88 research outputs found

    Derivative-variable correlation reveals the structure of dynamical networks

    Full text link
    We propose a conceptually novel method of reconstructing the topology of dynamical networks. By examining the correlation between the variable of one node and the derivative of another node, we derive a simple matrix equation yielding the network adjacency matrix. Our assumptions are the possession of time series describing the network dynamics, and the precise knowledge of the interaction functions. Our method involves a tunable parameter, allowing for the reconstruction precision to be optimized within the constraints of given dynamical data. The method is illustrated on a simple example, and the dependence of the reconstruction precision on the dynamical properties of time series is discussed. Our theory is in principle applicable to any weighted or directed network whose internal interaction functions are known.Comment: Submitted to EPJ

    Stability and chaos in coupled two-dimensional maps on Gene Regulatory Network of bacterium E.Coli

    Full text link
    The collective dynamics of coupled two-dimensional chaotic maps on complex networks is known to exhibit a rich variety of emergent properties which crucially depend on the underlying network topology. We investigate the collective motion of Chirikov standard maps interacting with time delay through directed links of Gene Regulatory Network of bacterium Escherichia Coli. Departures from strongly chaotic behavior of the isolated maps are studied in relation to different coupling forms and strengths. At smaller coupling intensities the network induces stable and coherent emergent dynamics. The unstable behavior appearing with increase of coupling strength remains confined within a connected sub-network. For the appropriate coupling, network exhibits statistically robust self-organized dynamics in a weakly chaotic regime

    Chaotic dephasing in a double-slit scattering experiment

    Full text link
    We design a computational experiment in which a quantum particle tunnels into a billiard of variable shape and scatters out of it through a double-slit opening on the billiard's base. The interference patterns produced by the scattered probability currents for a range of energies are investigated in relation to the billiard's geometry which is connected to its classical integrability. Four billiards with hierarchical integrability levels are considered: integrable, pseudo-integrable, weak-mixing and strongly chaotic. In agreement with the earlier result by Casati and Prosen [1], we find the billiard's integrability to have a crucial influence on the properties of the interference patterns. In the integrable case most experiment outcomes are found to be consistent with the constructive interference occurring in the usual double-slit experiment. In contrast to this, non-integrable billiards typically display asymmetric interference patterns of smaller visibility characterized by weakly correlated wave function values at the two slits. Our findings indicate an intrinsic connection between the classical integrability and the quantum dephasing, responsible for the destruction of interference

    Diffusion maps for changing data

    Full text link
    Graph Laplacians and related nonlinear mappings into low dimensional spaces have been shown to be powerful tools for organizing high dimensional data. Here we consider a data set X in which the graph associated with it changes depending on some set of parameters. We analyze this type of data in terms of the diffusion distance and the corresponding diffusion map. As the data changes over the parameter space, the low dimensional embedding changes as well. We give a way to go between these embeddings, and furthermore, map them all into a common space, allowing one to track the evolution of X in its intrinsic geometry. A global diffusion distance is also defined, which gives a measure of the global behavior of the data over the parameter space. Approximation theorems in terms of randomly sampled data are presented, as are potential applications.Comment: 38 pages. 9 figures. To appear in Applied and Computational Harmonic Analysis. v2: Several minor changes beyond just typos. v3: Minor typo corrected, added DO

    Quantifying the consistency of scientific databases

    Full text link
    Science is a social process with far-reaching impact on our modern society. In the recent years, for the first time we are able to scientifically study the science itself. This is enabled by massive amounts of data on scientific publications that is increasingly becoming available. The data is contained in several databases such as Web of Science or PubMed, maintained by various public and private entities. Unfortunately, these databases are not always consistent, which considerably hinders this study. Relying on the powerful framework of complex networks, we conduct a systematic analysis of the consistency among six major scientific databases. We found that identifying a single "best" database is far from easy. Nevertheless, our results indicate appreciable differences in mutual consistency of different databases, which we interpret as recipes for future bibliometric studies.Comment: 20 pages, 5 figures, 4 table
    corecore