182 research outputs found

    Diffusion maps for changing data

    Full text link
    Graph Laplacians and related nonlinear mappings into low dimensional spaces have been shown to be powerful tools for organizing high dimensional data. Here we consider a data set X in which the graph associated with it changes depending on some set of parameters. We analyze this type of data in terms of the diffusion distance and the corresponding diffusion map. As the data changes over the parameter space, the low dimensional embedding changes as well. We give a way to go between these embeddings, and furthermore, map them all into a common space, allowing one to track the evolution of X in its intrinsic geometry. A global diffusion distance is also defined, which gives a measure of the global behavior of the data over the parameter space. Approximation theorems in terms of randomly sampled data are presented, as are potential applications.Comment: 38 pages. 9 figures. To appear in Applied and Computational Harmonic Analysis. v2: Several minor changes beyond just typos. v3: Minor typo corrected, added DO

    Multiplex Networks Structure and Dynamics

    Get PDF
    Los estudios tradicionales en teoría de redes complejas, en general, representan la interacción entre dos elementos del sistema a través de un solo enlace. Esta representación resulta ser una simplificación excesiva en la mayoría de los casos de interés práctico y puede llevar a resultados y conclusiones engañosas. Esto se debe a que la mayoría de los sistemas reales poseen una estructura multicapa, ya que en una gran cantidad de casos de estudio reales existen muchos tipos distintos de interacción entre los constituyentes del sistema. Por ejemplo, un sistema de transporte está constituido por múltiples modos de viajes; un sistema biológico incluye múltiples canales de señalización que operan en paralelo; finalmente, una red social está constituida por múltiples tipos de relaciones distintas (de trabajo, de amistad, de parentesco, etc.) que operan vía distintos modos de comunicación en paralelo (en línea, o desconectados). Para representar de manera apropiada estos sistemas, años atrás se introdujo la noción de redes multiplex en campos tan distintos como la ingeniería y la sociología, al mismo tiempo que los instrumentos analíticos desarrollados para describirlas y analizarlas fueron muy escasos. Esta escasez se debía fundamentalmente a un aspecto: aunque muchas características y métricas de las redes tradicionales (de una sola capa) están bien definidas en la teoría tradicional de redes complejas, resulta muy desafiante generalizarlas al caso de redes multicapa, incluso para aquellas que son más simples. El interés por nuevos desarrollos teóricos para es estudio en profundidad de las redes multiplex, por lo tanto, ha ido creciendo sólo en los últimos años, gracias sobre todo a la gran cantidad de datos disponibles sobre sistemas reales que necesitan de una representación multicapa si se quieren describir y entender en profundidad. En esta Tesis desarrollamos un lenguaje matemático formal para representar la redes multiplex en términos de la teoría algébrica de grafos. En particular, introducimos la noción de matriz de supra-adyacencia como generalización de la matriz de adyacencia definida en el caso de una red de una sola capa. Así mismo definimos el supra-Laplaciano de una red multiplex como generalización del Laplaciano. También, se propone una representación agregada de una red multiplex a través de la noción de grafo cociente. Esto permite asociar a la red multiplex original, un grafo de una sola capa en el cual se agregan los distintos tipos de interacciones presentes. Por un lado, a través de este procedimiento se introduce una manera bien definida de agregar capas, y por otro, también permite definir otra red, formada por las capas, que contiene toda la información relativa a la interacción entre las mismas. La importancia de las nuevas definiciones radica en que, gracias a ellas, podemos utilizar algunos teoremas y resultados de teoría espectral de grafos y sus respectivos cocientes para estudiar propiedades espectrales de redes múltiplex y su representación agregada. Finalmente, también introducimos la noción de matriz de caminos asociados a una red multiplex. En una red de una sola capa un camino es una sucesión de nodos adyacentes. En una red multiplex pueden existir distintas nociones de caminos dependiendo de la manera en que se quieran tratar los enlaces entre capas. Dada una noción de camino, a esta resultará asociada una matriz de caminos. Una vez desarrollado el lenguaje formal apto a describir una red multicapa, afrontamos el problema de la generalización de algunas medidas estructurales. En particular tratamos el caso del coeficiente de agrupamiento (tanto local como global) y la centralidad de un subgrafo. Aunque ya existían en la literatura algunas propuestas de generalización del coeficiente de agrupamiento, la mayoría de estas resultaban ser definiciones ad hoc con respecto a casos de estudios particulares, o directamente mal definidas. Las distintas medidas que proponemos en estas tesis son muy generales, bien normalizadas y se reducen a la tradicional medida de coeficiente de agrupamiento para redes de una sola capa cuando el número de capas es uno. En cuanto a la centralidad de subgrafos, utilizamos este caso particular para demonstrar la utilidad de construir sobre nociones básicas (como es la de camino) a la hora de generalizar medidas estructurales.\\ Por otro lado, mucha información respecto a la organización estructural de una red (ya sea multicapa o de una sola capa) está codificada en el espectro de la matriz de adyacencia a ella asociada así como en el del Laplaciano. Por esta razón, estudiamos las propiedades espectrales tanto de la matriz de supra-adyacencia como del supra-Laplaciano. En particular, con respecto a la matriz de supra-adyacencia, estudiamos su autovalor máximo. Éste resulta de interés ya que está en la base de medidas topológicas como la entropía de ensemble de los caminos, así como del estudio de las propiedades críticas de algunos procesos dinámicos. Por ejemplo, el valor crítico del parámetro de difusión en un modelo de propagación epidemias depende del autovalor máximo de la matriz de adyacencia. Para el estudio de este autovalor utilizamos técnicas perturbativas. Podemos definir una capa que llamamos dominante, que será aquella que tenga el mayor autovalor máximo de la matriz de adyacencia asociada a la misma. El autovalor máximo de la matriz de supra-adyacencia resulta ser igual al autovalor máximo de la capa dominante al primer orden perturbativo. Además, la corrección de segundo orden es dependiente de las correlaciones entre nodos que representan el mismo objecto en distintas capas distintas. Adicionalmente, aprovechando los resultados conocidos que relacionan el espectro de un grafo cociente con aquel de su grafo padre, estudiamos el espectro de una red multicapa a partir de su representación agregada. En particular, demostramos que los autovalores del Laplaciano de la red de capas son un subconjunto de los autovalores del supra-Laplaciano de la red multicapa, cuando todos los nodos participan en todos las capas. Este resultado nos permite estudiar la conectividad algébrica de la red multicapa, o sea el primer autovalor no-nulo y obtener algunos resultados tanto exactos como perturbativos sobre este. En concreto, las transiciones estructurales en redes multicapa son de gran interés. En esta tesis presentamos una teoría de estas transiciones que se deriva por completo de la noción de grafo cociente. Finalmente, presentamos un modelo de contagio social y estudiamos la existencia de estados meta-estables macroscópicos en los cuales una fracción finita de nodos resultan contagiados. La existencia de una capa dominante hace que sea esta la que determine el valor crítico del contagio, definido como el valor de este parámetro a partir del cual existe un estado macroscopico de la infección (también para las capas no-dominantes). Este resultado se derivada utilizando el método perturbativo para calcular el autovalor máximo de la matriz de supra-adyacencia. Simulaciones numéricas del modelo confirman los resultados analíticos. Para terminar, en el presente trabajo exponemos nuestras conclusiones a manera de resumen por un lado, y por otra, discutiendo cuáles son los aspectos que a nuestro criterio, podrían ser de interés para futuras investigaciones en este tema

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons

    Full text link
    In this review we recapitulate the basic features of the flat-band spin systems and briefly summarize earlier studies in the field. Main emphasis is made on recent developments which include results for both spin and electron flat-band models. In particular, for flat-band spin systems we highlight field-driven phase transitions for frustrated quantum Heisenberg antiferromagnets at low temperatures, chiral flat-band states, as well as the effect of a slight dispersion of a previously strictly flat band due to nonideal lattice geometry. For electronic systems, we discuss the universal low-temperature behavior of several flat-band Hubbard models, the emergence of ground-state ferromagnetism in the square-lattice Tasaki-Hubbard model and the related Pauli-correlated percolation problem, as well as the dispersion-driven ground-state ferromagnetism in flat-band Hubbard systems. Closely related studies and possible experimental realizations of the flat-band physics are also described briefly.Comment: 72 pages, 20 figures, 157 references; accepted for publication in International Journal of Modern Physics

    Relating the microscopic rules in coalescence-fragmentation models to the macroscopic cluster size distributions which emerge

    Full text link
    Coalescence-fragmentation problems are of great interest across the physical, biological, and recently social sciences. They are typically studied from the perspective of the rate equations, at the heart of such models are the rules used for coalescence and fragmentation. Here we discuss how changes in these microscopic rules affect the macroscopic cluster-size distribution which emerges from the solution to the rate equation. More generally, our work elucidates the crucial role that the fragmentation rule can play in such dynamical grouping models. We focus on two well-known models whose fragmentation rules lie at opposite extremes setting the models within the broader context of binary coalescence-fragmentation models. Further, we provide a range of generalizations and new analytic results for a well-known model of social group formation [V. M. Eguiluz and M. G. Zimmermann, Phys. Rev. Lett. 85, 5659 (2000)]. We develop analytic perturbation treatment of the original model, and extend the mathematical to the treatment of growing and declining populations

    Quantum error correction thresholds for non-Abelian Turaev-Viro codes

    Get PDF
    We consider a two-dimensional quantum memory of qubits on a torus which encode the extended Fibonacci string-net code, and devise strategies for error correction when those qubits are subjected to depolarizing noise. Building on the concept of tube algebras, we construct a set of measurements and of quantum gates which map arbitrary qubit errors to the string-net subspace and allow for the characterization of the resulting error syndrome in terms of doubled Fibonacci anyons. Tensor network techniques then allow to quantitatively study the action of Pauli noise on the string-net subspace. We perform Monte Carlo simulations of error correction in this Fibonacci code, and compare the performance of several decoders. For the case of a fixed-rate sampling depolarizing noise model, we find an error correction threshold of 4.7% using a clustering decoder. To the best of our knowledge, this is the first time that a threshold has been estimated for a two-dimensional error correcting code for which universal quantum computation can be performed within its code space

    Exploiting Data-Dependent Structure for Improving Sensor Acquisition and Integration

    Get PDF
    This thesis deals with two approaches to building efficient representations of data. The first is a study of compressive sensing and improved data acquisition. We outline the development of the theory, and proceed into its uses in matrix completion problems via convex optimization. The aim of this research is to prove that a general class of measurement operators, bounded norm Parseval frames, satisfy the necessary conditions for random subsampling and reconstruction. We then demonstrate an example of this theory in solving 2-dimensional Fredholm integrals with partial measurements. This has large ramifications in improved acquisition of nuclear magnetic resonance spectra, for which we give several examples. The second part of this thesis studies the Laplacian Eigenmaps (LE) algorithm and its uses in data fusion. In particular, we build a natural approximate inversion algorithm for LE embeddings using L1 regularization and MDS embedding techniques. We show how this inversion, combined with feature space rotation, leads to a novel form of data reconstruction and inpainting using a priori information. We demonstrate this method on hyperspectral imagery and LIDAR. We also aim to understand and characterize the embeddings the LE algorithm gives. To this end, we characterize the order in which eigenvectors of a disjoint graph emerge and the support of those eigenvectors. We then extend this characterization to weakly connected graphs with clusters of differing sizes, utilizing the theory of invariant subspace perturbations and proving some novel results

    Dynamics of Waves and Patterns (hybrid meeting)

    Get PDF
    The dynamics of waves and patterns play a significant role in the sciences, especially in fluid mechanics, material science, neuroscience and ecology. The mathematical treatment interconnects several areas, ranging from evolution equations and functional analysis to dynamical systems, geometry, topology, and stochastic as well as numerical analysis. This workshop has specifically focussed on dynamic stability on extended domains, bifurcations of waves and patterns, effects of stochastic driving, and spatio-temporal inhomogenities. During the workshop, multiple new directions, collaborations, and very interesting scientific conversations arose across the entire field
    • …
    corecore