant symbols, but also the requisite inclusion of differential variable symbols.
Differential terms (θ)′ are the fundamental logical device with which to enable
sound [25] and complete [29,30] reasoning about differential equations.

3.1 Syntax

This section defines the syntax of the differential refinement logic dRL. The set
of all variables is V. To each variable x ∈ V is associated a differential symbol x′

which is also in V. Its purpose is to use x′ to refer to the time-derivative of vari-
able x during a differential equation, but also to cleverly relay that information
to surrounding formulas in a sound way [25]. It is this (crucial) presence of dif-
ferential symbols, that gives differential-form dRL a refined notion of refinement,
especially of differential equations, compared to its sequent calculus predecessor
[19].

Definition 1 (Terms). Terms are defined by the grammar below where x ∈ V
is a variable, f is a function symbol of arity n and θ, η, θ1, . . . , θn are terms:

θ, η ::= x
∣
∣ f(θ1, . . . , θn)

∣
∣ θ + η

∣
∣ θ · η

∣
∣ (θ)′

Uniform Substitution for Differential Refinement Logic 199

Terms have the usual arithmetic operations and function symbols. They also
have differentials of terms (θ)′ which describe how the value of θ changes locally
depending on the values of the differential symbols associated to the variables
of θ.

Definition 2 (Formulas). Formulas are defined by the grammar below where
θ, η, θ1, . . . , θn are terms, p is a predicate symbol of arity n, φ, ψ are formulas
and α, β are hybrid programs (Definition 3):

φ, ψ ::= θ ≤ η
∣
∣ p(θ1, . . . , θn)

∣
∣ ¬φ

∣
∣ φ ∧ ψ

∣
∣ ∀xφ

∣
∣ [α]φ

∣
∣ α ≤ β

In addition to the operators of first-order logic of real arithmetic, formulas
also contain the dL modality [α]φ which expresses that the formula φ holds after
all possible runs of the hybrid program α. dRL extends dL with the refinement
operator α ≤ β which expresses that α refines β as β has more behaviors than
α: it is true in a state ν if all states reachable by hybrid program α from ν can
be reached by hybrid program β. The program equivalence α = β is shorthand
for α ≤ β ∧ β ≤ α. This will be made explicit by axiom (=) in Sect. 5.

Note the fundamental difference between dRL modal formula [α]φ, which
expresses that all runs of hybrid program α satisfy dRL formula φ, compared
to the dRL refinement formula α ≤ β, which expresses that all runs of hybrid
program α are also runs of hybrid program β. Both dRL formulas refer to the
runs of a hybrid program α, but only the former states a property of the (final)
states reached, while only the latter relates the overall transition behavior of
hybrid program α to that of another program. Just like [α]φ, formula α ≤ β is
a dRL formula and not just a judgment, so it can be true in some states and
false in others. This makes it possible to easily express conditional refinement as
φ → α ≤ β meaning that if φ is true initially, then α refines β. The logic dRL
is closed under all operators. For example the dRL formula [α]β ≤ γ expresses
that after all runs of α it is the case that all runs of β are also runs of γ.
Just like in an ordinary implication, φ → α ≤ β says nothing about what
happens when the initial state does not satisfy φ. Just like ordinary dynamic
logic modalities, [α]β ≤ γ says nothing about what happens before program α
ran. Indeed, this extended capabilities that dRL is closed under all operators
will add to its expressibility and the eloquence of its uniform substitution proof
calculus.

Definition 3 (Hybrid Programs). Hybrid programs are defined by the gram-
mar below where x is a variable, θ is a term, a is a program constant, ψ is a
differential-free formula and α, β are hybrid programs:

α, β ::= a
∣
∣ ?ψ

∣
∣ x := θ

∣
∣ x := ∗ ∣

∣ x′ = θ &ψ
∣
∣ α ∪ β

∣
∣ α;β

∣
∣ α∗

The test ?ψ behaves like a skip if the formula ψ is true in the current state and
blocks the system otherwise. The assignment x := θ instantaneously updates
the value of the variable x to the value of the term θ. The nondeterministic
assignment x := ∗ updates the value of the variable x to an arbitrary value.

200 E. Prebet and A. Platzer

The differential equation x′ = θ &ψ behaves like a continuous evolution where
both the differential equation x′ = θ and the evolution domain ψ holds. The
nondeterministic choice α ∪ β can behave like either α or β. The sequence α;β
behaves like α followed by β. The nondeterministic repetition α∗ behaves like α
repeated an arbitrary natural number of times.

Example 1 (Modelling safe breaking). Let us consider a car that needs to stop
before a wall at distance m. It starts from a safe position and can accelerate with
acceleration A if some safety condition safeT (x) is true or brake with braking
force B. The controller is run at most every T seconds. Proving its safety can
be achieved by proving the following dRL formula:

A ≥ 0 ∧ B > 0 ∧ x + v2/2B ≤ m → [carT]x ≤ m

carT ::= (a := −B ∪ ?safeT (x); a := A); t0 := t;x′ = v, v′ = a, t′ = 1 & t − t0 ≤ T

Such system, called time-triggered, can be refined to a event-triggered system
where the controller is sure to run before a critical event, leaving the domain
E(x), occurs. Event-triggered systems are easier to verify but less realistic. With
dRL and the axiom ([≤]) below, the time-triggered system can be proved safe
by proving the safety of the event-triggered system and the refinement between
the two systems:

A ≥ 0 ∧ B ≥ 0 ∧ x + v2/2B ≤ m → carT ≤ carE ∧ [carE]x ≤ m

carE ::= (a := −B ∪ ?safeE(x); a := A); t0 := t;x′ = v, v′ = a, t′ = 1 &E(x)

3.2 Semantics

A state ν is a mapping V → R. The state νr
x agrees with the state ν except for

the variable x whose value is r ∈ R. State ω is a U -variation of ν if ω and ν
are equal on the complement U� of that set of variables U . For instance, νr

x is
an {x}-variation of ν. The set of all states is S. The interpretation of a function
symbol of arity n in interpretation I is a smooth function I(f) : Rn → R.

Definition 4 (Term semantics). The semantics of a term θ in interpretation
I and state ν is its value Iν�θ� ∈ R and is defined as follows:

1. Iν�x� = ν(x)
2. Iν�f(θ1, . . . , θn)� = I(f)(Iν�θ1�, . . . , Iν�θn�)
3. Iν�θ + η� = Iν�θ� + Iν�η�
4. Iν�θ · η� = Iν�θ� · Iν�η�

5. Iν�(θ)′� =
∑

x∈V
ν(x′)∂I�θ�

∂x (ν) =
∑

x∈V
ν(x′)∂Iν�θ�

∂x

The partial derivative ∂Iν�θ�
∂x corresponds to the derivative of the one-dimensional

function X �→ IνX
x �θ� at X = ν(x). Since Iν�θ� denotes a smooth function, the

derivative always exists.

Uniform Substitution for Differential Refinement Logic 201

Since hybrid programs appear in formulas and vice versa, the interpretation
of hybrid programs and formulas is defined by simultaneous induction. The inter-
pretation of a predicate symbol of arity n in interpretation I is an n-ary relation
I(p) ⊆ R

n. The interpretation of a program constant symbol a in interpretation
I is a state-transition relation I(a) ⊆ S × S where (ν, ω) ∈ I�a� iff the program
constant a can reach the state ω starting from the state ν.

Definition 5 (dRL semantics). The semantics of a formula φ for an inter-
pretation I is the subset I�φ� ⊆ S of states in which φ is true and defined as:

1. ν ∈ I�θ ≤ η� iff Iν�θ� ≤ Iν�η�
2. ν ∈ I�p(θ1, . . . , θn)� iff (Iν�θ1�, . . . , Iν�θn�) ∈ I(p)
3. ν ∈ I�¬φ� iff ν /∈ I�φ�
4. ν ∈ I�φ ∧ ψ� iff ν ∈ I�φ� and ν ∈ I�ψ�
5. ν ∈ I�∀xφ� iff νr

x ∈ I�φ� for all r ∈ R

6. ν ∈ I�[α]φ� iff ω ∈ I�φ� for all (ν, ω) ∈ I�α�
7. ν ∈ I�α ≤ β� iff (ν, ω) ∈ I�β� for all (ν, ω) ∈ I�α�

A formula φ is valid in I if I�φ� = S. A formula φ is valid if it is valid in all
interpretations.

Definition 6 (Transition semantics of programs). The semantics of a
hybrid program α for an interpretation I is the transition relation I�α� ⊆ S ×S
and is defined as follows:

1. I�a� = I(a)
2. I�?ψ� = {(ν, ν) : ν ∈ I�ψ�}
3. I�x := ∗� = {(ν, νr

x) : for all r ∈ R}
4. I�x := θ� = {(ν, νr

x) : r = Iν�θ}�
5. I�x′ = θ &ψ� = {(ν, ω) : ϕ(0) is a {x′}-variation of ν and ω = ϕ(r)for

some function ϕ : [0, r] → S where ϕ(t) is a {x, x′}-variation of ν,

satisfiesϕ(t) ∈ I�x′ = θ ∧ ψ� and dIϕ(t)�x�
dt = Iϕ(t)�θ� for all t ∈ [0, r]}

6. I�α ∪ β� = I�α� ∪ I�β�
7. I�α;β� = I�α� ◦ I�β� = {(ν, ω) : (ν, μ) ∈ I�α�, (μ, ω) ∈ I�β� for some μ ∈ S}
8. I�α∗� =

⋃

n∈N
I�αn�

Most importantly, α ≤ β is true in a state ν iff all states ω reachable from ν by
running program α are also reachable by running β from ν.

The transition for a differential equation x′ = θ &ψ synchronizes the differ-
ential symbol x′ with the current time-derivative of x, i.e. θ, and then evolves
the system continuously along the solution ϕ of the differential equation x′ = θ
within the domain ψ. Differential equations are the only hybrid programs that
intrinsically relate variables with their associated differential symbol.

As differential equations effectively change the value of differential symbols,
this is taken into account in the semantics of refinements. The differential equa-
tions x′ = 1 and x′ = 2 are not equivalent: although both can reach the same
values for x, their respective end states will always have a different value for x′.

202 E. Prebet and A. Platzer

This behavior differs from the original semantics of dRL [19]. Intuitively, this
notion of refinement corresponds to assuming that differential equations evolve
with a global time t′ = 1. Other extensions of dL like dLCHP [7] already assume
the presence of such global time. This property allows to express refinements of
differential equations as a dL formula as shown in the axiom (ODE) below.

3.3 Static Semantics

Uniform substitution relies on the notions of free and bound variables to prevent
any unsound substitution attempts. Static semantics gives a definition for free
and bound variables of terms, formulas and hybrid programs based on their
(dynamic) semantics, which can be defined as in dL [25]:

Definition 7 (Static semantics). The static semantics defines the free vari-
ables FV(θ), FV(φ) and FV(α), which are the variables whose values the expression
depends on, and the bound variables BV(α), which are the variables whose values
may change during the execution of α. They are defined formally as follows:

FV(θ) = {x ∈ V : ∃I, ν, ν̃a {x}-variation of ν such that Iν�θ� �= Iν̃�θ�}
FV(θ) = {x ∈ V : ∃I, ν, ν̃a {x}-variation of ν such that ν ∈ I�φ� �� ν̃}
FV(α) = {x ∈ V : ∃I, ν, ω, ν̃a {x}-variation of ν such that (ν, ω) ∈ I�α�

and ∀ ω̃{x}-variation of ω such that (ν̃, ω̃) /∈ I�α�}
BV(α) = {x ∈ V : ∃I, ν, ωsuch that (ν, ω) ∈ I�α� and ν(x) �= ω(x)}

Free and bounds variables are the only information needed about the logic to
ensure that the result of uniform substitution is only defined when sound. The
coincidence lemmas [25] show that the truth-values of formulas only depend on
their free variables and the interpretation of the symbols appearing in them
(similarly for terms and hybrid programs). The set of function, predicate, and
program symbols appearing in a formula, term or hybrid program is denoted
Σ(·).
Lemma 1 (Coincidence for terms [25]). The set FV(θ) is the smallest set
with the coincidence property for θ: If ν = ν̃ on V ⊇ FV(θ) and I = J on Σ(θ),
then Iν�θ� = Jν̃�θ�.

Lemma 2 (Coincidence for formulas [25]). The set FV(φ) is the smallest
set with the coincidence property for φ: If ν = ν̃ on V ⊇ FV(φ) and I = J on
Σ(φ), then ν ∈ I�φ� iff ν̃ ∈ J�φ�.

Lemma 3 (Coincidence for hybrid programs [25]). The set FV(α) is the
smallest set with the coincidence property for α: If ν = ν̃ on V ⊇ FV(α) and
I = J on Σ(α), then (ν, ω) ∈ I�α� implies (ν̃, ω̃) ∈ J�α� for some ω̃ with ω = ω̃
on V .

Uniform Substitution for Differential Refinement Logic 203

The proof [25] requires a mutual induction on the structure of the formula and
hybrid program to show that I�φ� = J�φ� and I�α� = J�α� which extends to the
refinement case. The rest is done by induction on the set of variables S where
the states ν and ν̃ can differ.

Lemma 4 (Bound effect [25]). The set BV(α) is the smallest set with the
bound effect property for α: If (ν, ω) ∈ I�α�, then ν = ω on BV(α)�.

These sets are the smallest sets with the coincidence property, which means
that all conservative extensions of these sets can also be used soundly. We define
FV(θ),FV(φ),FV(α) and BV(α) as such overapproximations that can be com-
puted syntactically. Computing the free variables for a formula [α]φ requires the
must-bound variables of the hybrid program α, written MBV(α). They represent
the variables that will be written in all executions of α. These sets are given in
[31] and are constructed in a standard way [25], except for the new refinement
operator.

Since the behavior of hybrid program α and β only depends on their respec-
tive free variables (Lemma 3), it would be tempting to define FV(α ≤ β) =
FV(α) ∪ FV(β) stating that the refinement depends on the variables for which
either program depends on. Somewhat surprisingly, this would be unsound for
reasons that truly touch on the nature of refinement. Take the refinement formula
?true ≤ x := 1 and a state ν with ν(x) = 0. Then ν /∈ I�?true ≤ x := 1�. However
if the initial value of x is 1, then the refinement holds: ν1

x ∈ I�?true ≤ x := 1�,
because the assignment x := 1 has no effect. In fact FV(?true ≤ x := 1) = {x}
even though FV(?true) = FV(x := 1) = ∅. To obtain a sound definition of
FV(α ≤ β), one needs to take into account the variables that may be written
in one program, BV(α) ∪ BV(β), but that can also remain unmodified (which
makes them depend on their initial values), so not in MBV(α)∩MBV(β). Hence,
the (syntactic) free variables of a refinement are defined as follows:

FV(α ≤ β) = FV(α) ∪ FV(β) ∪ ((BV(α) ∪ BV(β)) \ (MBV(α) ∩ MBV(β)))

With this definition for refinements as the only but notable outlier to an other-
wise standard definition of the syntatic computations for a static semantics [25],
the static semantics FV(φ) etc. can be proved to be sound overapproximations of
the static semantics FV(φ) from Definition 7 and thereby enjoy the coincidence
Lemmas 1–3 and the bound effect Lemma 4, respectively.

Lemma 5 (Soundness of static semantics). For all terms θ, formulas φ and
hybrid programs α:

FV(θ) ⊇ FV(θ) FV(φ) ⊇ FV(φ) FV(α) ⊇ FV(α) BV(α) ⊇ BV(α)

The proof of FV(·) ⊇ FV(·) for formulas and hybrid programs is the only case
affected by the addition of refinement operators compared to prior proofs [25,
Lem. 17]. It is proved by induction on the structure of the formulas and hybrid
programs. For hybrid programs, the property shown for FV(α) is stronger than

204 E. Prebet and A. Platzer

the coincidence property from Lemma 3, enforcing ω = ω̃ on V ∪MBV(α) rather
than V .

For the case of the refinement operator α ≤ β, the main insight is visible
when proving that ν̃ ∈ J�α ≤ β� implies ν ∈ I�α ≤ β� with ν = ν̃ on V and
I = J on Σ(α ≤ β). For any (ν, ω) ∈ I�α�, we have (ν̃, ω̃) ∈ J�α�, (ν̃, ω̃) ∈ J�β�
and (ν, μ) ∈ I�β� for some states ω̃, μ by repeated use of the induction hypothesis
and the definition of refinement. Both the induction hypothesis and Lemma 4
give us information on ω̃ and μ. As V ⊇ FV(α ≤ β), the definition of FV(α ≤ β)
is crucial for ensuring that this knowledge is enough to fully determine ω̃ and μ
from ν, ω and ν̃, and then that ω = μ.

4 Uniform Substitution

A uniform substitution σ is a mapping from terms of the form f(·) to terms
σ(f(·)), from formulas of the form p(·) to formulas σ(p(·)), and from program
constants a to hybrid programs σ(a). The reserved 0-ary function symbol · marks

Fig. 1. Recursive application of uniform substitution with input taboos U ⊆ V

Uniform Substitution for Differential Refinement Logic 205

the position where the argument, e.g. θ in p(θ), will be substituted in the result-
ing expression. Soundness of such substitutions requires that the substitution
does not introduce new free variables in a context where they are bound [10].

Figure 1 defines the result σUφ of applying a uniform substitution σ with
taboo set U ⊆ V to a formula φ (or term θ, or hybrid programs α respectively)
[28]. For hybrid programs α, the substitution result σU

V α for input taboo U ⊆ V
also outputs a taboo set V ⊆ V, written in subscript notation, that will be
tabooed after program α. Taboos U, V are sets of variables that cannot be sub-
stituted in free during the application of the substitution, because they have
been bound within the context and, thus, potentially changed their meaning
compared to the original substitution σ. The difference is that the input U is
already taboo when the substitution σ is applied to α while V is the new out-
put taboo after α. Finally, σ(φ) is short for σ∅φ started without initial taboos.
The key advantage to working with uniform substitution applications with taboo
passing is that they enable an efficient one-pass substitution [28] compared to the
classical Church-style uniform substitution application mechanism that checks
admissibility at every binding operator along the way [25]. One-pass uniform
substitution postpones admissibility checks till the actual substitutions of func-
tion and predicate symbols according to explicit taboos carried around.

Despite the surprising definition of the free variables of a refinement, defining
uniform substitution for the refinement case is standard, the input taboo U is
given to both programs except that their output taboos V,W are discarded:

σU (α ≤ β) = σU
V α ≤ σU

W β

The reason is two-fold:

1. Unlike quantifiers and modalities, refinements do not subsequently bind any
variables.

2. The free variables of a refinement introduced by a substitution can only be
introduced free in the programs, and thus checking these against the input
taboo set U is sufficient.

This last statement is a consequence of BV(σα) ⊆ BV(α) and MBV(σα) ⊇
MBV(α), which is proved by a direct induction.

4.1 Uniform Substitutions and Adjoint Interpretations

The proof of the soundness of uniform substitution follows the same structure
as the proof of the uniform substitution lemma for dGL [28] but adapted to
hybrid programs instead of hybrid games and generalized to the presence of
refinements. The output taboo V of a uniform substitution σU

V α will include the
original taboo set U and all variables bound in the program α.

Lemma 6 (Taboo set computation [28]). If σU
V α is defined, then V ⊇ U ∪

BV(σU
V α).

206 E. Prebet and A. Platzer

Whereas uniform substitutions are syntactic transformations on expressions,
their semantic counterparts are semantic transformations on interpretations. The
two are related by Lemmas 7 and 8. Let Id· denote the interpretation that agrees
with interpretation I except for the constant function symbol · which is inter-
preted as the constant d ∈ R.

Definition 8 (Adjoint interpretation). For an interpretation I and a state
ω, the adjoint interpretation σ∗

ωI modifies the interpretation of each function
symbol f ∈ σ, predicate symbol p ∈ σ and program constant a ∈ σ as follows:

σ∗
ωI(f) : R → R; d �→ Id· ω�σf(·)�

σ∗
ωI(p) = {d ∈ R : ω ∈ Id· �σp(·)�}

σ∗
ωI(a) = I�σa�

Lemma 7 (Uniform substitution for terms [28]). The uniform substitution
σ for taboo U ⊆ V and its adjoint interpretation σ∗

ωI for I, ω have the same
semantics on U -variations ν of ω for all terms θ:

Iν�σUθ� = σ∗
ωIν�θ�

Lemma 8 (Uniform substitution for formulas, programs). Uniform sub-
stitution σ for taboo U ⊆ V and its adjoint interpretation σ∗

ωI for I, ω have the
same semantics on U -variations ν of ω for all formulas φ and hybrid programs
α:

for all U -variations ν of ω : ν ∈ I�σUφ� iff ν ∈ σ∗
ωI�φ�

for all states μ and all U -variations ν of ω : (ν, μ) ∈ I�σU
V α� iff (ν, μ) ∈ σ∗

ωI�α�

The proof is done by simultaneous induction on the structure of σ, α and φ
for all U, ν, ω and μ [31]. The use of U -variations is critical when the induction
hypothesis needs to be used in a state other than ν, e.g. for quantifiers and
modalities. Without considering the extension of the refinement operator, this
result was previously proved in a weaker form (U = ∅) for dL [25] or for more
complex semantics like hybrid games [28].

4.2 Soundness of Uniform Substitution

Lemma 8 is essentially all that is required to ensure the sound application of
uniform substitution. First, uniform substitution can be used to have a sound
instantiation of the axioms, using the uniform substitution rule (US). A proof
rule is sound if the validity of the premises implies the validity of the conclusion.

Theorem 1 (Soundness of uniform substitution [28]). The proof rule (US)
is sound.

(US)
φ

σ(φ)

Uniform Substitution for Differential Refinement Logic 207

Uniform substitution can also be used on rules or whole inferences, as long as
they are locally sound, i.e. the conclusion is valid in any interpretation where the
premises are valid. Locally sound inferences are also sound.

Theorem 2 (Soundness of uniform substitution for rules [28]). All locally
sound inferences remain locally sound when substituted with a uniform substitu-
tion σ with taboo set V.

φ1 . . . φn

ψ
locally sound implies

σVφ1 . . . σVφn

σVψ
locally sound.

5 Proof Calculus

Most notably, uniform substitution makes it possible to use concrete dRL formu-
las as axioms instead of axiom schemata that accept infinitely many formulas
as axioms. Axioms are finite syntactic objects, and are thus easy to implement,
while axiom schemata are ultimately algorithms accepting certain formulas as
input while rejecting others [25]. Figure 2 lists the axioms of dRL. dRL also satis-
fies the axioms of KAT [17], Schematic KAT [4] and the axioms of dL [31]. Some
axioms use the reverse implication φ ← ψ instead of ψ → φ for emphasis.

In the axiom ([≤]), x̄ stands for the (finite) vector of all relevant variables
(alternative treatments [25,28] of p(x̄) use quantifier symbols or additional pro-
gram constants instead, but are not necessary for this paper). This characteristic
axiom of dRL expresses that if formula p(x̄) holds after all runs of hybrid pro-
gram b, then it also holds after any refinement a. Thus, as long as a proof of the
refinement is given, it is possible to replace hybrid programs inside modalities.
In general, axioms are meant to be applied to the axiom key (marked blue).

Refinement is transitive (≤t), allowing the introduction of intermediate
refinements c similar to the role that cuts play in first-order logic.

Axioms (∪l) and (∪r) decompose the choice operator using logical connec-
tives. As the choice a∪b can behave like either subprograms, whenever it refines a
program c, both a and b must refine c. Axiom (∪r) is not an equivalence though.
a ≤ b ∨ a ≤ c says that for each initial state, one of the two refinement holds.
However, when a is nondeterministic, and so can have multiple end states for
one initial state, it may not be the case despite the left-hand side being true.

Axiom (;) helps proving a refinement between two sequences of programs
(a; b ≤ c; d) by proving the refinement of the first programs (a ≤ c) and the
refinement of the second programs, but only after all executions of a ([a]b ≤
d). Axioms (?det) and (:=det) are particular cases of the axiom (;) where the
implication can be strengthened to an equivalence. As such, the implication
from right to left is not required for both axioms [31].

Axioms (loopl), (loopr) and (unloop) are used to prove refinements of loops.
The first two state that if adding a program before or after only leads to less
executions, then adding an unbounded number of executions, i.e. a loop, will also
lead to less executions. The axiom (unloop) is useful for comparing two loops,
as it allows to reduce the problem to comparing the loop bodies. Both axioms
(loopl) and (unloop) need a box modality when proving the refinement of the

208 E. Prebet and A. Platzer

Fig. 2. Axioms of dRL

loop body, as the refinement must be proved after any number of iterations of
a.

The axiom (ODE) describes how to prove refinements between differential
equations. A refinement x′ = f(x) & p(x) ≤ x′ = g(x) & q(x) is true iff through-
out the execution of the former ODE, it always satisfies the latter differential
equation and evolution domain. Along with the axioms (DW=) and (DE=),
these axioms subsume differential cut (DC), differential weakening (DW) and
differential effect (DE) from dL [31]. The equivalence in the axiom (ODE) effec-
tively means that refinements of differential equations can always be reduced to
standard dL formulas, which is essential to our decidability result.

The axiom (DX) states that a differential equation always has a solution for
the interval [0, 0]. In that case, the execution succeeds only if the domain holds,
and the correct value f(x) is assigned to the differential variable x′. The axiom
(ODEidemp) states that following the same differential equation twice in a row
is equivalent to following it only once, because the concatenation of solutions of
the same differential equation is still a solution of the same differential equation.

Compared to the original sequent calculus for dRL [19], the proof rule
schemata matching infinitely many instances are now replaced by a finite number
of axioms that are concrete dRL formulas rather than standing for infinitely many
instances. The infinitely many possible instances can then be recovered soundly

Uniform Substitution for Differential Refinement Logic 209

using the uniform substitution rule (US). Because of this two-step mechanism,
reasoning with the axioms can be done without considering the possible instanti-
ations. Take for instance the sound equivalence x := f ;x := ∗ = x := ∗. The proof
can be done by transitivity (≤t) with x := ∗; ?x = f ;x := ∗ as intermediate step
[31]. But the same proof cannot be done by replacing f by any term θ: the inter-
mediate program is not always equivalent to the other two (e.g. for θ = x + 1).
On the other hand, by proving the equivalence for f and then using rule (US),
the equivalence can be proved for all terms θ.

The dRL axioms are also more modular than its cast-in-stone sequent calcu-
lus rules. For instance, with rule (G) and axiom (K), any implication φ → ψ,
e.g. (∪r), can be used to prove [a]φ → [a]ψ. This would not fit the shape of
the corresponding sequent rule, which requires ψ at the top level. The lack of
differential symbols in the original sequent calculus [19] changes the soundness
of some rules: the match direction field rule (MDF) would allow rescaling the
right-hand side of a differential equation, which is unsound here as it would
change the resulting differential symbols. Conversely, only the reverse implica-
tion of the axiom (ODE) would be sound in the original calculus, again for lack
of differential symbols. The dRL axioms are proved sound [31]:

Theorem 3 (Soundness of dRL axioms). All axioms of dRL are sound.

6 Decidability of Refinement for a Fragment of dRL

This section identifies a subset of hybrid programs for which the refinement
problem is decidable. It is focused on concrete programs, i.e. programs without
function symbols, predicate symbols or program constants. They have the follow-
ing high-level structure: (ctrl; plant)∗ where a discrete, loop-free program ctrl,
modelling a controller that sets some parameters ū, then a continuous program
plant that describes the dynamics of the variables ȳ according to the choice of
the parameters ū. These steps are then repeated nondeterministically. The con-
tinuous variables ȳ (and by extension ȳ′) are expected to be distinct from the
discrete variables ū and also contain a global clock t which follows the differen-
tial equation t′ = 1. The presence of the clock t is not needed for comparing the
differential equations, but to distinguish between discrete executions and hybrid
executions.

For two such programs, (ctrla; planta)∗ and (ctrlb; plantb)
∗, a canonical proof

of the refinement has the following shape (omitting uses of MP for brevity):

unloop
G

;

. . .

ctrla ≤ ctrlb

. . .

[ctrla](planta ≤ plantb)
ctrla; planta ≤ ctrlb; plantb

[(ctrla; planta)∗](ctrla; planta ≤ ctrlb; plantb)
(ctrla; planta)∗ ≤ (ctrlb; plantb)

∗

This means that proving the refinement of the whole programs is reduced to
proving the refinement of the controllers, ctrla ≤ ctrlb and the refinement of the

210 E. Prebet and A. Platzer

plants after all ctrla executions, [ctrla](planta ≤ plantb). With our restrictions
on the controllers, the first refinement is always decidable.

Lemma 9. For concrete, discrete and loop-free controllers ctrla and ctrlb, the
validity of ctrla ≤ ctrlb is decidable by dRL proof.

Given a controller ctrla, it is possible to synthesize a first-order formula φa(x, x+)
that characterizes the behavior of ctrla, where x (resp. x+) corresponds to
the variables after (resp. before) the controller [21]. Using the dRL axioms,
ctrla ≤ ctrlb is provable from φa(x, x+) → φb(x, x+). The validity of the lat-
ter is decidable as it is first-order real arithmetic [33]. The full proof is in [31].

The second refinement, [ctrla](planta ≤ plantb), is more complex. Let us
write the two plants as planta ≡ ȳ′ = p(ȳ, ū) &Q and plantb ≡ ȳ′ = q(ȳ, ū) &R
for some polynomials p(ȳ, ū), q(ȳ, ū) and formulas Q,R. The axiom ODE entails
that we must prove [ctrla][planta](p(ȳ, ū) = q(ȳ, ū)∧R), which no longer contains
any refinement. For the decidability result (Theorem 4) to hold, we require that
the validity of this formula is decidable.

There are two cases which always ensure this. First, if the differential equa-
tion planta admits a solution expressible in dRL (e.g. a polynomial), then using
standard dL reasoning, the formula can be reduced to a first-order formula
and thus its validity can be decided. The differential equation from Example
1, x′ = v, v′ = a, is such a case.

The second case is when domain R is algebraic, i.e. of the form
∧

i

∨

j pij(x) =
0 for some polynomial pij and Q, the domain of planta, is a semialgebraic set
[30].

The remaining question is now to show that the approach presented above
is complete, meaning it always succeeds when the refinement holds. The only
additional constraint we require is that the controller ctrlb is idempotent.

Definition 9. (Idempotent controller). A controller ctrl is idempotent if it
satisfies ctrl; ctrl = ctrl.

An idempotent controller cannot reach more states by executing multiple times
without any continuous dynamics happening. Pure reactive controllers, i.e. con-
trollers for which the parameters’ values only depend on the values of the con-
tinuous variables, are always idempotent. This is the case for the controllers in
Example 1: x := −B∪?safeT (x);x := A. On the other hand, counting the number
of times the controller has been executed would not be idempotent.

Lemma 10. This derived rule is invertible, if ctrlb is idempotent.

ctrla; planta ≤ ctrlb; plantb

(ctrla; planta)∗ ≤ (ctrlb; plantb)
∗

The derivation of the rule is given in the canonical proof. The converse, that the
conclusion implies the premise, is more involved [31]. Proving ctrla; planta ≤
(ctrlb; plantb)

∗ from (ctrla; planta)∗ ≤ (ctrlb; plantb)
∗ is done by unfolding the

loop on the left. To get rid of the loop on the right, we use the fact that ctrlb

Uniform Substitution for Differential Refinement Logic 211

is idempotent. It means that if the global time is not modified, then we can
assume without loss of generality that the controller (and thus also the plant)
is executed only once. The case when the global time is modified additionally
considers the value of the derivative to ensure that there is an execution of the
right program that does not require looping.

With the above lemma, we can now state the decidability result.

Theorem 4 (Decidability of refinement for idempotent controllers).
For concrete hybrid programs ctrla; planta and ctrlb; plantb discrete loop-free
ctrla, ctrlb and with planta ≡ ȳ′ = p(ȳ, ū) &Q and plantb ≡ ȳ′ = q(ȳ, ū) &R, if
ctrlb is idempotent, and the validity of [ctrla][planta](p(ȳ, ū) = q(ȳ, ū) ∧ R) is
decidable, then the validity of (ctrla; planta)∗ ≤ (ctrlb; plantb)

∗ is also decidable.

In particular, the theorem applies to the event-triggered model and the time-
triggered model templates used to show how to prove that the latter refines the
former [19]. Indeed, their controller template is loop-free and idempotent and
the differential equation are assumed to be solvable. Theorem 4 strengthens their
result by showing the completeness of the approach.

7 Conclusion

This paper introduced a uniform substitution proof calculus for differential
refinement logic dRL. This yields a parsimonious prover microkernel for hybrid
systems verification that simultaneously works for properties of and relations
between hybrid systems. The handling of refinement relations between hybrid
systems is subtle even only in its static semantics, which makes the correctness
proofs of this paper particularly interesting. The uniform substitution is one-pass
[28] giving it respectable performance advantages compared to Church-style uni-
form substitutions. While the joint presence of differential equations reasoning
and refinement reasoning causes challenges, a resulting benefit besides soundness
is that a finer notion of differential equation refinement is obtained with logical
decidability properties on a fragment of hybrid systems refinements.

Future work involves improving the implementation of the uniform substi-
tution calculus in KeYmaera X. Although the prover microkernel was straight-
forward following the uniform substitution process and list of dRL’s uniform
substitution axioms, the prover would benefit from quality of life features, e.g.
using the axioms to rewrite on subprograms, and an implementation of the refine-
ment decision algorithm for the decidable fragment. Another axis of research is
to combine refinements with hybrid games, with a proper semantics and adapt
the new axioms of dRL to games, some of which would not be sound as is.

A Additional dRL Axioms

Axioms of dL also include the differential axioms, e.g. (x)′ = x′ [25], to reason
on terms, which are omitted as it is not the main focus of this paper. Axioms
preceded by a star can be derived from other axioms [31].

212 E. Prebet and A. Platzer

Fig. 3. Additional axioms of dRL

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139195881

2. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In: Der-
rick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30885-7 13

3. Afendi, M., Laleau, R., Mammar, A.: Modelling hybrid programs with Event-B.
In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp.
139–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 10

https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1007/978-3-642-30885-7_13
https://doi.org/10.1007/978-3-030-48077-6_10

Uniform Substitution for Differential Refinement Logic 213

4. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech-
nical report TR2001-1844, Cornell University, USA (2001). https://ecommons.
cornell.edu/items/b376f0d0-ca43-4896-b8b3-4c8a31e24ab1

5. Banach, R., Butler, M.J., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015). https://doi.
org/10.1016/J.SCICO.2015.02.003

6. Banach, R., Zhu, H., Su, W., Huang, R.: Continuous KAOS, ASM, and formal con-
trol system design across the continuous/discrete modeling interface: a simple train
stopping application. Formal Aspects Comput. 26(2), 319–366 (2014). https://doi.
org/10.1007/S00165-012-0263-2

7. Brieger, M., Mitsch, S., Platzer, A.: Uniform substitution for dynamic logic with
communicating hybrid programs. In: Pientka, B., Tinelli, C. (eds.) CADE 2023.
LNCS, vol. 14132, pp. 96–115. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-38499-8 6

8. Butler, M.J., Abrial, J., Banach, R.: Modelling and refining hybrid systems in
Event-B and Rodin. In: Petre, L., Sekerinski, E. (eds.) From Action Systems to Dis-
tributed Systems - The Refinement Approach, pp. 29–42. Chapman and Hall/CRC
(2016). https://doi.org/10.1201/B20053-5

9. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

10. Church, A.: Introduction to Mathematical Logic. Princeton University Press,
Princeton (1956)

11. Doumane, A., Kuperberg, D., Pous, D., Pradic, P.: Kleene algebra with hypotheses.
In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 207–
223. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8 12

12. Dupont, G.: Correct-by-Construction Design of Hybrid Systems Based on Refine-
ment and Proof. (Conception correcte par construction de systèmes hybrides basée
sur le raffinement et la preuve). Ph.D. thesis, National Polytechnic Institute of
Toulouse, France (2021). https://tel.archives-ouvertes.fr/tel-04165215

13. Felty, A., Middeldorp, A. (eds.): Automated Deduction, CADE-25. LNCS,
vol. 9195. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6

14. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty and Middeldorp
[13], pp. 527–538. https://doi.org/10.1007/978-3-319-21401-6 36

15. Jeannin, J., et al.: A formally verified hybrid system for safe advisories in the
next-generation airborne collision avoidance system. STTT 19(6), 717–741 (2017).
https://doi.org/10.1007/s10009-016-0434-1

16. Kabra, A., Mitsch, S., Platzer, A.: Verified train controllers for the Federal Rail-
road Administration train kinematics model: balancing competing brake and track
forces. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(11), 4409–4420
(2022). https://doi.org/10.1109/TCAD.2022.3197690

17. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997). https://doi.org/10.1145/256167.256195

18. Loos, S.M.: Differential refinement logic. Ph.D. thesis, Computer Science Depart-
ment, School of Computer Science, Carnegie Mellon University (2016). http://
reports-archive.adm.cs.cmu.edu/anon/2015/CMU-CS-15-144.pdf

19. Loos, S.M., Platzer, A.: Differential refinement logic. In: Grohe, M., Koskinen, E.,
Shankar, N. (eds.) LICS, pp. 505–514. ACM, New York (2016). https://doi.org/
10.1145/2933575.2934555

https://ecommons.cornell.edu/items/b376f0d0-ca43-4896-b8b3-4c8a31e24ab1
https://ecommons.cornell.edu/items/b376f0d0-ca43-4896-b8b3-4c8a31e24ab1
https://doi.org/10.1016/J.SCICO.2015.02.003
https://doi.org/10.1016/J.SCICO.2015.02.003
https://doi.org/10.1007/S00165-012-0263-2
https://doi.org/10.1007/S00165-012-0263-2
https://doi.org/10.1007/978-3-031-38499-8_6
https://doi.org/10.1007/978-3-031-38499-8_6
https://doi.org/10.1201/B20053-5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-030-17127-8_12
https://tel.archives-ouvertes.fr/tel-04165215
https://doi.org/10.1007/978-3-319-21401-6
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1109/TCAD.2022.3197690
https://doi.org/10.1145/256167.256195
http://reports-archive.adm.cs.cmu.edu/anon/2015/CMU-CS-15-144.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2015/CMU-CS-15-144.pdf
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555

214 E. Prebet and A. Platzer

20. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obsta-
cle avoidance and navigation of ground robots. I. J. Robot. Res. 36(12), 1312–1340
(2017). https://doi.org/10.1177/0278364917733549

21. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Form. Methods Syst. Des. 49(1-2), 33–74 (2016). https://
doi.org/10.1007/s10703-016-0241-z. Special issue of selected papers from RV’14

22. Pereira, A., Baumann, M., Gerstner, J., Althoff, M.: Improving efficiency of human-
robot coexistence while guaranteeing safety: theory and user study. IEEE Trans.
Autom. Sci. Eng. 20(4), 2706–2719 (2023)

23. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

24. Platzer, A.: A uniform substitution calculus for differential dynamic logic. In: Felty
and Middeldorp [13], pp. 467–481. https://doi.org/10.1007/978-3-319-21401-6 32

25. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas. 59(2), 219–265 (2017). https://doi.org/10.1007/s10817-016-9385-
1

26. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

27. Platzer, A.: Uniform substitution for differential game logic. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 211–
227. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 15

28. Platzer, A.: Uniform substitution at one fell swoop. In: Fontaine, P. (ed.) CADE
2019. LNCS (LNAI), vol. 11716, pp. 425–441. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-29436-6 25

29. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power
of differential ghosts. In: Dawar, A., Grädel, E. (eds.) LICS, pp. 819–828. ACM,
New York (2018). https://doi.org/10.1145/3209108.3209147

30. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1), 6:1–6:66 (2020). https://doi.org/10.1145/3380825

31. Prebet, E., Platzer, A.: Uniform substitution for differential refinement logic
(2024). https://doi.org/10.48550/arXiv.2404.16734

32. Stauner, T., Müller, O., Fuchs, M.: Using HyTech to verify an automotive control
system. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 139–153. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0014722

33. Tarski, A., McKinsey, J.C.C.: A Decision Method for Elementary Algebra and
Geometry. University of California Press, Berkeley (1951). https://doi.org/10.
1525/9780520348097

https://doi.org/10.1177/0278364917733549
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-319-21401-6_32
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-94205-6_15
https://doi.org/10.1007/978-3-030-29436-6_25
https://doi.org/10.1007/978-3-030-29436-6_25
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1145/3380825
https://doi.org/10.48550/arXiv.2404.16734
https://doi.org/10.1007/BFb0014722
https://doi.org/10.1525/9780520348097
https://doi.org/10.1525/9780520348097

Uniform Substitution for Differential Refinement Logic 215

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Sequent Systems on Undirected Graphs

Matteo Acclavio(B)

University of Sussex, Brighton, UK
m.acclavio@sussex.ac.uk

Abstract. In this paper we explore the design of sequent calculi operating on
graphs. For this purpose, we introduce logical connectives allowing us to extend
the well-known correspondence between classical propositional formulas and
cographs. We define sequent systems operating on formulas containing such con-
nectives, and we prove, using an analyticity argument based on cut-elimination,
that our systems provide conservative extensions of multiplicative linear logic
(without and with mix) and classical propositional logic. We conclude by show-
ing that one of our systems captures graph isomorphism as logical equivalence
and that it is sound and complete for the graphical logic GS.

Keywords: Sequent Calculus · Graph Modular Decomposition · Analyticity

1 Introduction

In theoretical computer science, formulas play a crucial role in describing complex
abstract objects. At the syntactical level, the formulas of a logic describe complex struc-
tures by means of unary and binary operators, usually thought of as connectives and
modalities respectively. On the other hand, graph-based syntaxes are often favored in
formal representation, as they provide an intuitive and canonical description of proper-
ties, relations and systems. By means of example, consider the two graphs below:

a b c d or a b c d

It follows from results in [21,62] that describing any of the above graphs by means
of formulas only employing binary connectives would require repeating at least one
vertex. As a consequence, formulas describing complex graphs are usually long and
convoluted, and specific encodings are needed to standardize such formulas.

Since graphs are ubiquitous in theoretical computer science and its applications, a
natural question to ask is whether it is possible to define formalisms having graphs,
instead of formulas, as first-class terms of the syntax. Such a paradigm shift would
allow the design of efficient automated tools, reducing the need to handle the bureau-
cracy introduced in order to deal with the encoding required to represent graphs. At the
same time, a graphical syntax would provide a useful tool for investigations such as
the ones in [36] or [25,27], where the authors restrain their framework to sequential-
parallel orders, as these can be represented by means of formulas with at most binary
connectives.

Two recent lines of work have generalized proof theoretical methodologies to
graphs, extending the correspondence between classical propositional formulas and
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 216–236, 2024.
https://doi.org/10.1007/978-3-031-63501-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_12&domain=pdf
http://orcid.org/0000-0002-0425-2825
https://doi.org/10.1007/978-3-031-63501-4_12

Sequent Systems on Undirected Graphs 217

cographs. In these works, systems operating on graphs are defined via local and context-
free rewriting rules, similar to the approach in deep inference systems [8,33,34]. The
first line of research, carried out by Calk, Das, Rice and Waring in various works,
explores the use of maximal stable sets/cliques-preserving homomorphisms to define
notions of entailment1, and study the resulting proof theory [16,17,23,24,63]. Here,
the use of a deep inference formalism is natural, since the rules of the calculus are local
rewritings. The second line of research, investigated by the author, Horne, Mauw and
Straßburger in several contributions [3–5], studies the (sub-)structural proof theory of
arbitrary graphs, with an approach inspired by linear logic [29] and deep inference [33].
The main goal of this line of research, partially achieved with the systemGVsl operating
on mixed graphs [3], is to obtain a generalization of the completeness result of the logic
BV with respect to pomset inclusion. The logic BV contains a non-commutative binary
connective � allowing to represent series-parallel partial order multisets as formulas in
the syntax (as in Retoré’s Pomset logic [57]), and to capture order inclusion as logical
implication. However, as shown in [60], no cut-free sequent system for BV can exist –
therefore neither for Pomset logic, which strictly contains it [53,54]. For this reason,
the aforementioned line of work focused on deep inference systems, and the question
about the existence of a cut-free sequent calculus for GS (the restriction of GVsl on
undirected graphs originally defined in [4]) was left open.

In this paper, we focus on the definition of sequent calculi for graphical logics, and
we positively answer the above question by providing, among other results, a cut-free
sound and complete sequent calculus for GS. By using standard techniques in sequent
calculus, we thus obtain a proof of analyticity for this logic which is simpler and more
concise with respect to the one in [5].

To achieve these results, we introduce graphical connectives, which are operators
that can be naturally interpreted as graphs. We then define the sequent calculi MGL,
MGL◦ and KGL, containing rules to handle these connectives. After showing that cut-
elimination holds for these systems, we prove that MGL, MGL◦ and KGL define con-
servative extensions of multiplicative linear logic, multiplicative linear logic with mix
and classical propositional logic respectively. We then prove that formulas interpreted
as the same graph are logically equivalent, thus justifying the fact that we consider
these systems as operating on graphs rather than formulas. We conclude by showing
that MGL◦ is sound and complete with respect to the logic GS, thus providing a simple
sequent calculus for the logic.

The paper is structured as follows. In Sect. 2 we show how to use the notion of mod-
ular decomposition for graphs from [28,41] to define graphical connectives. In this way,
we extend to general graphs the well-known correspondence between classical propo-
sitional formulas and cographs [21,28,41]. Then, in Sect. 3, we introduce the proof
systemsMGL,MGL◦ and KGL, and we prove their cut-elimination and analyticity. This
section also discusses the conservativity results. In Sect. 4 we show that formulas rep-
resenting isomorphic graphs are logically equivalent in these logics. Finally, in Sect. 5
we prove that MGL◦ is sound and complete with respect to the graphical logic GS. We
conclude with Sect. 6, by discussing future research directions and applications. Due
to space limitations, details of certain proofs have been omitted from this manuscript
However, detailed proofs can be found in [2].

1 A similar approach was proposed in [56] for studying pomsets.

218 M. Acclavio

2 From Graphs to Formulas

In this section we first recall standard results from the literature on graphs, the notion
of modular decomposition and the one of cographs, which are graphs whose modular
decomposition only contains two prime graphs which can be naturally interpreted as
(binary) conjunction and disjunction. We then introduce the notion of graphical con-
nectives, allowing us to extend the correspondence between cographs and propositional
formulas to general graphs, allowing us to represent graphs via formulas constructed
using graphical connectives.

2.1 Graphs and Modules

In this work are interested in using (labeled) graphs to represent patterns of interactions
by means of the binary relations (edges) between their components (vertices). We recall
the standard notion of identity on labeled graphs (i.e., isomorphism) and define the
rougher notion of similarity (isomorphism up-to vertex labels).

Definition 1. A L-labeled graph (or simply graph) G = 〈VG, �G,
G
�〉 is given by a

finite set of vertices VG, a partial labeling function �G : VG → L associating a label
�(v) from a given set of labels L to each vertex v ∈ VG (we may represent �G as a set of
equations of the form �(v) = �v and denote by ∅ the empty function), and a non-reflexive

symmetric edge relation
G
� ⊂ VG × VG whose elements, called edges, may be denoted

vw instead of (v,w). The empty graph 〈∅,∅,∅〉 is denoted ∅ and we define the edge

relation
G	� �

{
(v,w) | v � w and vw �

G
�
}
.

A similarity between two graphs G and G′ is a bijection f : VG → VG′ such that

x
G
�y iff f (x)

G′
� f (y) for any x, y ∈ VG. A symmetry is a similarity of a graph with itself.

An isomorphism is a similarity f such that �(v) = �(f (v)) for any v ∈ VG. Two graphs
G and G′ are similar (denoted G ∼ G′) if there is a similarity between G and G′. They
are isomorphic (denoted G = G′) if there is an isomorphism between G and G′. From
now on, we consider two isomorphic graphs to be the same graph.

Two vertices v and w in G are connected if there is a sequence v = u0, . . . , un = w

of vertices in G (called path) such that ui−1
G
�ui for all i ∈ {1, . . . , n}. A connected

component of G is a maximal set of connected vertices in G. A graph G is a clique

(resp. a stable set) iff
G	� = ∅ (resp.

G
� = ∅).

Note 1. When drawing a graph or an unlabeled graph we draw whenever v�w,
we draw no edge at all whenever v 	�w. We may represent a vertex by using its label
instead of its name. For example, the single-vertex graph G = 〈{v}, �G,∅〉 may be rep-
resented either by the vertex (name) v or by the vertex label �G(v) (in this case we may
write • if �G(v) is not defined).
Example 1. Consider the following graphs:

F = 〈 {u1, u2, u3, u4} , {�(u1) = a, �(u2) = b, �(u3) = c, �(u4) = d} , {u1u2, u2u3, u3u4} 〉
G = 〈 {v1, v2, v3, v4} , {�(v1) = b, �(v2) = a, �(v3) = c, �(v4) = d} , {v1v2, v1v3, v3v4} 〉
H = 〈 {w1,w2,w3,w4} , {�(w1) = a, �(w2) = b, �(w3) = c, �(w4) = d} , {w1w2,w1w3,w3w4} 〉

(1)

Sequent Systems on Undirected Graphs 219

Fig. 1. A graph and one of its modular and the corresponding formula-like representations.

We have F ∼ G ∼ H and .

Note 2. Whenever we say that two graphs are the same, we assume they share the same
set of vertices and labeling function, therefore implicitly assuming the isomorphism f
to be given. This allows us to verify whether two graphs are isomorphic (i.e., the same)
in polynomial time on the number of vertices.

We recall the notion of module [26,28,35,41,45,48], allowing us to represent a
graph using a tree-like syntax. A module is a subset of vertices of a graph having the
same edge-relation with any vertex outside the subset, generalizing what can usually be
observed in formulas, where, in the formula tree, each literal in a subformula has the
same least common ancestor with a given literal not belonging to the subformula itself.

Definition 2. Let G = 〈VG, �G, EG〉 be a graph and W ⊆ VG. The graph induced by W

is the graph G|W � 〈W, �G |W , G� ∩ (W ×W) 〉 where �G |W (v) � �G(v) for all v ∈ W.
Amodule of a graph G is a subset M of VG such that x�z iff y�z for any x, y ∈ M,

z ∈ VG \ M. A module M is trivial if M = ∅, M = VG, or M = {x} for some x ∈ VG.
From now on, we identify a module M of a graph G with the induced subgraph G|M.
Remark 1. A connected component of a graph G is a module of G.

Note 3. Wemay optimize graph representations by bordering vertices of a same module
by a closed line. An edge connected to such a closed line denotes the existence of an
edge to each vertex inside it (see Fig. 1). By means of example, consider the following
graph and its more compact modular representation.

a c
e

b d

a

b

c

d
e

(2)

The notion of module is related to a notion of context, which can be intuitively
formulated as a graph with a “hole”.

Definition 3. A context C[�] is a (non-empty) graph containing a single occurrence of
a special vertex � (with �(�) undefined). It is trivial if C[�] = �. If C[�] is a context
and G a graph, we define C[G] as the graph obtained by replacing � by G. Formally,

C[G] � 〈 (VC[�] \ {�}) � VG ,
�C ∪ �G ,{
vw | v,w ∈ VC[�] \ {�}, vC[�]� w

}
∪
{
vw | v ∈ VC[�] \ {�},w ∈ VG, v

C[�]
� �

} 〉

220 M. Acclavio

Remark 2. The notion of context and the one of module are interdefinable. In fact, a set
of vertices M is a module of a graph G iff there is a context C[�] such that G = C[M].

Note that M is a module of a graph G iff there is a context C[�] such that G = C[M].
We generalize this idea of replacing a vertex of a graph with a module by defining the
operations of composition-via a graph, where all vertices of a graph are replaced in a
“modular way” by modules.

Definition 4. Let G be a graph with VG = {v1, . . . , vn} and let H1, . . . ,Hn be graphs.
We define the composition of H1, . . . ,Hn viaG as the graph G�H1, . . . ,Hn� obtained by
replacing each vertex vi of G with a module Hi for all i ∈ {1, . . . , n}. Formally,

G�H1, . . . ,Hn� = 〈 n⊎
i=1

VHi ,

n⋃
i=1

�Hi ,

⎛⎜⎜⎜⎜⎜⎝
n⋃
i=1

Hi
�

⎞⎟⎟⎟⎟⎟⎠ ∪
{
(x, y) x ∈ VHi , y ∈ VHj , vi

G
�v j

} 〉 (3)

The subgraphs H1, . . . ,Hn are called factors of G�H1, . . . ,Hn� and, by definition, are
(possibly not maximal) modules of G�H1, . . . ,Hn�.

Remark 3. The operation of composition-via G forgets the information carried by the
labeling function �G. Moreover, if σ is a similitude between two graphs G and G′, then
G�H1, . . . ,Hn� = G′�Hσ(1), . . . ,Hσ(n)�.

In order to establish a connection between graphs and formulas, from now on we
only consider graphs whose set of labels belong to the set L = {a, a⊥ | a ∈ A} whereA
is a fixed set of propositional variables. We then define the dual of a graph.

Definition 5. Let G = 〈VG, �G, EG〉 be a graph. We define the dual graph of G as the

graph G⊥ � 〈VG,
G	�, �G⊥〉 with �G⊥ (v) = (�G(v))

⊥ (assuming a⊥⊥ = a for all a ∈ A).

2.2 Classical Propositional Formulas as Cographs

The set of classical (propositional) formulas is generated from a set of propositional
variable A using the negation (·)⊥, the disjunction ∨ and the conjunction ∧ using the
following grammar:

φ, ψ � a | φ ∨ ψ | φ ∧ ψ | φ⊥ with a ∈ A. (4)

We define a map from literals to single-vertex graphs, which extends to formulas via
the composition-via the unlabeled two-vertices stable set and two-vertices clique.

Definition 6. Let φ be a classical formula, and let S2 = 〈{v1, v2},∅,∅〉 and K2 =

〈{v1, v2},∅, {v1v2}〉. We define the graph [[φ]] as follows:
[[a]] = a

[[
φ⊥
]]
=
[[
φ
]]⊥ [[

φ ∨ ψ]] = S2

(∣∣∣[[φ]] , [[ψ]]∣∣∣) [[
φ ∧ ψ]] = K2

(∣∣∣[[φ]] , [[ψ]]∣∣∣)

where we denote by a the single-vertex graph, whose vertex is labeled by a. A cograph
is a graph G such that there is a classical formula φ such that G =

[[
φ
]]
.

Sequent Systems on Undirected Graphs 221

Example 2. Let φ and ψ classical formulas containing occurrences of atoms {a1, . . . , an}
and {b1, . . . bm} respectively. Then the graph

[[
φ ∧ ψ]] can be represented as follows:

Note that an equivalent definition of cographs can be given using only the graph S2

(or K2) and duality.

We can easily observe that the map [[·]] well-behaves with respect to the equivalence
over formulas generated by the associativity and commutativity of connectives and the
de Morgan laws below.

Equivalence laws
{
φ ∨ ψ ≡ ψ ∨ φ φ ∨ (ψ ∨ χ) ≡ (φ ∨ ψ) ∨ χ
φ ∧ ψ ≡ ψ ∧ φ φ ∧ (ψ ∧ χ) ≡ (φ ∧ ψ) ∧ χ

De-Morgan laws
{
(φ⊥)⊥ ≡ φ (φ ∧ ψ)⊥ ≡ φ⊥ ∨ ψ⊥

(5)

Proposition 1. Let φ and ψ be classical formulas. Then φ ≡ ψ iff [[φ]] = [[ψ]].
We finally recall an alternative definition of cographs as graphs containing no

induced subgraph of a specific shape, and we recall the theorem establishing the relation
between

Definition 7. A graph G is P4-free if there it contains no four vertices v1, v2, v3, v4 such

that the induced subgraph G|{v1,v2,v3,v4} is similar to the graph a b c d .

Theorem 1 ([28]). Let G be a graph. Then G is a cograph iff G is P4-free.

2.3 Modular Decomposition of Graphs

We recall the notion of prime graph, allowing us to provide canonical representatives
of graphs via modular decomposition. (see e.g., [26,28,35,41,45,48]).

Definition 8. A graph G is prime if |VG | > 1 and all its modules are trivial.

We recall the following standard result from the literature.

Theorem 2 ([41]). Let G be a graph with at least two vertices. Then there are non-
empty modules M1, . . . ,Mn of G and a prime graph P such that G = P�M1, . . . ,Mn�.

This result allows us to describe graphs using its modular decomposition, that is,
using single-vertex graphs and operations of composition-via prime graphs only.

Definition 9. Let G be a non-empty graph. A modular decomposition of G is a way to
write G using single-vertex graphs and the operation of composition-via prime graphs:

– if G is a graph with a single vertex x labeled by a, then G = a;
– if H1, . . . ,Hn are maximal modules of G such that VG =

⊎n
i=1 VHi , then there is a

unique prime graph P such that G = P�H1, . . . ,Hn�.

222 M. Acclavio

Ambiguity arises in modular decomposition due to the presence of cliques or stable
sets with more than three vertices, graph symmetries, and the presence of symmetric
but non-isomorphic graphs. The first two ambiguities are akin to the one observed in
propositional logic, where conjunction and disjunction are considered associative and
commutative. These are addressed similarly in the framework we discuss in this paper.
However, to reduce the latter source of ambiguity, we introduce the notion of basis of
graphical connectives.

Definition 10. A graphical connective C = 〈VC, C�〉 (with arity n = |VC|) is given by
a finite list of vertices VC = 〈v1, . . . , vn〉 and a non-reflexive symmetric edge relation
C
� over the set of vertices occurring in VC. We denote by GC the graph corresponding

to C, that is, the graph GC = 〈{v | v in VC},∅, C�〉. The composition-via a graphical
connective is defined as the composition-via the graph GC. A graphical connective is
prime if GC is a prime graph. A set P of prime graphical connectives is a basis if for
each prime graph P there is a unique connective C ∈ P such that P ∼ GC.

Given an n-ary connective C, we define the group2 of symmetries of C (S(C)) and
the set of dualizing symmetries ofC (S⊥(C)) as the following sets of permutations over
the set {1, . . . , n}:

S(C) �
{
σ | C�H1, . . . ,Hn� = C�Hσ(1), . . . ,Hσ(n)�

}
S⊥(C)�

{
σ | (C�H1, . . . ,Hn�)⊥ = C�H⊥σ(1), . . . ,H

⊥
σ(n)�

} (for any H1, . . . ,Hn). (6)

We introduce the following graphical connectives:

(7)

We can reformulate the standard result on modular decomposition as follows.

Theorem 3. Let G be a non-empty graph and P a basis. Then there is a unique way (up
to symmetries of graphical connectives and associativity of � and ⊗) to write G using
single-vertex graphs and the graphical connectives in P.
Corollary 1. Two graphs are isomorphic iff they admit a same modular decomposition.

2.4 Graphs as Formulas

In order to represent graphs as formulas, we define new connectives beyond conjunc-
tion and disjunction to represent graphical connectives in a basis P. From now on, we
assume to be fixed a basis P containing the graphical connectives in Eq. (7).

2 It can be easily shown thatSn contains the identity permutation (denoted id) and is a subgroup
of the group of permutations over the set {1, . . . , n}.

Sequent Systems on Undirected Graphs 223

Definition 11. The set of formulas is generated by the set of propositional atomsA, a
unit ◦, and a basis of graphical connective P using the following syntax:

φ1, . . . , φn � ◦ | a | a⊥ | κP�φ1, . . . , φnP� with a ∈ A and P ∈ P (8)

We simply denote � (resp. ⊗) the binary connective κ� (resp. κ⊗) and we write φ�ψ
instead of κ��φ, ψ� (resp. φ⊗ψ instead of κ⊗�φ, ψ�). The arity of the connective κP is
the arity nP of P. A literal is a formula of the form a or a⊥ for an atom a ∈ A. The set of
literals is denoted L. A formula is unit-free if it contains no occurrences of ◦ and vacu-
ous if it contains no atoms. A formula is pure if non-vacuous and such that its vacuous
subformulas are ◦. A MLL-formula is a formula containing only occurrences of con-
nectives � and ⊗. A context formula (or simply context) ζ[�] is a formula containing
an hole � taking the place of an atom. Given a context ζ[�], the formula ζ[φ] is defined
by simply replacing the atom � with the formula φ. For example, if ζ[�] = ψ�(�⊗χ),
then ζ[φ] = ψ�(φ⊗χ).

For each φ formula (or context), the graph
[[
φ
]]
is defined as follows:

[[�]] = � [[◦]] = ∅ [[a]] = a
[[
a⊥
]]
= a⊥

[[
κP�φ1, . . . , φn�

]]
= P

(∣∣∣[[φ1]] , . . . , [[φn]]
∣∣∣) (9)

Note 4. We may consider a formula φ over the set of occurrences of literals {x1, . . . , xn}
as a synthetic connective φ with arity n. That is, we may denote by φ�ψ1, . . . , ψn� the
formula obtained by replacing each literal xi (with i ∈ {1, . . . , n}) with a formula ψi. The
set of symmetries of φ (denoted S(φ)) is the set of permutations σ over {1, . . . , n} such
that

[[
φ�x1, . . . , xn�

]]
=
[[
φ�xσ(1), . . . , xσ(n)�

]]
.

Definition 12. The equivalence relation ≡ over formulas is generated by the following:

Equivalence laws

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κP�φ1, . . . , φnP� ≡ κP�φσ(1), . . . , φσ(nP)�
φ⊗(ψ⊗ χ) ≡ (φ⊗ψ)⊗ χ
φ�(ψ� χ) ≡ (φ�ψ)� χ

De-Morgan laws

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
◦⊥ ≡ ◦ φ⊥⊥ ≡ φ

only if S⊥(P) = ∅ :
(
κP�φ1, . . . φnP�

)⊥ ≡ κP⊥�φ⊥σ(1), . . . , φ⊥σ(nP)�
only if S⊥(P) � ∅ :

(
κP�φ1, . . . φnP�

)⊥ ≡ κP�φ⊥ρ(1), . . . , φ⊥ρ(nP)�
for each P ∈ P (with arity nP = |VP|), and for each σ ∈ S(P) and ρ ∈ S⊥(P).

The (linear) negation over formulas is defined by letting

◦⊥ = ◦ and φ⊥⊥ = φ and
(
κP�φ1, . . . , φnP�

)⊥
= κQ�φ⊥σ(1), . . . , φ

⊥
σ(nP)�

where Q is the (unique) prime connective in P such that we have
[[
κP�a1, . . . , an�

]]
=

Q�a⊥σ(1), . . . , a
⊥
σ(n)� for a permutation σ over the set {1, . . . , n}. 3

The linear implication φ � ψ is defined as φ⊥�ψ, while the logical equivalence
φ� ψ is defined as (φ� ψ)⊗(ψ� φ).

3 Note that the permutation σmay be not unique. If we consider formulas up-to the equivalence
relation ≡, this is irrelevant. Otherwise, in the definition of the linear negation we should also
provide a specific permutation σP for each prime connective P ∈ P.

224 M. Acclavio

Remark 4. As explained in [5] (Sect. 9), the graphical connectives we discuss in this
paper are multiplicative connectives (in the sense of [6,22,32,47]) but they are not the
same as the connectives-as-partitions discussed in these works. In fact, there is a unique
4-ary graphical connective P4, which has the symmetry group {id, (1, 4)(2, 3)}, while, as
shown in [6,47], there is a unique pair of dual non-decomposable (i.e., which cannot be
described using smaller connectives) 4-ary multiplicative connectives-as-partitions G4

and G⊥4 , and S(P4) � S(G4) = S(G⊥4).

The following result is a consequence of Theorem 2.

Proposition 2. Let φ and ψ be formulas. If φ ≡ ψ, then [[φ]] = [[ψ]]. Moreover, if φ and
ψ are unit-free, then φ ≡ ψ iff [[φ]] = [[ψ]].
For an example of why the equivalence result does not hold in the presence of units,
consider the (non-equivalent) formulas ◦⊗ ◦ and ◦� ◦.

3 Sequent Calculi over Graphs-as-Formulas

We assume the reader to be familiar with the definition of sequent calculus derivations
as trees of sequents (see, e.g., [61]) but we recall here some definitions.

Definition 13. A sequent is a set of occurrences of formulas. A sequent system S is a
set of sequent rules as the ones in Fig. 2. A derivation (resp. open derivation) over S
is a tree of sequents such that each node (resp. each node except some leaves, called
open premises) is the conclusion of a rule with premises its children. In a sequent rule
r, we say that a formula is active (resp. principal) if it occurs in one of its premises
(resp. in its conclusion) but not in its conclusion (resp. but in none of its premises) A

proof of a sequent Γ is a derivation with root Γ denoted
π S

Γ
. We denote by

Γ′
π′ S

Γ
an open

derivation with conclusion Γ and a single open premise Γ′. A rule is admissible in S if
there is a derivation of the conclusion of the rule whenever all premises of the rule are
derivable. A rule is derivable in S, if there is a derivation in S from the premises to the
conclusion of the rule.

Definition 14. We define the following sequent systems using the rules axiom (ax), par
(�), tensor (⊗), weakening (w), contraction (c), mix (mix), dual connectives (d-κ)
unitor (uκ), and weak-distributivity (wd⊗) in Fig. 2.

Multiplicative Graphical Logic : MGL = {ax,�,⊗, d-P | P ∈ P}
Multiplicative Graphical Logic with mix : MGL◦ = MGL ∪ {mix,wd⊗, uκ

}
Classical Graphical Logic KGL = MGL ∪ {w, c}

(10)

Remark 5. Rules axiom (ax), par (�), tensor (⊗), cut (cut), and mix (mix) are the
standard as in multiplicative linear logic with mix. Note that ax is restricted to atomic
formulas. The rule d-κ handles a pair of dual connectives at the same time, as it may
be done by rules in focused proof systems (see, e.g. [9,50,51]) or rules for modalities

Sequent Systems on Undirected Graphs 225

Fig. 2. Sequent rules.

in modal logic and linear logic (see, e.g., [12,14,31,44]). Intuitively, while in standard
two-sided sequent calculi the right-conjunction rule (∧R below) internalizes a meta-
conjunction between the premises of the rule, that is,

(11)

the rule d-κ internalizes a meta-κ-connective between the premises by introducing the
same connective on both sides of the sequent, as shown below in the case κ = P4.

(12)

Note that in the rule ∧R in Eq. (11) only a single occurrence of the connective ∧ occurs
in the conclusion, on the right-hand side of �. This because the absence of the conjunc-
tion ∧ on the left-hand side is irrelevant since a two-sided sequent Γ � Δ is interpreted
as the formula

(∧
φ∈Γ φ⊥

)
∨
(∨
ψ∈Δ ψ

)
.

The names of the rules unitor (uκ) and weak-distributivity (wd⊗) are inspired by the
literature of monoidal categories [46] and weakly distributive categories [19,20,59].
The rule uκ internalizes the fact that the unit ◦ is the neutral element for all connectives
(its side condition prevents the creation of non-pure formulas). Under the assumption
of the existence of a ◦ which is the unit of both ⊗ and �, the rule wd⊗ generalizes the
weak-distributive law of the ⊗ over the �, that is,

φ⊗(ψ� χ) −→ (φ⊗ψ)�χ (13)

to the weak-distributive law of ⊗ over any connective (see below on the top)

χ⊗ κ�φ1, . . . , φk, ψ, φk+1, . . . , φn� −→ κ�φ1, . . . , φk, ψ⊗ χ, φk+1, . . . , φn�
κ�φ1, . . . , φk, ψ� χ, φk+1, . . . , φn� −→ κ�φ1, . . . , φk, ψ, φk+1, . . . , φn�� χ

(14)

Note that an additional law is required to formalize the weak-distributive law of all
connectives over � (see the bottom of Eq. (14)). This law corresponds to the rule wd�

in Fig. 3.

226 M. Acclavio

Fig. 3. Admissible rules in MGL◦.

3.1 Properties of the Sequent Systems

We start by observing that these systems are initial coherent [10,50], that is, we can
derive the implication φ � φ for any pure formula φ only using atomic axioms. To
prove this result we observe that the generalized version of d-κ (that is, the rule d-χ) is
derivable by induction on the structure of χ using the rule d-κ

Lemma 1. Let χ be a pure formula. Then rule d-χ is derivable.

Corollary 2. The rule AX is derivable in MGL and in MGL◦.

Theorem 4. MGL, MGL◦, and KGL are initial coherent w.r.t. pure formulas.

The admissibility of cut is proven via cut-elimination.

Theorem 5. Let X ∈ {MGL,MGL◦,KGL}. The rule cut is admissible in X.

Proof. We define the size of a formula as the sum of the number of ◦, connectives and
twice the number of literals in it. The size of a derivation is the sum of the sizes of
the active formulas in all cut-rules. In Fig. 4 we only provide the less standard cut-
elimination steps: the ones for ax, w, c, and ⊗ -vs-� are the standard ones, while
d-κ-vs-d-κ and uκ -vs-uκ (where both uκ rules introduce a ◦ in the same “position”)
are as expected, that is, by cutting each of the corresponding premises of the rules. The
result for MGL and MGL◦ follows by the fact that each cut-elimination step applied to
any cut-rule reduces the size of a derivation, while for KGL we have to consider also
weak-normalization result via a cut-elimination strategy prioritizing the elimination of
top-most cut-rules.

Note that to ensure that both active formulas of a cut-rule are principal with respect
to the rule immediately above it, we also need to consider among the standard com-
mutative cut-elimination steps (independent rule permutations) and the special step in
Fig. 5. The treatment of these steps, as well as the definition of a size taking into account
them, is not covered in detail here because it is standard in the literature.

Corollary 3. Let X ∈ {MGL,MGL◦,KGL}. If �X φ� ψ and �X ψ� χ, then �X φ� χ.
The admissibility of the cut-rule implies analyticity of MGL and KGL via the stan-

dard sub-formula property, that is, all formulas occurring in a premise of a rule are
subformulas of the ones in the conclusion. However, as already observed in [3–5], the
same result does not hold for MGL◦ because the rule uκ and more-than-binary con-
nectives introduce the possibility of having sub-connectives, that is, connectives with
smaller arity behaving as if certain entries of the connective are fixed to be units.

Sequent Systems on Undirected Graphs 227

Fig. 4. The cut-elimination steps for the structural rules.

Fig. 5. Special commutative cut-elimination step for uκ .

Definition 15. Let P and Q be prime graphs and let i1 < . . . < ik be integers in
{1, . . . , |P|}. If P�◦, . . . , ◦, vi1 , ◦, . . . , ◦, vik , ◦, . . . , ◦� ∼ Q�v1, . . . , vn� for (any) single-
vertex graphs v1, . . . , vn, then we say that the connective κQ is a sub-connective of κP
and we may write κP|i1 ,...,ik = κQ. A quasi-subformula of a formula φ = κP�ψ1, . . . , ψn�
is a formula of the form κP′ |i1 ,...,ik �ψ

′
i1
, . . . , ψ′ik� with ψ

′
i j
a quasi-subformula of ψi j for all

i j ∈ {i1, . . . , ik}.
Corollary 4 (Conservativity). MGL is a conservative extension of MLL = {ax,�,⊗}.
MGL◦ is a conservative extension of MLL◦ = {ax,�,⊗,mix}. KGL is a conservative
extension of LK = MLL ∪ {w, c}.
Proof. The results forMGL and KGL follow from the fact that these systems satisfy the
standard sub-formula property for cut-free derivations, therefore no connective other
than � and ⊗ can be introduced during proof search. The result for MGL◦ follows from
the fact that it satisfies the quasi-subformula property (i.e., every formula in the premise
of a rule is a quasi-subformula a formula in its conclusion), and that � and ⊗ have no
sub-connectives.

For both MGL and MGL◦ we have the following splitting result, ensuring that it
is always possible, during proof search, to apply a rule removing a connective after
having applied certain rules in the context. Note that, in the literature of linear logic, the

228 M. Acclavio

Fig. 6. Steps to eliminate wd� rules.

splitting lemma is usually formulated as a special case of the next lemma, ensuring that
an occurrence of the connective ⊗ can be removed (by applying a ⊗-rule), but without
requiring the possibility of the need of applying rules to the context.

Lemma 2 (Splitting). Let Γ, κ�φ1, . . . , φn� be a sequent and let X ∈ {MGL,MGL◦}. If
�X Γ, κ�φ1, . . . , φn�, then there is a derivation of the following shape

π1

� Γ′, χ�φ1, . . . , φk−1, φk+1, φn�
uκ � Γ′, κ�φ1, . . . , φk−1, ◦, φk+1, φn�

π0

� Γ, κ�φ1, . . . , φk−1, ◦, φk+1, φn�

or

π1

� Δ1, φ1 · · ·
πn

� Δn, φn
r � Γ′, κ�φ1, . . . , φn�

π0

� Γ, κ�φ1, . . . , φn�

with r ∈ {�,⊗, d-κ} .

Proof. By case analysis of the last rule occurring in a proof π of Γ, κ�φ1, . . . , φn�.

We conclude this section by proving the admissibility of rules wd� and deep.

Lemma 3. The rule wd� is admissible in MGL◦.

Sequent Systems on Undirected Graphs 229

Fig. 7. Deep inference structural rules, the atomic contraction and the generalized medial rule.

Proof. In Fig. 6 we provide a procedure to remove (top-down) all occurrences of wd�.
Similar to cut-elimination, this procedure requires the use the commutative steps to
ensure that the active formula of a wd� we aim at removing is principal with respect to
the rule immediately above it.

Lemma 4. The rule deep is admissible in MGL◦.

Proof. By induction on the structure of ζ[�]. The case with ζ[�] = � is an application
of wd⊗, otherwise we conclude using Lemma 2.

3.2 A Decomposition Result for KGL

We can extend the decomposition result for deep inference systems in the context of
classical logic [13,15] to KGL using the deep inference (structural) rules from Fig. 7,
including the generalized medial rule proposed in [17].

Theorem 6 (Decomposition). Let Γ be a sequent. If �KGL Γ, then:

1. there is a sequent Γ′ such that �MGL Γ
′�{w↓,c↓} Γ

2. there are sequent Γ′, Δ′, and Δ such that �MGL Γ
′�{m} Δ′�{ac↓} Δ�{w↓} Γ

Proof. The proof of Item 1 is immediate by replacing structural rules with deep ones,
and applying rule permutations. Item 2 is a consequence of the previous point after
showing (by induction) that each instance of c↓-rule can be replaced by a derivation
containing m and ac↓ only, and conclude by applying rule permutations to push ac-
rules below m-rules, and w↓ to the bottom of a derivation. For a reference, see [7].

4 Graph Isomorphism as Logical Equivalence

In this section we show that two pure formulas φ and ψ are interpreted by the same
graph (i.e.,

[[
φ
]]
=
[[
ψ
]]
) iff they are logically equivalent (i.e., φ� ψ).

Theorem 7. Let φ and ψ be formulas.

1. If φ and ψ are unit-free, then
[[
φ
]]
=
[[
ψ
]]
iff �MGL φ� ψ.

2. If φ and ψ are pure, then
[[
φ
]]
=
[[
ψ
]]
iff �MGL◦ φ� ψ.

Proof. After Proposition 2, to prove Item 1 it suffices to show that each De Morgan law
φ ≡ ψ in Definition 12 (with φ and ψ unit-free) corresponds to a logical equivalence
φ� ψ which is derivable in MGL. We then conclude by Corollary 3. To prove Item
2, we first show that we can find unit-free formulas φ′ and ψ′ such that φ � φ′ and
ψ � ψ′ are derivable in MGL◦ (using AX, d-κ, and uκ only), and we then conclude
using the previous point.

230 M. Acclavio

Fig. 8. Inference rules in GS, with P any prime graph and Mi � ∅ � M′i for all i ∈ {1, . . . , n}.

5 Soundness and Completeness of MGL◦ with Respect to GS

In this section, we show that the graphical logic GS from [4,5], defined by a deep
inference system operating on graphs, is the set of graphs corresponding to formulas
that are provable inMGL◦. Note that we here consider the systemGS =

{
ai↓, s�, s⊗, p↓}

defined by the rules in Fig. 8, which have a slightly different formulation with respect
to [4,5]: we consider p-rules with a stronger side condition which is balanced by the
presence of s⊗ in the system.4

To prove the main result of this section, we use the admissibility of wd� and deep
(Lemmas 3 and 4) to prove that if H and G are graphs such that there is an application
of a rule s�, s⊗, or p↓ (even deep in a context) with premise H and conclusion G, then
there are formulas φ and ψ, with

[[
φ
]]
= H and

[[
ψ
]]
= G, such that ψ� φ.

Lemma 5. Let r ∈ {s�, s⊗, p↓}. If
H

r
G
, then there are formulas φ and ψ with

[[
φ
]]
= G

and
[[
ψ
]]
= H such that �MGL◦ ψ

⊥, φ.

Proof. If C[�] = �, then the following implications trivially hold in MGL◦:

κ�μ1, . . . , μi−1, μi � ν, μi+1, . . . μn�� μi � κ�μ1, . . . , μi−1, ◦� ν, μi+1, . . . μn�
μi ⊗ κ�μ1, . . . , μi−1, ◦⊗ ν, μi+1, . . . μn�� κ�μ1, . . . , μi−1, μi ⊗ ν, μi+1, . . . μn�

(μ1 � ν1)⊗ · · · ⊗(μn � νn)� κP⊥�μ1, . . . , μn�� κP�ν1, . . . , νn�

If C[�] = κP�C′[�],M1, . . . ,Mn� � �, then we assume w.l.o.g., there is a context
formula ζ[�] = κP�ζ′[�], μ1, . . . , μn� such that

[[
ζ[�]

]]
= C[�] and [[ζ′[�]]] = C′[�] .

We conclude since, by inductive hypothesis on C[�], there is a derivation as follows:

IH

� (ζ′[ψ′])⊥ , ζ′[φ′] AX � μ⊥1 , μ1 · · · AX � μ⊥n , μn
d-κ
� κP⊥

(∣∣∣(ζ′[ψ′])⊥ , μ⊥1 , . . . , μ⊥n
∣∣∣) , κP

(∣∣∣ζ′[φ′], μ1, . . . , μn
∣∣∣)

.

We are now able to prove the main result of this section, that is, establishing a
correspondence between graphs provable in GS and graphs which are the image via [[·]]
of formulas provable in MGL◦.

Theorem 8. Let φ a pure formula and let G =
[[
φ
]]
� ∅. Then �GSG iff �MGL◦ φ.

4 The proof that the formulation we consider in this paper, where all factors Mi and Ni are
required to be non-empty is equivalent to the ones in the literature, where is either asked that
only all factors Mi (as in [5]) or Mi �Ni (as in [4]) are non-empty, is provided in [2].

Sequent Systems on Undirected Graphs 231

Proof. If there is a derivation π of Γ inMGL◦, then we define a derivation [[π]] of [[Γ]] in
GS by induction by induction on the last rule r in π. The translation translates a ax into
an instance of ai↓, a �, mix and uκ into no rule (using properties of the open deduction
formalism, and the fact premise and conclusion sequents correspond to the same graph),
⊗ and d-κ into an instance of p↓, and wd⊗ into an instance of p↓.

Conversely, if D is a proof of G � ∅ in GS, then we define a proof πD of φ by
induction on the number n of rules inD, where n � 0 because we are assuming G � ∅.

– If n = 1, then G = a� a⊥ and πD =
ax � a, a⊥

� � a� a⊥
.

– If n > 1, then the derivationD is of the formD =
D′
H

r
G

and by inductive hypoth-

esis we have a proof πD′ of a formula ψ such that
[[
ψ
]]
= H. If r ∈ {s�, s⊗, p↓}, then

by Lemma 5 we have a derivation with cut as the one below on the left of a formula
φ such that

[[
φ
]]
= G. Thus we conclude by Theorem 5.

IH

ψ
Lemma 5

� ψ⊥, φ
cut � φ

Theorem5
�∗ MGL◦

φ

ax � a, a⊥
� � a� a⊥

πD′ IH

ψ
deep � ζ[a� a⊥]

=� φ
Otherwise r = ai↓, then it must have been applied deep inside a context C[�] =[[
ζ[�]

]]
� � such that C[∅] = H =

[[
ψ
]]
. Therefore φ = ζ[a� a⊥]. We conclude by

applying Lemma 4 to the derivation above on the right.

Remark 6. In a different line of work [17] the authors define the boolean graphical
logic (or GBL), as a graphical logic conservatively extending LK defined by maximal-
clique-preserving graph morphisms. As a consequence of Corollary 4 and theorem 8,
we conclude that KGL and GBL are not the same since the following counterexample

from [5] (for GS) is in GBL but not in KGL .

6 Conclusion and Future Works

In this paper we have provided foundations for the design of proof systems operating on
graphs by defining graphical connectives, a class of logical operators generalizing the
classical conjunction and disjunction, and whose semantics is solely defined by their
interpretation as prime graphs. We introduced cut-free sequent calculi operating on for-
mulas containing graphical connectives, where graph isomorphism can be captured by
logical equivalence. We also discussed the relationship of these systems with graphical
logics studied in the literature [4,5,17].

We illustrate below a number of future research directions originating from this
work different from the suggestions of the respective authors of using the graphical

232 M. Acclavio

logic GS to extend the works in [11,18,49], where the authors suggest the possibility
of extending their current results by generalizing their methods based on “classical”
formulas to graphs.

Categorical Semantics. Unit-free star-autonomous and IsoMix categories [19,20] pro-
vide categorical models of MLL and MLL◦ respectively. We conjecture that categorical
models for MGL and MGL◦ can be defined by enriching such structures with addi-
tional n-ary monoidal products and natural transformations, reflecting the symmetries
observed in the symmetry groups of prime graphs.

Digraphs, Games and Event Structures. In this work we have extended the corre-
spondence between classical propositional and cographs from [21] to the case of gen-
eral (undirected) graphs using graphical connectives, and the same idea can be found
in [3] where mixed graphs generalize relation webs used to encode BV-formulas [33].
Similarly, we foresee the definition of proof systems operating on directed graphs as
conservative extensions of intuitionistic propositional logic beyond arenas – directed
graphs used in Hyland-Ong game semantics [40] to encode propositional intuitionistic
formulas, which are characterized by the absence of induced subgraphs of a specific
shape. This would provide new insights on the proof theory connected to concurrent
games [1,58,64], and could be used to define automated tools operating on event struc-
tures [55].

Fig. 9. On the left: the same proof net in the original Girard’s syntax and Retoré’s one. On the
right: an RB-proof net of κP4�a, b, c, d�� κP4�a, b, c, d� containing the chorded æ-cycle a ·b ·b⊥ ·
d⊥ · d · c · c⊥ · a⊥.

Proof Nets and Automated Proof Search. We plan to design proof nets [22,29,30]
for MGL and MGL◦, as well as combinatorial proofs [38,39] for KGL. For this pur-
pose, we envisage extending Retoré’s handsome proof net syntax, where proof nets
are represented by two-colored graphs (see the left of Fig. 9). In Retoré’s syntax, the
graph induced by the vertices corresponding to the inputs of a �-gate (or a ⊗-gate) is
similar to the corresponding prime graph � (resp. ⊗). Thus, gates for graphical con-
nectives could be easily defined by extending this correspondence (see the proof net
on the right of Fig. 9). The standard correctness condition defined via acyclicity fails
for these proof nets, as shown in the right-hand side of Fig. 9: the (correct) proof-net
of the sequent P4�a, b, c, d� � P4�a, b, c, d� contains a cycle. We foresee the possibil-
ity of using results on the primeval decomposition of graphs [37,42] to isolate those
cycles witnessing unsoundness, as proposed in [52]. This may provide a methodology
to develop machine-learning guided automated theorem provers using the methods in
[43].

Sequent Systems on Undirected Graphs 233

Acknowledgments. The author thanks the anonymous reviewers for the feedback which helped
improve the final version of this manuscript.

References

1. Abramsky, S., Mellies, P.A.: Concurrent games and full completeness. In: Proceedings. 14th
Symposium on Logic in Computer Science (Cat. No. PR00158), pp. 431–442. IEEE (1999)

2. Acclavio, M.: Graphical proof theory I: sequent systems on undirected graphs (2023)
3. Acclavio, M., Horne, R., Mauw, S., Straßburger, L.: A graphical proof theory of logical

time. In: Felty, A.P. (ed.) 7th International Conference on Formal Structures for Computa-
tion and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 228, pp. 22:1–22:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2022). https://doi.org/10.4230/LIPIcs.FSCD.2022.22, https://drops.dagstuhl.de/
opus/volltexte/2022/16303

4. Acclavio, M., Horne, R., Straßburger, L.: Logic beyond formulas: a proof system on graphs.
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS ’20, pp. 38–52. Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3373718.3394763

5. Acclavio, M., Horne, R., Straßburger, L.: An analytic propositional proof system on graphs.
Logical Methods Comput. Sci. 18(4) (2022). https://doi.org/10.46298/lmcs-18(4:1)2022,
https://lmcs.episciences.org/10186

6. Acclavio, M., Maieli, R.: Generalized connectives for multiplicative linear logic. In:
Fernández, M., Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science
Logic (CSL 2020). LIPIcs, vol. 152, pp. 6:1–6:16. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.CSL.2020.6, https://
drops.dagstuhl.de/opus/volltexte/2020/11649

7. Acclavio, M., Straßburger, L.: From syntactic proofs to combinatorial proofs. In: Galmiche,
D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 481–497.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 32

8. Aler Tubella, A., Straßburger, L.: Introduction to Deep Inference, August 2019. https://hal.
inria.fr/hal-02390267, lecture

9. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Log. Comput.
2(3), 297–347 (1992)

10. Avron, A., Lev, I.: Canonical propositional Gentzen-type systems. In: Goré, R., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 529–544. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 45

11. Bellandi, V., Frati, F., Siccardi, S., Zuccotti, F.: Management of uncertain data in event
graphs. In: Ciucci, D., et al. (eds.) IPMU 2022. CCIS, vol. 1601, pp. 568–580. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-08971-8 47

12. Blackburn, P., De Rijke, M., Venema, Y.: Modal logic: graph. Darst, vol. 53. Cambridge
University Press (2001)

13. Brünnler, K.: Locality for classical logic. Notre Dame J. Formal Logic 47(4), 557–580
(2006). http://www.iam.unibe.ch/∼kai/Papers/LocalityClassical.pdf

14. Brünnler, K., Straßburger, L.: Modular sequent systems for modal logic. In: Giese, M.,
Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 152–166. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02716-1 12

15. Bruscoli, P., Straßburger, L.: On the length of medial-switch-mix derivations. In: Kennedy,
J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 68–79. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-55386-2 5

https://doi.org/10.4230/LIPIcs.FSCD.2022.22
https://drops.dagstuhl.de/opus/volltexte/2022/16303
https://drops.dagstuhl.de/opus/volltexte/2022/16303
https://doi.org/10.1145/3373718.3394763
https://doi.org/10.46298/lmcs-18(4:1)2022
https://lmcs.episciences.org/10186
https://doi.org/10.4230/LIPIcs.CSL.2020.6
https://drops.dagstuhl.de/opus/volltexte/2020/11649
https://drops.dagstuhl.de/opus/volltexte/2020/11649
https://doi.org/10.1007/978-3-319-94205-6_32
https://hal.inria.fr/hal-02390267
https://hal.inria.fr/hal-02390267
https://doi.org/10.1007/3-540-45744-5_45
https://doi.org/10.1007/978-3-031-08971-8_47
http://www.iam.unibe.ch/~kai/Papers/LocalityClassical.pdf
https://doi.org/10.1007/978-3-642-02716-1_12
https://doi.org/10.1007/978-3-662-55386-2_5

234 M. Acclavio

16. Calk, C.: A graph theoretical extension of Boolean logic. Bachelor’s thesis (2016). http://
www.anupamdas.com/graph-bool.pdf

17. Calk, C., Das, A., Waring, T.: Beyond formulas-as-cographs: an extension of Boolean logic
to arbitrary graphs (2020)

18. Chaudhuri, K., Donato, P., Massacci, L., Werner, B.: Certifying proof-by-linking. In: Work-
ing Paper or Preprint, September 2022. https://inria.hal.science/hal-04317972

19. Cockett, J., Seely, R.: Proof theory for full intuitionistic linear logic, bilinear logic, and mix
categories. Theory Appl. Categories 3(5), 85–131 (1997)

20. Cockett, J., Seely, R.: Weakly distributive categories. J. Pure Appl. Algebra 114, 133–173
(1997)

21. Corneil, D., Lerchs, H., Burlingham, L.: Complement reducible graphs. Discrete Appl.
Math. 3(3), 163–174 (1981). https://doi.org/10.1016/0166-218X(81)90013-5, https://www.
sciencedirect.com/science/article/pii/0166218X81900135

22. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Logic 28(3), 181–203
(1989). https://doi.org/10.1007/BF01622878

23. Das, A.: Complexity of evaluation and entailment in Boolean graph logic (2019, preprint).
http://www.anupamdas.com/complexity-graph-bool-note.pdf

24. Das, A., Rice, A.A.: New minimal linear inferences in Boolean logic independent of switch
and medial. In: Kobayashi, N. (ed.) 6th International Conference on Formal Structures for
Computation and Deduction. FSCD 2021, 17–24 July 2021, Buenos Aires, Argentina (Vir-
tual Conference). LIPIcs, vol. 195, pp. 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.14

25. Deniélou, P.-M., Yoshida, N.: Buffered communication analysis in distributed multiparty
sessions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 343–
357. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 24

26. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures a Framework for
Decomposition and Transformation of Graphs. World Scientific, Singapore (1999). https://
doi.org/10.1142/4197

27. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proceedings of the
13th International Conference on World Wide Web, pp. 621–630. ACM (2004)

28. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hun-
garica 18(1–2), 25–66 (1967)

29. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/10.1016/
0304-3975(87)90045-4

30. Girard, J.Y.: Proof-nets: the parallel syntax for proof-theory. In: Ursini, A., Agliano, P. (eds.)
Logic and Algebra. Marcel Dekker, New York (1996)

31. Girard, J.Y.: Light linear logic. Inf. Comput. 143, 175–204 (1998)
32. Girard, J.Y.: On the meaning of logical rules II: multiplicatives and additives. NATO ASI

Seri. F: Comput. Syst. Sci. 175, 183–212 (2000)
33. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1), 1–64

(2007). https://doi.org/10.1145/1182613.1182614
34. Guglielmi, A., Gundersen, T., Parigot, M.: A proof calculus which reduces syntactic bureau-

cracy. In: Lynch, C. (ed.) Proceedings of the 21st International Conference on Rewrit-
ing Techniques and Applications. LIPIcs, vol. 6, pp. 135–150. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2010). https://doi.org/10.4230/LIPIcs.RTA.
2010.135, http://drops.dagstuhl.de/opus/volltexte/2010/2649

35. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Com-
put. Sci. Rev. 4(1), 41–59 (2010). https://doi.org/10.1016/j.cosrev.2010.01.001, https://www.
sciencedirect.com/science/article/pii/S157401371000002X

http://www.anupamdas.com/graph-bool.pdf
http://www.anupamdas.com/graph-bool.pdf
https://inria.hal.science/hal-04317972
https://doi.org/10.1016/0166-218X(81)90013-5
https://www.sciencedirect.com/science/article/pii/0166218X81900135
https://www.sciencedirect.com/science/article/pii/0166218X81900135
https://doi.org/10.1007/BF01622878
http://www.anupamdas.com/complexity-graph-bool-note.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://doi.org/10.1007/978-3-642-15375-4_24
https://doi.org/10.1142/4197
https://doi.org/10.1142/4197
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.4230/LIPIcs.RTA.2010.135
http://drops.dagstuhl.de/opus/volltexte/2010/2649
https://doi.org/10.1016/j.cosrev.2010.01.001
https://www.sciencedirect.com/science/article/pii/S157401371000002X
https://www.sciencedirect.com/science/article/pii/S157401371000002X

Sequent Systems on Undirected Graphs 235

36. van Heerdt, G., Kappé, T., Rot, J., Silva, A.: Learning Pomset Automata. In: FOSSACS
2021. LNCS, vol. 12650, pp. 510–530. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-71995-1 26

37. Hougardy, S.: On the P4-structure of perfect graphs. Citeseer (1996)
38. Hughes, D.: Proofs without syntax. Ann. Math. 164(3), 1065–1076 (2006). https://doi.org/

10.4007/annals.2006.164.1065
39. Hughes, D.: Towards Hilbert’s 24th problem: combinatorial proof invariants: (preliminary

version). Electr. Notes Theor. Comput. Sci. 165, 37–63 (2006)
40. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I. Models, observables and the

full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and
universal game model. Inf. Comput. 163, 285–408 (2000)

41. James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected graphs. In:
Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory, and
Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972). pp. 281–290 (1972)

42. Jamison, B., Olariu, S.: P-components and the homogeneous decomposition of graphs. SIAM
J. Discret. Math. 8(3), 448–463 (1995)

43. Kogkalidis, K., Moortgat, M., Moot, R.: Neural proof nets. In: Fernández, R., Linzen, T.
(eds.) Proceedings of the 24th Conference on Computational Natural Language Learning, pp.
26–40. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/
v1/2020.conll-1.3, https://aclanthology.org/2020.conll-1.3

44. Lellmann, B., Pimentel, E.: Modularisation of sequent calculi for normal and non-normal
modalities. ACM Trans. Comput. Logic 20(2) (2019). https://doi.org/10.1145/3288757

45. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Society,
Providence (2009)

46. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics,
vol. 5. Springer, New York (1971). https://doi.org/10.1007/978-1-4757-4721-8

47. Maieli, R.: Non decomposable connectives of linear logic. Ann. Pure Appl. Logic 170(11),
102709 (2019). https://doi.org/10.1016/j.apal.2019.05.006, http://www.sciencedirect.com/
science/article/pii/S0168007219300600

48. McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition and efficient transitive
orientation of comparability graphs. In: Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. SODA ’94, pp. 536–545. Society for Industrial and Applied
Mathematics, USA (1994)

49. Mell, S., Bastani, O., Zdancewic, S.: Ideograph: a language for expressing and manipulat-
ing structured data. In: Grabmayer, C. (ed.) Proceedings Twelfth International Workshop on
Computing with Terms and Graphs, TERMGRAPH@FSCD 2022, Technion, Haifa, Israel,
1st August 2022. EPTCS, vol. 377, pp. 65–84 (2022). https://doi.org/10.4204/EPTCS.377.4

50. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems.
Theor. Comput. Sci. 474, 98–116 (2013)

51. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in
linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–
419. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8 31

52. Nguyên, L.T.D., Seiller, T.: Coherent interaction graphs: a non-deterministic geometry of
interaction for MLL (2019)

53. Nguyên, L.T.D., Straßburger, L.: A system of interaction and structure III: the complexity of
BV and Pomset logic. In: Working Paper or Preprint (2022). https://hal.inria.fr/hal-03909547

54. Nguyên, L.T.D., Straßburger, L.: BV and Pomset logic are not the same. In: Manea, F., Simp-
son, A. (eds.) 30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 216, pp. 3:1–3:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.
4230/LIPIcs.CSL.2022.3, https://drops.dagstuhl.de/opus/volltexte/2022/15723

https://doi.org/10.1007/978-3-030-71995-1_26
https://doi.org/10.1007/978-3-030-71995-1_26
https://doi.org/10.4007/annals.2006.164.1065
https://doi.org/10.4007/annals.2006.164.1065
https://doi.org/10.18653/v1/2020.conll-1.3
https://doi.org/10.18653/v1/2020.conll-1.3
https://aclanthology.org/2020.conll-1.3
https://doi.org/10.1145/3288757
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/j.apal.2019.05.006
http://www.sciencedirect.com/science/article/pii/S0168007219300600
http://www.sciencedirect.com/science/article/pii/S0168007219300600
https://doi.org/10.4204/EPTCS.377.4
https://doi.org/10.1007/978-3-540-74915-8_31
https://hal.inria.fr/hal-03909547
https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://drops.dagstuhl.de/opus/volltexte/2022/15723

236 M. Acclavio

55. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part I. Theor.
Comput. Sci. 13(1), 85–108 (1981)

56. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Prog. 15, 33–71 (1986)
57. Retoré, C.: Pomset logic: the other approach to noncommutativity in logic. In: Joachim Lam-

bek: The Interplay of Mathematics, Logic, and Linguistics, pp. 299–345 (2021)
58. Rideau, S., Winskel, G.: Concurrent strategies. In: 2011 IEEE 26th Annual Symposium on

Logic in Computer Science, pp. 409–418. IEEE (2011)
59. Seely, R.: Linear logic, *-autonomous categories and cofree coalgebras. Contemp. Math. 92

(1989)
60. Tiu, A.F.: A system of interaction and structure II: the need for deep inference. Logic. Meth-

ods Comput. Sci. 2(2), 1–24 (2006). https://doi.org/10.2168/LMCS-2(2:4)2006
61. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University

Press, Cambridge (2000)
62. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. In: Pro-

ceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 1–12.
ACM (1979)

63. Waring, T.: A graph theoretic extension of Boolean logic. Master’s thesis (2019). http://
anupamdas.com/thesis tim-waring.pdf

64. Winskel, G., Rideau, S., Clairambault, P., Castellan, S.: Games and strategies as event struc-
tures. Logic. Methods Comput. Sci. 13 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.2168/LMCS-2(2:4)2006
http://anupamdas.com/thesis_tim-waring.pdf
http://anupamdas.com/thesis_tim-waring.pdf
http://creativecommons.org/licenses/by/4.0/

A Proof Theory of (ω-)Context-Free
Languages, via Non-wellfounded Proofs

Anupam Das and Abhishek De(B)

School of Computer Science, University of Birmingham, Birmingham, UK
{a.das,a.de}@bham.ac.uk

Abstract. We investigate the proof theory of regular expressions with
fixed points, construed as a notation for (ω-)context-free grammars.
Starting with a hypersequential system for regular expressions due to Das
and Pous [15], we define its extension by least fixed points and prove the
soundness and completeness of its non-wellfounded proofs for the stan-
dard language model. From here we apply proof-theoretic techniques to
recover an infinitary axiomatisation of the resulting equational theory,
complete for inclusions of context-free languages. Finally, we extend our
syntax by greatest fixed points, now computing ω-context-free languages.
We show the soundness and completeness of the corresponding system
using a mixture of proof-theoretic and game-theoretic techniques.

Keywords: Proof theory · Context-free languages ·
Omega-languages · Games · Chomsky algebra · Non-wellfounded proofs

1 Introduction

The characterisation of context-free languages (CFLs) as the least solutions of
algebraic inequalities, sometimes known as the ALGOL-like theorem, is a folk-
lore result attributed to several luminaries of formal language theory including
Ginsburg and Rice [21], Schutzenberger [52], and Gruska [23]. This induces a
syntax for CFLs by adding least fixed point operators to regular expressions, as
first noted by Salomaa [51]. Leiß [38] called these constructs “μ-expressions” and
defined an algebraic theory over them by appropriately extending Kleene alge-
bras, which work over regular expressions. Notable recent developments include a
generalisation of Antimirov’s partial derivatives to μ-expressions [54] and criteria
for identifying μ-expressions that can be parsed unambiguously [34].

Establishing axiomatisations and proof systems for classes of formal lan-
guages has been a difficult challenge. Many theories of regular expressions,
such as Kleene algebras (KA) were proposed in the late 20th century (see, e.g.,
[6,28,29]). The completeness of KA for the (equational) theory of regular lan-
guages, due to Kozen [29] and Krob [35] independently, is a celebrated result that
has led to several extensions and refinements, e.g. [7,31–33]. More recently the
proof theory of KA has been studied via infinitary systems. On one hand, [49]
proposed an ω-branching sequent calculus and on the other hand [12,15,25] have
studied cyclic ‘hypersequential’ calculi.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 237–256, 2024.
https://doi.org/10.1007/978-3-031-63501-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-63501-4_13

238 A. Das and A. De

Fig. 1. Summary of our main contributions. Each arrow → denotes an inclusion of
equational theories, over an appropriate language of μ-expressions. The gray arrow,
Theorem 11, is also a consequence of the remaining black ones. (Color figure online)

Inclusion of CFLs is Π0
1 -complete, so any recursive (hence also cyclic) axioma-

tisation must necessarily be incomplete. Nonetheless various theories of μ-
expressions have been extensively studied, in particular Chomsky algebras and
μ-semirings [17,18,39,40], giving rise to a rich algebraic theory. Indeed Grath-
wohl, Henglein, and Kozen [22] have given a complete (but infinitary) axioma-
tisation of the equational theory of μ-expressions, by extending these algebraic
theories with a continuity principle for least fixed points.
Contributions. In this paper, we propose a non-wellfounded system μHKA∞

for μ-expressions. It can be seen as an extension of the cyclic system of [15] for
regular expressions. Our first main contribution is the adequacy of this system
for CFLs: μHKA∞ proves e = f just if the CFLs computed by e and f , L(e)
and L(f) respectively, are the same. We use this result to obtain an alternative
proof of completeness of the infinitary axiomatisation μCA of [22], comprising
our second main result. Our method is inspired by previous techniques in non-
wellfounded proof theory, namely [11,53], employing ‘projections’ to translate
non-wellfounded proofs to wellfounded ones. Our result is actually somewhat
stronger than that of [22], since our wellfounded proofs are furthermore cut-free.

Finally we develop an extension μν�HKA of (leftmost) μHKA by adding great-
est fixed points, ν, for which L(·) extends to a model of ω-context-free languages.
Our third main contribution is the soundness and completeness of μν�HKA for
L(·). Compared to μHKA, the difficulty for metalogical reasoning here is to con-
trol interleavings of μ and ν, both for soundness argument and in controlling
proof search for completeness. To this end, we employ game theoretic techniques
to characterise word membership and control proof search.

All our main results are summarised in Fig. 1. Due to space constraints many
proofs and auxiliary material are omitted, but may be found in a full version [9].

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 239

2 A Syntax for Context-Free Grammars

Throughout this work we make use of a finite set A (the alphabet) of letters,
written a, b, . . . , and a countable set V of variables, written X,Y, When
speaking about context-free grammars (CFGs), we always assume non-terminals
are from V and the terminals are from A.

We define (μ-)expressions, written e, f, etc., by:

e, f, . . . ::= 0 | 1 | X | a | e + f | e · f | μXe (1)

We usually simply write ef instead of e·f . μ is considered a variable binder, with
the free variables FV(e) of an expression e defined as expected. We sometimes
refer to expressions as formulas, and write � for the subformula relation.

μ-expressions compute languages of finite words in the expected way:

Definition 1 (Language Semantics). Let us temporarily expand the syntax
of expressions to include each language A ⊆ A∗ as a constant symbol. We inter-
pret each closed expression (of this expanded language) as a subset of A∗ as
follows:

– L(0) := ∅

– L(1) := {ε}
– L(a) := {a}
– L(A) := A

– L(e + f) := L(e) ∪ L(f)
– L(ef) := {vw : v ∈ L(e), w ∈ L(f)}
– L(μXe(X)) :=

⋂{A ⊇ L(e(A))}

Note that all the operators of our syntax correspond to monotone operations on
P(A∗), with respect to ⊆. Thus L(μXe(X)) is just the least fixed point of the
operation A �→ L(e(A)), by the Knaster-Tarski fixed point theorem.

The productive expressions, written p, q etc. are generated by:

p, q, . . . ::= a | p + q | p · e | e · p | μXp (2)

We say that an expression is guarded if each variable occurrence occurs free in
a productive subexpression. Left-productive and left-guarded are defined in
the same way, only omitting the clause e · p in the grammar above. For conve-
nience of exposition we shall employ the following convention throughout:

Convention 2. Henceforth we assume all expressions are guarded.

Example 3. (Empty language). In the semantics above, note that the empty
language ∅ is computed by several expressions, not only 0 but also μXX and
μX(aX). Note that whle the former is unguarded the latter is (left-)guarded. In
this sense the inclusion of 0 is somewhat ‘syntactic sugar’, but it will facilitate
some of our later development.

Example 4. (Kleene star and universal language). For any expression e we can
compute its Kleene star e∗ := μX(1+eX) or e∗ := μX(1+Xe). These definitions
are guarded just when e is productive. Now, note that we also have not included
a symbol 	 for the universal language A∗. We can compute this by the expression
(
∑A)∗, which is guarded as

∑A is productive.

240 A. Das and A. De

Fig. 2. Rules of the system μHKA.

It is well-known that μ-expressions compute just the context-free (CF) lan-
guages [21,23,52]. In fact this holds even under the restriction to left-guarded
expressions, by simulating the Greibach normal form:

Theorem 5. (Adequacy, see, e.g., [17,18]). L is context-free (and ε /∈ L)
⇐⇒ L = L(e) for some e left-guarded (and left-productive, respectively).

Example 6. Consider the left-guarded expressions Dyck1 := μX(1+ 〈X〉X) and
{anbn}n := μX(1+aXb). As suggested, Dyck1 indeed computes the language of
well-bracketed words over alphabet {〈, 〉}, whereas {anbn}n computes the set of
words ab with |a| = |b|. We can also write (a∗b∗) := μX(1 + aX + Xb), which
is guarded but not left-guarded. However, if we define Kleene ∗ as in Example
4, then we can write a∗ and b∗ as left-guarded expressions and then take their
product for an alternative representation of (a∗b∗). Note that the empty language
∅ is computed by the left-guarded expression μX(aX), cf. Example 3.

3 A Non-wellfounded Proof System

In this section we extend a calculus HKA from [15] for regular expressions to all μ-
expressions, and prove soundness and completeness of its non-wellfounded proofs
for the language model L(·). We shall apply this result in the next section to
deduce completeness of an infinitary axiomatisation for L(·), before considering
the extension to greatest fixed points later.

A hypersequent has the form Γ → S where Γ (the LHS) is a list of expres-
sions (a cedent) and S (the RHS) is a set of such lists. We interpret lists by the
product of their elements, and sets by the sum of their elements. Thus we extend
our notation for language semantics by L(Γ) := L(∏ Γ) and L(S) := ⋃

Γ∈S

L(Γ).

The system μHKA is given by the rules in Fig. 2. Here we use commas to
delimit elements of a list or set and square brackets [,] to delimit lists in a set.
In the k rules, we write aS := {[a, Γ] : Γ ∈ S} and Sa := {[Γ, a] : Γ ∈ S}.

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 241

For each inference step, as typeset in Fig. 2, the principal formula is the
distinguished magenta formula occurrence in the lower sequent, while any dis-
tinguished magenta formula occurrences in upper sequents are auxiliary. (Other
colours may be safely ignored for now).

Our system differs from the original presentation of HKA in [15] as (a) we have
general fixed point rules, not just for the Kleene ∗; and (b) we have included both
left and right versions of the k rule, for symmetry. We extend the corresponding
notions of non-wellfounded proof appropriately:

Definition 7 (Non-wellfounded Proofs). A preproof (of μHKA) is gener-
ated coinductively from the rules of μHKA i.e. it is a possibly infinite tree of
sequents (of height ≤ ω) generated by the rules of μHKA. A preproof is regu-
lar or cyclic if it has only finitely many distinct subproofs. An infinite branch
of a preproof is progressing if it has infinitely many μ-l steps. A preproof is
progressing, or a ∞-proof, if all its infinite branches are progressing. We write
μHKA �∞ Γ → S if Γ → S has a ∞-proof in μHKA, and sometimes write
μHKA∞ for the class of ∞-proofs of μHKA.

Note that our progress condition on preproofs is equivalent to simply checking
that every infinite branch has infinitely many left-logical or k steps, as μ-l is the
only rule among these that does not decrease the size of the LHS. This is simpler
than usual conditions from non-wellfounded proof theory, as we do not have
any alternations between the least and greatest fixed points. Indeed we shall
require a more complex criterion later when dealing with ω-languages. Note
that, as regular preproofs may be written naturally as finite graphs, checking
progressiveness for them is efficiently decidable (even in NL, see e.g. [8,15]).

The need for such a complex hypersequential line structure is justified in
[15] by the desideratum of regular completeness for the theory of regular expres-
sions: intuitionistic ‘Lambek-like’ systems, cf. e.g. [16,26,49] are incomplete (wrt
regular cut-free proofs). The complexity of the RHS of sequents in HKA is
justified by consideration of proof search for, say, a∗ → (aa)∗ + a(aa)∗ and
(a+ b)∗ → a∗(ba∗)∗, requiring reasoning under sums and products, respectively.

In our extended system, we gain more regular proofs of inclusions between
context-free languages. For instance:

Example 8. Recall the guarded expressions {anbn}n and (a∗b∗) from Example 6.
We have the regular ∞-proof R in Fig. 3 of {anbn}n → [(a∗b∗)], where • marks
roots of identical subproofs. Note that indeed the only infinite branch, looping
on •, has infinitely many μ-l steps.

Remark 9 (Impossibility of General Regular Completeness). At this juncture let
us make an important point: it is impossible to have any (sound) recursively
enumerable system, let alone regular cut-free proofs, complete for context-free
inclusions, since this problem is Π0

1 -complete (see e.g. [27]). In this sense exam-
ples of regular proofs are somewhat coincidental.

It is not hard to see that each rule of μHKA is sound for language semantics:

242 A. Das and A. De

Fig. 3. A regular ∞-proof R of {anbn}n → [(a∗b∗)].

Lemma 10 (Local Soundness). For each inference step,

Γ0 → S0 · · · Γk−1 → Sk−1
r

Γ → S
(3)

for some k ≤ 2, we have: ∀i < k L(Γi) ⊆ L(Si) =⇒ L(Γ) ⊆ L(S).
Consequently wellfounded μHKA proofs are also sound for L(·), by induction on
their structure. For non-wellfounded proofs, we must employ a less constructive
argument, typical of non-wellfounded proof theory:

Theorem 11 (Soundness). μHKA �∞ Γ → S =⇒ L(Γ) ⊆ L(S).
Proof (Sketch). For contradiction, we use (the contrapositive of) Lemma 10 to
construct an infinite ‘invalid’ branch B, along with an associated sequence of
words (wi)i<ω of non-increasing length separating the LHS from the RHS. Now,
either B has infinitely many k steps, meaning (|wi|)i<ω has no least element, or
there are only finitely many k steps, in which case |wi| is eventually dominated
by the number of productive expressions in the sequent, by guardedness.

By inspection of the rules of μHKA we have:

Lemma 12 (Invertibility). Let r be a logical step as in (3). L(Γ) ⊆ L(S) =⇒
L(Γi) ⊆ L(Si), for each i < k.

Theorem 13 (Completeness). L(Γ) ⊆ L(S) ⇒ μHKA �∞ Γ → S.

In fact, we can obtain a stronger result for left-guarded sequents, namely the
‘leftmost completeness’ as we will see later in Sect. 5. There leftmostness is nec-
essary for soundness, but here completeness is rather straightforward.

Proof (Sketch). We describe a bottom-up proof search strategy:

1. Apply left logical rules maximally, preserving validity by Lemma 12. Any
infinite branch is necessarily progressing.

2. This can only terminate at a sequent of the form a1, . . . , an → S with a ∈
L(S), whence we mimic a ‘leftmost’ parsing derivation for a wrt S.

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 243

4 Completeness of an Infinitary Cut-Free Axiomatisation

While our completeness result above was relatively simple to establish we can use
it, along with proof theoretic techniques, to deduce completeness of an infinitary
axiomatisation of the theory of μ-expressions. In fact we obtain an alternative
proof of the result of [22], strengthening it to a ‘cut-free’ calculus μHKAω.

Write μCA for the set of axioms consisting of:

– (0, 1,+, ·) forms an idempotent semiring (aka a dioid).
– (μ-continuity) eμXf(X)g =

∑

n<ω
efn(0)g.

We are using the notation fn(0) defined by f0(0) := 0 and fn+1(0) := f(fn(0)).
We also write e ≤ f for the natural order given by e+f = f . Now define μHKAω

to be the extension of μHKA by the ‘ω-rule’:

{Γ, en(0), Γ ′ → S}n<ω
ω

Γ, μXe(X), Γ ′ → S

By inspection of the rules we have soundness of μHKAω for μCA:

Proposition 14. μHKAω � Γ → S =⇒ μCA � ∏
Γ ≤ ∑

Δ∈S

∏
Δ.

Here the soundness of the ω-rule above is immediate from μ-continuity in μCA.
Note, in particular, that μCA already proves that μXe(X) is indeed a fixed point
of e(·), i.e. e(μXe(X)) = μXe(X) [22]. The main result of this section is:

Theorem 15. μHKA �∞ e → f =⇒ μHKAω � e ≤ f

Note that, immediately from Theorem 13 and Proposition 14, we obtain:

Corollary 16. L(e) ⊆ L(f) =⇒ μHKAω � e ≤ f =⇒ μCA � e ≤ f

To prove Theorem 15 we employ similar techniques to those used for an
extension of linear logic with least and greatest fixed points [11], only specialised
to the current setting.

Lemma 17 (Projection). For each ∞-proof P of Γ, μXe(X), Γ ′ → S there
are ∞-proofs P (n) of Γ, en(0), Γ ′ → S, for each n < ω.

The definition of P (n) is somewhat subtle, relying on a form of ‘signature’
common in fixed point logics, restricted to ω. See [11, Definition 15, Proposition
18] for a formal definition and proof of the analogous result. We shall thus use
the notation P (n) etc. freely in the sequel.

From here it is simple to provide a translation from μHKA ∞-proofs to
μHKAω preproofs, as in Definition 22 shortly. However, to prove the image of the
translation is wellfounded, we shall need some structural proof theoretic machin-
ery, which will also serve later use when dealing with greatest fixed points in
Sects. 5 and 6.

244 A. Das and A. De

4.1 Intermezzo: Ancestry and Threads

Given an inference step r, as typeset in Fig. 2, we say a formula occurrence f in
an upper sequent is an immediate ancestor of a formula occurrence e in the
lower sequent if they have the same colour; furthermore if e and f are occur in a
cedent Γ, Γ ′,Δ,Δ′, they must be the matching occurrences of the same formula
(i.e. at the same position in the cedent); similarly if e and f occur in the RHS
context S, they must be matching occurrences in matching lists.

Construing immediate ancestry as a directed graph allows us to characterise
progress by consideration of its paths:

Definition 18 ((Progressing) Threads). Fix a preproof P . A thread is a
maximal path in the graph of immediate ancestry. An infinite thread on the LHS
is progressing if it is infinitely often principal (i.o.p.) for a μ-l step.

Our overloading of terminology is suggestive:

Proposition 19. P is progressing ⇔ each branch of P has a progressing thread.

This has a somewhat subtle proof, relying on König’s lemma on the ancestry
graph of a progressing branch in order to recover a progressing thread.

Example 20. Recall the ∞-proof in Example 8. The only infinite branch, looping
on •, has a progressing thread indicated in magenta.

Fact 21 (See, e.g., [30,36]) Any i.o.p. thread has a unique smallest i.o.p. for-
mula, under the subformula relation. This formula must be a fixed point formula.

4.2 Translation to ω-Branching System

We are now ready to give a translation from μHKA∞ to μHKAω.

Definition 22 (ω-Translation). For preproofs P define Pω by coinduction:

– ·ω commutes with any step not a μ-l.

–

⎛

⎜
⎜
⎜
⎜
⎝

P

Γ, e(μXe(X)), Γ ′ → S
μ-l

Γ, μXe(X), Γ ′ → S

⎞

⎟
⎟
⎟
⎟
⎠

ω

:=

⎧
⎪⎪⎨

⎪⎪⎩

P (n)ω

Γ, en(0), Γ ′ → S

⎫
⎪⎪⎬

⎪⎪⎭
n<ω

ω
Γ, μXe(X), Γ ′ → S

Theorem 15 now follows immediately from the following result, obtained by
analysis of progressing threads in the image of the ω-translation:

Lemma 23. P is progressing =⇒ Pω is wellfounded.

The proof of Lemma 23 follows the same argument as for the analogous result
in [11, Lemma 23].

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 245

Example 24. Recalling Example 8, let us see the ω-translation of R in 3. First,
let us (suggestively) write {akbk}k<n for the nth approximant of {anbn}n, i.e.
{akbk}k<0 := 0 and {akbk}k<n+1 := 1 + a{akbk}k<nb. Now Rω is given below,

left, where recursively R(0) := 0-l
0 → (a∗b∗)

and R(n+1) is given below, right:

⎧
⎪⎪⎨

⎪⎪⎩

R(n)

{akbk}k<n → [(a∗b∗)]

⎫
⎪⎪⎬

⎪⎪⎭
n<ω

ω,μ-r {anbn}n → [(a∗b∗)]

;

init → []
1-l,1-r

1 → [1]

1 → [(a∗b∗)]

R(n)

{akbk}k<n → (a∗b∗)
kr

b {akbk}k<n, b → [(a∗b∗), b]
·-l,·-r {akbk}k<nb → [(a∗b∗)b]

μ-r,+-r,w-r {akbk}k<nb → [(a∗b∗)]
kl

a
a, {akbk}k<nb → [a, (a∗b∗)]

·-l,·-r
a{akbk}k<nb → [a(a∗b∗)]

a{akbk}k<nb → [(a∗b∗)]
+-l

1 + a{akbk}k<nb → [(a∗b∗)]

5 Greatest Fixed Points and ω-Languages

We extend the grammar of expressions from (1) by:

e, f . . . ::= . . . | νXe(X)

We call such expressions μν-expressions when we need to distinguish them from
ones without ν. The notions of a (left-)productive and (left-)guarded expression
are defined in the same way, extending the grammar of (2) by the clause νXp.

As expected μν-expressions denote languages of finite and infinite words:

Definition 25 (Intended Semantics of μν-Expressions). We extend the
notation vw to all v, w ∈ A≤ω by setting vw = v when |v| = ω. We extend the def-
inition of L(·) from Definition 1 to all μν-expressions by setting L(νXe(X)) :=⋃{A ⊆ L(e(A))} where now A varies over subsets of A≤ω.

Again, since all the operations are monotone, L(νXe(X)) is indeed the great-
est fixed point of the operation A �→ L(e(A)), by the Knaster-Tarski theorem.
In fact (ω-)languages computed by μν-expressions are just the ‘ω-context-free
languages’ (ω-CFLs), cf. [5,42], defined as the ‘Kleene closure’ of CFLs:

Definition 26 (ω-Context-Free Languages). For A ⊆ A+ we write Aω :=
{w0w1w2 · · · : ∀i < ω wi ∈ A}. The class of ω-CFLs (CFω) is defined by:

CFω :=

{
⋃

i<n

AiB
ω
i : n < ω; Ai, Bi context-free and ε /∈ Ai, Bi, ∀i < n

}

It is not hard to see that each ω-CFL is computed by a μν-expression, by
noting that L(e)ω = L(νX(eX)):

246 A. Das and A. De

Proposition 27. L ∈ CFω =⇒ L = L(e) for some left-productive e.

We shall address the converse of this result later. First let us present our
system for μν-expressions, a natural extension of μHKA earlier:

Definition 28 (System). The system μνHKA extends μHKA by the rules:

Γ , e(νXe(X)), Γ ′ → S
ν-l

Γ , νXe(X), Γ ′ → S

Γ → S, [Δ, e(νXe(X),Δ′]
ν-r

Γ → S, [Δ, νXe(X),Δ′]
(4)

Preproofs for this system are defined just as for μHKA before. The definitions of
immediate ancestor and thread for μνHKA extends that of μHKA from Definition
18 according to the colouring above in (4).

However we must be more nuanced in defining progress, requiring a definition
at the level of threads as in Sect. 4. Noting that Fact 21 holds for our extended
language with νs as well as μs, we call an i.o.p. thread a μ-thread (or ν-thread)
if its smallest i.o.p. formula is a μ-formula (or ν-formula, respectively).

Definition 29 (Progress). Fix a preproof P . We say that an infinite thread
τ along a (infinite) branch B of P is progressing if it is i.o.p. and it is a μ-
thread on the LHS or it is a ν-thread on the RHS. B is progressing if it has
a progressing thread. P is a ∞-proof of μνHKA if each of its infinite branches
has a progressing thread.

Example 30. Write e := νZ(abZ) and f := μY (b + νX(aY X)). The sequent
e → [f] has a preproof given in Fig. 4. This preproof has just one infinite branch,
looping on •, which indeed has a progressing thread following the magenta formu-
las. The only fixed point infinitely often principal along this thread is νX(afX),
which is principal at each •. Thus this preproof is a proof and e → [f] is a
theorem of μ�HKA∞.

Note that, even though this preproof is progressing, the infinite branch’s
smallest i.o.p. formula on the RHS is not a ν-formula, e.g. given by the magenta
thread, as f is also i.o.p. Let us point out that (a) the progressiveness condition
only requires existence of a progressing thread, even if other threads are not
progressing (like the unique LHS thread above).

Some Necessary Conventions: Left-Guarded and Leftmost

Crucially, due to the asymmetry in the definition of the product of infinite words,
we must employ further conventions to ensure soundness and completeness of
∞-proofs for L(·). Our choice of conventions is inspired by the usual ‘leftmost’
semantics of ‘ω-CFGs’, which we shall see in the next section.

First, we shall henceforth work with a lefmost restriction of μνHKA in order
to maintain soundness for L(·):

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 247

Fig. 4. A μν�HKA ∞-preproof of e → [f], where e := νZ(abZ) and f := μY (b +
νX(aY X)).

Definition 31. A μνHKA preproof is leftmost if each logical step has principal
formula the leftmost formula of its cedent, and there are no kr-steps. Write
μν�HKA for the restriction of μνHKA to only leftmost steps and μν�HKA∞ for
the class of ∞-proofs of μν�HKA.

We must also restrict ourselves to left-guarded expressios in the sequel:

Convention 32 Henceforth, all expressions are assumed to be left-guarded.

Let us justify both of these restrictions via some examples.

Remark 33 (Unsound for Non-leftmost). Unlike the μ-only setting it turns out
that μνHKA∞ is unsound without the leftmost restriction, regardless of left-
guardedness. For instance consider the preproof,

...
ν-r a, •→ [a, νX(aX)]
·-r → [aνX(aX)]
ν-r •→ [νX(aX)]

where a, • roots the same subproof as •, but for an extra a on the left of every
RHS. Of course the endsequent is not valid, as the LHS denotes {ε} while the
RHS denotes {aω}. Note also that, while it is progressing thanks to the thread
in magenta, it is not leftmost due to the topmost displayed ν-r step.

Remark 34 (Incomplete for Unguarded). On the other hand, without the left-
guardedness restriction, μν�HKA∞ is not complete. For instance the sequent
νXX → [], {[a, νXX]}a∈A is indeed valid as both sides compute all of P(A≤ω):

248 A. Das and A. De

Fig. 5. Rules of the evaluation puzzle.

any word is either empty or begins with a letter. However the only available
(leftmost) rule application, bottom-up, is ν-l, which is a fixed point of leftmost
proof search, obviously not yielding a progressing preproof.

6 Metalogical Results: A Game-Theoretic Approach

Now we return to addressing the expressiveness of both the syntax of μν-
expressions and our system μν�HKA∞, employing game-theoretic methods.

6.1 Evaluation Puzzle and Soundness

As an engine for our main metalogical results about μν�HKA, and for a converse
to Proposition 27, we first characterise membership via games:

Definition 35. The evaluation puzzle is a puzzle (i.e. one-player game)
whose positions are pairs (w,Γ) where w ∈ A≤ω and Γ is a cedent, i.e. a list
of μν-expressions. A play of the puzzle runs according to the rules in Fig. 5:
puzzle-play is deterministic at each state except when the expression is a sum, in
which case a choice must be made. During a play of the evaluation puzzle, for-
mula ancestry and threads are defined as for μν�HKA preproofs, by associating
each move with the LHS of a left logical rule. A play is winning if:

– it terminates at the winning state (ε, []); or,
– it is infinite and has a ν-thread (along its right components).

Example 36. Define d := μX(〈〉 + 〈X〉X), the set of non-empty well-bracketed
words. Let dω := νY dY . Let us look at a play from (〈ω, [dω]).

(〈ω,[dω]) (〈ω,[ddω]) (〈ω,[d,dω]) (〈ω,[〈〉+〈d〉d,dω]) (〈ω,[〈d〉d,dω])

. . . (〈ω,[d,〉d,dω]) (〈ω,[d〉d,dω]) (〈ω,[〈,d〉d,dω])

The play continues without dω ever being principal (essentially, going into
deeper and deeper nesting to match a 〈 with a 〉). Since even the first match is
never made there is no hope of progress. The play (and, in fact, any play) is thus
losing. On the other hand the following play from (u, [dω]), where u = (〈〉)ω is
indeed winning, with progressing ν-thread indicated in magenta.

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 249

(u,[dω]) (u,[d,dω]) (u,[〈〉+〈d〉d,dω]) (u,[〈〉,dω]) (u,[〈,〉,dω]) (〉u,[〉,dω])
2

Theorem 37 (Evaluation). w ∈ L(Γ) ⇔ there is a winning play from (w,Γ).

The proof is rather involved, employing the method of ‘signatures’ common
in fixed point logics, cf. e.g. [48], which serve as ‘least witnesses’ to word mem-
bership via carefully managing ordinal approximants for fixed points. Here we
must be somewhat more careful in the argument because positions of our puzzle
include cedents, not single formulas: we must crucially assign signatures to each
formula of a cedent. Working with cedents rather than formulas allows the eval-
uation puzzle to remain strictly single player. This is critical for expressivity:
alternating context-free grammars and pushdown automata compute more than
just CFLs [4,45].

We can now prove the soundness of μν�HKA∞ by reduction to Theorem 37:

Theorem 38 (Soundness). μν�HKA �∞ Γ → S =⇒ L(Γ) ⊆ L(S).
Proof (Sketch). Let P be a ∞-proof of Γ → S and w ∈ L(Γ). We show w ∈ L(S).
First, since w ∈ L(Γ) there is a winning play π from (w,Γ) by Theorem 37,
which induces a unique (maximal) branch Bπ of P which must have a progressing
thread τ . Now, since π is a winning play from (w, e), τ cannot be on the LHS, so it
is an RHS ν-thread following, say, a sequence of cedents [Γi]i<ω. By construction
[Γi]i<ω has an infinite subsequence, namely whenever it is principal, that forms
(the right components of) a winning play from (w,Γ0), with Γ0 ∈ S. Thus indeed
w ∈ L(S) by Theorem 37.

6.2 ω-Context-Freeness via Muller Grammars

We can now use the adequacy of the evaluation puzzle to recover a converse of
Proposition 27. For this, we need to recall a grammar-formulation of CFω, due
to Cohen and Gold [5] and independently Nivat [46,47].

A Muller (ω-)CFG (MCFG) is a CFG G, equipped with a set F ⊆ P(V)
of accepting sets of productions. We define a rewrite relation →G ⊆ (V ∪A)∗ ×
(V ∪ A)∗, leftmost reduction, by aXv →G auv whenever a ∈ A∗, X → u is
a production of G and v ∈ (V ∪ A)∗. A leftmost derivation is just a maximal
(possibly infinite) sequence along →G . We say G accepts w ∈ A≤ω if there is a
leftmost derivation δ such that δ converges to w and the set of infinitely often
occurring states that are LHSs of productions along δ is in F . We write L(G) for
the set of words G accepts.

Theorem 39 ([5,46,47]). Let L ⊆ Aω. L ∈ CFω ⇔ L = L(G) for a MCFG G.
Now we have a converse of Proposition 27 by:

Proposition 40. For each expression e there is a MCFG G s.t. L(e) = L(G).

250 A. Das and A. De

Proof (sketch). Given a μν-expression e, we construct a grammar just like in the
proof of Theorem 5, but with extra clause XνXf(X) → Xf(νXf(X)). We maintain
two copies of each non-terminal, one magenta and one normal so that a derivation
also ‘guesses’ a ν-thread ‘on the fly’. Now set F , the set of acceptable sets, to
include all sets extending some {Xf : f ∈ E}, for E with the smallest expression
a ν-formula, by normal non-terminals. Now any accepting leftmost derivation of
a word w from Xe describes a winning play of the evaluation puzzle from (w, e)
and vice-versa.

6.3 Proof Search Game and Completeness

In order to prove completeness of μν�HKA∞, we need to introduce a game-
theoretic mechanism for organising proof search, in particular so that we can
rely on determinacy principles thereof.

Definition 41 (Proof Search Game). The proof search game (for μν�HKA)
is a two-player game played between Prover (P), whose positions are inference
steps of μν�HKA, and Denier (D), whose positions are sequents of μν�HKA. A
play of the game starts from a particular sequent: at each turn, P chooses an
inference step with the current sequent as conclusion, and D chooses a premiss
of that step; the process repeats from this sequent as long as possible.

An infinite play of the game is won by P (aka lost by D) if the branch
constructed has a progressing thread; otherwise it is won by D (aka lost by P).
In the case of deadlock, the player with no valid move loses.

Proposition 42 (Determinacy (∃0#)). The proof search game is deter-
mined, i.e. from any sequent Γ → S, either P or D has a winning strategy.

Note that the winning condition of the proof search game is (lightface) ana-
lytic, i.e. Σ1

1 : “there exists a progressing thread”. Lightface analytic determinacy
lies beyond ZFC, as indicated equivalent to the existence of 0# [24]. Further
consideration of our metatheory is beyond the scope of this work.

It is not hard to see that P-winning-strategies are ‘just’ ∞-proofs. Our goal
is to show a similar result for D, a sort of ‘countermodel construction’.

Lemma 43. D has a winning strategy from Γ → S =⇒ L(Γ) \ L(S) �= ∅.

Before proving this, let us point out that Lemma 12 applies equally to the system
μνHKA. We also have the useful observation:

Proposition 44 (Modal). L(aΓ) ⊆ {ε} ∪ ⋃

a∈A
L(aSa) =⇒ L(Γ) ⊆ L(Sa).

This follows directly from the definition of L(·). Now we can carry out our
‘countermodel construction’ from D-winning-strategies:

Proof (Sketch, of Lemma 43). Construct a P-strategy p that is deadlock-free
by always preserving validity, relying on Lemma 12 and Proposition 44. Now,
suppose d is a D-winning-strategy and play p against it to construct a play
B = (Si)i<ω = (Γi → Si)i<ω. Note that indeed this play must be infinite since

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 251

(a) p is deadlock-free; and (b) d is D-winning. Now, let w =
∏

kl
a∈B

a be the

product of labels of k steps along B, in the order they appear bottom-up. We
claim w ∈ L(Γ) \ L(S):
– w ∈ L(Γ). By construction [Γi]i has a subsequence forming an infinite play π

of the evaluation puzzle from (w,Γ). Since the play B is won by D, B cannot
have a μ-thread so it must have a ν-thread (since it is i.o.p.), and so π is
winning. Thus w ∈ L(Γ) by Theorem 37.

– w /∈ L(S). Take an arbitrary play π of the evaluation puzzle from some (w,Δ)
with Δ ∈ S. This again induces an infinite sequence of cedents [Δi]i<ω along
the RHSs of B. Now, [Δi]i<ω cannot have a ν-thread by assumption that B
is winning for D, and so π is not a winning play of the evaluation puzzle from
(w,Δ). Since the choices of Δ ∈ S and play π were arbitrary, indeed we have
w /∈ L(S) by Theorem 37.

Now from Proposition 42 and Lemma 43, observing that P-winning-strategies
are just ∞-proofs, we conclude:

Theorem 45 (Completeness). L(Γ) ⊆ L(S) =⇒ μν�HKA �∞ Γ → S.

7 Complexity Matters and Further Perspectives

In this section we make further comments, in particular regarding the complexity
of our systems, at the level of arithmetical and analytical hierarchies. These
concepts are well-surveyed in standard textbooks, e.g. [44,50], as well as various
online resources.

Complexity and Irregularity for Finite Words. The equational theory of
μ-expressions in L(·) is Π0

1 -complete, i.e. co-recursively-enumerable, due to the
same complexity of universality of context-free grammars (see, e.g., [27]). In this
sense there is no hope of attaining a finitely presentable (e.g. cyclic, inductive)
system for the equational theory of μ-expressions in L(·). However it is not hard
to see that our wellfounded system μHKAω enjoys optimal Π0

1 proof search,
thanks to invertibility and termination of the rules, along with decidability of
membership checking. Indeed a similar argument is used by Palka in [49] for the
theory of ‘∗-continuous action lattices’. Furthermore let us point out that our
non-wellfounded system also enjoys optimal proof search: μHKA �∞ Γ → S is
equivalent, by invertibility, to checking that every sequent a → S reachable by
only left rules in bottom-up proof search has a polynomial-size proof (bound
induced by length of leftmost derivations). This is a Π0

1 property.

Complexity and Inaxiomatisability for Infinite Words. It would be natu-
ral to wonder whether a similar argument to Sect. 4 gives rise to some infinitary
axiomatisation of the equational theory of μν-expressions in L(·). In fact, it turns
out this is impossible: the equational theory of ω-CFLs is Π1

2 -complete [19], so
there is no hope of a Π0

1 (or even Σ1
2) axiomatisation. In particular, the projec-

tion argument of Sect. 4 cannot be scaled to the full system μν�HKA because ·
does not distribute over

⋂
in L(·), for the corresponding putative ‘right ω steps’

252 A. Das and A. De

for ν. For instance 0 = ((aa)∗ ∩ a(aa)∗)a∗ �= (aa)∗a∗ ∩ a(aa)∗a∗ = aa∗. Indeed
let us point out that here it is crucial to use our hypersequential system HKA
as a base rather than, say, the intuitionistic systems of other proof theoretic
works for regular expressions (and friends) [16,49]: the appropriate extension of
those systems by μs and νs should indeed enjoy an ω-translation, due to only
one formula on the right, rendering them incomplete.

Again let us point out that ∞-provability in μν�HKA, in a sense, enjoys
optimal complexity. By determinacy of the proof search game, μν�HKA �∞

Γ → S if and only if there is no D-winning-strategy from Γ → S. The latter is
indeed a Π1

2 statement: “for every D-strategy, there exists a play along which
there exists a progressing thread”.

Comparison to [22]. Our method for showing completeness of μHKAω is quite
different from the analogous result of [22] which uses the notion of ‘rank’ for μ-
formulas, cf. [1]. Our result is somewhat stronger, giving cut-free completeness,
but it could be possible to use ranks directly to obtain such a result too. More
interestingly, the notion of projections and ω-translation should be well-defined
(for LHS μ formulas) even in the presence of νs, cf. [11], whereas the rank method
apparently breaks down in such extensions. This means that our method should
also scale to μνHKA ∞-proofs where, say, each infinite branch has a LHS μ-
thread. It would be interesting to see if this method can be used to axiomatise
some natural fragments of ω-context-free inclusions.

Note that, strictly speaking, our completeness result for μCA was only given
for the guarded fragment. However it is known that μCA (and even weaker
theories) already proves the equivalence of each expression to one that is even
left-guarded, by formalising conversion to Greibach normal form [18].

8 Conclusions

In this work we investigated of the proof theory of context-free languages (CFLs)
over a syntax of μ-expressions. We defined a non-wellfounded proof system
μHKA∞ and showed its soundness and completeness for the model L(·) of
context-free languages. We used this completeness result to recover the same
for a cut-free ω-branching system μHKAω via proof-theoretic techniques. This
gave an alternative proof of the completeness for the theory of μ-continuous
Chomsky algebras from [22]. We extended μ-expressions by greatest fixed points
to obtain a syntax for ω-context-free languages. We studied an extension by
greatest fixed points, μν�HKA∞ and showed its soundness and completeness for
the model L(·) of context-free languages, employing game theoretic techniques.

Since inclusion of CFLs is Π0
1 -complete, no recursively enumerable (r.e.)

system can be sound and complete for their equational theory. However, by
restricting products to a letter on the left one can obtain a syntax for right-
linear grammars. Indeed, for such a restriction complete cyclic systems can be
duly obtained [10]. It would be interesting to investigate systems for related
decidable or r.e. inclusion problems, e.g. inclusions of context-free languages in
regular languages, and inclusions of visibly pushdown languages [2,3].

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 253

The positions of our evaluation puzzle for μν-expressions use cedents to
decompose products, similar to the stack of a pushdown automaton, rather than
requiring an additional player. Previous works have similarly proposed model-
checking games for (fragments/variations of) context-free expressions, cf. [37,43],
where more complex winning conditions seem to be required. It would be inter-
esting to compare our evaluation puzzle to those games in more detail.

Note that our completeness result, via determinacy of the proof search game,
depends on the assumption of (lightface) analytic determinacy. It is natural to
ask whether this is necessary, but this consideration is beyond the scope of this
work. Let us point out, however, that even ω-context-free determinacy exceeds
the capacity of ZFC [20,41].

Finally, it would be interesting to study the structural proof theory arising
from systems μHKA∞ and μνHKA∞, cf. [16]. It would also be interesting to see if
the restriction to leftmost ∞-proofs can be replaced by stronger progress condi-
tions, such as the ‘alternating threads’ from [13,14], in a similar hypersequential
system for predicate logic. Note that the same leftmost constraint was employed
in [25] for an extension of HKA to ω-regular languages.

Acknowledgments. This work was supported by a UKRI Future Leaders Fellowship,
‘Structure vs Invariants in Proofs’, project reference MR/S035540/1. The authors are
grateful to anonymous reviewers for their helpful comments (in particular, leading
to Example 30) and for pointing us to relevant literature such as [37,43,45].

References

1. Alberucci, L., Krähenbühl, J., Studer, T.: Justifying induction on modal μ-
formulae. Logic J. IGPL 22(6), 805–817 (2014). https://doi.org/10.1093/jigpal/
jzu001

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing (STOC 2004),
pp. 202–211. Association for Computing Machinery, New York (2004). https://
doi.org/10.1145/1007352.1007390

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3)
(2009). https://doi.org/10.1145/1516512.1516518

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981). https://doi.org/10.1145/322234.322243

5. Cohen, R.S., Gold, A.Y.: Theory of ω-languagesi, II: characterizations of ω-context-
free languages. J. Comput. Syst. Sci. 15(2), 169–208 (1977)

6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall Mathe-
matics Series. Chapman and Hall (1971)

7. Cranch, J., Laurence, M.R., Struth, G.: Completeness results for omega-regular
algebras. J. Logic. Algeb. Methods Program. 84(3), 402–425 (2015). https://doi.
org/10.1016/j.jlamp.2014.10.002. 13th International Conference on Relational and
Algebraic Methods in Computer Science (RAMiCS 2012)

8. Curzi, G., Das, A.: Cyclic implicit complexity. In: Baier, C., Fisman, D. (eds.)
37th Annual ACM/IEEE Symposium on Logic in Computer Science, 2–5 August
2022 (LICS 2022), pp. 19:1–19:13. ACM, Haifa (2022). https://doi.org/10.1145/
3531130.3533340

https://doi.org/10.1093/jigpal/jzu001
https://doi.org/10.1093/jigpal/jzu001
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/322234.322243
https://doi.org/10.1016/j.jlamp.2014.10.002
https://doi.org/10.1016/j.jlamp.2014.10.002
https://doi.org/10.1145/3531130.3533340
https://doi.org/10.1145/3531130.3533340

254 A. Das and A. De

9. Das, A., De, A.: A proof theory of (omega-)context-free languages, via non-
wellfounded proofs (2024). https://doi.org/10.48550/arXiv.2404.16231

10. Das, A., De, A.: A proof theory of right-linear (omega-)grammars via cyclic proofs.
arXiv preprint arXiv:2401.13382 (2024). https://doi.org/10.48550/ARXIV.2401.
13382

11. Das, A., De, A., Saurin, A.: Comparing infinitary systems for linear logic with fixed
points. In: Bouyer, P., Srinivasan, S. (eds.) 43rd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2023). Leibniz International Proceedings in Informatics (LIPIcs), vol. 284, pp.
40:1–40:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2023).
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.40

12. Das, A., Doumane, A., Pous, D.: Left-handed completeness for kleene algebra,
via cyclic proofs. In: Barthe, G., Sutcliffe, G., Veanes, M. (eds.) 22nd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR-22). EPiC Series in Computing, vol. 57, pp. 271–289. EasyChair (2018).
https://doi.org/10.29007/hzq3

13. Das, A., Girlando, M.: Cyclic proofs, hypersequents, and transitive closure logic.
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reasoning (IJCAR
2022). LNCS, vol. 13385, pp. 509–528. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-10769-6_30

14. Das, A., Girlando, M.: Cyclic hypersequent system for transitive closure logic. J.
Autom. Reason. 67(3), 27 (2023). https://doi.org/10.1007/S10817-023-09675-1

15. Das, A., Pous, D.: A cut-free cyclic proof system for Kleene algebra. In: Schmidt,
R.A., Nalon, C. (eds.) Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2017). LNCS, vol. 10501, pp. 261–277. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66902-1_16

16. Das, A., Pous, D.: Non-wellfounded proof theory for (Kleene+Action) (Alge-
bras+Lattices). In: Ghica, D.R., Jung, A. (eds.) 27th EACSL Annual Conference
on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 119, pp. 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.19

17. Ésik, Z., Lei, H.: Greibach normal form in algebraically complete semirings. In:
Bradfield, J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 135–150. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45793-3_10

18. Ésik, Z., Leiß, H.: Algebraically complete semirings and greibach normal form.
Annal. Pure Appl. Logic 133(1), 173–203 (2005). https://doi.org/10.1016/j.apal.
2004.10.008. Festschrift on the occasion of Helmut Schwichtenberg’s 60th birthday

19. Finkel, O.: Highly undecidable problems for infinite computations. RAIRO - Theor.
Inf. Appl. 43(2), 339–364 (2009). https://doi.org/10.1051/ita/2009001

20. Finkel, O.: The determinacy of context-free games. J. Symbol. Logic 78(4), 1115–
1134 (2013). http://www.jstor.org/stable/43303700

21. Ginsburg, S., Rice, H.G.: Two families of languages related to algol. J. ACM 9(3),
350–371 (1962)

22. Grathwohl, N.B.B., Henglein, F., Kozen, D.: Infinitary axiomatization of the equa-
tional theory of context-free languages. Electron. Proc. Theor. Comput. Sci. 126,
44–55 (2013). https://doi.org/10.4204/eptcs.126.4

23. Gruska, J.: A characterization of context-free languages. J. Comput. Syst. Sci. 5(4),
353–364 (1971). https://doi.org/10.1016/S0022-0000(71)80023-5

24. Harrington, L.: Analytic determinacy and 0#. J. Symb. Log. 43(4), 685–693 (1978).
https://doi.org/10.2307/2273508

https://doi.org/10.48550/arXiv.2404.16231
http://arxiv.org/abs/2401.13382
https://doi.org/10.48550/ARXIV.2401.13382
https://doi.org/10.48550/ARXIV.2401.13382
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.40
https://doi.org/10.29007/hzq3
https://doi.org/10.1007/978-3-031-10769-6_30
https://doi.org/10.1007/978-3-031-10769-6_30
https://doi.org/10.1007/S10817-023-09675-1
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1007/3-540-45793-3_10
https://doi.org/10.1016/j.apal.2004.10.008
https://doi.org/10.1016/j.apal.2004.10.008
https://doi.org/10.1051/ita/2009001
http://www.jstor.org/stable/43303700
https://doi.org/10.4204/eptcs.126.4
https://doi.org/10.1016/S0022-0000(71)80023-5
https://doi.org/10.2307/2273508

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded Proofs 255

25. Hazard, E., Kuperberg, D.: Cyclic proofs for transfinite expressions. In: Manea,
F., Simpson, A. (eds.) 30th EACSL Annual Conference on Computer Science
Logic (CSL 2022), 14–19 February 2022, Göttingen (Virtual Conference). LIPIcs,
vol. 216, pp. 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPICS.CSL.2022.23

26. Jipsen, P.: From semirings to residuated kleene lattices. Stud. Logica 76, 291–303
(2004). https://doi.org/10.1023/B:STUD.0000032089.54776.63

27. Hopcroft, J.E., Rajeev Motwani, J.D.U.: Introduction to Automata Theory, Lan-
guages, and Computation, 2nd edn. Addison-Wesley (2001)

28. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata,
pp. 3–42. Princeton University Press, Princeton (1956). https://doi.org/10.1515/
9781400882618-002

29. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994). https://doi.org/10.1006/inco.1994.
1037

30. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci.
27(3), 333–354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6. Special
Issue Ninth International Colloquium on Automata, Languages and Programming
(ICALP) Aarhus, Summer 1982

31. Kozen, D., Silva, A.: Left-handed completeness. In: Kahl, W., Griffin, T.G. (eds.)
RAMICS 2012. LNCS, vol. 7560, pp. 162–178. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33314-9_11

32. Kozen, D., Silva, A.: Left-handed completeness. Theor. Comput. Sci. 807, 220–233
(2020). https://doi.org/10.1016/j.tcs.2019.10.040. In memory of Maurice Nivat, a
founding father of Theoretical Computer Science - Part II

33. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In:
van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63172-0_43

34. Krishnaswami, N.R., Yallop, J.: A typed, algebraic approach to parsing. In: PLDI
(PLDI 2019), pp. 379–393. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3314221.3314625

35. Krob, D.: A complete system of B-rational identities. In: Paterson, M.S. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 60–73. Springer, Heidelberg (1990). https://doi.
org/10.1007/BFb0032022

36. Kupke, C., Marti, J., Venema, Y.: Succinct graph representations of μ-calculus
formulas. In: Manea, F., Simpson, A. (eds.) 30th EACSL Annual Conference on
Computer Science Logic (CSL 2022). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 216, pp. 29:1–29:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl (2022). https://doi.org/10.4230/LIPIcs.CSL.2022.29

37. Lange, M.: Local model checking games for fixed point logic with chop. In: Brim,
L., Jancar, P., Kretínský, M., Kucera, A. (eds.) Concurrency Theory. CONCUR
2002. LNCS, vol. 2421, pp. 240–254. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45694-5_17

38. Leiß, H.: Towards Kleene algebra with recursion. In: Börger, E., Jäger, G., Kleine
Büning, H., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 242–256. Springer,
Heidelberg (1992). https://doi.org/10.1007/BFb0023771

39. Leiss, H.: The matrix ring of a mu-continuous chomsky algebra is mu-continuous.
In: Talbot, J.M., Regnier, L. (eds.) 25th EACSL Annual Conference on Com-
puter Science Logic (CSL 2016). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 62, pp. 6:1–6:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.6

https://doi.org/10.4230/LIPICS.CSL.2022.23
https://doi.org/10.1023/B:STUD.0000032089.54776.63
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-642-33314-9_11
https://doi.org/10.1007/978-3-642-33314-9_11
https://doi.org/10.1016/j.tcs.2019.10.040
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1007/BFb0032022
https://doi.org/10.1007/BFb0032022
https://doi.org/10.4230/LIPIcs.CSL.2022.29
https://doi.org/10.1007/3-540-45694-5_17
https://doi.org/10.1007/3-540-45694-5_17
https://doi.org/10.1007/BFb0023771
https://doi.org/10.4230/LIPIcs.CSL.2016.6

256 A. Das and A. De

40. Leiß, H., Hopkins, M.: C-Dioids and μ-continuous chomsky-algebras. In: Deshar-
nais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS, vol. 11194, pp.
21–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02149-8_2

41. Li, W., Tanaka, K.: The determinacy strength of pushdown ω-languages. RAIRO-
Theor. Inf. Appl. 51(1), 29–50 (2017). https://doi.org/10.1051/ita/2017006

42. Linna, M.: On ω-sets associated with context-free languages. Inf. Control 31(3),
272–293 (1976)

43. Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K.,
Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30538-5_34

44. Mansfield, R., Weitkamp, G.: Recursive aspects of descriptive set theory. In: Oxford
Logic Guides, Oxford University Press (1985). https://books.google.co.uk/books?
id=jPzuAAAAMAAJ

45. Moriya, E., Hofbauer, D., Huber, M., Otto, F.: On state-alternating context-free
grammars. Theoret. Comput. Sci. 337(1–3), 183–216 (2005)

46. Nivat, M.: Mots infinis engendrés par une grammaire algébrique. RAIRO - Theor.
Inf. Appl. Inf. Théor. Appl. 11(4), 311–327 (1977). http://eudml.org/doc/92059

47. Nivat, M.: Sur les ensembles de mots infinis engendrés par une grammaire
algébrique. RAIRO - Theor. Inf. Appl. Inf. Théor. Appl. 12(3), 259–278 (1978).
http://eudml.org/doc/92080

48. Niwiński, D., Walukiewicz, I.: Games for the μ-calculus. Theoret. Comput. Sci.
163(1), 99–116 (1996) https://doi.org/10.1016/0304-3975(95)00136-0

49. Palka, E.: An infinitary sequent system for the equational theory of *-continuous
action lattices. Fund. Inform. 78(2), 295–309 (2007)

50. Sacks, G.E.: Higher Recursion Theory. Perspectives in Logic. Cambridge University
Press (2017). https://doi.org/10.1017/9781316717301

51. Salomaa, A.: Formal Languages. ACM Monograph Series. Academic Press (1973)
52. Schützenberger, M.: On context-free languages and push-down automata. Inf. Con-

trol 6(3), 246–264 (1963). https://doi.org/10.1016/S0019-9958(63)90306-1
53. Studer, T.: On the proof theory of the modal mu-calculus. Stud. Logica. 89(3),

343–363 (2008). https://doi.org/10.1007/S11225-008-9133-6
54. Thiemann, P.: Partial derivatives for context-free languages. In: Esparza, J.,

Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 248–264. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-02149-8_2
https://doi.org/10.1051/ita/2017006
https://doi.org/10.1007/978-3-540-30538-5_34
https://books.google.co.uk/books?id=jPzuAAAAMAAJ
https://books.google.co.uk/books?id=jPzuAAAAMAAJ
http://eudml.org/doc/92059
http://eudml.org/doc/92080
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1017/9781316717301
https://doi.org/10.1016/S0019-9958(63)90306-1
https://doi.org/10.1007/S11225-008-9133-6
https://doi.org/10.1007/978-3-662-54458-7_15
http://creativecommons.org/licenses/by/4.0/

A Cyclic Proof System for Guarded
Kleene Algebra with Tests

Jan Rooduijn1(B), Dexter Kozen2, and Alexandra Silva2

1 Institute of Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands

janrooduijn@gmail.com
2 Cornell University, Ithaca, NY, USA

Abstract. Guarded Kleene Algebra with Tests (GKAT for short) is an
efficient fragment of Kleene Algebra with Tests, suitable for reasoning
about simple imperative while-programs. Following earlier work by Das
and Pous on Kleene Algebra, we study GKAT from a proof-theoretical per-
spective. The deterministic nature of GKAT allows for a non-well-founded
sequent system whose set of regular proofs is complete with respect to
the guarded language model. This is unlike the situation with Kleene
Algebra, where hypersequents are required. Moreover, the decision pro-
cedure induced by proof search runs in NLOGSPACE, whereas that of
Kleene Algebra is in PSPACE.

Keywords: Kleene Algebra · Guarded Kleene Algebra with Tests ·
Cyclic proofs

1 Introduction

Guarded Kleene Algebra with Test (GKAT) is the fragment of Kleene Algebra
with Tests (KAT) comprised of the deterministic while programs. Those are the
programs built up from sequential composition (e · f), conditional branching
(if-b-then-e-else-f) and loops (while b do e). For an introduction to KAT
we refer the reader to [10]. The first papers focusing on the fragment of KAT that
is nowadays called GKAT are Kozen’s [11] and Kozen & Tseng’s [12], where it is
used to study the relative power of several programming constructs.

As GKAT is a fragment of KAT, it directly inherits a rich theory. It admits a lan-
guage semantics in the form of guarded strings and for every expression there is
a corresponding KAT-automaton. Already in [12] it was argued that GKAT expres-
sions are more closely related to so-called strictly deterministic automata, where
every state transition executes a primitive program. Smolka et al. significantly
advanced the theory of GKAT in [22], by studying various additional semantics,
identifying the precise class of strictly deterministic automata corresponding

The research of Jan Rooduijn has been made possible by a grant from the Dutch
Research Council NWO, project number 617.001.857.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 257–275, 2024.
https://doi.org/10.1007/978-3-031-63501-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-63501-4_14

258 J. M. W. Rooduijn et al.

to GKAT-expressions (proving a Kleene theorem), giving a nearly linear decision
procedure of the equivalence of GKAT-expressions, and studying its equational
axiomatisation. Since then GKAT has received considerable further attention, e.g.
in [17,20,21,24].

One of the most challenging and intriguing aspects of GKAT is its proof theory.
The standard equational axiomatisation of KAT from [10] does not simply restrict
to GKAT, since a derivation of an expression that lies within the GKAT-fragment
might very well contain expressions that lie outside of it. Moreover, the axioma-
tisation of KAT contains a least fixed point rule that relies on the equational
definability of inclusion, which does not seem to be available in GKAT.

In [22], this problem is circumvented by introducing a custom equational
axiomatisation for GKAT that uses a unique fixed point rule. While a notable
result, this solution is still not entirely satisfactory. First, completeness is only
proven under the inclusion of a variant of the unique fixed point rule that oper-
ates on entire systems of equations (this problem was recently addressed for
the so-called skip-free fragment of GKAT in [21]). Moreover, even the ordinary,
single-equation, unique fixed point rule contains a non-algebraic side-condition,
analogous to the empty word property in Salomaa’s axiomatisation of Kleene
Algebra [18]. Because of this, a proper definition of ‘a GKAT’ is still lacking.

In recent years the proof theory of logics with fixed point operators (such
as while-b-do-e) has seen increasing interest in non-well-founded proofs. In
such proofs, branches need not to be closed by axioms, but may alternatively
be infinitely deep. To preserve soundness, a progress condition is often imposed
on each infinite branch, facilitating a soundness proof by infinite descent. In
some cases non-well-founded proofs can be represented by finite trees with back-
edges, which are then called cyclic proofs. See e.g. [2,4,5,8,13] for a variety
of such approaches. Often, the non-well-founded proof theory of some logic is
closely related to its corresponding automata theory. Taking the proof-theoretical
perspective, however, can be advantageous because it is more fine-grained and
provides a natural setting for establishing results such as interpolation [3,14],
cut elimination [1,19], and completeness by proof transformation [6,23].

In [7], Das & Pous study the non-well-founded proof theory of Kleene Alge-
bra, a close relative of GKAT (for background on Kleene Algebra we refer the
reader to [9]). They show that a natural non-well-founded sequent system for
Kleene Algebra is not complete when restricting to the subset of cyclic proofs.
To remedy this, they introduce a hypersequent calculus, whose cyclic proofs are
complete. They give a proof-search procedure for this calculus and show that it
runs in PSPACE. Since deciding Kleene Algebra expressions is PSPACE-complete,
their proof-search procedure induces an optimal decision procedure for this prob-
lem. In a follow-up paper together with Doumane, left-handed completeness of
Kleene Algebra is proven by translating cyclic proofs in the hypersequent calcu-
lus to well-founded proofs in left-handed Kleene Algebra [6].

The goal of the present paper is to study the non-well-founded proof theory
of GKAT. This is interesting in its own right, for instance because, as we will
see, it has some striking differences with Kleene Algebra. Moreover, we hope it

A Cyclic Proof System for Guarded Kleene Algebra with Tests 259

opens up new avenues for exploring the completeness of algebraic proof systems
for GKAT, through the translation of our cyclic proofs.

Outline. Our paper is structured as follows.

– In Sect. 2 we introduce preliminary material: the syntax of GKAT and its lan-
guage semantics.

– Sect. 3 introduces our non-well-founded proof system SGKAT for GKAT.
– In Sect. 4 we show that (possibly infinitary) proofs in SGKAT are sound. That

is, the interpretation of each derivable sequent - a GKAT-inequality - is true
in the language model (which means that a certain inclusion of languages
holds).

– In Sect. 5 we show that proofs are finite-state: each proof contains only finitely
many distinct sequents. More precisely, by employing a more fine-grained
analysis than in [7], we give a quadratic bound on the number of distinct
sequents occurring in a proof, in terms of the size of its endsequent. It follows
that the subset of cyclic proofs proves exactly the same sequents as the set
of all non-well-founded proofs.

– Sect. 6 deals with completeness and complexity. We first use a proof-search
procedure to show that SGKAT is complete: every sequent whose interpreta-
tion is valid in the language model, can be derived. We then show that this
proof-search procedure runs in coNLOGSPACE. This gives an NLOGSPACE
upper bound on the complexity of the language inclusion problem for GKAT-
expressions.

Our Contributions. Our paper closely follows the treatment of Kleene Algebra
in [7]. Nevertheless, we make the following original contributions:

– Structure of sequents: we devise a form of sequents bespoke to GKAT, by
labelling the sequents by sets of atoms. This is similar to how the appropriate
automata for GKAT are not simply KAT-automata. In contrast to Kleene Alge-
bra, it turns out that we do not need to extend our sequents to hypersequents
in order to obtain completeness for the fragment of cyclic proofs.

– Soundness argument: our modest contribution here is the notion of priority of
rules and the fact that our rules are all invertible when they have priority. The
soundness argument for finite proofs is, of course, slightly different, because
our rules are different. (The step from the soundness of finite proofs, towards
the soundness of infinite proofs, is completely analogous to that of [7].)

– Regularity: this concerns showing that every proof contains only finitely many
distinct sequents. As in [7], our argument views each expression in a proof as
a subexpression of an expression in the proof’s root. A modest contribution
is that our argument is made more formal by considering these expressions
as nodes in a syntax tree. More importantly, the bound on the number of
distinct cedents we obtain is sharper: where in [7] it is exponential in the size
of the syntax tree, our bound is linear (yielding a quadratic bound on the
number of sequents).

260 J. M. W. Rooduijn et al.

– Completeness: the structure of the argument is identical to that in [7], but
the details differ due to the different rules and different type of sequents. This
for instance shows in our proof of Lemma 9 (which is analogous to Lemma 20
in [7]), where we make crucial use of the set of atoms annotating a sequent.

– Complexity: our complexity argument is necessarily different because it
applies to a different system and is designed to give a different upper bound.

Due to space limitations several proofs are only sketched or omitted entirely. Full
versions of these proofs can be found in the extended version of this paper [15].

2 Preliminaries

2.1 Syntax

The language of GKAT has two sorts, namely programs and a subset thereof
consisting of tests. It is built from a finite and non-empty set T of primitive tests
and a non-empty set Σ of primitive programs, where T and Σ are disjoint. For
the rest of this paper we fix such sets T and Σ. We reserve the letters t and p to
refer, respectively, to arbitrary primitive tests and primitive programs. The first
of the following grammars defines the tests, and the second the expressions.

b, c ::= 0 | 1 | t | b | b ∨ c | b · c e, f ::= b | p | e · f | e +b f | e(b),

where t ∈ T and p ∈ Σ. Intuitively, the operator +b stands for the if-then-else
construct, and the operator (−)(b) stands for the while loop. Note that the
tests are simply propositional formulas. It is convention to use · instead of ∧
for conjunction. As usual, we often omit · for syntactical convenience, e.g. by
writing pq instead of p · q.

Example 1. The idea of GKAT is to model imperative programs. For instance, the
expression (p +b q)(a) represents the following imperative program:

while a do (if b then p else q)

Remark 1. As mentioned in the introduction, GKAT is a fragment of Kleene Alge-
bra with Tests, or KAT [10]. The syntax of KAT is the same as that of GKAT, but
with unrestricted union + instead of guarded union +b, and unrestricted itera-
tion (−)∗ instead of the while loop operator (−)(b). The embedding ϕ of GKAT
into KAT acts on guarded union and guarded iteration as follows, and commutes
with all other operators: ϕ(e+b f) = b ·ϕ(e)+b ·ϕ(f), and ϕ(e(b)) = (b ·ϕ(e))∗ ·b.

2.2 Semantics

There are several kinds of semantics for GKAT. In [22], a language semantics, a
relational semantics, and a probabilistic semantics are given. In this paper we
are only concerned with the language semantics, which we shall now describe.

A Cyclic Proof System for Guarded Kleene Algebra with Tests 261

We denote by At the set of atoms of the free Boolean algebra generated
by T = {t1, . . . tn}. That is, At consists of all tests of the form c1 · · · cn, where
ci ∈ {ti, ti} for each 1 ≤ i ≤ n. Lowercase Greek letters (α, β, γ, . . .) will be
used to denote elements of At. A guarded string is an element of the regular
set At · (Σ · At)∗. That is, a string of the form α1p1α2p2 · · · αnpnαn+1. We will
interpret expressions as languages (formally just sets) of guarded strings. The
sequential composition operator · is interpreted by the fusion product �, given
by L � K := {xαy | xα ∈ L and αy ∈ K}. For the interpretation of +b, we
define for every set of atoms B ⊆ At the following operation of guarded union on
languages: L+B K := (B �L)∪(B �K), where B is At\B. For the interpretation
of (−)(b), we stipulate:

L0 := At Ln+1 := Ln � L LB :=
⋃

n≥0

(B � L)n � B

Finally, the semantics of GKAT is inductively defined as follows:

�b� := {α ∈ At : α ≤ b} �p� := {αpβ : α, β ∈ At} �e · f� := �e� � �f�

�e +b f� := �e� +�b� �f� �e(b)� := �e��b�

Note that the interpretation of · between tests is the same whether they are
regarded as tests or as programs, i.e. �b� ∩ �c� = �b� � �c�.

Remark 2. While the semantics of expressions is explicitly defined, the semantics
of tests is derived implicitly through the free Boolean algebra generated by T . It
is standard in the GKAT literature to address the Boolean content in this manner.

Example 2. In a guarded string, atoms can be thought of as states of a machine,
and programs as executions. For instance, in case of the guarded string αpβ,
the machine starts in state α, then executes program p, and ends in state β.
Let us briefly check which guarded strings of, say, the form αpβqγ belong to the
interpretation �(p +b q)(a)� of the program of Example 1. First, we must have
α ≤ a, for otherwise we would not enter the loop. Moreover, we have α ≤ b, for
otherwise q rather than p would be executed. Similarly, we find that β ≤ a, b.
Since the loop is exited after two iterations, we must have γ ≤ a. Hence, we find

αpβqγ ∈ �(p +b q)(a)� ⇔ α ≤ a, b and β ≤ a, b and γ ≤ a.

We state two simple facts that will be useful later on.

Lemma 1. For any two languages L,K of guarded strings, and primitive pro-
gram p, we have:
(i) Ln+1 = L � Ln; (ii) �p� � L = �p� � K implies L = K.

Remark 3. The fact that GKAT models deterministic programs is reflected in the
fact that sets of guarded strings arising as interpretations of GKAT-expressions
satisfy a certain determinacy property. Namely, for every xαy and xαz in L,
either y and z are both empty, or both begin with the same primitive program.
We refer the reader to [22] for more details.

262 J. M. W. Rooduijn et al.

Remark 4. The language semantics of GKAT is the same as that of KAT (see [10]),
in the sense that �e� = �ϕ(e)�, where ϕ is the embedding from Remark 1, the
semantic brackets on the right-hand side denote the standard interpretation in
KAT, and e is any GKAT-expression.

3 The Non-well-founded Proof System SGKAT∞

In this section we commence our proof-theoretical study of GKAT. We will present
a cyclic sequent system for GKAT, inspired by the cyclic sequent system for Kleene
Algebra presented in [7]. In passing, we will compare our system to the latter.

Definition 1 (Sequent). A sequent is a triple (Γ,A,Δ), written Γ ⇒A Δ,
where A ⊆ At and Γ and Δ are (possibly empty) lists of GKAT-expressions.

The list on the left-hand side of a sequent is called its antecedent, and the list
on the right-hand side its succedent. In general we refer to lists of expressions as
cedents. The symbol ε refers to the empty cedent.

Remark 5. As the system in [7] only deals with Kleene Algebra, it does not
include tests. We choose the deal with the tests present in GKAT by augmenting
each sequent by a set of atoms. This tucks away the Boolean content, as is usual
in the GKAT literature, allowing us to omit propositional rules.

Definition 2 (Validity). We say that a sequent e1, . . . , en ⇒A f1, . . . , fm is
valid whenever A � �e1 · · · en� ⊆ �f1 · · · fn�.

We often abuse notation writing �Γ � instead of �e1 · · · en�, where Γ = e1, . . . , en.

Example 3. An example of a valid sequent is given by (cp)(b) ⇒At (p(cp+b 1))(b).
The antecedent denotes guarded strings α1pα2p · · · αnpαn+1 where αi ≤ b, c for
each 1 ≤ i ≤ n, and αn+1 ≤ b. The succedent denotes such strings where αi ≤ c
is only required for those 1 ≤ i ≤ n where i is even.

Remark 6. Like the sequents for Kleene Algebra in [7], our sequents express
language inclusion, rather than language equivalence. For Kleene Algebra this
difference is insignificant, as the two notions are interdefinable using unrestricted
union: �e� ⊆ �f� ⇔ �e + f� = �f�. For GKAT, however, it is not clear how to define
language inclusion in terms of language equivalence. As a result, an advantage
of axiomatising language inclusion rather than language equivalence, is that the
while-operator can be axiomatised as a least fixed point, eliminating the need
for a strict productivity requirement as is present in the axiomatisation in [22].

Given a set of atoms A and a test b, we write A � b for A � �b�, i.e. the set of
atoms {α ∈ A : α ≤ b}. The rules of SGKAT are given in Fig. 1. Importantly, the
rules are always applied to the leftmost expression in a cedent. As a result, we
have the following lemma, that later will be used in the completeness proof.

Lemma 2. Let Γ ⇒A Δ be a sequent, and let r be any rule of SGKAT. Then
there is at most one rule instance of r with conclusion Γ ⇒A Δ.

A Cyclic Proof System for Guarded Kleene Algebra with Tests 263

Fig. 1. The rules of SGKAT. The side condition (†) requires that A � b = A.

Remark 7. Following [7], we call k a ‘modal’ rule. The reason is simply that it
looks like the rule k (sometimes called K or �) in the standard sequent calculus
for basic modal logic. Our system also features a second modal rule, called k0.
Like k, this rule adds a primitive program p to the antecedent of the sequent.
Since the premiss of k0 entails that �Γ � = �0�, the antecedent of its conclusion
will denote the empty language, and is therefore included in any succedent Δ.

Remark 8. Note that the rules of SGKAT are highly symmetric. Indeed, the only
rules that behave differently on the left than on the right, are the b-rules and
k0. Note that b-l changes the set of atoms, while b-r uses a side condition. The
asymmetry of k0 is clear: the succedent of the premiss has a 0, whereas the
antecedent does not. A third asymmetry will be introduced in Definition 3, with
a condition on infinite branches that is sensitive to (b)-l but not to (b)-r.

Remark 9. The authors of [20] study a variant of GKAT that omits the so-called
early termination axiom, which equates all programs that eventually fail. They
give a denotational model of this variant in the form of certain kinds of trees.
We conjecture that omitting the rule k0 from our system will make it sound and
complete with respect to this denotational model.

264 J. M. W. Rooduijn et al.

Fig. 2. An SGKAT∞-derivation that is not a proof.

An SGKAT∞-derivation is a (possibly infinite) tree generated by the rules of
SGKAT. Such a derivation is said to be closed if every leaf is an axiom.

Definition 3 (Proof). A closed SGKAT∞-derivation is said to be an
SGKAT∞-proof if every infinite branch is fair for (b)-l, i.e. contains infinitely
many applications of the rule (b)-l.

We write SGKAT �∞ Γ ⇒A Δ if there is an SGKAT∞-proof of Γ ⇒A Δ.

Example 4. Not every SGKAT∞-derivation is a proof. Consider for instance the
following derivation, where (•) indicates that the derivation repeat itself (Fig. 2).

Example 5. Let Δ1 := (p(cp+b 1))(b) and Δ2 := cp+b 1,Δ1. The following proof
Π1 is an example SGKAT∞-proof of the sequent of Example 3. We again use (•)
to indicate that the proof repeats itself at this leaf and, for the sake of readability,
omit branches that can be closed immediately by an application of ⊥ (Fig. 3).

To illustrate the omission of branches that can be immediately closed by an
application of ⊥, let us write out the two applications of +b-r in Π1.

ε ⇒At�bc cp,Δ1
⊥

ε ⇒∅ 1,Δ1
+b-r

ε ⇒At�bc Δ2

⊥
ε ⇒∅ cp,Δ1 ε ⇒At�b 1,Δ1

+b-r
ε ⇒At�b Δ2

It can also be helpful to think of the set of atoms as selecting one of the premisses.

We close this section with a useful definition and a lemma.

Definition 4 (Exposure). A list Γ of expressions is said to be exposed if it is
either empty or begins with a primitive program.

Recall that the sets of primitive tests and primitive programs are disjoint. Hence
an exposed list Γ cannot start with a test. The following easy lemma will be
useful later on.

Lemma 3. Let Γ and Δ be exposed lists of expressions. Then:

(i) αx ∈ �Γ � ⇔ βx ∈ �Γ � for all α, β ∈ At
(ii) Γ ⇒At Δ is valid if and only if Γ ⇒A Δ is valid for some A �= ∅.

A Cyclic Proof System for Guarded Kleene Algebra with Tests 265

Fig. 3. The SGKAT∞-proof Π1.

4 Soundness

In this section we prove that SGKAT∞ is sound. We will first prove that well-
founded (that is, finite) SGKAT∞-proofs are sound. The following straightfor-
ward facts will be useful in the soundness proof.

Lemma 4. For any set A of atoms, test b, and cedent Θ, we have:

(i) �e +b f,Θ� = (�b� � �e,Θ�) ∪ (�b� � �f,Θ�);
(ii) �e(b), Θ� = (�b� � �e, e(b), Θ�) ∪ (�b� � �Θ�).

We prioritise the rules of SGKAT in order of occurrence in Fig. 1, reading left-
to-right, top-to-bottom. Hence, each left logical rule is of higher priority than
each right logical rule, which is of higher priority than each axiom or modal rule.
Recall that a rule is sound if the validity of all its premisses implies the validity
of its conclusion. Conversely, a rule is invertible if the validity of its conclusion
implies the validity of all of its premisses.

We say that a rule application has priority of there is no higher-priority rule
with the same conclusion. Conveniently, the following proposition entails that
every rule instance which has priority is invertible. This will aid our proof search
procedure in Sect. 6.

Proposition 1. Every rule of SGKAT is sound. Moreover, every rule is invert-
ible except for k and k0, which are invertible whenever they have priority.

266 J. M. W. Rooduijn et al.

Proof (sketch). We treat two illustrative cases. For the rule +b-r, we find

A � �Γ � ⊆ �e +b f� � �Δ�

⇔ A � �Γ � ⊆ (�b� � �e,Δ�) ∪ (�b� � �f,Δ�)

⇔ A � b � �Γ � ⊆ �e,Δ� or A � b ⊆ �f,Δ�,

where the first equivalence holds due to Lemma 4.(ii), and the second due to
A � �Γ � = (�b� � A � �Γ �) ∪ (�b� � A � �Γ �) and Lemma 4.(i).

The other rule we will treat is k. Suppose first that some application of k
does not have priority. The only rule of higher priority than k which can have
a conclusion of the form p, Γ ⇒A p,Δ is ⊥. In this case A = ∅, which means
that the conclusion must be valid. Hence any application of k that does not have
priority is vacuously sound. It need, however, not be invertible, as the following
rule instance demonstrates

1 ⇒At 0
k

p, 1 ⇒∅ p, 0

Next, suppose that some application of k does have priority. This means that
the set A of atoms in the conclusion p, Γ ⇒A p,Δ is not empty. We will show
that under this restriction the rule is both sound and invertible. Let α ∈ A. We
have

A � �p, Γ � ⊆ �p,Δ� ⇔ A � �p� � �Γ � ⊆ �p� � �Δ� (seq. int.)
⇔ α � �p� � �Γ � ⊆ �p� � �Δ� (α ∈ A, Lem.3)
⇔ �p� � �Γ � ⊆ �p� � �Δ� (Lem. 3)
⇔ �Γ � ⊆ �Δ�, (†)

as required. The step marked by † is the following property of guarded languages:
�p� � L = �p� � K implies L = K.

Proposition 1 entails that all finite proofs are sound. We will now extend this
result to non-well-founded proofs, closely following the treatment in [7]. We first
recursively define a syntactic abbreviation: [e(b)]0 := b and [e(b)]n+1 := be[e(b)]n.

Lemma 5. For every n ∈ N: if we have SGKAT �∞ e(b), Γ ⇒A Δ, then we also
have SGKAT �∞ [e(b)]n, Γ ⇒A Δ.

We let the while-height wh(e) be the maximal nesting of while loops in a given
expression e. Formally,

– wh(b) = wh(p) = 0; − wh(e · f) = wh(e +b f) = max{wh(e),wh(f)};
– wh(e(b)) = wh(e) + 1.

Given a list Γ , the weighted while-height wwh(Γ) of Γ is defined to be the
multiset [wh(e) : e ∈ Γ]. We order such multisets using the Dershowitz-Manna
ordering (for linear orders): we say that N < M if and only if N �= M and for
the greatest n such that N(n) �= M(n), it holds that N(n) < M(n).

Note that in any SGKAT-derivation the weighted while-height of the
antecedent does not increase when reading bottom-up. Moreover, we have:

A Cyclic Proof System for Guarded Kleene Algebra with Tests 267

Lemma 6. wwh([e(b)]n, Γ) < wwh(e(b), Γ) for every n ∈ N.

Finally, we can prove the soundness theorem using induction on wwh(Γ).

Theorem 1 (Soundness). If SGKAT �∞ Γ ⇒A Δ, then A � �Γ � ⊆ �Δ�.

Proof. We prove this by induction on wwh(Γ). Given a proof π of Γ ⇒A Δ, let
B contain for each infinite branch of π the node of least depth to which a rule
(b)-l is applied. Note that B must be finite, for otherwise, by Kőnig’s Lemma,
the proof π cut off along B would have an infinite branch that does not satisfy
the fairness condition.

Note that Proposition 1 entails that of every finite derivation with valid leaves
the conclusion is valid. Hence, it suffices to show that each of the nodes in B is
valid. To that end, consider an arbitrary such node labelled e(b), Γ ′ ⇒A′ Δ′ and
the subproof π′ it generates. By Lemma 5, we have that [e(b)]n, Γ ′ ⇒A′ Δ′ is
provable for every n. Lemma 6 gives wwh([e(b)]n, Γ ′) < wwh(e(b), Γ ′) ≤ wwh(Γ),
and thus we may apply the induction hypothesis to obtain

A′ � �[e(b)]n� � �Γ � ⊆ �Δ�

for every n ∈ N. Then by
⋃

n

(A′ � �[e(b)]n� � �Γ �) = A′ �
⋃

n

(�[e(b)]n�) � �Γ � = A′ � �e��b� � �Γ �,

we obtain that e(b), Γ ′ ⇒A′ Δ′ is valid, as required.

5 Regularity

Before we show that SGKAT∞ is not only sound, but also complete, we will
first show that every SGKAT∞-proof is finite-state, i.e. that it contains at most
finitely many distinct sequents.

The results of this section crucially depend on the fact that we are only
applying rules to the leftmost expressions of cedents. Indeed, otherwise one could
easily create infinitely many distinct sequents by simply unravelling the same
while loop e(b) infinitely often.

Our treatment differs from that in [7] in two major ways. First, we formalise
the notion of (sub)occurrence using the standard notion of a syntax tree. Sec-
ondly, and more importantly, we obtain a quadratic bound on the number of
distinct sequents occurring in a proof, rather than an exponential one. In fact,
we will show that the number of distinct antecedents (succedents) is linear in
the size of the syntax tree of the antecedent (succedent) of the root. We will do
this by showing that each leftmost expression of a cedent in the proof (given
as node of the syntax tree of a root cedent) can only occur in the proof as the
leftmost expression of that unique cedent.

Definition 5. The syntax tree (Te, le) of an expression e is a well-founded,
labelled and ordered tree, defined by the following induction on e.

268 J. M. W. Rooduijn et al.

– If e is a test or primitive program, its syntax tree only has a root node ρ, with
label le(ρ) := e.

– If e = f1 ◦ f2 where ◦ = · or ◦ = +b, its syntax tree again has a root node ρ
with label le(ρ) = e, and with two outgoing edges. The first edge connects ρ
to (Tf1 , lf1), the second edge connects it to (Tf2 , lf2).

– If e = f (b), its syntax tree again has a root node ρ with label le(ρ) = e, but
now with just one outgoing edge. This edge connects ρ to (Tf , lf).

Definition 6. An e-cedent is a list of nodes in the syntax tree of e. The reali-
sation of an e-cedent u1, . . . , un is the cedent le(u1), . . . , le(un).

Given the leftmost expression of a cedent, we will now explicitly define the cedent
that it must be the leftmost expression of.

Definition 7. Let u be a node in the syntax tree of e. We define the e-cedent
tail(u) inductively as follows:

– For the root ρ of Te, we set tail(ρ) to be the empty list ε.
– For every node u of Te, we define tail on its children by a case distinction on

the main connective mc of u:
• if mc = ·, let u1 and u2 be, respectively, the first and second child of u.
We set tail(u1) := u2, tail(u) and tail(u2) := tail(u).

• if mc = +b, let u1 and u2 again be its first and second child. We set
tail(u1) := tail(u2) := tail(u).

• if mc = (−)(b), let v be the single child of u. We set tail(v) := u, tail(u).

An e-cedent is called tail-generated if it is empty or of the form u, tail(u) for
some node u in the syntax tree of e.

Example 6. Below is the syntax tree of (p(p+b1))(b) and a calculation of tail(u3).

u1

u2

u3 u4

u5 u6

l(u1) = (p(p +b 1))(b)

l(u2) = p(p +b 1)
l(u3) = p

l(u4) = p +b 1
l(u5) = p

l(u6) = 1

tail(u3) = u4, tail(u2)
= u4, u1, tail(u1)
= u4, u1

The following lemma embodies the key idea for the main result of this section:
every leftmost expression is the leftmost expression of a unique cedent.

Lemma 7. Let π be an SGKAT∞-derivation of a sequent of the form e ⇒A f .
Then every antecedent in π is the realisation of a tail-generated e-sequent, and
every succedent is the realisation of a tail-generated f-sequent or 0-sequent.

A Cyclic Proof System for Guarded Kleene Algebra with Tests 269

Proof. We first prove the following claim.

Let e be an expression and let u be a node in its syntax tree. Then tail(u)
is a tail-generated e-sequent.

We prove this by induction on the syntax tree of e. For the root ρ, we have
tail(ρ) = ε, which is tail-generated by definition. Now suppose that the thesis
holds for some arbitrary node u in the syntax tree of e. We will show that the
thesis holds for the children of u by a case distinction on the main connective
mc of u.

– mc = ·. Let u1 and u2 be the first and second child of u, respectively. We
have tail(u1) = u2, tail(u) = u2, tail(u2), which is tail-generated by definition.
Moreover, we have that tail(u2) = tail(u) is tail-generated by the induction
hypothesis.

– mc = +b. Then for each child v of u, we have tail(v) = tail(u) and thus we
can again invoke the induction hypothesis.

– mc = (−)(b). Then for the single child v of u, it holds that tail(v) = u, tail(u),
which is tail-generated by definition.

Using this claim, the lemma follows by bottom-up induction on π. For the base
case, note that e and f are realisations of the roots of their respective syntax
trees. Such a root ρ is tail-generated, since ρ = ρ, ε = ρ, tail(ρ). The induction
step follows by direct inspection of the rules of SGKAT.

The number of realisations of tail-generated e-sequents is clearly linear in the
size of the syntax tree of e, for every expression e. Hence we obtain:

Corollary 1. The number of distinct sequents in an SGKAT∞-proof of e ⇒A f
is quadratic in |Te| + |Tf |.
Note that the above lemma and corollary can easily be generalised to arbitrary
(rather than singleton) cedents, by rewriting each cedent e1, . . . , en as e1 · · · en.

Recall that a non-well-founded tree is regular if it contains only finitely many
pairwise non-isomorphic subtrees. The following corollary follows by a standard
argument in the literature (see e.g [16, Corollary I.2.23]).

Corollary 2. If Γ ⇒A Δ has an SGKAT∞-proof, then it has a regular one.

We define a cyclic SGKAT-proof as a regular SGKAT∞-proof. Cyclic proofs can
be equivalently described using finite trees with back edges, but this is not needed
for the purposes of the present paper.

6 Completeness and Complexity

In this section we prove the completeness of SGKAT∞. Our argument uses a
proof search procedure, which we will show to induce a NLOGSPACE decision
procedure for the language inclusion problem of GKAT expressions. The material
in this section is again inspired by [7], but requires several modifications to treat
the tests present in GKAT.

First note the following fact.

270 J. M. W. Rooduijn et al.

Lemma 8. Any valid sequent is the conclusion of some rule application.

Note that in the following lemma A and B may be distinct.

Lemma 9. Let π be a derivation using only right logical rules and containing a
branch of the form:

Γ ⇒B e(b),Δ

... (b)-r
Γ ⇒A e(b),Δ

(*)

such that (1) Γ ⇒A e(b),Δ is valid, and (2) every succedent on the branch has
e(b),Δ as a final segment. Then Γ ⇒B 0 is valid.

Proof. We claim that e(b) ⇒B 0 is provable. We will show this by exploiting the
symmetry of the left and right logical rules of SGKAT (cf. Remark 8). Since on the
branch (*) every rule is a right logical rule, and e(b),Δ is preserved throughout,
we can construct a derivation π′ of e(b) ⇒B 0 from π by applying the analogous
left logical rules to e(b). Note that the set of atoms B precisely determines the
branch (*), in the sense that for every leaf Γ ⇒C Θ of π it holds that C ∩B = ∅.
Hence, as the root of π′ is e(b) ⇒B 0, every branch of π′ except for the one
corresponding to (*) can be closed directly by an application of ⊥. The branch
corresponding to (*) is of the form

e(b) ⇒B 0
... (b)-l

e(b) ⇒B 0

(*)

and can thus be closed by a back edge. The resulting finite tree with back
edges clearly represents an SGKAT∞-proof.

Now by soundness, we have B � �e(b)� = ∅. Moreover, by the invertibility of
the right logical rules and hypothesis (1), we get

B � �Γ � ⊆ B � �e(b)� � �Δ� = ∅,

as required.

Lemma 10. Let (Γn ⇒An
Δn)n∈ω be an infinite branch of some SGKAT∞-

derivation on which the rule (b)-r is applied infinitely often. Then there are n,m
with n < m such that the following hold:

(i) the sequents Γn ⇒An
Δn and Γm ⇒Am

Δm are equal;
(ii) the sequent Γn ⇒An

Δn is the conclusion of (b)-r in π;
(iii) for every i ∈ [n,m) it holds that Δn is a final segment of Δi.

Proof. First note that k0 is not applied on this branch, because if it were then
there could not be infinitely many applications of (b)-r.

Since the proof is finite-state (cf. Corollary 1), there must be a k ≥ 0 be such
that every Δi with i ≥ k occurs infinitely often on the branch above. Denote by

A Cyclic Proof System for Guarded Kleene Algebra with Tests 271

|Δ| the length of a given list Δ and let l be minimum of {|Δi| : i ≥ k}. In other
words, l is the minimal length of the Δi with i ≥ k.

To prove the lemma, we first claim that there is an n ≥ k such that |Δn| = l
and the leftmost expression in Δn is of the form e(b) for some e. Suppose, towards
a contradiction, that this is not the case. Then there must be a u ≥ k such that
|Δu| = l and the leftmost expression in Δu is not of the form e(b) for any e.
Note that (b)-r is the only rule apart from k0 that can increase the length of
the succedent (when read bottom-up). It follows that for no w ≥ u the leftmost
expression in Δw is of the form e(b), contradicting the fact that (b)-r is applied
infinitely often.

Now let n ≥ k be such that |Δn| = l and the leftmost expression of Δn

is e(b). Since the rule (b)-r must at some point after Δn be applied to e(b), we
may assume without loss of generality that Γn ⇒An

Δn is the conclusion of an
application of (b)-r. By the pigeonhole principle, there must be an m > n such
that Γn ⇒An

Δn and Γm ⇒Am
Δm are the same sequents. We claim that these

sequents satisfy the three properties above. Properties (i) and (ii) directly hold
by construction. Property (iii) follows from the fact that Δn is of minimal length
and has e(b) as leftmost expression.

With the above lemmas in place, we are ready for the completeness proof.

Theorem 2 (Completeness). Every valid sequent is provable in SGKAT∞.

Proof. Given a valid sequent, we do a bottom-up proof search with the following
strategy. Throughout the procedure all leaves remain valid, in most cases by an
appeal to invertibility.

1. Apply left logical rules as long as possible. If this stage terminates, it will be
at a leaf of the form Γ ⇒A Δ, where Γ is exposed. We then go to stage (2).
If left logical rules remain applicable, we stay in this stage (1) forever and
create an infinite branch.

2. Apply right logical rules until one of the following happens:
(a) We reach a leaf at which no right logical rule can be applied. This means

that the leaf must be a valid sequent of the form Γ ⇒A Δ such that Γ is
exposed, and Δ is either exposed or begins with a test b such A � b �= A.
We go to stage (4).

(b) If (a) does not happen, then at some point we must reach a valid sequent
of the Γ ⇒A e(b),Δ which together with an ancestor satisfies properties
(i) - (iii) of Lemma 10. In this case Lemma 9 is applicable. Hence we must
be at a leaf of the form Γ ⇒A e(b),Δ such that e(b) ⇒A 0 is valid. We
then go to stage (3).

Since at some point either (a) or (b) must be the case, stage (2) always
terminates.

3. We are at a valid leaf of the form Γ ⇒A e(b),Δ, where Γ is exposed. If A = ∅,
we apply ⊥. Otherwise, if A �= ∅, we use the validity of Γ ⇒A e(b),Δ and
e(b) ⇒A 0 to find:

A � �Γ � ⊆ A � �e(b)� � �Δ� = ∅.

272 J. M. W. Rooduijn et al.

We claim that �Γ � = ∅. Indeed, suppose towards a contradiction that αx ∈
�Γ �. By the exposedness of Γ and item (i) of Lemma 3, we would have βx ∈
�Γ � for some β ∈ A, contradicting the statement above. Therefore, the sequent
Γ ⇒At 0 is valid. We apply the rule k0 and loop back to stage (1).
Stage (3) only comprises a single step and thus always terminates.

4. Let Γ ⇒A Δ be the current leaf. By construction Γ ⇒A Δ is valid, Γ is
exposed, and Δ is either exposed or begins with a test b such that A � b �= A.
Note that only rules id, ⊥, k, and k0 can be applicable. By Lemma 8, at least
one of them must be applicable. If id is applicable, apply id. If ⊥ is applicable,
apply ⊥. If k is applicable, apply k and loop back to stage (1). Note that this
application of k will have priority and is therefore invertible.
Finally, suppose that only k0 is applicable. We claim that, by validity, the list
Γ is not ε. Indeed, since A is non-empty, and Δ either begins with a primitive
program p or a test b such that A � b �= A, the sequent

ε ⇒A Δ

must be invalid. Hence Γ must be of the form p,Θ. We apply k0, which has
priority and thus is invertible, and loop back to stage (1).
Similarly to stage (3), stage (4) only comprises a single step and thus always
terminates.

We claim that the constructed derivation is fair for (b)-l. Indeed, every stage
except stage (1) terminates. Therefore, every infinite branch must either eventu-
ally remain in stage (1), or pass through stages (3) or (4) infinitely often. Since k
and k0 shorten the antecedent, and no left logical rule other than (b)-l lengthens
it, such branches must be fair.

By Corollary 2 we obtain that the subset of cyclic SGKAT-proofs is also complete.

Corollary 3. Every valid sequent has a regular SGKAT∞-proof.

Proposition 2. The proof search procedure of Theorem 2 runs in
coNLOGSPACE. Hence proof search, and thus also the language inclusion problem
for GKAT-expressions, is in NLOGSPACE.

Proof (sketch). Assume without loss of generality that the initial sequent is of
the form e ⇒A f . We non-deterministically search for a failing branch, at each
iteration storing only the last sequent. By Lemma 7 this can be done by storing
two pointers to, respectively, the syntax trees Te and Tf , together with a set of
atoms. The loop check of stage (2) can be replaced by a counter. Indeed, stage
(2) must always hit a repetition after |At| · |Tf | steps, where m is the number
of nodes in the syntax tree. After this repetition there must be a continuation
that reaches a repetition to which Lemma 9 applies before this stage has taken
2 · |At| · |Tf | steps in total. Finally, a global counter can be used to limit the depth
of the search. Indeed, a failing branch needs at most one repetition (in stage (2),
to which k0 is applied) and all other repetitions can be cut out. Hence if there
is a failing branch, there must be one of size at most 4 · |Te| · |At| · |Tf |.

A Cyclic Proof System for Guarded Kleene Algebra with Tests 273

7 Conclusion and Future Work

In this paper we have presented a non-well-founded proof system SGKAT∞ for
GKAT. We have shown that the system is sound and complete with respect to
the language model. In fact, the fragment of regular proofs is already complete,
which means one can view SGKAT as a cyclic proof system. Our system is similar
to the system for Kleene Algebra in [7], but the deterministic nature of GKAT
allows us to use ordinary sequents rather than hypersequents. To deal with
the tests of GKAT every sequent is annotated by a set of atoms. Like in [7],
our completeness argument makes use of a proof search procedure. Here again
the relative simplicity of GKAT pays off: the proof search procedure induces an
NLOGSPACE decision procedure, whereas that of Kleene Algebra is in PSPACE.

The most natural question for future work is whether our system could be
used to prove the completeness of some (ordered)-algebraic axiomatisation of
GKAT. We envision using the original GKAT axioms (see [22, Figure 1]), but basing
it on inequational logic rather than equational logic. This would allow one to
use a least fixed point rule of the form

eg +b f ≤ g

e(b)f ≤ g

eliminating the need for a Salomaa-style side condition. We hope to be able to
prove the completeness of such an inequational system by translating cyclic
SGKAT-proofs into well-founded proofs in the inequational system. This is
inspired by the paper [6], where a similar strategy is used to give an alternative
proof of the left-handed completeness of Kleene Algebra.

Another relevant question is the exact complexity of the language inclu-
sion problem for GKAT-expressions. We have obtained an upper bound of
NLOGSPACE, but do not know whether it is optimal.

Finally, it would be interesting to verify the conjecture in Remark 9 above.

Acknowledgments. Jan Rooduijn thanks Anupam Das, Tobias Kappé, Johannes
Marti and Yde Venema for insightful discussions on the topic of this paper. Alexandra
Silva wants to acknowledge Sonia Marin, who some years ago proposed a similar mas-
ter project at UCL. We moreover thank the reviewers for their helpful comments, in
particular for pointing out that our complexity result could be sharpened. Lastly, Jan
Rooduijn is grateful for the inspiring four-week research visit at the Computer Science
department of Cornell in the summer of 2022.

References

1. Acclavio, M., Curzi, G., Guerrieri, G.: Infinitary cut-elimination via finite approx-
imations. In: 32nd Annual Conference on Computer Science Logic, CSL. LIPIcs,
vol. 288, pp. 8:1–8:19. Schloss Dagstuhl (2024)

2. Afshari, B., Enqvist, S., Leigh, G.E.: Cyclic proofs for the first-order μ-calculus.
Log. J. IGPL 32(1), 1–34 (2022)

274 J. M. W. Rooduijn et al.

3. Afshari, B., Leigh, G.E., Menéndez Turata, G.: Uniform interpolation from cyclic
proofs: the case of modal mu-calculus. In: Das, A., Negri, S. (eds.) TABLEAUX
2021. LNCS (LNAI), vol. 12842, pp. 335–353. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86059-2_20

4. Afshari, B., Wehr, D.: Abstract cyclic proofs. In: Ciabattoni, A., Pimentel, E., de
Queiroz, R.J.G.B. (eds.) WoLLIC 2022. LNCS, vol. 13468, pp. 309–325. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15298-6_20

5. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). https://doi.org/10.1007/11554554_8

6. Das, A., Doumane, A., Pous, D.: Left-handed completeness for Kleene algebra,
via cyclic proofs. In: 22nd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR. EPiC Series in Computing, vol. 57,
pp. 271–289 (2018)

7. Das, A., Pous, D.: A cut-free cyclic proof system for Kleene algebra. In: Schmidt,
R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 261–277.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1_16

8. Dekker, M., Kloibhofer, J., Marti, J., Venema, Y.: Proof systems for the modal
μ-calculus obtained by determinizing automata. In: Ramanayake, R., Urban, J.
(eds.) TABLEAUX 2023. LNCS, vol. 14278, pp. 242–259. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-43513-3_14

9. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

10. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

11. Kozen, D.: Nonlocal flow of control and Kleene algebra with tests. In: 23rd Annual
Symposium on Logic in Computer Science, LICS, pp. 105–117. IEEE (2008)

12. Kozen, D., Tseng, W.-L.D.: The Böhm–Jacopini theorem is false, propositionally.
In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 177–
192. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70594-9_11

13. Kuperberg, D., Pinault, L., Pous, D.: Cyclic proofs, system T, and the power of
contraction. In: 48th Annual Symposium on Principles of Programming Languages,
POPL, pp. 1–28 (2021)

14. Marti, J., Venema, Y.: Focus-style proof systems and interpolation for the
alternation-free μ-calculus, arXiv preprint arXiv:2103.01671 (2021)

15. Rooduijn, J., Kozen, D., Silva, A.: A cyclic proof system for Guarded Kleene Alge-
bra with Tests (full version) (2024). https://arxiv.org/abs/2405.07505

16. Rooduijn, J.: Fragments & Frame Classes. Ph.D. thesis, University of Amsterdam
(2024)

17. Rozowski, W., Kappé, T., Kozen, D., Schmid, T., Silva, A.: Probabilistic guarded
KAT modulo bisimilarity: completeness and complexity. In: 50th International Col-
loquium on Automata, Languages, and Programming, ICALP. LIPIcs, vol. 261, pp.
136:1–136:20. Schloss Dagstuhl (2023)

18. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966)

19. Savateev, Y., Shamkanov, D.: Cut-elimination for the modal Grzegorczyk logic
via non-well-founded proofs. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC
2017. LNCS, vol. 10388, pp. 321–335. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55386-2_23

https://doi.org/10.1007/978-3-030-86059-2_20
https://doi.org/10.1007/978-3-030-86059-2_20
https://doi.org/10.1007/978-3-031-15298-6_20
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.1007/978-3-031-43513-3_14
https://doi.org/10.1007/978-3-540-70594-9_11
http://arxiv.org/abs/2103.01671
https://arxiv.org/abs/2405.07505
https://doi.org/10.1007/978-3-662-55386-2_23
https://doi.org/10.1007/978-3-662-55386-2_23

A Cyclic Proof System for Guarded Kleene Algebra with Tests 275

20. Schmid, T., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene algebra with tests:
coequations, coinduction, and completeness. In: 48th International Colloquium on
Automata, Languages, and Programming, ICALP. LIPIcs, vol. 198, pp. 142:1–
142:14. Schloss Dagstuhl (2021)

21. Schmid, T., Kappé, T., Silva, A.: A complete inference system for skip-free guarded
Kleene algebra with tests. In: Wies, T. (ed.) ESOP 2023. LNCS, vol. 13990, pp.
309–336. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30044-8_12

22. Smolka, S., Foster, N., Hsu, J., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene
algebra with tests: verification of uninterpreted programs in nearly linear time.
In: 47th Annual Symposium on Principles of Programming Languages, POPL, pp.
61:1–61:28 (2020)

23. Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and tree-
shaped proofs in the μ-calculus. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS,
vol. 2620, pp. 425–440. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36576-1_27

24. Zetzsche, S., Silva, A., Sammartino, M.: Guarded Kleene algebra with tests:
automata learning. In: Proceedings of the 38th Conference on the Mathemati-
cal Foundations of Programming Semantics, MFPS. EPTICS, vol. 1. EpiSciences
(2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-30044-8_12
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
http://creativecommons.org/licenses/by/4.0/

Unification, Rewriting
and Computational Models

Unification in the Description Logic
ELHR+ Without the Top Concept
Modulo Cycle-Restricted Ontologies

Franz Baader1,2 and Oliver Fernández Gil1,2(B)

1 Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,oliver.fernandez}@tu-dresden.de

2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI),
Dresden/Leipzig, Germany

Abstract. Unification has been introduced in Description Logic (DL)
as a means to detect redundancies in ontologies. In particular, it was
shown that testing unifiability in the DL EL is an NP-complete problem,
and this result has been extended in several directions. Surprisingly, it
turned out that the complexity increases to PSpace if one disallows the
use of the top concept in concept descriptions. Motivated by features of
the medical ontology SNOMED CT, we extend this result to a setting
where the top concept is disallowed, but there is a background ontology
consisting of restricted forms of concept and role inclusion axioms. We
are able to show that the presence of such axioms does not increase the
complexity of unification without top, i.e., testing for unifiability remains
a PSpace-complete problem.

Keywords: Unification · Description Logics · Complexity

1 Introduction

Description Logics (DLs) [10] are a prominent family of logic-based knowledge
representation languages, which offer their users a good compromise between
expressiveness and complexity of reasoning, and constitute the formal and algo-
rithmic foundation of the standard Web Ontology Language OWL 2.1 The DL
EL, which provides the concept constructors conjunction (�), existential restric-
tion (∃r.C), and top concept (�), is a rather inexpressive, but nevertheless very
useful member of this family. On the one hand, the important reasoning prob-
lems, such as the subsumption and the equivalence problem, in EL and some of
its extensions are decidable in polynomial time [8,22]. On the other hand, EL
and its tractable extensions are frequently used to define biomedical ontologies,
such as the large medical ontology SNOMED CT.2 To illustrate the use of the
top concept, whose absence plays an important rôle in this paper, consider the
1 https://www.w3.org/TR/owl2-overview/.
2 https://www.ihtsdo.org/snomed-ct/.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 279–297, 2024.
https://doi.org/10.1007/978-3-031-63501-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_15&domain=pdf
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0002-9458-1701
https://www.w3.org/TR/owl2-overview/
https://www.ihtsdo.org/snomed-ct/
https://doi.org/10.1007/978-3-031-63501-4_15

280 F. Baader and O. Fernández Gil

EL concept descriptions Man � ∃child .� and Man � ∃child .Female of the con-
cepts Father and Father of a daughter, respectively. In the former description,
the top concept is used since no further properties of the child are to be required.

Unification in DLs has been introduced in [17] as a new inference service,
motivated by the need for detecting redundancies in ontologies, in a setting
where different ontology engineers (OEs) constructing the ontology may model
the same concepts on different levels of granularity. For example, assume that
(using the style of SNOMED CT definitions) one OE models the concept of a
viral infection of the lung as

ViralInfection � ∃findingSite.LungStructure,

whereas another one models it as

LungInfection � ∃causativeAgent .Virus.

Here ViralInfection and LungInfection are used as atomic concepts with-
out further defining them, i.e., the two OEs made different decisions
when to stop the modelling process. The resulting concept descriptions
are not equivalent, but they are nevertheless meant to represent the same
concept. They can be made equivalent by treating the concept names
ViralInfection and LungInfection as variables, and then substituting the first
one by Infection � ∃causativeAgent .Virus and the second one by Infection �
∃findingSite.LungStructure. In this case, we say that the descriptions are unifi-
able, and call the substitution that makes them equivalent a unifier. Intuitively,
such a unifier proposes definitions for the concept names that are used as vari-
ables. In [7], unification and its extension to disunification are used to construct
new medical concepts from SNOMED CT.

Unification in EL was first investigated in [14], where it was proved that decid-
ing unifiability is an NP-complete problem. The NP upper bound was shown in
that paper using a brute-force “guess and then test” NP algorithm. More practi-
cal algorithms for solving this problem and for computing unifiers were presented
in [16] and [15], where the former describes a goal-oriented transformation-based
algorithm and the latter is based on a translation to SAT. Implementations of
these two algorithms are provided by the system UEL3 [13], which is also avail-
able as a plug-in for the ontology editor Protégé. At the time these algorithms
were developed, SNOMED CT was an EL ontology consisting of acyclic concept
definitions. Since such definitions can be encoded into the unification problem
(see Sect. 2.3 in [16]), algorithms for unification of EL concept descriptions (with-
out background ontology) could be applied to SNOMED CT.

There was, however, one problem with employing these algorithms in the
context of SNOMED CT: the top concept is not used in SNOMED CT, but the
concepts generated by EL unification might contain �, even if applied to concept
descriptions not containing �. Thus, the concept descriptions produced by the

3 https://sourceforge.net/projects/uel/.

https://sourceforge.net/projects/uel/

Unification Modulo Ontologies in ELHR+ Without Top 281

unifier are not necessarily in the style of SNOMED CT. For example, assume
that we are looking for a unifier satisfying the two subsumption constraints4

∃findingSite.LungStructure �? ∃findingSite.X,

∃findingSite.HeartStructure �? ∃findingSite.X.

It is easy to see that there is only one unifier of these two constraints, which
replaces X with �. Unification in EL−�, i.e., the fragment of EL in which the top
constructor is disallowed, was investigated in [1,18]. Surprisingly, it turned out
that the absence of � makes unification considerably harder, both from a con-
ceptual and a computational complexity point of view. In fact, the complexity
of deciding unifiability increases from NP-complete for EL to PSpace-complete
for EL−�. The unification algorithm for EL−� introduced in [1,18] basically
proceeds as follows. It first applies the unification algorithm for EL to com-
pute so-called local unifiers. If none of them is an EL−�-unifier, then it tries to
augment the images of the variables by conjoining concept descriptions called
particles. The task of finding appropriate particles is reduced to solving certain
systems of linear language inclusions, which can be realized in PSpace using an
automata-based approach.

The current version of SNOMED CT consists not only of acyclic concept
definitions, but also contains more general concept inclusions (GCIs). In addi-
tion, properties of the part-of relation are no longer encoded using the so-called
SEP-triplet encoding [27], but are directly expressed via role axioms [29], which
can, for instance, be used to state that the part-of relation is transitive and that
proper-part-of is a subrole of part-of. Decidability of unification in EL w.r.t.
a background ontology consisting of GCIs is still an open problem. In [2], it
is shown that the problem remains in NP if the ontology is cycle-restricted,
which is a condition that the current version of SNOMED CT satisfies. Exten-
sions of this result to the DL ELHR+ , which additionally allows for transi-
tive roles and role inclusion axioms, were presented in [3,5], where the former
introduces a SAT-based algorithm and the latter a transformation-based one.
However, in all these algorithms, unifiers may introduce concept descriptions
containing �. In our example with the different finding site, however, the pres-
ence of the GCIs LungStructure � UpperBodyStructure and HeartStructure �
UpperBodyStructure would yield a unifier not using �, namely the one that
replaces X with UpperBodyStructure.

The purpose of this paper is to combine the approach for unification in
EL−� [1,18] with the one for unification in ELHR+ w.r.t. cycle-restricted ontolo-
gies [2,3,5], to obtain a unification algorithm for ELH−�

R+ w.r.t. cycle-restricted
ontologies. This algorithm follows the line of the one for EL−� in that it basically
first generates ELHR+ -unifiers, which it then tries to augment with particles.

4 Instead of equivalence constraints, as in our above example and in early work on
unification in DLs, we consider here a set of subsumption constraints as unification
problem. It is easy to see that these two kinds of unification problems can be reduced
to each other [2].

282 F. Baader and O. Fernández Gil

Appropriate particles are found as solutions of certain linear language inclu-
sions. However, due to the presence of GCIs and role axioms, quite a number
of non-trivial changes and additions are required. In particular, the solutions of
the systems of linear language inclusions as constructed in [1,18] cannot capture
particles that are appropriate due to the presence of an ontology. For instance, in
our example, UpperBodyStructure would be such a particle. To repair this prob-
lem, we first need to show that, in ELH−�

R+ , unifiability w.r.t. a cycle-restricted
ontology can be characterized by the existence of a special type of unifiers. After-
wards, we exploit the properties of this kind of unifiers to define more sophisti-
cated systems of language inclusions, which encode the semantics of GCIs and
role axioms occurring in a background ontology. The solutions of such systems
then yield also particles that are appropriate only due to the presence of this
ontology.

While the unification problem investigated in this paper is motivated by
an application in ontology engineering, it is also of interest for unification the-
ory [19], which is concerned with unification-related properties of equational
theories. In fact, unification in DLs can be seen as a special case of unification
modulo equational theories, where the respective equational theory axiomatizes
equivalence in the DL under consideration. For EL and ELHR+ , the correspond-
ing equational theories can be found in [28]. The ones for the case without top
can be obtained from them by removing the constant 1 from the signature,
and all identities containing it from the axiomatization. The results in [1,18]
and in the present paper show that the seemingly harmless removal of a con-
stant from the equational theory may increase the complexity of the unification
problem considerably. Considering unification w.r.t. a background ontology cor-
responds to adding a finite set of ground identities to the corresponding equa-
tional theory. For the word problem, it was shown that decidability is stable
under adding finite sets of ground identities to theories such as commutativ-
ity or associativity-commutativity [11,20,24,25]. For unification, it was shown
in [12] that adding finite sets of ground identities to the theory ACUI of an
associativity-commutativity-idempotent symbol with a unit leaves the unifica-
tion problem decidable. The results in [2,3,5] can be seen as such transfer results,
but they require a restriction on the ground identities corresponding to cycle-
restrictedness.

Due to space constraints, we cannot give detailed proof of our results here.
They can be found in [9].

2 Subsumption and Unification in ELHR+ and ELH−�
R+

First, we briefly introduce syntax and semantics of the DLs investigated in this
paper. Then, we recall a useful characterization of subsumption for these logics,
and finally define the unification problem.

Unification Modulo Ontologies in ELHR+ Without Top 283

2.1 The DLs ELHR+ and ELH−�
R+

Starting with countably infinite sets NC and NR of concept names and role
names, ELHR+-concept descriptions (for short, concepts) are built using the
concept constructors conjunction (�), existential restriction (∃r.C), and top
(�). When building ELH−�

R+ -concepts, the constructor � is not available. An
ELHR+ -ontology O is a finite set of general concept inclusions (GCIs) C � D,
role hierarchy axioms r � s, and transitivity axioms r ◦ r � r, where C,D are
ELHR+ -concepts and r, s are role names. In an ELH−�

R+ -ontology, the concepts
occurring in GCIs must be ELH−�

R+-concepts.
The following two notions will play an important rôle in our unification algo-

rithm. An atom is either a concept name or an existential restriction, and a parti-
cle is an atom of the form ∃r1.∃r2. · · · ∃rn.A for a concept name A, which we write
as ∃w.A, where w = r1 . . . rn is viewed as a word over the alphabet NR. Every
ELHR+ -concept C is a conjunction of atoms, where the empty conjunction repre-
sents �. These atoms are called the top-level atoms of C. The set Ats(C) consists
of all atoms (not just top-level ones) occurring in C, and Ats(O) for an ontology
O consists of the atoms of all concepts occurring in O. The set of particles of an
ELH−�

R+ -concept is defined inductively: Part(A) := {A} for each concept name
A, Part(∃r.C) := {∃r.P | P ∈ Part(C)}, and Part(C�D) := Part(C)∪Part(D).
For example, if C = ∃r.(∃s.A � ∃r.B), then Part(C) = {∃rs.A,∃rr.B} and
Ats(C) = {C,∃s.A,∃r.B,A,B}, where C is the only top-level atom.

The semantics of ELHR+ -concepts and ontologies is defined using the notion
of an interpretation I = (ΔI , .I), which has a set ΔI 	= ∅ as interpretation
domain, and assigns a subset AI ⊆ ΔI to each concept name A and a binary
relation rI ⊆ ΔI × ΔI to each role name r. The interpretation function .I is
extended to ELHR+ -concepts as usual: �I := ΔI , (C � D)I := CI ∩ DI , and
(∃r.C)I := {d ∈ ΔI | ∃e.((d, e) ∈ rI ∧ e ∈ CI)}. The interpretation I is a model
of the ELHR+ -ontology O if C � D ∈ O implies CI ⊆ DI , r � s ∈ O implies
rI ⊆ sI , and r ◦ r � r ∈ O implies that rI is transitive.

2.2 Subsumption in ELHR+ and ELH−�
R+

Given an ELHR+ -ontology O and ELHR+ -concepts C,D, we say that C is
subsumed by D w.r.t. O (written C �O D) if CI ⊆ DI for all models I of O.
They are equivalent w.r.t. O (written C ≡O D) if C �O D and D �O C.

Subsumption (and thus also equivalence) between ELHR+-concepts w.r.t.
arbitrary ELHR+ -ontologies can be decided in polynomial time [8]. In the con-
text of unification, a recursive characterization of subsumption turns out to be
useful, which for ELHR+ was first given in [5], and later reformulated in [3]. In
this paper we use the one given in [3], but before we can formulate this character-
ization, we must introduce the role hierarchy induced by an ELHR+ -ontology
O: given role names r, s, we say that r is a subrole of s (written r �O s) if
rI ⊆ sI holds for all models I of O. It is easy to see that the relation �O
is the reflexive-transitive closure of the explicitly stated subrole relationships
{(r, s) | r � s ∈ O}. We call a role name r transitive if r ◦ r � r ∈ O.

284 F. Baader and O. Fernández Gil

The characterization of subsumption in [3] uses the notion of structural sub-
sumption: given atoms C,D, we say that C is structurally subsumed by D w.r.t.
an ELHR+-ontology O (written C �s

O D) if one of the following cases applies:

1. C = D is a concept name.
2. C = ∃r.C ′, D = ∃s.D′, r �O s, and C ′ �O D′.
3. C = ∃r.C ′, D = ∃s.D′, and C ′ �O ∃t.D′ for some transitive role name t

satisfying r �O t �O s.

Lemma 1 [3]. Let O be an ELHR+-ontology and C1, . . . , Cn,D1, . . . , Dm atoms.
Then, C1 � · · · � Cn �O D1 � · · · � Dm iff for every j ∈ {1, . . . , m}:
1. there is an index i ∈ {1, . . . , n} such that Ci �s

O Dj, or
2. there are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) such that:

(a) At1 � · · · � Atk �O At ′,
(b) for every � ∈ {1, . . . , k} there exists i ∈ {1, . . . , n} with Ci �s

O At�, and
(c) At ′ �s

O Dj.

If O is empty, then the second case in the definition of structural subsumption
can be modified to require that r = s and C ′ �∅ D′, whereas the third case in
the same definition as well as the second case in Lemma 1 can be removed. This
then yields the characterization of subsumption in EL of [16]. Since ELH−�

R+ is a
fragment of ELHR+ , this characterization also applies to subsumption between
ELH−�

R+ -concepts w.r.t. ELH−�
R+ -ontologies. However, in this setting, the case

k = 0 in 2. cannot occur. This is a direct consequence of the following result.

Lemma 2. If O is an ELH−�
R+-ontology and At an atom of O, then � 	�O At.

2.3 Unification in ELHR+ and ELH−�
R+

When defining unification, we assume that the set of concept names is partitioned
into a set NC of concept constants and a set NV of concept variables. Given a DL
L ∈ {ELHR+ , ELH−�

R+}, an L-substitution σ is a mapping from a finite subset
of NV to the set of L-concepts. The application of σ to an arbitrary L-concept is
defined inductively in the usual way. A concept (ontology) is ground if it does not
contain variables. A substitution σ is ground if σ(X) is ground for all variables
X that have an image under σ.

Definition 1. Let O be a ground ontology. An L-unification problem w.r.t. O
is of the form Γ = {C1 �? D1, . . . , Cn �? Dn}, where C1,D1, . . . , Cn,Dn are
L-concepts. An L-substitution σ is an L-unifier of Γ w.r.t. O if σ(Ci) �O σ(Di)
for all i ∈ {1, . . . , n}. The unification problem Γ is called L-unifiable w.r.t. O if
it has an L-unifier w.r.t. O.

The following example illustrates that unifiability of a given unification prob-
lem may depend on the considered DL L and on the presence of a non-empty
ontology.

Unification Modulo Ontologies in ELHR+ Without Top 285

Example 1. Let O = ∅ and consider the following unification problem:

Γ1 := {∃r.A �? X, ∃u.B �? Y, ∃s.X � A �? Y }.

Viewed as an ELHR+-unification problem, it has the unifier σ with σ(X) =
σ(Y) = �. However, Γ1 does not have an ELH−�

R+ -unifier w.r.t. O = ∅. To see
this, suppose that δ is such a unifier. Using Lemma 1 for the special case of an
empty ontology, we can deduce from ∃u.B �∅ δ(Y) that every top-level atom
of δ(Y) is an existential restriction for the role u. However, we can also deduce
from ∃s.δ(X) � A �∅ δ(Y) that every top-level atom of δ(Y) is either A or
an existential restriction for the role s. Since not both is possible, δ(Y) cannot
have any top-level atoms, and thus must be �, contradicting our assumption
that δ is an ELH−�

R+-unifier. If we define O′ := {B � ∃r.A, u � s}, then the
ELH−�

R+ -unifiability status of Γ1 changes to unifiable since δ with δ(X) = ∃r.A

and δ(Y) = ∃s.∃r.A is an ELH−�
R+ -unifier of Γ1 w.r.t. O′.

In the next section we will show how to decide unifiability of an ELH−�
R+ -

unification problem w.r.t. a cycle-restricted ELH−�
R+ -ontology.

Definition 2. An ELHR+-ontology O is called cycle-restricted if there is no
sequence of n > 0 role names r1, . . . , rn ∈ NR and ELHR+-concept C such that
C �O ∃r1.∃r2. · · · ∃rn.C.

As stated in [5] (and proved in [6]), one can test in polynomial time whether a
given ELHR+ -ontology is cycle-restricted or not.

According to [5,18], we can without loss of generality assume that the given
ontology and the unification problem are flat. An ELH−�

R+-atom is flat if it is a
concept name or of the form ∃r.A for a concept name A. A GCI C1�· · ·�Cn � D
or subsumption constraint C1 �· · ·�Cn �? D is flat if C1, . . . , Cn and D are flat
ELH−�

R+ -atoms. Finally, an ELH−�
R+ -ontology or ELH−�

R+ -unification problem is
flat if all it elements are flat.

The following result for flat, cycle-restricted ELHR+ -ontologies will turn out
to be quite useful in the next section. It basically follows from the proof of
Lemma 8 in [4].

Lemma 3. Let O be a flat, cycle-restricted ELHR+-ontology, A ∈ NC and ∃r.C
an ELHR+-atom. Then, A �O ∃r.C iff there exists ∃u.B ∈ Ats(O) such that
B �O C, and

– A �O ∃u.B and u �O r, or
– A �O ∃t.B for a transitive role t with u �O t �O r.

3 The Unification Algorithm for ELH−�
R+

In the following, we assume that O is a flat and cycle-restricted ELH−�
R+ -ontology

and Γ is a flat ELH−�
R+ -unification problem. We introduce an algorithm that can

286 F. Baader and O. Fernández Gil

test whether Γ has an ELH−�
R+-unifier and needs only polynomial space for this

task. This algorithm follows the approach developed in [18] for unification in
EL−�, but must take the ontology into account, which means that it must deal
with a considerably more complex characterization of subsumption (see Lemma
1 and our remarks on how the characterization can be simplified if O = ∅).

Before presenting our new approach, we briefly sketch the one employed
in [18]. The original NP procedure for unification in EL [16] is based on the
(non-trivial) observation that an EL-unification problem Γ has a unifier iff it
has a local unifier, i.e., one that is built using only atoms occurring in the unifi-
cation problem. The procedure guesses an appropriate representation of a local
substitution, and then checks by EL reasoning whether it really is a unifier.
Basically, to guess a local substitution σ, one must guess for every variable X
and non-variable atom C of Γ whether σ(X) �∅ σ(C) is supposed to hold. A
subsumption mapping τ describing a local unifier σ more generally guesses for
every pair C,D of atoms whether σ(C) �∅ σ(D) is supposed to hold. The restric-
tions imposed on such subsumption mappings ensure that the local substitution
induced by such a mapping is indeed an EL-unifier of Γ [18], i.e., the subsequent
EL reasoning testing this can be dispensed with. The local unifier obtained from
a subsumption mapping τ need not be an EL−�-unifier. To test for the exis-
tence of an EL−�-unifier related to τ , the subsumption mapping τ together with
the original unification problem Γ is then used to construct a new unification
problem ΔΓ,τ , in which only variables can occur on the right-hand side of sub-
sumption constraints. Existence of an EL−�-unifier of ΔΓ,τ that is compatible
with τ is then reduced in [18] to the existence of an admissible solution of a
corresponding set IΓ,τ of linear language inclusions. The latter problem can in
turn be reduced in polynomial time to checking emptiness of alternating finite
automata with ε-transitions [18], which is a PSpace-complete problem [23].

In this section we show how this approach can be extended from EL−� to
ELH−�

R+ w.r.t. cycle-restricted ontologies. We start by introducing subsumption
mappings and the induced unification problems of the form ΔΓ,τ .

3.1 The Subsumption Mapping

Let Ats(Γ,O) be the set of atoms occurring in Γ or O. Due to the third case in
the definition of structural subsumption, we also need to consider certain atoms
that are not explicitly present in the input:

Atstr (Γ,O) := Ats(Γ,O) ∪ {∃t.C | ∃s.C ∈ Ats(Γ,O), t �O s, t is transitive}.

A non-variable atom is an atom in Atstr (Γ,O) that is not a variable. We denote
the set of all such atoms as Atnv (Γ,O). A mapping of the form τ : Atstr (Γ,O)×
Atstr (Γ,O) → {0, 1} induces an assignment Sτ that maps variables in Γ to sets
of non-variable atoms in Atstr (Γ,O):

Sτ (X) := {D ∈ Atnv (Γ,O) | τ(X,D) = 1}.

Unification Modulo Ontologies in ELHR+ Without Top 287

This assignment induces the relation

>Sτ := {(X,Y) ∈ Vars(Γ) × Vars(Γ) | Y occurs in an atom of Sτ (X)}.

We say that Sτ is acyclic if the transitive closure of >Sτ is irreflexive, and thus
a strict partial order, which we denote as >τ . If Sτ is acyclic, then it induces a
substitution στ , defined by induction on >τ :

– If X is minimal w.r.t. >τ , then στ (X) :=
�

D∈Sτ (X) D.
– Otherwise, assuming that στ (Y) has already been defined for all Y such that

X >τ Y , one defines στ (X) :=
�

D∈Sτ (X) στ (D).

The conditions imposed on a subsumption mapping τ ensure that the induced
substitution στ is an ELHR+-unifier of Γ . In order to simplify the definition of
these conditions, we introduce the following notation (for atoms ∃r.C,∃s.D):

F(∃r.C,∃s.D) := {D | if r �O s} ∪ {∃t.D | r �O t �O s, t transitive}.

Basically, this set collects all concepts F such that C �O F implies ∃r.C�s
O∃s.D

(see the second and third case in the definition of �s
O).

Definition 3. The mapping τ : Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} is called a
subsumption mapping for Γ w.r.t. O if it satisfies the following conditions:

1. It respects the properties of subsumption w.r.t. O:
(a) τ(D,D) = 1, for each D ∈ Atstr (Γ,O).
(b) For all D1,D2,D3 ∈ Atstr (Γ,O), if τ(D1,D2) = τ(D2,D3) = 1 then

τ(D1,D3) = 1.
(c) τ(C,D) = 1 iff C �O D, for all ground atoms C,D ∈ Atstr (Γ,O).
(d) For each concept constant A ∈ Ats(Γ,O), role name r, and variable X

with ∃r.X ∈ Atstr (Γ):
i. τ(A,∃r.X) = 1 iff 5 there is an atom ∃u.B of O such that τ(B,X) =

1, and
– A �O ∃u.B and u �O r, or
– A �O ∃t.B for a transitive role t with u �O t �O r.

ii. τ(∃r.X,A) = 1 iff
– there are atoms ∃r1.A1, . . . ,∃rk.Ak of O (k ≥ 0) and atoms F� ∈

F(∃r.X,∃r�.A�) (1 ≤ � ≤ k) such that:
τ(X,F�) = 1 (1 ≤ � ≤ k) and ∃r1.A1 � · · · � ∃rk.Ak �O A.

(e) For all role names r, s ∈ NR, variables X, and atoms ∃r.C,∃s.D ∈
Atstr (Γ) with C = X or D = X: τ(∃r.C,∃s.D) = 1 iff
– there exists F ∈ F(∃r.C,∃s.D) such that τ(C,F) = 1, or
– there are atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B of O (k ≥ 0), atoms F� ∈

F(∃r.C,∃r�.A�) (1 ≤ � ≤ k), and an atom F ∈ F(∃u.B,∃s.D),
such that: τ(C,F�) = 1 (1 ≤ � ≤ k), ∃r1.A1 � · · · � ∃rk.Ak �O
∃u.B, τ(B,F) = 1.

5 This condition is justified by Lemma 3.

288 F. Baader and O. Fernández Gil

2. The assignment Sτ is acyclic. Note that this means that τ induces the
ELHR+-substitution στ .

3. The substitution στ is an ELHR+-unifier of Γ w.r.t. O. In combination with
the conditions already introduced, this is expressed by the following conditions
for each subsumption constraint C1 � · · · � Cn �? D ∈ Γ :
(a) If D is a non-variable atom, then either τ(Ci,D) = 1 for some i ∈

{1, . . . , n}, or there are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) such that:
– At1 � · · · � Atk �O At ′,
– for each � ∈ {1, . . . , k} there is i ∈ {1, . . . , n} s.t. τ(Ci,At�) = 1, and
– τ(At ′,D) = 1.

(b) If D is a variable and τ(D,C) = 1 for a non-variable atom C ∈
Atnv (Γ,O), then C1 � · · · � Cn �? C must satisfy the previous case.

By using the close relationship between this definition and the characterization
of subsumption in Lemma 1, one can show that Γ has an ELHR+-unifier w.r.t.
O iff there is a subsumption mapping for Γ w.r.t. O. In the proof of the if-
direction, one shows that the substitution induced by the subsumption mapping
is indeed a unifier. For the other direction, one takes a unifier σ and shows
that the mapping τ satisfying τ(C,D) = 1 iff σ(C) �O σ(D) is a subsumption
mapping for Γ w.r.t. O.

However, using subsumption mappings to characterize unifiability in ELH−�
R+

requires more effort. Together with the unification problem Γ , a subsumption
mapping τ yields a simpler unification problem ΔΓ,τ := ΔΓ ∪ Δτ , where

ΔΓ := {C1 � · · · � Cn �? X ∈ Γ | X ∈ NV} and Δτ := {C �? X | τ(C, X) = 1}.

In addition, any substitution σ induces an assignment Sσ of the form:

Sσ(X) := {D ∈ Atnv (Γ,O) | σ(X) �O σ(D)}.

We write Sτ ≤ Sσ if Sτ (X) ⊆ Sσ(X) holds for all variables X. In this case we
say that σ is compatible with τ .

The following result gives a characterization of the existence of an ELH−�
R+ -

unifier w.r.t. an ELH−�
R+-ontology.

Proposition 1. Let O be a flat and cycle-restricted ELH−�
R+-ontology and Γ a

flat ELH−�
R+-unification problem. Then, Γ has an ELH−�

R+-unifier w.r.t. O iff
there exists a subsumption mapping τ for Γ w.r.t. O such that ΔΓ,τ has an
ELH−�

R+-unifier γ w.r.t. O that is compatible with τ .

Example 2. Let O = ∅ and consider the following unification problem:

Γ2 := {∃r.B �? ∃r.Y, ∃s.X � ∃r.A �? Y }.

Due to Condition 3 in Definition 3 and the fact that O is empty, any subsump-
tion mapping τ must satisfy τ(∃r.B,∃r.Y) = 1. Condition 1e then implies that
τ(B, Y) = 1 must hold as well. We can conclude that, for any subsumption map-
ping τ , the set ΔΓ2,τ contains at least the subsumption constraints B �? Y and

Unification Modulo Ontologies in ELHR+ Without Top 289

∃s.X � ∃r.A �? Y . Using an argument similar to the one employed in Example
1, one can show that such a set ΔΓ2,τ cannot have an ELH−�

R+-unifier w.r.t. ∅.
Definition 3 also tells us that Condition 3b does not apply to the constraints

B �? Y and ∃s.X � ∃r.A �? Y as long as there is no non-variable atom C with
τ(Y,C) = 1. Hence, it is easy to see that there also is a subsumption mapping
τ that has only these two constraints in ΔΓ2,τ since the only other mandatory
values 1 are the ones required by 1a. For the ontology O′′ = {B � ∃r.A}, the
set ΔΓ2,τ then has an ELH−�

R+ -unifier w.r.t. O′′, which maps Y to ∃r.A. This
unifier is compatible with τ since the subsumption mapping τ that yields value
1 only if required satisfies Sτ (X) = Sτ (Y) = ∅. Thus, by Lemma 1, Γ2 has an
ELH−�

R+ -unifier w.r.t. O′′. Note that this unifier is not στ since στ in this case
assigns � to X and Y .

3.2 Translation into Language Inclusions

Linear language inclusions are a special case of the linear language equations
considered in [17] in the context of unification in the DL FL0. In contrast to the
general case, where solvability is an ExpTime-complete problem [17], the linear
language inclusions introduced in [18] in the context of unification in EL−� have
a PSpace-complete solvability problem [18].

Definition 4. Let X1, . . . , Xn be a finite set of indeterminates. A linear lan-
guage inclusion over this set of indeterminates and the alphabet NR is an expres-
sion of the form

Xi ⊆ L0 ∪ L1X1 ∪ · · · ∪ LnXn,

where i ∈ {1, . . . , n} and each Lj ⊆ {ε}∪NR (0 ≤ j ≤ n). As usual, the symbol ε
denotes the empty word. A solution θ of such an inclusion assigns sets of words
θ(Xi) ⊆ NR

∗ to each indeterminate Xi such that θ(Xi) ⊆ L0 ∪ L1·θ(X1) ∪ · · · ∪
Ln·θ(Xn), where “·” denotes concatenation of languages. The solution θ is finite
if θ(Xi) is a finite set for all i ∈ {1, . . . , n}.

Checking whether ΔΓ,τ has an ELH−�
R+-unifier w.r.t. O that is compatible

with a given subsumption mapping τ can be reduced to solving a system IO
Γ,τ of

such linear language inclusion. The basic idea is that, for each concept variable
X and concept constant A, we introduce an indeterminate XA. Intuitively, the
system IO

Γ,τ is constructed such that the following holds:

– if γ is an ELH−�
R+-unifier of ΔΓ,τ compatible with τ , then there is an assign-

ment θγ satisfying θγ(XA) = {w | ∃w.A ∈ Part(γ(X))} that is a finite
solution of the system IO

Γ,τ .

Since γ is an ELH−�
R+ -unifier, of which we can assume without loss of generality

that it is ground [19], the solution θγ satisfies an additional property: for every
variable X there is a concept constant A such that θγ(XA) 	= ∅. We call a
solution of IO

Γ,τ satisfying this property admissible. Conversely, finite, admissible
solutions of IO

Γ,τ yield an appropriate unifier of ΔΓ,τ :

290 F. Baader and O. Fernández Gil

– if IO
Γ,τ has a finite, admissible solution, then it has such a solution θ that

yields an ELH−�
R+ -unifier γθ of ΔΓ,τ that is compatible with τ . This unifier is

defined similarly to στ , but using particles provided by θ for padding:
• if X is minimal w.r.t. >τ , then

γθ(X) :=
�

D∈Sτ (X)

D �
�

A∈NC

�

w∈θ(XA)

∃w.A,

• if γθ(Y) has already been defined for all Y such that X >τ Y , then

γθ(X) :=
�

D∈Sτ (X)

γθ(D) �
�

A∈NC

�

w∈θ(XA)

∃w.A.

Basically, to define the linear language inclusions in IO
Γ,τ , we consider the follow-

ing situation: given a particle ∃w.A ∈ Part(γ(X)) and a constraint C1 � · · · �
Cn �? X ∈ ΔΓ,τ , we know (by Lemma 2 in [18]) that γ(C1)�· · ·�γ(Cn) �O ∃w.A
holds. Hence, the idea is to encode, within the inclusions in IO

Γ,τ , whether a con-
junction of atoms and a particle satisfy the characterization of subsumption in
Lemma 1.

For the case of an empty ontology, the construction of the system I∅
Γ,τ is rel-

atively straightforward since the characterization of subsumption is quite simple
in this case. As described in [18], for each concept constant A ∈ NC and each
subsumption constraint s = C1 � · · · � Cn �? X in ΔΓ,τ , a linear inclusion iA(s)
of the following form is added to I∅

Γ,τ :

XA ⊆ fA(C1) ∪ · · · ∪ fA(Cn), where fA(C) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{r}fA(C ′) if C = ∃r.C ′,

YA if C = Y ∈ NV,

{ε} if C = A,

∅ if C ∈ NC \ {A}.

Example 3. Consider the system ΔΓ2,τ = {B �? Y,∃s.X � ∃r.A �? Y, . . .}
from Example 2. The first subsumption constraint yields the language inclusions
YA ⊆ ∅ and YB ⊆ {ε}, and the second yields YA ⊆ {s}XA ∪ {r}{ε} and YB ⊆
{s}XB ∪ {r}∅. There are no language inclusions constraining XA or XB . Any
solution θ of I∅

Γ2,τ thus must satisfy θ(YA) = ∅. If θ is admissible, then θ(YB)
must be non-empty. The first inclusion for YB says that θ(YB) consists of the
empty word, whereas the second says that every element of θ(YB) must start
with the letter s. Thus, I∅

Γ2,τ cannot have an admissible solution.

To take a non-empty ontology into account, the right-hand sides of the lan-
guage inclusions must be extended. Our new translation yields linear language
inclusions i∗A(s) of the form

XA ⊆ f∗
A(C1) ∪ · · · ∪ f∗

A(Cn) ∪ UA(s), (1)

where f∗
A(C) differs from fA(C) in the way existential restrictions are treated:

f∗
A(∃r.C ′) := LrfA(C ′) where Lr := {s ∈ NR | r �O s}.

Unification Modulo Ontologies in ELHR+ Without Top 291

This modification of fA to f∗
A takes care of the role hierarchy.

Example 4. For instance, if in the system of Example 3 we replace B �? Y
with ∃u.X �? Y , then the language inclusions corresponding to this constraint
are YA ⊆ {u}XA and YB ⊆ {u}XB . The new system again does not have an
admissible solution. However, if we consider an ontology O containing u � s,
then the new translation yields the language inclusions YA ⊆ {u, s}XA and
YB ⊆ {u, s}XB for this constraint. Consequently, the new system of language
inclusions has a finite, admissible solution, which reflects the fact that the system
of subsumption constraints has an ELH−�

R+ -unifier w.r.t. O.

The GCIs and transitivity axioms of the ontology are taken care of by the
additional term UA(s) in (1). This term uses additional types of indeterminates
whose meaning is encoded using additional language inclusions. Indeterminates
of the form ZB→A, where A,B are concept constants occurring in Γ or O, are
supposed to represent languages containing only words w such that B �O ∃w.A.
This intuition is formalized by the set of linear inclusions IO, which consists of
one language inclusion for each indeterminate ZB→A having the following form:

ZB→A ⊆ L ∪
⋃

(r,B′)∈I(B)

{r}ZB′→A, (2)

where I(B) := {(r,B′) ∈ NR × (Ats(O) ∩ NC) | B �O ∃r.B′} and L := {ε}
if B �O A, and L := ∅ otherwise. The set of linear inclusions IO captures
subsumptions of the form B �O ∃w.A in the following sense.

Lemma 4. Let O be a flat, cycle-restricted ELHR+-ontology.

1. If θ is a solution of IO, then w ∈ θ(ZB→A) implies B �O ∃w.A.
2. If we define θ(ZB→A) := {w ∈ NR

∗ | B �O ∃w.A}, then θ is a finite solution
of IO.

Example 5. Consider again the system ΔΓ2,τ of Example 3, but replace B �? Y
with ∃r.B �? Y . The language inclusions corresponding to this constraint are
YA ⊆ {r}∅ and YB ⊆ {r}{ε}. The new system again does not have an admissible
solution. However, if we consider the ontology O = {B � A}, then there are
solutions θ of IO that satisfy ε ∈ θ(ZB→A). Thus, if we extend the inclusion
YA ⊆ {r}∅ obtained from ∃r.B �? Y to YA ⊆ {r}∅ ∪ {r}ZB→A, then the new
system has a solution θ such that r ∈ θ(YA) since the other inclusion for YA is
YA ⊆ {s}XA ∪ {r}{ε}. This implies that there is an admissible solution since
there are no language inclusions constraining XA or XB .

To deal with transitivity axioms, we introduce additional indeterminates of
the form XA,t, which are constrained by the following linear language inclusions:
iA,t(s) = XA,t ⊆ fA,t(C1) ∪ · · · ∪ fA,t(Cn) ∪ UA,t(s) where

fA,t(C) :=

⎧
⎪⎪⎨

⎪⎪⎩

fA(C ′) if C = ∃r.C ′ ∧ r �O t,

YA,t if C = Y ∈ NV,

∅ otherwise.

292 F. Baader and O. Fernández Gil

Intuitively, the difference between i∗A(s) and iA,t(s) is that, given a particle
∃t.∃w.A satisfying σ(C1)�· · ·�σ(Cn) �O ∃t.∃w.A, the right-hand side of iA,t(s)
is designed to recognize w instead of tw.

Example 6. Assume that

ΔΓ,τ = {∃r.B �? Y,∃s.X � ∃r.A �? Y,∃t.B �? X}.

In addition, consider the ontology O = {s � t, t � r}. Since ∃r.B �? Y yields
the language inclusion YA ⊆ {r}∅, any solution θ of IO

Γ,τ must satisfy θ(YA) =
∅. Hence, if θ is admissible, then θ(YB) 	= ∅. In the presence of O, the new
translation also yields the inclusions:

YB ⊆ {r}{ε}, YB ⊆ {s, t, r}XB ∪ {r}∅ and XB ⊆ {t, r}{ε}.

Together with θ(YB) 	= ∅, the first of these inclusions yields θ(YB) = {r}. Thus,
the second inclusion implies that ε ∈ θ(XB), and thus θ does not solve the third
inclusion. Thus, IO

Γ,τ cannot have an admissible solution, corresponding to the
fact that ΔΓ,τ does not have an ELH−�

R+ -unifier w.r.t. O.
However, if we add the transitivity axiom t ◦ t � t to O, then ΔΓ,τ has

an ELH−�
R+ -unifier γ with γ(X) = ∃t.B and γ(Y) = ∃r.B w.r.t. this ontology.

The inclusion iB,t(s) = XB,t ⊆ {ε}, obtained from s = ∃t.B �? X, admits
solutions θ with θ(XB,t) = {ε}. Hence, if we extend the language inclusion
YB ⊆ {s, t, r}XB ∪ {r}∅ to the new one

YB ⊆ {s, t, r}XB ∪ {r}∅ ∪ {r}XB,t

that takes transitivity of t into account, then the new system of language inclu-
sions has an admissible solution with θ(YB) = {r} and θ(XB) = {t}, which
corresponds to the unifier γ.

Since the definitions of the terms UA(s) and UA,t(s) are quite long and tech-
nical, we refer to [9] for exact definitions and detailed explanations motivating
them. Let IO

Γ,τ be the system of linear language inclusions consisting of IO and
the inclusions i∗A(s) and iA,t(s) for every subsumption constraint s in ΔΓ,τ . Note
that the definition of these language inclusions does not only depend on ΔΓ,τ ,
but also on τ itself (see Definition 4.17 in [9] for the exact definition).

Proposition 2. Let τ be a subsumption mapping for Γ w.r.t. O. The unification
problem ΔΓ,τ has an ELH−�

R+-unifier γ w.r.t. O that is compatible with τ iff the
system of linear language inclusions IO

Γ,τ has a finite, admissible solution.

The proof of the only-if direction of this proposition makes use of the fact
that we can assume without loss of generality that γ is a simple unifier. In fact,
this is already taken into account in the definition of IO

Γ,τ (see [9]).

Definition 5. The ELH−�
R+-unifier γ of ΔΓ,τ w.r.t. O is called simple if, for all

C1 � · · · � Cn �? X ∈ ΔΓ,τ and ∃w.A ∈ Part(γ(X)), the following holds:

Unification Modulo Ontologies in ELHR+ Without Top 293

1. there exists i, 1 ≤ i ≤ n such that
(a) Ci is a ground atom and Ci �s

O ∃w.A, or
(b) Ci = Y is a variable and ∃w.A ∈ Part(γ(Ci)), or
(c) Ci = ∃r.Y for a variable Y , w = sw′ for some s ∈ NR and w′ ∈ NR

∗, and
– ∃w′.A ∈ Part(γ(Y)) and r �O s, or
– ∃t.∃w′.A ∈ Part(γ(Y)) for a transitive role t s.t. r �O t �O s; or

2. There are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) such that:
(a) At1 � · · · � Atk �O At ′,
(b) for all � ∈ {1, . . . , k}, there exists i ∈ {1, . . . , n} s.t. τ(Ci,At�) = 1, and
(c) At ′ �s

O ∃w.A.

Lemma 5. If Γ is an ELH−�
R+-unification problem that is unifiable w.r.t. O,

then there exists a subsumption mapping τ for Γ w.r.t. O such that ΔΓ,τ has a
simple ELH−�

R+-unifier σ w.r.t. O that is compatible with τ .

3.3 The PSpace Algorithm

Using the results described in the previous two subsections, we can construct
an NPSpace decision procedure for unification in ELH−�

R+ w.r.t. cycle-restricted
ELH−�

R+ -ontologies. Due to Savitch’s theorem [26], this implies that the problem
is also in PSpace.

Given an input consisting of an ELH−�
R+ -unification problem and a cycle-

restricted ELH−�
R+-ontology, the algorithm transforms the ontology and the uni-

fication problem into flat ones, which we denote as Γ and O. It then proceeds
as follows:

1. It guesses a subsumption mapping τ for Γ w.r.t. O. If no such mapping exists,
then it fails.

2. It transforms Γ into ΔΓ,τ , and then translates the latter into the set of linear
language inclusions IO

Γ,τ .
3. Finally, the algorithm answers “yes” iff IO

Γ,τ has a finite, admissible solution.

Flattening can be done in polynomial time and preserves unifiability [5,18].
A mapping τ : Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} can be guessed in non-
deterministic polynomial time, and checking whether it satisfies the properties
of a subsumption mapping (see Definition 3) can clearly also be realized within
polynomial space, as can the translations into ΔΓ,τ and IO

Γ,τ . Finally, as shown
in [18], testing for the existence of a finite, admissible solution of IO

Γ,τ can be
reduced in polynomial time to checking emptiness of alternating finite automata
with ε-transitions, which is a PSpace-complete problem [23]. This shows that
the introduced algorithm really is an NPSpace algorithm. Its correctness is an
immediate consequence of Propositions 1 and 2. Since PSpace-hardness already
holds for the special case of an empty ontology, we thus have shown the following
main result of this paper.

Theorem 1. Deciding unifiability of ELH−�
R+-unification problems w.r.t. cycle-

restricted ELH−�
R+-ontologies is PSpace-complete.

294 F. Baader and O. Fernández Gil

4 Conclusion

We have shown that the approach for obtaining a PSpace decision procedure for
EL−�-unification without a background ontology [18] can be extended to unifica-
tion w.r.t. a cycle-restricted ELHR+ -ontology, i.e., an ontology that may contain
general concept inclusions (GCIs) formulated in EL−� as well as role inclusion
and transitivity axioms, but does not entail a cyclic subsumption of the form
C �O ∃r1.∃r2. · · · ∃rn.C (n ≥ 1). As explained in the introduction, both con-
sidering concept descriptions not containing the top concept � and considering
GCIs and role axioms is motivated by the expressivity employed in the medi-
cal ontology SNOMED CT. Dealing with such a background ontology not only
makes the approach more complicated due to the more involved characterization
of subsumption (see Lemma 1 and Definition 3, compared to the much simpler
versions in [18]). It also requires the development of new notions, such as simple
unifiers and the extension of the system of linear language inclusions with new
indeterminates and corresponding inclusions.

With SNOMED CT in mind, it would be interesting to see whether results on
unification (with or without top) can be further extended to ontologies addition-
ally containing so-called right-identity rules, i.e., role axioms of the form r◦s � r,
since they are also needed to get rid of the SEP-triplet encoding mentioned in
the introduction. However, extending the characterization of subsumption to this
setting is probably a non-trivial problem. From a theoretical point of view, the
big open problem is whether one can dispense with the requirement that the
ontology must be cycle-restricted. Even for pure EL, decidability of unification
w.r.t. unrestricted ontologies is an open problem.

From a practical point of view, the next step is to develop an algorithm
that replaces non-deterministic guessing by a more intelligent search procedure.
Since the unification problem is PSpace-complete, a polynomial translation of
the whole problem into SAT is not possible (unless NP = PSpace). However, one
could try to delegate the search for a subsumption mapping to a SAT solver,
which interacts with a solver for the additional condition on such a mapping
(existence of a finite, admissible solution of IO

Γ,τ) in an SMT-like fashion [21].

Acknowledgments. This work was partially supported by the German Federal Min-
istry of Education and Research (BMBF, SCADS22B) and the Saxon State Ministry
for Science, Culture and Tourism (SMWK) by funding the competence center for Big
Data and AI “ScaDS.AI Dresden/Leipzig”. The authors would like to thank Stefan
Borgwardt and Francesco Kriegel for helpful discussions on the form of the definitions
and axioms used in the current version of SNOMED CT.

References

1. Baader, F., Binh, N.T., Borgwardt, S., Morawska, B.: Unification in the description
logic EL without the top concept. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.)
CADE 2011. LNCS (LNAI), vol. 6803, pp. 70–84. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22438-6 8

https://doi.org/10.1007/978-3-642-22438-6_8

Unification Modulo Ontologies in ELHR+ Without Top 295

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general tboxes. In: Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Thirteenth International Conference (KR 2012), Rome, 10–14 June
2012. AAAI Press (2012)

3. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unification
in ELHR+ w.r.t. cycle-restricted ontologies. In: Thielscher, M., Zhang, D. (eds.) AI
2012. LNCS (LNAI), vol. 7691, pp. 493–504. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35101-3 42

4. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unifica-
tion in ELHR+ w.r.t. cycle-restricted ontologies. LTCS-Report 12-05, Chair for
Automata Theory, Institute for Theoretical Computer Science, Technische Univer-
sität Dresden, Dresden (2012). https://doi.org/10.25368/2022.189

5. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 30–44. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31365-3 5

6. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. LTCS-Report 12-02, Chair for Automata The-
ory, Institute for Theoretical Computer Science, Technische Universität Dresden,
Dresden (2012). https://doi.org/10.25368/2022.186

7. Baader, F., Borgwardt, S., Morawska, B.: Constructing SNOMED CT concepts
via disunification. LTCS-Report 17-07, Chair for Automata Theory, Institute for
Theoretical Computer Science, Technische Universität Dresden, Dresden (2017).
https://doi.org/10.25368/2022.237

8. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI 2005), Edinburgh, 30 July–5 August 2005, pp.
364–369. Professional Book Center (2005)

9. Baader, F., Fernández Gil, O.: Unification in the description logic ELHR+ without
the top concept modulo cycle-restricted ontologies (extended version). In: LTCS-
Report 24-01, Chair for Automata Theory, Institute of Theoretical Computer Sci-
ence, Technische Universität Dresden, Dresden (2024). https://doi.org/10.25368/
2024.34

10. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

11. Baader, F., Kapur, D.: Deciding the word problem for ground identities with com-
mutative and extensional symbols. In: Peltier, N., Sofronie-Stokkermans, V. (eds.)
IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 163–180. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51074-9 10

12. Baader, F., Marantidis, P., Mottet, A., Okhotin, A.: Extensions of unification mod-
ulo ACUI. Math. Struct. Comput. Sci. 30(6), 597–626 (2020). https://doi.org/10.
1017/S0960129519000185

13. Baader, F., Mendez, J., Morawska, B.: UEL: unification solver for the description
logic EL—system description. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR
2012. LNCS (LNAI), vol. 7364, pp. 45–51. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31365-3 6

14. Baader, F., Morawska, B.: Unification in the description logic EL. In: Treinen,
R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02348-4 25

https://doi.org/10.1007/978-3-642-35101-3_42
https://doi.org/10.1007/978-3-642-35101-3_42
https://doi.org/10.25368/2022.189
https://doi.org/10.1007/978-3-642-31365-3_5
https://doi.org/10.25368/2022.186
https://doi.org/10.25368/2022.237
https://doi.org/10.25368/2024.34
https://doi.org/10.25368/2024.34
https://doi.org/10.1007/978-3-030-51074-9_10
https://doi.org/10.1017/S0960129519000185
https://doi.org/10.1017/S0960129519000185
https://doi.org/10.1007/978-3-642-31365-3_6
https://doi.org/10.1007/978-3-642-31365-3_6
https://doi.org/10.1007/978-3-642-02348-4_25

296 F. Baader and O. Fernández Gil

15. Baader, F., Morawska, B.: SAT encoding of unification in EL. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 97–111. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16242-8 8

16. Baader, F., Morawska, B.: Unification in the description logic EL. Log. Methods
Comput. Sci. 6(3) (2010)

17. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277–305 (2001)

18. Baader, F., Nguyen, T.B., Borgwardt, S., Morawska, B.: Deciding unifiability and
computing local unifiers in the description logic EL without top constructor. Notre
Dame J. Formal Log. 57(4), 443–476 (2016)

19. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning (in 2 volumes), pp. 445–532. Elsevier and MIT
Press (2001)

20. Bachmair, L., Ramakrishnan, I.V., Tiwari, A., Vigneron, L.: Congruence closure
modulo associativity and commutativity. In: Kirchner, H., Ringeissen, C. (eds.)
FroCoS 2000. LNCS (LNAI), vol. 1794, pp. 245–259. Springer, Heidelberg (2000).
https://doi.org/10.1007/10720084 16

21. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability - Second Edition, Frontiers in Artificial Intelligence and Applications,
vol. 336, pp. 1267–1329. IOS Press (2021). https://doi.org/10.3233/FAIA201017

22. Brandt, S.: Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and - what else? In: Proceedings of the 16th European Con-
ference on Artificial Intelligence (ECAI 2004), Including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, 22–27 August 2004, pp. 298–302. IOS
Press (2004)

23. Jiang, T., Ravikumar, B.: A note on the space complexity of some decision prob-
lems for finite automata. Inf. Process. Lett. 40(1), 25–31 (1991)

24. Kapur, D.: Modularity and combination of associative commutative congruence
closure algorithms enriched with semantic properties. Log. Methods Comput. Sci.
19(1) (2023)

25. Narendran, P., Rusinowitch, M.: Any ground associative-commutative theory has
a finite canonical system. J. Autom. Reason. 17(1), 131–143 (1996)

26. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1016/
S0022-0000(70)80006-X

27. Schulz, S., Romacker, M., Hahn, U.: Part-whole reasoning in medical ontologies
revisited—introducing SEP triplets into classification-based description logics. In:
AMIA 1998, American Medical Informatics Association Annual Symposium. AMIA
(1998)

28. Sofronie-Stokkermans, V.: Locality and subsumption testing in EL and some of its
extensions. In: Advances in Modal Logic 7, papers from the Seventh Conference
on Advances in Modal Logic, pp. 315–339. College Publications (2008)

29. Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-triplets
in SNOMED CT using tractable description logic operators. In: Bellazzi, R., Abu-
Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–291.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73599-1 38

https://doi.org/10.1007/978-3-642-16242-8_8
https://doi.org/10.1007/10720084_16
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1007/978-3-540-73599-1_38

Unification Modulo Ontologies in ELHR+ Without Top 297

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Confluence of Logically Constrained
Rewrite Systems Revisited

Jonas Schöpf(B) , Fabian Mitterwallner , and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{jonas.schoepf,fabian.mitterwallner,aart.middeldorp}@uibk.ac.at

Abstract. We show that (local) confluence of terminating logically con-
strained rewrite systems is undecidable, even when the underlying theory
is decidable. Several confluence criteria for logically constrained rewrite
systems are known. These were obtained by replaying existing proofs
for plain term rewrite systems in a constrained setting, involving a non-
trivial effort. We present a simple transformation from logically con-
strained rewrite systems to term rewrite systems such that critical pairs
of the latter correspond to constrained critical pairs of the former. The
usefulness of the transformation is illustrated by lifting the advanced
confluence results based on (almost) development closed critical pairs as
well as on parallel critical pairs to the constrained setting.

1 Introduction

Logically constrained rewrite systems (LCTRSs) [12] are a natural extension
of plain term rewrite systems (TRSs) with native support for constraints that
are handled by SMT solvers. The latter makes LCTRSs suitable for program
analysis [3–5,22]. In this paper we are concerned with confluence techniques
for LCTRSs. Numerous techniques exist to (dis)prove confluence of TRSs. For
LCTRSs much less is known. Kop and Nishida [12] established (weak) orthogo-
nality as sufficient confluence criteria for LCTRSs. Joinability of critical pairs for
terminating systems is implicit in [22]. Very recently, strong closedness for linear
LCTRSs and (almost) parallel closedness for left-linear LCTRSs were established
[17]. The proofs of these results were obtained by replaying existing proofs for
TRSs in a constrained setting, involving a non-trivial effort. For more advanced
confluence criteria, this is not feasible.

In particular, the conclusion in [12] that LCTRSs “are flexible: common anal-
ysis techniques for term rewriting extend to LCTRSs without much effort” is not
accurate. On the contrary, in Sect. 3 we show that (local) confluence of termi-
nating LCTRSs is undecidable, even for a decidable fragment of the theory of
integers.

In Sect. 4 we present a simple transformation from LCTRSs to TRSs which
allows us to relate results for the latter to the former. We use the transfor-
mation to extend two advanced confluence criteria based on (parallel) critical

This research is funded by the Austrian Science Fund (FWF) project I5943.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 298–316, 2024.
https://doi.org/10.1007/978-3-031-63501-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_16&domain=pdf
http://orcid.org/0000-0001-5908-8519
http://orcid.org/0000-0001-5992-9517
http://orcid.org/0000-0001-7366-8464
https://doi.org/10.1007/978-3-031-63501-4_16

Confluence of LCTRSs Revisited 299

pairs from TRSs to LCTRSs: In Sect. 5 we prove that (almost) development
closed left-linear LCTRSs are confluent by reusing the corresponding result
for TRSs obtained by van Oostrom [15] and in Sect. 6 we lift the result of
Toyama [20] based on parallel critical pairs from TRSs to LCTRSs. Both results
are employed in state-of-the-art confluence provers for TRSs (ACP [2], CSI [14],
Hakusan [19]) and have only recently been formally verified in the Isabelle proof
assistant [7,10,11].

For the LCTRS extension of the result of Toyama [20] we observed a subtle
problem in the definition of the equivalence relation on constrained terms, which
goes back to [12] and has been used in subsequent work on LCTRSs [5,17,22].
We briefly discuss the issue at the end of the next section, after recalling basic
notions for LCTRSs. For space reasons some of the more technical proofs are
only available in an extended version of this paper [18]. The results in Sect. 4
and Sect. 5 were first announced in [13].

2 Preliminaries

We assume familiarity with the basic notions of term rewriting. In this section we
recall a few key notions for LCTRSs. For more background information we refer
to [12,17,22]. We assume a many-sorted signature F = Fte∪Fth with a term and
theory part. For every sort ι in Fth we have a non-empty set Valι ⊆ Fth of value
symbols, such that all c ∈ Valι are constants of sort ι. We demand Fte∩Fth ⊆ Val
where Val =

⋃
ι Valι. In the case of integers this results in an infinite signature

with Z ⊆ Val ⊆ Fth. A term in T (Fth,V) is called a logical term. Ground
logical terms are mapped to values by an interpretation J : [[f(t1, . . . , tn)]] =
fJ ([[t1]], . . . , [[tn]]). We assume a bijection between value symbols and elements
in the domain of J , e.g., for integers: [[0]] = 0, [[−1]] = −1, [[1]] = 1 and so
on. Logical terms of sort bool are called constraints. A constraint ϕ is valid if
[[ϕγ]] = � for all substitutions γ such that γ(x) ∈ Val for all x ∈ Var(ϕ). A
constrained rewrite rule is a triple � → r [ϕ] where �, r ∈ T (F ,V) are terms of
the same sort such that root(�) ∈ Fte \ Fth and ϕ is a constraint. We denote the
set Var(ϕ)∪(Var(r)\Var(�)) of logical variables in � → r [ϕ] by LVar(� → r [ϕ]).
A constrained rewrite rule is left-linear (right-linear) if non-logical variables in
the left-hand side (right-hand side) occur at most once. If a rule is left-linear
and right-linear then it is called linear. An LCTRS is a set of constrained rewrite
rules.

A substitution σ is said to respect a rule � → r [ϕ], denoted by σ � � → r [ϕ],
if Dom(σ) ⊆ Var(�) ∪ Var(r) ∪ Var(ϕ), σ(x) ∈ Val for all x ∈ LVar(� → r [ϕ]),
and [[ϕσ]] = �. Moreover, a constraint ϕ is respected by σ, denoted by σ �
ϕ, if σ(x) ∈ Val for all x ∈ Var(ϕ) and [[ϕσ]] = �. We call f(x1, . . . , xn) →
y [y = f(x1, . . . , xn)] with a fresh variable y and f ∈ Fth \ Val a calculation
rule. Calculation rules are not part of the rules of an LCTRS R. The set of all
calculation rules induced by the signature Fth of an LCTRS R is denoted by
Rca and we abbreviate R ∪ Rca to Rrc. An LCTRS is called linear (left-linear,
right-linear) if all its rules in R are linear (left-linear, right-linear). A rewrite step

300 J. Schöpf et al.

s →R t satisfies s|p = �σ and t = s[rσ]p for some position p, constrained rewrite
rule � → r [ϕ] in Rrc, and substitution σ such that σ � � → r [ϕ]. We drop the
subscript R from →R when no confusion arises. An LCTRS R is confluent if
there exists a term v with t →∗ v ∗← u whenever t ∗← s →∗ u, for all terms s,
t and u. For confluence analysis we need to rewrite constrained terms.

A constrained term is a pair s [ϕ] consisting of a term s and a constraint
ϕ. Two constrained terms s [ϕ] and t [ψ] are equivalent, denoted by s [ϕ] ∼
t [ψ], if for every substitution γ � ϕ with Dom(γ) = Var(ϕ) there is some
substitution δ � ψ with Dom(δ) = Var(ψ) such that sγ = tδ, and vice versa.
Let s [ϕ] be a constrained term. If s|p = �σ for some constrained rewrite rule
ρ : � → r [ψ] ∈ Rrc, position p, and substitution σ such that σ(x) ∈ Val ∪
Var(ϕ) for all x ∈ LVar(ρ), ϕ is satisfiable and ϕ ⇒ ψσ is valid then s [ϕ] →R
s[rσ]p [ϕ]. The rewrite relation ∼→R on constrained terms is defined as ∼ · →R
· ∼ and s [ϕ] ∼→p t [ψ] indicates that the rewrite step in ∼→R takes place at
position p. Similarly, we write s [ϕ] ∼→�p t [ψ] if the position in the rewrite
step is below position p. Note that in our definition of →R the constraint is
not modified. This equals [5, Definition 2.15], but is different from [12,17] where
calculation steps s[f(v1, . . . , vn)]p [ϕ] → s[v]p [ϕ∧v = f(v1, . . . , vn)] modify the
constraint. However, the relation ∼→ can simulate the relation →R from [12,17]
as exemplified below.

Example 1. Consider the constrained term x + 1 [x > 3]. Calculation steps as
defined in [12,17] permit x + 1 [x > 3] → z [z = x + 1 ∧ x > 3]. In our setting,
an initial equivalence step is required to introduce the fresh variable z and the
corresponding assignment needed to perform a calculation: x + 1 [x > 3] ∼
x + 1 [z = x + 1 ∧ x > 3] → z [z = x + 1 ∧ x > 3].

Our treatment allows for a much simpler definition of parallel and multi-step
rewriting since we do not have to merge different constraints.

Equivalence on Constrained Terms

The equivalence on constrained terms ∼ used in this paper also differs from
the equivalence relation used in [12,17], which we will denote by ∼′. In ∼′ the
domain of substitutions is not restricted, i.e., s [ϕ] ∼′ t [ψ] if and only if for
all substitutions γ � ϕ there exists a substitution δ where δ � ψ and sγ =
tδ. Intuitively, constrained terms are equivalent with respect to ∼′ if their sets
of “allowed” instances are equivalent, while for ∼ we only instantiate variables
appearing in the constraints and therefore representing some value. We have
∼ � ∼′. This can be seen as follows. First of all, any substitution γ with γ � ϕ can
be split into γ1 and γ2 such that γ = γ1 ∪γ2 = γ1γ2 with Dom(γ1) = Var(ϕ) and
γ1 � ϕ. From s [ϕ] ∼ t [ψ] we obtain a substitution δ1 where Dom(δ1) = Var(ψ),
δ1 � ψ and sγ1 = tδ1. Hence also sγ = sγ1γ2 = tδ1γ2 = tδ for δ = δ1γ2, which
implies s [ϕ] ∼′ t [ψ]. However, ∼′ ⊆ ∼ does not hold since x [true] ∼′ y [true]
and x [true] �∼ y [true].

The change is necessary, since we have to differentiate (non-logical) vari-
ables in constrained terms from one another, to keep track of them through

Confluence of LCTRSs Revisited 301

rewrite sequences. Take the (LC)TRS R consisting of the rule f(x, y) → x.
When rewriting unconstrained terms we have f(x, y) →R x and f(x, y) �→R y.
When rewriting on constrained terms with respect to ∼′, however, we have
f(x, y) [true] ∼′ · → · ∼′ x [true] and f(x, y) [true] ∼′ · → · ∼′ y [true],
losing any information connecting the resulting variable to the initial term.
This is especially problematic in our analysis of parallel critical pairs in Sect. 6,
where keeping track of variables through rewrite sequences is essential. Note that
f(x, y) [true] ∼→ x [true] but not f(x, y) [true] ∼→ y [true].

3 Undecidability

Confluence is a decidable property of finite terminating TRSs, a celebrated result
of Knuth and Bendix [9] which forms the basis of completion. For LCTRSs
matters are more complicated.

Theorem 1. Local confluence is undecidable for terminating LCTRSs.

Proof. We use a reduction from PCP [16]. Let P = {(α1, β1), . . . , (αN , βN)}
with α1, . . . , αN , β1, . . . , βN ∈ {0, 1}+ be an instance of PCP, where we assume
that αi �= βi for at least one i ∈ {1, . . . , N }. This entails no loss of generality,
since instances that violate this assumption are trivially solvable. We encode
candidate strings over {1, . . . , N } as natural numbers where the empty string
ε is represented by [ε] = 0, and a non-empty string i0i1 · · · ik is represented by
[i0i1 · · · ik] = N · [i1 · · · ik] + i0. So [i0i1 · · · ik] = i0 + i1 · N + · · · + ik · Nk. For
instance, assuming N = 3, the number 102 encodes the candidate string 3313
since 102 = 3 · 33+ 3, 33 = 3 · 10+ 3, 10 = 3 · 3+ 1 and 3 = 3 · 0+ 3. Conversely,
the candidate string 112 is mapped to 22 = 1 + 1 · 31 + 2 · 32. It is not difficult
to see that this results in a bijection between N and candidate strings, for each
N > 0.

The LCTRS RP that we construct is defined over the theory Ints, with theory
symbols Fth = {>,+, ·,=,∧} ∪ Val and values Val = B ∪ Z, with the additional
sorts PCP and String and the following term signature:

e : String 0, 1 : String → String

start,�,⊥ : PCP test : String × String → PCP

alpha, beta : Int → String

The LCTRS RP consists of the following rules:

start → test(alpha(n), beta(n)) [n > 0]
test(e, e) → �

test(0(x), 0(y)) → test(x, y) test(0(x), 1(y)) → ⊥
test(1(x), 1(y)) → test(x, y) test(1(x), 0(y)) → ⊥

test(0(x), e) → ⊥ test(e, 0(y)) → ⊥
test(1(x), e) → ⊥ test(e, 1(y)) → ⊥

302 J. Schöpf et al.

alpha(0) → e beta(0) → e

and, for all i ∈ {1, . . . , N },

alpha(n) → αi(alpha(m)) [N · m + i = n ∧ n > 0]
beta(n) → βi(beta(m)) [N · m + i = n ∧ n > 0]

Here, for a string γ ∈ {0, 1}∗ and a term t : String, γ(t) : String is defined as

γ(t) =

⎧
⎪⎨

⎪⎩

t if γ = ε

0(γ′(t)) if γ = 0γ′

1(γ′(t)) if γ = 1γ′

Note that in the constraints n and m are variables, while N and i are values.
Hence all constraints are in the decidable fragment of linear integer arithmetic
and the rewrite relation →RP

is computable.
We claim that RP is locally confluent if and only if P has no solution. The

LCTRS RP admits the constrained critical pair

test(alpha(n), beta(n)) ≈ test(alpha(m), beta(m)) [n > 0 ∧ m > 0]

with n �= m. The rules with left-hand sides alpha(n) and beta(n) give rise to
further constrained critical pairs but these are harmless since for all n,N > 0
there are unique numbers i and m satisfying the constraint [N ·m+i = n∧n > 0].

By construction of the rules for test, test(alpha(n), beta(n)) →∗ � if n repre-
sents a solution of P and test(alpha(n), beta(n)) →∗ ⊥ if n does not represent a
solution of P . Since we assume that P is non-trivial, the latter happens for some
n > 0. Hence all instances of the constrained critical pairs can only be joined if
test(alpha(n), beta(n)) →∗ ⊥ for all n > 0. Hence RP is locally confluent if and
only if P has no solution.

The LCTRS RP is terminating by the recursive path order [12] with the
precedence start > test > alpha > beta > 1 > 0 > e > � > ⊥ and the well-
founded order �Int on integers where x �Int y if and only if x > y and x � 0. The
key observation is that the constraint [N · m + i = n ∧ n > 0] in the recursive
rules for alpha and beta ensure n > m since N > 0 and i � 1. ��

A key difference between TRSs and LCTRSs leading to this undecidability
result can be seen in the first rule: start → test(alpha(n), beta(n)) [n > 0]. Plain
TRSs usually do not allow variables appearing only in the right-hand side of a
rule, as is the case for n here, because then termination never holds. However, in
LCTRSs such variables are useful, since they can be used to model computations
on arbitrary values which are often used to represent user input in program
analysis. For RP this leads to infinitely many possible steps starting from the
term start and in turn to infinitely many critical pairs, breaking decidability.

Confluence of LCTRSs Revisited 303

4 Transformation

In this section we present a simple transformation from LCTRSs to possibly
infinite TRSs, which exactly corresponds to the intuition behind LCTRSs. This
allows us to lift results on TRSs more easily to LCTRSs than previously possible.

Definition 1. Given an LCTRS R, the TRS R consists of the following rules:
�τ → rτ for all ρ : � → r [ϕ] ∈ Rrc with τ � ρ and Dom(τ) = LVar(ρ).

Note that R typically consists of infinitely many rules.

Lemma 1. The rewrite relations of R and R are the same. Moreover →p,R =
→p,R for all positions p.

Proof. We first show →p,R ⊆ →p,R. Assume s →p,R t. We have s = s[�σ]p →
s[rσ]p = t for some ρ : � → r [ϕ] ∈ Rrc and σ � ρ. We split σ into two substitu-
tions τ = {x �→ σ(x) | x ∈ LVar(ρ)} and δ = {x �→ σ(x) | x ∈ Var(�)\LVar(ρ)}.
From σ � ρ we infer τ � ρ and thus τ(x) ∈ Val for all x ∈ LVar(ρ). Hence
σ = τ ∪ δ = τδ. We have �τ → rτ ∈ R. Hence s = s[�τδ]p →p,R s[rτδ]p = t
as desired. To show the reverse inclusion →p,R ⊆ →p,R we assume s →p,R t.
Otherwise s = s[�μν]p →p,R s[rμν]p for some rule ρ : � → r [ϕ] ∈ R with μ � ρ.
Let σ = μν. Since μ(x) ∈ Val for all x ∈ LVar(ρ), we have xσ = xμ for all
x ∈ LVar(ρ). Hence σ � ρ and thus s = s[�σ]p →p,R s[rσ]p = t. ��

Since →R and →R coincide, we drop the subscript in the sequel. We write
EVar(� → r [ϕ]) for the set Var(r) \ (Var(�) ∪ Var(ϕ)) of extra variables of
a rule. In the computation of constrained critical pairs these variables of the
overlapping rules would lose the property of being a logical variable without
adding trivial constraints. Given a constrained rewrite rule ρ, we write ECρ for∧

{x = x | x ∈ EVar(ρ)}. The set of positions in a term s is denoted by Pos(s).
We write ε for the root position and PosF (s) for the set of positions of function
symbols in s.

Definition 2. An overlap of an LCTRS R is a triple 〈ρ1, p, ρ2〉 with rules
ρ1 : �1 → r1 [ϕ1] and ρ2 : �2 → r2 [ϕ2], satisfying the following conditions:
(1) ρ1 and ρ2 are variable-disjoint variants of rewrite rules in Rrc, (2) p ∈
PosF (�2), (3) �1 and �2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all
x ∈ LVar(ρ1) ∪ LVar(ρ2), (4) ϕ1σ ∧ ϕ2σ is satisfiable, and (5) if p = ε then ρ1
and ρ2 are not variants, or Var(r1) � Var(�1). In this case we call �2σ[r1σ]p ≈
r2σ [ϕ1σ ∧ ϕ2σ ∧ ψσ] a constrained critical pair obtained from the overlap
〈ρ1, p, ρ2〉. Here ψ = ECρ1 ∧ ECρ2 . The peak �2σ[r1σ]p [Φ] ← �2σ [Φ] →ε r2σ [Φ]
with Φ = (ϕ1 ∧ ϕ2 ∧ ψ)σ, from which the constrained critical pair originates, is
called a constrained critical peak. The set of all constrained critical pairs of R
is denoted by CCP(R). A constrained critical pair s ≈ t [ϕ] is trivial if sσ = tσ
for every substitution σ with σ � ϕ.

A key ingredient of our approach is to relate critical pairs of the transformed
TRS to constrained critical pairs of the original LCTRS.

304 J. Schöpf et al.

Theorem 2. For every critical pair s ≈ t of R there exists a constrained critical
pair s′ ≈ t′ [ϕ′] of R and a substitution γ such that s = s′γ, t = t′γ and γ � ϕ′.

Proof. Let s ≈ t be a critical pair of R, originating from the critical peak
�2μσ[r1νσ]p ← �2μσ = �2μσ[�1νσ]p → r2μσ with variants ρ1 : �1 → r1 [ϕ1]
and ρ2 : �2 → r2 [ϕ2] of rules in Rrc without shared variables. Let ψi = ECρi

for i ∈ {1, 2}. Furthermore we have Dom(ν) = LVar(ρ1), Dom(μ) = LVar(ρ2),
ν � ϕ1 ∧ ψ1, μ � ϕ2 ∧ ψ2, p ∈ PosF (�2μ), and σ is an mgu of �2μ|p and �1ν.
Moreover, if p = ε then �1ν → r1ν and �2μ → r2μ are not variants. Define
τ = ν � μ. We have Dom(τ) = LVar(ρ1) ∪ LVar(ρ2). Let ϕ = ϕ1 ∧ ϕ2 ∧ ψ1 ∧ ψ2.
Clearly, �1τ = �1ν, r1τ = r1ν, �2τ = �2μ, r2τ = r2μ and τ � ϕ. Hence the
given peak can be written as �2τσ[r1τσ]p ← �2τσ = �2τσ[�1τσ]p → r2τσ and
τ � ϕ. Since �2|pτσ = �1τσ there exists an mgu δ of �2|p and �1, and a sub-
stitution γ such that δγ = τσ. Let s′ = �2δ[r1δ]p and t′ = r2δ. We claim that
〈ρ1, p, ρ2〉 is an overlap of R, resulting in the constrained critical pair s′ ≈ t′ [ϕδ].
Condition (1) of Definition 2 is trivially satisfied. For condition (2) we need to
show p ∈ PosF (�2). This follows from p ∈ PosF (�2μ), μ(x) ∈ Val for every
x ∈ Dom(μ), and root(�2μ|p) = root(�1ν) ∈ F \ Val. For condition (3) it remains
to show that δ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Suppose to the
contrary that root(δ(x)) ∈ F \ Val for some x ∈ LVar(ρ1)∪ LVar(ρ2). Then
root(δ(x)) = root(γ(δ(x))) = root(σ(τ(x))) ∈ F \ Val, which contradicts τ � ϕ.
Condition (4) follows from the identity δγ = τσ together with τ � ϕ which imply
δγ � ϕ and thus ϕδ is satisfiable. Hence also ϕ1δ∧ϕ2δ is satisfiable. It remains to
show condition (5), so let p = ε and further assume that ρ1 and ρ2 are variants. So
there exists a variable renaming π such that ρ1π = ρ2. In particular, �1π = �2 and
r1π = r2. Let x ∈ Var(�1). If x ∈ LVar(ρ1) = Dom(ν) then τ(x) = ν(x) ∈ Val.
Moreover, π(x) ∈ LVar(ρ2) = Dom(μ) and thus τ(π(x)) = μ(π(x)) ∈ Val.
Since �1τ and �2τ are unifiable, π(τ(x)) = τ(x) = τ(π(x)). If x /∈ LVar(ρ1)
then τ(x) = x, π(x) /∈ LVar(ρ2) and similarly τ(π(x)) = π(x) = π(τ(x)).
All in all, �1τπ = �1πτ = �2τ . Now, if Var(r1) ⊆ Var(�1) then we obtain
r1τπ = r1πτ = r2τ , contradicting the fact that �1ν → r1ν and �2μ → r2μ
are not variants. We conclude that s′ ≈ t′ [ϕδ] is a constrained critical pair of
R. So we can take ϕ′ = ϕδ. Clearly, s = s′γ and t = t′γ. Moreover, γ � ϕ′ since
ϕ′γ = ϕτσ = ϕτ and τ � ϕ. ��

The converse does not hold in general.

Example 2. Consider the LCTRS R consisting of the single rule a → x [x = 0]
where the variable x ranges over the integers. Since x appears on the right-hand
side but not the left, we obtain a constrained critical pair x ≈ x′ [x = 0∧x′ = 0].
Since the constraint uniquely determines the values of x and x′, the TRS R
consists of the single rule a → 0. Obviously R has no critical pairs.

The above example also shows that orthogonality of R does not imply orthog-
onality of R. However, the counterexample relies somewhat on a technicality in
condition (5) of Definition 2. It only occurs when the two rules �1 → r1 [ϕ1] and
�2 → r2 [ϕ2] involved in the critical pair overlap at the root and have instances

Confluence of LCTRSs Revisited 305

�1τ1 → r1τ1 and �2τ2 → r2τ2 in R which are variants of each other. By dealing
with such cases separately we can prove the following theorem.

Theorem 3. For every constrained critical pair s ≈ t [ϕ] of R and every sub-
stitution σ with σ � ϕ, (1) sσ = tσ or (2) there exist a critical pair u ≈ v of R
and a substitution δ such that sσ = uδ and tσ = vδ.

Proof. Let s ≈ t [ϕ] be a constrained critical pair of R originating from the
critical peak s = �2θ[r1θ]p ← �2θ[�1θ]p → r2θ = t with variants ρ1 : �1 →
r1 [ϕ1] and ρ2 : �2 → r2 [ϕ2] of rules in Rrc, and an mgu θ of �2|p and �1 where
p ∈ PosF (�2). Moreover θ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1) ∪ LVar(ρ2), and
ϕ = ϕ1θ ∧ ϕ2θ ∧ ψθ with ψ = ECρ1 ∧ ECρ2 . Let σ be a substitution with σ � ϕ.
Hence θσ � ϕ1∧ϕ2∧ψ and further σ(θ(x)) ∈ Val for all x ∈ LVar(ρ1)∪LVar(ρ2).
We split θσ into substitutions τ1, τ2 and π as follows: τi(x) = xθσ if x ∈ LVar(ρi)
and τi(x) = x otherwise, for i ∈ {1, 2}, and π(x) = xθσ if x ∈ Dom(θσ) \
(LVar(ρ1) ∪ LVar(ρ2)) and π(x) = x otherwise. From θσ � ϕ1 ∧ ϕ2 ∧ ψ and
Var(ϕi) ⊆ LVar(ρi) we infer τi � ϕi for i ∈ {1, 2}. Since Dom(τi) = LVar(ρi),
�iτi → riτi ∈ R for i ∈ {1, 2}. Furthermore, τiπ = τi ∪ π for i ∈ {1, 2}. Hence
�2|pτ2π = �2|pθσ = �1θσ = �1τ1π, implying that �2|pτ2 and �1τ1 are unifiable.
Let γ be an mgu of these two terms. There exists a substitution δ such that
γδ = π. Clearly p ∈ PosF (�2τ2). If p �= ε or �1τ1 → r1τ1 and �2τ2 → r2τ2 are
not variants, then u ≈ v with u = �2τ2γ[r1τ1γ]p and v = r2τ2γ is a critical pair
of R. Moreover tσ = r2θσ = r2τ2π = r2τ2γδ = vδ, and similarly sσ = uδ. Thus
option (2) is satisfied. If p = ε and �1τ1 → r1τ1 and �2τ2 → r2τ2 are variants
then sσ = r1τ1γδ = r2τ2γδ = tσ, fulfilling (1). ��

A TRS (LCTRS) is weakly orthogonal if it is left-linear and all its (con-
strained) critical pairs are trivial. Since R is left-linear if and only if R is left-
linear, a direct consequence of Theorem 3 is that weak orthogonality of R implies
weak orthogonality of R.

Our transformation is not only useful for confluence analysis.

Example 3. For the LCTRS RP in the proof of Theorem 1 the TRS RP consists
of all unconstrained rules of RP together with f(v1, . . . , vn) → [[f(v1, . . . , vn)]] for
all f ∈ Fth\Val and v1, . . . , vn ∈ Val, start → test(alpha(n), beta(n)) for all n > 0,
alpha(n) → αi(alpha(m)) and beta(n) → βi(beta(m)) for all i ∈ {1, . . . , N },
n > 0 and m � 0 such that N · m + i = n. Termination of the infinite TRS RP

is easily shown by LPO or dependency pairs.

5 Development Closed Critical Pairs

Using Theorem 2 we can easily transfer confluence criteria for TRSs to LCTRSs.
Rather than reproving the confluence results reported in [12,17,22], in this
section we illustrate this by extending the result of van Oostrom [15] concerning
(almost) development closed critical pairs from TRSs to LCTRSs. This result
subsumes most critical-pair based confluence criteria, as can be seen in Fig. 2 in
the concluding section.

306 J. Schöpf et al.

Definition 3. Let R be an LCTRS. The multi-step relation ◦−→ on terms is
defined inductively as follows: (1) x ◦−→ x for all variables x, (2) f(s1, . . . , sn) ◦−→
f(t1, . . . , tn) if si ◦−→ ti with 1 � i � n, (3) �σ ◦−→ rτ if � → r [ϕ] ∈ Rrc,
σ � � → r [ϕ] and σ ◦−→ τ , where σ ◦→ τ denotes σ(x) ◦−→ τ(x) for all variables
x ∈ Dom(σ).

Definition 4. A critical pair s ≈ t is development closed if s ◦−→ t. It is almost
development closed if it is not an overlay and development closed, or it is an
overlay and s ◦−→ · ∗← t. A TRS is called (almost) development closed if all its
critical pairs are (almost) development closed.

The following result from [15] has recently been formalized in Isabelle [10,11].

Theorem 4. Left-linear almost development closed TRSs are confluent. ��

We define multi-step rewriting on constrained terms.

Definition 5. Let R be an LCTRS. The multi-step relation ◦−→ on constrained
terms is defined inductively as follows:

1. x [ϕ] ◦−→ x [ϕ] for all variables x,
2. f(s1, . . . , sn) [ϕ] ◦−→ f(t1, . . . , tn) [ϕ] if si [ϕ] ◦−→ ti [ϕ] for 1 � i � n,
3. �σ [ϕ] ◦−→ rτ [ϕ] if ρ : � → r [ψ] ∈ Rrc, σ(x) ∈ Val ∪ Var(ϕ) for all x ∈

LVar(ρ), ϕ is satisfiable, ϕ ⇒ ψσ is valid, and σ [ϕ] ◦−→ τ [ϕ].

Here σ [ϕ] ◦−→ τ [ϕ] denotes σ(x) [ϕ] ◦−→ τ(x) [ϕ] for all variables x ∈ Dom(σ).
The relation ∼◦−→ on constrained terms is defined as ∼ · ◦−→ · ∼.

Example 4. Consider the following LCTRS R over the theory Ints with the rules:

max(x, y) → x [x � y] max(x, y) → y [y � x]

Rewriting the term max(1 + 2, 3 + 2) to its normal form 5 requires three single
steps. These steps can be combined into a single multi-step max(1+2, 3+2) ◦→ 5.

The constrained term max(1 + x, 3 + y) [x > 3 ∧ y = 1] rewrites in a single
multi-step to its normal form z [z = 1+ x ∧ x > 3]. This involves the following
parts of Definition 5. Let ϕ be x > 3 ∧ y = 1 ∧ z = 1 + x ∧ z′ = 3 + y. Case
(3) gives 1 + x [ϕ] ◦−→ z [ϕ] and 3 + y [ϕ] ◦−→ z′ [ϕ]. Using this we obtain
max(1 + x, 3 + y) [ϕ] ◦−→ max(z, z′) [ϕ] by case (2). A final application of case
(3) yields max(z, z′) [ϕ] ◦−→ z [ϕ]. Together with the equivalences

max(1+ x, 3+ y) [x > 3 ∧ y = 1] ∼ max(1+ x, 3+ y) [ϕ]
z [ϕ] ∼ z [z = 1 + x ∧ x > 3]

we obtain max(1+ x, 3+ y) [x > 3 ∧ y = 1] ∼◦−→ z [z = 1 + x ∧ x > 3].

Definition 4 is extended to LCTRSs as follows.

Confluence of LCTRSs Revisited 307

Definition 6. A constrained critical pair s ≈ t [ϕ] is development closed if
s ≈ t [ϕ] ∼◦−→�1 u ≈ v [ψ] for some trivial u ≈ v [ψ]. A constrained critical pair
is almost development closed if it is not an overlay and development closed, or
it is an overlay and s ≈ t [ϕ] ∼◦−→�1 · ∼→∗

�2 u ≈ v [ψ] for some trivial u ≈ v [ψ].
An LCTRS is called (almost) development closed if all its constrained critical
pairs are (almost) development closed.

Similar to [17,22], the symbol ≈ is treated as a fresh binary function symbol,
resulting in constrained equations whose positions are addressed in the usual
way. Therefore positions below 1 in s ≈ t [ϕ] refer to subterms of s.

Figure 1 conveys the idea how the main result (Theorem 5) in this section is
obtained. For every critical pair in the transformed TRS R there exists a corre-
sponding constrained critical pair in the original LCTRS R (Theorem2). Almost
development closure of the constrained critical pair implies almost development
closure of the critical pair (Lemma4). Since the rewrite relations of R and R
coincide (Lemma 1), we obtain the confluence of almost development closed left-
linear LCTRSs from the corresponding result in [15].

Fig. 1. Proof idea for Theorem 5.

We now present a few technical results that relate rewrite sequences and
multi-steps on (constrained) terms. These prepare for the use of Theorem 2 to
obtain the confluence of (almost) development closed LCTRSs. The proofs of
the following two lemmata can be found in [18].

Lemma 2. Suppose s ≈ t [ϕ] ∼→∗
�p u ≈ v [ψ] with γ � ϕ and position p. If

p = 1q for a position q then sγ →∗
�q uδ and tγ = vδ for some substitution δ

with δ � ψ. If p = 2q for a position q then sγ = uδ and tγ ∼→∗
�q vδ for some

substitution δ with δ � ψ. ��

Lemma 3. If s ≈ t [ϕ] ∼◦−→�1 u ≈ v [ψ] then for all substitutions σ � ϕ there
exists δ � ψ such that sσ ◦−→ uδ and tσ = vδ. ��

Lemma 4. If a constrained critical pair s ≈ t [ϕ] is almost development closed
then for all substitutions σ with σ � ϕ we have sσ ◦−→ · ∗← tσ.

Proof. Let s ≈ t [ϕ] be an almost development closed constrained critical pair,
and σ � ϕ some substitution. From Definition 6 we obtain

s ≈ t [ϕ] ∼◦−→�1 u′ ≈ v′ [ψ′] ∼→∗
�2 u ≈ v [ψ] (1)

308 J. Schöpf et al.

where uτ = vτ for all τ � ψ for some constrained term u′ ≈ v′ [ψ′]. We apply
Lemma 3 to the first step in (1). This yields a substitution δ where sσ ◦−→ u′δ,
tσ = v′δ and δ � ψ′. For the second part of (1) we use Lemma 2 and obtain
v′δ →∗ vγ, u′δ = uγ for some γ � ψ. Moreover we have uγ = vγ. Hence
sσ ◦−→ u′δ = uγ = vγ ∗← v′δ = tσ. ��

Theorem 5. If an LCTRS R is almost development closed then so is R.

Proof. Take any critical pair s ≈ t from R. From Theorem 2 we know that
there exists a constrained critical pair s′ ≈ t′ [ϕ] in R where s′σ = s and
t′σ = t for some σ � ϕ. Since the constrained critical pair must be almost
development closed, Lemma 4 yields s = s′σ ◦−→ · ∗← t′σ = t if it is an overlay
and s = s′σ ◦−→ t′σ = t otherwise. This proves that R is almost development
closed. ��

Interestingly, the converse does not hold, as seen in the following example.

Example 5. Consider the LCTRS R over the theory Ints with the rules

f(x) → g(x) g(x) → h(2) [x = 2z]
f(x) → h(x) [1 � x � 2] g(x) → h(1) [x = 2z + 1]

The TRS R consists of the rules

f(x) → g(x) f(1) → h(1) g(n) → h(1) for all odd n ∈ Z

f(2) → h(2) g(n) → h(2) for all even n ∈ Z

and has two (modulo symmetry) critical pairs g(1) ≈ h(1) and g(2) ≈ h(2). Since
g(1) ◦−→ h(1) and g(2) ◦−→ h(2), R is almost development closed. The constrained
critical pair g(x) ≈ h(x) [1 � x � 2] is not almost development closed, since it
is a normal form with respect to the rewrite relation on constrained terms.

This also makes intuitive sense, since a rewrite step s ≈ t [ϕ] ∼→ u ≈ v [ψ]
implies that the same step can be taken on all instances sσ ≈ tσ where σ � ϕ.
However it may be the case, like in the above example, that different instances of
the constrained critical pair require different steps to obtain a closing sequence,
which cannot directly be modeled using rewriting on constrained terms.

Since left-linearity of R is preserved, the following corollary is obtained from
Theorems 4 and 5. In fact R only has to be linear in the variables x /∈ LVar,
since that is sufficient for R to be linear.

Corollary 1. Left-linear almost development closed LCTRSs are confluent. ��

Example 6. The LCTRS R over the theory Ints with the rules

f(x, y) → h(g(y, 2 · 2)) [x � y ∧ y = 2] g(x, y) → g(y, x) h(x) → x

f(x, y) → c(4, x) [y � x] c(x, y) → g(4, 2) [x �= y]

Confluence of LCTRSs Revisited 309

admits the two constrained critical pairs (with simplified constraints)

h(g(y, 2 · 2)) ≈ c(4, x) [ϕ] c(4, x) ≈ h(g(y, 2 · 2)) [ϕ]

Both are almost development closed:

h(g(y, 2 · 2)) ≈ c(4, x) [ϕ] c(4, x) ≈ h(g(y, 2 · 2)) [ϕ]
∼◦−→�1 g(4, 2) ≈ c(4, x) [x = 2] ∼◦−→�1 g(4, 2) ≈ h(g(y, 2 · 2)) [y = 2]
∼→�2 g(4, 2) ≈ g(4, 2) [true] ∼→∗

�2 g(4, 2) ≈ g(4, 2) [true]

Here ϕ is the constraint x = y ∧ y = 2. Hence R is almost development closed.
Since R is left-linear, confluence follows by Corollary 1.

6 Parallel Critical Pairs

In this section we extend the confluence result by Toyama [20] based on paral-
lel critical pairs to LCTRSs. Recently there is a renewed interest in this result;
Shintani and Hirokawa proved in [19] that it subsumes Toyama’s later conflu-
ence result in [21]. The latter was already lifted to LCTRSs in [17] and is also
subsumed by Corollary 1. The result of Toyama [20] is a proper extension of the
confluence criterion on parallel critical pairs by Gramlich [6]. In the sequel we
mainly follow the notions from [19].

Definition 7. Let R be an LCTRS. The parallel rewrite relation ‖→ on terms
is defined inductively as follows:

1. x ‖→ x for all variables x,
2. f(s1, . . . , sn) ‖→ f(t1, . . . , tn) if si ‖→ ti for 1 � i � n,
3. �σ ‖→ rσ if � → r [ϕ] ∈ Rrc and σ � � → r [ϕ]

We extend ‖→ to constrained terms inductively as follows:

1. x [ϕ] ‖→ x [ϕ] for all variables x,
2. f(s1, . . . , sn) [ϕ] ‖→ f(t1, . . . , tn) [ϕ] if si [ϕ] ‖→ ti [ϕ] for 1 � i � n,
3. �σ [ϕ] ‖→ rσ [ϕ] if ρ : � → r [ψ] ∈ Rrc, σ(x) ∈ Val ∪ Var(ϕ) for all x ∈

LVar(ρ), ϕ is satisfiable and ϕ ⇒ ψσ is valid.

The parallel rewrite relation ∼‖→ on constrained terms is defined as ∼ · ‖→ · ∼.

Let s be a term and P ⊆ Pos(s) be a set of parallel positions. Given terms
tp for p ∈ P , we denote by s[tp]p∈P the simultaneous replacement of the terms
at position p ∈ P in s by tp. We recall the definition of parallel critical pairs for
TRSs.

Definition 8. Let R be a TRS, ρ : � → r a rule in R, and P ⊆ PosF (�) a
non-empty set of parallel positions. For every p ∈ P let ρp : �p → rp be a variant
of a rule in R. The peak �σ[rpσ]p∈P

‖→�σ →ε,R rσ forms a parallel critical pair
�σ[rpσ]p∈P ≈ rσ if the following conditions are satisfied:

310 J. Schöpf et al.

1. Var(ρ1) ∩ Var(ρ2) = ∅ for different rules ρ1 and ρ2 in {ρ} ∪ {ρp | p ∈ P },
2. σ is an mgu of {�p ≈ �|p | p ∈ P },
3. if P = {ε} then ρε is not a variant of ρ.

The set of all constrained parallel critical pairs of R is denoted by PCP(R).

We lift this notion to the constrained setting and define it for LCTRSs.

Definition 9. Let R be an LCTRS, ρ : � → r [ϕ] a rule in Rrc, and P ⊆
PosF (�) a non-empty set of parallel positions. For every p ∈ P let ρp : �p →
rp [ϕp] be a variant of a rule in Rrc. Let ψ = ECρ ∧

∧
p∈P ECρp

and Φ =
ϕσ ∧ ψσ ∧

∧
p∈P ϕpσ. The peak �σ[rpσ]p∈P [Φ] ‖→�σ [Φ] →ε,R rσ [Φ] forms a

constrained parallel critical pair �σ[rpσ]p∈P ≈ rσ [Φ] if the following conditions
are satisfied:

1. Var(ρ1) ∩ Var(ρ2) = ∅ for different rules ρ1 and ρ2 in {ρ} ∪ {ρp | p ∈ P },
2. σ is an mgu of {�p = �|p | p ∈ P } such that σ(x) ∈ Val ∪ V for all x ∈

LVar(ρ) ∪
⋃

p∈P LVar(ρp),
3. ϕσ ∧

∧
p∈P ϕpσ is satisfiable,

4. if P = {ε} then ρε is not a variant of ρ or Var(r) � Var(�).

A constrained peak forming a constrained parallel critical pair is called a con-
strained parallel critical peak. The set of all constrained parallel critical pairs of
R is denoted by CPCP(R).

For a term t and a set of parallel positions P in t, we write Var(t, P) to
denote

⋃
p∈P Var(t|p). For a set of parallel positions P we denote by ‖→P that

each rewrite step obtained in case (3) of Definition 7 is performed at a position
p ∈ P and no two steps share a position. Moreover, for a set of parallel positions
P and a position q we denote by ‖→P

�q that p � q for all p ∈ P .

Definition 10. A critical pair s ≈ t is 1-parallel closed if s ‖→ · ∗← t. A TRS
is 1-parallel closed if all its critical pairs are 1-parallel closed. A parallel critical
pair �σ[rpσ]p∈P ≈ rσ originating from the peak �σ[rpσ]p∈P

‖→�σ →ε rσ is 2-
parallel closed if there exists a term v and a set of parallel positions Q such that
�σ[rpσ]p∈P →∗ v Q ‖→rσ with Var(v,Q) ⊆ Var(�σ, P). A TRS is 2-parallel closed
if all its parallel critical pairs are 2-parallel closed. A TRS is parallel closed if it
is 1-parallel closed and 2-parallel closed.

The following result from [20] has recently been formalized in Isabelle [7].

Theorem 6. Left-linear parallel closed TRSs are confluent. ��

In the remainder of this section we extend this result to LCTRSs. To this end
we introduce the notion T Var(t, ϕ) = Var(t) \ Var(ϕ) denoting the set of non-
logical variables in term t with respect to the logical constraint ϕ. We restrict
this to non-logical variables in subterms below a set of parallel positions P in t:
T Var(t, ϕ, P) =

⋃
p∈P T Var(t|p, ϕ).

Confluence of LCTRSs Revisited 311

Definition 11. A constrained critical pair s ≈ t [ϕ] is 1-parallel closed if s ≈
t [ϕ] ∼‖→�1 · ∼→∗

�2 u ≈ v [ψ] for some trivial u ≈ v [ψ]. An LCTRS is 1-parallel
closed if all its constrained critical pairs are 1-parallel closed. A constrained
parallel critical pair �σ[rpσ]p∈P ≈ rσ [ϕ] is 2-parallel closed if there exists a set
of parallel positions Q such that

�σ[rpσ]p∈P ≈ rσ [ϕ] ∼‖→Q
�2 · ∼→∗

�1 u ≈ v [ψ]

for some trivial u ≈ v [ψ] and T Var(v, ψ,Q) ⊆ T Var(�σ, ϕ, P). An LCTRS is
2-parallel closed if all its constrained parallel critical pairs are 2-parallel closed.
An LCTRS is parallel closed if it is 1-parallel closed and 2-parallel closed.

Recall from Sect. 2 that our definition of ∼ differs from the equivalence rela-
tion ∼′ defined in [12,17]. The change is necessary for the variable condition of
2-parallel closedness to make sense, as illustrated in the following example.

Example 7. Consider the (LC)TRS consisting of the rules

f(g(x), y) → f(b, y) g(x) → a f(a, x) → x f(b, x) → x

The peak f(a, y) [true] {1} ‖→f(g(x), y) [true] → f(b, y) [true] gives rise to the
(constrained) parallel critical pair f(a, y) ≈ f(b, y) [true]. Using ∼′ we have

f(a, y) ≈ f(b, y) [true] ‖→{ε}
�2 · →∗

�1 y ≈ y [true] ∼′ x ≈ x [true]

and the variable condition T Var(x, true, {ε}) ⊆ T Var(f(g(x), y), true, {1}) holds.
Since the system has no logical constraints it can also be analyzed in the TRS
setting. Following Definition 10 we would have to check the variable condition
Var(y, {ε}) ⊆ Var(f(g(x), y), {1}), which does not hold. Using ∼ resolves this
difference, since y ≈ y [true] �∼ x ≈ x [true]. So the conditions in Definition 11
reduce to the ones in Definition 10 for TRSs.

In Theorem 2 in Sect. 4 we related critical pairs of the transformed TRS to
constrained critical pairs of the originating LCTRS. The following theorem does
the same for parallel critical pairs.

Theorem 7. For every parallel critical pair s ≈ t of R there exists a constrained
parallel critical pair s′ ≈ t′ [ϕ′] of R and a substitution γ such that s = s′γ,
t = t′γ and γ � ϕ′.

Proof. Let s ≈ t be a parallel critical pair of R, originating from the parallel
critical peak �μσ[rpνpσ]p∈P

‖→�μσ = �μσ[�pνpσ]p∈P →ε rμσ with variants
ρ : � → r [ϕ] and ρp : �p → rp [ϕp] for p ∈ P of rules in Rrc without shared
variables, ψ = ECρ and ψp = ECρp

for p ∈ P . Furthermore, Dom(νp) = LVar(ρp)
for p ∈ P , Dom(μ) = LVar(ρ), νp � ϕp ∧ ψp for p ∈ P , μ � ϕ ∧ ψ, p ∈ PosF (�μ),
and σ is an mgu of {�μ|p ≈ �pνp | p ∈ P }. Moreover, if P = {ε} then �ενε →
rενε [ϕενε] and �μ → rμ [ϕμ] are not variants. Define the substitution τ as⋃

{νp | p ∈ P } � μ. Clearly, �pτ = �pνp and rpτ = rpνp for p ∈ P , �τ = �μ,

312 J. Schöpf et al.

rτ = rμ, τ � ϕ ∧ ψ and τ � ϕp ∧ ψp for all p ∈ P . Hence the given peak can be
written as �τσ[rpτσ]p∈P

‖→�τσ = �τσ[�pτσ]p∈P →ε rτσ with τ � ϕ′′ where

ϕ′′ = ϕ ∧ ECρ ∧
∧

p∈P

(ϕp ∧ ECρp
)

Since �|pτσ = �pτσ for all p ∈ P there exists an mgu δ of {�|p = �p | p ∈ P } and a
substitution γ such that δγ = τσ. Let s′ = �δ[rpδ]p∈P and t′ = rδ. We claim that
this results in the constrained parallel critical pair s′ ≈ t′ [ϕ′′δ]. Condition (1) of
Definition 9 is trivially satisfied. We obtain P ⊆ PosF (�) because P ⊆ PosF (�μ),
μ(x) ∈ Val for every x ∈ Dom(μ), and root(�μ|p) = root(�pν) ∈ F \ Val for
all p ∈ P . For condition (2) it remains to show that δ(x) ∈ Val ∪ V for all
x ∈ LVar(ρ) ∪

⋃
p∈P LVar(ρp). Suppose to the contrary that root(δ(x)) ∈ F \

Val for some x ∈ LVar(ρ)∪
⋃

p∈P LVar(ρp). Then root(δ(x)) = root(γ(δ(x))) =
root(σ(τ(x))) ∈ F \ Val, which contradicts τ � ϕ′′. Condition (3) follows from
the identity δγ = τσ together with τ � ϕ′′ which imply δγ � ϕ′′ and thus
ϕ′′δ is satisfiable. Hence also ϕδ ∧

∧
p∈P ϕpδ is satisfiable. It remains to show

condition (4), so let P = {ε} and further assume that ρε and ρ are variants.
So there exists a variable renaming π such that ρεπ = ρ. In particular, �επ = �
and rεπ = r. We show τ(π(x)) = π(τ(x)) for all x ∈ Var(�ε). Let x ∈ Var(�ε). If
x ∈ LVar(ρε) = Dom(ν) then τ(x) = ν(x) ∈ Val. Moreover, π(x) ∈ LVar(ρ) =
Dom(μ) and thus τ(π(x)) = μ(π(x)) ∈ Val. Since �ετ and �τ are unifiable,
π(τ(x)) = τ(x) = τ(π(x)). If x /∈ LVar(ρε) then τ(x) = x, π(x) /∈ LVar(ρ)
and similarly τ(π(x)) = π(x) = π(τ(x)). All in all, �ετπ = �επτ = �τ . Now, if
Var(rε) ⊆ Var(�ε) then we obtain rετπ = rεπτ = rτ , contradicting the fact that
�εν → rεν and �μ → rμ are not variants. We conclude that s′ ≈ t′ [ϕ′′δ] is a
constrained parallel critical pair of R. So we can take ϕ′ = ϕ′′δ. Clearly, s = s′γ
and t = t′γ. Moreover, γ � ϕ′ since ϕ′γ = ϕ′′τσ = ϕ′′τ and τ � ϕ′′. ��

The proofs of the following lemmata are given in [18].

Lemma 5. If s ≈ t [ϕ] ∼‖→P
�1 u ≈ v [ψ] then for all substitutions σ � ϕ there

exists a substitution δ such that δ � ψ, sσ ‖→P uδ and tσ = vδ. ��

Lemma 6. If a constrained critical pair s ≈ t [ϕ] is 1-parallel closed then sσ ‖→
· ∗← tσ for all substitutions σ with σ � ϕ. ��

Lemma 7. If a constrained parallel critical pair s = �σ′[rpσ
′]p∈P ≈ rσ′ = t [ϕ]

is 2-parallel closed then there exist a term v and a set Q of parallel positions
such that sσ →∗ v Q ‖→tσ and Var(v,Q) ⊆ Var(�σ′σ, P) for all substitutions σ
with σ � ϕ. ��

Theorem 8. If an LCTRS R is parallel closed then R is parallel closed.

Proof. Let R be a parallel closed LCTRS. First consider an arbitrary critical
pair s ≈ t ∈ CP(R). From Theorem2 we know that there exist a constrained
critical pair s′ ≈ t′ [ϕ] ∈ CCP(R) and a substitution σ such that s′σ = s, t′σ = t

Confluence of LCTRSs Revisited 313

and σ � ϕ. Since the constrained critical pair is 1-parallel closed, Lemma 6 yields
s ‖→ · ∗← t. Hence R is 1-parallel closed.

Next consider an arbitrary parallel critical pair s ≈ t ∈ PCP(R). Theorem
7 yields a constrained parallel critical pair s′ = �σ′[rpσ

′]p∈P ≈ rσ′ = t′ [ϕ] in
CPCP(R) and a substitution σ such that s′σ = s, t′σ = t and σ � ϕ. Since the
constrained parallel critical pair is 2-parallel closed, by Lemma 7 there exist a
term v and a set of parallel positions Q such that s →∗ v Q ‖→t and Var(v,Q) ⊆
Var(�σ′σ, P). Hence R is 2-parallel closed. ��

Since left-linearity of R is preserved in R and left-linear, parallel closed TRSs
are confluent by Theorem 6, we obtain the following corollary via Theorems 7 and
8. Again, R only has to be left-linear in the variables x /∈ LVar, since that is
sufficient for R to be left-linear.

Corollary 2. Every left-linear parallel closed LCTRS is confluent. ��

We illustrate the corollary on a concrete example.

Example 8. Consider the LCTRS R over the theory Ints with the rules

f(a) → g(4, 4) a → g(1+ 1, 3+ 1) g(x, y) → f(g(z, y)) [z = x − 2]

The constrained (parallel) critical pair f(g(1+1, 3+1)) ≈ g(4, 4) [true] originating
from the peak f(g(1+1, 3+1)) [true] {1} ‖→f(a) [true] →ε g(4, 4) [true] is 2-parallel
closed:

f(g(1+ 1, 3+ 1)) ≈ g(4, 4) [true] ∼‖→�1 f(g(2, 4)) ≈ g(4, 4) [true]
∼‖→{2}

�2 f(g(2, 4)) ≈ f(g(2, 4)) [true]

Note that the condition T Var(f(g(2, 4)), true, {2}) ⊆ T Var(f(a), true, {1}) is triv-
ially satisfied. One easily checks that the corresponding constrained critical pair
is 1-parallel closed. Since the only other remaining constrained critical pair is
trivial, we conclude confluence by Corollary 2.

7 Conclusion

We presented a left-linearity preserving transformation from LCTRSs to TRSs
such that (parallel) critical pairs in the latter correspond to constrained (paral-
lel) critical pairs in the former. As a consequence, confluence results for TRSs
based on restricted joinability conditions easily carry over to LCTRSs. This was
illustrated by generalizing the advanced confluence results of van Oostrom [15]
and Toyama [20] from TRSs to LCTRSs. We also proved that (local) confluence
of terminating LCTRSs over a decidable theory is undecidable in general.

Figure 2 relates the confluence criteria in this paper to the earlier ones from
[12,17]. The acronyms stand for weak orthogonality (WO, [12, Theorem 4]),

314 J. Schöpf et al.

Fig. 2. Relating confluence criteria for LCTRSs.

strong closedness (SC, [17, Theorem 2]), almost parallel closedness (APC, [17,
Theorem 4]), almost development closedness (ADC, Corollary 1), and parallel
closedness of (parallel) critical pairs (PCP, Corollary 2). All areas are inhabited
and the numbers refer to examples in this paper.

The confluence results of [12,17] have been implemented in crest.1 The tool
is currently under heavy development, not only to incorporate the results in this
paper but also termination and completion techniques. Confluence of LCTRSs
is a new category in the upcoming edition of the Confluence Competition2 and
we expect to present experimental results obtained with crest at the conference.

For TRSs numerous other confluence techniques, not based on restricted
joinability conditions of critical pairs, as well as sufficient conditions for non-
confluence are known [1,8,19,23]. We plan to investigate which techniques gen-
eralize to LCTRSs with our transformation. The transformation also makes the
formal verification of confluence criteria for LCTRSs in a proof assistant a more
realistic goal.

Acknowledgments. The detailed feedback of the reviewers improved the presentation.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

1 http://cl-informatik.uibk.ac.at/software/crest/.
2 https://project-coco.uibk.ac.at/2024/.

http://cl-informatik.uibk.ac.at/software/crest/
https://project-coco.uibk.ac.at/2024/

Confluence of LCTRSs Revisited 315

References

1. Aoto, T.: Disproving confluence of term rewriting systems by interpretation and
ordering. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 311–326. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40885-4_22

2. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting sys-
tems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4_7

3. Ciobâcă, S., Lucanu, D., Buruiană, A.S.: Operationally-based program equivalence
proofs using LCTRSs. J. Log. Algebr. Methods Program. 135, 100894 (2023).
https://doi.org/10.1016/j.jlamp.2023.100894

4. Ciobâcă, Ş, Lucanu, D.: A coinductive approach to proving reachability proper-
ties in logically constrained term rewriting systems. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 295–311. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_20

5. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM Trans. Comput. Log. 18(2), 14:1–14:50 (2017). https://
doi.org/10.1145/3060143

6. Gramlich, B.: Confluence without termination via parallel critical pairs. In: Kirch-
ner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 211–225. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61064-2_39

7. Hirokawa, N., Kim, D., Shintani, K., Thiemann, R.: Certification of confluence-
and commutation-proofs via parallel critical pairs. In: Timany, A., Traytel, D.,
Pientka, B., Blazy, S. (eds.) Proceedings of 13th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pp. 147–161. ACM (2024). https://
doi.org/10.1145/3636501.3636949

8. Hirokawa, N., Nagele, J., van Oostrom, V., Oyamaguchi, M.: Confluence by critical
pair analysis revisited. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol.
11716, pp. 319–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29436-6_19

9. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press, Oxford (1970). https://doi.org/10.1016/B978-0-08-012975-4.50028-X

10. Kohl, C., Middeldorp, A.: A formalization of the development closedness criterion
for left-linear term rewrite systems. In: Krebbers, R., Traytel, D., Pientka, B.,
Zdancewic, S. (eds.) Proceedings of 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs, pp. 197–210 (2023). https://doi.org/10.1145/
3573105.3575667

11. Kohl, C., Middeldorp, A.: Formalizing almost development closed critical pairs. In:
Naumowicz, A., Thiemann, R. (eds.) Proceedings of 14th International Conference
on Interactive Theorem Proving. Leibniz International Proceedings in Informatics,
vol. 268, pp. 38:1–38:8 (2023). https://doi.org/10.4230/LIPIcs.ITP.2023.38

12. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp.
343–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-
4_24

13. Mitterwallner, F., Schöpf, J., Middeldorp, A.: Reducing confluence of LCTRSs to
confluence of TRSs. In: Proceedings of 12th International Workshop on Confluence,
pp. 3–8 (2023)

https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1016/j.jlamp.2023.100894
https://doi.org/10.1007/978-3-319-94205-6_20
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143
https://doi.org/10.1007/3-540-61064-2_39
https://doi.org/10.1145/3636501.3636949
https://doi.org/10.1145/3636501.3636949
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.4230/LIPIcs.ITP.2023.38
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24

316 J. Schöpf et al.

14. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report.
In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_24

15. van Oostrom, V.: Developing developments. Theor. Comput. Sci. 175(1), 159–181
(1997). https://doi.org/10.1016/S0304-3975(96)00173-9

16. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.
52, 264–268 (1946). https://doi.org/10.1090/S0002-9904-1946-08555-9

17. Schöpf, J., Middeldorp, A.: Confluence criteria for logically constrained rewrite
systems. In: Pientka, B., Tinelli, C. (eds.) CADE 2023. LNCS, vol. 14132, pp.
474–490. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_27

18. Schöpf, J., Mitterwallner, F., Middeldorp, A.: Confluence of logically constrained
rewrite systems revisited. CoRR abs/2402.13552 (2024). https://doi.org/10.48550/
ARXIV.2402.13552

19. Shintani, K., Hirokawa, N.: Compositional confluence criteria. In: Felty, A.P. (ed.)
Proceedings of 7th International Conference on Formal Structures for Computation
and Deduction. Leibniz International Proceedings in Informatics, vol. 228, pp.
28:1–28:19 (2022). https://doi.org/10.4230/LIPICS.FSCD.2022.28

20. Toyama, Y.: On the Church–Rosser property of term rewriting systems. NTT ECL
Technical report 17672, NTT ECL (1981). (in Japanese)

21. Toyama, Y.: Commutativity of term rewriting systems. In: Programming of Future
Generation Computers II, pp. 393–407. North-Holland (1988)

22. Winkler, S., Middeldorp, A.: Completion for logically constrained rewriting. In:
Kirchner, H. (ed.) Proceedings of 3rd International Conference on Formal Struc-
tures for Computation and Deduction. Leibniz International Proceedings in Infor-
matics, vol. 108, pp. 30:1–30:18 (2018). https://doi.org/10.4230/LIPIcs.FSCD.
2018.30

23. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams.
J. Autom. Reason. 54(2), 101–133 (2015). https://doi.org/10.1007/s10817-014-
9316-y

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1007/978-3-031-38499-8_27
https://doi.org/10.48550/ARXIV.2402.13552
https://doi.org/10.48550/ARXIV.2402.13552
https://doi.org/10.4230/LIPICS.FSCD.2022.28
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
https://doi.org/10.1007/s10817-014-9316-y
https://doi.org/10.1007/s10817-014-9316-y
http://creativecommons.org/licenses/by/4.0/

Equational Anti-unification
over Absorption Theories

Mauricio Ayala-Rincón1 , David M. Cerna2(B) ,
Andrés Felipe González Barragán1 , and Temur Kutsia3

1 Universidade de Braśılia, Braśılia, Brazil
ayala@unb.br, andres.felipe@aluno.unb.br

2 Czech Academy of Sciences Institute of Computer Science, Prague, Czechia
dcerna@cs.cas.cz

3 Research Institute for Symbolic Computation, Johannes Kepler University, Linz,
Austria

kutsia@risc.jku.at

Abstract. Interest in anti-unification, the dual problem of unification,
is rising due to various new applications. For example, anti-unification-
based techniques have been used recently in software analysis and related
areas such as clone detection and automatic program repair. While
syntactic forms of anti-unification have found many interesting uses,
some aspects of modern applications are more appropriately modeled by
reasoning modulo an equational theory. Thus, extending existing anti-
unification methods to deal with important equational theories is the
natural step forward. This paper considers anti-unification modulo pure
absorption theories, i.e., where some function symbols are associated
with a special constant satisfying the axiom f(x, εf) � f(εf , x) � εf .
We provide a sound and complete rule-based algorithm for such theo-
ries. Furthermore, we show that anti-unification modulo absorption is
infinitary. Despite this, our algorithm terminates and produces a finitary
algorithmic representation of the minimal complete set of solutions.

Keywords: Anti-unification · Generalization · Equational Theories

1 Introduction

Anti-unification (AU) is a fundamental operation for reasoning about general-
izations of formal objects. It is the dual operation to unification. The seminal
works of Plotkin and Reynolds, introducing the area, were published more than
fifty years ago [27,28]. Recent applications renewed the interest in this tech-
nique. This current tendency is mainly due to the significance of generalization
operations within frameworks crucial for software analysis and related areas [19].

In contrast to unification, where identifying the equivalence classes induced
by a set of expressions is the main objective, AU methods search for the least gen-
eral commonalities induced by a set of expressions. Investigations have exploited
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 317–337, 2024.
https://doi.org/10.1007/978-3-031-63501-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_17&domain=pdf
http://orcid.org/0000-0003-0089-3905
http://orcid.org/0000-0002-6352-603X
http://orcid.org/0000-0003-1350-3072
http://orcid.org/0000-0003-4084-7380
https://doi.org/10.1007/978-3-031-63501-4_17

318 M. Ayala-Rincón et al.

AU methods for various applications such as the implementation of efficient par-
allel compilers [8], plagiarism detection and code cloning [33,35,36], automated
bug detection and fixing [7,24,32,34], and indexing/compression/library learn-
ing [15,26], just to name a few. Anti-unification has been studied for several
mathematical and computational structures such as term-graphs [13], higher-
order terms [12,20,25], unranked (variadic) languages [10,21], nominal terms
[11,29,30], modulo approximations [5,22,23] and background (first-order) equa-
tional theories, which is also the subject of this paper. Some of these algorithms
have been implemented and can be accessed online [2,9].

Syntactic AU algorithms [27,28] compute the least general generalizations
(lgg). In the equational case, the given terms do not necessarily have a single
lgg. Problems are instead characterized by their minimal complete sets of gener-
alizations (mcsg), which leads to the classification of theories depending on the
existence and cardinality of such sets: If the mcsg does not exist for some prob-
lem in the given theory, then the theory has the nullary AU type. Otherwise,
theories may have unitary (all problems have a singleton mcsg, i.e., a single lgg),
finitary (all problems have a finite mcsg, at least one of which is not a singleton),
or infinitary (there is a problem with the infinite mcsg) AU type.

There have been quite a few developments concerned with AU modulo equa-
tional theories. For example, Burghardt [14] considered AU modulo an arbi-
trary equational theory using grammars. Most other authors studied AU over
fundamental algebraic properties and their combinations, e.g., associative (A),
commutative (C), AC, idempotent (I) operators, or operators with unit (U)
elements. An early work by Baader [6] studied AU over so-called “commuta-
tive theories”, covering commutative monoids (ACU), commutative idempotent
monoids (ACUI), and Abelian groups. In a restricted setting, he showed that AU
in such theories is unitary. Alpuente et al. [1,3] studied AU over combinations of
A, C, and U operators in an order-sorted setting, providing complete AU algo-
rithms, and proving that all studied problems are finitary. Cerna and Kutsia [18]
showed that some results depend on the number of symbols that satisfy the
associated equational axioms. For instance, they proved the nullarity of theories
containing more than one equational symbol: U>1, (AU)>1(CU)>1, (ACU)1, and
(AU)(CU). They also show that I,AI,CI are infinitary [17], and Cerna proved
that (UI)>1, (AUI)>1, (CUI)>1, (ACUI)>1, and semirings are nullary [16].

This paper extends the state-of-the-art on equational anti-unification by pro-
viding an algorithm to solve first-order AU problems in which collapsing symbols
may occur. These are symbols that are associated with an absorption constant
such that f(εf , x) � εf � f(x, εf). Such properties often appear in syntactic,
logical, and algebraic frameworks (e.g., 0 × x � 0, false ∧ p � false). They are an
instance of the subterm-collapsing property. Concerning applications, one could
consider such operations as modeling exception handling and other methods of
flagging errors in software development, where much of the context is discarded
when the error handling code is triggered. In such cases, like absorption theories,
the state before triggering the error handling code is not precisely captured by
the resulting context and, in a sense, can be abstracted away.

Equational Anti-unification over Absorption Theories 319

In this paper, we provide a detailed study of anti-unification in absorption
theories: investigating its type (which turns out to be infinitary), coming up with
a finitary algorithmic representation of the potentially infinite mcsg, developing
an algorithm that computes such a representation, and studying its properties.
Moreover, our work opens a way toward characterizing anti-unification for a big-
ger class of subterm-collapsing equational theories, where techniques introduced
in this paper can be useful. We leave this as a future work.

Plan of the Paper. After defining the notions (Sect. 2), we introduce an algorithm
for anti-unification over absorption theories (Sect. 3), prove its soundness and
completeness (Sect. 4), show that anti-unification over absorption theories is of
type infinitary and provide a brief complexity analysis (Sect. 5). Some proofs
and explanatory examples can be found in [4].

2 Preliminaries

Let V be a countable set of variables and F a set of function symbols with a
fixed arity. Additionally, we assume F contains a special constant �, referred to
as the wild card. The set of terms derived from F and V is denoted by T (F ,V),
whose members are constructed using the grammar t ::= x | f(t1, . . . , tn), where
x ∈ V and f ∈ F with arity n ≥ 0. When n = 0, f is called a constant. Constant
and function symbols, terms, and variables are denoted by lower-case letters
of the first, second, third, and fourth quarter of the alphabet (a, b, . . .; f, g, . . .;
r, s, . . .; x, y, . . .). The set of variables occurring in t is denoted by var(t). The
size of a term is defined inductively as: size(x) = 1, and size(f(t1, . . . , tn)) =
1 +

∑n
i = 1 size(ti). The depth of a term t is defined inductively as dep(x) = 1 for

variables and dep(f(t1, . . . , tn)) = max{dep(t1), . . . , dep(tn)} + 1 otherwise.
The set of positions of a term t, denoted by pos(t), is a set of strings of

positive integers, defined as pos(f(t1, . . . , tn)) = {ε} ∪
⋃n

i = 1{i.p | p ∈ pos(ti)},
where f ∈ F , t1, . . . , tn are terms, and ε denotes the empty string. For example,
the term at position 1.2 of g(f(x, a)) is a. Given a term t and p ∈ pos(t), then
t|p denotes the subterm of t at position p. Given a term t and p, q ∈ pos(t), we
write p ⊑ q if q = p.q′ and p ⊏ q if p ⊑ q and p ≠ q. The set of subterms of a
term t is defined as sub(t) = {t|p | p ∈ pos(t)}. The head of a term t is defined
as head(x) = x and head(f(t1, . . . , tn)) = f , for n ≥ 0.

A substitution is a function σ : V → T (F ,V) such that σ(x) ≠ x for only
finitely many variables. The set of the variables that are not mapped to them-
selves is called the domain of σ, denoted as dom(σ). The range of σ, denoted
ran(σ), is the set of terms {σ(x) | x ∈ dom(σ)}. We refer to a ground term t if
var(t) = ∅ and a ground substitution σ if for all t ∈ ran(σ), t is ground. Substi-
tutions are extended to terms in the usual manner. We use the postfix notation
for substitution application to terms and write tσ instead of σ(t).

Substitutions can be described as sets of bindings of variables in their domains
into terms in their ranges, e.g., we represent a substitution σ as the set {x ↦ xσ |
x ∈ dom(σ)}. Lowercase Greek letters denote substitutions except for the identity

320 M. Ayala-Rincón et al.

substitution that we denote by id. The set of variables occurring in the terms
of ran(σ) is denoted as rvar(σ). The composition of substitutions σ and ρ is
written σρ and is defined by (σρ)(x) = (xσ)ρ for each x ∈ V. The restriction of a
substitution σ to a set of variables V , denoted by σ|V , is a substitution defined
as σ|V (x) = σ(x) for all x ∈ V and σ|V (x) = x otherwise.

In this work, we focus on equational anti-unification. Thus, we refrain from
presenting syntactic variants of the concepts discussed below. For such details,
we refer to the recent survey on the topic [19].

Definition 1 (Equational theory [31]). An equational theory TE is a class
of algebraic structures that hold a set of equational axioms E over T (F ,V).

The relation {(s, t) ∈ T (F ,V) × T (F ,V) | E ⊧ (s, t)} induced by a set of
equalities E gives the set of equalities satisfied by all structures in the theory
of E. We will use the notation s �E t for (s, t) belonging to this set. Also, we
will identify TE with the set of axioms E. Groups, monoids, and semirings are
examples of equational theories.

Definition 2 (E-generalization, ⪯E). The generalization relation of the the-
ory induced by E holds for terms r, s ∈ T (F ,V), written r ⪯E s, if there exists a
substitution σ such that rσ �E. In this case, we say that r is more general than
s modulo E. If r ⪯E s and r ⪯E t, we say that r is an E-generalization of s and
t. The set of all E-generalizations of s and t is denoted as GE(s, t). By ≺E and
�E, we denote the strict and equivalence relations induced by ⪯E, respectively.

Example 1. Consider the equational theory Abs = {f(εf , x) � εf , f(x, εf) � εf},
and the terms s = εf and t = f(f(b, c), a). Then f(f(b, x), a) is an Abs-generali-
zation of s and t. Indeed, σ = {x ↦ εf} and ρ = {x ↦ c} satisfy f(f(b, x), a)σ =
f(f(b, εf), a) �Abs εf and f(f(b, x), a)ρ = f(f(b, c), a).

Definition 3 (Minimal complete set of E-generalizations). The minimal
complete set of E-generalizations of the terms s and t, denoted as mcsgE(s, t),
is a subset of GE(s, t) satisfying:

1. For each r ∈ GE(s, t) there exists r′
∈ mcsgE(s, t) such that r ⪯E r′.

2. If r, r′
∈ mcsgE(s, t) and r ⪯E r′, then r = r′ (minimality).

Example 2. For Example 1, the minimal complete set of Abs-generalizations is
mcsgAbs(εf , f(f(b, c), a)) = {f(f(x, c), a), f(f(b, x), a), f(f(b, c), x)}.

Definition 4 (Anti-unification type). The anti-unification type of an equa-
tional theory E may have one of the following forms:

– Unitary: mcsgE(s, t) exists for all s, t ∈ T (F ,V) and is always singleton.
– Finitary: mcsgE(s, t) exists and is finite for all s, t ∈ T (F ,V), and there exist

s′, t′ ∈ T (F ,V) for which 1 < |mcsgE(s′, t′)| < ∞.
– Infinitary: mcsgE(s, t) exists for all s, t ∈ T (F ,V), and there exist s′, t′ ∈

T (F ,V) such that mcsgE(s′, t′) is infinite.

Equational Anti-unification over Absorption Theories 321

– Nullary: for some s, t ∈ T (F ,V), mcsgE(s, t) does not exist.

Example 3. From the introduction: Syntactic AU is unitary [27,28], AU over
associative (A) and commutative (C) theories is finitary [1], AU over idempotent
theories is infinitary [16], and AU with multiple unital equations is nullary [18].

3 Anti-unification in Absorption Theories

Absorption is one of the fundamental properties used in various algebraic struc-
tures. For example, in semirings, rings, and Boolean algebras, the additive iden-
tity is the absorption constant for multiplication. Concrete examples are the
product operation and 0 in number fields and the intersection operation and ∅
in set theory. So far, investigations on anti-unification over absorption theories
have only considered equational theories defining more elaborate algebraic struc-
tures (semirings [16]). In this work, we study pure absorption theories as part
of a general study on the anti-unification of subterm-collapsing theories.

Remark 1. We only consider anti-unification of ground terms. Given that the
generalization of two distinct variables is a fresh variable and the generalization
of a variable with itself is the same variable, we can treat variables in the input
problem as constants.

For a binary function symbol f ∈ F and a constant εf ∈ F , the absorp-
tion property Abs(f, εf) is given by the axioms {f(x, εf) � εf , f(εf , x) � εf}.
An absorption theory is induced by a finite union of absorption axiom sets
Abs(f1, εf1) ∪ · · · ∪ Abs(fn, εfn

), n ≥ 1, such for all 1 ≤ i ≠ j ≤ n, fi ≠ fj and
εfi
≠ εfj

. Each pair fi, εfi
is called a pair of related absorption symbols. When

the concrete symbols are not relevant or if they are clear from the context, we
refer to an absorption theory simply as Abs.

An anti-unification triple (AUT) is a triple of the form s ≜x t, where x ∈
V, called the label of the AUT, and s, t ∈ T (F ,V). Given a set A of AUTs,
labels(A) = {x | s ≜x t ∈ A} and size(A) =

∑
s ≜xt∈A

(
size(s) + size(t)

)
. A set of

AUTs is valid if its labels are pairwise disjoint. An AUT is referred to as wild if
either the left or right side is the wild card.

Definition 5 (Solved AUT). An AUT s ≜x t is solved over an absorption
theory Abs if head(s) =/ head(t), head(s) and head(t) are not related absorption
symbols, and s ≜x t is not wild.

Intuitively, solved means the label of the AUT is the lgg of the two terms.

3.1 Generalization Procedure for Abs Theories

We present a set of inference rules (Table 1), which, when applied exhaustively
(AUnif procedure), return a set of objects from which Abs-generalizations of
the input AUTs may be derived. The inference rules of the AUnif procedure
work on configurations, defined below.

322 M. Ayala-Rincón et al.

Definition 6 (Configuration). A configuration is a quadruple of the form
〈A;S;D; θ〉, where:

– A is a valid set of AUTs (active set);
– S is a valid set of solved AUTs (store);
– D is a valid set of wild AUTs (delayed set);
– θ is a substitution such that rvar(θ) = labels(A)∪ labels(S)∪ labels(D) (anti-

unifier);
– labels(A), labels(S), labels(D), and dom(θ) are pairwise disjoint.

All terms occurring in a configuration are in their Abs-normal forms: an absorp-
tion constant does not occur as the argument to its absorption symbol.

The rules in the Table 1 will be referred to as follows: Decompose (Dec
=⇒), Solve

(Sol
=⇒), Expansions for Left Absorption, (

ExpLA1
=⇒ and

ExpLA2
=⇒), Expansions for Right

Absorption (
ExpRA1
=⇒ and

ExpRA2
=⇒), Expansion Absorption in Both sides (

ExpBA1
=⇒)

and (
ExpBA2
=⇒), and Merge (Mer

=⇒). By C =⇒ C′ we denote the application of some
inference rule of Table 1 to C resulting in C′. By C =⇒∗ C′ we denote a finite
sequence of inference rule applications starting at C and ending with C′. In both
cases we say C′ is derived from C. An initial configuration is a configuration of the
form 〈A;∅;∅; ι〉, where ι = {fA(x)↦ x | x ∈ labels(A)} with fA : V→(V ∖ labels(A))
being a bijection. A configuration C is referred to as final if no inference rule is
applicable to C. We denote the set of final configurations finitely derived from
an initial configuration C by AUnif(C).

Lemma 1 (Preservation). If C is a configuration and C =⇒ C′, then C′ is a
configuration.

Proof. According to the rules in Table 1, we can have the following two cases:

– A rule removes an AUT s ≜x t from the active set of C. Then either s ≜x t occurs
in the store of C′, or the anti-unifier component of C′ is the composition of the
anti-unifier component of C with {x ↦ r}, where var(r) are fresh variables
labeling newly added AUTs in the active and delayed sets of C′.

– A rule removes an AUT s ≜x t from the store of C. Then the store of C′ is a
subset of the store of C and the anti-unifier component of C′ is the composition
of the anti-unifier component of C with {x ↦ y}, where y is a label of an AUT
in the store of C such that x ≠ y.

In both cases, the properties of a configuration are preserved. 	

Remark 2. For the rest of the paper, we will only consider configurations derived
from initial configurations.

Theorem 1 (Termination). Let C be a configuration. Then AUnif(C) is com-
putable in a finite number of steps.

Equational Anti-unification over Absorption Theories 323

Table 1. Inference rules for the AUnif procedure for Abs theory.

(
Dec
=⇒)

〈{f(s1, . . . , sn) ≜x f(t1, . . . , tn)} ⊍ A;S;D; θ〉
〈{s1 ≜y1 t1, . . . , sn ≜yn tn} ∪A;S;D; θ{x↦ f(y1, . . . , yn)}〉

where f is an n-ary symbol, n ≥ 0, and y1, . . . , yn are fresh variables.

(
Sol
=⇒)

〈{s ≜x t} ⊍A;S;D; θ〉
〈A; {s ≜x t} ∪ S;D; θ〉

where head(s) � =head(t) and they are not related absorption symbols.

(
Mer
=⇒)

〈∅; {s ≜x t, s ≜y t} ∪ S;D; θ〉
〈∅; {s ≜y t} ∪ S;D; θ{x↦ y}〉

In the following rules, f is an absorption symbol and y1, y2 are fresh variables:

(
ExpLA1
=⇒)

〈{εf ≜x f(t1, t2)} ⊍A;S;D; θ〉
〈{εf ≜y1 t1} ∪A;S; {� ≜y2 t2} ∪D; θ{x↦ f(y1, y2)}〉

(
ExpLA2
=⇒)

〈{εf ≜x f(t1, t2)} ⊍A;S;D; θ〉
〈{εf ≜y2 t2} ∪A;S; {� ≜y1 t1} ∪D; θ{x↦ f(y1, y2)}〉

(
ExpRA1
=⇒)

〈{f(s1, s2) ≜x εf} ⊍ A;S;D; θ〉
〈{s1 ≜y1 εf} ∪A;S; {s2 ≜y2 �} ∪D; θ{x↦ f(y1, y2)}〉

(
ExpRA2
=⇒)

〈{f(s1, s2) ≜x εf} ⊍ A;S;D; θ〉
〈{s2 ≜y2 εf} ∪A;S; {s1 ≜y1 �} ∪D; θ{x↦ f(y1, y2)}〉

(
ExpBA1
=⇒)

〈{εf ≜x εf} ⊍A;S;D; θ〉
〈A;S; {εf ≜y1 �, � ≜y2 εf} ∪D; θ{x↦ f(y1, y2)}〉

(
ExpBA2
=⇒)

〈{εf ≜x εf} ⊍A;S;D; θ〉
〈A;S; {� ≜y1 εf , εf ≜y2 �} ∪D; θ{x↦ f(y1, y2))}〉

Proof. Let C = 〈A;S;D; θ〉. We define size(C) : = (size(A), size(S)) and compare
these pairs lexicographically. This ordering is well-founded since the size of a set
of AUTs is a natural number. Observe that if C =⇒ C′ then size(C) > size(C′).
Thus, every sequence of rule applications terminates. Furthermore, any config-
uration can be transformed by rules from Table 1 in finitely many ways. Thus,
by König’s Lemma, AUnif(C) is finite and finitely computable. 	

Let 〈∅, S,D, θ〉 ∈ AUnif(〈A;∅;∅; ι〉), where 〈A;∅;∅; ι〉 is an initial configura-
tion. We will show that for any AUT s ≜x t ∈ A, xθ ∈ GAbs(s, t). Moreover, we
can construct additional generalizations by considering the AUTs in the delayed
sets. We discuss this process in the next section.

3.2 Abstraction Set and Substitutions

We construct the abstraction set and abstraction substitutions from the store
and delayed sets of the final configurations derived using AUnif procedure. Let
〈{s ≜x t};∅;∅; ι〉 be an initial configuration and 〈∅;S;D; θ〉 ∈ AUnif(〈{s ≜x t};
∅;∅; ι〉). While xθ may be more specific than the syntactic generalization of
s and t, any use of the absorption theory while computing xθ is completely
dependent on the presence of absorption symbols and constants within s and t.
Absorption theories allow the introduction of additional structure beyond what

324 M. Ayala-Rincón et al.

is present in the initial AUTs. For example, AUnif computes the generalization
f(x, y) for the terms εf and f(h(εf), h(h(εf))), yet Abs allows a more specific
generalization, f(x, h(x)). In more extreme cases, infinitely many more specific
generalizations may exist.

Definition 7 (Abstraction set). Let t be a ground term in Abs-normal form,
and σ be a substitution whose range is in Abs-normal form. The abstraction set
of t with respect to σ is the set

↑(t, σ) : = {r | rσ �Abs t, r is in Abs-normal form, and var(r) ⊆ dom(σ)}.

Observe that t ∈ ↑(t, σ) since var(t) = ∅ ⊆ dom(σ) and tσ = t. To obtain an
r ∈ ↑(t, σ), we abstract some occurrences of some xσ’s in t by x, where x ∈ dom(σ);
this is the origin of the term “abstraction set”.

Example 4. Let t = g(εf , f(h(a), b)) and σ = {x ↦ a, y ↦ f(h(a), b), z ↦ b}. Then
the abstraction set of t with respect to σ is

↑(t, σ) = {t, g(εf , y), g(εf , f(h(x), b)), g(εf , f(h(a), z)), g(εf , f(h(x), z))}.

Now, consider t = h(εf) and σ = {y ↦ a, v ↦ εf}. Then ↑(t, σ) is infinite:

↑(t, σ) = {h(εf), h(v)} ∪ {h(f(v, s)) | s ∈ T (F , {y, v})} ∪
{h(f(s, v)) | s ∈ T (F , {y, v})} ∪
{h(f(f(v, s), r)) | s, r ∈ T (F , {y, v})} ∪ · · ·

Let us consider a particular configuration C. Observe that all AUTs occurring
in the delayed set of C are wild, i.e., of the form � ≜x t or t ≜x � where t is ground
and � is a constant, indicating that the particular term occurring in the AUT at
this position is irrelevant. We produce more specific generalizations by compos-
ing abstraction substitutions with the anti-unifier of C. Essentially, abstraction
substitutions are anti-unifiers of AUTs in the delayed set of C constructed from
an interpretation of the wild cards as particular terms. The variables occurring
in the range of an abstraction substitution are restricted to labels of the store of
C. In Sect. 4, we show that this restriction does not influence completeness.

Definition 8 (Abstraction substitutions). Let C = 〈A;S;D; θ〉 be a config-
uration such that D ≠ ∅. A substitution τ is called an abstraction substitution
of C if dom(τ) = labels(D), and for each y ∈ dom(τ) we have yτ ∈ ↑y(D,S),
where

↑y(D,S) : =
{
↑(t, {x ↦ r | l ≜x r ∈ S, for some l}) if � ≜y t ∈ D,
↑(s, {x ↦ l | l ≜x r ∈ S, for some r}) if s ≜y � ∈ D.

The set of abstraction substitutions of C is denoted by Ψ(D,S).

Corollary 1. Let 〈A;S;D; θ〉 be a configuration such that D ≠ ∅. Then for any
y ∈ labels(D) and τ ∈ Ψ(D,S), var(yτ) ⊆ labels(S).

Equational Anti-unification over Absorption Theories 325

The following example illustrates the computation of final configurations using
AUnif and the construction of the abstraction sets.

Example 5. Applying AUnif to g(εf , f(a, h(εf))) ≜x g(f(h(εf), a), εf), we get
the following four derivations that lead to four final configurations:

Derivation 1 : 〈{g(εf , f(a, h(εf))) ≜x g(f(h(εf), a), εf)};∅;∅; ι〉Dec
=⇒

〈{εf ≜w1 f(h(εf), a), f(a, h(εf)) ≜w2 εf};∅;∅; {x ↦ g(w1, w2), . . .}〉ExpLA1
=⇒

〈{εf ≜u1 h(εf), f(a, h(εf)) ≜w2 εf};∅; {� ≜v1 a}; {x ↦ g(f(u1, v1), w2), . . .}〉ExpRA1
=⇒

〈{εf ≜u1 h(εf), a ≜u2 εf};∅; {� ≜v1 a, h(εf) ≜v2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉Sol×2=⇒
〈∅; {εf ≜u1 h(εf), a ≜u2 εf}; {� ≜v1 a, h(εf) ≜v2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉.

Then D = {� ≜v1 a, h(εf) ≜v2 �} and S = {εf ≜u1 h(εf), a ≜u2 εf}. For the
variable v1, ↑v1(D,S) = ↑(a, {u1 ↦ h(εf), u2 ↦ εf}) = {a}. For the variable v2,
↑v2(D,S) = ↑(h(εf), {u1 ↦ εf , u2 ↦ a}) is an infinite set

{h(εf), h(u1)} ∪ {h(f(u1, s)) | s ∈ T (F , {u1, u2})}
∪ {h(f(s, u1)) | s ∈ T (F , {u1, u2})}
∪ {h(f(f(u1, s), t)) | s, t ∈ T (F , {u1, u2})} ∪ · · ·

The set of abstraction substitutions Ψ(D,S) is an infinite set including
{{v1 ↦ a, v2 ↦ h(εf)}, {v1 ↦ a, v2 ↦ h(u1)}, {v1 ↦ a, v2 ↦ h(f(u1, a))}, . . .}.
From the final configuration, we get an infinite set Abs-generalizations of the
initial AUT, including, e.g., g(f(u1, a), f(u2, h(εf))), g(f(u1, a), f(u2, h(u1))),
g(f(u1, a), f(u2, h(f(u1, a)))), etc.

Derivation 2 : 〈{g(εf , f(a, h(εf))) ≜x g(f(h(εf), a), εf)};∅;∅; ι〉Dec
=⇒

〈{εf ≜w1 f(h(εf), a), f(a, h(εf)) ≜w2 εf};∅;∅; {x ↦ g(w1, w2), . . .}〉ExpLA1
=⇒

〈{εf ≜u1 h(εf), f(a, h(εf))≜w2 εf};∅; {�≜v1 a}; {x↦ g(f(u1, v1), w2), . . .}〉ExpRA2
=⇒

〈{εf ≜u1 h(εf), h(εf) ≜v2 εf};∅; {� ≜v1 a, a ≜u2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉Sol×2=⇒
〈∅; {εf ≜u1 h(εf), h(εf) ≜v2 εf}; {� ≜v1 a, a ≜u2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉.

Then D = {� ≜v1 a, a ≜u2 �} and S = {εf ≜u1 h(εf), h(εf) ≜v2 εf}. Thus, ↑v1(D,S) =
↑(a, {u1 ↦ h(εf), v2 ↦ εf}) = {a}, and ↑u2(D,S) = ↑(a, {u1 ↦ εf , v2 ↦ h(εf)}) =
{a}. This leads to the generalization g(f(u1, a), f(a, v2)).

326 M. Ayala-Rincón et al.

Derivation 3 : 〈{g(εf , f(a, h(εf))) ≜x g(f(h(εf), a), εf)};∅;∅; ι〉Dec
=⇒

〈{εf ≜w1 f(h(εf), a), f(a, h(εf)) ≜w2 εf};∅;∅; {x ↦ g(w1, w2), . . .}〉ExpLA2
=⇒

〈{εf ≜v1 a, f(a, h(εf)) ≜w2 εf};∅; {� ≜u1 h(εf)};

{x ↦ g(f(u1, v1), w2), . . .}〉ExpRA1
=⇒

〈{εf ≜v1 a, a ≜u2 εf};∅; {� ≜u1 h(εf), h(εf) ≜v2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉Sol×2=⇒
〈∅; {εf ≜v1 a, a ≜u2 εf}; {� ≜u1 h(εf), h(εf) ≜v2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉.

Then D = {� ≜u1 h(εf), h(εf) ≜v2 �} and S = {εf ≜v1 a, a ≜u2 εf}. Thus, we get

↑u1 (D,S) = ↑(h(εf), {v1 ↦ a, u2 ↦ εf}) =
{h(εf), h(u2)} ∪ {h(f(u2, s)) | s ∈ T (F , {v1, u2})} ∪ · · · , and

↑v2 (D,S) = ↑(h(εf), {v1 ↦ εf , u2 ↦ a}) =
{h(εf), h(v1)} ∪ {h(f(v1, s)) | s ∈ T (F , {v1, u2})} ∪ · · ·

Then Ψ(D,S) is infinite, it contains, e.g., the substitutions {u1 ↦ h(εf), v2 ↦
h(εf)}, {u1 ↦ h(εf), v2 ↦ h(v1)}, {u1 ↦ h(u2), v2 ↦ h(εf)}, etc. This leads to
infinitely many generalizations of the initial AUT, including, e.g., g(f(h(εf), v1),
f(u2, h(εf))), g(f(h(εf), v1), f(u2, h(v1))), etc.

Derivation 4 : 〈{g(εf , f(a, h(εf))) ≜x g(f(h(εf), a), εf)};∅;∅; ι〉Dec
=⇒

〈{εf ≜w1 f(h(εf), a), f(a, h(εf)) ≜w2 εf};∅;∅; {x ↦ g(w1, w2)}〉ExpLA2
=⇒

〈{εf ≜v1 a, f(a, h(εf)) ≜w2 εf};∅; {� ≜u1 h(εf)}; {x ↦ g(f(u1, v1), w2), . . .}〉ExpRA2
=⇒

〈{εf ≜v1 a, h(εf) ≜v2 εf};∅; {� ≜u1 h(εf), a ≜u2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉Sol×2=⇒
〈∅; {εf ≜v1 a, h(εf) ≜v2 εf}; {� ≜u1 h(εf), a ≜u2 �};

{x ↦ g(f(u1, v1), f(u2, v2)), . . .}〉.

Then D = {� ≜u1 h(εf), a ≜u2 �} and S = {εf ≜v1 a, h(εf) ≜v2 εf}. This leads to
infinitely many generalizations f the initial AUT, including, e.g., g(f(h(εf), v1),
f(a, v2)), g(f(h(v2), v1), f(a, v2)), g(f(h(f(v2, a)), v1), f(a, v2)), etc., since

↑u1 (D,S) = ↑(h(εf), {v1 ↦ a, v2 ↦ εf}) =
{h(εf), h(v2)} ∪ {h(f(v2, s)) | s ∈ T (F , {v1, v2})} ∪ · · · and

↑u2 (D,S) = ↑(a, {v1 ↦ εf , v2 ↦ h(εf)}) = {a}.

Equational Anti-unification over Absorption Theories 327

Example 6. To generalize g(εf , εf , a) and g(εf , b, εf), the AUnif procedure gen-
erates two derivations, which differ from each other only in the last step:

Derivation 1 : 〈{g(εf , εf , a) ≜x g(εf , b, εf)};∅;∅; ι〉 Dec
=⇒

〈{εf ≜y1 εf , εf ≜y2 b, a ≜y3 εf};∅;∅; {x ↦ g(y1, y2, y3), . . .}〉Sol×2=⇒
〈{εf ≜y1 εf}; {εf ≜y2 b, a ≜y3 εf};∅; {x ↦ g(y1, y2, y3), . . .}〉 ExpBA1

=⇒
〈∅; {εf ≜y2 b, a ≜y3 εf}; {� ≜u1 εf , εf ≜u2 �}; {x ↦ g(f(u1, u2), y2, y3), . . .}〉.

Here, for the store S and the delayed set D in the last configuration, we get

↑u1 (D,S) = ↑(εf , {y2 ↦ b, y3 ↦ εf}) =
{εf , y3} ∪ {f(y3, s) | s ∈ T (F , {y2, y3})} ∪ {f(s, y3) | s ∈ T (F , {y2, y3}) ∪
{f(f(y3, s), t) | s, t ∈ T (F , {y2, y3})} ∪ · · ·

↑u2 (D,S) = ↑(εf , {y2 ↦ εf , y3 ↦ a}) =
{εf , y2} ∪ {f(y2, s) | s ∈ T (F , {y2, y3})} ∪ {f(s, y2) | s ∈ T (F , {y2, y3}) ∪
{f(f(y2, s), t) | s, t ∈ T (F , {y2, y3})} ∪ · · ·

From these, we get an infinite set of generalizations that includes, among others,
e.g., g(εf , y2, y3), g(f(y3, y2), y2, y3), g(f(f(y3, y3), y2), y2, y3), etc.

Derivation 2 : 〈{g(εf , εf , a) ≜x g(εf , b, εf)};∅;∅; ι〉 Dec
=⇒

〈{εf ≜y1 εf , εf ≜y2 b, a ≜y3 εf};∅;∅; {x ↦ g(y1, y2, y3)}〉 Sol×2
=⇒

〈{εf ≜y1 εf}; {εf ≜y2 b, a ≜y3 εf};∅; {x ↦ g(y1, y2, y3)}〉 ExpBA2
=⇒

〈∅; {εf ≜y2 b, a ≜y3 εf}; {εf ≜v1 �, � ≜v2 εf}; {x ↦ g(f(v1, v2), y2, y3), . . .}〉.

Again, taking S and D from the last configuration, we get

↑v1 (D,S) = ↑(εf , {y2 ↦ εf , y3 ↦ a}) =
{εf , y2} ∪ {f(y2, s) | s ∈ T (F , {y2, y3})} ∪ {f(s, y2) | s ∈ T (F , {y2, y3}) ∪
{f(f(y2, s), t) | s, t ∈ T (F , {y2, y3})} ∪ · · ·

↑v2 (D,S) = ↑(εf , {y2 ↦ b, y3 ↦ εf})
{εf , y3} ∪ {f(y3, s) | s ∈ T (F , {y2, y3})} ∪ {f(s, y3) | s ∈ T (F , {y2, y3}) ∪
{f(f(y3, s), t) | s, t ∈ T (F , {y2, y3})} ∪ · · ·

From these, we get an infinite set of generalizations that includes, among others,
e.g., g(εf , y2, y3), g(f(y2, y3), y2, y3), g(f(f(y2, y2), y3), y2, y3), etc.

4 Soundness and Completeness

Preserving the stated properties of configurations (Definition 6) is essential to
both the soundness and completeness proofs as these properties enforce consis-
tency with respect to the use of the labels.

328 M. Ayala-Rincón et al.

Theorem 2 (Soundness). Consider 〈A0;S0;D0; θ0〉 =⇒∗ 〈∅;Sn;Dn; θn〉, a
derivation to a final configuration. Then for all s ≜x t ∈ A0 ∪S0, xθn ∈ GAbs(s, t).

Proof. We proceed by induction over the derivation length.
Basecase. If the derivation has length 0, then it starts with a final configuration
implying that A0 = ∅ and for all s ≜x t ∈ S0, xθ0 = x ∈ GAbs(s, t).
Stepcase. Now consider a derivation having the following form:

〈A0;S0;D0; θ0〉 =⇒ 〈A1;S1;D1; θ1〉 =⇒n 〈∅;Sn+1;Dn+1; θn+1〉 (1)

We assume for the induction hypothesis (IH) that for derivations of the form

〈A1;S1;D1; θ1〉 =⇒n 〈∅;Sn+1;Dn+1; θn+1〉,

the theorem holds and show that the theorem holds for derivations of the form
presented in Derivation 1. We continue the proof considering the various options
for the transition from 〈A0;S0;D0; θ0〉 to 〈A1;S1;D1; θ1〉.

1. (Dec). Assume that the derivation is of the form:

〈{f(s1, . . . , sm) ≜y f(t1, . . . , tm)} ⊍A′;S0;D0; θ0〉 Dec
=⇒

〈{s1 ≜x1 t1, . . . , sm ≜xm
tm} ∪A′;S1;D1; θ1〉 =⇒n 〈∅;Sn+1;Dn+1; θn+1〉

where θ1 = θ0{y ↦ f(x1, . . . , xm)}. By the IH, we know that for all 1≤ i≤m,
xiθn+1 ∈ GAbs(si, ti) implying that

f(x1, . . . , xm)θn+1 ∈ GAbs(f(s1, . . . , sm), f(t1, . . . , tm)).

2. (Sol). Assume that the derivation is of the form:

〈{s ≜y t} ⊍A′;S0;D0; θ0〉 Sol
=⇒ 〈A′;S1;D0; θ0〉 =⇒n 〈∅;Sn+1;Dn+1; θn+1〉,

where S1 = {s ≜y t} ∪ S0. By IH, θn+1 generalizes all the AUTs with labels
in S1. Thus, yθn+1 ∈ GAbs(s, t).

3. (ExpLA1). Assume that the derivation is of the form:

〈{εf ≜y f(s, t)} ⊍A′;S0;D0; θ0〉
ExpLA1
=⇒

〈{εf ≜x1 s} ∪A′;S1;D1; θ1〉 =⇒n 〈∅;Sn+1;Dn+1; θn+1〉

where D1 = {� ≜x2 t}∪D0 and θ1 = θ0{y ↦ f(x1, x2)}. By the IH, all the AUTs
in {εf ≜x1 s} ∪ A′ are generalized by the substitution θn+1, thus, x1θn+1 ∈

GAbs(εf , s). Furthermore, since x2 ∈ labels(D) then x2θn+1 = x2 and x2 ⪯Abs

t. We can build the generalization yθn+1 = f(x1θn+1, x2θn+1). Observe that
f(x1θn+1, x2θn+1) = f(x1θn+1, x2) ∈ GAbs(f(εf , t), f(s, t)) and since f(εf , t) �Abs
εf , we get that yθn+1 belongs to GAbs(εf , f(s, t)).

4. The analysis of other one-side expansion rules is analogous to the previous
one.

Equational Anti-unification over Absorption Theories 329

5. (ExpBA1). Assume that the derivation is of the form:

〈{εf ≜y εf} ⊍A′;S0;D0; θ0〉
ExpBA1
=⇒

〈A′;S1;D1; θ1〉 =⇒n 〈∅;Sn+1;Dn+1; θn+1〉

where D1 = {εf ≜x1 �, � ≜x2 εf} ∪ D0 and θ1 = θ0{y ↦ f(x1, x2)}. Notice,
xiθn+1 = xi and xi ⪯Abs εf , for i ∈ {1, 2}. This implies that yθn+1 = f(x1θn+1,
x2θn+1) = f(x1, x2) ∈ GAbs(εf , εf). The case (ExpBA2) is analogous.

6. (Mer) Assume that the derivation is of the form:

〈∅; {s ≜y t, s ≜z t} ∪ S′;D0; θ0〉 Mer
=⇒

〈∅; {s ≜z t} ∪ S′;D1; θ1〉 =⇒n 〈∅;Sn+1;Dn+1; θn+1〉.

Notice that θ1 = θ0{y ↦ z}, where z is the label of the AUT {s ≜z t} ∈ S0.
By IH, zθn+1 ∈ GAbs(s, t) implying that yθn+1 = y{y ↦ z}θn+1 ∈ GAbs(s, t). 	

While the soundness theorem covers the construction of generalizations of AUTs
present in a given configuration, it does not consider the abstraction set or the
construction of more specific generalizations when generalizing over an absorp-
tion theory. The abstraction set allows us to consider generalizations between a
given term and an arbitrary term.

Lemma 2. Let 〈A0;S0;D0; θ0〉 =⇒∗ 〈∅;Sn;Dn; θn〉 be a derivation. Then for
all � ≜u t ∈ Dn (resp. for all s ≜u � ∈ Dn) and τ ∈ Ψ(Dn, Sn), there exists a term
r such that uτ ∈ GAbs(r, t) (resp. uτ ∈ GAbs(r, s)).

Proof. Let η be a ground substitution with dom(η) = var(uτ). Then r = uτη. 	

Intuitively, Lemma 2 formalizes the following observation: if � ≜u t ∈ Dn, then
uτ ∈ ↑u(Dn, Sn) implies uτ ∈ ↑(t, {x ↦ t′ | s ≜x t′ ∈ Sn for some s}). From this,
we can deduce that uτ ⪯Abs t. Thus, for every AUT in the set Dn, the wild card
can be interpreted as r and uτ ⪯Abs r. We can now prove the following:

Theorem 3. Let 〈A0;S0;D0; θ0〉 =⇒∗ 〈∅;Sn;Dn; θn〉 be a derivation to a final
configuration and s ≜x t ∈ A0 ∪S0. Then for all τ ∈ Ψ(Dn, Sn), xθnτ ∈ GAbs(s, t).

Proof. From Theorem 2, xθn ∈ GAbs(s, t). Furthermore, every u ∈ labels(Dn) is
unique, only occurs once in xθn, and uθnτ = uτ . Considering these facts together
with Lemma 2 and u being an Abs-generalization of the respective subterms in
s and t, we deduce that xθnτ ∈ GAbs(s, t). 	

Theorem 4 (Completeness). Let r ∈ GAbs(t1, t2). Then for all configurations
〈A;S;D; θ〉 such that t1 ≜x t2 ∈ A there exist a final configuration 〈∅;S′;D′; θ′〉
∈AUnif(〈A;S;D; θ〉) and τ ∈ Ψ(D′, S′) such that r ⪯Abs xθ′τ .

Proof. The proof is by structural induction over r.

330 M. Ayala-Rincón et al.

Basecase

1. Let r be a variable. Then, we must consider the following three cases:
(a) If head(t1) = head(t2), then from 〈A;S;D; θ〉 such that t1 ≜x t2 ∈ A, we

can reach 〈A′;S;D; θ′〉 by decomposition so that head(xθ′) = head(t1) =
head(t2). Thus, for any final configuration 〈∅;S′′;D′′; θ′′〉 ∈ AUnif(〈A′;
S;D; θ′〉), r ⪯Abs xθ′′ as θ′′ can only be more specific than θ′.

(b) If head(t1) = head(t2) are absorption constants, w.l.o.g, t1 = εf , then from
〈A;S;D; θ〉 such that t1 ≜x t2 ∈A, we can reach 〈A′;S;D; θ′〉 by (ExpBA1)
so that head(xθ′) = f . Thus, for any final configuration 〈∅;S′′;D′′; θ′′〉 ∈
AUnif(〈A′;S;D; θ′〉), r ⪯Abs xθ′′ as θ′′ can only be more specific than θ′.

(c) W.l.o.g, if t1 = εf and t2 = f(s1, s2), then from 〈A;S;D; θ〉 such that t1 ≜x

t2 ∈ A, we can reach 〈A′;S′;D′; θ′〉 using ExpLA1 such that head(xθ′) =
head(t2). Thus, for any final configuration 〈∅;S′′;D′′; θ′′〉 ∈ AUnif(〈A′;
S′;D′; θ′〉), r ⪯Abs xθ′′ as θ′′ is more specific than θ′.

(d) Otherwise, if head(t1) =/ head(t2), then from 〈A;S;D; θ〉 with t1 ≜x t2 ∈ A,
we reach 〈A′;S′;D; θ〉 using Solve where t1 ≜x t2 ∈ S. Thus, for any final
configuration 〈∅;S′′;D′′; θ′′〉 ∈ AUnif(〈A′;S′;D; θ〉), we get r �Abs xθ′′.

In all four cases r ⪯Abs xθ′′ and by Theorem 3 we get r ⪯Abs xθ′τ .
2. Let r be a constant. Then t1 = t2 = r and from a configuration 〈A;S;D; θ〉

where t1 ≜x t2 ∈ A, we can reach a configuration 〈A′;S;D; θ′〉 using the
decomposition rule such that xθ′

= t1 = t2 = r. Thus, for any final configuration
〈∅;S′′;D′′; θ′′〉 ∈ AUnif(〈A′;S′;D′; θ′〉), r ⪯Abs xθ′′τ trivially follows.

Stepcase

1. r = g(r1, . . . , rn), t1 = g(t′1, . . . , t
′
n), and t2 = g(t′′1 , . . . , t′′n); This implies that

ri is a generalization of t′i ≜yi
t′′i for 1 ≤ i ≤ n. From 〈A;S;D; θ〉 we can reach

〈A′;S′;D′; θ′〉, using the decomposition rule, such that t′i ≜yi
t′′i ∈ A′. Note

that there may exist 1≤i<j≤n such that var(ri)∩var(rj) =/ ∅. Let R ⊆ var(r)
such that for z ∈ R there exist 1≤ i< j ≤n such that z ∈ var(ri)∩ var(rj). For
any z ∈ R, there are two cases to consider:
(i) There does not exist a position p ∈ pos(t1) ∩ pos(t2) such that s∗

≜z t∗

where s∗
= t1|p and t∗ = t2|p. In other words, z generalizes terms which

are absorbed during Abs-normalization of rσ and rρ, where rσ �Abs t1
and rρ �Abs t2; this implies that replacing occurrences of z by εf (for
the appropriate absorption symbol f) within r results in a more specific
generalization r′. For the remainder of this proof, we can consider r to be
the generalization resulting from replacing all such variables in R by the
appropriate absorption constant εf .

(ii) There exists a position p ∈ pos(t1)∩pos(t2) such that s∗
≜z t∗ where s∗

=

t1|p and t∗ = t2|p. Notice that z is structurally smaller than r and thus, by
the IH, there exists a final configuration 〈∅;S∗;D∗; θ∗〉 ∈ AUnif(〈{s∗

≜z

t∗};∅;∅; ι〉) and τ∗
∈ Ψ(D∗, S∗) such that z ≤x′θ∗τ∗. We will use θ∗τ∗ to

guarantee variables occurring in multiple ri, for 0 ≤ i ≤ n, are replaced by
the same term in the generalizations resulting from the IH.

Equational Anti-unification over Absorption Theories 331

By the induction hypothesis, there exists a final configuration 〈∅;S′′;D′′;
θ′′〉 ∈ AUnif(〈A′;S′;D′; θ′〉) and τi ∈ Ψ(D′′, S′′) such that ri ⪯Abs yiθ

′′τi where
1 ≤ i ≤ n. Note, we can choose the same configuration 〈∅;S′′;D′′; θ′′〉 for all
AUTs t′i ≜yi

t′′i as the procedure produces all combinations of solutions to the
subproblems. Furthermore, we can choose 〈∅;S′′;D′′; θ′′〉 such that S∗

⊆ S′′

and D∗
⊆ D′′ modulo label renaming as s∗ and t∗ are subterms of t1 and t2,

respectively, modulo absorption symbol introduction. Now, we define γi as
the substitution such that riγi �Abs yiθ

′′τi. By the above construction, we can
safely assume for all z ∈ var(r1)∩var(r2) such that z has not been replaced by
an absorption constant, that zγi �Abszθ∗τ∗ as there exist AUTs corresponding
to S∗ and D∗ in S′′ and D′′, respectively.
Now let μ be a substitution and r′

i (1 ≤ i ≤ n) be terms such that for all
1 ≤ i ≤ n, ri = r′

iμ and g(r′
1, . . . , r

′
n) ⪯Abs g(y1θ′′, . . . , ynθ′′). If μ is the identity

substitution, then we are done. Otherwise, we can use μ to construct a τ ∈
Ψ(D′′, S′′). Additionally, we need to consider the τi ∈ Ψ(D′′, S′′) derived above
for each ri, where 1 ≤ i ≤ n, and the corresponding substitutions γi. Thus,
r′
iμ ⪯Abs yiθ

′′τi and r′
iμγi �Abs yiθ

′′τi.
Now let μ1

i and μ2
i be substitutions such that μγi = (μ1

i μ
2
i)|dom(μγi) and

r′
iμ

1
i �Abs yiθ

′′. This is possible given the assumption that g(r′
1, . . . , r

′
n) ⪯Abs

g(y1θ′′, · · · , ynθ′′). Note that r′
iμ

1
i �Absyiθ

′′ implies that for every x ∈ dom(μ2
i)

there exists a z ∈ dom(τi) such that zτi �Abs xμ2
i .

We now construct τ ∈ Ψ(D′′, S′′) using the μ2
i , that is for all 1 ≤ j ≤ n and

x ∈ dom(μ2
j) there exists a z ∈ dom(τ) such that zτ �Absxμ2

j . It now follows that
ri⪯Absyiθ

′′τ holds for all 1≤i≤n and thus we have shown that g(r1, . . . , rn)⪯Abs
g(y1, · · · , yn)θ′′τ .

2. r = f(r1, r2), where f is an absorption symbol and, w.l.o.g, t1 = εf and t2 =
f(s1, s2). Then from 〈A;S;D; θ〉 we can derive a configuration 〈A′;S′;D′; θ′〉
using the ExpLA1 rule such that � ≜y2 s2 ∈ D′ and εf ≜y1 s1 ∈ A′. Now let
〈∅;S′′;D′′; θ′′〉 ∈ AUnif(〈A′;S′;D′; θ′〉) be a final configuration.
By the induction hypothesis we know that r1 ⪯Abs y1θ

′′τ1 for some τ1 ∈
Ψ(S′′,D′′). Let μ′ be a substitution such that r1μ

′
�Absy1θ

′′τ1 and R2 ⊆ var(r)
such that R2 ∩ var(r1) = ∅. Using R2 we define a bijective renaming ν such
that for all z ∈ R2, zν /∈ ∈ var(r1μ′) ∪ var(r1).
We will now consider the term rνμ′

= f(r1μ′, r2νμ′). Note that for all variables
z ∈ var(r1)∩var(r2ν), it must be the case that zμ′

⪯Abs zμ∗ where r1μ
∗
�Abs s1

and r2μ
∗
�Abs s2. Thus, observe that r2νμ′

⪯Abs s2.
Now let γ′ be a substitution such that dom(γ′) = var(r2νμ′), r2νμ′γ′

�Abs s2,
and r1μ

′γ′
�Abs s1. Now consider R′

2 = {z | z ∈ dom(γ′) ∧ z /∈ ∈ var(r1μ′)}
and ν′

= {z ↦ l | z ∈ R′
2 ∧ zγ′

= l}. Note that r2νμ′ν′
⪯Abs s2 and there exists

t∗ ∈ ↑y2(D
′′, S′′) such that r2νμ′ν′

�Abs t∗ by the definition of the abstraction
set. For terms in ↑y2(D

′′, S′′) we know how to build a τ2 ∈ Ψ(D′′, S′′).
Now let μ′

1 and μ′
2 be substitutions such that r1μ

′
�Abs r′

1μ
′
1μ

′
2 and for all

z ∈ dom(μ′
2) there exists y ∈ dom(τ1) such that zμ′

2 �Abs yτ1. Notice we can
apply the same rewriting to r2νμ′ν′ that is r′

2μ
′′
1μ′′

2 �Absr2νμ′ν′. We are free to
choose the dom(ν′) such that it does not compose with the range of μ′. Thus
for variables z ∈ var(r′

1μ
′
1) ∩ var(r′

2μ
′′
1) such that z ∈ dom(μ′′

2), there exists

332 M. Ayala-Rincón et al.

y ∈ dom(τ2) such that zμ′′
2 �Abs yτ2 and zμ′

2 �Abs yτ1. We can safely assume
that the dom(τ2) ∩ var(ran(τ1)) = ∅, thus we can choose τ ∈ Ψ(D′′, S′′) such
that τ = τ1τ2 as the required substitution; So, r ⪯Abs f(y1, y2)θ′′τ .

3. r = f(r1, r2), where f is an absorption symbol and, t1 = εf and t2 = εf . Then
from 〈A;S;D; θ〉 we can derive a configuration 〈A′;S′;D′; θ′〉 using, w.l.o.g,
the ExpBA1 rule such that εf ≜y1 �, � ≜y2 εf ∈ D′. Now let 〈∅;S′′;D′′; θ′′〉 ∈
AUnif(〈A′;S′;D′; θ′〉) be a final configuration. Because y1, y2 ∈ labels(D′),
y1θ

′
= y1 and y2θ

′
= y2. Thus, there exist t1 ∈ ↑y1(D

′′, S′′), t2 ∈ ↑y2(D
′′, S′′),

a renaming ν, and τ ∈ Ψ(D′′, S′′) such that r1ν �Abs y1τ and r2ν �Abs y2τ ;
this follows from the abstraction set containing all terms Abs-equivalent to
εf under the substitution derived from S′′. The substitution ν is required to
rename variables in r by the appropriate variables in labels(S′′). 	

Given the complexity of the construction used in this theorem, the extended
version contains examples that illustrate it [4]. We also show there that com-
pleteness would not hold if the Merge rule were applied to T .

5 Anti-unification Type, Complexity

Here we show that the complete set of generalizations produced by AUnif is min-
imal. Merging the set of final configurations and then showing that constructible
generalizations are incomparable play an important role in the proof.

Definition 9 (Merged configurations). Let s and t be terms. We refer to
AUnif(〈{s ≜x t};∅;∅; ι〉) as merged if for all 〈∅;S0;D0; θ0〉, 〈∅;S1;D1; θ1〉 ∈
AUnif(〈 {s ≜x t};∅;∅; ι〉) and s′

≜y1 t′ ∈ S0, s′
≜y2 t′ ∈ S1 iff y1 = y2.

A merged set of final configurations can be obtained by an appropriate renaming
of the store labels and applying this renaming to the final substitutions.

Lemma 3. Let s and t be terms and 〈∅;S;D; θ〉 ∈ AUnif(〈{s ≜x t};∅;∅; ι〉).
Then for all s′

≜y t′ ∈ S and any non-variable term r, xθ{y ↦ r} /∈ GAbs(s, t).

Proof. Given that s′
≜y t′ ∈ S, we know that head(s′) =/ head(t′) and, head(s′)

and head(t′) are not related absorption symbols. In xθ{y ↦ r}, the non-variable
term r replaces y which was a generalization of s′ and t′, but by this replace-
ment, head(r) will clash with head(s′), head(t′), or both. Hence, it cannot be a
generalization of s′ and t′, which implies xθ{y ↦ r} /∈ GAbs(s, t). 	

Definition 10. Let s and t be terms and AUnif(〈{s ≜x t};∅;∅; ι〉) merged. We
define the set CAUnif(s, t) as CAUnif(s, t) = {xθτ | 〈∅;S;D; θ〉 ∈ AUnif(〈{s ≜x

t};∅;∅; ι〉) ∧ τ ∈ Ψ(D,S)}.

Lemma 4. For any s, t, CAUnif(s, t) is their complete set of Abs-generalizations.

Proof. The lemma follows from the completeness of AUnif (Theorem 4). 	

Equational Anti-unification over Absorption Theories 333

Lemma 5. For all terms s, t, and r0, r1 ∈ CAUnif(s, t), if r0 ≠ r1 then neither
r0 ⪯Abs r1 nor r1 ⪯Abs r0 holds.

Proof. By Corollary 1, var(r0) ⊆ labels(S0) and var(r1) ⊆ labels(S1) for some
final configurations 〈∅;S0;D0; θ0〉, 〈∅;S1;D1; θ1〉 ∈AUnif(〈{s ≜x t};∅;∅; ι〉) as
r0 and r1 are derived via the composition of the anti-unifiers of the associated
final configurations with an abstraction substitution. By Lemma 3, w.l.o.g., for
x ∈ labels(S0) we have r0{x ↦ r} /∈ GAbs(s, t) when r is not a variable. If r is a
variable and r ∈ labels(S0)∪ labels(S1), then r0{x ↦ r} /∈ GAbs(s, t) because labels
in labels(S0)∪labels(S1) are assigned to unique AUTs (due to merging of AUnif)
and thus x and r generalize different terms. Thus, r /∈ labels(S0) ∪ labels(S1)
implying neither r0 ⪯Abs r1 nor r1 ⪯Abs r0 hold. 	

Theorem 5. For all terms s, t, CAUnif(s, t) is actually mcsgAbs(s, t).

Proof. Lemma 4 shows completeness. Minimality follows from Lemma 5. 	

Corollary 2. Anti-unification modulo Abs theories is of type infinitary.

Proof. By Theorem 5, the set of Abs-generalizations computed in Example 5 is
an mcsg, which is infinite since Configuration 1 produces infinitely many.

Theorem 5 shows contrast to idempotent anti-unification [17]: another infini-
tary anti-unification problem where the algorithm produces a finitely repre-
sentable complete set of generalizations which should be further minimized to
get an mcsg. In our case, AUnif directly gives a finitely represented mcsg.

Finally, we briefly comment on the complexity of AUnif in terms of the
number of final configurations produced.

Definition 11 (Absorption positions). An absorption position of terms s
and t is a position p ∈ pos(s) ∩ pos(t) such that {εf , f} = {head(s|p), head(t|p)}
for some f ∈ Absf , and head(s|q) = head(t|q) for all q ⊏ p. The set of absorption
positions of s and t is denoted as ap(s, t).

Absorption positions are disjoint from each other. If s ≜x t is an initial AUT
and p ∈ ap(s, t), after finitely many steps the AUnif algorithm will gener-
ate an AUT s|p ≜x t|p, that is, an AUT whose side heads form an absorp-
tion pair. To each such AUT, two inference rules from AUnif are applicable,
i.e., this is a branching point in the algorithm. No other pair of joint posi-
tions causes branching. Hence, AUnif(〈{s ≜x t};∅;∅; ι〉) contains more than
one final configuration iff ap(s, t) =/ ∅. Each absorption position may lead to at
most max{size(s), size(t)} branches due to nested f ’s below absorption positions
(as, e.g., in εf ≜x f(f(a, b), c)); they resurface after applying the expansion rules
and create new AUTs between terms whose heads are absorption pairs (εf and
f). It implies the following:

Theorem 6. Let s and t be terms and n be the cardinality of ap(s, t). Then the
cardinality of AUnif(〈{s ≜x t};∅;∅; θ〉) is bounded by max{size(s), size(t)}n.

334 M. Ayala-Rincón et al.

If we fix the number of absorbing positions in the input terms, the set of final
configurations has a polynomial size. Moreover, note that computing one final
configuration requires a linear number of steps since each rule eliminates at least
one pair of symbols from the set of AUTs to be transformed.

6 Conclusion

We introduced a rule-based algorithm that computes generalizations for prob-
lems modulo absorption symbols and proved its soundness and completeness.
Furthermore, the algorithm finitely computes a finite set of final configurations
from which we can extract a minimal complete set of generalizations. This set
can be infinite, implying that Abs-anti-unification is of type infinitary.

In contrast to other grammar-based approaches, our algorithm is general-
izable to similar subterm-collapsing theories, which would allow a finite repre-
sentation of the minimal complete set of generalizations. Therefore, studying
extensions of our method for such theories would be a natural next step.

For future work, we will consider how to combine our algorithm with algo-
rithms for computing generalizations in other equational theories, similar to [3].
It would also be interesting to see how generalization techniques in such (com-
bined) theories can be used in practice as part of methods for software analysis.

Acknowledgements. This work was supported by the Czech Science Foundation
Grant 22-06414L; the Austrian Science Fund (FWF) project P 35530; Cost Action
CA20111 EuroProofNet; the Brazilian agency CNPq, Grant Universal 409003/21-2, and
RG 313290/21-0; the Brazilian Federal District Research Foundation FAPDF, Grant
DE 00193-00001175/2021-11; and the Georgian Rustaveli National Science Foundation,
project FR-21-16725. The Brazilian Higher Education Council (CAPES) supported the
Brazilian-Austrian cooperation through the program PrInt.

References

1. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equa-
tional generalization algorithm. Inf. Comput. 235, 98–136 (2014). https://doi.org/
10.1016/j.ic.2014.01.006

2. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: ACUOS2: A High-Performance
System for Modular ACU Generalization with Subtyping and Inheritance. In: Euro-
pean Conference on Logics in Artificial Intelligence, JELIA. LNCS, vol. 11468
LNAI, pp. 171–181. Springer (2019). https://doi.org/10.1007/978-3-030-19570-
0 11

3. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: Order-sorted equational gen-
eralization algorithm revisited. Ann. Math. Artif. Intell. 90(5), 499–522 (2022).
https://doi.org/10.1007/s10472-021-09771-1

4. Ayala-Rincón, M., Cerna, D.M., González Barragán, A.F., Kutsia, T.: Equational
anti-unification over absorption theories. CoRR abs/2310.11136 (2023). https://
doi.org/10.48550/arXiv.2310.11136

https://doi.org/10.1016/j.ic.2014.01.006
https://doi.org/10.1016/j.ic.2014.01.006
https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1007/s10472-021-09771-1
https://doi.org/10.48550/arXiv.2310.11136
https://doi.org/10.48550/arXiv.2310.11136

Equational Anti-unification over Absorption Theories 335

5. Aı̈t-Kaci, H., Pasi, G.: Fuzzy lattice operations on first-order terms over signatures
with similar constructors: A constraint-based approach. Fuzzy Sets Syst. 391, 1–46
(2020). https://doi.org/10.1016/j.fss.2019.03.019

6. Baader, F.: Unification, weak unification, upper bound, lower bound, and general-
ization problems. In: Int. Conference on Rewriting Techniques and Applications,
RTA. LNCS, vol. volume 488, p. 86-97. Springer (1991). https://doi.org/10.1007/
3-540-53904-2 88

7. Bader, J., Scott, A., Pradel, M., Chandra, S.: Getafix: learning to fix bugs automat-
ically. Proceedings of the ACM on Programming Languages 3(OOPSLA) (2019).
https://doi.org/10.1145/3360585

8. Barwell, A.D., Brown, C., Hammond, K.: Finding parallel functional pearls: Auto-
matic parallel recursion scheme detection in Haskell functions via anti-unification.
Future Gener. Comput. Syst. 79, 669–686 (2018). https://doi.org/10.1016/j.future.
2017.07.024

9. Baumgartner, A., Kutsia, T.: A library of anti-unification algorithms. In: European
Conference on Logics in Artificial Intelligence, JELIA. LNCS, vol. 8761, p. 543-557.
Springer (2014). https://doi.org/10.1007/978-3-319-11558-0 38

10. Baumgartner, A., Kutsia, T.: Unranked second-order anti-unification. Inf. Comput.
255, 262–286 (2017). https://doi.org/10.1016/j.ic.2017.01.005

11. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: Nominal anti-unification. In:
Int. Conference on Rewriting Techniques and Applications, RTA. LIPIcs (2015).
https://doi.org/10.4230/LIPIcs.RTA.2015.57

12. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: Higher-order pattern anti-
unification in linear time. J. Autom. Reason. 58(2), 293–310 (2017). https://doi.
org/10.1007/s10817-016-9383-3

13. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: Term-graph anti-unification.
In: 3rd International Conference on Formal Structures for Computation and Deduc-
tion, FSCD. LIPIcs, vol. 108, pp. 9:1–9:17 (2018). https://doi.org/10.4230/LIPIcs.
FSCD.2018.9

14. Burghardt, J.: E-generalization using grammars. Artif. Intell. 165(1), 1–35 (2005).
https://doi.org/10.1016/j.artint.2005.01.008

15. Cao, D., Kunkel, R., Nandi, C., Willsey, M., Tatlock, Z., Polikarpova, N.: babble:
Learning better abstractions with e-graphs and anti-unification. Proceedings of the
ACM on Programming Languages 7(POPL), 396–424 (2023). https://doi.org/10.
1145/3571207

16. Cerna, D.M.: Anti-unification and the theory of semirings. Theor. Comput. Sci.
848, 133–139 (2020). https://doi.org/10.1016/j.tcs.2020.10.020

17. Cerna, D.M., Kutsia, T.: Idempotent anti-unification. ACM Trans. Comput. Log.
21(2), 10:1–10:32 (2020). https://doi.org/10.1145/3359060

18. Cerna, D.M., Kutsia, T.: Unital anti-unification: Type and algorithms. In: 5th Int.
Conference on Formal Structures for Computation and Deduction, FSCD. LIPIcs,
vol. 167, pp. 26:1–26:20 (2020). https://doi.org/10.4230/LIPICS.FSCD.2020.26

19. Cerna, D.M., Kutsia, T.: Anti-unification and generalization: A survey. In: Pro-
ceedings of the 32nd Int. Joint Conference on Artificial Intelligence, IJCAI. pp.
6563–6573. ijcai.org (2023). https://doi.org/10.24963/ijcai.2023/736

20. Krumnack, U., Schwering, A., Gust, H., Kühnberger, K.: Restricted higher-order
anti-unification for analogy making. In: 20th Australian Joint Conference on Arti-
ficial Intelligence, AI. LNCS, vol. 4830, pp. 273–282. Springer (2007). https://doi.
org/10.1007/978-3-540-76928-6 29

https://doi.org/10.1016/j.fss.2019.03.019
https://doi.org/10.1007/3-540-53904-2_88
https://doi.org/10.1007/3-540-53904-2_88
https://doi.org/10.1145/3360585
https://doi.org/10.1016/j.future.2017.07.024
https://doi.org/10.1016/j.future.2017.07.024
https://doi.org/10.1007/978-3-319-11558-0_38
https://doi.org/10.1016/j.ic.2017.01.005
https://doi.org/10.4230/LIPIcs.RTA.2015.57
https://doi.org/10.1007/s10817-016-9383-3
https://doi.org/10.1007/s10817-016-9383-3
https://doi.org/10.4230/LIPIcs.FSCD.2018.9
https://doi.org/10.4230/LIPIcs.FSCD.2018.9
https://doi.org/10.1016/j.artint.2005.01.008
https://doi.org/10.1145/3571207
https://doi.org/10.1145/3571207
https://doi.org/10.1016/j.tcs.2020.10.020
https://doi.org/10.1145/3359060
https://doi.org/10.4230/LIPICS.FSCD.2020.26
https://doi.org/10.24963/ijcai.2023/736
https://doi.org/10.1007/978-3-540-76928-6_29
https://doi.org/10.1007/978-3-540-76928-6_29

336 M. Ayala-Rincón et al.

21. Kutsia, T., Levy, J., Villaret, M.: Anti-unification for unranked terms and hedges.
J. Autom. Reason. 52(2), 155–190 (2014). https://doi.org/10.1007/s10817-013-
9285-6

22. Kutsia, T., Pau, C.: Matching and generalization modulo proximity and tolerance
relations. In: Thirteenth International Tbilisi Symposium on Logic, Language and
Computation, TbiLLC. LNCS, vol. 13206, p. 323-342. Springer (2019). https://
doi.org/10.1007/978-3-030-98479-3 16

23. Kutsia, T., Pau, C.: A framework for approximate generalization in quantitative
theories. In: International Joint Conference on Automated Reasoning, IJCAR.
LNCS, vol. 13385, p. 578-596. Springer (2022). https://doi.org/10.1007/978-3-031-
10769-6 34

24. Mehta, S., Bhagwan, R., Kumar, R., Bansal, C., Maddila, C.S., Ashok, B., Asthana,
S., Bird, C., Kumar, A.: Rex: Preventing bugs and misconfiguration in large ser-
vices using correlated change analysis. In: 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020. pp. 435–448. USENIX Associa-
tion (2020), https://www.usenix.org/conference/nsdi20/presentation/mehta

25. Pfenning, F.: Unification and anti-unification in the calculus of constructions. In:
LICS (1991). https://doi.org/10.1109/LICS.1991.151632

26. Pientka, B.: Higher-order term indexing using substitution trees. ACM Trans.
Comput. Log. 11(1), 6:1–6:40 (2009). https://doi.org/10.1145/1614431.1614437

27. Plotkin, G.D.: A note on inductive generalization. Machine Intell. 5(1), 153–163
(1970)

28. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic
formulas. Machine Intell. 5(1), 135–151 (1970)

29. Schmidt-Schauß, M., Nantes-Sobrinho, D.: Nominal anti-unification with atom-
variables. In: 7th Int. Conference on Formal Structures for Computation and
Deduction, FSCD. LIPIcs, vol. 228, pp. 7:1–7:22 (2022). https://doi.org/10.4230/
LIPIcs.FSCD.2022.7

30. Schmidt-Schauß, M., Nantes-Sobrinho, D.: Towards fast nominal anti-unification
of letrec-expressions. In: Proc. 29th Int. Conference on Automated Deduction,
CADE. LNCS, vol. 14132, pp. 456–473. Springer (2023). https://doi.org/10.1007/
978-3-031-38499-8 26

31. Siekmann, J.H.: Unification theory. J. Symb. Comput. 7(3/4), 207–274 (1989).
https://doi.org/10.1016/S0747-7171(89)80012-4

32. de Sousa, R.R., Soares, G., Gheyi, R., Barik, T., D’Antoni, L.: Learning quick fixes
from code repositories. In: Simpósio Brasileiro de Engenharia de Software, SBES.
ACM (2021). https://doi.org/10.1145/3474624.3474650

33. Vanhoof, W., Yernaux, G.: Generalization-driven semantic clone detection in CLP.
In: 29th Int. Symposium on Logic-Based Program Synthesis and Transformation,
LOPSTR. LNCS, vol. 12042, pp. 228–242 (2019). https://doi.org/10.1007/978-3-
030-45260-5 14

34. Winter, E.R., Nowack, V., Bowes, D., Counsell, S., Hall, T., Haraldsson, S.Ó.,
Woodward, J.R., Kirbas, S., Windels, E., McBello, O., Atakishiyev, A., Kells, K.,
Pagano, M.W.: Towards developer-centered automatic program repair: findings
from Bloomberg. In: Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/FSE. ACM (2022).
https://doi.org/10.1145/3540250.3558953

https://doi.org/10.1007/s10817-013-9285-6
https://doi.org/10.1007/s10817-013-9285-6
https://doi.org/10.1007/978-3-030-98479-3_16
https://doi.org/10.1007/978-3-030-98479-3_16
https://doi.org/10.1007/978-3-031-10769-6_34
https://doi.org/10.1007/978-3-031-10769-6_34
https://www.usenix.org/conference/nsdi20/presentation/mehta
https://doi.org/10.1109/LICS.1991.151632
https://doi.org/10.1145/1614431.1614437
https://doi.org/10.4230/LIPIcs.FSCD.2022.7
https://doi.org/10.4230/LIPIcs.FSCD.2022.7
https://doi.org/10.1007/978-3-031-38499-8_26
https://doi.org/10.1007/978-3-031-38499-8_26
https://doi.org/10.1016/S0747-7171(89)80012-4
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1007/978-3-030-45260-5_14
https://doi.org/10.1007/978-3-030-45260-5_14
https://doi.org/10.1145/3540250.3558953

Equational Anti-unification over Absorption Theories 337

35. Yernaux, G., Vanhoof, W.: Anti-unification in constraint logic programming. The-
ory Pract. Logic Program. 19(5–6), 773–789 (2019). https://doi.org/10.1017/
S1471068419000188

36. Yernaux, G., Vanhoof, W.: Anti-unification of unordered goals. In: 30th Annual
Conference on Computer Science Logic, CSL. LIPIcs, vol. 216, pp. 37:1–37:17
(2022). https://doi.org/10.4230/LIPIcs.CSL.2022.37

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.4230/LIPIcs.CSL.2022.37
http://creativecommons.org/licenses/by/4.0/

The Benefits of Diligence

Victor Arrial1(B) , Giulio Guerrieri2 , and Delia Kesner1

1 Université Paris Cité, CNRS, IRIF, Paris, France
{arrial,kesner}@irif.fr

2 Department of Informatics, University of Sussex, Brighton, UK
g.guerrieri@sussex.ac.uk

Abstract. This paper studies the strength of embedding Call-by-Name
(dCBN) and Call-by-Value (dCBV) into a unifying framework called the
Bang Calculus (dBANG). These embeddings enable establishing (static and
dynamic) properties of dCBN and dCBV through their respective counter-
parts in dBANG. While some specific static properties have been already
successfully studied in the literature, the dynamic ones are more chal-
lenging and have been left unexplored. We accomplish that by using a
standard embedding for the (easy) dCBN case, while a novel one must be
introduced for the (difficult) dCBV case. Moreover, a key point of our app-
roach is the identification of dBANG diligent reduction sequences, which
eases the preservation of dynamic properties from dBANG to dCBN/dCBV.
We illustrate our methodology through two concrete applications: conflu-
ence/factorization for both dCBN and dCBV are respectively derived from
confluence/factorization for dBANG.

1 Introduction

Call-by-Name (CBN) and Call-by-Value (CBV) stand as two foundational eval-
uation strategies inspiring distinct techniques and models of computation in the
theory of programming languages and proof assistants [46]. Notably, most theo-
retical studies in the λ-calculus still continues to focus on its CBN variant, while
CBV, the cornerstone of operational semantics for most programming languages
and proof assistants, has been less extensively explored. This is due in particu-
lar to the CBV stipulation that an argument can be passed to a function only
when it is a value (i.e. variable or abstraction), making the reasoning notably
challenging to grasp. Consequently, some fundamental concepts in the theory
of the λ-calculus (e.g. denotational semantics, contextual equivalence, solvabil-
ity, Böhm trees) make subtle –and not entirely understood– distinctions between
CBN and CBV, sometimes resulting in completely ad-hoc scenarios for CBV,
not being uniform with the corresponding notion in CBN. This is for example
the case of CBV Böhm trees [33] or the notion of substitution in [23].

Unifying Frameworks. Reynolds [47] (quoted by Levy [37]) advocated for a uni-
fying framework for CBN and CBV. This not only minimizes their arbitrariness,
but also avoids developing and proving distinct and independent concepts and
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 338–359, 2024.
https://doi.org/10.1007/978-3-031-63501-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_18&domain=pdf
http://orcid.org/0000-0002-1607-7403
http://orcid.org/0000-0002-0469-4279
http://orcid.org/0000-0003-4254-3129
https://doi.org/10.1007/978-3-031-63501-4_18

The Benefits of Diligence 339

properties for them from scratch. Indeed, both paradigms can be encompassed
into broader foundational frameworks [1,16,17,21,24,37,38,40,49] that explic-
itly differentiate values by marking them with a distinguished constructor. While
multiple such frameworks exist, our focus lies on the Bang Calculus [18,22,30].
Inspired by Girard’s Linear Logic (LL) [28] and Ehrhard’s interpretation [21] of
Levy’s Call-by-Push-Value [37] into LL, the Bang Calculus is obtained by enrich-
ing the λ-calculus with two distinguished modalities ! and der. The modality !
plays a twofold role: it marks what can be duplicated or erased during evalua-
tion (i.e. copied an arbitrary number of times, including zero), and it freezes the
evaluation of subterms (called thunks). The modality der annihilates the effect
of !. Embedding CBN or CBV into the Bang Calculus just consists in decorating
λ-terms with ! and der, thus forcing one model of computation or the other one.
Thanks to these two modalities, the Bang Calculus eases the identification of
shared behaviors and properties of CBN and CBV, encompassing both syntactic
and semantic aspects of them, within a unifying and simple framework.

Adequate Models of Computation. Both CBN and CBV were originally defined
on closed terms (without occurrences of free variables), that are enough to model
execution of programs. However, evaluation in proof assistants must be per-
formed on possibly open terms, that is, with free variables. While open terms
are harmless to CBN, the theory of the CBV λ-calculus on open terms turns
out to be much more subtle and trickier (see [6–8] for a detailed discussion).
In particular, Plotkin’s original CBV [46] is not adequate for open terms, as
there exist terms that may be both irreducible and meaningless/unsolvable. The
non-adequacy problem in Plotkin’s CBV calculus can be repaired by introduc-
ing a form of sharing implemented by explicit substitutions (ES), together with
a notion of reduction at a distance [9,10], like in the Value Substitution Cal-
culus [11] (here called dCBV), a CBV variant of Accattoli and Kesner’s linear
substitution calculus [2,3] (generalizing in turn Milner’s calculus [35,41]). Ade-
quacy also fails for the version of the Bang Calculus studied in [25,30], for the
same reasons as in CBV. It can be repaired again via ES and distance, resulting
in the Distant Bang Calculus dBANG [18,19]. It is then natural to also integrate
ES and distance in the CBN specification: this gives rise to CBN substitution
calculi at a distance [9,10], here we call dCBN the one in [2], which is adequate as
the usual CBN. In summary, we focus in this paper on a CBN calculus dCBN, an
adequate CBV calculus dCBV, and the adequate unifying Distant Bang Calculus
dBANG.

Static and Dynamic. The literature has shown that some static properties of
CBN and CBV, including normal forms [36], quantitative typing [18], tight typ-
ing [19,36], inhabitation [12], and denotational semantics [30], can be inferred
from their corresponding counterparts in the (Distant) Bang Calculus by exploit-
ing suitable CBN and CBV encodings. However, retrieving dynamic properties
from the Bang Calculus into CBN or CBV turns out to be a more intricate task,
especially in their adequate (distant) variant [18,19,25,30]. Indeed, it is easy to
obtain simulation (a CBN or CBV reduction sequence is always embedded into

340 V. Arrial et al.

a dBANG reduction sequence), but the converse, known as reverse simulation,
fails: a dBANG reduction sequence from a term in the image of the CBN or CBV
embedding may not correspond to a valid reduction sequence in CBN or CBV
(counterexample in Fig. 1). Up to these days, there are no embeddings in the
literature enjoying reverse simulation for an adequate CBV calculus, so that it
is impossible to export dynamic properties from dBANG to both dCBN and dCBV.

Contributions. We first revisit and extend the existing static and dynamic preser-
vation results relating dCBN and dBANG, including simulation and reverse simula-
tion, exploiting the embedding used in [18,19]. However, our primary and most
significant contribution is a new methodology to deal with the (adequate) cal-
culus dCBV. Indeed, we define a novel embedding from dCBV into dBANG, refining
the one of [18,19], that finely decorates terms with the modalities ! and der. To
avoid redundant decorations, as ! and der annihilate each other, a dedicated d!-
reduction step is then applied on the fly by the embedding, as in [18,19]. But our
new dCBV embedding not only preserves static and dynamic properties, but also
satisfies reverse simulation, an essential property that was previously lacking.
This achievement is realized by the second ingredient of our new methodology,
given by the notion of diligent sequence in dBANG, a concept standing indepen-
dently of the embeddings. Indeed, a challenge at this point is to prove that the
earlier mentioned d!-reductions have a purely administrative nature, and addi-
tionally, that they can be treated diligently, by executing all of them as soon as
possible. We call this method diligent administration: we consistently address all
administrative steps before proceeding with any other computational steps. A
further challenge is then to establish that working with administrative diligence
does not alter the CBN or CBV nature of evaluation.

As explained above, reverse simulation is crucial to derive properties for
dCBN and dCBV from their respective properties in dBANG. We provide two main
illustrative applications of this by studying the cases of confluence and factoriza-
tion. Confluence is a well-known property, and factorization is crucial to prove
important results in (or via) rewriting [2,4,5,15,26,27,29,32,42,45,51,53]: we
say that a reduction enjoys factorization when every reduction sequence can be
rearranged so that some specific external steps (head in dCBN, weak in dCBV,
surface in dBANG) are performed first. In the two last sections, we use conflu-
ence/factorization for dBANG as a basis to easily deduce confluence/factorization
for dCBN and dCBV. This is done by exploiting the CBN and CBV embeddings
back and forth, via reduction simulation and reverse simulation. Just one proof is
enough for three confluence/factorization results: it’s a three-for-one deal! The
fact that dCBN and dCBV confluence/factorizations can be easily derived from
dBANG confluence/factorization in essentially the same way is another achieve-
ment, attained thanks to having introduced good tools, such as diligence and
the new dCBV embedding.

We actually provide a first proof of factorization for dBANG, another major
contribution of this paper. Factorizations in dCBN and dCBV were already proved
in [2] and [11], respectively, but their proofs are not trivial, even when applying

The Benefits of Diligence 341

some abstract approach [2]. Deducing from dBANG the same dCBN/dCBV factor-
izations as in [2,11] shows that our methodology is robust and not ad-hoc.

Road Map. Section 2 recalls dBANG and introduces diligence. The dCBN/dCBV
calculi and their embeddings are presented in Sect. 3, together with their cor-
responding (static and dynamic) preservation results. Sect. 4 derives dCBN/dCBV
confluence from that of dBANG. Section 5 proves a factorization result for dBANG,
and deduces factorization for dCBN and dCBV by projection. Section 6 discusses
future and related work and concludes. Proofs can be found in [13], the long
version of this paper.

1.1 Basic Notions Used All Along the Paper

An abstract rewriting system (ARS) E is a set E with a binary relation
→E on E, called reduction. We write u E ← t if t →E u, and we denote by
→+

E (resp. →∗
E) the transitive (resp. reflexive-transitive) closure of →E . Given

t ∈ E, t is an E-normal form (E-NF) if there is no u ∈ E such that t →E u;
t is E-terminating if there is no infinite →E reduction sequence starting at t.
Reduction →E is terminating if every t ∈ E is E-terminating; →E is diamond
if for any t, u1, u2 ∈ E such that u1 E ← t →E u2 and u1 �= u2, there is s ∈ E
such that u1 →E sE ← u2; →E is confluent if →∗

E is diamond.
All reductions in this paper will be defined by a set of rewrite rules R, closed

by a set of contexts E. A term being an instance of the left-hand side of a rewrite
rule R ∈ R is called a R-redex. Given a rule R ∈ R, and a context E ∈ E, we
use →E〈R〉 to denote the reduction of the R-redex under the context E. The
reduction →E〈R〉 is the union of reductions →E〈R〉 over all contexts E ∈ E. In
other words, →E〈R〉 is the closure of the rule R under all the contexts in E.

2 The Distant Bang Calculus dBANG

We introduce the term syntax of dBANG [18]. Given a countably infinite set X of
variables x, y, z, . . . , the set Λ! of terms is defined inductively as follows:

(Terms) t, u, s ::= x ∈ X | tu | λx.t | !t | der(t) | t[x\u]

The set Λ! includes variables x, abstractions λx.t, applications tu, clo-
sures t[x\u] representing a pending explicit substitution (ES) [x\u] on t,
bangs !t and derelictions der(t) (their operational meaning is explained below).

Abstractions λx.t and closures t[x\u] bind the variable x in their body t.
The set of free variables fv(t) of a term t is defined as expected, in particular
fv(λx.t) := fv(t) \ {x} and fv(t[x\u]) := fv(u)∪ (fv(t) \ {x}). The usual notion
of α-conversion [15] is extended to the whole set Λ!, and terms are identified
up to α-conversion, e.g. y[y\λx.x] = z[z\λy.y]. We denote by t{x\u} the usual
(capture avoiding) meta-level substitution of u for all free occurrences of x in t.

342 V. Arrial et al.

Full contexts (F ∈ F), surface contexts (S ∈ S) and list contexts (L ∈ L),
which can be seen as terms with exactly one hole �, are inductively defined by:

(Full Contexts) F ::= � | F t | t F | λx.F | !F | der(F) | F[x\t] | t[x\F]
(Surface Contexts) S ::= � | S t | t S | λx.S | der(S) | S[x\t] | t[x\S]

(List Contexts) L ::= � | L[x\t]

L and S are special cases of F: the hole may occur everywhere in F, while in
S it cannot appear under a !. List contexts L are arbitrary lists of ES, used to
implement reduction at a distance [9,10]. We write F〈t〉 for the term obtained by
replacing the hole in F with the term t (possibly capturing the free variables of t).

The following rewrite rules are the base components of our reductions.

L〈λx.t〉u
→dB L〈t[x\u]〉 t[x\L〈!u〉]
→s! L〈t{x\u}〉 der(L〈!t〉)
→d! L〈t〉
Rule dB (resp. s!) is assumed to be capture-free, so no free variable of u (resp.
t) is captured by the context L. The rule dB fires a β-redex, generating an ES.
The rule s! fires an ES provided that its argument is duplicable, i.e. is a bang.
The rule d! uses der to erase a !. In all of these rewrite rules, the reduction
acts at a distance [9,10]: the main constructors involved in the rule can be
separated by a finite—possibly empty—list L of ES. This mechanism unblocks
desired computations that otherwise would be stuck, e.g. (λx.x)[y\w]!z
→dB

x[x\!z][y\w].
Reductions are defined, as specified in Sect. 1.1, by taking the set of rewrite

rules {dB, s!, d!} and the sets of contexts S and F. Surface reduction is the
relation →S :=→S〈dB〉 ∪ →S〈s!〉 ∪ →S〈d!〉, while full reduction is the relation
→F :=→F〈dB〉 ∪ →F〈s!〉 ∪ →F〈d!〉. For example, for S1 = � ∈ S and F1 =!� ∈ F \S:
(λx.!der(!x))!y →S1〈dB〉 (!der(!x))[x\!y] →S1〈s!〉 !der(!y) →F1〈d!〉 !y. The first
two steps are →S- and also →F-steps, while the last one is a →F-step but not a
→S-step. More generally, →S � →F. For instance, !(der(!y)) is a S-NF but not a
F-NF since !(der(!y)) →F!y, while !y is a F-NF (and hence a S-NF too).

The ! modality plays a twofold role. First, it marks the only subterms that
can be substituted (i.e. erased or arbitrarily copied): the s!-rule fires an ES only
if there is a ! in its argument (up to a list context). Second, it freezes (surface)
evaluation of the term under the scope of !: surface reduction →S does not reduce
under !. In full reduction →F, the ! modality looses its freezing behavior.

Diligent Administration. While reductions →F〈dB〉 and →F〈s!〉 are actual com-
putational steps, reduction →F〈d!〉 is rather administrative in nature. As we use
dBANG to simulate other calculi, we need to align with the implicit nature of
these administrative steps: this can be achieved by executing them as soon as
possible. We thus introduce a diligent process that reorders some reduction steps
to ensure that administrative steps are always performed as soon as there is a
d!-redex.

To begin, we formally introduce the concept of diligent administrative
reduction sequence, characterizing sequences where each computational step (dB
or s!) can be performed only after all administrative steps (d!) have been exe-
cuted.

The Benefits of Diligence 343

Definition 1 (Diligent Administrative Reduction). The diligent adminis-
trative surface (resp. full) reduction →Sad (resp. →Fad) is a subset of the surface
(resp. full) reduction obtained by restricting dB- and s!-steps to S〈d!〉-normal
forms (resp. F〈d!〉-normal forms). More precisely, it is defined as follows:

→Sad := (→S〈dB〉 ∩ S〈d!〉-NF × Λ!) ∪ (→S〈s!〉 ∩ S〈d!-NF〉 × Λ!) ∪ →S〈d!〉

→Fad := (→F〈dB〉 ∩ F〈d!〉-NF × Λ!) ∪ (→F〈s!〉 ∩ F〈d!-NF〉 × Λ!) ∪ →F〈d!〉

Example 2. Consider the two surface reduction sequences der(!x)[x\!y] →S〈s!〉
der(!y) →S〈d!〉 y and der(!x)[x\!y] →S〈d!〉 x[x\!y] →S〈s!〉 y. The first one is not dili-
gent administrative, as the step →S〈s!〉 is performed in a term that is not S〈d!〉-NF.
But the second one is diligent administrative: der(!x)[x\!y] →Sad x[x\!y] →Sad y.

To show that every reduction sequence can be transformed into a diligent one
(Lemma 3), we first observe that it is possible to perform all administrative steps
from any term: indeed, reductions →F〈d!〉 and →S〈d!〉 are terminating, because
each administrative step erase two constructors, der and !, so the term size
decreases.

Some reduction sequences can be made diligent, as in Example 2, but this is
not the case for all reduction sequences. For instance der(!x)[x\!y] →S der(!y)
but der(!x)[x\!y] �→Sad der(!y). Therefore, we focus solely on reduction sequences
reaching terms that are normal for d!. Under these conditions and by commuting
computational steps with administrative ones, we obtain the following results:

Lemma 3 (Diligence Process). Let t, u ∈ Λ! be terms.

– (Surface) If t →∗
S

u and u is a S〈d!〉-NF, then t →∗
Sad u.

– (Full) If t →∗
F

u and u is a F〈d!〉-NF, then t →∗
Fad u.

3 Call-by-Name and Call-by-Value Embeddings

In this section we present the call-by-name dCBN (Sect. 3.1) and call-by-value
dCBV (Sect. 3.2) calculi, as well as their embeddings into dBANG, which preserve
static properties (Corollaries 7.2 and 9.2 for dCBN, 13.2 and 14.2 for dCBV) and
dynamic ones (Corollaries 7.3 and 9.3 for dCBN, 13.3 and 14.3 for dCBV).

Both dCBN [2,9,10] and dCBV [11] are specified using ES and action at a
distance, as explained in Sect. 1, and they share the same term syntax. The sets
Λ of terms and Υ of values are inductively defined below.

(Terms) t, u ::= v | t u | t[x\u] (Values) v ::= x | λx.t

Note that the syntax contains neither der nor !. The distinction between terms
and values is irrelevant in dCBN but crucial in dCBV. The two calculi also share
the same full contexts F and list contexts L, which can be seen as terms with
exactly one hole � and are inductively defined below. The differences between
dCBN and dCBV are in the definitions of surface contexts and rewrite rules.

(List Contexts) L ::= � | L[x\t]
(Full Contexts) F ::= � | F t | t F | λx.F | F[x\t] | t[x\F]

344 V. Arrial et al.

3.1 The Call-by-Name Calculus dCBN and Its Embedding to dBANG

In dCBN, surface contexts SN ∈ SN are defined below: the hole cannot be in the
argument of an application or ES. To align the notations, in dCBN full contexts
are denoted by FN ∈ FN and list contexts by LN ∈ LN.

(dCBN Surface Contexts) SN ::= � | SN t | λx.SN | SN[x\t]

As explained in Sect. 1.1, reductions in dCBN are defined by taking the set of
rewrite rules {dB, s} defined below and the sets of contexts SN and FN.

LN〈λx.t〉u
→dB LN〈t[x\u]〉 t[x\u]
→s t{x\u}

Rule dB is capture-free: no free variable of u is captured by the context LN. The
dCBN surface reduction is the relation →SN

:=→SN〈dB〉 ∪ →SN〈s〉, while the dCBN
full reduction is the relation →FN

:=→FN〈dB〉 ∪ →FN〈s〉. E.g., for FN = λz.�, t0 =
λz.((λx.yxx)(zz)) →FN〈dB〉 t1 = λz.((yxx)[x\zz]) →FN〈s〉 t2 = λz.(y(zz)(zz)).

The dCBN surface reduction is nothing but (a non-deterministic but diamond
variant of) the well-known head reduction.

Embedding dCBN into dBANG . The dCBN embedding ·n : Λ → Λ! from dCBN
to dBANG, introduced in [18,19] and presented below, extends Girard’s one
[22] to ES.

xn := x (λx.t)n := λx.tn (tu)n := tn !un (t[x\u])n := tn[x\!un].

As an example, (yx)[y\z]n = (y!x)[y\!z]. Note that ·n never introduces der, hence
tn, and every term it reduces to, are always a F〈d!〉-NF (this does not hold for the
dCBV embedding, Sect. 3.2). In every application and ES, ·n puts a ! in front of
their argument, which shows the two roles—called duplicability and accessibil-
ity—played by ! in this embedding: dCBN duplicability means that any argument
can be duplicated (or erased), dCBN accessibility means that surface reduction
cannot take place inside arguments. Indeed, the ! seals all subterms in argu-
ment position.

The embedding is trivially extended to dCBN contexts by setting �n = �.
The static properties of this embedding have already been partially discussed

in [18,19]. We will revisit and refine them (Corollaries 7, 9 and 23), but our main
focus lies in the preservation of the dynamics of dCBN within dBANG. For that, we
first extend the embedding to rule names, by defining dBn := dB and sn := s!.

The reduction of a dCBN redex can be effectively simulated in dBANG by reduc-
ing the corresponding redex occurring at the translated location/context.

Lemma 4 (dCBN One-Step Simulation). Let t, u ∈ Λ and FN ∈ FN and
R ∈ {dB, s}. If t →FN〈R〉 u then tn →FnN〈Rn〉 un.

Example 5. Consider the dCBN reductions t0 →FN〈dB〉 t1 and t1 →FN〈s〉 t2 seen
above with FN = λz.�. Since FnN = λz.�, we have tn0 = λz.((λx.y!x!x)!(z!z))
→FnN〈Rn〉 λz.((y !x!x)[x\!(z!z)]) = tn1 and tn1 →FnN〈s!〉 λz.(y!(z!z)!(z!z)) = tn2.

The Benefits of Diligence 345

So, every dCBN reduction step is simulated by the corresponding dBANG reduc-
tion step, without the need for any administrative step. Simulation of dCBV
(Lemma 11) is instead more involved, requiring some further administrative
steps.

The following property, which effectively reverses the simulation process,
extends the one holding for the original Bang Calculus (without distance) [30].

Lemma 6 (dCBN One-Step Reverse Simulation). Let t ∈ Λ, u′ ∈ Λ!, F ∈ F

and R′ ∈ {dB, s!, d!}.

tn →F〈R′〉 u′ =⇒
⎧
⎨

⎩

∃ u ∈ Λ, un = u′

∃ R ∈ {dB, s}, Rn = R′

∃ FN ∈ FN, FnN = F

⎫
⎬

⎭
such that t →FN〈R〉 u.

Lemma 6 states that any dBANG step from the image tn of a dCBN term t
(which is necessarily diligent, because tn is a F〈d!〉-NF) actually simulates a
dCBN step from t. In Example 5, tn0 dB-reduces in the context F = λz.� to
λz.((y !x!x)[x\!(z!z)]), which is indeed equal to tn1, and t0 →FN〈dB〉 t1 in the con-
text FN = λz.� as well, with FnN = F. Note that Lemma 6 is vacuously true for
R = d!, since there is no term t such that der occurs in tn. Lemmas 4 and 6 have
some significant consequences:

Corollary 7. Let t, u ∈ Λ and s′ ∈ Λ!.

1. (Stability): if tn →∗
F

s′ then there is s ∈ Λ such that sn = s′.
2. (Normal Forms): t is a FN-NF if and only if tn is a F-NF.
3. (Simulations): t →∗

FN
u if and only if tn →∗

F
un. Moreover, the number of

dB/s-steps on the left matches the number dB/s!-steps on the right.

These results deserve some comments. Point 1 states that the image of the
dCBN embedding is stable under reduction. However, it is not stable under expan-
sion. For instance, der(!x) →S x = xn, although der(!x) does not belong to the
embedding’s image, which only contains terms without der. Point 2 guarantees
the preservation of normal forms in both directions. Finally, Point 3 concerns
the preservation of reduction sequences. It is worth highlighting that this is an
equivalence, enabling to inject reduction sequences from dCBN into dBANG and
project them back from dBANG into dCBN. This is a key property allowing in
particular to infer confluence and factorization for dCBN from that for dBANG.

The reader may wonder whether similar preservation results hold for sur-
face reduction. Since it is a subreduction of full reduction, Corollary 7.1 already
implies stability for surface reduction. However, it does not imply preservation of
surface normal forms, and only yields back and forth simulation of surface reduc-
tion via full reduction, which is not exactly what we want: tn →∗

F
un if t →∗

SN
u,

and t →∗
FN

u if tn →∗
S

un. So let us come back to analyze the situation for the
one-step simulation and reverse simulation. Since surface contexts are special

346 V. Arrial et al.

cases of full contexts, then t →SN〈R〉 u implies tn →SnN〈Rn〉 un by Lemma 4. To
prove that this simulating step is actually a surface step, we need an additional
property: that dCBN surface contexts are translated into dBANG surface contexts
(Lemma 8.1). A more subtle analysis will be required for surface reverse simula-
tion: positions of dBANG surface redexes are always in the image of dCBN surface
contexts:

Lemma 8.

1. (dCBN → dBANG) If SN ∈ SN, then SnN ∈ S.
2. (dBANG → dCBN) If S ∈ S and FN ∈ FN such that FnN = S, then FN ∈ SN.

Thanks to Lemma 8, one-step simulation and reverse simulation (Lemmas 4
and 6) can be iterated to obtain the following results about surface reduction.

Corollary 9. Let t, u ∈ Λ and s′ ∈ Λ!.

1. (Stability): if tn →∗
S

s′ then there is s ∈ Λ such that sn = s′.
2. (Normal Forms): t is a SN-NF if and only if tn is a S-NF.
3. (Simulations): t →∗

SN
u if and only if tn →∗

S
un. Moreover, the number of

dB/s-steps on the left matches the number of dB/s!-steps on the right.

Our results for dCBN notably extend the ones in [18,19], where it was only
shown that N-NF translates to S-NF, and that dCBN surface reduction is simulated
by dBANG surface reduction: we went further by encompassing their converses.

3.2 The Call-by-Value Calculus dCBV and Its Embedding into dBANG

In dCBV, surface contexts SV ∈ SV are defined below: the hole cannot be under
an abstraction. To align the notations, in dCBV full contexts are denoted by
FV ∈ FV and list contexts by LV ∈ LV.

(dCBV Surface Contexts) SV ::= � | SV t | t SV | SV[x\t] | t[x\SV]

As explained in Corollary1.1, reductions in dCBV are defined by taking the
set of rewrite rules {dB, sV} defined below and the sets of contexts SV and FV.

LV〈λx.t〉 u
→dB LV〈t[x\u]〉 t[x\LV〈v〉]
→sV LV〈t{x\v}〉
Rule dB (resp. sV) is capture-free: no free variable of u (resp. t) is captured by con-
text LV. The dCBV surface reduction is the relation →SV

:=→SV〈dB〉 ∪ →SV〈sV〉,
while the dCBV full reduction is the relation →FV

:=→FV〈dB〉 ∪ →FV〈sV〉.
The calculi dCBN and dCBV differ in that dCBN can always fire an ES (rule s),

while dCBV only does when the ES argument is a value, possibly wrapped by a
finite list of ES (rule sV). So e.g., for SV = (yxx)[x\�], we have:

u0 = (λx.yxx)((λz.z)y) →� 〈dB〉 u1 = (yxx)[x\(λz.z)y]
→SV〈dB〉 u′

1 = (yxx)[x\z[z\y]] →SV〈sV〉 u2 = (yxx)[x\y] →� 〈sV〉 u3 = yyy
(1)

The Benefits of Diligence 347

Reduction at a distance in dCBV fires redexes that are blocked in Plotkin’s
CBV [46]. For instance, given δ := λz.zz, the term t := (λy.δ)(xx)δ is a normal
form in Plotkin’s CBV, but is non-terminating in dCBV: t →SV

δ[y\xx]δ →SV

(zz)[z\δ][y\xx] →SV
(δδ)[y\xx] →∗

SV
(δδ)[y\xx], as one would expect, since t is

observationally equivalent to the diverging term δδ in CBV [6,8,20,44,48].
The dCBV surface reduction is nothing but the well-known weak reduction

that does not evaluate under abstractions.

Embedding dCBV into dBANG. Values (i.e., variables and abstractions) are the
erasable and duplicable terms of dCBV. Girard’s CBV encoding (used in [22,30],
noted (·)v1 here) is built upon this insight, placing a bang in front of each variable
xv1 =!x and abstraction (λx.t)v1 =!λx.tv1 . The encoding of an application is
(tu)v1 = der(tv1)uv1 , where the der is used to enable a d!-step if t (the left-hand
side of the application) is a value, so as to restore its functional role. However, as
highlighted in [18,19], such a definition fails normal forms preservation: a dCBV
normal form is not necessarily encoded by a dBANG normal form, for example
given the normal term t0 = xy we have tv10 = der(!x) !y which is not normal.
Consequently, [18,19] proposed an alternative encoding (noted (·)v2 here, whose
details are omitted for lack of space), based on the same principle, but with
an additional super-development : all d!-redexes appearing during the encoding
on the left of an application are eliminated on the fly, so that the embedding
(·)v2 preserves normal forms (e.g., tv20 = x !y, which is normal in dBANG). But, as
shown in Fig. 1, (·)v2 breaks reverse simulation with respect to surface reduction.

Fig. 1. Counterexample to dCBV reverse simulation using the embedding ·v2

We introduce a new dCBV embedding that preserves normal forms and fulfills
simulation and reverse simulation (this is one of our main contributions).

Definition 10. The dCBV embedding ·v : Λ → Λ! is defined as follows:

xv :=!x (tu)v :=
{

der(L〈s〉uv) if tv = L〈!s〉
(λx.t)v :=!λx.!tv der(der(tv)uv) otherwise;

(t[x\u])v := tv[x\uv].

Note that, thanks to super-development, tv is always a F〈d!〉-NF. For instance,
(λz.z)v = !λz.!!z and (yxx)v = der

(
der(der(y!x))!x

)
, whereas ((λx.yxx)(II))v =

der
((

λx.!der(der(der(y!x))!x)
)
der((λz.!!z)!λz.!!z)

)
where I = λz.z.

As in the dCBN embedding, the modality ! plays a twofold role in our new
dCBV embedding. First, ·v marks with ! subterms to be considered as values, i.e.
potentially erasable or duplicable. This induces the use of super-developments in
the case of applications to avoid some administrative steps that would otherwise

348 V. Arrial et al.

affect preservation of normal forms. Second, ·v marks the positions where surface
reduction must not occur: inside values; thus it introduces a second (internal) !
in the encoding of abstractions to encapsulate its body and shield it from surface
computation. Additionally, to restore access to the abstraction’s body when it is
applied, a second (external) der is added to the encoding of applications. These
two principles highlights the dual role of ! in dBANG: enabling duplication (and
erasure) as well as isolating subterms from surface computation processes.

The dCBV embedding is extended to rule names, by defining dBv := dB and
sVv := s!. Similarly to dCBN, we have the fundamental simulation result below.

Lemma 11 (dCBV One-Step Simulation). Let t, u ∈ Λ!, and R ∈ {dB, sV}.
If t →FV〈R〉 u then there is F ∈ F such that tV →F〈RV〉→∗

F〈d!〉 uv, where F and all
contexts used for the steps in →∗

F〈d!〉 can be specified using FvV,R and t.

Let us see how F and the contexts used in the steps →∗
F〈d!〉 are constructed:

it highlights the difference between Lemma 11 for dCBV and Lemma 4 for dCBN.

– Additional administrative steps (→∗
F〈d!〉) may be needed at the end. For exam-

ple, for the dCBV steps u0 →FV〈dB〉 u1 and u2 →FV〈sV〉 u3 seen in (1), we have:

uv
0 = der

((
λx.!der(der(der(y!x)) !x)

)
der((λz.!!z)!y)

)

→F〈dB〉 der
(
!der(der(der(y!x)) !x) [x\der((λz.!!z)!y)]

)
= s′ (2)

→F〈d!〉 der(der(der(y!x)) !x) [x\der((λz.!!z)!y)] = uv
1

uv
2 = der

(
der(der(y!x)) !x

)
[x\!y] →F〈s!〉 der

(
der(der(y !y)) !y

)
= uv

3

– In dCBN one-step simulation the rule name and context are independently
translated. It is slightly more subtle in dCBV: the rule name translates to the
corresponding one in dBANG without any ambiguity, yet the translation of the
context FV depends not only on the initial context FV but also on the rule
name R and the initial term t. Two distinct situations can emerge:

• dB-steps require to add a dereliction to the translated context: for exam-
ple, the dB-redex position � in t = (λx.x)y needs to be translated to the
redex position der(�) in tv = der((λx.!x)!y).

• sV-steps may need to remove a dereliction from the translated context:
for instance, the sV-redex position � y in t = (λz.x)[x\y] y is translated
to the redex position der(� !y) in tv = der((λz.!x)[x\!y] (!y)). The context
translation anticipates the super-development used in tv.

Note that both situations can be detected by case-analysis on R and t, where
the target context translation is a slight variation over the original one.

While the dCBV embedding ·v2 used in [18,19] successfully enables the sim-
ulation of dCBV into dBANG, it falls short when it comes to reverse simulation,
as shown in Fig. 1. Therefore, ·v2 cannot be used to transfer dynamic properties
from dBANG back to dCBV, thus failing in particular to derive dCBV factorization
from dBANG (Sect. 5). Our new embedding instead satisfies reverse simulation.

The Benefits of Diligence 349

Lemma 12 (dCBV One-Step Reverse Simulation). Let t ∈ Λ, u′ ∈ Λ!,
F ∈ F and R′ ∈ {dB, s!, d!}. If u′ is a F〈d!〉-NF, then

tv →F 〈R′〉→∗
F〈d!〉 u′ =⇒

⎧
⎨

⎩

∃ u ∈ Λ, uv = u′

∃ R ∈ {dB, sV}, Rv = R′

∃ FV ∈ FV,

⎫
⎬

⎭
such that t →FV〈R〉 u.

Lemma 12 states that any dBANG diligent step from the image tv of a dCBV
term t actually simulates a dCBV step from t. As expected, the same subtleties
encountered in the dCBV one-step simulation (Lemma 11) apply in this last result,
in particular regarding the construction of FV. In the dCBN case, the absence
of administrative steps renders all sequences from images of dCBN terms dili-
gent, making stability, normal form preservation and simulations direct conse-
quences of one-step simulation (Lemma 4) and reverse simulation (Lemma6).
This is not the case for dCBV, due to the presence of administrative steps in
the simulation process. Indeed, when simulating dCBV reduction within dBANG
(Lemma 11), administrative steps are performed as soon as they become avail-
able, thus constructing a diligent sequence. Conversely, projecting a reduction
step from dBANG to dCBV (Lemma 12) requires a diligent step. However, in the
case of sequences, in contrast to one-steps, there is no requirement for administra-
tive steps to be correctly synchronized, and this may lead to deviations from the
embedding’s image, significantly complicating reverse simulation. Fortunately,
the diligence presented in dBANG (Lemma3) resynchronizes administrative steps
yielding sequences that are easy to project.

Corollary 13. Let t, u ∈ Λ and s′ ∈ Λ!.

1. (Stability): if tv →∗
F

s′ and s′ is a F〈d!〉-NF, then s′ = sv for some s ∈ Λ.
2. (Normal Forms): t is a FV-NF if and only if tv is a F-NF.
3. (Simulations): t →∗

FV
u if and only if tv →∗

F
uv. Moreover, the number of

dB/sV-steps on the left matches the number dB/s!-steps on the right.

As in dCBN, we may wonder whether similar preservation results hold for
surface reductions. Such results cannot be entirely derived out from Corollary 13
alone. Still, as with dCBN, the dCBV one-step simulation and reverse simulation
properties (Lemmas 11 and 12) already encompass the surface case. However,
even though surface redexes positions are mutually mapped by the embedding,
it does not yet imply surface stability, preservation of normal forms, and simula-
tions. As previously explained, diligence is required to deal with administrative
steps. Fortunately, the surface fragment admits a diligence process, as illustrated
in Lemma 3, which can then be leveraged to obtain the following results.

Corollary 14. Let t, u ∈ Λ and s′ ∈ Λ!.

1. (Stability): if tv →∗
S

s′ and s′ is a S〈d!〉-NF, then s′ = sv for some s ∈ Λ.
2. (Normal Forms): t is a SV-NF if and only if tv is a S-NF.
3. (Simulations): t →∗

SV
u if and only if tv →∗

S
uv. Moreover, the number of

dB/sV-steps on the left matches the number of dB/s!-steps on the right.

350 V. Arrial et al.

Stability statements in dCBV (Corollary 13.1 and 14.1) require the reached
term s′ to be normal for d!, otherwise stability does not hold (e.g., s′ in (2) before
is not in the image of ·v), This is not required in the dCBN stability statements
(Corollary 7.1 and 9.1) since every term to which tn reduces is der-free and so
normal for d!.

Proving simulation and reverse simulation requires a considerable effort. But
this initial investment, made once and for all, lays the groundwork for numerous
benefits without extra costs. For example, in Sects. 4 and 5, we demonstrate that
typically challenging tasks like proving confluence and factorization in dCBN and
dCBV can be easily achieved by deriving them from dBANG through simulation
and reverse simulation, essentially for free. This approach not only unifies the
proofs but also minimizes the workload for future proofs.

4 Confluence

Confluence is a crucial property in λ-calculi, ensuring that every term can reduce
to at most one normal form, regardless of the chosen reduction path. In this
section, we examine confluence of different reductions (surface and full) in the
three calculi we considered: dCBN, dCBV, and dBANG. We specifically leverage
simulation and reverse simulation properties to project these results from dBANG
to dCBN and dCBV, providing a comprehensive solution across three frameworks.

Surface confluence is usually proved by showing that surface reduction is dia-
mond, as for example in [18,19]. Full confluence is more complex, since full reduc-
tion is not diamond, as one can easily see in dBANG with the term (xx)[x\!(II)]
where I := λz.z. Alternative techniques [43,52] can establish full reduction’s
confluence, albeit often requiring numerous commutation diagrams and possibly
non-trivial decreasing measures.

Theorem 15 (dBANG Confluence).

1. (Surface) The reduction →S is diamond and confluent. Moreover, any two
surface reduction paths from a given term to a S-normal form have the same
length and number of dB, s! and d!-steps.

2. (Full) The reduction →F is confluent.

Proof. (Surface) See [18,19]. (Full) See [34].

These proofs are typically highly technical, requiring a significant amount
of time to write and of cases to verify, and are prone to errors. Therefore, it is
extremely beneficial to have a method to streamline them, especially when mech-
anizing proofs. With the robust preservation of dCBN reductions in the dBANG,
we can actually project dCBN confluences directly from those of dBANG.

Corollary 16 (dCBN Confluence).

1. (Surface) The reduction →SN
is diamond and confluent. Moreover, any two

surface reduction paths from a given term to a SN-normal form have the same
length and same number of dB and s-steps.

The Benefits of Diligence 351

2. (Full) The reduction →FN
is confluent.

Proof. (Surface) See Fig. 2. (Full) Following the same reasoning as Fig. 3.

Fig. 2. Schematic proof of Corol-
lary 16.1

Fig. 3. Schematic proof of Corol-
lary 17.2

The same technique can be used for dCBV, with the additional help of diligence
(Corollary 13.1 and 14.1). Thus, we get the following results for free.

Corollary 17 (dCBV Confluence).

1. (Surface) The reduction →SV
is diamond and confluent. Moreover, any two

surface reduction paths from a given term to a SV-normal form have the same
length and same number of dB and sV-steps.

2. (Full) The reduction →FV
is confluent.

Proof. (Surface) Following the same reasoning as Fig. 2. (Full) See Fig. 3.

5 Factorization

In λ-calculi, reduction is a relation, so different reduction steps are possible start-
ing from the same term. Some steps (e.g. head steps) are more significant than
others, and they may occur in the middle of a reduction sequence. Factorization
is the process of disentangling the significant steps from the “superfluous” ones,
bringing the former forward and leaving the start and end terms unchanged.

This section is devoted to the factorization property for dBANG, dCBN and
dCBV. We start by revisiting an abstract factorization theorem [2]. We first apply

352 V. Arrial et al.

this abstract method to dBANG, thus obtaining a new result of factorization not
previously appearing in the literature. Then, we use the properties of simulation
and reverse simulation proved in Sect. 3 to project the factorization result for
dBANG into dCBN and dCBV. Although these two results can be directly derived
from the abstract factorization theorem [2], our approach circumvents the numer-
ous commutation properties required by the abstract approach. Also, it provides
a tangible illustration of how the simulation and reverse simulation properties
discussed in Sects. 3.1 and 3.2 can be applied in concrete cases.

Abstract Factorization. We recall an abstract factorization method from [2] that
relies on local rewrite conditions given by the notion of square factorization
system (SFS). While its original presentation concerns only two subreductions,
we (straightforwardly) extend the notion of SFS to a family of subreductions, as
in dBANG the reduction consists of more than two subreductions.

Definition 18. Let R = (R, →R) be an abstract rewriting system The family(→R◦
k
,→R•

k

)

k∈K
of paired reduction relations is a square factorization sys-

tem (SFS) for R if it covers the reduction relation (i.e. →R =
⋃

k∈K → Rk

where → Rk :=→R◦
k

∪ →R•
k
) and satisfies the following conditions:

1. Termination: ∀ k ∈ K, →R◦
k

is terminating.
2. Row-swaps: ∀ k ∈ K, →R•

k
→R◦

k
⊆ →+

R◦
k
→∗

R•
k
.

3. Diagonal-swaps: ∀ k1, k2 ∈ K, k1 �= k2, →R•
k1

→R◦
k2

⊆ →R◦
k2

→∗
Rk1

.

The symbol ◦ tags significant (also called external) steps, while • is used
for irrelevant (also called internal) ones. The commutations required in an SFS
are sufficient to achieve factorization, which consists in rearranging a reduction
sequence to prioritize significant steps →R◦ over irrelevant steps →•

R.

Proposition 19 ([2]). Let R = (R,→R) be an abstract rewriting system and
(→R◦

k
,→R•

k
)k∈K be an SFS for R. Then the reduction relation factorizes, that

is, →∗
R ⊆ →∗

◦→∗
• where →◦:=

⋃
k∈K →R◦

k
and →•:=

⋃
k∈K →R•

k
.

Factorization in dBANG . In dBANG we claim that surface reduction is the sig-
nificant part of full reduction, and our goal is to factor it out. To exploit the
abstract method, we first formally identify the irrelevant subreduction of full
reduction, called here internal, as reduction under the scope of a !. Internal
contexts I ∈ I are full contexts F for which the hole is placed under a bang.
Formally,

(dBANG Internal Contexts) I ::= !F | S∗〈I〉 with S∗ ∈ S \ {�}
Clearly, I = F \ S. As usual, →I〈R〉 is the closure of the rewrite rules R ∈
{dB, s!, d!} over all contexts I ∈ I. The dBANG internal reduction is the relation
→I :=→I〈dB〉 ∪ →I〈s!〉 ∪ →I〈d!〉. For example, (λx.!�) y is an internal context while
� is not. Thus, (λx.!(z[z\x])) y →I〈s!〉 (λx.!x) y �→I (!x)[x\y]. We can now show
that surface and internal reductions enjoy the abstract properties of an SFS.

The Benefits of Diligence 353

Lemma 20. The family (→S〈R〉,→I〈R〉)R∈{dB,s!,d!} is an SFS for (Λ!,→F).

This immediately gives the following novel factorization result for the Distant
Bang Calculus, by applying Proposition 19 and Lemma 20.

Corollary 21 (dBANG Factorization). We have that →∗
F
= →∗

S
→∗

I
.

Example 22. Take t = (xy)[y\!(I!!(Iw))] where I = λz.z. Then, the factorization
of the first sequence starting at t below, is given by the second one:

t →F (xy)[y\!(z[z\!!(Iw)])] →S x(z[z\!!(Iw)]) →F x(z[z\!!(z[z\w])]) →S x!(z[z\w])

t →S x(I!!(Iw)) →S x(z[z\!!(Iw)]) →S x!(Iw) →I x!(z[z\w])

Fig. 4. Schematic proof of Corollary 16.1 Fig. 5. Schematic proof of Corol-
lary 17.2

Factorizations in dCBN and dCBV . To achieve factorization in dCBN and dCBV
via the abstract method, we need to establish the existence of an SFS in each
case. This requires validating multiple commutations. We bypass these lengthy
proofs by adopting a simpler projection approach from dBANG.

As in dBANG, we claim that surface reduction is the significant part of full
reduction in dCBN/dCBV, and we consequently identify the irrelevant subreduc-
tion, called here internal. The dCBN (resp. dCBV) internal contexts IN ∈ IN (resp.
IV ∈ IV) are full contexts whose hole is in an argument (resp. under a λ). For-
mally,

(dCBN Internal Contexts) IN ::= t FN | t[x\FN] | N∗NIN with S∗
N ∈ SN \ {�}

(dCBV Internal Contexts) IV ::= λx.FV | S∗
V〈IV〉 with S∗

V ∈ SV \ {�}

The dCBN (resp. dCBV) internal reduction →IN
(resp. →IV

) is the closure over
all internal contexts IN ∈ IN (resp. IV ∈ IV) of the rewrite rules dB and s (resp.dB
and sV). For example, (λx.x)� is a dCBN internal context, while � is not, thus
(λx.x)((λy.z)t) →IN

(λx.x)z �→IN
z. And (λx.�)z is a dCBV internal context while

� is not, thus (λx.(λy.y)z)z →IV
(λx.y[y\z])z →IV

(λx.z)z �→IV
z[x\z].

As in the surface case, the one-step simulation and reverse simulation (Lem-
mas 4 and 6 for dCBN, Lemmas 11 and 12 for dCBV) can be specialized to the
internal case. This allows us to show in particular the following property.

354 V. Arrial et al.

Corollary 23. Let t, u ∈ Λ and s′ ∈ Λ!.

– (Stability): if tn →∗
I

s′ (resp. tv →∗
I

s′ and s′ is a I〈d!〉-NF) then there is
s ∈ Λ such that sn = s′ (resp. sv = s′).

– (Normal Forms): t is a IN-NF (resp. IV-NF) iff tn (resp. tv) is a I-NF.
– (Simulations): t →∗

IN
u (resp. t →∗

IV
u) iff tn →∗

I
un (resp. tv →∗

I
uv).

Moreover, the number of dB/s-steps (resp. dB/sV-steps) on the left matches
the number of dB/s!-steps on the right.

Via Corollaries 9, 14 and 23, we can project factorization from dBANG
back to dCBN/dCBV.

Theorem 24 (dCBN/dCBV Factorizations). →∗
FN
=→∗

SN
→IN and →∗

FV
=

→∗
SV

→∗
IV
.

Proof. The proof for dCBN is depicted in Fig. 4. In particular, since tn →∗
S

s′, one
deduces using Corollary 9 that there exists s ∈ Λ such that sn = s′.

The proof for dCBV is depicted in Fig. 5. In particular, by construction uv is a
F〈d!〉-NF and by induction on the length of s′ →∗

I uV, one has that s′ is a S〈d!〉-NF.
Using Corollary 14, one deduces that there exists s ∈ Λ such that sv = s′. ��

6 Conclusion and Related Work

Our first contribution is to revisit and extend several properties concerning the
encoding of dCBN into dBANG. The second contribution, more significant, consists
in introducing a new embedding from dCBV to dBANG, which is conservative with
respect to previous results in the literature [18,19], but also (and this is a novelty)
allows us to establish the essential reverse simulation property, achieved through
the non-trivial concept of diligent sequence. We illustrate the strength of our
methodology by means of an example, namely factorization. For that, we first
prove a factorization theorem for dBANG, another major contribution of the paper,
and we then deduce factorization for dCBN and dCBV by projecting that for dBANG.

In [25], factorization for the (non-distant) Bang Calculus has been proved
and from that, factorizations results for standard (non distant) CBN λ-calculus
and Plotkin’s original CBV λ-calculus has been deduced. But the (non-distant)
Bang Calculus and Plotkin’s CBV are not adequate, in the sense explained in
Sect. 1, thus decreasing the significance of those preliminary results.

When taking adequate versions of the Bang Calculus, by adding ES and
distance, or σ-reduction [22,31], the CBV encodings in the literature [18,19,22,
25,30] fail to enjoy reverse simulation, thus preventing one deducing dynamic
properties from the Bang Calculus into CBV. Other CBN and CBV encodings
into a unifying framework appear in [14], but there is no reverse simulation
property, so that no concrete application of the proposed encoding to export
properties into CBN and CBV. The same occurs in [24]. The only exceptions
are [12,36] —where only static properties are obtained—, and [25,30] —where
the Bang and CBV calculi are not adequate in the sense explained in Sect. 1.

The Benefits of Diligence 355

Sabry and Wadler [50] showed that simulation and reverse simulation between
two calculi are for free when their back and forth translations give rise to an
adjoint. One of the difficulties to achieve our results is that our CBN and CBV
embeddings, as well as the ones used in [18,19,22,25,30], do not form an adjoint.
This is basically due to the fact that a CBN/CBV term can be decorated by !
and der so as that administrative steps performed in the (Distant) Bang Calculus
do not correspond to anything in CBN or CBV. Our contribution is precisely to
achieve simulation and reverse simulation without the need for any adjoint.

As discussed at the end of Sect. 3, proving simulation and reverse simulation
requires a considerable effort. But this initial investment lays the groundwork
for numerous benefits without extra costs, as we showed in Sects. 4 and 5.

In addition to the tangible contributions presented in this paper, we believe
our methodology enhances the understanding of the semantic aspects of CBV,
especially concerning untyped and typed approximants. This remains a topic
that, while gradually gaining attention in the literature [12,33,39], is yet to
be thoroughly explored. Our novel CBV embedding would also suggest a logi-
cal counterpart (a new encoding of intuitionistic logic into linear logic), which
remains to be investigated. Moreover, we aim to further leverage our technique to
explore other crucial dynamic properties of dCBN and dCBV, such as standardiza-
tion, normalization, genericity as well as some specific deterministic strategies.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci.
111(1), 3–57 (1993). https://doi.org/10.1016/0304-3975(93)90181-R

2. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: 23rd
International Conference on Rewriting Techniques and Applications (RTA’12).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 15, pp. 6–21.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2012). https://doi.org/10.
4230/LIPIcs.RTA.2012.6

3. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’14, pp.
659–670. ACM Press (2014). https://doi.org/10.1145/2535838.2535886

4. Accattoli, B., Faggian, C., Guerrieri, G.: Factorization and normalization, essen-
tially. In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 159–180. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34175-6_9

5. Accattoli, B., Faggian, C., Guerrieri, G.: Factorize factorization. In: 29th EACSL
Annual Conference on Computer Science Logic, CSL 2021. LIPIcs, vol. 183, pp.
6:1–6:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.
org/10.4230/LIPIcs.CSL.2021.6

6. Accattoli, B., Guerrieri, G.: Open call-by-value. In: Igarashi, A. (ed.) APLAS 2016.
LNCS, vol. 10017, pp. 206–226. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47958-3_12

7. Accattoli, B., Guerrieri, G.: Abstract machines for open call-by-value. Sci. Comput.
Program. 184 (2019). https://doi.org/10.1016/j.scico.2019.03.002

8. Accattoli, B., Guerrieri, G.: The theory of call-by-value solvability. Proc. ACM
Program. Lang. 6(ICFP), 855–885 (2022). https://doi.org/10.1145/3547652

https://doi.org/10.1016/0304-3975(93)90181-R
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.4230/LIPIcs.CSL.2021.6
https://doi.org/10.4230/LIPIcs.CSL.2021.6
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.1145/3547652

356 V. Arrial et al.

9. Accattoli, B., Kesner, D.: The structural λ-calculus. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15205-4_30

10. Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo permuta-
tions for the structural lambda-calculus. Logic. Methods Comput. Sci. 8(1) (2012).
https://doi.org/10.2168/LMCS-8(1:28)2012

11. Accattoli, B., Paolini, L.: Call-by-value solvability, revisited. In: Schrijvers, T.,
Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 4–16. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29822-6_4

12. Arrial, V., Guerrieri, G., Kesner, D.: Quantitative inhabitation for different lambda
calculi in a unifying framework. Proc. ACM Program. Lang. 7(POPL), 1483–1513
(2023). https://doi.org/10.1145/3571244

13. Arrial, V., Guerrieri, G., Kesner, D.: The benefits of diligence. CoRR
abs/2404.12951 (2024). https://arxiv.org/abs/2404.12951

14. van Bakel, S., Emma Tye, N.W.: A calculus of delayed reductions. In: International
Symposium on Principles and Practice of Declarative Programming. PPDP 2023,
pp. 1:1–1:13. ACM (2023). https://doi.org/10.1145/3610612.3610613

15. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam
(1984)

16. Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Pro-
ceedings 11th Annual IEEE Symposium on Logic in Computer Science (LICS ’96),
pp. 420–431. IEEE (1996). https://doi.org/10.1109/LICS.1996.561458

17. Benton, N., Bierman, G., de Paiva, V., Hyland, M.: A term calculus for Intuition-
istic Linear Logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664,
pp. 75–90. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037099

18. Bucciarelli, A., Kesner, D., Ríos, A., Viso, A.: The bang calculus revisited. In:
Nakano, K., Sagonas, K. (eds.) FLOPS 2020. LNCS, vol. 12073, pp. 13–32.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59025-3_2

19. Bucciarelli, A., Kesner, D., Ríos, A., Viso, A.: The bang calculus revisited. Inf.
Comput. 293, 105047 (2023). https://doi.org/10.1016/j.ic.2023.105047

20. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-value
solvability. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 103–118.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7_7

21. Ehrhard, T.: Call-by-push-value from a linear logic point of view. In: Thiemann,
P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 202–228. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49498-1_9

22. Ehrhard, T., Guerrieri, G.: The bang calculus: an untyped lambda-calculus gen-
eralizing call-by-name and call-by-value. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming. PPDP’16, pp.
174–187. ACM (2016). https://doi.org/10.1145/2967973.2968608

23. Espírito Santo, J.: The call-by-value lambda-calculus with generalized applications.
In: 28th EACSL Annual Conference on Computer Science Logic. CSL 2020. LIPIcs,
vol. 152, pp. 35:1–35:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/LIPICS.CSL.2020.35

24. Espírito Santo, J., Pinto, L., Uustalu, T.: Modal embeddings and calling paradigms.
In: 4th International Conference on Formal Structures for Computation and
Deduction. FSCD 2019. LIPIcs, vol. 131, pp. 18:1–18:20. Schloss Dagstuhl (2019).
https://doi.org/10.4230/LIPIcs.FSCD.2019.18

https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.2168/LMCS-8(1:28)2012
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1145/3571244
https://arxiv.org/abs/2404.12951
https://doi.org/10.1145/3610612.3610613
https://doi.org/10.1109/LICS.1996.561458
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1016/j.ic.2023.105047
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-662-49498-1_9
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.4230/LIPICS.CSL.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2019.18

The Benefits of Diligence 357

25. Faggian, C., Guerrieri, G.: Factorization in call-by-name and call-by-value calculi
via linear logic. In: FOSSACS 2021. LNCS, vol. 12650, pp. 205–225. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71995-1_11

26. Faggian, C., Guerrieri, G.: Strategies for asymptotic normalization. In: 7th Inter-
national Conference on Formal Structures for Computation and Deduction. FSCD
2022. LIPIcs, vol. 228, pp. 17:1–17:24. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2022). https://doi.org/10.4230/LIPICS.FSCD.2022.17

27. Faggian, C., Guerrieri, G., de’Liguoro, U., Treglia, R.: On reduction and normaliza-
tion in the computational core. Math. Struct. Comput. Sci. 32(7), 934–981 (2022).
https://doi.org/10.1017/S0960129522000433

28. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/10.
1016/0304-3975(87)90045-4

29. Guerrieri, G.: Head reduction and normalization in a call-by-value lambda-
calculus. In: 2nd International Workshop on Rewriting Techniques for Program
Transformations and Evaluation. WPTE@RDP 2015. OASIcs, vol. 46, pp. 3–
17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/
10.4230/OASICS.WPTE.2015.3

30. Guerrieri, G., Manzonetto, G.: The bang calculus and the two Girard’s translations.
In: Proceedings Joint International Workshop on Linearity and Trends in Linear
Logic and Applications. Linearity-TLLA@FLoC 2018. EPTCS, vol. 292, pp. 15–30
(2018). https://doi.org/10.4204/EPTCS.292.2

31. Guerrieri, G., Olimpieri, F.: Categorifying non-idempotent intersection types. In:
29th EACSL Annual Conference on Computer Science Logic. CSL 2021. LIPIcs,
vol. 183, pp. 25:1–25:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.25

32. Guerrieri, G., Paolini, L., Ronchi Della Rocca, S.: Standardization and conservativ-
ity of a refined call-by-value lambda-calculus. Logic. Methods Comput. Sci. 13(4)
(2017). https://doi.org/10.23638/LMCS-13(4:29)2017

33. Kerinec, A., Manzonetto, G., Pagani, M.: Revisiting call-by-value BöHM trees in
light of their Taylor expansion. Logic. Methods Comput. Sci. 16(3) (2020). https://
lmcs.episciences.org/6638

34. Kesner, D., Arrial, V., Guerrieri, G.: Meaningfulness and genericity in a subsum-
ing framework. CoRR abs/2404.06361 (2024). https://arxiv.org/abs/2404.06361,
submitted to FSCD 2024

35. Kesner, D., Ó Conchúir, S.: Milner’s lambda-calculus with partial substitutions.
CoRR abs/2312.13270 (2023). https://doi.org/10.48550/ARXIV.2312.13270

36. Kesner, D., Viso, A.: Encoding tight typing in a unified framework. In: 30th EACSL
Annual Conference on Computer Science Logic. CSL 2022. LIPIcs, vol. 216, pp.
27:1–27:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.
org/10.4230/LIPIcs.CSL.2022.27

37. Levy, P.B.: Call-by-push-value: a subsuming paradigm. In: Girard, J.-Y. (ed.)
TLCA 1999. LNCS, vol. 1581, pp. 228–243. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48959-2_17

38. Lincoln, P., Mitchell, J.C.: Operational aspects of linear lambda calculus. In: Pro-
ceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science
(LICS ’92). pp. 235–246 (1992). https://doi.org/10.1109/LICS.1992.185536

39. Manzonetto, G., Pagani, M., Ronchi Della Rocca, S.: New semantical insights
into call-by-value λ-calculus. Fundamenta Informaticae 170(1–3), 241–265 (2019).
https://doi.org/10.3233/FI-2019-1862

https://doi.org/10.1007/978-3-030-71995-1_11
https://doi.org/10.4230/LIPICS.FSCD.2022.17
https://doi.org/10.1017/S0960129522000433
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4230/OASICS.WPTE.2015.3
https://doi.org/10.4230/OASICS.WPTE.2015.3
https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.4230/LIPIcs.CSL.2021.25
https://doi.org/10.23638/LMCS-13(4:29)2017
https://lmcs.episciences.org/6638
https://lmcs.episciences.org/6638
https://arxiv.org/abs/2404.06361
https://doi.org/10.48550/ARXIV.2312.13270
https://doi.org/10.4230/LIPIcs.CSL.2022.27
https://doi.org/10.4230/LIPIcs.CSL.2022.27
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1109/LICS.1992.185536
https://doi.org/10.3233/FI-2019-1862

358 V. Arrial et al.

40. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. Theor. Comput. Sci. 228(1–2), 175–
210 (1999). https://doi.org/10.1016/S0304-3975(98)00358-2

41. Milner, R.: Local bigraphs and confluence: two conjectures: (extended abstract). In:
Proceedings of the 13th International Workshop on Expressiveness in Concurrency.
EXPRESS 2006. Electronic Notes in Theoretical Computer Science, vol. 175:3, pp.
65–73. Elsevier (2006). https://doi.org/10.1016/J.ENTCS.2006.07.035

42. Mitschke, G.: The standardization theorem for λ-calculus. Math. Log. Q. 25(1–2),
29–31 (1979). https://doi.org/10.1002/malq.19790250104

43. Oostrom, V.: Confluence by decreasing diagrams. In: Voronkov, A. (ed.) RTA 2008.
LNCS, vol. 5117, pp. 306–320. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70590-1_21

44. Paolini, L., Ronchi Della Rocca, S.: Call-by-value solvability. RAIRO - Theor.
Inform. Appl. 33(6), 507–534 (1999). https://doi.org/10.1051/ita:1999130

45. Paolini, L., Ronchi Della Rocca, S.: Parametric parameter passing lambda-calculus.
Inf. Comput. 189(1), 87–106 (2004). https://doi.org/10.1016/j.ic.2003.08.003

46. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci.
1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

47. Reynolds, J.C.: Where theory and practice meet: Popl past and future (1998).
http://www.luca.demon.co.uk/POPL98/InvitedTalks.html, invited talk at POPL
’98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages

48. Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda Calculus - A Meta-
model for Computation. Texts in Theoretical Computer Science. An EATCS Series,
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-10394-4

49. Ronchi Della Rocca, S., Roversi, L.: Lambda calculus and intuitionistic linear logic.
Stud Logica 59(3), 417–448 (1997). https://doi.org/10.1023/A:1005092630115

50. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang.
Syst. 19(6), 916–941 (1997). https://doi.org/10.1145/267959.269968

51. Takahashi, M.: Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–
127 (1995). https://doi.org/10.1006/inco.1995.1057

52. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

53. Wadsworth, C.P.: The relation between computational and denotational properties
for Scott’s D∞-models of the lambda-calculus. SIAM J. Comput. 5(3), 488–521
(1976). https://doi.org/10.1137/0205036

https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1016/J.ENTCS.2006.07.035
https://doi.org/10.1002/malq.19790250104
https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/j.ic.2003.08.003
https://doi.org/10.1016/0304-3975(75)90017-1
http://www.luca.demon.co.uk/POPL98/InvitedTalks.html
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1023/A:1005092630115
https://doi.org/10.1145/267959.269968
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1137/0205036

The Benefits of Diligence 359

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Dependency Pair Framework
for Relative Termination of Term

Rewriting

Jan-Christoph Kassing(B) , Grigory Vartanyan , and Jürgen Giesl

RWTH Aachen University, Aachen, Germany
{kassing,giesl}@cs.rwth-aachen.de, grigory.vartanyan@rwth-aachen.de

Abstract. Dependency pairs are one of the most powerful techniques
for proving termination of term rewrite systems (TRSs), and they are
used in almost all tools for termination analysis of TRSs. Problem #106
of the RTA List of Open Problems asks for an adaption of dependency
pairs for relative termination. Here, infinite rewrite sequences are allowed,
but one wants to prove that a certain subset of the rewrite rules can-
not be used infinitely often. Dependency pairs were recently adapted to
annotated dependency pairs (ADPs) to prove almost-sure termination of
probabilistic TRSs. In this paper, we develop a novel adaption of ADPs
for relative termination. We implemented our new ADP framework in
our tool AProVE and evaluate it in comparison to state-of-the-art tools
for relative termination of TRSs.

1 Introduction

Termination is an important topic in program verification. There is a wealth of
work on automatic termination analysis of term rewrite systems (TRSs) which
can also be used to analyze termination of programs in many other languages.
Essentially all current termination tools for TRSs (e.g., AProVE [13], NaTT [36],
MU-TERM [15], TTT2 [27], etc.) use dependency pairs (DPs) [1,11,12,16,17].

A combination of two TRSs (a main TRS R and a base TRS B) is “rela-
tively terminating” if there is no rewrite sequence that uses infinitely many steps
with rules from R (whereas rules from B may be used infinitely often). Relative
termination of TRSs has been studied since decades [8], and approaches based
on relative rewriting are used for many applications, e.g., in complexity analysis
[3,6,7,29,37], for proving confluence [19,25], for certifying confluence proofs [30],
for proving termination of narrowing [20,31,34], and for proving liveness [26].

However, while techniques and tools for analyzing ordinary termination of
TRSs are very powerful due to the use of DPs, a direct application of standard
DPs to analyze relative termination is not possible. Therefore, most existing
approaches for automated analysis of relative termination are quite restricted

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2) and DFG Research Training Group 2236 UnRAVeL.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 360–380, 2024.
https://doi.org/10.1007/978-3-031-63501-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_19&domain=pdf
http://orcid.org/0009-0001-9972-2470
http://orcid.org/0009-0009-9631-8307
http://orcid.org/0000-0003-0283-8520
https://doi.org/10.1007/978-3-031-63501-4_19

Dependency Pairs for Relative Termination 361

in power. Hence, one of the largest open problems regarding DPs is Problem
#106 of the RTA List of Open Problems [5]: Can we use the dependency pair
method to prove relative termination? A first major step towards an answer to
this question was presented in [21] by giving criteria for R and B that allow the
use of ordinary DPs for relative termination.

Recently, we adapted DPs to analyze probabilistic innermost term rewriting,
by using so-called annotated dependency pairs (ADPs) [23] or dependency tuples
(DTs) [22] (which were originally proposed for innermost complexity analysis
of TRSs [32]).1 In these adaptions, one considers all defined function symbols
in the right-hand side of a rule at once, whereas ordinary DPs consider them
separately.

In this paper, we show that considering the defined symbols on right-hand
sides separately (as for classical DPs) does not suffice for relative termination.
On the other hand, we do not need to consider all of them at once either (i.e.,
we do not have to use the notions of ADPs or DTs from [22,23,32]). Instead,
we introduce a new definition of ADPs that is suitable for relative termination
and develop a corresponding ADP framework for automated relative termination
proofs of TRSs. Moreover, while ADPs and DTs were only applicable for inner-
most rewriting in [22,23,32], we now adapt ADPs to full (relative) rewriting, i.e.,
we do not impose any specific evaluation strategy. So while [21] presented con-
ditions under which the ordinary classical DP framework can be used to prove
relative termination, in this paper we develop the first specific DP framework
for relative termination.

Structure: We start with preliminaries on relative rewriting in Sect. 2. In Sect. 3
we recapitulate the core processors of the DP framework and show that classical
DPs are unsound for relative termination in general. Moreover, we state the main
results of [21] on criteria when ordinary DPs may nevertheless be used for relative
termination. Afterwards, we introduce our novel notion of annotated dependency
pairs for relative termination in Sect. 4 and present a corresponding new ADP
framework in Sect. 5. We implemented our framework in the tool AProVE and in
Sect. 6, we evaluate our implementation in comparison to other state-of-the-art
tools. All proofs can be found in [24].

2 Relative Term Rewriting

We assume familiarity with term rewriting [2] and regard (finite) TRSs over a
(finite) signature Σ and a set of variables V.

Example 1. Consider the following TRS RdivL, where divL(x, xs) computes the
number that results from dividing x by each element of the list xs. As usual,
natural numbers are represented by the function symbols 0 and s, and lists

1 As shown in [23], using ADPs instead of DTs leads to a more elegant, more pow-
erful, and less complicated framework, and to completeness of the underlying chain
criterion.

362 J.-C. Kassing et al.

are represented via nil and cons. Then divL(s24(0), cons(s4(0), cons(s3(0), nil)))
evaluates to s2(0), because (24/4)/3 = 2. Here, s2(0) stands for s(s(0)), etc.

minus(x, 0) → x (1)

minus(s(x), s(y)) → minus(x, y) (2)

div(0, s(y)) → 0 (3)

div(s(x), s(y)) → s(div(minus(x, y), s(y))) (4)

divL(x, nil) → x (5)

divL(x, cons(y, xs)) → divL(div(x, y), xs) (6)

A TRS R induces a rewrite relation →R ⊆ T (Σ,V) × T (Σ,V) on terms where
s →R t holds if there is a π ∈ Pos(s), a rule � → r ∈ R, and a substitu-
tion σ such that s|π = �σ and t = s[rσ]π. For example, minus(s(0), s(0)) →RdivL

minus(0, 0) →RdivL
0. We call a TRS R terminating (abbreviated SN, for “strongly

normalizing”) if →R is well founded. Using the DP framework, one can eas-
ily prove that RdivL is SN (see Sect. 3.1). In particular, in each application of
the recursive divL-rule (6), the length of the list in divL’s second argument is
decreased by one.

In the relative setting, one considers two TRSs R and B. We say that R is
relatively terminating w.r.t. B (i.e., R/B is SN) if there is no infinite (→R ∪ →B)-
rewrite sequence that uses an infinite number of →R-steps. We refer to R as the
main and B as the base TRS.

Example 2. Let RdivL be the main TRS. Since the order of the list elements does
not affect the termination of RdivL, this algorithm also works for multisets. To
abstract lists to multisets, we add the base TRS Bmset = {(7)}.

cons(x, cons(y, zs)) → cons(y, cons(x, zs)) (7)

Bmset is non-terminating, since it can switch elements in a list arbitrarily often.
However, RdivL/Bmset is SN as each application of Rule (6) still reduces the list
length. Indeed, termination of RdivL/Bmset can also be shown via the approach of
[21], because it allows us to apply (standard) DPs in this example, see Example
13.

However, if Bmset is replaced by the base TRS Bmset2 with the rule

divL(z, cons(x, cons(y, zs))) → divL(z, cons(y, cons(x, zs))), (8)

then RdivL/Bmset2 remains terminating, but the approach of [21] is no longer
applicable, see Example 14. In contrast, with our new DP framework in Sects. 4
and 5, termination of such examples can be proved automatically.2

We will use the following four examples to illustrate the problems that one
has to take into account when analyzing relative termination. So these examples
show why a naive adaption of dependency pairs does not work in the relative
2 To ease the presentation, the rule (8) only switches the first two elements in a list.

Our approach also succeeds on a more complicated variant where the elements of
lists in divL’s second argument can be permuted arbitrarily. We included such an
example in the benchmark collection that we used for our evaluation in Sect. 6.

Dependency Pairs for Relative Termination 363

setting and why we need our new notion of annotated dependency pairs. The
examples represent different types of infinite rewrite sequences that can lead
to non-termination in the relative setting: redex-duplicating, redex-creating (or
“-emitting”), and ordinary infinite sequences.

Example 3 (Redex-Duplicating). Consider the TRSs R1 = {a → b} and B1 =
{f(x) → d(f(x), x)} from [21, Example 4]. R1/B1 is not SN due to the infinite
rewrite sequence f(a) →B1 d(f(a), a) →R1 d(f(a), b) →B1 d(d(f(a), a), b) →R1

d(d(f(a), b), b) →B1 . . . The reason is that B1 can be used to duplicate an arbi-
trary R1-redex infinitely often.

Example 4 (Redex-Creating on Parallel Position). Next, consider R2 = {a → b}
and B2 = {f → d(f, a)}. R2/B2 is not SN as we have the infinite rewrite sequence
f →B2 d(f, a) →R2 d(f, b) →B2 d(d(f, a), b) →R2 d(d(f, b), b) →B2 . . . Here, B2

can create an R2-redex infinitely often (where in the right-hand side d(f, a) of
B2’s rule, the B2-redex f and the created R2-redex a are on parallel positions).

Example 5 (Redex-Creating on Position Above). Let R3 = {a(x) → b(x)} and
B3 = {f → a(f)}. R3/B3 is not SN as we have f →B3 a(f) →R3 b(f) →B3

b(a(f)) →R3 b(b(f)) →B3 . . ., i.e., again B3 can be used to create an R3-redex
infinitely often. In the right-hand side a(f) of B3’s rule, the position of the created
R3-redex a(. . .) is above the position of the B3-redex f.

Example 6 (Ordinary Infinite). Finally, consider R4 = {a → b} and B4 = {b →
a}. Here, the base TRS B4 can neither duplicate nor create an R4-redex infinitely
often, but in combination with the main TRS R4 we obtain the infinite rewrite
sequence a →R4 b →B4 a →R4 b →B4 . . . Thus, R4/B4 is not SN.

3 DP Framework

We first recapitulate dependency pairs for ordinary (non-relative) rewriting in
Sect. 3.1 and summarize existing results on DPs for relative rewriting in Sect. 3.2.

3.1 Dependency Pairs for Ordinary Term Rewriting

We recapitulate DPs and the two most important processors of the DP frame-
work, and refer to, e.g., [1,11,12,16,17] for more details. As an example, we
show how to prove termination of RdivL without the base Bmset. We decompose
the signature Σ = C � D of a TRS R such that f ∈ D if f = root(�) for some
rule � → r ∈ R. The symbols in C and D are called constructors and defined
symbols of R, respectively. For every f ∈ D, we introduce a fresh annotated (or
“marked”) symbol f# of the same arity. Let D# denote the set of all annotated
symbols, and let Σ# = Σ � D#. To ease readability, we often use capital letters
like F instead of f#. For any term t = f(t1, . . . , tn) ∈ T (Σ,V) with f ∈ D, let
t# = f#(t1, . . . , tn). For each rule � → r and each subterm t of r with defined
root symbol, one obtains a dependency pair �# → t#. Let DP(R) denote the
set of all dependency pairs of the TRS R.

364 J.-C. Kassing et al.

Example 7. For RdivL from Example 1, we obtain the following five dependency
pairs.

M(s(x), s(y)) → M(x, y) (9)

D(s(x), s(y)) → M(x, y) (10)

D(s(x), s(y)) → D(m(x, y), s(y)) (11)

DL(x, cons(y, xs)) → D(x, y) (12)

DL(x, cons(y, xs)) → DL(div(x, y), xs) (13)

The DP framework operates on DP problems (P,R) where P is a
(finite) set of DPs, and R is a (finite) TRS. A (possibly infinite) sequence
t0, t1, t2, . . . with ti

ε→P ◦ →∗
R ti+1 for all i is a (P,R)-chain. Here,

ε→ are rewrite steps at the root. A chain represents subsequent “function
calls” in evaluations. Between two function calls (corresponding to steps
with P, called p-steps) one can evaluate the arguments using arbitrary
many steps with R (called r-steps). So r-steps are rewrite steps that are
needed in order to enable another p-step at a position above later on.
Hence, DL(s(0), cons(s(0), nil)),DL(s(0), nil) is a (DP(RdivL),RdivL)-chain, as
DL(s(0), cons(s(0), nil)) ε→DP(RdivL) DL(div(s(0), s(0)), nil) →∗

RdivL
DL(s(0), nil).

A DP problem (P,R) is called terminating (SN) if there is no infinite (P,R)-
chain. The main result on DPs is the chain criterion which states that a TRS
R is SN iff (DP(R),R) is SN. The key idea of the DP framework is a divide-
and-conquer approach which applies DP processors to transform DP problems
into simpler sub-problems. A DP processor Proc has the form Proc(P,R) =
{(P1,R1), . . . , (Pn,Rn)}, where P,P1, . . . ,Pn are sets of DPs and R,R1, . . . ,Rn

are TRSs. Proc is sound if (P,R) is SN whenever (Pi,Ri) is SN for all 1 ≤ i ≤ n.
It is complete if (Pi,Ri) is SN for all 1 ≤ i ≤ n whenever (P,R) is SN.

So for a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors until all sub-problems
are “solved” (i.e., processors transform them to the empty set). This allows
for modular termination proofs, as different techniques can be applied on each
sub-problem.

One of the most important processors is the dependency graph processor. The
(P,R)-dependency graph indicates which DPs can be used after each other in
chains. Its set of nodes is P and there is an edge from s1 → t1 to s2 → t2
if there are substitutions σ1, σ2 with t1σ1 →∗

R s2σ2. Any infinite (P,R)-chain
corresponds to an infinite path in the dependency graph, and since the graph is
finite, this infinite path must end in a strongly connected component (SCC).3

Hence, it suffices to consider the SCCs of this graph independently.

Theorem 8 (Dep. Graph Processor). For the SCCs P1, . . . ,Pn of the
(P,R)-dependency graph, ProcDG(P,R) = {(P1,R), . . . , (Pn,R)} is sound and
complete.

3 Here, a set P ′ of dependency pairs is an SCC if it is a maximal cycle, i.e., it is a
maximal set such that for any s1 → t1 and s2 → t2 in P ′ there is a non-empty path
from s1 → t1 to s2 → t2 which only traverses nodes from P ′.

Dependency Pairs for Relative Termination 365

(13) (12)

(9) (10) (11)

While the exact dependency graph is not com-
putable in general, there are several techniques
to over-approximate it automatically [1,12,16]. The
(DP(RdivL),RdivL)-dependency graph for our example
is on the right. Here, ProcDG(DP(RdivL),RdivL) yields(
{(9)},RdivL

)
,
(
{(11)},RdivL

)
, and

(
{(13)},RdivL

)
.

The second crucial processor adapts classical reduction orders to DP prob-
lems. A reduction pair (�,) consists of two relations on terms such that � is
reflexive, transitive, and closed under contexts and substitutions, and 	 is a well-
founded order that is closed under substitutions but does not have to be closed
under contexts. Moreover, � and 	 must be compatible, i.e., � ◦ 	 ◦ � ⊆ 	.
The reduction pair processor requires that all rules and dependency pairs are
weakly decreasing, and it removes those DPs that are strictly decreasing.

Theorem 9 (Reduction Pair Processor). Let (�,) be a reduction pair
such that P∪R ⊆�. Then ProcRPP(P,R) = {(P \ 	,R)} is sound and complete.

For example, one can use reduction pairs based on polynomial interpretations
[28]. A polynomial interpretation Pol is a Σ#-algebra which maps every function
symbol f ∈ Σ# to a polynomial fPol ∈ N[V]. Pol(t) denotes the interpretation of
a term t by the Σ#-algebra Pol. Then Pol induces a reduction pair (�,) where
t1 � t2 (t1 	 t2) holds if the inequation Pol(t1) ≥ Pol(t2) (Pol(t1) > Pol(t2)) is
true for all instantiations of its variables by natural numbers.

For the three remaining DP problems
(
{(9)},RdivL

)
,

(
{(11)},RdivL

)
, and(

{(13)},RdivL

)
in our example, we can apply the reduction pair processor using

the polynomial interpretation which maps 0 and nil to 0, s(x) to x+1, cons(y, xs)
to xs + 1, DL(x, xs) to xs, and all other symbols to their first arguments. Since
(9), (11), and (13) are strictly decreasing, ProcRPP transforms all three remaining
DP problems into DP problems of the form (∅, . . .). As ProcDG(∅, . . .) = ∅ and
all processors used are sound, this means that there is no infinite chain for the
initial DP problem (DP(RdivL),RdivL) and thus, RdivL is SN.

3.2 Dependency Pairs for Relative Termination

Up to now, we only considered DPs for ordinary termination of TRSs. The
easiest idea to use DPs in the relative setting is to start with the DP problem
(DP(R ∪ B),R ∪ B). This would prove termination of R ∪ B, which implies
termination of R/B, but ignores that the rules in B do not have to terminate.
Since termination of DP problems is already defined via a relative condition
(finite chains can only have finitely many p-steps but there may exist rewrite
sequences with infinitely many r-steps that are no chains), another idea for
proving termination of R/B is to start with the DP problem (DP(R),R ∪ B),
which only considers the DPs of R. However, this is unsound in general.

Example 10. The only defined symbol of R2 from Example 4 is a. Since the
right-hand side of R2’s rule does not contain defined symbols, we would get the
DP problem (∅,R2 ∪ B2), which is SN as it has no DP. Thus, we would falsely

366 J.-C. Kassing et al.

conclude that R2/B2 is SN. Similarly, this approach would also falsely “prove”
SN for Examples 3 and 5. Thus, the standard notion of DPs is unsound for
relative termination.

In [21], it was shown that under certain conditions on R and B, starting with
the DP problem (DP(R ∪ Ba),R ∪ B) for a subset Ba ⊆ B is sound for relative
termination.4 The two conditions on the TRSs are dominance and being non-
duplicating. We say that R dominates B if defined symbols of R do not occur in
the right-hand sides of rules of B. A TRS is non-duplicating if no variable occurs
more often on the right-hand side of a rule than on its left-hand side.

Theorem 11 (First Main Result of [21], Sound and Complete). Let R
and B be TRSs such that B is non-duplicating and R dominates B. Then the DP
problem (DP(R),R ∪ B) is SN iff R/B is SN.

Theorem 12 (Second Main Result of [21], only Sound). Let R and B =
Ba � Bb be TRSs. If Bb is non-duplicating, R ∪ Ba dominates Bb, and the DP
problem (DP(R ∪ Ba),R ∪ B) is SN, then R/B is SN.

Example 13. For the main TRS RdivL from Example 1 and base TRS Bmset

from Example 2 we can apply Theorem 11 and consider the DP prob-
lem (DP(RdivL),RdivL ∪ Bmset), since Bmset is non-duplicating and RdivL dom-
inates Bmset. As for (DP(RdivL),RdivL), the DP framework can prove that
(DP(RdivL),RdivL∪Bmset) is SN. In this way, the tool NaTT which implements the
results of [21] proves that RdivL/Bmset is SN. Note that sophisticated techniques
like DPs are needed to prove SN for RdivL/Bmset because classical (simplification)
orders already fail to prove termination of RdivL.

Example 14. As mentioned in Example 2, if we consider Bmset2 with the rule

divL(z, cons(x, cons(y, zs))) → divL(z, cons(y, cons(x, zs))) (8)

instead of Bmset as the base TRS, then RdivL/Bmset2 is still terminating, but we
cannot use Theorem 11 since RdivL does not dominate Bmset2. If we try to split
Bmset2 as in Theorem 12, then ∅ �= Ba ⊆ Bmset2 implies Ba = Bmset2, but Bmset2

is non-terminating. Therefore, all previous tools for relative termination fail in
proving that RdivL/Bmset2 is SN. In Sect. 4 we will present our novel DP frame-
work which can prove relative termination of relative TRSs like RdivL/Bmset2.

As remarked in [21], Theorems 11 and 12 are unsound if one only consid-
ers minimal chains, i.e., if for a DP problem (P,R) one only considers chains
t0, t1, . . ., where all ti are R-terminating. In the DP framework for ordinary
rewriting, the restriction to minimal chains allows the use of further processors,
e.g., based on usable rules [12,17] or the subterm criterion [17]. As shown in
[21], usable rules and the subterm criterion can nevertheless be applied if B is
quasi-terminating [4], i.e., {t | s →∗

B t} is finite for every term s. This restriction
would also be needed to integrate processors that rely on minimality into our
new framework in Sect. 4.
4 As before, for the construction of DP(R ∪ Ba), only the root symbols of left-hand

sides of R ∪ Ba are considered to be “defined”.

Dependency Pairs for Relative Termination 367

4 Annotated Dependency Pairs for Relative Termination

As shown in Sect. 3.2, up to now there only exist criteria [21] that state when
it is sound to apply ordinary DPs for proving relative termination, but there
is no specific DP-based technique to analyze relative termination directly. For
ordinary termination, we create a separate DP for each occurrence of a defined
symbol in the right-hand side of a rule (and no DP is created for rules without
defined symbols in their right-hand sides). This would work to detect ordinary
infinite sequences like the one in Example 6 in the relative setting, i.e., such
an infinite sequence would give rise to an infinite chain. However, as shown in
Example 10, this would not suffice to detect infinite redex-creating sequences
as in Examples 4 and 5. Thus, ordinary DPs are unsound for analyzing relative
termination.

To solve this problem, we now adapt the concept of annotated dependency
pairs (ADPs) for relative termination. ADPs were introduced in [23] to prove
innermost almost-sure termination of probabilistic term rewriting. In the relative
setting, we can use similar dependency pairs as in the probabilistic setting, but
with a different rewrite relation ↪−→ to deal with non-innermost steps. Compared
to [21], we (a) remove the requirement of dominance, which will be handled
by the dependency graph processor, and (b) allow for ADP processors that are
specifically designed for the relative setting before possibly moving to ordinary
DPs.

The requirement that B must be non-duplicating remains, since relative non-
termination because of duplicating rules is not necessarily due to the relation
between the left-hand side and the subterms with defined root symbols in the
right-hand side of a rule. Therefore, this cannot be captured by (A)DPs, i.e., DPs
do not help in analyzing redex-duplicating sequences as in Example 3, where the
crucial redex a is not generated from a “function call” in the right-hand side of
a rule, but it just corresponds to a duplicated variable. To handle TRSs R/B
where Bdup ⊆ B is duplicating, one can move the duplicating rules to the main
TRS R and try to prove relative termination of (R∪Bdup)/(B\Bdup) instead, or
one can try to find a reduction pair (�,) where 	 is closed under contexts such
that R ∪ B ⊆ � and Bdup ⊆ 	. Then it suffices to prove relative termination of
(R\)/(B\) instead.

We will now define a notion of DPs that can detect infinite redex-creating
sequences as in Example 4 with R2 = {a → b} and B2 = {f → d(f, a)}: f →B2

d(f, a) →R2 d(f, b) →B2 d(d(f, a), b) →R2 . . . To this end, (1) we need a DP for
the rule a → b to track the reduction of the created R2-redex a, although b is a
constructor. Moreover, (2) both defined symbols f and a in the right-hand side
of the rule f → d(f, a) have to be considered simultaneously: We need f to create
an infinite number of R2-redexes, and we need a since it is the created R2-redex.
Hence, for rules from the base TRS B2, we have to consider all possible pairs of
defined symbols in their right-hand sides simultaneously.5 This is not needed for

5 For relative termination, it suffices to consider pairs of defined symbols. The reason
is that to “track” a non-terminating reduction, one only has to consider a single

368 J.-C. Kassing et al.

the main TRS R2, i.e., if the f-rule were in the main TRS, then the f in the right-
hand side could be considered separately from the a that it generates. Therefore,
we distinguish between main and base ADPs (that are generated from the main
and the base TRS, respectively).

As in [23], we now annotate defined symbols directly in the original rewrite
rule instead of extracting annotated subterms from its right-hand side. In this
way, we may have terms containing several annotated symbols, which allows us to
consider pairs of defined symbols in right-hand sides simultaneously. At the same
time, an ADP maintains the information on the positions of the subterms in the
original right-hand side. (This information will be needed for the “completeness”
of the chain criterion in Theorem 23, i.e., it allows us to obtain an equivalent
characterization of relative termination via chains of ADPs.6)

Definition 15 (Annotations). For t ∈ T
(
Σ#,V

)
and X ⊆ Σ# ∪ V, let

PosX (t) be the set of all positions of t with symbols or variables from X . For
Φ ⊆ PosD∪D#(t), #Φ(t) is the variant of t where the symbols at positions from Φ
are annotated and all other annotations are removed. Thus, PosD#(#Φ(t)) = Φ,
and #∅(t) removes all annotations from t, where we often write �(t) instead of
#∅(t). Moreover, for a singleton {π}, we often write #π instead of #{π}. We
write t �π

s if π ∈ PosD#(s) and t = �(s|π) (i.e., t results from a subterm of
s with annotated root symbol by removing its annotations). We also write �#

instead of �π
if π is irrelevant.

Example 16. If f ∈ D, then we have #1(f(f(x))) = #1(F(F(x))) = f(F(x)) and
�(F(F(x))) = f(f(x)). Moreover, we have f(x) �1

f(F(x)).

While in [23] all defined symbols on the right-hand sides of rules were anno-
tated, we now define our novel variant of annotated dependency pairs for relative
rewriting. As explained before Definition 15, we have to track (at most) two
redexes for base ADPs and only one redex for main ADPs.

Definition 17 (Annotated Dependency Pair). A rule � → r with � ∈
T (Σ,V) \ V, r ∈ T

(
Σ#,V

)
, and V(r) ⊆ V(�) is called an annotated depen-

dency pair (ADP). Let D be the defined symbols of R ∪ B, and for n ∈ N, let
An(� → r) = {� → #Φ(r) | Φ ⊆ PosD(r), |Φ| = min(n, |PosD(r)|)}. The canoni-
cal main ADPs for R are A1(R) =

⋃

�→r∈R
A1(�→r) and the canonical base ADPs

for B are A2(B)=
⋃

�→r∈B
A2(�→r).

So the left-hand side of an ADP is just the left-hand side of the original
rule. The right-hand side results from the right-hand side of the original rule by
replacing certain defined symbols f with f#.

redex plus possibly another redex of the base TRS which may later create a redex
of the main TRS again.

6 This is the main advantage of ADPs over related formalisms like dependency tuples
[22,32] where this information on the positions is lost. Therefore, as shown in [23] for
almost-sure termination analysis of probabilistic term rewriting, using ADPs instead
of DTs leads to a more elegant, more powerful, and less complicated framework.

Dependency Pairs for Relative Termination 369

Example 18. The canonical ADPs of Example 4 are A1(R2) = {a → b} and
A2(B2) = {f → d(F,A)} and for Example 5 we get A1(R3) = {a(x) → b(x)}
and A2(B3) = {f → A(F)}. For RdivL/Bmset2 from Examples 1 and 14, the ADPs
A1(RdivL) are

minus(x, 0) → x (14)

minus(s(x), s(y)) → M(x, y) (15)

div(0, s(y)) → 0 (16)

divL(x, nil) → x (17)

div(s(x), s(y)) → s(D(minus(x, y), s(y))) (18)

div(s(x), s(y)) → s(div(M(x, y), s(y))) (19)

divL(x, cons(y, xs)) → DL(div(x, y), xs) (20)

divL(x, cons(y, xs)) → divL(D(x, y), xs) (21)

and A2(Bmset2) contains divL(z, cons(x, cons(y, zs))) → DL(z, cons(y, cons(x, zs))) (22)

In [23], ADPs were only used for innermost rewriting. We now modify their
rewrite relation and define what happens with annotations inside the substitu-
tions during a rewrite step. To simulate redex-creating sequences as in Example
5 with ADPs (where the position of the created redex a(. . .) is above the position
of the creating redex f), ADPs should be able to rewrite above annotated argu-
ments without removing their annotation (we will demonstrate that in Example
25). Thus, for an ADP � → r with a variable �|π = x, we use a variable repo-
sition function (VRF) to indicate which occurrence of x in r should keep the
annotations if one rewrites an instance of � where the subterm at position π is
annotated. So a VRF maps positions of variables in the left-hand side of a rule
to positions of the same variable in the right-hand side.

Definition 19 (Variable Reposition Function). Let � → r be an ADP. A
function ϕ : PosV(�) → PosV(r) � {⊥} is called a variable reposition function
(VRF) for � → r iff �|π = r|ϕ(π) whenever ϕ(π) �= ⊥.

Example 20. For the ADP a(x) → b(x) for R3 from Example 5, if x on position
1 of the left-hand side is instantiated by F, then the VRF ϕ(1) = 1 indicates
that this ADP rewrites A(F) to b(F), while ϕ(1) = ⊥ means that it rewrites A(F)
to b(f).

With VRFs we can define the rewrite relation for ADPs w.r.t. full rewriting.

Definition 21 (↪−→P). Let P be a set of ADPs. A term s ∈ T
(
Σ#,V

)
rewrites

to t using P (denoted s ↪−→P t) if there are an ADP � → r ∈ P, a substitution σ,
a position π ∈ PosD∪D#(s) such that �(s|π) = �σ, a VRF ϕ for � → r, and7

t = s[#Φ(rσ)]π if π ∈ PosD#(s) (pr)
t = s[#Ψ (rσ)]π if π ∈ PosD(s) (r)

7 In [23] there were two additional cases in the definition of the corresponding rewrite
relation. One of them was needed for processors that restrict the rules applicable for
r-steps (e.g., based on usable rules), and the other case was needed to ensure that the
innermost evaluation strategy is not affected by the application of ADP processors.
This is unnecessary here since we consider full rewriting. On the other hand, VRFs
are new compared to [23], since they are not needed for innermost rewriting.

370 J.-C. Kassing et al.

with Ψ ={ϕ(ρ).τ |ρ∈PosV(�), ϕ(ρ) �=⊥, ρ.τ ∈PosD#(s|π)} and Φ = PosD#(r) ∪
Ψ .

So Ψ considers all positions of annotated symbols in s|π that are below positions
ρ of variables in �. If the VRF maps ρ to a variable position ρ′ in r, then the
annotations below π.ρ in s are kept in the resulting subterm at position π.ρ′

after the rewriting.
Rewriting with P is like ordinary term rewriting, while considering and

modifying annotations. Note that we represent a DP resulting from a rule
as well as the original rule by just one ADP. So the ADP div(s(x), s(y)) →
s(D(minus(x, y), s(y))) represents both the DP resulting from div in the right-
hand side of the rule (4), and the rule (4) itself (by simply disregarding all
annotations of the ADP).

Similar to the classical DP framework, our goal is to track specific reduction
sequences. As before, there are p-steps where a DP is applied at the position
of an annotated symbol. These steps may introduce new annotations. Moreover,
between two p-steps there can be several r-steps.

A step of the form (pr) at position π in Definition 21 represents a p- or an r-
step (or both), where an r-step is only possible if one later rewrites an annotated
symbol at a position above π. All annotations are kept during this step except for
annotations of subterms that correspond to variables of the applied rule. Here,
the used VRF ϕ determines which of these annotations are kept and which are
removed. As an example, with the canonical ADP a(x) → b(x) from A1(R3)
we can rewrite A(F) ↪−→A1(R3)

b(F) as in Example 20. Here, we have π = ε,
�(s|ε) = a(f) = �σ, r = b(x), and the VRF ϕ with ϕ(1) = 1 such that the
annotation of F in A’s argument is kept in the argument of b.

A step of the form (r) rewrites at the position of a non-annotated defined
symbol, and represents just an r-step. Hence, we remove all annotations from
the right-hand side r of the ADP. However, we may have to keep the anno-
tations inside the substitution, hence we move them according to the VRF.
For example, we obtain the rewrite step s(D(minus(s(0), s(0)), s(0))) ↪−→A1(RdivL)

s(D(minus(0, 0), s(0))) using the ADP minus(s(x), s(y)) → M(x, y) (15) and any
VRF.

A (relative) ADP problem has the form (P,S), where P and S are finite sets
of ADPs. P is the set of all main ADPs and S is the set of all base ADPs. Now
we can define chains in the relative setting.

Definition 22 (Chains and Terminating ADP Problems). Let (P,S) be
an ADP problem. A sequence of terms t0, t1, . . . with ti ∈ T

(
Σ#,V

)
is a (P,S)-

chain if we have ti ↪−→P∪S ti+1 for all i ∈ N. The chain is called infinite if
infinitely many of these rewrite steps use ↪−→P with Case (pr). We say that an
ADP problem (P,S) is terminating (SN) if there is no infinite (P,S)-chain.

Note the two different forms of relativity in Definition 22: In a finite chain,
we may not only use infinitely many steps with S but also infinitely many steps
with P where Case (r) applies. Thus, an ADP problem (P,S) without annotated

Dependency Pairs for Relative Termination 371

symbols or without any main ADPs (i.e., where P = ∅) is obviously SN. Finally,
we obtain our desired chain criterion.

Theorem 23 (Chain Criterion for Relative Rewriting). Let R and B be
TRSs such that B is non-duplicating. Then R/B is SN iff the ADP problem
(A1(R),A2(B)) is SN.

Example 24. The infinite rewrite sequence of Example 4 can be simulated by the
following infinite chain using A1(R2) = {a → b} and A2(B2) = {f → d(F,A)}.

F ↪−→A2(B2)
d(F,A) ↪−→A1(R2)

d(F, b) ↪−→A2(B2)
d(d(F,A), b) ↪−→A1(R2)

. . .

The steps with ↪−→A2(B2)
use Case (pr) at the position of the annotated symbol

F and the steps with ↪−→A1(R2)
use (pr) as well. For this infinite chain, we indeed

need two annotated symbols in the right-hand side of the base ADP: If A were
not annotated (i.e., if we had the ADP f → d(F, a)), then the step with ↪−→A1(R2)

would just use Case (r) and the chain would not be considered “infinite”. If F
were not annotated (i.e., if we had the ADP f → d(f,A)), then we would have
the step f ↪−→A2(B2)

d(f, a) which uses Case (r) and removes all annotations from
the right-hand side. Hence, again the chain would not be considered “infinite”.

Example 25. The infinite rewrite sequence of Example 5 is simulated by the
following chain with A1(R3) = {a(x) → b(x)} and A2(B3) = {f → A(F)}.

F ↪−→A2(B3)
A(F) ↪−→A1(R3)

b(F) ↪−→A2(B3)
b(A(F)) ↪−→A1(R3)

b(b(F)) ↪−→A2(B3)
. . .

Here, it is important to use the VRF ϕ(1) = 1 for a(x) → b(x) which keeps the
annotation of A’s argument F when rewriting with A1(R3), i.e., these steps must
yield b(F) instead of b(f) to generate further subterms A(. . .) afterwards.

5 The Relative ADP Framework

Now we present processors for our novel relative ADP framework. An ADP
processor Proc has the form Proc(P,S) = {(P1,S1), . . . , (Pn,Sn)}, where
P,P1, . . . ,Pn,S1, . . . ,Sn are sets of ADPs. Proc is sound if (P,S) is SN when-
ever (Pi,Si) is SN for all 1 ≤ i ≤ n. It is complete if (Pi,Si) is SN for all
1 ≤ i ≤ n whenever (P,S) is SN. To prove relative termination of R/B, we
start with the canonical ADP problem (A1(R),A2(B)) and apply sound (and
preferably complete) ADP processors until all sub-problems are transformed to
the empty set.

In Sect. 5.1, we present two processors to remove (base) ADPs, and in
Sects. 5.2 and 5.3, we adapt the main processors of the classical DP framework
from Sect. 3.1 to the relative setting. As mentioned, the soundness and complete-
ness proofs for our processors and the chain criterion (Theorem 23) can be found
in [24].

372 J.-C. Kassing et al.

5.1 Derelatifying Processors

The following two derelatifying processors can be used to switch from ADPs to
ordinary DPs, similar to Theorems 11 and 12. We extend � to ADPs and sets of
ADPs S by defining �(� → r) = � → �(r) and �(S) = {� → �(r) | � → r ∈ S}.

If the ADPs in S contain no annotations anymore, then it suffices to use
ordinary DPs. The corresponding set of DPs for a set of ADPs P is defined as
dp(P) = {�# → t# | � → r ∈ P, t �# r}.

Theorem 26 (Derelatifying Processor (1)). Let (P,S) be an ADP problem
such that �(S) = S. Then ProcDRP1(P,S) = ∅ is sound and complete iff the
ordinary DP problem (dp(P), �(P ∪ S)) is SN.

Furthermore, similar to Theorem 12, we can always move ADPs from S to
P, but such a processor is only sound and not complete. However, it may help
to satisfy the requirements of Theorem 26 by moving ADPs with annotations
from S to P such that the ordinary DP framework can be used afterwards.

Theorem 27 (Derelatifying Processor (2)). Let (P,S) be an ADP problem,
and let S = Sa�Sb. Then ProcDRP2(P,S) = {(P∪split(Sa),Sb)} is sound. Here,
split(Sa) = {� → #π(r) | � → r ∈ Sa, π ∈ posD#(r)}.

So if Sa contains an ADP with two annotations, then we split it into two ADPs,
where each only contains a single annotation.

Example 28. There are also redex-creating examples that are terminating, e.g.,
R2 = {a → b} and the base TRS B′

2 = {f(s(y)) → d(f(y), a)}. Relative (and full)
termination of this example can easily be shown by using the second derelatifying
processor from Theorem 27 to replace the base ADP f(s(y)) → d(F(y),A) by the
main ADPs f(s(y)) → d(F(y), a) and f(s(y)) → d(f(y),A). Then the processor of
Theorem 26 is used to switch to the ordinary DPs F(s(y)) → F(y) and F(s(y)) →
A.

5.2 Relative Dependency Graph Processor

Next, we develop a dependency graph processor in the relative setting. The
definition of the dependency graph is analogous to the one in the standard setting
and thus, the same techniques can be used to over-approximate it automatically.

Definition 29 (Relative Dependency Graph). Let (P,S) be an ADP prob-
lem. The (P,S)-dependency graph has the set of nodes P ∪ S and there is an
edge from �1 → r1 to �2 → r2 if there exist substitutions σ1, σ2 and a term
t �# r1 such that t#σ1 →∗

�(P∪S) �#2 σ2.

So similar to the standard dependency graph, there is an edge from an ADP
�1 → r1 to �2 → r2 if the rules of �(P ∪ S) (without annotations) can reduce an
instance of a subterm t of r1 to an instance of �2, if one only annotates the roots
of t and �2 (i.e., then the rules can only be applied below the root).

Dependency Pairs for Relative Termination 373

Fig. 1. (A1(RdivL), A2(Bmset2))-Dep. Graph Fig. 2. (A1(R2), A2(B2))-Dep. Graph

Example 30. The dependency graph for the ADP problem (A1(RdivL),
A2(Bmset2)) from Example 18 is shown in Fig. 1. Here, nodes from A1(RdivL)
are denoted by rectangles and the node from A2(Bmset2) is a circle.

To detect possible ordinary infinite rewrite sequences as in Example 6, we
again have to regard SCCs of the dependency graph, where we only need to
consider SCCs that contain a node from P, because otherwise, all steps in the
SCC are relative (base) steps. However, in the relative ADP framework, non-
termination can also be due to chains representing redex-creating sequences.
Here, it does not suffice to look at SCCs. Thus, the relative dependency graph
processor differs substantially from the corresponding processor for ordinary
rewriting (and also from the corresponding processor for the probabilistic ADP
framework in [23]).

Example 31 (Dependency Graph for Redex-Creating TRSs). For R2 and B2 from
Example 4, the dependency graph for (A1(R2),A2(B2)) from Example 24 is in
Fig. 2. Here, we cannot regard the SCC {f → d(F,A)} separately, as we need
A1(R2)’s rule a → b to reduce the created redex. To find the ADPs that can
reduce the created redexes, we have to regard the outgoing paths from the SCCs
of S to ADPs of P.

The structure that we are looking for in the redex-creating case is a path
from an SCC to a node from P (i.e., a form of a lasso), which is minimal in the
sense that if we reach a node from P, then we stop and do not move further
along the edges of the graph. Moreover, the SCC needs to contain an ADP with
more than one annotated symbol, as otherwise the generation of the infinitely
many P-redexes would not be possible. Here, it suffices to look at SCCs in the
graph restricted to only S-nodes (i.e., in the (�(P),S)-dependency graph). The
reason is that if the SCC contains a node from P, then as mentioned above, we
have to prove anyway that the SCC does not give rise to infinite chains.

Definition 32 (SCC(P,S)
P′ , Lasso). Let (P,S) be an ADP problem. For any P ′ ⊆

P ∪ S, let SCC
(P,S)
P′ denote the set of all SCCs of the (P,S)-dependency graph

that contain an ADP from P ′. Moreover, let S>1 ⊆ S denote the set of all ADPs
from S with more than one annotation. Then the set of all minimal lassos is
defined as Lasso = {Q ∪ {n1, . . . , nk} | Q ∈ SCC

(�(P),S)
S>1

, n1, . . . , nk is a path in
the (�(P),S)-dependency graph such that n1 ∈ Q and nk ∈ �(P)}.

374 J.-C. Kassing et al.

We remove the annotations of ADPs which do not have to be considered
anymore for p-steps due to the dependency graph, but we keep the ADPs for
possible r-steps and thus, consider them as relative (base) ADPs.

Theorem 33 (Dep. Graph Processor). Let (P,S) be an ADP problem. Then

ProcDG(P, S) = {(P ∩ Q, (S ∩ Q) ∪ �((P ∪ S) \ Q)) | Q ∈ SCC
(P,S)
P ∪ Lasso}

is sound and complete.

Example 34. For (A1(RdivL),A2(Bmset2)) from Example 30 we have three SCCs
{(15)}, {(18)}, and {(20), (22)} containing nodes from A1(RdivL). The set {(22)}
is the only SCC of (�(A1(RdivL)),A2(Bmset2)) and there are paths from that SCC
to the ADPs (20) and (21) of P. However, they are not in Lasso, because the
SCC {(22)} does not contain an ADP with more than one annotation. Hence, we
result in the three new ADP problems ({(15)}, {�(22)} ∪ �(A1(RdivL) \ {(15)})),
({(18)}, {�(22)} ∪ �(A1(RdivL) \ {(18)})), and ({(20)}, {(22)} ∪ �(A1(RdivL) \
{(20)})). For the first two of these new ADP problems, we can use the dere-
latifying processor of Theorem 26 and prove SN via ordinary DPs, since their
base ADPs do not contain any annotated symbols anymore.

The dependency graph processor in combination with the derelatifying pro-
cessors of Theorems 26 and 27 already subsumes the techniques of Theorems
11 and 12. The reason is that if R dominates B, then there is no edge from an
ADP of A2(B) to any ADP of A1(R) in the (A1(R),A2(B))-dependency graph.
Hence, there are no minimal lassos and the dependency graph processor just
creates ADP problems from the SCCs of A1(R) where the base ADPs do not
have any annotations anymore. Then Theorem 26 allows us to switch to ordinary
DPs. For example, if we consider Bmset instead of Bmset2, then the dependency
graph processor yields the three sub-problems for the SCCs {(15)}, {(18)}, and
{(20)}, where the base ADPs do not contain annotations anymore. Then, we
can move to ordinary DPs via Theorem 26.

Compared to Theorems 11 and 12, the dependency graph allows for more
precise over-approximations than just “dominance” to detect when the base
ADPs do not depend on the main ADPs. Moreover, the derelatifying processors
of Theorems 26 and 27 allow us to switch to the ordinary DP framework also
for sub-problems which result from the application of other processors of our
relative ADP framework. In other words, Theorems 26 and 27 allow us to apply
this switch in a modular way, even if their prerequisites do not hold for the initial
canonical ADP problem (i.e., even if the prerequisites of Theorems 11 and 12 do
not hold for the whole TRSs).

5.3 Relative Reduction Pair Processor

Next, we adapt the reduction pair processor to ADPs for relative rewriting.
While the reduction pair processor for ADPs in the probabilistic setting [23] was
restricted to polynomial interpretations, we now allow arbitrary reduction pairs
using a similar idea as in [18] for complexity analysis via DPs.

Dependency Pairs for Relative Termination 375

To find out which ADPs cannot be used for infinitely many p-steps, the idea
is not to compare the annotated left-hand side with the whole right-hand side,
but just with the set of its annotated subterms. To combine these subterms in
the case of ADPs with two or no annotated symbols, we extend the signature
by two fresh compound symbols c0 and c2 of arity 0 and 2, respectively. Similar
to [18], we have to use c-monotonic and c-invariant reduction pairs.

Definition 35 (c-Monotonic, c-Invariant). For r ∈ T
(
Σ#,V

)
, we define

ann(r) = c0 if r does not contain any annotation, ann(r) = t# if t �# r and r

only contains one annotated symbol, and ann(r) = c2(r
#
1 , r#2) if r1 �π1

r, r2 �π2
#

r, and π1 <lex π2 where <lex is the (total) lexicographic order on positions.
A reduction pair (�,) is called c-monotonic if c2(s1, t) 	 c2(s2, t) and

c2(t, s1) 	 c2(t, s2) for all s1, s2, t ∈ T
(
Σ#,V

)
with s1 	 s2. Moreover, it is

c-invariant if c2(s1, s2) ∼ c2(s2, s1) and c2(s1, c2(s2, s3)) ∼ c2(c2(s1, s2), s3) for
∼ = � ∩ � and all s1, s2, s3 ∈ T

(
Σ#,V

)
.

So for example, reduction pairs based on polynomial interpretations are c-
monotonic and c-invariant if c2(x, y) is interpreted by x + y.

For an ADP problem (P,S), now the reduction pair processor has to orient
the non-annotated rules �(P ∪S) weakly and for all ADPs � → r, it compares the
annotated left-hand side �# with ann(r). In strictly decreasing ADPs, one can
then remove all annotations and consider them as relative (base) ADPs again.

Theorem 36 (Reduction Pair Processor). Let (P,S) be an ADP problem
and let (�,) be a c-monotonic and c-invariant reduction pair such that �(P ∪
S) ⊆ � and �# � ann(r) for all � → r ∈ P ∪ S. Moreover, let P� ⊆ P ∪ S such
that �# 	 ann(r) for all � → r ∈ P�. Then ProcRPP(P,S) = {(P \P�, (S \P�)∪
�(P�))} is sound and complete.

Example 37. For the remaining ADP problem ({(20)}, {(22)} ∪ �(A1(RdivL) \
{(20)})) from Example 34, we can apply the reduction pair processor using the
polynomial interpretation from the end of Sect. 3.1 which maps 0 and nil to 0,
s(x) to x + 1, cons(y, xs) to xs + 1, DL(x, xs) to xs, and all other symbols to
their first arguments. Then, (20) is oriented strictly (i.e., it is in P�), and (22)
and all other base ADPs are oriented weakly. Hence, we remove the annotation
from (20) and move it to the base ADPs. Now there is no main ADP any-
more, and thus the dependency graph processor returns ∅. This proves SN for
(A1(RdivL),A2(Bmset2)), hence RdivL/Bmset2 is also SN.

Example 38. Regard the ADPs a → b and f → d(F,A) for the redex-creating
Example 4 again. When using a polynomial interpretation Pol that maps c0 to
0 and c2(x, y) to x + y, then for the reduction pair processor one has to satisfy
Pol(A) ≥ 0 and Pol(F) ≥ Pol(F)+Pol(A), i.e., one cannot make any of the ADPs
strictly decreasing.

In contrast, for the variant with the terminating base rule f(s(y)) → d(f(y), a)
from Example 28, we have the ADPs a → b and f(s(y)) → d(F(y),A). Here, the
second constraint is Pol(F(s(y))) ≥ Pol(F(y))+Pol(A). To make one of the ADPs

376 J.-C. Kassing et al.

strictly decreasing, one can set Pol(F(x)) = x, Pol(s(x)) = x+1, and Pol(A) = 1
or Pol(A) = 0. Then the reduction pair processor removes the annotations from
the strictly decreasing ADP and the dependency graph processor proves SN.

6 Evaluation and Conclusion

In this paper, we introduced the first notion of (annotated) dependency pairs
and the first DP framework for relative termination, which also features suitable
dependency graph and reduction pair processors for relative ADPs. Of course,
further classical DP processors can be adapted to our relative ADP framework
as well. For example, in our implementation of the novel ADP framework in our
tool AProVE [13], we also included a straightforward adaption of the classical rule
removal processor [11], see [24].8 While the soundness proofs for the processors
in the new relative ADP framework are more involved than in the standard DP
framework, the new processors themselves are quite analogous to their original
counterparts and thus, adapting an existing implementation of the ordinary DP
framework to the relative ADP framework does not require much effort. In future
work, we will investigate how to use our new form of ADPs for full (instead of
innermost) rewriting also in the probabilistic setting and for complexity analysis.

To evaluate the new relative ADP framework, we compared its implemen-
tation in “new AProVE” to all tools that participated in the most recent ter-
mination competition (TermComp 2023) [14] on relative rewriting, i.e., NaTT
[36], TTT2 [27], MultumNonMulta [9], and “old AProVE” which did not yet con-
tain the contributions of the current paper. In TermComp 2023, 98 benchmarks
were used for relative termination. However, these benchmarks only consist of
examples where the main TRS R dominates the base TRS B (i.e., which can be
handled by Theorem 11 from [21]) or which can already be solved via simplifi-
cation orders directly.

Therefore, we extended the collection by 32 new “typical” examples for rel-
ative rewriting, including both RdivL/Bmset from Examples 1 and 2, and our
leading example RdivL/Bmset2 from Examples 2 and 14 (where only new AProVE
can prove SN). Except for RdivL/Bmset, in these examples R does not dominate B.
Most of these examples adapt well-known classical TRSs from the Termination
Problem Data Base [33] used at TermComp to the relative setting. Moreover, 5
of our new examples illustrate the application of relative termination for proving
confluence, i.e., in these examples one can prove confluence with the approach
of [19] via our new technique for relative termination proofs.

In the following table, the number in the “YES” (“NO”) row indicates for
how many of the 130 examples the respective tool could prove (disprove) relative
termination and “MAYBE” refers to the benchmarks where the tool could not

8 This processor works analogously to the preprocessing at the beginning of Sect. 4
which can be used to remove duplicating rules: For an ADP problem (P, S), it
tries to find a reduction pair (�, �) where � is closed under contexts such that
�(P ∪ S) ⊆ �. Then for P� ⊆ P ∪ S with �(P�) ⊆ �, the processor replaces the
ADP by (P \ P�, S \ P�).

Dependency Pairs for Relative Termination 377

solve the problem within the timeout of 300 s per example. The numbers in
brackets are the respective results when only considering our new 32 examples.
“AVG(s)” gives the average runtime of the tool on solved examples in seconds.

new AProVE NaTT old AProVE TTT2 MultumNonMulta

YES 91 (32) 68 (10) 48 (5) 39 (3) 0 (0)

NO 13 (0) 5 (0) 13 (0) 7 (0) 13 (0)

MAYBE 26 (0) 57 (22) 69 (27) 84 (29) 117 (32)

AVG(s) 5.11 0.41 4.02 1.67 1.60

The table clearly shows that while old AProVE was already the second most
powerful tool for relative termination, the integration of the ADP framework
in new AProVE yields a substantial advance in power (i.e., it only fails on 26
of the examples, compared to 57 and 69 failures of NaTT and old AProVE,
respectively). In particular, previous tools (including old AProVE) often have
problems with relative TRSs where the main TRS does not dominate the base
TRS, whereas the ADP framework can handle such examples.

A special form of relative TRSs are relative string rewrite systems (SRSs),
where all function symbols have arity 1. Due to the base ADPs with two anno-
tated symbols on the right-hand side, here the ADP framework is less powerful
than dedicated techniques for string rewriting. For the 403 relative SRSs at
TermComp 2023, the ADP framework only finds 71 proofs, mostly due to the
dependency graph and the rule removal processor, while termination analysis via
AProVE’s standard strategy for relative SRSs succeeds on 209 examples, and the
two most powerful tools for relative SRSs at TermComp 2023 (MultumNonMulta
and Matchbox [35]) succeed on 274 and 269 examples, respectively.

Another special form of relative rewriting is equational rewriting, where one
has a set of equations E which correspond to relative rules that can be applied in
both directions. In [10], DPs were adapted to equational rewriting. However, this
approach requires E-unification to be decidable and finitary (i.e., for (certain)
pairs of terms, it has to compute finite complete sets of E-unifiers). This works
well if E are AC- or C-axioms, and for this special case, dedicated techniques
like [10] are more powerful than our new ADP framework for relative termina-
tion. For example, on the 76 AC- and C-benchmarks for equational rewriting at
TermComp 2023, the relative ADP framework finds 36 proofs, while dedicated
tools for AC-rewriting like AProVE’s equational strategy or MU-TERM [15] suc-
ceed on 66 and 64 examples, respectively. However, in general, the requirement
of a finitary E-unification algorithm is a hard restriction. In contrast to existing
tools for equational rewriting, our new ADP framework can be used for arbitrary
(non-duplicating) relative rules.

For details on our experiments, our collection of examples, and for instruc-
tions on how to run our implementation in AProVE via its web interface or
locally, see: https://aprove-developers.github.io/RelativeDTFramework/.

https://aprove-developers.github.io/RelativeDTFramework/

378 J.-C. Kassing et al.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

3. Baudon, T., Fuhs, C., Gonnord, L.: Analysing parallel complexity of term rewrit-
ing. In: Villanueva, A. (ed.), LOPSTR 2022, LNCS, vol. 13474, pp. 3–23. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-16767-6 1

4. Dershowitz, N.: Termination of rewriting. J. Symbol. Comput 3(1), 69–115 (1987).
https://doi.org/10.1016/S0747-7171(87)80022-6

5. Dershowitz, N.: The RTA List of Open Problems. https://www.cs.tau.ac.il/
∼nachum/rtaloop/

6. Frohn, F., Giesl, J., Hensel, J., Aschermann, C., Ströder, T.: Lower bounds for
runtime complexity of term rewriting. J. Automat. Reason. 59(1), 121–163 (2017).
https://doi.org/10.1007/S10817-016-9397-X

7. Fuhs, C.: Transforming derivational complexity of term rewriting to runtime com-
plexity. In: Herzig, A., Popescu, A. (eds.) FroCoS 2019. LNCS (LNAI), vol. 11715,
pp. 348–364. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29007-
8 20

8. Geser, A.: Relative Termination. PhD thesis. University of Passau (1990). https://
www.uni-ulm.de/fileadmin/websiteuniulm/iui/UlmerInformatikBerichte/1991/
UIB-1991-03.pdf

9. Geser, A., Hofbauer, D., Waldmann, J.: Sparse tiling through overlap closures for
termination of string rewriting. In: Geuvers, H. (ed.), FSCD 2019. LIPIcs, vol. 131,
pp. 21:1–21:21 (2019). https://doi.org/10.4230/LIPICS.FSCD.2019.21

10. Giesl, J., Kapur, D.: Dependency Pairs for equational rewriting. In: Middeldorp,
A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45127-7 9

11. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-32275-7 21

12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. In: J. Automat. Reason. 37(3), 155–203 (2006). https://doi.org/
10.1007/s10817-006-9057-7

13. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. In: J. Automat. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/
s10817-016-9388-y

14. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 10

15. Gutiérrez, R., Lucas, S.: MU-TERM: verify termination properties automatically
(system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020.
LNCS (LNAI), vol. 12167, pp. 436–447. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51054-1 28

16. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Com-
putat. 199(1–2), 172–199 (2005). https://doi.org/10.1016/j.ic.2004.10.004

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-031-16767-6_1
https://doi.org/10.1016/S0747-7171(87)80022-6
https://www.cs.tau.ac.il/~nachum/rtaloop/
https://www.cs.tau.ac.il/~nachum/rtaloop/
https://doi.org/10.1007/S10817-016-9397-X
https://doi.org/10.1007/978-3-030-29007-8_20
https://doi.org/10.1007/978-3-030-29007-8_20
https://www.uni-ulm.de/fileadmin/website uni ulm/iui/Ulmer Informatik Berichte/1991/UIB-1991-03.pdf
https://www.uni-ulm.de/fileadmin/website uni ulm/iui/Ulmer Informatik Berichte/1991/UIB-1991-03.pdf
https://www.uni-ulm.de/fileadmin/website uni ulm/iui/Ulmer Informatik Berichte/1991/UIB-1991-03.pdf
https://doi.org/10.4230/LIPICS.FSCD.2019.21
https://doi.org/10.1007/3-540-45127-7_9
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1016/j.ic.2004.10.004

Dependency Pairs for Relative Termination 379

17. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features.
Inf. Comput. 205(4), 474–511 (2007). https://doi.org/10.1016/J.IC.2006.08.010

18. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71070-7 32

19. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J.
Automat. Reason. 47(4), 481–501 (2011). https://doi.org/10.1007/S10817-011-
9238-X

20. Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for
proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009.
LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12592-8 5

21. Iborra, J., Nishida, N., Vidal, G., Yamada, A.: Relative termination via depen-
dency pairs. J. Automat. Reason. 58(3), 391–411 (2017). https://doi.org/10.1007/
S10817-016-9373-5

22. Kassing, J.-C., Giesl, J.: Proving almost-sure innermost termination of probabilistic
term rewriting using dependency pairs. In: Pientka, B., Tinelli, C. (eds.) CADE
2023. LNCS, vol. 14132, pp. 344–364. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-38499-8 20

23. Kassing, J.-C., Dollase, S., Giesl, J.: A complete dependency pair framework for
almost-sure innermost termination of probabilistic term rewriting. In: Gibbons,
J., Miller, D. (eds.) FLOPS 2024. LNCS, vol. 14659, pp. 62–80. Springer, Cham
(2024). https://doi.org/10.1007/978-981-97-2300-3 4

24. Kassing, J.-C., Vartanyan, G., Giesl, J.: A dependency pair framework for relative
termination of term rewriting. arXiv preprint arXiv:2404.15248 (2024). https://
doi.org/10.48550/arXiv.2404.15248

25. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termi-
nation. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp.
258–273. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-
6 21

26. Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In:
Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer,
Heidelberg (2005). https://doi.org/10.1007/11559306 13

27. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02348-4 21

28. Lankford, D.S.: n Proving Term Rewriting Systems are Noetherian. Memo MTP-
3, Math. Dept., Louisiana Technical University, Ruston (1979). https://www.ens-
lyon.fr/LIP/REWRITING/TERMINATION/LankfordPolyTerm.pdf

29. Naaf, M., Frohn, F., Brockschmidt, M., Fuhs, C., Giesl, J.: Complexity analysis
for term rewriting by integer transition systems. In: Dixon, C., Finger, M. (eds.)
FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 132–150. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66167-4 8

30. Nagele, J., Felgenhauer, B., Zankl, H.: Certifying confluence proofs via relative
termination and rule labeling. Logic. Methods Comput. Sci. 13(2) (2017). https://
doi.org/10.23638/LMCS-13(2:4)2017

31. Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting.
Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010). https://doi.org/
10.1007/S00200-010-0122-4

https://doi.org/10.1016/J.IC.2006.08.010
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/S10817-011-9238-X
https://doi.org/10.1007/S10817-011-9238-X
https://doi.org/10.1007/978-3-642-12592-8_5
https://doi.org/10.1007/978-3-642-12592-8_5
https://doi.org/10.1007/S10817-016-9373-5
https://doi.org/10.1007/S10817-016-9373-5
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.1007/978-981-97-2300-3_4
http://arxiv.org/abs/2404.15248
https://doi.org/10.48550/arXiv.2404.15248
https://doi.org/10.48550/arXiv.2404.15248
https://doi.org/10.1007/978-3-642-28717-6_21
https://doi.org/10.1007/978-3-642-28717-6_21
https://doi.org/10.1007/11559306_13
https://doi.org/10.1007/978-3-642-02348-4_21
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/LankfordPolyTerm.pdf
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/LankfordPolyTerm.pdf
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.23638/LMCS-13(2:4)2017
https://doi.org/10.23638/LMCS-13(2:4)2017
https://doi.org/10.1007/S00200-010-0122-4
https://doi.org/10.1007/S00200-010-0122-4

380 J.-C. Kassing et al.

32. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of
term rewriting by dependency pairs. J. Autom. Reason. 51, 27–56 (2013). https://
doi.org/10.1007/978-3-642-22438-6 32

33. TPDB (Termination Problem Data Base). https://github.com/TermCOMP/
TPDB

34. Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Gar-
rigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7 10

35. Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oost-
rom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-25979-4 6

36. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.
(ed.) RTA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08918-8 32

37. Zankl, H., Korp, M.: Modular complexity analysis for term rewriting. Logic. Meth-
ods Comput. Sci. 10(1) (2014). https://doi.org/10.2168/LMCS-10(1:19)2014

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-22438-6_32
https://doi.org/10.1007/978-3-642-22438-6_32
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1007/978-3-540-78969-7_10
https://doi.org/10.1007/978-3-540-25979-4_6
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.2168/LMCS-10(1:19)2014
http://creativecommons.org/licenses/by/4.0/

Solving Quantitative Equations

Georg Ehling(B) and Temur Kutsia

RISC, Johannes Kepler University Linz, Linz, Austria
{gehling,kutsia}@risc.jku.at

Abstract. Quantitative equational reasoning provides a framework that
extends equality to an abstract notion of proximity by endowing equa-
tions with an element of a quantale. In this paper, we discuss the unifi-
cation problem for a special class of shallow subterm-collapse-free quan-
titative equational theories. We outline rule-based algorithms for solving
such equational unification problems over generic as well as idempotent
Lawvereian quantales and study their properties.

Keywords: Quantitative equational reasoning · Lawvereian
quantales · Equational unification

1 Introduction

Extending the equality predicate to a notion that expresses similarity or prox-
imity is a task that has been addressed in various ways. While fuzzy reason-
ing [8,23] approaches this endeavor by equipping equations with real numbers
between 0 and 1 to express the degree to which they hold true, quantitative alge-
braic reasoning [4,17] follows a more proximity-oriented approach, attempting
to establish a notion of distance between two terms.

Recently, Gavazzo and Di Florio [12] introduced a framework of metric and
quantitative equational reasoning that generalizes these approaches (with a slight
modification). It is based on the idea of modeling abstract quantities in quan-
tales [22], following Lawvere’s fundamental work [16]. In this framework, equa-
tions between terms are endowed with an element of a Lawvereian quantale that
expresses, in one sense or another, the degree to which they hold true. The exact
meaning of this degree depends on the choice of the quantale; for instance, it
could correspond to the distance of two terms in a metric space, or to the prob-
ability that the terms are equal. This approach is quite general and includes
various known quantitative theories as special cases.

In recent years, quantitative and approximate techniques have become
increasingly popular due to various applications. In these applications, e.g., in
those related to reasoning about probabilistic computations [5], reasoning about
privacy and security of systems [1,21], reasoning about resource consumption
during computation [7], approximate program transformations [13], etc. equal-
ities are replaced with their quantitative approximations to model distances
between programs, processes, or systems, resulting in metric-based approximate
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 381–400, 2024.
https://doi.org/10.1007/978-3-031-63501-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_20&domain=pdf
http://orcid.org/0009-0003-5931-9673
http://orcid.org/0000-0003-4084-7380
https://doi.org/10.1007/978-3-031-63501-4_20

382 G. Ehling and T. Kutsia

relations. Various techniques have been used to model such metric reasoning
principles, among them quantitative equational logic, discussed in [3,4,17,18].

In this paper, we address one of the central problems in equational reasoning:
unification (or solving equations). We approach this problem in the framework
as described in [12], studying a generalization of classical unification to solving
equations in a quantitative equational theory in Lawvereian quantales.

The theories we consider in this paper are induced by shallow subterm-
collapse-free equations of a special form, between terms whose arguments are the
same sequence of variables, e.g. f(x1, . . . , xn) and g(x1, . . . , xn). This is a natu-
ral first step toward investigating quantitative equational unification since such
quantitative equations generalize the principle of “extending proximity between
function symbols to proximity between terms” of unification in the fuzzy quantale
to unification in an arbitrary Lawvereian quantale. Despite their simple form,
such theories still pose several challenges (originating from, e.g., tensor-based
transitivity or extending proximity between arguments to whole terms), which
affect the notions of completeness and minimality of unifier sets. We redefine
these notions and show that unification (modulo the abovementioned theories)
in arbitrary Lawvereian quantale is finitary, while for idempotent Lawvereian
quantales, it becomes unitary. We develop the corresponding unification algo-
rithms and study their properties. Due to space limitations, we refer to the more
detailed technical report [10] for some of the proofs.

2 Preliminaries

We start by introducing the basic notions and fixing the terminology.

Quantales. For the notions in this part, we follow [11,12].

Definition 1 (Quantale). A (unital) quantale ˙ = (Ω,�,⊗, κ) consists of
a monoid (Ω, k,⊗) and a complete lattice (Ω,�) (with join ∨ and meet ∧)
satisfying the following distributivity laws: δ ⊗ (∨

i∈I εi

)
=

∨
i∈I(δ ⊗ εi) and(∨

i∈I εi

) ⊗ δ =
∨

i∈I(εi ⊗ δ).

The element κ is called the unit of the quantale, and ⊗ is called its tensor
(or multiplication). Besides κ, we use Greek letters ε, δ, η, ζ, ι, and ω to denote
elements of Ω. The top and bottom elements of a quantale are denoted by �
and ⊥, respectively. Quantales in which the unit κ coincides with � are called
integral quantales. A quantale is commutative if its underlying monoid is. It is
non-trivial if κ �= ⊥. It is cointegral if ε ⊗ δ = ⊥ implies either ε = ⊥ or δ = ⊥.

We assume our quantales are commutative, integral, cointegral, and nontri-
vial. Such quantales are called Lawvereian. (Note that the fuzzy quantale I is
Lawvereian for the Gödel and product T-norms, but not for the Łukasiewicz
T-norm.)

Tensors in quantales always have left and right adjoints. For commutative
quantales, these adjoints are the same, defined as ε � δ :=

∨{η | ε ⊗ η � δ}.

Solving Quantitative Equations 383

Table 1. Correspondence between quantales ˙ (generic), 2 (Boolean), L (Lawvere),
Lmax (strong Lawvere), and I (fuzzy).

˙ 2 L Lmax I

Carrier Ω {0, 1} [0, ∞] [0, ∞] [0, 1]

Order � � � � �
Join ∨ ∃ inf inf sup

Meet ∧ ∀ sup sup inf

Tensor ⊗ ∧ + max left-continuous T-norm
Unit κ 1 0 0 1

An element ι ∈ Ω is an idempotent element (or simply an idempotent) of
a quantale ˙ if it satisfies ι ⊗ ι = ι. A quantale is called idempotent if every
element is idempotent. Among the quantales in Table 1, the idempotent ones are
2, Lmax, and I for the minimum (Gödel) T-norm.

In any Lawvereian quantale, (i) ⊗ is monotonous: α � β ⇒ α ⊗ γ � β ⊗ γ
(using distributivity: (α ⊗ γ)∨ (β ⊗ γ) = (α ∨β)⊗ γ = β ⊗ γ); (ii) α ⊗β � α ∧β
(using monotonicity and integrality: α ⊗ β � α ⊗ � = α).

Given a quantale ˙ and ε, δ ∈ Ω, the way-below relation
 is defined as
δ
 ε iff for every Ψ ⊆ Ω, if ε �

∨
Ψ then there exists a finite subset Ψ0 ⊆ Ψ

such that δ�
∨

Ψ0. A quantale ˙ is called continuous if ε =
∨

δ�ε δ for all ε ∈ Ω.

Definition 2 (˙-relations, ˙-ternary relations). An ˙-relation R between
sets A and B is a function R : A×B → Ω. For any set A, the identity ˙-relation
ΔA : A × A → Ω maps the diagonal elements (a, a) to κ, and all other elements
to ⊥. The composition (R;S) : A × C → Ω of two ˙-relations R : A × B → Ω
and S : B × C → Ω is defined as (R;S)(a, c) :=

∨
b∈B

(
R(a, b) ⊗ S(b, c)

)
.

An ˙-ternary relation over A × B is a ternary relation R ⊆ A × Ω × B such
that R(a, ε, b) implies R(a, δ, b) for any δ � ε.

Any ˙-ternary relation R induces an ˙-relation R•(a, b) :=
∨

R(a,ε,b) ε, and
any ˙-relation R induces an ˙-ternary relation R◦(a, ε, b) :⇐⇒ ε � R(a, b).
Moreover, we have R•◦ = R◦• = R, and we can freely switch between ˙-ternary
relations and ˙-relations.

The complete lattice structure of ˙ lifts to ˙-relations pointwise, and we can say
that an ˙-relation R on A × A is reflexive if ΔA � R; transitive if (R;R) � R;
symmetric if R− � R (where R− is defined as R−(b, a) := R(a, b)). Thus, we
get the notions of a preorder (i.e., reflexive and transitive) and equivalence (i.e.,
reflexive, transitive, and symmetric) ˙-relation.

Terms and Substitutions. We assume that the reader is familiar with the stan-
dard notions of unification theory, see, e.g., [2]. A signature F is a set of function
symbols, each equipped with a fixed nonnegative arity. The set of terms over
a signature F and a set of variables V is denoted by T (F ,V). Given a term

384 G. Ehling and T. Kutsia

t ∈ T (F ,V), we denote by V(t) the set of variables appearing in t. A term is
ground if it contains no variables. The notion of a position in a term is defined
in the standard way.

The set of leaves of a term is defined as �(e) := {e}, if e is a constant symbol or
a variable, and �(f(t1, . . . , tn)) :=

⋃n
i=1 �(ti). (The leaves of a term t correspond

to the leaves of the tree representing t.) If s is a subterm of t, then the depth of
s in t as the minimal length of a position at which s occurs in t.

A substitution is a map σ : V → T (F ,V) which maps all but finitely many
variables to themselves. Greek letters σ, ϕ, ϑ, τ are used for them, while Id
denotes the identity substitution. The set of substitutions is denoted by Sub.
We use the set notation for substitutions, writing σ explicitly as a finite set
{x �→ σ(x) | x �= σ(x)}. The domain of σ is defined as dom(σ) := {x | x �= σ(x)}.
A substitution σ extends naturally to an endomorphism on T (F ,V). The image
of a term t under this endomorphism is denoted tσ.

3 Quantitative Equational Theories

We now fix a signature F , a set of variables V, and a Lawvereian quantale ˙.
Let ≈E be an ˙-ternary relation, assumed to be induced from a given set E of

triples (t, ε, s), which we write as ε � t ≈E s (called ˙-equalities). A quantitative
equational theory (or ˙-equational theory) =E is an ˙-ternary relation generated
from ≈E by the rules in Fig. 1. We call E a presentation of =E . Informally, we
read ε � t =E s as “t and s are at most ε-apart modulo E” or “t and s are equal
modulo E with degree ε”.

Fig. 1. Quantitative equational theory

Observe that the ˙-relation =•
E induced from =E (i.e., t =•

E s :=
∨

ε�t=Es ε)
is a reflexive, symmetric, transitive quantitative relation that contains ≈•

E and

Solving Quantitative Equations 385

where function symbols and substitutions behave in a non-expansive way:
(
t1 =•

E s1 ⊗ · · · ⊗ tn =•
E sn

)
�

(
f(t1, . . . , tn) =•

E f(s1, . . . , sn)
)
,

(
t =•

E s
)

�
(
tσ =•

E sσ
)
.

We will often slightly abuse terminology by calling both =•
E and a presenta-

tion E a quantitative equational theory.
The rules in Fig. 1 were introduced in [11] with the aim of generalizing previ-

ous approaches to quantitative reasoning [4,17]. This generalization is achieved
up to a slight modification of the (NExp) rule, whose analogue in [17] would
feature the join of ε1, . . . , εn rather than their tensor product.1

It should further be remarked that the (Join) rule also applies to an empty
hypothesis, whence ⊥ � t =E s holds for any t and s. The infinitary (Arch) rule
is needed to guarantee the semantic completeness of the deduction system in
[17], but has no effect on =E whenever the presentation E is finite, whence it
can be safely ignored in that case.

Analogous to classical equational theories, an ˙-equation ε � t = s, where
s is a proper subterm of t, is called a subterm-collapse equation. A quantitative
equational theory E is said to be simple (or subterm-collapse-free) if whenever
ε � t =E s with ε �= ⊥ holds, the equation ε � t = s is not subterm-collapsing.
An equation ε � t = s is called shallow [6] if the depth of each variable occurrence
in t or in s is at most 1. An equational theory is called shallow if each equation
in its presentation is shallow.

Definition 3. Let E be an ˙-equational theory and X be a set of variables. A
ternary relation �E,X ⊆ Sub × Ω × Sub is defined as

�E,X (σ, ε, ϑ) iff there exists a ϕ such that ε � xσϕ =E xϑ for all x ∈ X .
In this case, we say that the substitution σ is more general than ϑ modulo E

on X up to ε. We shortly write σ �E,X ,ε ϑ and call ϑ an (E,X , ε)-instance of σ
(or an (E,X)-instance with degree ε).

It is not hard to see that �E,X is an ˙-ternary relation over Sub ×Sub. To show
this, we need to prove that σ �E,X ,ε ϑ implies σ �E,X ,δ ϑ for any δ � ε, which
follows from the definition of =E .

Lemma 1. If σ �E,X ,ε ϑ and ϑ �E,Y,δ ψ, then σ �E,X∩Y,ε⊗δ ψ.

Proof. By definition of �E,X and �E,Y , we have ε � xσϕ1 =E xϑ for all x ∈ X ,
and δ � yϑϕ2 =E yψ for all y ∈ Y. From these equalities, for all z ∈ X ∩ Y by
the Subst rule we get ε � zσϕ1ϕ2 =E zϑϕ2 and δ � zϑϕ2 =E zψ. Therefore, by
⊗-transitivity (the Trans rule) we obtain ε⊗δ � zσϕ1ϕ2 =E zψ for all z ∈ X ∩Y,
which, by definition of �E,X∩Y , gives σ �E,X∩Y,ε⊗δ ψ. ��

1 The reason for this modification in [11] is that (NExp) should be compatible with
(Trans), which is based on the tensor rather than the join. Without it, one would
obtain a system where performing various transformation steps one after the other
would lead to a different distance than performing the same steps in parallel.

386 G. Ehling and T. Kutsia

Corollary 1. If σ �E,X ,ε ϑ and ϑ �E,X ,δ ψ, then σ �E,X ,ε⊗δ ψ.

Theorem 1. Given a set of ˙-equalities E and a set of variables X , the ˙-
relation �•

E,X induced by �E,X is a preorder on Sub.

Proof. We should show that �•
E,X is reflexive and transitive.

– Reflexivity: We need to show κ � σ �•
E,X σ for all σ, which follows directly

from the definitions of �E,X and =E .
– Transitivity: We should prove

(
σ �•

E,X ϑ ⊗ ϑ �•
E,X ψ

)
�

(
σ �•

E,X ψ
)

for all
σ, ϑ, and ψ. This statement can be inferred from Corollary 1. ��

The equivalence relation on substitutions induced by �E,X is denoted by ∼=E,X .
It is an ˙-ternary relation. We write σ ∼=E,X ,ε ϑ if ε � (σ ∼=•

E,X ϑ).

Example 1. Let ˙ be the Lawvere quantale L = ([0,∞],�,+, 0) and consider
E = {1 � a ≈ b, 1 � b ≈ c}, ε = 2 and X = {x}. Let σ = {x �→ a}, ϑ = {x �→ b},
and ϕ = {x �→ c}. Then we have:

– σ �E,X ,ε ϑ, because xσId = a, xϑ = b, and 1 � a =E b;
– ϑ �E,X ,ε ϕ, because xϑId = b, xϕ = c, and 1 � b =E c;
– ϕ �E,X ,ε σ, because xϕId = c, xσ = a, and 2 � c =E a.

Hence, σ ∼=E,X ,ε ϑ, ϑ ∼=E,X ,ε ϕ, and σ ∼=E,X ,ε ϕ. �

Theorem 2. Given E, X , t, and s such that V(t)∪V(s) ⊆ X , let R denote =•
E

and S denote �•
E,X . Assume σ and ϑ are substitutions such that R(tσ, sσ) = ε

and S(σ, ϑ) = δ. Then ε ⊗ ⊗n+m
i=1 δ � R(tϑ, sϑ), where n and m are the number

of occurrences of variables from X in t and s, respectively.

Proof. From S(σ, ϑ) = δ we know that there exists ϕ such that δ � R(xσϕ, xϑ)
holds for all x ∈ X . From this, by structural induction over terms, we can
prove ⊗n

i=1δ � R(tσϕ, tϑ) and ⊗m
i=1δ � R(sσϕ, sϑ). From R(tσ, sσ) = ε we get

ε � R(tσϕ, sσϕ). Applying transitivity twice we get ε ⊗ ⊗n+m
i=1 δ � R(tϑ, sϑ). ��

Example 2. In the Boolean quantale 2, this theorem implies the well-known fact
that if σ is a unifier of t and s and ϑ is an instance of σ, then ϑ is also a unifier
of t and s. (In that case, ε = δ = 1.)

Consider the fuzzy quantale I with the minimum T-norm, E = {0.5 � a ≈ b,
0.7 � b ≈ c}, t = f(x, x, y), s = f(y, b, c), X = {x, y}, σ = {x �→ b, y �→ b}, and
ϑ = {x �→ a, y �→ c}. Then 0.5 � a =E c and

tσ = f(b, b, b), sσ = f(b, b, c), ε = 0.7, 0.7 � tσ =E sσ;
δ = 0.5, σ �E,{x,y},0.5 ϑ (actually, σ ∼=E,{x,y},0.5 ϑ);
tϑ = f(a, a, c), sϑ = f(c, b, c);
Variables of X occur in t and s in total 4 times;
min(0.7, 0.5, 0.5, 0.5, 0.5) = 0.5; 0.5 � tϑ =E sϑ.

Solving Quantitative Equations 387

Now consider the Lawvere quantale L with E = {1 � a ≈ b, 1 � b ≈ c, 1 � c ≈ d,
1 � f(x) ≈ g(x)}, t = x, s = f(y), X = {x, y}, σ = {x �→ g(y)}, and ϑ = {x �→
g(a), y �→ d}. Besides, � = � and we have

tσ = g(y), sσ = f(y), ε = 1, 1 � tσ =E sσ;
δ = 2, σ �E,{x,y},2 ϑ;
tϑ = g(a), sϑ = f(d);
Variables of X occur in t and s in total twice;
ε + 2δ = 5;
5 � tϑ =E sϑ. (In fact, =•

E (tϑ, sϑ) = 1 + 3 = 4 and 5 � 4.) �

Theorem 2 implies that if δ is an idempotent element of the quantale and it can
be absorbed by ε (i.e., ε ⊗ δ = ε), then ε � tϑ =E sϑ. Obviously, this will be
fulfilled if δ = κ. In idempotent quantales, it will also hold when ε � δ. For
idempotent elements, a stronger version of transitivity holds. Namely, if ι is an
idempotent element of a quantale, then we have for all E, t, s, r,X , σ, ϑ, ϕ:

– ι � t =E s and ι � s =E r imply ι � t =E r,
– σ �E,X ,ι ϑ and ϑ �E,X ,ι ϕ imply σ �E,X ,ι ϕ.

4 Quantitative Equational Unification

Definition 4 (Quantitative equational unification). A quantitative equa-
tional unification problem is formulated as follows:

Given: A quantale ˙, ε ∈ Ω (called the threshold) with ε �= ⊥,
a set of ˙-equalities E (a presentation of an equational theory),
and two terms t and s.

Find: A substitution σ such that ε � tσ =E sσ.

We call this problem (E, ε)-unification problem over ˙. The quantale name
is usually skipped when it does not cause confusion. For unification problems, we
use the notation ε � t =?

E s, called a unification equation, where the question
mark indicates that the equation is supposed to be solved. For simplicity, we write
the problem as t =?

E,ε s, and further skip E if it is clear from the context.
The substitution σ, if it exists, is called an (E, ε)-unifier of t and s (alterna-

tively, a unifier or a solution of t =?
E,ε s) over ˙. In such a case we say that

the given unification problem is solvable, or that the terms t and s are (E, ε)-
unifiable over ˙. The set of all unifiers of t =?

E,ε s is denoted by UE,ε(t, s).

For a given presentation E, a function symbol from F is called free if it does
not appear in E. If F contains a free m-ary function symbol for some m > 1,
the unification problem formulated above is equivalent to a problem of finding

388 G. Ehling and T. Kutsia

a solution of a system of unification equations (instead of a single equation)
formulated as a constrained problem:

Given: A quantale ˙, the threshold value ε ∈ Ω with ε �= ⊥,
a set of ˙-equalities E (a presentation of an equational theory),
and a set of term-pairs ti, si, 1 ≤ i ≤ n.

Find: A substitution σ such that δi � tiσ =E siσ, 1 ≤ i ≤ n,
for some δi with ε � δ1 ⊗ · · · ⊗ δn.

In such a case we can write the unification problem as a pair of a set of unification
equations and a �-constraint: {t1 =?

E,α1
s1, . . . , tn =?

E,αn
sn}; ε � α1 ⊗ · · · ⊗ αn,

where αi are new metavariables whose values are also to be found alongside
with variables that appear in the given t’s and s’s. This problem can be trans-
formed to a single-equation problem. For instance, the constrained problem
{t1 =?

E,α1
s1, t2 =?

E,α2
s2, t3 =?

E,α3
s3}; ε � α1 ⊗ α2 ⊗ α3 can be transformed

to f(f(t1, t2), t3) =?
E,ε f(f(s1, s2), s3), where f is a free binary function symbol.

The two problems are equivalent in the sense that they have exactly the same
set of (E, ε)-unifiers.If the arity of f is bigger than the number of equations, the
missing arguments will be filled in by fresh variables. For instance, for a quater-
nary f , the problem above can be encoded as f(t1, t2, t3, x) =?

E,ε f(s1, s2, s3, x),
where x is fresh.

In classical unification, an important property of the instantiation relation
is that any substitution that is less general than a given unifier of two terms
will still be a unifier. In the quantitative case, we should take into account the
approximation, which complicates things. First, we have the following fact as a
consequence of Theorem 2:

Fact 1. If σ is an (E, ε)-unifier of t and s and σ �E,V(t,s),δ ϑ for some δ, then
ϑ is an (E, ε ⊗ δk)-unifier of t and s, where k is the total number of occurrences
of variables in t and s.

Some results become simpler for idempotent elements:

Lemma 2. Let ι be an idempotent element of ˙, and σ and ϑ be substitutions.

(i) If ι � yσ =E yϑ holds for every y ∈ Y ⊆ V, then ι � rσ =E rϑ holds for
every term r ∈ T (F ,Y).

(ii) Suppose that ε ∈ Ω satisfies ε ⊗ ι = ε. If σ �E,V(t,s),ι ϑ and σ is an (E, ε)-
unifier of the terms t and s, then so is ϑ.

Proof. Part (i) is proved by structural induction, using idempotence. For (ii),
as σ �E,V(t,s),ι ϑ, there exists a substitution ϕ such that ι � xσϕ =E xϑ
holds for every variable x ∈ V(t, s). Thus, ι � rσϕ =E rϑ holds for any term
r ∈ T (F ,V(t, s)) by (i). Hence, we have ι � sϑ =E sσϕ, ε � sσϕ =E tσϕ, and
ι � tσϕ =E tϑ. From these equalities, using ε ⊗ ι = ε, we get ε � sϑ =E tϑ. ��
This lemma implies that (E,V(t, s), κ)-instances of (E, ε)-unifiers of t and s are
still their (E, ε)-unifiers. Besides, it has the following corollary:

Solving Quantitative Equations 389

Corollary 2. Let ˙ be an idempotent quantale, in which σ is an (E, ε)-unifier
of t and s, σ �E,V(t,s),δ ϑ, and ε � δ. Then ϑ is an (E, ε)-unifier of t and s in ˙.

These results motivate a specialized version of the notion of a minimal complete
set of unifiers that we use in this paper:

Definition 5 (Minimal ι-complete set of unifiers). Let P be an (E, ε)-uni-
fication problem over a quantale ˙ and signature F . Let X = V(P) be the set of
all variables of P , and let ι be an idempotent element of ˙ such that ε ⊗ ι = ε.
An ι-complete set of (E, ε)-unifiers of P is a set C of substitutions such that

(1) C ⊆ UE,ε(P), i.e., each element of C is an (E, ε)-unifier of P ,
(2) for each ϑ ∈ UE,ε(P) there exists σ ∈ C such that σ �E,X ,ι ϑ.

The set C is a minimal ι-complete set of (E, ε)-unifiers of P iff it is an ι-complete
set that satisfies the following minimality property:

(3) for all σ, σ′ ∈ C, if σ �E,X ,ι σ′, then σ = σ′.

We denote a minimal ι-complete set of (E, ε)-unifiers of P by mcsuE,ε,ι(P).

Given a unification problem with threshold ε, in order to make use of this def-
inition, one first needs to find an idempotent element ι such that ε ⊗ ι = ε. In
an arbitrary quantale, we can always take ι = κ. If ε is idempotent itself, then
we can also choose ι = ε.2

Let P be an (E, ε)-unification problem. If it is unsolvable, then for any idem-
potent ι with ε ⊗ ι = ε we have mcsuE,ε,ι(t, s) = ∅. Depending on E, ε, and ι,
minimal ι-complete sets of (E, ε)-unifiers may not always exist. Even if they do,
they may be infinite. When they exist, they are unique modulo the instantiation
equivalence relation ∼=E,X ,ι.3

Example 3. Let ˙ be the Lawvere quantale L, E be the set of equations E =
{1 � a ≈ b, 1 � b ≈ c, 1 � c ≈ d}, ε = 1, t = f(x, b), and s = f(c, x).

The substitutions σ = {x �→ b}, ϑ = {x �→ c} are (E, ε)-unifiers of t and s:

– tσ = f(b, b), sσ = f(c, b) and 1 � f(b, b) =E f(c, b),
– tϑ = f(c, b), sϑ = f(c, c) and 1 � f(c, b) =E f(c, c).

In fact, {σ, ϑ} = mcsuE,ε,0(t, s). Note that we have σ ∼=E,X ,1 ϑ, but also σ ∼=E,X ,1

{x �→ a} and ϑ ∼=E,X ,1 {x �→ d}. However, neither {x �→ a} nor {x �→ d} is an
(E, ε)-unifier of t and s (but they are (E, 3)-unifiers of t and s). �
The notion of an occurrence cycle will be needed later on.

Definition 6 (Occurrence cycle). A set of unification equations {x1 ≈?
ε1

t1,
. . . , xn ≈?

εn
tn} constitutes an occurrence cycle if ti is a non-variable term for

at least one i, xi ∈ V(ti−1) for 1 < i � n and x1 ∈ V(tn).
2 This is how it is done, e.g., for fuzzy proximity/similarity relations [9,14,15,19,20,

23].
3 ∼=E,X ,ι is a standard binary relation on Sub induced by the ˙-ternary relation ∼=E,X

for a fixed ι.

390 G. Ehling and T. Kutsia

4.1 Unification: Simple Shallow Theories (Special Form)

In this section, we will consider ˙-equational theories that admit a presenta-
tion consisting of a finite number of equations of the form γ � f(x1, . . . , xn) ≈
g(x1, . . . , xn), where n � 0, f �= g, and all x’s are pairwise distinct. Also, the γ’s
in different equations can be different. This is the very basic form of quantita-
tive axioms. The quantale ˙, as said above, is an arbitrary Lawvereian quantale.
In the next subsection we consider the special case of idempotent Lawvereian
quantales.

The presentation is shallow. One can easily show that the theory generated
from such a presentation is simple. Hence, we consider simple shallow quantita-
tive equational theories (of a special form). We will refer to such theories by Essh.
In them, it makes sense to speak about the approximation degree of two function
symbols, which is defined as dEssh

(f, g) :=
(
f(x1, . . . , xn) =•

Essh
g(x1, . . . , xm)

)
for

an n-ary f and m-ary g. (Obviously, dEssh
(f, g) = ⊥ if n �= m.) We say that f

and g are (Essh, ε)-proximal, if ε � dEssh
(f, g).

Remark 1. Since the equational theories we consider here are finitely presented,
the degree of two function symbols of the same arity can be effectively computed
as dEssh

(f, g) =
∨{γ | γ � f(x1, . . . , xn) = g(x1, . . . , xn) ∈ C}, where C is the

closure of the presentation of Essh under the (Trans) and (Sym) rules.

Theorem 3. Essh-unification is finitary in a Lawvereian quantale ˙ in the sense
that for any ε ∈ Ω, every (Essh, ε)-unification problem t =?

Essh,ε
s has a finite

minimal κ-complete set of unifiers.

Proof (Sketch). Let NEssh,ε(r) denote an ε-neighborhood of a term r with respect
to Essh, defined as the set of all terms obtained from r by replacing some
function symbols by their (Essh, ε)-proximal ones. Then mcsuEssh,ε,κ(t, s) ⊆
∪t′∈T,s′∈S{mgu(t′ =? s′)}, where T = NEssh,ε(t), S = NEssh,ε(s), and mgu(t′ =?

s′) is a most general unifier of the syntactic unification problem t′ =? s′. Since
the presentation of theories of the form Essh is finite, the set NEssh,ε(r) is finite
for ε �= ⊥ for any r. Hence, the set ∪t′∈T,s′∈S{mgu(t′ =? s′)} is finite, which
implies that mcsuEssh,ε,κ(t, s) is finite as well. ��
Remark 2. In principle, the above proof already outlines an Essh-unification algo-
rithm. However, there are several reasons for not using it: first, it would be a
brute-force approach blindly replacing symbols with all their proximal ones in all
possible ways. Second, it would not be sound because non-unifier answers would
be returned and we would have to clean the computed set afterwards. Third,
we want to keep our approach flexible, leaving equations between variables as a
part of the output instead of forcing them to have only a syntactic solution.

In the following, we use bold-face upright Greek letters α, β, γ for metavariables
that range over the domain of the quantale. The rules constituting our unification
method operate on configurations whose form is stated below.

Definition 7 (Configuration). A configuration is either a special symbol F
or a quadruple P ;C; δ;σ, where

Solving Quantitative Equations 391

– P is a set of unification equations of the form t =?
α s, where α is a metavari-

able (intuitively, P is the remaining problem to be solved),
– C is a constraint of the form ε � α1⊗· · ·⊗αn, where α1, . . . ,αn are metavari-

ables and ε ∈ Ω,
– δ is an element of the quantale domain (the current approximation degree),
– σ is a substitution (part of the unifier computed so far).

In C, we also allow for the case where n = 0, in which the empty product on the
right-hand side is κ by convention.

The solving rules for a theory Essh are given below. They operate on configura-
tions and are formulated modulo associativity and commutativity of ⊗. We use
f and g to denote (not necessarily distinct) n-ary function symbols, t, ti and si

for terms and x to denote a variable symbol. The symbol Δ denotes the tensor
product of finitely many metavariables.

Tri: Trivial

{t =?
α t} � P ; ζ � α ⊗ Δ; δ;σ =⇒ P ; ζ � Δ; δ;σ.

Dec: Decompose

{f(t1, . . . , tn) =?
α g(s1, . . . , sn)} � P ; ζ � α ⊗ Δ; δ;σ =⇒

{t1 =?
β1

s1, . . . , tn =?
βn

sn} ∪ P ;

dEssh
(f, g) � ζ � β1 ⊗ · · · ⊗ βn ⊗ Δ; δ ⊗ dEssh

(f, g);σ,

where β1, . . . , βn are new metavariables and ζ � dEssh
(f, g).

Cla: Clash

{f(t1, . . . , tn) =?
α g(s1, . . . , sm)} � P ; ζ � α ⊗Δ; δ;σ =⇒ F, if ζ �� dEssh

(f, g).

L-Sub: Substitute (lazy)

{x =?
α f(s1, . . . , sn)} � P ; ζ � α ⊗ Δ; δ;σ =⇒

{x1 =?
β1

s1, . . . , xn =?
βn

sn} ∪ Pρ;

dEssh
(f, g) � ζ � β1 ⊗ · · · ⊗ βn ⊗ Δ; δ ⊗ dEssh

(f, g);σρ,

where x does not appear in an occurrence cycle in {x=?
α f(s1, . . . , sn)} ∪ P , and

ρ = {x �→ g(x1, . . . , xn)} with x1, . . . , xn being fresh variables and ζ � dEssh
(f, g).

CCh: Cycle check

{x =?
α t} � P ;C; δ;σ =⇒ F,

if x appears in an occurrence cycle in {x =?
α t} � P .

Ori: Orient

{t =?
α x} � P ;C; δ;σ =⇒ P ∪ {x =?

α t};C; δ;σ, where t /∈ V.

To solve an (Essh, ε)-unification problem between terms t and s, we create the
initial configuration {t =?

α s}; ε � α;κ; Id and start applying the rules as long

392 G. Ehling and T. Kutsia

as possible. The equation to be transformed is chosen arbitrarily (“don’t care
nondeterminism”). We call the obtained algorithm QUnif.

Note that a configuration P ;C;σ obtained from an (Essh, ε)-unification prob-
lem satisfies the following properties:

– Any metavariable occurring in P also occurs in C and vice versa.
– No metavariable appears more than once in P or C.
– The domain of σ is disjoint from the set of variables occurring in P .

We will refer to such configurations as admissible.
To prove termination of QUnif, we introduce some terminology.

Definition 8. Let P be a set of quantitative equations and let Pst be the set of
standard equations obtained from P by ignoring the indices: Pst := {t = s | ε �
t = s ∈ P}. Then DecNFEssh

(P) denotes the decomposition normal form of P
with respect to Essh, which is the set of standard equations obtained from Pst by
applying the following version of the decomposition rule as long as possible:

{f(t1, . . . , tn) = g(s1, . . . , sn)} � S =⇒ {t1 = s1, . . . , tn = sn} ∪ S,

where dEssh
(f, g) �= ⊥.

It is easy to see that every equation in DecNFEssh
(P) is of the form x = s where

s is an arbitrary term, or t = x where t is not a variable.
For a set of (quantitative) equations P , the variable dependency graph Γ(P)

is constructed as follows:

– For each variable x appearing in P , add a node with label x to Γ(P).
– Add a node with label G (the “ground node”).
– For every equation x = y ∈ DecNF(P) between variables x and y, merge the

nodes corresponding to x and y.
– In order to construct the set of edges of Γ(P), we consider all equations of

the form x = t (or t = x) in DecNF(P), where t is a non-variable term. For
such an equation, we consider the set of leaves of t. For each element l ∈ �(t),
if d is the depth in which l appears in t, we add an weighted edge to Γ(P):

• If l is a constant, then we add an edge x →d+1 G (with weight d + 1).
• If l is a variable y, then we add an edge x →d y (with weight d).

In this way, we obtain a directed, weighted graph Γ(P), which is acyclic (hence,
a dag) if and only if P does not contain any occurrence cycles.

For any variable x occurring in P , we define now the level levP (x) of x with
respect to P as the maximal weight of a walk in Γ(P) starting in x. Here, the
weight of a walk is defined as the sum of the weights of its edges. Note that levP

may take the value ∞ if P contains occurrence cycles.
We now consider the multiset λ(P) := {levP (x) | x ∈ V(P)}. (It will be used

as a component of a termination measure below.) We compare such multisets
via the multiset extension >m of the standard order on N∪ {∞}, which is well-
founded. The following lemma is the main ingredient for the termination proof.
Its proof can be found in [10].

Solving Quantitative Equations 393

Lemma 3. Let C = P ;C; δ;σ be a configuration.

(i) If P ′;C ′; δ′;σ′ is obtained from C by L-Sub, then λ(P) >m λ(P ′).
(ii) If P ′;C ′; δ′;σ′ is obtained from C by Tri, Dec, or Ori, then λ(P)�m λ(P ′).

Theorem 4 (Termination of QUnif).For a given (Essh, ε)-unification prob-
lem, the algorithm QUnif terminates either with the configuration F (indicating
failure) or with a configuration of the form V ;C; δ;σ (indicating success), where
V is a set of unification equations between variables.

Proof. A simple analysis of the rules of QUnif shows that all terminal config-
urations are of the form described above. In order to prove that the algorithm
terminates, first note that the Cla and CCh rules terminate the derivation imme-
diately, so it suffices to show that the remaining rules cannot yield an infinite
derivation. For this purpose, we consider the measures λ, n2 and n3, where n2 is
the size of P and n3 is the number of equations of the form t =?

α x in P such that
t is a non-variable term. By Lemma 3, L-Sub decreases λ while all other rules
do not increase it; Dec and Tri decrease n2, and Ori decreases n3 while leaving
n2 invariant. Hence, the lexicographical combination of λ with n2 and n3 yields
a measure that strictly decreases upon each of the aforementioned rules with
respect to a well-founded order, thus proving termination. ��
Proceeding now to the soundness and completeness proofs for QUnif, we fix a
notion of solution of a configuration.

Definition 9 (Solution of a configuration). A substitution τ is a solution
of the configuration P ; ζ � α1 ⊗ α2 ⊗ · · · ⊗ αn; δ;σ if there exists a function μ
mapping metavariables to elements of Ω such that

(S1) ζ � μ(α1) ⊗ μ(α2) ⊗ · · · ⊗ μ(αn) is valid,
(S2) μ(β) � sτ =E tτ holds for every equation s =?

β t in P .
(S3) xτ = xστ (syntactic equality) holds for every variable x ∈ dom(σ).

The configuration F has no solutions.

This definition is compatible with Definition 4 in the following sense:

Lemma 4. Let ε ∈ Ω. A substitution τ is an (E, ε)-unifier of t and s if and only
if τ is a solution for the corresponding initial configuration {t =?

α s}; ε � α;κ; Id .

Proof. By definition, τ solves {t =?
α s}; ε � α;κ; Id iff there exists μ such that

ε � μ(α) and μ(α) � tτ =E sτ , which is equivalent to ε � tτ =E sτ . ��
The lemma below is needed to show soundness and completeness of QUnif.

Its proof can be found in [10].

394 G. Ehling and T. Kutsia

Lemma 5. Let C be an admissible configuration.

(i) If C =⇒ C′ and τ solves C′, then τ solves C.
(ii) If τ solves C, then either C is terminal, or there exist a configuration C′ and

a substitution τ ′ such that C =⇒ C′, τ ′|dom(τ) = τ and τ ′ solves C′.

Theorem 5 (Soundness and completeness of QUnif). Consider an (Essh,
ε)-unification problem between terms t and s.

Soundness: If QUnif terminates in a configuration V ;C; δ;σ starting from
the initial configuration {t =?

α s}; ε � α;κ; Id , then any solution of V ;C; δ;σ
is an (Essh, ε)-unifier of t and s.

Completeness: If τ is an (E, ε)-unifier of t and s, then there is a run of QUnif
starting from the initial configuration {t =?

α s}; ε � α;κ; Id that terminates in
a configuration {x1 =α1 y1, . . . , xn =αn

yn}; ζ � α1 ⊗ · · · ⊗ αn; δ;σ such that
there exist a substitution ϕ and a map μ satisfying the following conditions:
(i) ζ � μ(α1) ⊗ · · · ⊗ μ(αn);
(ii) μ(αi) � xiϕ =Essh

yiϕ for all 1 � i � n;
(iii) xσϕ = xτ for all x ∈ V(s, t).

Proof. For soundness, suppose that QUnif produces a derivation C0 =⇒ . . . =⇒
Cm, where C0 is the initial configuration {t =?

α s}; ε � α;κ; Id and Cm is a
terminal configuration given by V ;S; δ;σ. If τ is a solution of Cm then τ is also
a solution of C0 (by Lemma 5(i)), and therefore, τ is an (Essh, ε)-unifier of t and
s (by Lemma 4).

For completeness, suppose that τ is an (E, ε)-unifier of t and s. Then τ solves
the corresponding initial configuration C0 (by Lemma 4). If C0 is not terminal,
then there exists a rule application C0 =⇒ C1 and a substitution τ1 such that
τ1|dom(τ) = τ and τ1 solves C1 (by Lemma 5(ii)). Iterating this argument, we
obtain a derivation C0 =⇒ C1 =⇒ . . . and a sequence of substitutions τ, τ1,
After a finite number of steps, this derivation reaches a terminal configuration Cm

by Theorem 4, and with it, we obtain a solution τm such that τm|V(s,t) = τ . Since
τm solves Cm, there exist ϕ and μ satisfying (i) and (ii), as well as xσϕ = xτm

for all x ∈ V(Cm), yielding (iii). ��
Remark 3. In particular, a κ-complete set of solutions for the problem t =?

ε s
can be obtained by determining for every terminal configuration obtained via
QUnif the set of substitutions that meet conditions (i)–(iii) above. If one is just
interested in finding some solution, it suffices to compute a terminal configuration
V ; ζ � Δ; δ;σ and compose σ with a substitution that maps all variables in V
to a fresh variable. The value of δ corresponds to the “degree” to which such a
solution τ solves the unification problem, i.e. δ = (tτ =•

Essh
sτ).

Example 4. Consider the unification problem f(y, g(x, x)) =?
E,ε g(f(c, a), y),

where ˙ = L, E = {1 � a ≈ b, 1 � b ≈ c, 1 � f(x1, x2) ≈ g(x1, x2)} and

Solving Quantitative Equations 395

ε = 5. The following derivation can be obtained by QUnif:

{f(y, g(x, x)) =?
α g(f(c, a), y)}; 5 � α; 0; Id

=⇒Dec {y =?
β1

f(c, a), g(x, x) =?
β2

y}; 4 � β1 + β2; 1; Id

=⇒y 	→f(z1,z2)
L-Sub {z1 =?

γ1
c, z2 =?

γ2
a, g(x, x) =?

β2
f(z1, z2)};

4 � γ1 + γ2 + β2; 1; {y �→ f(z1, z2)}
=⇒z1 	→b

L-Sub { z2 =?
γ2

a, g(x, x) =?
β2

f(b, z2)};

3 � γ2 + β2; 2; {y �→ f(b, z2), z1 �→ b}
=⇒Dec {z2 =?

γ2
a, x =?

δ1
b, x =?

δ2
z2};

2 � γ2 + δ1 + δ2; 3; {y �→ f(b, z2), z1 �→ b}
=⇒z2 	→a

L-Sub {x =?
δ1

b, x =?
δ2

a}; 2 � δ1 + δ2; 3; {y �→ f(b, a), z1 �→ b, z2 �→ a}
=⇒x	→a

L-Sub {a =?
δ2

a}; 1 � δ2; 4; {y �→ f(b, a), z1 �→ b, z2 �→ a, x �→ a}
=⇒Tri ∅; 1 � 0; 4; {y �→ f(b, a), z1 �→ b, z2 �→ a, x �→ a}

This leads to the solution {y �→ f(b, a), x �→ a} (with degree 4). Further solutions
can be obtained via different choices in the Subst steps. �

Example 5. Consider ˙ = L, E = {1 � f(x, y) ≈ g(x, y)}, and the E-unification
problem g(a, x) =?

3 f(y, g(b, z)). A derivation of QUnif is given below.

{g(a, x) =?
α f(y, g(b, z))}; 3 � α; 0; Id

=⇒Dec {a =?
β1

y, x =?
β2

g(b, z)}; 2 � β1 + β2; 1; Id

=⇒Ori {y =?
β1

a, x =?
β2

g(b, z)}; 2 � β1 + β2; 1; Id

=⇒y 	→a
L-Sub {x =?

β2
g(b, z)}; 2 � β2; 1; {y �→ a}

=⇒x	→f(x1,x2)
L-Sub {x1 =?

γ1
b, x2 =?

γ2
z}; 1 � γ1 + γ2; 2; {y �→ a, x �→ f(x1, x2)}

=⇒x1 	→b
L-Sub {x2 =?

γ2
z}; 1 � γ2; 2; {y �→ a, x �→ f(b, x2), x1 �→ b}

The computed terminal configuration still contains equations between variables.
For any ψ such that 1 � x2ψ =E zψ, the substitution {y �→ a, x �→ f(b, x2)}ψ is
an (E, ε)-unifier of the given terms. In particular, unifiers that can be obtained
from this configuration include, e.g., {y �→ a, x �→ f(b, u), z �→ u}, where u is a
fresh variable (with degree 2), and also {y �→ a, x �→ f(b, f(a, a)), z �→ g(a, a)}
(with degree 3). �

4.2 Idempotent Quantales

Now we consider the case where ˙ is idempotent. Under this hypothesis, we can
strengthen our results and show that – with the right definitions – the unification
problem is unitary, and that a simplified version of QUnif computes a most
general unifier of two given terms. For the fuzzy quantale ˙ = Imin = ([0, 1],
�, min), our algorithm coincides with Sessa’s weak unification algorithm [23].

396 G. Ehling and T. Kutsia

Note that in any integral idempotent quantale, meet and tensor coincide. As
a consequence, in an idempotent quantale, α � β implies β � α = α.

Definition 10 (Weak mgu). A substitution σ is a weak most general (E, ε)-
unifier of t and s, denoted wmguE,ε(t, s), if UE,ε(t, s) = {τ | σ �E,V(t,s),ε τ}.
By Lemma 2 (ii), σ = wmguE,ε(t, s) iff σ ∈ UE,ε(t, s) and σ �E,V(t,s),ε τ holds
for every τ ∈ UE,ε(t, s); that is, iff {σ} = mcsuE,ε,ε(t, s).

In the idempotent setting, the rules L-Sub and CCh from QUnif can be
replaced by simpler versions:

E-Sub: Substitute (eager)

{x =?
α s} � P ; ζ � α ⊗Δ; δ;σ =⇒ P{x �→ s}; ζ �Δ; δ;σ{x �→ s}, if x /∈ V(s).

OCh: Occurrence check

{x =?
α s} � P ;C; δ;σ =⇒ F, if x ∈ V(s) and s �= x.

Note that both of these rules constitute steps that could also be achieved by
the rules from QUnif: E-Sub can be viewed as a composition of L-Sub and
Dec steps, and OCh is just a restricted version of CCh. As before, we use these
rules to transform the initial configuration corresponding to a given (Essh, ι)-
unification problem. As an output, we return Failure if F has been obtained, or
σ if a terminal configuration P ;C; δ;σ has been reached. We denote the resulting
algorithm by QUnif-id.

In order to obtain a stronger completeness theorem than in the general case,
we refine the notion of a solution of a configuration.

Definition 11 (ι-solution of a configuration). Let ι ∈ Ω be idempotent. A
substitution τ is an ι-solution of the configuration P ; ζ � α1 ⊗α2 ⊗ · · ·⊗αn; δ;σ
if there exists a function μ mapping metavariables to elements of Ω such that

(ι1) ζ � μ(α1) ⊗ μ(α2) ⊗ · · · ⊗ μ(αn) is valid,
(ι2) μ(β) � tτ =E sτ holds for every equation t =?

β s in P .
(ι3) ι � xτ =E xστ holds for every variable x ∈ dom(σ).

The configuration F has no solutions.

Note that the only difference in comparison with Definition 9 is that (ι3) features
a quantitative equality over Essh, whereas in (S3) we have a syntactic equality.

The lemmas below are needed in the proof of soundness and completeness of
QUnif-id (see [10] for their proofs).

Lemma 6. Let ˙ be a (not necessarily idempotent) quantale, ι ∈ Ω be an idem-
potent element of ˙, τ be a substitution, and t and s be terms.

(i) τ is an (E, ι)-unifier of t and s iff τ is an ι-solution for the corresponding
initial configuration {t =?

α s}; ι � α;κ; Id .
(ii) τ is an ι-solution for an admissible configuration of the form ∅;C; δ;σ iff

σ �E,dom(σ),ι τ .

Solving Quantitative Equations 397

Lemma 7. Let ˙ be an idempotent quantale, ι ∈ Ω, and C be a configura-
tion obtained from an (Essh, ι)-unification problem in ˙ by applying rules from
QUnif-id. If C′ is obtained from C by a rule from QUnif-id, then a substitution
τ is an ι-solution of C iff it is an ι-solution of C′.

Theorem 6 (Soundness and completeness of QUnif-id). Consider an
(Essh, ι)-unification problem between terms t and s in an idempotent quantale
˙, where ι ∈ Ω. Any run of QUnif-id starting from {t =?

α s};α � ι;κ; Id
terminates and returns wmguEssh,ι

(t, s) if it exists, or fails otherwise.

Proof. Termination follows from termination of QUnif (Theorem 4). For sound-
ness and completeness, by Lemma 6(i), a substitution τ is an (Essh, ι)-unifier of
t and s iff it is an ι-solution of the initial configuration C0. By Lemma 7, the
latter holds iff τ is an ι-solution for any terminal configuration ∅;C; δ;σ, or
equivalently, iff σ �Essh,V(t,s),ι τ (by Lemma 6(ii)), concluding the proof. ��

Example 6. We demonstrate algorithm QUnif-id for the problem f(x, c)=?
I,0.4,E

h(a, x) in the (idempotent) fuzzy quantale I with the min T-norm modulo E =
{0.5 � a ≈ b, 0.5 � b ≈ c, 0.6 � f(x1, x2) ≈ g(x1, x2), 0.7 � g(x1, x2) ≈
h(x1, x2)}.

A derivation of QUnif-id is shown below:

{f(x, c) =?
α h(a, x)}; 0.4 � α; 1; Id

=⇒Dec {x =?
β1

a, c =?
β2

x}; 0.4 � min(β1, β2); 0.6; Id

=⇒x	→a
L-Sub {c =?

β2
a}; 0.4 � β2; 0.6; {x �→ a}

=⇒Dec ∅; 0.4 � 1; 0.5; {x �→ a}.

Choosing the other equation in the L-Sub step would lead to a different unifier
{x �→ c} with the same degree 0.5. The solution {x �→ b} (with degree 0.5) is
not computed. All three solutions are 0.5-equivalent. �

5 Conclusion

In the quantitative setting, equality is replaced by its quantitative counterpart
modeling the abstract notion of proximity between terms. A quantitative unifi-
cation problem asks for finding a substitution that brings the given terms close
to each other within a predefined range (with respect to this abstract proxim-
ity). However, unlike the standard unification, here it is not guaranteed that an
instance of a unifier is still a unifier. The reason is that the instantiation is also
quantitative, and it might move the more specific substitution “too far away”
from a unifier of the given problem.

In studying quantitative unification, one has to address such and related
challenges. We investigated the quantitative equational unification problem in
Lawvereian quantales modulo theories presented by axioms of the form γ �
f(x1, . . . , xn) ≈ g(x1, . . . , xn). Our notion of a minimal complete set of unifiers

398 G. Ehling and T. Kutsia

takes into account two (abstract) distances: between terms to be unified and
between substitutions via instantiation. We showed that our unification problems
in arbitrary Lawvereian quantales are finitary, while for idempotent Lawvereian
quantales, they are unitary. The corresponding algorithms were developed and
their properties were studied.

The equational theories that we considered here are a special case of simple
shallow theories. An interesting future work would be to extend this work to
a larger class of shallow theories (which have some desirable properties in the
standard case [6]). Further, the related problem of disunification in Lawvereian
quantales is worth investigating.

Acknowledgments. Supported by the Austrian Science Fund (FWF) under project
P 35530 (SQUEE).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. de Amorim, A.A., Gaboardi, M., Hsu, J., Katsumata, S., Cherigui, I.: A semantic
account of metric preservation. In: Castagna, G., Gordon, A.D. (eds.) Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, 18–20 January 2017, pp. 545–556. ACM (2017). https://
doi.org/10.1145/3009837.3009890

2. Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 445–533. North-Holland, Amsterdam
(2001). https://doi.org/10.1016/B978-044450813-3/50010-2

3. Bacci, G., Mardare, R., Panangaden, P., Plotkin, G.D.: An algebraic theory of
Markov processes. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
09–12 July 2018, pp. 679–688. ACM (2018). https://doi.org/10.1145/3209108.
3209177

4. Bacci, G., Mardare, R., Panangaden, P., Plotkin, G.D.: Quantitative equational
reasoning. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Foundations of Probabilis-
tic Programming, pp. 333–360. Cambridge University Press, Cambridge (2020).
https://doi.org/10.1017/9781108770750.011

5. Barthe, G., Katoen, J.P., Silva, A. (eds.): Foundations of Probabilistic Program-
ming. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/
9781108770750

6. Comon, H., Haberstrau, M., Jouannaud, J.P.: Syntacticness, cycle-syntacticness,
and shallow theories. Inf. Comput. 111(1), 154–191 (1994). https://doi.org/10.
1006/INCO.1994.1043

7. Dal Lago, U., Gavazzo, F.: A relational theory of effects and coeffects. Proc. ACM
Program. Lang. 6(POPL), 1–28 (2022). https://doi.org/10.1145/3498692

8. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Mathe-
matics in Science and Engineering, vol. 144. Academic Press (1980). https://www.
worldcat.org/oclc/05726778

https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1016/B978-044450813-3/50010-2
https://doi.org/10.1145/3209108.3209177
https://doi.org/10.1145/3209108.3209177
https://doi.org/10.1017/9781108770750.011
https://doi.org/10.1017/9781108770750
https://doi.org/10.1017/9781108770750
https://doi.org/10.1006/INCO.1994.1043
https://doi.org/10.1006/INCO.1994.1043
https://doi.org/10.1145/3498692
https://www.worldcat.org/oclc/05726778
https://www.worldcat.org/oclc/05726778

Solving Quantitative Equations 399

9. Dundua, B., Kutsia, T., Marin, M., Pau, I.: Constraint solving over multi-
ple similarity relations. In: Ariola, Z.M. (ed.) 5th International Conference on
Formal Structures for Computation and Deduction, FSCD 2020, 29 June–6
July 2020, Paris, France (Virtual Conference). LIPIcs, vol. 167, pp. 30:1–30:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPICS.FSCD.2020.30

10. Ehling, G., Kutsia, T.: Solving quantitative equations. Technical report, RISC,
JKU Linz (2024). https://doi.org/10.35011/risc.24-03

11. Gavazzo, F., Di Florio, C.: Quantitative and metric rewriting: abstract, non-
expansive, and graded systems. CoRR abs/2206.13610 (2022). https://doi.org/10.
48550/ARXIV.2206.13610

12. Gavazzo, F., Di Florio, C.: Elements of quantitative rewriting. Proc. ACM Pro-
gram. Lang. 7(POPL), 1832–1863 (2023). https://doi.org/10.1145/3571256

13. Geoffroy, G., Pistone, P.: A partial metric semantics of higher-order types and
approximate program transformations. In: Baier, C., Goubault-Larrecq, J. (eds.)
29th EACSL Annual Conference on Computer Science Logic, CSL 2021, 25–28
January 2021, Ljubljana, Slovenia (Virtual Conference). LIPIcs, vol. 183, pp. 23:1–
23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/
10.4230/LIPICS.CSL.2021.23

14. Julián-Iranzo, P., Rubio-Manzano, C.: Proximity-based unification theory. Fuzzy
Sets Syst. 262, 21–43 (2015). https://doi.org/10.1016/j.fss.2014.07.006

15. Kutsia, T., Pau, C.: A framework for approximate generalization in quantitative
theories. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS,
vol. 13385, pp. 578–596. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-10769-6_34

16. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti
del Seminario Matematico e Fisico di Milano 43, 135–166 (1973)

17. Mardare, R., Panangaden, P., Plotkin, G.D.: Quantitative algebraic reasoning. In:
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2016, pp. 700–709. Association for Computing Machinery, New York
(2016). https://doi.org/10.1145/2933575.2934518

18. Mardare, R., Panangaden, P., Plotkin, G.D.: On the axiomatizability of quanti-
tative algebras. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Com-
puter Society (2017). https://doi.org/10.1109/LICS.2017.8005102

19. Pau, C.: Symbolic techniques for approximate reasoning. Ph.D. thesis, RISC,
Johannes Kepler University Linz (2022)

20. Pau, C., Kutsia, T.: Proximity-based unification and matching for fully fuzzy sig-
natures. In: 30th IEEE International Conference on Fuzzy Systems, FUZZ-IEEE
2021, Luxembourg, 11–14 July 2021, pp. 1–6. IEEE (2021). https://doi.org/10.
1109/FUZZ45933.2021.9494438

21. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for dif-
ferential privacy. In: Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2010, Bal-
timore, Maryland, USA, 27–29 September 2010, pp. 157–168. ACM (2010). https://
doi.org/10.1145/1863543.1863568

22. Rosenthal, K.I.: Quantales and Their Applications. Pitman Research Notes in
Mathematics, Longman Scientific & Technical (1990)

23. Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution.
Theor. Comput. Sci. 275(1–2), 389–426 (2002). https://doi.org/10.1016/S0304-
3975(01)00188-8

https://doi.org/10.4230/LIPICS.FSCD.2020.30
https://doi.org/10.4230/LIPICS.FSCD.2020.30
https://doi.org/10.35011/risc.24-03
https://doi.org/10.48550/ARXIV.2206.13610
https://doi.org/10.48550/ARXIV.2206.13610
https://doi.org/10.1145/3571256
https://doi.org/10.4230/LIPICS.CSL.2021.23
https://doi.org/10.4230/LIPICS.CSL.2021.23
https://doi.org/10.1016/j.fss.2014.07.006
https://doi.org/10.1007/978-3-031-10769-6_34
https://doi.org/10.1007/978-3-031-10769-6_34
https://doi.org/10.1145/2933575.2934518
https://doi.org/10.1109/LICS.2017.8005102
https://doi.org/10.1109/FUZZ45933.2021.9494438
https://doi.org/10.1109/FUZZ45933.2021.9494438
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1016/S0304-3975(01)00188-8
https://doi.org/10.1016/S0304-3975(01)00188-8

400 G. Ehling and T. Kutsia

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Equivalence Checking of Quantum
Circuits by Model Counting

Jingyi Mei(B), Tim Coopmans, Marcello Bonsangue, and Alfons Laarman

Leiden University, Leiden, The Netherlands
{j.mei,t.j.coopmans,m.m.bonsangue,a.w.laarman}@liacs.leidenuniv.nl

Abstract. Verifying equivalence between two quantum circuits is a hard
problem, that is nonetheless crucial in compiling and optimizing quan-
tum algorithms for real-world devices. This paper gives a Turing reduc-
tion of the (universal) quantum circuits equivalence problem to weighted
model counting (WMC). Our starting point is a folklore theorem show-
ing that equivalence checking of quantum circuits can be done in the
so-called Pauli-basis. We combine this insight with a WMC encoding of
quantum circuit simulation, which we extend with support for the Toffoli
gate. Finally, we prove that the weights computed by the model counter
indeed realize the reduction. With an open-source implementation, we
demonstrate that this novel approach can outperform a state-of-the-art
equivalence-checking tool based on ZX calculus and decision diagrams.

Keywords: Quantum computing · Circuit equivalence · Satisfiability ·
#SAT · Weighted model counting · Pauli basis

1 Introduction

Physicists and chemists regularly deal with ‘quantum NP’-hard problems, for
example when finding the ground state (energy) of a physical system [30] or
assessing the consistency of local density matrices (the quantum analog of decid-
ing the consistency of marginal probability distributions) [32]. Quantum comput-
ing not only holds the potential to provide a matching computational resource
for tackling these challenges but also serves as a bridge to incorporate classical
reasoning techniques for tackling nature’s hardest problems. Quantum circuits,
in particular, offer a precise view into these problems, because the quantum
circuit equivalence checking problem is also ‘quantum NP’-hard.

Circuit equivalence [2,4,8,22,23,52,55,56,61] also has many important appli-
cations. Since quantum computers are highly affected by noise, it is necessary to
optimize the circuits to maximize the performance when running them on a real
device. Furthermore, many devices can only handle shallow-depth circuits and
are subject to various constraints such as connectivity, topology, and native gate
sets. An essential aspect of designing and optimizing quantum circuits isverifying
whether two quantum circuits implement the same quantum operation.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 401–421, 2024.
https://doi.org/10.1007/978-3-031-63501-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63501-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-63501-4_21

402 J. Mei et al.

Equivalence checking for so-called Clifford circuits is tractable [52], which
is surprising considering their wide applicability, e.g. in quantum error cor-
rection [9,48,49]. Extending the Clifford gate set with any non-Clifford gate,
however, e.g. with a T or Toffoli gate, makes the problem immediately ‘quan-
tum NP’-hard, that is: NQP-hard to compute exactly [51] and QMA-hard to
approximate [24], even for constant-depth circuits [25].1 The exact formulation
of equivalence checking allows its discretization [29], exposing the underlying
combinatorial problem that classical reasoning methods excel in. Indeed, exact
reasoning methods based on decision diagrams are even used to compute the
approximate version of the problem (see e.g. [23,57]).

Our aim is to use reasoning tools based on satisfiability (SAT) for exact equiv-
alence checking of universal quantum circuits. Like SAT solvers [7,16], model
counters, or #SAT solvers, can handle complex constraints from industrial-scale
applications [40,47], despite the #P-completeness of the underlying problem.

We propose a new equivalence-checking algorithm based on weighted model
counting (WMC). To do so, we generalize the WMC encoding of quantum cir-
cuit simulation from [34], showing that it essentially only relies on expressing
quantum information in the so-called Pauli basis [18], thus obviating the need
for the arguably more complex stabilizer theory [20,63]. In addition, we extend
the encoding with support for the (non-Clifford) Toffoli gate, allowing more effi-
cient encodings for many circuits. We then prove that a folklore theorem on
quantum circuit equivalence checking [52] enables the reduction of the problem
to a sequence of weighted Boolean formulas that can be solved using existing
weighted model counters (provided they support negative weights [34]).

We show how the WMC encoding satisfies the conditions of the theorem from
[52] and implement the proposed equivalence checking algorithm in the open-
source tool ECMC, which uses the weighted model-counting tool GPMC [50].2 To
assess the scalability and practicality of ECMC, we conduct experimental evalua-
tions using random Clifford+T circuits which closely resemble quantum chem-
istry applications [59] and various quantum algorithms from the MQT bench-
mark [43], which includes important quantum algorithms such as QAOA, W-
state, and VQE among others. We compare the results of our method against
that of the state-of-the-art circuit equivalence checker QCEC [8], showing that
in several cases the WMC approach used by our ECMC tool is competitive.

In summary, this paper provides a many-to-many reduction of (universal)
quantum circuit equivalence to weighted model counting (WMC). As a conse-
quence, we contribute additional new benchmarks for the WMC competition:
basically, each pair of universal quantum circuits can be reduced to a sequence
of weighted CNF encodings that need to be solved to (dis)prove equivalence. This
opens up numerous possibilities and challenges to better adapt model counters
for this new application area in quantum computing.

1 A similar “jump” in hardness was noted for quantum circuit simulation in [54].
2 While the theorem presented in [52] already supported universal circuits, the pro-

vided tool implementation in [52] is limited to (non-universal) Clifford circuits.

Equivalence Checking of Quantum Circuits by Model Counting 403

2 General Background

We only provide the necessary background. For a more complete description see
the full version of this paper [35].

Quantum Computing. We fix n as the number of qubits in the circuit(s) under
consideration and write [m] for the set {1, . . . ,m}. Qubits are numbered as [n].
We represent an n-qubit quantum state |ϕ〉 ∈ C2n

as its density matrix |ϕ〉〈ϕ| ∈
C

2n

× C
2n

, where 〈ϕ| represents the conjugate transpose |ϕ〉† of |ϕ〉 [38].
A quantum gate G on n qubits can be expressed by a 2n

×2n complex matrix
UG which is unitary, i.e. UG is invertible and satisfies U†

G = U−1G . If a quantum
state is represented by a density matrix |ϕ〉〈ϕ|, then the density matrix after
applying G is given by conjugation of |ϕ〉〈ϕ|, i.e. UG |ϕ〉〈ϕ|U†

G. For an n-qubit
quantum system, applying a single-qubit gate U on the j-th qubit is represented
by

Uj = I⊗j−1
⊗ U ⊗ I⊗n−j , (1)

where I is the single-qubit identity matrix and ⊗ denotes the Kronecker product.
A circuit in our text is simply a list of n-qubit unitaries, i.e., C = (G0, . . . , Gm−1)
where C can in turn be understood as unitary itself UC =UGm−1 · UGm−2 · · · UG0 .
We will sometimes refer to a gate or circuit as its unitary, and vice versa, because
it is clear from context which is meant.

The gates

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, CZ =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]

form the so-called Clifford (generating) set.
Though non-universal and classically simulatable [1], Clifford circuits, i.e.,

circuits composed of Clifford gates only, are expressive enough to describe entan-
glement, teleportation and superdense coding, and are used in quantum error-
correcting codes [9,48,49] and in measurement-based quantum computation [46].
Nonetheless, even equivalence checking of Clifford circuits is in P [52]. By extend-
ing the Clifford gate set with any non-Clifford gate, such as the T =

√
S, Toffoli

or arbitrary rotation gates RX , RY , RY , we immediately obtain a universal gate
set, in the sense that arbitrary unitaries can be approximated [14,30,31].

In this work, we express matrices not in the standard basis but in the Pauli
basis. We define the 2 × 2 Pauli matrices X,Y,Z, together with identity, as:

σ[00] ≡ I ≡ [1 0
0 1] , σ[01] ≡ Z ≡ [1 0

0 −1] , σ[10] ≡X ≡ [0 1
1 0] , σ[11] ≡ Y ≡ [0 −ı̇ı̇ 0]

For n qubits, we define the set of “Pauli strings” P̂n ≜ {P1 ⊗ P2 ⊗ . . . ⊗ Pn |
Pj ∈ {I,X, Y, Z}}. Inheriting the properties of Pauli matrices, Pauli strings are
unitary, involutory and Hermitian. It is well-known that the scaled Pauli strings
{ 1√

2
n · P | P ∈ P̂n} form an orthonormal basis for 2n

× 2n complex matrices [27].
Hence, we can decompose any 2n

× 2n complex matrix M as M =
∑

P ∈P̂n
γP · P

where the Pauli coefficient γP =
1
2n Tr(P † · M).

404 J. Mei et al.

In general, the coefficients γP are complex numbers, but for Hermitian matri-
ces, they are real [18,35].

Example 1. The matrix M = [1 4+i
4−i −5] is Hermitian. We calculate the coefficients:

1
21 Tr(I†M) = −2, 1

21 Tr(Z†M) = 3, 1
21 Tr(X†M) = 4, 1

21 Tr(Y †M) = −1

It is straightforward to verify that these are M ’s Pauli real coefficients:

−2I + 4X − 1Y + 3Z = −2 · [1 0
0 1] + 4 · [0 1

1 0] − 1 · [0 −ii 0] + 3 · [1 0
0 −1] = [1 4+i

4−i −5] .

��

Weighted Model Counting (WMC). In this work, we will encode the Pauli coeffi-
cients of specific matrices as weighted model counting: a sum of weights over all
satisfying assignments of a boolean formula. We here formally describe WMC.

For boolean variables x, y ∈ B = {0, 1}, we define a literal as e.g. x and x and
write conjunctions of literals (cubes) as products, e.g., xy = x ∧ y. A clause is a
disjunction of literals, e.g., x ∨ y. A formula in conjunctive normal form (CNF)
is a conjunction of clauses.

Let F : B�x
→ B be a propositional formula over boolean variables �x ∈ Bn. We

assign weights to literals using a weight function W : {x, x | x ∈ �x} → R. Given
an assignment α ∈ B�x, let W (α) =

∏
x∈�x W (x = α(x)). We define weighted model

counting [7,10,19,21] as follows.

MCW (F) ≜
∑
α∈B�x

F (α) · W (α)

Example 2. An example, consider a formula F =b∧c over �x=(a, b, c). There exist
two satisfying assignments: α1 = abc and α2 = abc. Suppose a weight function W
is defined as follows: W (a) =−2, W (a) = 3, W (b) = 1/2, W (b) = 2, while c remains
unbiased, i.e., W (c)=W (c)= 1. The weighted model counting for F with respect
to W is computed as follows. MCW (F) = F (abc) · W (abc) + F (abc) · W (abc) =
(−2 · 1

2 · 1) + (3 · 1
2 · 1) = 1

2 . ��

3 Equivalence Checking Circuits in the Pauli Basis

In this section, we introduce (exact) equivalence checking [2,4,8,22,52,55,56,61]
in Definition 1, the task we set out to solve. In this work, we will only consider
circuits which consist of gates, and do not contain measurements (this is without
loss of generality since measurements be deferred to the end of the circuit [38]).

Definition 1. Given two n-qubit circuits U and V where n∈N+, U is equivalent
to V , written U ≡ V , if there exists a complex number c (the global phase [38])
such that for all input states |ψ〉, we have U |ψ〉 = cV |ψ〉.

Equivalence Checking of Quantum Circuits by Model Counting 405

At first sight, one might think that Definition 1 requires iterating over all
quantum states. However, although the n-qubit quantum state space is continu-
ous, it is a complex vector space of dimension 2n, so it suffices to only consider
2n basis vectors for proving U and V equivalent. In fact, the novice approach to
equivalence checking is to decompose U and V in the standard basis; that is, to
find U and V each by writing each of their individual gates in the standard basis
and determining the full unitaries U and V by matrix multiplication, and finally
checking whether the matrix entries of U equal those of V , modulo a uniform
constant c. One could also perform such an approach when the individual gates
in U and V are specified in a different basis, such as the Pauli basis (see Sect. 2),
but this would have no a priori advantage over the use of the standard basis.
Instead, we will use the following folklore result (for proof see e.g. [52]).

Theorem 1. Let U, V be two circuits on n ∈N+ qubits. Then U is equivalent to
V if and only if the following condition holds (for notation Pj see Eq. 1):
For all j ∈ [n] and P ∈ {X,Z}, we have UPjU

†
= V PjV

†.

The main advantage of using Theorem 1 instead of directly computing the
(matrix entries of the) unitaries U and V is that for Clifford gates G,G′ it
is computationally easy to update the Pauli coefficients of GPjG

† to those of
(GG′)Pj(GG′)†

=G
(
G′PjG

′†) G†. This feature forms the basis for efficient sim-
ulation of Clifford circuits and has lead to efficient Clifford circuit equivalence
checking [52]. Here, we will include T gates, Toffoli, and Pauli rotation gates,
enabling equivalence checking of universal quantum computing (lifting the hard-
ness of equivalence checking to quantum analogs of NP, see Sect. 1). Another
advantage of Theorem 1 is that, since U is a unitary, UPjU

† is Hermitian, so
that its Pauli coefficients are real numbers as noted in Sect. 2, relieving us from
the need to use complex numbers.

Example 3. Choose V = S1 and U = T1T1. In order to determine whether U ≡ V ,
we compute the Pauli coefficients of UXU†, UZU†, V XV † and V ZV † as follows
using Table 1. By Theorem 1, this implies that U and V are equivalent, which
we verify by writing their unitaries in the standard basis as follows.

U = S = [1 0
0 i] , V = T · T =

[
1 0
0

√
i

]
·
[
1 0
0

√
i

]
= [1 0

0 i]

Finally, we remark that UXU†
=
1
2 (��X +Y +Y −��X)=Y represents both constructive

(Y terms add up) as well as destructive interference (X terms cancel).

406 J. Mei et al.

We will finish this section by explaining the intuition behind Theorem 1, by
rephrasing its proof from [52]. The first step in the proof is to realize that Defi-
nition 1 is equivalent to the following in density matrix representation.

Lemma 1. Given two n-qubit circuits U and V where n ∈ N+, U is equivalent
to V iff for all n-qubit quantum states |ϕ〉, we have U |ϕ〉〈ϕ|U†

= V |ϕ〉〈ϕ|V †.

Recall that for any unitary U , with |ψ〉 = U |ϕ〉, the corresponding operation
on the density matrix |ϕ〉〈ϕ| is conjugation, i.e., |ψ〉〈ψ| = U |ϕ〉〈ϕ|U†. Density
matrices are 2n

× 2n Hermitian matrices and can thus be expressed as a (real-
weighted) linear combination of Pauli strings. For this reason, we observe that
if UPU†

= V PV † for each Pauli string P , i.e. U and V coincide on all Pauli
strings by conjugation, then U and V must also coincide on all density matrices
by conjugation, and thus they are equivalent by Lemma 1.

The final step in proving Theorem 1 is to realize that for a unitary matrix,
the conjugation action is completely determined by fixing its conjugation action
on only all Xj and Zj for j ∈ [n]. This insight relies on two parts: First, each Pauli
string can be written as the product of Xj and Zj modulo a factor ∈{±1,±i}.
Second, for a unitary M , we have M†M = I, which implies that instead of first
multiplying Xjs and Zjs to construct a Pauli string, followed by conjugation,
one can first conjugate and subsequently multiply to arrive at the same result.3

For example, MXjM
† · MZjM

†
=MXjIZjM

†
=MXjZjM

†.
We observe that in Table 1, the last two non-Clifford gates yield a linear

combination of Pauli strings [34] for each Pauli string (matrix). This potentially
causes an explosion of the number of Pauli strings when conjugating multiple
non-Clifford gates. To handle this, we will exploit the strength of model counters
in Sect. 4 by representing Pauli strings P̂ as satisfying assignments which are
weighted by the coefficient γP̂ , as explained next in Sect. 4.

4 Encoding Quantum Circuit Equivalence in SAT

The previous section Sect. 3, centered around Theorem 1, explained that equiv-
alence checking can be done by conjugating Pauli strings with unitaries, and
that the required calculations for this approach are the same as in simulation of
quantum circuits using a density matrix representation of the quantum state. In
this section, we show how we reduce equivalence checking of universal quantum
circuits to weighted model counting, which is formalized in Corollary 1 below.
Our approach is based on the O(n + m)-length encoding for quantum circuit
simulation provided in [34]. Finally, our encoding in this work extends [34] with
Toffoli gates. For the rest of the paper, we use P for an unweighted Pauli string
and we use P for a summation of weighted Pauli strings, e.g. 1√

2
X + 1√

2
Y .

3 The conjugation map P �→ UPU† is a group isomorphism.

Equivalence Checking of Quantum Circuits by Model Counting 407

Table 1. Lookup table for conjugating Pauli gates by Clifford+T+RX gates. The
subscripts “c” and “t” stand for “control” and “target”. Adapted from [34].

Gate In Out Gate In Out Gate In Out

H X Z CZ Ic ⊗Xt Zc ⊗Xt X 1√
2
(X + Y)

Y −Y Xc ⊗ It Xc ⊗ Zt T Y 1√
2
(Y −X)

Z X Ic ⊗ Yt Zc ⊗ Yt Z Z

S X Y Yc ⊗ It Yc ⊗ Zt X X

Y −X Ic ⊗ Zt Ic ⊗ Zt RX(θ) Y cos(θ)Y + sin(θ)Z

Z Z Zc ⊗ It Zc ⊗ It Z cos(θ)Z − sin(θ)Y

To simplify notation, we will solve a rephrased version of the equivalence
checking problem from Definition 1 in Sect. 3: to check whether a unitary A
is equivalent to the identity unitary I, which leaves every input unchanged. By
choosing A ≜ V †U , we see that U ≡V precisely if A≡I. If U and V consist of gates
U = (U0, U1, . . . , Um−1) and V = (V0, V1, . . . , V�−1) for m, � ∈N+, then a circuit for
A is given as the m+ � gates A= (U0, U1, . . . , Um−1, V

†
�−1, V

†
�−2, . . . , V

†
0). Following

Theorem 1, our task will be as follows: Given a circuit A =
(
G0, . . . , Gm−1

)
∈

{Hj , Sj , CZjk, Tj ,Toffolijkl, RX(θ)j , · · · | j, k, l ∈ [n]}m, we need to obtain Pm
=

AP0A† from an initial P0
∈ {+Xi,+Zi | i ∈ [n]}, showing that Pm

=P0. Since P0

is a Pauli string and thus Hermitian, so is Pm. Our approach is to construct a
boolean formula whose weighted model counts represent the terms in the Pauli
decomposition of Pm.

4.1 Encoding Pauli Coefficients as Weighted Model Counts

We first explain the encoding for circuit simulation from [34], where we encode
the real-weighted sum of Pauli operators P and the update rules of the circuit A
as weighted boolean formulas. We start with the simplest case—a Pauli string,
then consider how to encode a single summand, i.e., a single weighted Pauli
operator, and in the end extend this to a weighted sum of Pauli operators.

Given a Pauli string P =
⊗

i∈[n] σ[ai, bi] with ai, bi ∈ {0, 1}, the corresponding
encoding is denoted as FP , which is the boolean formula which only has {x1 ←

a1, · · · , xn←an, z1←b1, · · · , zn←bn} as satisfying assignment, for example FZ⊗X=

Fσ[01]⊗σ[10] = x1x2z1z2. When it comes to weighted Pauli string, although the
weights are never imaginary in case of a Hermitian matrix, they can still have a
± sign. A weighted Pauli operator can be therefore encoded by 2n + 1 boolean
variables: two bits xi, zi for each of the n Pauli matrices and one sign bit r,
such that P = (−1)rσ[x1, z1] ⊗ . . . ⊗ σ[xn, zn]. For example, consider boolean
formula FP = rx1z1x2z2 where P = −Z ⊗ Y . Its one satisfying assignment is
{r←1, x1←0, z1←1, x2←1, z2←1}≡−Z⊗Y . We later introduce weights W (r)=−1
and W (r)=1 to interpret the sign. So for a formula F (x1, z1, . . . , xn, zn, r), we let
the satisfying assignment represent a set (linear combination) of Pauli strings.
The base case is the formula FP0 = FP for a Pauli string P ∈ {Xj , Zj | j ∈ [n]}.

408 J. Mei et al.

Next, we need to encode how sums of Pauli operators evolve when conjugating
with the gates of the circuit, one by one. For this, our encoding duplicates the
variables for all m gates (each time step) as follows (which is similar to encodings
for bounded model checking [6]).

�wt
= {xt

j , z
t
j , r

t | j ∈ [n]} for t ∈ {0, 1, . . . ,m} and �vt
=

⋃
i∈[t]∪{0}

�wi. (2)

For example, P0
= X1 is encoded as r0x0

1z
0
1x

0
2z

0
2 . . . x0

nz0n. Also, the satisfying
assignments of a boolean formula FA(�vm) projected to variables �wt represent
the sum of Pauli operators after conjugating the initial t gates G0, G1, . . . , Gt−1

of the circuit A, written:

FA(�vm)[�wt] =
∑

α∈{0,1}�vm

FA(α) · (−1)α(rt) ·
⊗
j∈[n]

σ[α(xt
j), α(zt

j)]

The next question is how to encode gate semantics, i.e., define a constraint to
get P1 by conjugating gate G0 to P0, etc. Note that since P0

∈ {Xj , Zj | j ∈ [n]}
consists of a sum of only one Pauli operator. For Clifford circuits C, there will
only be a single satisfying assignment α for all time steps t ∈ [m], since e.g.
HXH†

= Z (and not e.g. Z + Y). Non-Clifford gates, like T or Toffoli, will add
satisfying assignments representing summands with different weights (e.g. sums
of accumulated weights of 1/

√
2 for the T gate as discussed above). To encode

these weights, we introduce new variables ut, but only at time steps t with a T
gate (i.e., Gt

= T).
When a gate Tj is performed and there is a satisfying assignment with xt

j =1,
it means that we are conjugating a T gate on the j-th qubit set to ±X or ±Y and
the result should be either TXT †

=
1√
2
(X + Y) or TY T †

=
1√
2
(Y −X) (modulo

sign). To achieve this the encoding should let zt+1 unconstrained and set ut
⇔xt

j .
Accordingly, we set the weights W (ut) = 1√

2
and W (ut) = 1. Table 2 illustrates

how the boolean variables �wt and �wt+1 relate for a T gate (derived by computing
TPT † for Pauli gate P).

The encoding of gate semantics can be derived similarly. For example the
boolean constraint for Ht

j follows from Table 1 and is given by

FHt
j
(�wt, �wt+1) ≜ rt+1

⇔ rt
⊕ xt

jz
t
j ∧ zt+1

j ⇔ xt
j ∧ xt+1

j ⇔ zt
j

Here we omit additional constraints at+1
⇔ at for all unconstrained time-step-

t + 1 variables a, i.e., for a = xt+1
l , zt+1

l with l � =j. Similarly, by abbreviating
FGt(�wt, �wt+1) as Gt, the encoding for other Clifford+T gates are as follows:

St
j ≜ rt+1

⇔ rt
⊕ xt

jz
t
j ∧ zt+1

j ⇔ xt
j ⊕ zt

j ,

T t
j ≜ rt+1

⇔ rt
⊕ xt

jz
t
j¬zt+1

j ∧ xt+1
j ⇐⇒ xt

j ∧ xt
j ∨ (zt+1

j ⇔ zt
j) ∧ ut

⇔ xt
j ,

CZt
jk ≜ rt+1

⇔ rt
⊕ xt

jx
t
k(zt

k ⊕ zt
j) ∧ zt+1

k ⇔ zt
j ⊕ xt

k ∧ zt+1
j ⇔ zt

k ⊕ xt
j .

Equivalence Checking of Quantum Circuits by Model Counting 409

Table 2. Boolean variables under the action of conjugating one T gate. Here we omit

the sign (−1)r
t

for all P and sign (−1)r
t+1

for all TPT †.

P xtztrt TPT † xt+1 zt+1 rt+1 ut

I 00 rt I 0 zt rt 0

Z 01 rt Z

X 10 rt 1√
2
(X + Y) 1 {0,1} rt 1

Y 11 rt 1√
2
(Y −X) rt ⊕ ¬zt+1

To this end, we can inductively define boolean constraints for each time step
as FPt(�vt) = FP0(�w0) ∧ ∧

i∈[t−1]∪{0} Gi(�wi, �wi+1) for t ⊓ 1, where Gi denotes the
gate at time step i and FP0(�v0) encodes P0.

Example 4. Reconsider the circuit U=T ·T from Example 3. Starting with P0
=X,

the formulas are FP0 = x0
1z

0
1r

0, FP1 = FP0 ∧ FT 0
1
, i.e.

FP0 ∧FT 0
1
= x0

1z
0
1r

0
∧ x1

1⇔ x0
1 ∧ x0

1 ∨ (z11⇔ z01) ∧

r1⇔ r0 ⊕ x0
1z

0
1¬z11 ∧ u0

⇔ x0
1,

and similarly FP2 = FP1 ∧ FT 1
1
. ��

Formalizing the explanation above as induction over the gates proves Proposition
1, relating weighted model counting the Pauli coefficients (see Sect. 2).

Proposition 1 (WMC computes the Pauli coefficients). Let CA = (G0,
. . . , Gm−1) be an n-qubit circuit, A =G0 · · · Gm−1 the corresponding unitary and
P0 a Pauli string, so that the encoding of Pm

≜ AP0A† is given by FPm ≜ FP0 ∧∧m−1
i=0 FGi with according weight function W . For any P0

∈ {+Xj ,+Zj | j ∈ [n]}
and P ∈ P̂n, the weighted model count of FPm ∧ FP equals the Pauli coefficient
γP of Pm. That is, MCW (FPm ∧ FP) = 1

2n · Tr(P † · AP0A†) for all P ∈ P̂n.

We emphasize the necessity for using negative weights. For example, in Exam-
ple 3, we have P2

=UP0U†
=

1
2 (��X +Y +Y −��X)=Y for P0

=X, where the terms X
and −X cancel each other out, while the Y terms add up. This is why weighted
model counting with negative weights is required; to reason about such construc-
tive and destructive interference, ubiquitous to quantum computing.

Example 5. Following Example 4, we have the satisfying assignments for FP0 ,
FP1 and FP2 as:

SAT (FP0) = {x0
1z

0
1r

0
1},

SAT (FP1) = {x0
1z

0
1r

0
1 x1

1z
1
1r

1
1 u0, x0

1z
0
1r

0
1 x1

1z
1
1r

1
1 u0},

SAT (FP2) = {x0
1z

0
1r

0
1 x1

1z
1
1r

1
1 x2

1z
2
1r

2
1 u0u1, x0

1z
0
1r

0
1 x1

1z
1
1r

1
1 x2

1z
2
1r

2
1 u0u1,

x0
1z

0
1r

0
1 x1

1z
1
1r

1
1 x2

1z
2
1r

2
1 u0u1, x0

1z
0
1r

0
1 x1

1z
1
1r

1
1 x2

1z
2
1r

2
1 u0u1},

410 J. Mei et al.

with the weight function W (r21)=−1, W (r21)=1, W (u0)=W (u1)= 1√
2

and W (u0)=

W (u1)=1. Each of the satisfying assignments corresponds to a term in the Pauli
decomposition of P2, which we recall from Example 3 to be

P2
=

1
2X + 1

2Y + 1
2Y − 1

2X = (12 −
1
2)X + (12 +

1
2)Y = Y. (3)

For example, the term −1
2X is encoded by x0

1z
0
1r

0
1 x1

1z
1
1r

1
1 x2

1z
2
1r

2
1 u0u1 because

it contains x2
1z

2
1 (corresponding to X) and its weight is W (r21) · W (u0) · W (u1) =

(−1) · 1√
2

· 1√
2
= −

1
2 . We verify that the constructive interference of the Y terms

in (3) (i.e. they add up) results in an aggregate Pauli coefficient γY of P2 of 1:

MCW (FP2 ∧ FY) = 1√
2

· 1√
2
+

1√
2

· 1√
2
= 1 = 1

2Tr(Y · P2).

Similarly, we verify that destructive interference of the X terms in (3) (i.e. they
cancel) results in the coefficient γX being 0:

MCW (FP2 ∧ FX) = 1√
2

· 1√
2
−

1√
2

· 1√
2
= 0 = 1

2Tr(X · P2). ��

Toffoli Gate. Similar to the way gate encodings of other non-Clifford gates were
derived, we can encode the Toffoli gate. To this end, we brute forced the Toffoli
gate behavior in the Pauli domain. To keep things readable, we will only present
a lookup table in the Pauli basis in Table 3, like Table 1. The corresponding
boolean constraint can easily be derived. To subsequently obtain a minimal
(weighted) CNF formula, we applied the Quine-McCluskey algorithm [33,44].

Table 3. An partial lookup table for the Toffoli gate for in/output Pauli operators P
and Q. The extended version of this paper [35] includes the full table.

P ∈ P3 Q = Toffoli · P · Toffoli† with Q ∈ 1
2

∑
i∈[4] P3 or Q ∈ P3

I ⊗ I ⊗ Z (I ⊗ I ⊗ Z + I ⊗ Z ⊗ Z + Z ⊗ I ⊗ Z − Z ⊗ Z ⊗ Z)/2

I ⊗ I ⊗X I ⊗ I ⊗X

I ⊗ Z ⊗ I I ⊗ Z ⊗ I

I ⊗X ⊗ I (I ⊗X ⊗ I + I ⊗X ⊗X + Z ⊗X ⊗ I − Z ⊗X ⊗X)/2

Z ⊗ I ⊗ I Z ⊗ I ⊗ I

X ⊗ I ⊗ I (X ⊗ I ⊗ I +X ⊗ I ⊗X +X ⊗ Z ⊗ I −X ⊗ Z ⊗X)/2

X ⊗X ⊗ Z (X ⊗X ⊗ Z + Y ⊗ Y ⊗ Z −X ⊗ Y ⊗ Y − Y ⊗X ⊗ Y)/2

Y ⊗ Y ⊗ Y (X ⊗X ⊗ Y + Y ⊗ Y ⊗ Y −X ⊗ Y ⊗ Z − Y ⊗X ⊗ Z)/2

4.2 WMC-Based Algorithm for Equivalence Checking

The previous subsection explains how to encode the Pauli coefficients of APA†,
where A is a unitary and P a Pauli string, in a boolean formula together with a
weight function. We here connect this encoding to Theorem 1, which expresses

Equivalence Checking of Quantum Circuits by Model Counting 411

that determining whether a unitary A is equivalent to the identity circuit can
be done by checking if APA† ?

= P for Pauli strings P ∈ {Xj , Zj | j ∈ [n]}. We use
the following lemma, which expresses that for any unitary A and Pauli string P ,
the P -Pauli coefficient of APA† can only become 1 if APA† equals P .

Lemma 2. Let A be a unitary and P ∈ P̂n be a Pauli string. Then APA†
=P if

and only if 1
2n Tr(APA† · P) = 1.

Proof. If APjA
†
= Pj , then Tr(APjA

† · Pj) = Tr(Pj · Pj) = Tr(I⊗n) = 2n. For the
converse direction, we observe that Tr(APjA

† ·Pj) is the Frobenius inner product
〈U, V 〉 ≜ Tr(U†V) for U ≜ APjA

† and V ≜ Pj . It now follows from the Cauchy-
Schwarz inequality |〈U, V 〉|2 ⊔ 〈U,U〉 · 〈V, V 〉 that

|Tr(APjA
† · Pj)|2 ⊔ Tr((APjA

†)† · APjA
†) · Tr(P †

j · Pj)

= Tr(APjA
† · APjA

†) · Tr(P †
j · Pj)

= Tr(APj · PjA
†) · Tr(I⊗n) (A and Pj are unitary)

= Tr(AA†) · Tr(I⊗n) (P 2
= I for all P ∈ P̂n)

= Tr(I⊗n) · Tr(I⊗n) = 2n · 2n
= 4n (A is unitary)

and therefore |Tr(APjA
† · Pj)| ⊔ 2n. Since Tr(APjA

† · Pj) = 2n by assumption,
the Cauchy-Schwarz inequality is tight, which only happens if U = APjA

† and
V =Pj are linearly dependent. Thus, there exists a complex number λ such that
APjA

†
=λPj . Substituting this expression in Tr(APjA

† ·Pj) yields Tr(λPj ·Pj)=
λ · Tr(I⊗n) = λ2n, hence λ = 1 and APjA

†
= Pj . ��

Combining Lemma 2 and Proposition 1 with Theorem 1 yields Corollary 1
below, which in turn implies correctness of Algorithm 1 which reduces equiva-
lence checking to WMC.

Corollary 1. Let A be an n-qubit circuit with m gates and P ∈{Xj , Zj | j ∈ [n]},
which are encoded by FA and FP respectively, with according weight function W .
We have A ≡ I if and only if MCW (FP (�w0) ∧ FA (�vt) ∧ FP (�wm)) = 1 for all
P ∈ {Xj , Zj | j ∈ [n]}, where �wt+1 are boolean variables encoding the quantum
state in circuit A after the t-th gate of A (0 ⊔ t ⊔m − 1) and �vt

=

⋃
t∈[m]∪{0} �wt

as defined in Eq. (2).

Example 6. Consider A = V †U where =U = (T, T) and V = (S) as in Example 3.

We show how to reduce the equivalence check A
?
≡ I to weighted model counting.

First, we encode the check AXA† ?
= X using F1 ≜ FAXA† ∧ FX :

412 J. Mei et al.

Algorithm 1. Quantum circuit equivalence checking algorithm based on WMC.
Given an n-qubit circuit A = (G0, G1, . . . , Gm−1), the algorithm decides whether
A is equivalent to the identity circuit.
1: for P ∈ {X, Z} do
2: for j ∈ {1, 2, . . . , n} do
3: P0

← +Pj

4: FM ← FP0(�w0)
5: for k ranging from 0 to m − 1 do
6: FM ← FM ∧ FGk(�wk

∪ �wk+1)
7: if MCW (FM ∧ FPj (�wm)) � =1 then � Following Corollary 1
8: return ‘not equivalent’
9: return ‘equivalent’

The satisfying assignments of F1 are

SAT (F1) = {x1
1z

1
1r

1
1 x2

1z
2
1r

2
1 x3

1z
3
1r

3
1 u0u1, x1

1z
1
1r

1
1 x2

1z
2
1r

2
1 x3

1z
3
1r

3
1 u0u1}.

so MCW (F1)=
∑

σ∈SAT (F1)
W (σ(r31))W (σ(u0))W (σ(u1))= 1√

2
· 1√

2
+

1√
2

· 1√
2
= 1 .

Now we turn to the check AZA† ?
= Z, obtaining the formula F2 ≜ FAZA†∧FZ ,

where FAZA† is the same formula from F1 and FZ = x3
1z

3
1 . The satisfying assign-

ments of F2 are SAT (F2) = {x0
1z

0
1r

0
1x

1
1z

1
1r

1
1x

2
1z

2
1r

2
1x

3
1z

3
1r

3
1u

0u1}, and MCW (F2) =
W (r31)W (u0)W (u1) = 1. Since both weighted model counts evaluate to 1, we
conclude that A ≡ I. ��

5 Implementation: The ECMC Tool

We implemented our method in an open-source tool called ECMC, available
at https://github.com/System-Verification-Lab/Quokka-Sharp. ECMC takes two
quantum circuits in QASM format [13] as input. It encodes these circuits to a
sequence of 2n weighted conjunctive normal form (CNF) formulas as explained
in Sect. 4, and then uses the weighted model counter GPMC [50] to solve these
constraints in parallel, terminating as soon as one returns a negative result. Here
we set the number of parallel cores to be 16 as it is shown to be the optimal
number of cores for our task.

We choose GPMC as it supports the negative weights in our encoding and
performs the best among solvers with that capability in the model counting com-
petition 2023 [21]. To demonstrate the effectiveness of our method, we conducted
a set of broad experiments as discussed in the following.

We performed equivalence checking of quantum circuits comparing our
method against the state-of-the-art tool QCEC [8], which runs different algo-
rithms and heuristics based on ZX calculus and decision diagrams (shorted as
DD) in portfolio with 16 parallel threads [60]. Similar to ECMC, QCEC also termi-
nates earlier when one thread returns “non-equivalent”. Since the ZX-calculus
based method is still incomplete for universal quantum circuits, in the sense

https://github.com/System-Verification-Lab/Quokka-Sharp

Equivalence Checking of Quantum Circuits by Model Counting 413

Fig. 1. Equivalence check of typical random Clifford+T circuits against their optimized
circuits (equivalent cases, Fig 1 & Fig 2) and optimized circuits with one random gate
missing (non-equivalent cases, Fig 3 & Fig 4). (Both vertical axes are on a logarithmic
scale.)

that it is only capable of proving equivalence, we use this tool under two set-
tings: one is the default setting which uses DD and ZX calculus in portfolio;
the other is to exclusively enable DD [8]. We use two families of circuits: (i)
random Clifford+T circuits, which mimic hard problems arising in quantum
chemistry [59] and quantum many-body physics [17]; (ii) all benchmarks from
the public benchmark suite MQT Bench [43], which includes many important
quantum algorithms like QAOA, VQE, QNN, Grover, etc. All experiments have
been conducted on a 3.5 GHz M2 Machine with MacOS 13 and 16 GB RAM.
We set the time limit to be 5 min (300 s) and include the time to read a QASM
file, construct the weighted CNF and perform the model counting in all reported
runtimes.

Results. First, to show the scalability of both methods on checking equivalence, we
consider random circuits that resemble typical oracle implementations—random
quantum circuits with varying qubits and depths, which comprise the CX, H, S,
and T gates with appearing ratio 10%, 35%, 35%, 20% [41]. We use a ZX-calculus
tool PyZX [28] to generate optimized circuits, to construct equivalent, yet very
different, counterparts. To construct non-equivalent instances, we inject an error
by removing one random gate from the corresponding optimized circuits. So by

414 J. Mei et al.

Table 4. Results of verifying equivalence of circuits from MQT bench against optimized
circuits. For cases within time limit, we give runtime (sec), while > 300 represents a
timeout (5min) and ✕ means that the result was ‘unknown’.

Algorithm n |G| G′ ECMC QCEC (DD) QCEC

graphstate 16 160 32 0.41 0.11 0.01

32 320 64 1.67 0.1 0.01

64 640 128 8.11 24.37 0.02

grover (noancilla) 5 499 629 > 300 0.12 0.04

6 1568 1870 > 300 6.04 ✕

7 3751 5783 > 300 > 300 1.97

qaoa 7 133 117 0.48 0.02 0.01

9 171 296 1.44 0.11 ✕

11 209 359 1.56 0.28 0.01

qnn 2 43 36 0.06 0.01 0.01

8 319 494 > 300 0.24 ✕

16 1023 2002 > 300 > 300 ✕

qft 2 14 14 0.02 0.01 0.01

8 176 228 36.56 0.07 0.02

16 672 814 > 300 18.28 ✕

qpe (inexact) 16 712 848 > 300 > 300 ✕

32 2712 3179 > 300 > 300 > 300

64 10552 9695 > 300 > 300 > 300

vqe 5 83 83 1.07 0.01 0.01

10 168 221 > 300 0.04 0.02

15 253 349 > 300 0.12 0.05

wstate 16 271 242 1.74 23.68 ✕

32 559 498 9.52 > 300 ✕

64 1135 1010 70.51 > 300 > 300

construction, we know the correct answer for all equivalence checking instances in
advance. The resulting runtimes can be seen in Fig. 1.

In addition to random circuits, to test structural quantum circuits, we empir-
ically evaluated our method on the MQTBench benchmark set [43]. We also gen-
erate the optimized circuits of the circuits from MQT-bench using PyZX [28].
To generate non-equivalent instances, three kinds of errors are injected into the
optimized circuits: one with a random gate removed, one where a random CNOT
gate is flipped, switching control and target qubits, and one where the phase of
the angle of a random rotation gate is shifted. For the last error, since many
optimizations on rotation gates involve phase shifts in the rotation angles, we
consider two sizes of phase shift: one with the angle of a random rotation gate

Equivalence Checking of Quantum Circuits by Model Counting 415

Table 5. Results of verifying non-equivalence of circuits from MQT bench against
optimized circuits with flipped CNOT gate (Flipped) and one missing gate (1 Gate
Missing). For cases within time limit, we give runtime (sec), while > 300 represents a
timeout (5 min).

Algorithm n |G| |G′| Flipped 1 Gate Missing

ECMC QCEC (DD) QCEC ECMC QCEC (DD) QCEC

grover (noancilla) 5 499 629 > 300 0.04 0.02 1.26 0.05 0.02

6 1568 1870 > 300 0.14 0.06 > 300 0.13 0.05

7 3751 5783 > 300 1.41 0.46 24.27 5.05 0.35

qaoa 7 133 117 0.36 0.03 0.01 0.39 0.03 0.01

9 171 296 0.77 0.06 0.03 0.8 0.07 0.02

11 209 359 3.32 0.53 0.23 2.28 0.87 0.09

qft 2 14 14 0.05 0.02 0.01 0.1 0.04 0.01

8 176 228 1.53 0.05 0.01 1.89 0.04 0.01

16 672 814 2.7 12.47 5.47 6.68 75.73 1.33

qnn 2 43 36 0.24 0.07 0.01 0.22 0.1 0.01

8 319 494 > 300 0.59 0.05 > 300 0.61 0.05

16 1023 2002 > 300 > 300 97.22 > 300 > 300 90.58

qpe (inexact) 16 712 848 19.97 1.72 4.98 19.59 186.29 1.12

32 2712 3179 13.28 > 300 > 300 22.0 > 300 > 300

64 10552 9695 > 300 > 300 > 300 75.46 > 300 > 300

vqe 5 83 83 0.81 0.05 0.01 0.37 0.22 0.01

10 168 221 55.06 0.58 0.18 3.98 3.9 0.03

15 253 349 4.08 0.94 81.03 5.09 > 300 0.05

wstate 16 271 242 6.47 0.41 0.03 1.46 0.37 0.02

32 559 498 13.65 2.0 > 300 2.28 > 300 59.07

64 1135 1010 13.32 > 300 > 300 6.48 > 300 > 300

added by 10−4, one with the angle added by 10−7. We note that this experi-
mental setup is stronger than the one used in [41], where only two errors are
considered: bit flip and phase shift without giving the shifting scale. We present
a representative subset of equivalence checking results in Table 4. The complete
results can be found in the extended version of this paper [35]. The first three
columns list the number of qubits n and gates |G| in original circuits, and the
number of gates |G′| in optimized circuits. Then we give the runtime of the
weighted model counting tool ECMC, the decision diagram-based QCEC (DD)
and the default setting of QCEC respectively. For the non-equivalent cases, we
show the flipped-CNOT and one-gate-missing error in Table 5. The first three
columns are the same as Table 4 and then the performance of all three tools
on CNOT flipped error and one-gate-missing error respectively. Finally, Table 6
shows the performance of phase shift errors, where Shift-10−4 (resp. Shift-10−4)
denotes adding 10−4 (resp. 10−7) to the phase of a random rotation gate.

416 J. Mei et al.

Table 6. Results of verifying non-equivalence of circuits from MQT bench against
optimized circuits with 10−4 size and 10−7 size phase shift in one random rotation gate.
For cases within time limit, we give runtime (sec), while > 300 represents a timeout
(5 min), “wrong” a wrong result and ✕ that the results was ‘unknown’.

Algorithm n |G| |G′| Shift-10−4 Shift-10−7

ECMC QCEC (DD) QCEC ECMC QCEC (DD) QCEC

groundstate 4 180 36 0.26 Wrong Wrong Wrong Wrong Wrong

12 1212 164 > 300 Wrong Wrong > 300 Wrong Wrong

14 1610 206 > 300 Wrong Wrong > 300 Wrong Wrong

qaoa 7 133 117 0.15 0.03 ✕ 0.15 > 300 ✕

9 171 296 0.29 Wrong ✕ 0.32 > 300 ✕

11 209 359 0.33 0.12 0.1 0.32 > 300 Wrong

qft 2 14 14 0.02 0.01 0.01 0.02 0.01 0.01̊a

8 176 228 0.2 Wrong ✕ 0.21 > 300 ✕

16 672 814 0.79 Wrong ✕ 0.92 > 300 ✕

qnn 2 43 36 0.04 Wrong Wrong 0.04 Wrong Wrong

8 319 494 > 300 0.24 Wrong > 300 56.55 ✕

16 1023 2002 > 300 > 300 ✕ > 300 > 300 ✕

qpeinexact 16 712 848 8.59 > 300 ✕ 11.9 > 300 ✕

32 2712 3179 > 300 > 300 > 300 > 300 > 300 > 300

64 10552 9695 > 300 > 300 > 300 > 300 > 300 > 300

routing 2 43 29 0.06 Wrong Wrong 0.05 > 300 Wrong

6 135 142 0.33 0.02 0.01 2.49 0.03 0.01

12 273 409 144.3 0.05 0.03 > 300 0.09 0.04

wstate 16 271 242 0.33 12.85 ✕ 0.23 11.67 ✕

32 559 498 1.55 > 300 ✕ 1.28 > 300 ✕

64 1135 1010 5.4 > 300 > 300 5.24 > 300 > 300

Discussion. For random circuits, Fig. 1 shows that the runtime of ECMC exhibits a
clear correlation with the size of the circuits. While QCEC and QCEC (DD) are
very fast for small size circuits, for non-equivalent cases, both of them are less
scalable and reach time limit much earlier than ECMC. For the equivalent cases,
QCEC benefits from ZX calculus and outperforms the other two methods. We
suspect that QCEC (DD) shows poor performance when solving random circuits
because these circuits don’t contain the structure found in quantum algorithms,
which decision diagrams can typically exploit.

When considering structural quantum circuits, the results vary between
equivalent and non-equivalent instances. For equivalent instances, QCEC (DD)
significantly surpasses ECMC on Grover, QFT and QNN, primarily due to the deci-
sion diagram-based method’s proficiency in handling circuits featuring repeated
structures and oracles. While for those circuits featuring a large number of rota-
tion gates with various rotation angles, like graphstate and wstate, ECMC demon-
strates clear advantages. Moreover, the default QCEC is much faster than QCEC

Equivalence Checking of Quantum Circuits by Model Counting 417

(DD) on all cases while it reports “no information” for many cases as ZX calculus
method and decision diagram method give different answers.

For non-equivalent instances, since ECMC can terminate when a single out
of 2n WMC calls returns a negative result, it shows better performance than
checking equivalence. For example, in the case of QPE, where both tools face time
constraints when checking equivalent instances, ECMC can efficiently demonstrate
non-equivalence and resolve the majority of cases within the time limit, while
both QCEC and QCEC (DD) still get timeout in most instances.

In all instances, ECMC outperforms both QCEC and QCEC (DD) on graph
state and wstate, each featuring many rotation gates. When dealing with rotation
gates, decision diagrams might suffer from numerical instability [39,41], as can
be clearly observed in Table 6 for the instances with errors in the phase shift,
where both QCEC and QCEC (DD) get wrong results for many benchmarks. In
contrast, the WMC approach—also numerical in nature—iteratively computes
a sum of products, which we think avoids numerical instability. Table 6 also
demonstrates this point as ECMC yields the correct answer for most benchmarks
with 10−4 and 10−7-size error. In contrast, the default QCEC gives no answer
for a large amount of cases.

6 Related Work

Bauer et al. [3] verify quantum programs by encoding the verification problem in
SMT, using an undecidable theory of nonlinear real arithmetic with trigonomet-
ric expressions. An SMT theory for quantum computing was proposed in [11].
Berent et al. [4] realize a Clifford circuit simulator and equivalence checker based
on a SAT encoding. The equivalence checker was superseded by the deterministic
polynomial-time algorithm proposed and implemented in [52]. Using weighted
model counting, universal quantum circuit simulation is realized in [34], which
we extend by providing encodings for the CZ and Toffoli gates and which we
apply to circuit equivalence checking according to the approach of [52]. Amy [2]
uses path integrals to check equivalence of circuits, which is complete for Clifford
circuits and can prove equivalence of Clifford+T and Clifford+R circuits.

Yu and Palsberg [62] use an abstract interpretation to simulate quantum
circuits. Abstraqt [5] improves upon this by using the stabilizer basis. SAT solvers
have proven successful in quantum compilation [53], e.g., for reversible simulation
of circuits [58] and optimizing space requirements of quantum circuits [36,45].

The ZX calculus [12] offers a diagrammatic approach to manipulate and ana-
lyze quantum circuits. A circuit is almost trivially expressible as a diagram, but
the diagram language is more powerful and circuit extraction is consequently #P-
complete [15]. It has proven enormously successful in applications from equiva-
lence checking [41,42], to circuit optimization [28] and simulation [29].

Decision diagrams [37] have been used for simulating quantum circuits, check-
ing their equivalence [8] and synthesis [64]. Jimenez et al. use bisimulation for
circuit reduction, reducing simulation time compared to DDs in some cases [26].

418 J. Mei et al.

7 Conclusions

We have shown circuit equivalence checking reduces to weighted model counting
by considering quantum states in the Pauli basis, which allows for an efficient
reduction of the equivalence checking problem to weighted model counting. We
extended a linear-length encoding with the three-qubit Toffoli gate, so that most
common non-Clifford gates are supported (previously the T , phase shift and
rotation gates were already supported).

Given two n-qubit quantum circuits, their equivalence (up to global phase)
can be decided by 2n calls to a weighted model counter, each with an encod-
ing that is linear in the circuit size. Our open source implementation demon-
strates that this technique is competitive to state-of-the-art methods based on
a combination of decision diagrams and ZX calculus. This result demonstrates
the strength of classical reasoning tools can transfer to the realm of quantum
computing, despite the general ‘quantum-hardness’ of these problems. In future
work, we plan to extract diagnostics for non-equivalent circuits from the satis-
fying assignments of the model counter.

References

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev.
A 70(5), 052328 (2004)

2. Amy, M.: Towards large-scale functional verification of universal quantum circuits.
arXiv:1805.06908 (2018)

3. Bauer-Marquart, F., Leue, S., Schilling, C.: symQV: automated symbolic verifica-
tion of quantum programs. In: Chechik, M., Katoen, J.-P., Leucker, M. (eds.) FM
2023. LNCS, vol. 14000, pp. 181–198. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-27481-7 12

4. Berent, L., Burgholzer, L., Wille, R.: Towards a SAT encoding for quantum circuits:
a journey from classical circuits to clifford circuits and beyond. In: SAT 2022.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

5. Bichsel, B., Paradis, A., Baader, M., Vechev, M.: Abstraqt: analysis of quantum
circuits via abstract stabilizer simulation. Quantum 7, 1185 (2023)

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. In: Handbook of Satisfiability, vol. 185, no. 99, pp. 457–481 (2009)

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

8. Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(9), 1810–1824 (2021)

9. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys.
Rev. A 54, 1098–1105 (1996)

10. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6), 772–799 (2008)

11. Chen, Y.-F., Rümmer, P., Tsai, W.-L.: A theory of cartesian arrays (with appli-
cations in quantum circuit verification). In: Pientka, B., Tinelli, C. (eds.) CADE
2023. LNCS, pp. 170–189. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-38499-8 10

http://arxiv.org/abs/1805.06908
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1007/978-3-031-38499-8_10
https://doi.org/10.1007/978-3-031-38499-8_10

Equivalence Checking of Quantum Circuits by Model Counting 419

12. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New J. Phys. 13(4), 043016 (2011)

13. Cross, A., et al.: OpenQASM3: a broader and deeper quantum assembly language.
ACM Trans. Quantum Comput. 3(3), 1–50 (2022)

14. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quantum Inf. Com-
put. 6(1), 81–95 (2006)

15. de Beaudrap, N., Kissinger, A., van de Wetering, J.: Circuit extraction for ZX-
diagrams can be #P-hard. In: ICALP 2022. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022)

16. Feng, N., Marsso, L., Sabetzadeh, M., Chechik, M.: Early verification of legal com-
pliance via bounded satisfiability checking. In: Enea, C., Lal, A. (eds.) CAV 2023.
LNCS, vol. 13966, pp. 374–396. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-37709-9 18

17. Fisher, M.P.A., Khemani, V., Nahum, A., Vijay, S.: Random quantum circuits.
Annu. Rev. Condens. Matter Phys. 14(1), 335–379 (2023)

18. Gay, S.J.: Stabilizer states as a basis for density matrices. CoRR, abs/1112.2156
(2011)

19. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satis-
fiability, pp. 993–1014. IOS Press (2021)

20. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, Cali-
fornia Institute of Technology (1997)

21. Hecher, M., Fichte, J.K.: Model counting competition 2023. https://
mccompetition.org/. Accessed 07 Jan 2024

22. Hong, X., Feng, Y., Li, S., Ying, M.: Equivalence checking of dynamic quan-
tum circuits. In: Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2022. Association for Computing Machinery,
New York (2022)

23. Hong, X., Ying, M., Feng, Y., Zhou, X., Li, S.: Approximate equivalence checking of
noisy quantum circuits. In: 2021 58th ACM/IEEE Design Automation Conference
(DAC), pp. 637–642 (2021)

24. Janzing, D., Wocjan, P., Beth, T.: “Non-identity-check” is QMA-complete. Int. J.
Quantum Inf. 3(03), 463–473 (2005)

25. Ji, Z., Wu, X.: Non-identity check remains QMA-complete for short circuits.
arXiv:0906.5416 (2009)

26. Jiménez-Pastor, A., Larsen, K.G., Tribastone, M., Tschaikowski, M.: Forward and
backward constrained bisimulations for quantum circuits (2024)

27. Jones, T.: Decomposing dense matrices into dense Pauli tensors. arXiv:2401.16378
(2024)

28. Kissinger, A., van de Wetering, J.: PyZX: large scale automated diagrammatic
reasoning. In: QPL (2019)

29. Kissinger, A., van de Wetering, J.: Simulating quantum circuits with ZX-calculus
reduced stabiliser decompositions. Quantum Sci. Technol. 7(4), 044001 (2022).
arXiv:2109.01076 [quant-ph]

30. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ.
Math. Surv. 52(6), 1191 (1997)

31. Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and quantum computation. Amer-
ican Mathematical Society (2002)

32. Liu, Y.-K.: Consistency of local density matrices is QMA-complete. In: Dı́az, J.,
Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006. LNCS,
vol. 4110, pp. 438–449. Springer, Heidelberg (2006). https://doi.org/10.1007/
11830924 40

https://doi.org/10.1007/978-3-031-37709-9_18
https://doi.org/10.1007/978-3-031-37709-9_18
https://mccompetition.org/
https://mccompetition.org/
http://arxiv.org/abs/0906.5416
http://arxiv.org/abs/2401.16378
http://arxiv.org/abs/2109.01076
https://doi.org/10.1007/11830924_40
https://doi.org/10.1007/11830924_40

420 J. Mei et al.

33. McCluskey, E.J.: Minimization of boolean functions. Bell Syst. Tech. J. 35(6),
1417–1444 (1956)

34. Mei, J., Bonsangue, M., Laarman, A.: Simulating quantum circuits by model count-
ing. In: CAV 2024. Springer, Cham (2024, accepted for publication). Pre-print
available at arXiv:2403.07197

35. Mei, J., Coopmans, T., Bonsangue, M., Laarman, A.: Equivalence checking of
quantum circuits by model counting. arXiv preprint arXiv:2403.18813 (2024)

36. Meuli, G., Soeken, M., De Micheli, G.: SAT-based CNOT, T quantum circuit
synthesis. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 175–
188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 12

37. Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible
and quantum circuits. In: 36th International Symposium on Multiple-Valued Logic
(ISMVL 2006), pp. 30–30 (2006)

38. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation,
vol. 2, no. 8, p. 23. Cambridge University Press, Cambridge (2000)

39. Niemann, P., Zulehner, A., Drechsler, R., Wille, R.: Overcoming the tradeoff
between accuracy and compactness in decision diagrams for quantum computa-
tion. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(12), 4657–4668
(2020)

40. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
SEA 2020, IJCAI 2015, pp. 3141–3148. AAAI Press (2015)

41. Peham, T., Burgholzer, L., Wille, R.: Equivalence checking of quantum circuits
with the ZX-calculus. IEEE J. Emerg. Sel. Top. Circ. Syst. 12(3), 662–675 (2022)

42. Peham, T., Burgholzer, L., Wille, R.: Equivalence checking of parameterized quan-
tum circuits: verifying the compilation of variational quantum algorithms. In: 2023
28th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 702–
708 (2023)

43. Quetschlich, N., Burgholzer, L., Wille, R.: MQT bench: benchmarking software
and design automation tools for quantum computing. Quantum 7, 1062 (2023)

44. Quine, W.V.: The problem of simplifying truth functions. Am. Math. Mon. 59(8),
521–531 (1952)

45. Quist, A.-J., Laarman, A.: Optimizing quantum space using spooky pebble games.
In: Kutrib, M., Meyer, U. (eds.) RC 2023. LNCS, vol. 13960, pp. 134–149. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-38100-3 10

46. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett.
86, 5188–5191 (2001)

47. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining compo-
nent caching and clause learning for effective model counting. In: International
Conference on Theory and Applications of Satisfiability Testing (2004)

48. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys.
Rev. A 52(4), R2493 (1995)

49. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5),
793 (1996)

50. Suzuki, R., Hashimoto, K., Sakai, M.: Improvement of projected model-counting
solver with component decomposition using SAT solving in components. Technical
report, JSAI Technical Report, SIG-FPAI-103-B506 (2017). (in Japanese)

51. Tanaka, Yu.: Exact non-identity check is NQP-complete. Int. J. Quantum Inf.
8(05), 807–819 (2010)

52. Thanos, D., Coopmans, T., Laarman, A.: Fast equivalence checking of quantum
circuits of Clifford gates. In: André, É., Sun, J. (eds.) ATVA 2023. LNCS, vol.

http://arxiv.org/abs/2403.07197
http://arxiv.org/abs/2403.18813
https://doi.org/10.1007/978-3-319-99498-7_12
https://doi.org/10.1007/978-3-031-38100-3_10

Equivalence Checking of Quantum Circuits by Model Counting 421

14216, pp. 199–216. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
45332-8 10

53. Thanos, D., et al.: Automated reasoning in quantum circuit compilation. In: Model
Checking Software (SPIN) 2024. Springer, Cham (2024, accepted for publication)

54. van den Nest, M.: Classical simulation of quantum computation, the gottesman-
knill theorem, and slightly beyond. Quantum Inf. Comput. 10(3), 258–271 (2010)

55. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum
circuits and states. In: 2007 IEEE/ACM International Conference on Computer-
Aided Design, pp. 69–74 (2007)

56. Wang, S.-A., Lu, C.-Y., Tsai, I.-M., Kuo, S.-Y.: An XQDD-based verification
method for quantum circuits. IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. 91(2), 584–594 (2008)

57. Wei, C.-Y., Tsai, Y.-H., Jhang, C.-S., Jiang, J.-H.R.: Accurate BDD-based unitary
operator manipulation for scalable and robust quantum circuit verification. In:
Proceedings of the 59th ACM/IEEE Design Automation Conference, pp. 523–528
(2022)

58. Wille, R., Zhang, H., Drechsler, R.: ATPG for reversible circuits using simulation,
Boolean satisfiability, and pseudo Boolean optimization. In: 2011 IEEE Computer
Society Annual Symposium on VLSI, pp. 120–125 (2011)

59. Wright, J., et al.: Numerical simulations of noisy quantum circuits for computa-
tional chemistry. Mater. Theory 6(1), 18 (2022)

60. Lin, X., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla2009: an automatic algo-
rithm portfolio for SAT. SAT 4, 53–55 (2009)

61. Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. In:
2010 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 23–28.
IEEE (2010)

62. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, pp. 542–558 (2021)

63. Zhang, Y., Tang, Y., Zhou, Y., Ma, X.: Efficient entanglement generation and
detection of generalized stabilizer states. Phys. Rev. A 103, 052426 (2021)

64. Zulehner, A., Wille, R.: Improving synthesis of reversible circuits: exploiting redun-
dancies in paths and nodes of QMDDs. In: Phillips, I., Rahaman, H. (eds.) RC 2017.
LNCS, vol. 10301, pp. 232–247. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59936-6 18

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-45332-8_10
https://doi.org/10.1007/978-3-031-45332-8_10
https://doi.org/10.1007/978-3-319-59936-6_18
https://doi.org/10.1007/978-3-319-59936-6_18
http://creativecommons.org/licenses/by/4.0/

Author Index

A
Acclavio, Matteo II-216
Amrollahi, Daneshvar I-154
Arrial, Victor II-338
Avigad, Jeremy I-3
Ayala-Rincón, Mauricio II-317

B
Baader, Franz II-279
Balbiani, Philippe II-78
Barragán, Andrés Felipe González II-317
Barrett, Clark I-458
Bártek, Filip I-194
Berg, Jeremias I-396
Bhayat, Ahmed I-75
Biere, Armin I-284
Bonsangue, Marcello II-401
Bozec, Tanguy II-157
Bromberger, Martin I-133
Brown, Chad E. I-86
Bruni, Alessandro II-61

C
Cerna, David M. II-317
Chassot, Samuel I-304
Chvalovský, Karel I-194
Ciabattoni, Agata II-176
Coopmans, Tim II-401

D
Das, Anupam II-237
De Lon, Adrian I-105
De, Abhishek II-237
Dixon, Clare II-3

E
Ehling, Georg II-381
Einarsdóttir, Sólrún Halla I-214

F
Férée, Hugo II-43
Fernández Gil, Oliver II-279
Ferrari, Mauro II-24
Fiorentini, Camillo II-24
Frohn, Florian I-344
Froleyks, Nils I-284
Fruzsa, Krisztina II-114

G
Gao, Han II-78
Garcia, Ronald I-419
Ge, Rui I-419
Gencer, Çiğdem II-78
Ghilardi, Silvio I-265
Giesl, Jürgen I-233, I-344, II-360
Giessen, Iris van der II-43
Gool, Sam van II-43
Graham-Lengrand, Stéphane I-386
Guerrieri, Giulio II-338

H
Hader, Thomas I-386
Hajdu, Márton I-21, I-115, I-154, I-214
Heisinger, Maximilian I-315, I-325
Heisinger, Simone I-315, I-325
Heljanko, Keijo I-284
Heuer, Jan I-172
Hozzová, Petra I-21, I-154
Hustadt, Ullrich II-3

I
Ihalainen, Hannes I-396
Irfan, Ahmed I-386

J
Järvisalo, Matti I-396
Johansson, Moa I-214

© The Editor(s) (if applicable) and The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14740, pp. 423–424, 2024.
https://doi.org/10.1007/978-3-031-63501-4

https://doi.org/10.1007/978-3-031-63501-4

424 Author Index

K
Kaliszyk, Cezary I-86
Kassing, Jan-Christoph II-360
Kaufmann, Daniela I-386
Kesner, Delia II-338
Khalid, Zain I-53
Kotthoff, Lars I-53
Kovács, Laura I-21, I-115, I-154, I-386
Kozen, Dexter II-257
Krasnopol, Florent I-133
Kunčak, Viktor I-304
Kutsia, Temur II-317, II-381
Kuznets, Roman II-114

L
Laarman, Alfons II-401
Lammich, Peter I-439
Lommen, Nils I-233

M
Mei, Jingyi II-401
Meyer, Éléanore I-233
Middeldorp, Aart II-298
Mitterwallner, Fabian II-298
Möhle, Sibylle I-133
Myreen, Magnus O. I-396

N
Nalon, Cláudia II-3, II-97
Niederhauser, Johannes I-86
Nordström, Jakob I-396

O
Oertel, Andy I-396
Olivetti, Nicola II-78

P
Papacchini, Fabio II-3
Pattinson, Dirk II-97
Peltier, Nicolas II-157
Perrault, C. Raymond I-53
Petitjean, Quentin II-157
Platzer, André II-196

Poidomani, Lia M. I-265
Pommellet, Adrien I-366
Prebet, Enguerrand II-196

R
Rawson, Michael I-115
Rebola-Pardo, Adrian I-325
Ritter, Eike II-61
Rooduijn, Jan II-257
Ruess, Harald II-137

S
Scatton, Simon I-366
Schmid, Ulrich II-114
Schöpf, Jonas II-298
Schürmann, Carsten II-61
Seidl, Martina I-315, I-325
Shillito, Ian II-43
Sighireanu, Mihaela II-157
Silva, Alexandra II-257
Smallbone, Nicholas I-214
Stan, Daniel I-366
Suda, Martin I-75, I-194, I-214
Summers, Alexander J. I-419
Sutcliffe, Geoff I-30, I-53
Suttner, Christian I-53

T
Tan, Yong Kiam I-396
Tesi, Matteo II-176
Tinelli, Cesare I-458
Tsiskaridze, Nestan I-458

V
van Ditmarsch, Hans II-114
Vartanyan, Grigory II-360
Voronkov, Andrei I-21, I-115, I-154

W
Wagner, Eva Maria I-154
Waldmann, Uwe I-244
Weidenbach, Christoph I-133
Wernhard, Christoph I-172

Y
Yu, Emily I-284

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Intuitionistic Logics and Modal Logics
	Model Construction for Modal Clauses
	1 Introduction
	2 Preliminaries
	3 Deterministic Model Construction for SNFml++ Clauses
	4 Deterministic Model Construction for SNFml- Clauses
	5 Deterministic Model Construction for SNFml+ Clauses
	6 Discussion
	7 Extension to the Modal Cube
	8 Conclusion and Future Work
	References

	A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic with the Subformula Property
	1 Introduction
	2 The Logic iSL
	3 The Sequent Calculus GbuSL
	4 The Refutation Calculus RbuSL
	References

	Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL
	1 Introduction
	2 Sequent Calculi and Uniform Interpolation
	2.1 Sequent Calculi
	2.2 Uniform Interpolation

	3 Basic Modal Logic K
	3.1 Termination of the Sequent Calculus KS
	3.2 Uniform Interpolation for KS

	4 Classical Provability Logic GL
	4.1 Terminating Strategy for Sequent Calculus GLS
	4.2 Computing Uniform Interpolants for GLS
	4.3 Syntactic Correctness Proof

	5 Intuitionistic Strong Löb iSL
	5.1 Termination of Sequent Calculus G4iSLt
	5.2 Computing Uniform Interpolants for G4iSLt

	6 Conclusion and Future Work
	References

	Skolemisation for Intuitionistic Linear Logic
	1 Introduction
	2 Focused Intuitionistic Linear Logic
	3 Skolemised Focused Intuitionistic Linear Logic
	4 Skolemisation
	5 Meta Theory
	5.1 Soundness
	5.2 Completeness

	6 Conclusion
	References

	Local Intuitionistic Modal Logics and Their Calculi
	1 Introduction
	2 Local Intuitionistic Modal Logic
	3 Bi-nested Sequent Calculi
	4 Termination
	5 Completeness
	6 Conclusion
	References

	Non-iterative Modal Resolution Calculi
	1 Introduction
	2 Preliminaries
	3 Non-iterative Logics and Their Calculi
	4 Completeness
	5 Conclusion and Further Work
	References

	A Logic for Repair and State Recovery in Byzantine Fault-Tolerant Multi-agent Systems
	1 Introduction and Overview
	2 A Logic of Hope and Knowledge
	3 Public Hope Update
	3.1 Syntax and Semantics
	3.2 Applications
	3.3 Axiomatization

	4 Private Hope Update
	4.1 Syntax and Semantics
	4.2 Applications
	4.3 Axiomatization

	5 Factual Change
	5.1 Syntax, Semantics, and Axiomatization
	5.2 Applications

	6 Conclusions and Further Research
	References

	Calculi, Proof Theory and Decision Procedures
	A Decision Method for First-Order Stream Logic
	1 Introduction
	2 Examples
	3 On Streams
	4 Real Closedness
	5 Decision Method
	6 Definitional Extensions
	7 Conclusions
	A Orderable Fields
	B Real Closed Fields
	References

	What Is Decidable in Separation Logic Beyond Progress, Connectivity and Establishment?
	1 Introduction
	2 Separation Logic with Inductive Definitions
	3 The PCE Problem
	4 Overview of Our Procedure
	5 Abstracting Models and Formulas
	6 Predicates with Exactly One Abstraction
	7 Abstractions with Exactly One Root
	8 Transformation into PCE Rules
	9 Experimental Evaluation and Conclusion
	References

	Sequents vs Hypersequents for Åqvist Systems
	1 Introduction
	2 F + (CM) and G in a Nutshell
	3 A Sequent Calculus for F + (CM)
	3.1 From Cuts to Semi-analytic Cuts

	4 A Hypersequent Calculus for F + (CM) and G
	5 Cut-Elimination for HFcm and HG
	6 Proof Search Oriented Calculi for F + (CM) and G
	6.1 Decidability and Countermodel Construction

	References

	Uniform Substitution for Differential Refinement Logic
	1 Introduction
	2 Related Work
	3 Differential Refinement Logic dRL
	3.1 Syntax
	3.2 Semantics
	3.3 Static Semantics

	4 Uniform Substitution
	4.1 Uniform Substitutions and Adjoint Interpretations
	4.2 Soundness of Uniform Substitution

	5 Proof Calculus
	6 Decidability of Refinement for a Fragment of dRL
	7 Conclusion
	A Additional dRL Axioms
	References

	Sequent Systems on Undirected Graphs
	1 Introduction
	2 From Graphs to Formulas
	2.1 Graphs and Modules
	2.2 Classical Propositional Formulas as Cographs
	2.3 Modular Decomposition of Graphs
	2.4 Graphs as Formulas

	3 Sequent Calculi over Graphs-as-Formulas
	3.1 Properties of the Sequent Systems
	3.2 A Decomposition Result for KGL

	4 Graph Isomorphism as Logical Equivalence
	5 Soundness and Completeness of MGL with Respect to GS
	6 Conclusion and Future Works
	References

	A Proof Theory of (-)Context-Free Languages, via Non-wellfounded Proofs
	1 Introduction
	2 A Syntax for Context-Free Grammars
	3 A Non-wellfounded Proof System
	4 Completeness of an Infinitary Cut-Free Axiomatisation
	4.1 Intermezzo: Ancestry and Threads
	4.2 Translation to -Branching System

	5 Greatest Fixed Points and -Languages
	6 Metalogical Results: A Game-Theoretic Approach
	6.1 Evaluation Puzzle and Soundness
	6.2 -Context-Freeness via Muller Grammars
	6.3 Proof Search Game and Completeness

	7 Complexity Matters and Further Perspectives
	8 Conclusions
	References

	A Cyclic Proof System for Guarded Kleene Algebra with Tests
	1 Introduction
	2 Preliminaries
	2.1 Syntax
	2.2 Semantics

	3 The Non-well-founded Proof System SGKAT
	4 Soundness
	5 Regularity
	6 Completeness and Complexity
	7 Conclusion and Future Work
	References

	Unification, Rewriting and Computational Models
	Unification in the Description Logic ELHR+ Without the Top Concept Modulo Cycle-Restricted Ontologies
	1 Introduction
	2 Subsumption and Unification in ELHR+ and ELH-R+
	2.1 The DLs ELHR+ and ELH-R+
	2.2 Subsumption in ELHR+ and ELH-R+
	2.3 Unification in ELHR+ and ELH-R+

	3 The Unification Algorithm for ELH-R+
	3.1 The Subsumption Mapping
	3.2 Translation into Language Inclusions
	3.3 The PSpace Algorithm

	4 Conclusion
	References

	Confluence of Logically Constrained Rewrite Systems Revisited
	1 Introduction
	2 Preliminaries
	3 Undecidability
	4 Transformation
	5 Development Closed Critical Pairs
	6 Parallel Critical Pairs
	7 Conclusion
	References

	Equational Anti-unification over Absorption Theories
	1 Introduction
	2 Preliminaries
	3 Anti-unification in Absorption Theories
	3.1 Generalization Procedure for Abs Theories
	3.2 Abstraction Set and Substitutions

	4 Soundness and Completeness
	5 Anti-unification Type, Complexity
	6 Conclusion
	References

	The Benefits of Diligence
	1 Introduction
	1.1 Basic Notions Used All Along the Paper

	2 The Distant Bang Calculus dBANG
	3 Call-by-Name and Call-by-Value Embeddings
	3.1 The Call-by-Name Calculus dCBN and Its Embedding to dBANG
	3.2 The Call-by-Value Calculus dCBV and Its Embedding into dBANG

	4 Confluence
	5 Factorization
	6 Conclusion and Related Work
	References

	A Dependency Pair Framework for Relative Termination of Term Rewriting
	1 Introduction
	2 Relative Term Rewriting
	3 DP Framework
	3.1 Dependency Pairs for Ordinary Term Rewriting
	3.2 Dependency Pairs for Relative Termination

	4 Annotated Dependency Pairs for Relative Termination
	5 The Relative ADP Framework
	5.1 Derelatifying Processors
	5.2 Relative Dependency Graph Processor
	5.3 Relative Reduction Pair Processor

	6 Evaluation and Conclusion
	References

	Solving Quantitative Equations
	1 Introduction
	2 Preliminaries
	3 Quantitative Equational Theories
	4 Quantitative Equational Unification
	4.1 Unification: Simple Shallow Theories (Special Form)
	4.2 Idempotent Quantales

	5 Conclusion
	References

	Equivalence Checking of Quantum Circuits by Model Counting
	1 Introduction
	2 General Background
	3 Equivalence Checking Circuits in the Pauli Basis
	4 Encoding Quantum Circuit Equivalence in SAT
	4.1 Encoding Pauli Coefficients as Weighted Model Counts
	4.2 WMC-Based Algorithm for Equivalence Checking

	5 Implementation: The ECMC Tool
	6 Related Work
	7 Conclusions
	References

	Author Index

