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Introduction

The complex networks view of complex system

In the beginning were networks, and networks were everywhere

The concept of network served for a long time as a metaphor supporting a struc-

tural approach, i.e., an approach that puts the accent on the relations among the

constituents of a given system, in a wide range of scientific fields, from biology to

sociology, and spanning organizational levels from sub-cellular organization to social

organization. In all those fields we can observe a shift from the use of the concept

of network as a metaphor to a more substantial notion [99, 50, 19], which has led to

what is now known as complex networks science.

The science of complex networks provides an interdisciplinary point of view for

the study of complex systems, as it constitutes a unifying language that permits to

abstract from the specific details of a system to focus on its structure of interactions.

The result of this operation of abstraction is a graph model of the system. On its

turn, a graph is a specific mathematical object, and a plethora of mathematical tools

has been developed to deal with it. Admittedly, the real power of representing a com-

plex system through a graph lies in the hypothesis that the structure and function of

the system under study are intimately related to one another. Paraphrasing Wellman

[99]: It is a comprehensive paradigmatic way of taking structure seriously by studying

directly how patterns of ties determine the functioning of a system.

Now, we understand a complex network as a system whose patterns of interactions

can not be described by a random graph model with a Poissonian distribution of the

connections. From the point of view of a physicist, complex networks are systems

that display a strong disorder with large fluctuations of the structural characteristics.

As such, the tools developed in condensed matter theory and in statistical physics

revealed to be well suited to study the architecture of complex networks [30]. While
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statistical physics provides complex networks science with a set of tools, graph theory

stands at its basis providing a formal language. The first step in complex network

research is to represent the structure of the system under study as a graph, followed

by an analysis of the topological features of the obtained representation through a

set of informative measurements. This first step can be understood as the formal

representation of the system, while the second one can be seen as the topological

characterization of the system’s structure [23].

Both the peculiar nature of complex networks as topological structures (in com-

parison, for example, with a lattice) and the particular nature of the system under

study push the need for the definition of structural metrics. The degree distribution

is the most simple example of a structural metric needed for a gross characterization

of the inhomogeneity of a networked system. The degree of a node in a network is

the number of connections it has to other nodes and the degree distribution is the

probability distribution of these degrees over the whole network. While it is really

uninformative in a homogeneous system (a lattice, a random regular network or a

poisson random graph), it gives a basic understanding of the degree of the disorder in

the case of complex networks. So much so, that the discovery that many networked

system has power law degree distributions set the start of the current interest in com-

plex networks science.

On the other hand, the needs of each particular field of research serve as a guide

for the definition of particular structural metrics that quantify some relational con-

cepts developed in that field. This is the case of the plethora of centrality measures

defined to capture the relation of power in social network analysis [33]. The topo-

logical characterization of a complex network also implicitly allows for classifications,

either of the constituents of the system, or when comparing different systems. How-

ever, understanding the structure of a complex network means, roughly speaking, to

comprenhend what is informative, and what is the result of chance (or of structural

constrains). Therefore, a third step in complex network investigation is its statistical

characterization, that is, the quantification of the statistical significance of network

properties and their dependencies. Crucial in this step is the generation of appropriate

null models since once a structural property is recognized as statistically significant,

a mechanism for the emergence of such a property could be proposed and further

investigated [69].
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Finally, the core hypothesis that the structure and the function are intimately

related to one another returns. The forth step is then the functional characterization.

The study of the relations between the structure and the dynamics (as a proxy of the

function). From a physicist point of view, the interest is in studying the critical prop-

erties of dynamical processes defined on complex networks, as models of real process

and emergent functions. The crucial point is that many of the peculiar critical effects

showed by processes defined on complex networks are closely related and universal

for different models, basically reinforcing the hypothesis of the relation between the

structure and the function, together with the “statistical physical” approach [30]. On

the other hand, when a particular system is under study, this part of the investigation

deals with the task of finding the structural properties that may explain the observed

phenomena.

In summary, schematically, an investigation in complex networks science goes

trough the following cycle

Step 1: formal representation

Step 2: topological characterization

Step 3: statistical characterization

Step 4: functional characterization.

Interestingly enough, one can also link the historical development of complex networks

science according to those 4 schematic step, being the formalization at its origin, the

topological and statistical characterization of empirical systems its phase of statement,

and the functional characterization its current mature stage as a science.

From simple networks to multiplex networks

The concept of multiplex networks may be anchored in communication media or in

the multiplicity of roles and milieux. When focusing on the former aspect, one real-

izes that the constituents of a complex system continuously switch among a variety

of media to make the system perform properly. On the other hand, focusing on the

latter, one takes into account the fact that interactions are always context dependent

as well as integrated through different contexts.

3



The term multiplexity was coined in early 1962 in the social anthropology frame-

work by Max Gluckman (in [36]) to denote “the coexistence of different normative

elements in a social relationship”, i.e., the co-existence of distinct roles in a social

relationship. While this first definition focus on context and roles, Kapferer offered

a second definition based on the overlap of different activities and/or exchanges in

relationships, focusing on the social relationship as a medium for the exchanges of

different types of information [45]. The duality between media and roles in founding

the multiplexity of social relations is still present in the contemporary debate, with

authors such as David Bolter and Richard Gusin [9] advocating the former, and others

like Lee Rainie and Barry Wellman the latter [77]. However, whether defined by roles

or media, multiplexity always refers to “multiple bases for interaction” in a network

[93].

It is indubitable that new push for the formal and quantitative research in mul-

tiplex networks comes from the social and technological revolution brought by the

Internet and mobile connections. Chats, on-line social networks, and a plethora of

other human-to-human machine mediated channels of communications, together with

the possibility of being always on-line (hyperconnectivity [98]), have accelerated the

proliferation of layers that makes “the sociality”. Although it has a longer history in

the field of social sciences, the concept of multiplexity, and consequently of multiplex

networks, is not restricted to them. For example, it is gaining an important role in

contemporary Biology, where we can observe the same shift from its use as a metaphor

to a more substantial notion of the concept of multiplex networks. In particular, it

is associated to the method of integration of multiple set of omic data (data from

genomis, proteomics, and metabolomics) on the same population; as well as to the

case of metagenomic networks where the dynamical interactions between the genome

of the host and that of the microbes living in it, the cross-talk being mediated by

chemical and ecological interactions. As with the case of social multiplex networks,

also in biology the origin of the renovated interest in multiplex networks is largely

due to a technological jump that has made it possible the availability of large and

diverse amounts of data coming from very different experimental settings.

Also in the traditional field of transportation networks, the notions of multiplexity

and multiplex networks have a natural translation in different modes of transporta-

tions connecting the same physical location in a city, a country, or on the globe.
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Finally, in the field of engineering and critical infrastructures, the concept of multi-

plexity applies to the interdependence of different lifelines[21]. Even if the notion of

multiplexity was introduced years ago, the discussions included few analytical tools to

accompany them. This situation arose for a simple reason: although many aspects of

single-layer networks are well understood, it is challenging to properly generalize even

the simplest concept to multiplex networks. Theoretical developments on multilayer

networks in general, and on multiplex networks in particular, have gained steam only

in the last few years, for different reasons, among which surely stands the technolog-

ical revolution represented by the digitalization and the social transformations that

has accompanied it, as we have mentioned before.

Now, we understand multiplex networks as a non-linear superposition of complex

networks, where components, being them social actors, genes, devices, or physical

locations, interacts through a variety of different relationships and communication

channels, which we conceptualize as different layers of the multiplex network. This

conceptualization of a multiplex network posesses a number of challenges to the sci-

ence of complex networks: from the formal description of a complex network (starting

from the fact that a constituent of a networked system, represented by a node in a

traditional single layer network, is no more an ”elementary” unit, indeed it has an

internal - possibly complex - structure that must be formally represented), to the ul-

timate goal of understanding how this new level of structural complexity represented

by the interaction of different layers reveals itself in the functioning of the system.

Structure of the thesis

Following the 4-step schematic representation given above, this thesis is organized as

follows. In Chapter 1 we deal with the representation of multiplex networks in terms

of graphs and matrices. In this chapter, we basically face the problem of setting a

formal language that includes the new level of complexity represented by the super-

position of different layers of interaction. We give there the basic definitions that

underpin the notion of multiplex networks.

In Chapter 2 we deal with the problem of characterizing the topology of a multiplex

network within the formalism developed in Chapter 1. In particular, we generalize

the definition of the clustering coefficient and that of subgraph centrality to multiplex

networks. We will show that generalizing traditional metrics to multiplex networks

5



“the naive way” usually leads to blurred results, while constructing on first principles

leads to well-defined metrics that may unveil “how multiplexity works”. This is the

case, for example, of our definition of clustering coefficients for multiplex networks,

which enlightens the context dependent nature of social relations.

In Chapter 3 we continue to address the problem of the structural characterization

of a multiplex network by means of its spectral properties, both using perturbative

approaches and the analytical relations existing between some natural coarse-grained

representations of the network formalisms introduced in Chapter 1 and the original

multiplex network.

In Chapter ?? the structural transitions that a multiplex network may undergo are

studied by means of its spectral properties. The core question in multiplex network

theory is whether or not they are “substantially” different form a traditional single

layer network, for example in the critical properties of a dynamics occuring on top of

it. We will address this problem by studying the dominating topological scale that

appears and disappears in a multiplex network while a parameter controlling the level

of coupling between the layers is changed. This is done by studying the Laplacian

spectrum of multiplex networks.

Finally, in Chapter 5 we develop a model of social contagion taking place on a

multiplex network. We will study the critical properties of such a model, relating

them to the structural characteristics of the multiplex networks via its spectrum.

6



Chapter 1

Multiplex Networks: basic
definition and formalism

In this chapter we present the notion of multiplex networks as it will be used in this

thesis. It is common to introduce multiplex networks as a particular specification of

the more general notion of multilayer networks [1], conversely, we prefer to have the

former as a primary object.

We then show how this structure can be represented by adjacency matrices, intro-

ducing the notion of ”supra-adjacency” matrix. A different algebraic representation

of multiplex networks is possible by means of higher order tensors[27]. Even if the

tensorial formalism is not discussed here, it is worth noting that supra-adjacency ma-

trices could be obtained as a particular flattening of an adjacency tensor representing

the multiplex network.

This introductory chapter represents an effort to set a formal language in this area

intended to be general and complete enough as to deal with the most diverse cases.

Although it might seem pedantic, setting a rigorous algebraic formalism is crucial to

make possible and, in a certain sense, automatic further more complex reasonings, as

well as to design data structures and algorithms.

1.1 Graph representation

A networked system N is naturally represented by a graph.

A graph is a tuple G(V,E), where V is a set of nodes, and E ⊆ V ×V is a set of edges

that connects pair of nodes. Nodes represent the components of the system, while

edges represent interactions or relations among them. If an edge exists in G between

node u and node v, i.e. (u, v) ∈ E, they are said to be adjacent, and we indicate the

7



adjacency relation with the simbol ∼, i.e. we will write u ∼ v if (u, v) ∈ E.

In order to represent a networked system in which different types of relations or

interactions exist between the components - a multiplex network -, the notion of

layer must be introduced. Let L = {1, ...,m} be an index set, which we call the layer

set. A layer is an index that represents a particular type of interaction or relation.

| L |= m is the number of layers in the multiplex network. Consider now a set of

nodes V , where nodes represent the components of the system, and let GP = (V, L, P )

be a binary relation, where P ⊆ V × L. The statement (u, α) ∈ P , with u ∈ V , and

α ∈ L, is read node u participates in layer α. We call the ordered pair (u, α) ∈ P

a node-layer pair and we say that the node-layer pair (u, α) is the representative of

node u in layer α, thus P is the set of the node-layer pairs. In other words, we are

attaching etiquettes to nodes that specify in which type of relations (layers) the node

participates in.

GP = (V, L, P ) can be interpreted as a (bipartite) graph where P is the edge set.

| P |= N is the number on node-layer pairs, while | V |= n is the number of nodes.

If each node u ∈ V has a representative in each layer, i.e. P = V × L, we call the

multiplex a node-aligned multiplex, and we have that | P |= mn. As we shall see

later, things are always simpler when the multiplex is node-aligned.

Now, each system of relations or interactions of different kind is naturally represented

by a graph Gβ(Vβ, Eβ), where Vβ = {(u, α) ∈ P | α = β}, that is Vβ is a subset of

P composed by all the node-layer pairs that has the particular index β as second

element. In other words, it is the set of all the representatives of the node set in a

particular layer. The set of edges Eβ ⊆ Vβ × Vβ represents interactions or relations

of a particular type between the components of the systems. We call Gβ(Vβ, Eβ) a

layer-graph and we can consider the set of all layer-graphs M = {Gα}α∈L. | Vβ |= nβ

is the number of node-layer pairs in layer β. For node-aligned multiplex networks we

have nα = n∀α ∈ L.

Finally, consider the graph GC on P in which there is an edge between two node-layer

pairs (u, α) and (v, β) if and only if u = v; that is, when the two edges in the graph

GP are incident on the same node u ∈ V , which means that the two node-layer pairs

represent the same node in different layers. We call GC(P,EC) the coupling graph.

It is easy to realize that the coupling graph is formed by n =| P | disconnected

components that are complete graphs or isolated nodes. Each component is formed

by all the representatives of a node in different layers, and we call the components of

GC supra-nodes.
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We are now in the position to say that a multiplex network is represented by the

quadruple M = (V, L, P,M):

• the node set V represents the components of the system

• the layer set L represents different types of relations or interactions in the system

• the participation graph GP encodes the information about what node takes part

in a particular type of relation and defines the representative of each component

in each type of relation, i.e., the node-layer pair

• the layer-graphs M represent the networks of interactions of a particular type

between the components, i.e., the networks of representatives of the components

of the system.

Consider the union of all the layer-graphs, i.e. Gl =
⋃
αGα. We call such a graph the

intra-layer graph. Note that, if each layer-graph is connected, this graph is formed

by m disconnected components, one for each layer-graph.

Finally, we can define the graph GM = Gl∪GC , which we call the supra-graph. GM is

a synthetic representation of a multiplex network. Note that supra-nodes are cliques
1 of GM.

To summarize, up to now, we have two different entities representing the compo-

nents of a multiplex network: nodes and node-layer pairs. A node corresponds to

a ’physical object’, while node-layer pairs are different instances of the same object.

For instance a node could represent an on-line user, while node-layer pairs would

represent different accounts of the same user in different on-line social networks; or a

node could represent a social actor, while node-layer pairs would represent different

social roles (friend, worker, family member) of the same social actor; or a node could

stand for a location in a transportation network, while node-layer pairs would repre-

sent stations of different transportation modes.

The connection between nodes and node-layer pairs is given by the notion of supra-

nodes: i.e., clique in the supra-graph formed by node-layer pairs that are instances

of the same object. Moreover, for clarity, we denote nodes using the symbols u, v, w;

for brevity we may indicate a node-layer pair with a single symbol instead of using

the ordered pair (u, α), and we will use the symbols i, jh.

To round off the basic definitions used henceforth, let’s also define l(u) = (u, α) ∈ P | α ∈ L
1A clique, C, in an undirected graph G = (V,E) is a subset of the vertices, C ⊆ V , such that

every two distinct vertices are adjacent.
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to be the set of node-layer pairs that correspond to the same node u. Note that not

every node has a representative in every layer, and l(u) may have cardinality 1. We

call κu = |l(u)| the multiplexity degree of the node u, that is, the number of layers

in which an instance of the same object u appears. We also define l−1(i) to be the

unique node that corresponds to the node-layer pair i.

When it is clear from the context, we may refer to node-layer pairs simply as nodes.

1.2 Matrix representation

Given a graph G(V,E), we can associate to it a matrix A whose elements auv = 1u∼v,

where 1x is the indicator function, i.e., it is equal to one if the x is true, otherwise

it is zero. The matrix A is called the adjacency matrix of G, and by identifying a

network N with its graph representation, we say that A is the adjacency matrix of

N.

We can consider the adjacency matrix of each of the graphs introduced in the previous

section. The adjacency matrix of a layer graph Gα is a nα × nα symmetric matrix

Aα, with aαij = 1 if and only if there is an edge between i and j in Gα. We call them

layer adjacency matrices.

Likewise, the adjacency matrix of GP is an n×m matrix P, with puα = 1 if and only

if there is an edge between the node u and the layer α in the participation graph,

i.e., only if node u participates in layer α. We call it the participation matrix. The

adjacency matrix of the coupling graph GC is an N×N matrix C = {cij}, with cij = 1

if and only if there is an edge between node-layer pair i and j in GC , i.e., if they are

representatives of the same node in different layers. We can arrange the rows and the

columns of C such that node-layer pairs of the same layer are contiguous. It results

that C is a block matrix with zero diagonal blocks. Besides, rows and columns can

be arranged in a way such that the off-diagonal blocks are diagonals. Thus, cij = 1,

with i, j = 1, . . . , N represents an edge between a node-layer pair in layer 1 and a

node-layer pair in layer 2 if i < n1 and n1 < j < n2. We call this the standard

labelling and we assume that node-layer pairs are always labelled this way. Note that

this labelling also induces a labelling of node-layer pairs in single layer-graphs such

that the same row and column in different layer adjacency matrices correspond to the

representative of the same node in different layers.
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Figure 1.1: Example of a multi-
plex network. The structure of
each layer is represented by an ad-
jacency matrix Ai, where i =1,
2. Clm stores the connections be-
tween layers l and m. Note that
the number of nodes in each layer
is not the same.

1.2.1 The supra-adjacency matrix

The supra-adjacency matrix Ā is the adjacency matrix of the supra-graph GM. Just

as GM, Ā is a synthetic representation of the whole multiplex M. By definition,

assuming the standard labelling, it can be obtained from the intra-layer adjacency

matrices and the coupling matrix in the following way:

Ā =
⊕
α

Aα + C. (1.1)

We also define A =
⊕

Aα, and we call it the intra-layer adjacency matrix. By

definition, A is the adjacency matrix of the intra-layer graph Gl. Figure 1.1 shows

the supra-adjacency matrix, the intra-layer adjacency matrix, and the coupling matrix

of a multiplex network.

Ā takes a very simple form in the case of node-aligned multiplex networks, that is

Ā = A+ Km ⊗ In, (1.2)

where Km is the adjacency matrix of a complete graph on m nodes, and In is the

n× n identity matrix.

It is even simpler when layer-graphs are identical:

Ā = Im ⊗A + Km ⊗ In, (1.3)

where A is the adjacency matrix of each identical layer graph.

Some basic metrics are easily calculated from the supra-adjacency matrix. The

degree of a node-layer i is the number of node-layers connected to it by an edge in

GM and is given by

Ki =
∑
j

Āij. (1.4)

Sometimes we write i(α) as an index, instead of simply i, to explicitly indicate that

the node-layer i is in layer α even if the index i already uniquely indicates a node-layer
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pair. Since Ā can be read as a block matrix, with the Aα on the diagonal blocks, the

index i(α) can be interpreted as block index. It is also useful to define the following

quantities

eα =
∑
β<α

nβ, (1.5)

which we call the excess index of layer α. The layer-degree of a node-layer i, ki(α), is

the number of neighbors it has in Gα, i.e.,, ki(α) =
∑

j a
α
ij. By definition of Ā

ki(α) =
nα+eα∑
j=1+eα

Āij. (1.6)

The coupling degree of a node-layer i, ci(α), is the number of neighbors it has in the

coupling graph, i.e.,, ci(α) =
∑

j cij. From Ā we get

ciα =
∑
j<eα,

j>nα+eα

Āij. (1.7)

By definition

ci = κl−1(i) − 1. (1.8)

Finally, we note that the degree of a node-layer can be expressed as

Ki(α) =
∑
j

Āij = kiα + ciα. (1.9)

Eq.(1.9) explicitly expresses the fact that the degree of a node-layer pair is the sum

of its layer-degree plus its coupling-degree.

1.2.2 The supra-Laplacian matrix

Generally, the Laplacian matrix, or simply the Laplacian, of a graph with adjacency

matrix A is given by

L = D−A (1.10)

where D = diag(k1, k2, . . . ) is the degree matrix.

Thus, it is natural to define the supra-Laplacian matrix of a multiplex network as the

Laplacian of its supra-graph

L̄ = D̄ − Ā, (1.11)
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where D̄ = diag(K1, K2, . . . , KN) is the degree matrix.

Besides, we can define the layer-Laplacian of each layer-graph Gα as

Lα = Dα −Aα, (1.12)

and the Laplacian of the coupling graph

LC = ∆− C (1.13)

where ∆ = diag(c1, c2, . . . , cN) is the coupling-degree matrix.

By definition, we have

L̄ =
⊕
α

Lα + LC . (1.14)

As it was the case of the supra-adjacency matrix, Eq. (1.14) takes a very simple form

in the case of a node-aligned multiplex, i.e.,

L̄ =
⊕
α

(Lα + (m− 1)IN)−Km ⊗ In, (1.15)

and when layer-graphs are identical:

L̄ = Im ⊗ (L + (m− 1)In)−Km ⊗ In, (1.16)

where L is the Laplacian of each identical layer-graph.

1.2.3 Multiplex Walk Matrices

A walk on a graph is a sequence of adjacent vertices. The length of a walk is its

number of edges. For a simple graph (which has no multiple edges), a walk may

be specified completely by an ordered list of vertices [100].A step is the elementary

component of a walk, i.e., two adjacent nodes.

We define a supra-walk as a walk on a multiplex network in which, either before or

after each intra-layer step, a walk can either continue on the same layer or change to

an adjacent layer. We represent this choice by the matrix:

Ĉ = βI + γC (1.17)

the parameter β is a weight that accounts for the walk staying in the current layer,

and γ is a weight that accounts for the walk stepping to another layer. In a supra-

walk, a supra-step consists either of only a single intra-layer step or of a step that

includes both an intra-layer step changing from one layer to another (either before or

after having an intra-layer step). In the latter type of supra-step, note that we are
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disallowing two consecutive inter-layer steps. In other words, supra-walks are walks

on the supra-graph GM with this latter prescription.

Roughly speaking, a multiplex walk matrix is a matrix that encodes the permissible

steps in a multiplex network. The matrix AĈ encodes the steps in which after each

intra-layer step a walk can continue on the same layer. On the other hand, the matrix

ĈA encodes the steps in which after each intra-layer step a walk can continue on the

same layer. Both matrices AĈ and ĈA can be interpreted as the adjacency matrix of

a directed (possible weighted) graph. We call such graphs, auxiliary supra-graph.

In general, depending on the rules prescribed to walk the multiplex, one can define

an auxiliary supra-graph GM whose adjacency matrix isM =M(A, C). It should be

noted that, by definition, the supra-adjacency matrix is also a walk matrix.

We introduce such matrices because, as we will see in the next chapter, often it is

of interest to treat intra and inter-layer edges differently, where changing layer is an

action of a different nature with respect to going from a node to another.

1.3 Coarse-graining representation of a multiplex

network

Because of the structure of a multiplex network, it is natural to try to aggregate the

interaction pattern of each layer in a single network somehow. An operation that we

call dimensionality reduction, whereas the result of such operation leads to what we

call an aggregate network.

Several candidates for the aggregate network have been proposed in the literature such

as the average network [89], the overlapping network [8], the projected monoplex

network or the overlay network [27]. We claim that the natural definition of an

aggregate network is given by the notion of quotient network. In addiction, in the

quotient network framework, we are able to introduce in a symmetric way another

reduced network, the network of layers, that encodes the connectivity pattern between

layers. In a sense that will be more clear in chapter 3, we say that the notion of

quotient graph underpins the notion of multiplex network.

1.3.1 Mathematical Background

Let us first provide a brief, but self-contained description of network quotients.
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1.3.1.1 Adjacency and Laplacian matrices

Suppose that {V1, . . . , Vm} is a partition of the node set of a graph G(V,E) with

adjacency matrix A = (aij), and write ni = |Vi|.

The quotient graph Q of G is a coarsening of G with respect to the partition.

It has one node per cluster Vi, and an edge from Vi to Vj weighted by an average

connectivity from Vi to Vj

bij =
1

σ

∑
k∈Vi
l∈Vj

akl, (1.18)

where we have a choice for the size parameter σ: we will use either σi = ni, or σj = nj,

or σij =
√
ni
√
nj. We call the corresponding graph the left quotient, the right quotient

and the symmetric quotient respectively. Fortunately, the matrix B = (bij) has the

same eigenvalues for the three choices of σ (see below). We refer by quotient graph

to any of these three spectrally-equivalent graphs with adjacency matrix B. Observe

that the symmetric quotient is undirected, while the left and right quotients are not,

unless all clusters have the same size, ni = nj for all i, j.

The quotient formalism holds in more generality for any real symmetric matrix, as

we explain here. Let A = (aij) be any real symmetric n × n matrix. Write X =

{1, 2, . . . , n}, let {X1, . . . , Xm} be a partition of X, and let ni = |Xi|. We write Aij

for the submatrix consisting of the intersection of the k-rows and l-columns of A such

that k ∈ Xi and l ∈ Xj. In particular, Aij is an ni × nj matrix. Define bij as the

average row sum of Aij,

bij =
1

ni

∑
k∈Xi
l∈Xj

akl. (1.19)

The m×m matrix Ql(A) = (bij) is called the left quotient matrix of A with respect

to the partition {X1, . . . , Xm}.
We can express Ql(A) in matrix form, as follows. Let S = (sij) be the n×m character-

istic matrix of the partition, that is, sij = 1 if i ∈ Xj, and 0 otherwise. Then STAS is

the matrix of coefficient sums of the submatrices Aij, and, hence, Ql(A) = Λ−1STAS,

where Λ = diag(n1, . . . , nm).

There are two alternatives to Ql(A), called the right quotient and the symmetric

quotient, written Qr(A) and Qs(A). They correspond to replacing 1/ni in (1.19)

by 1/nj respectively 1/
√
ni
√
nj. In matrix form, we have Qr(A) = STASΛ−1 and

Qs(A) = Λ−1/2STASΛ−1/2. Note that Ql(A) is the transpose of Qr(A), and they are

not symmetric unless ni = nj for all i, j.
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Nevertheless, these three matrices have the same spectrum (the proof is straightfor-

ward):

Lemma. Let X,D be m × m matrices, with D diagonal. Then the matrices DX,

XD and D1/2XD1/2 have all the same spectrum.

Summarising, the left quotient, the right quotient and the symmetric quotient

graph of a graph G with adjacency matrix A is the graph Q with adjacency matrix

B = Ql(A), B = Qr(A) and B = Qs(A) respectively.

Consider the left quotient of A with respect to the partition. Observe that the row

sums of Ql(A) are

di =
1

ni

∑
k∈Vi

dk, (1.20)

the average node degree in Vi. Let D be the diagonal matrix of the average node

degrees. Then we define the quotient Laplacian as the matrix

LQ = D −Ql(A). (1.21)

(See Chapter 3 for a full discussion on this choice.) Moreover, let Q̃ be the loopless

quotient of G, that is, the quotient network Q with all the self-loops removed. As the

quotient Laplacian ignores self-loops (See Chapter 3 ), we have LQ = LQ̃.

1.3.1.2 Regular quotients

A partition of the node set {V1, . . . , Vm} is called equitable if the number of edges

(taking weights into account) from a node in Vi to any node in Vj is independent of

the chosen node in Vi ∑
l∈Vj

akl =
∑
l∈Vj

ak′l for all k, k′ ∈ Vi, (1.22)

for all i, j. This indicates a regularity condition on the connection pattern between

(and within) clusters. If the partition is equitable, we call the quotient network

regular. A source of regular quotients are network symmetries [58, 57]. We call

a partition almost equitable if condition (1.22) is satisfied for all i 6= j (but not

necessarily for i = j), that is, if the regularity condition is satisfied after ignoring the

intra-cluster edges. In this case, we call the quotient graph Q almost regular. Note

that the quotient Q being almost regular is equivalent to the loopless quotient Q̃
being regular.
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(a) (b)

(c)

Figure 1.2: Schematic representation of a multiplex network with 4 layers and 8 nodes
per layer (a), and its two quotients: the network of layers (b), and the aggregate
network (c). In (a), dashed lines represent inter-layer edges. The quotient (b) is
undirected, as all layers have the same number of nodes. The quotient (c) is only
partially drawn, it is directed, and the edge thickness is proportional to the weight.
The network of layers (b) corresponds to the layer interconnection structure, while
the aggregate network (c) represents the superposition of all the layers onto one. In
this sense, they can be thought of as ‘horizontal’ and ‘vertical’ quotients, as the figure
suggests. Both quotients clearly represent a dimensionality reduction or coarsening
of the original multilayer network.

1.3.2 The aggregate network

We define the node characteristic matrix Sn = (siu). Sn is an N × n matrix with

siu = 1 if and only if the node-layer i is a representative of node u, i.e., it is in

the connected component u of the graph GC . We call it a characteristic matrix since

nodes partition the node-layer set and Sn is the characteristic matrix of that partition.

Then, the adjacency matrix of the aggregate network is given by:

Ã = Λ−1STn ĀSn, (1.23)

where Λ = diag{κ1, . . . , κn} is the multiplexity degree matrix.

We also define the average connectivity between nodes u and v as

duv =
1

κu

∑
i∈l(u)
j∈l(v9

Āij, (1.24)

and write du for duu. In this way, in an aggregate network, each node has a self-loop

weighted by du, and a directed edge from u to v weighted by duv. Note that in general

the aggregate network is directed. It is not directed if the multiplex network is node-

aligned.

We also define a loop-less aggregate network, that is just the aggregate network
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without self-loops, i.e.,

W̃ = Ã− diag(Ã) (1.25)

It is worth noting that

W̃ = Λ−1STnASn. (1.26)

Finally, we define the sum aggregate network as

W = STnASn, (1.27)

and note that for node-aligned multiplex networks we have

W = mW̃. (1.28)

1.3.3 The network of layers

Likewise, we define the layer characteristic matrix Sl = {siα} as an N × m matrix

with siα = 1 only if the node-layer i is in layer α, i.e., in the connected component α

of the graph Gl. We call it a characteristic matrix since it is the characteristic matrix

of the partition of the node-layer set induced by layers.

In the same way, the network of layers has adjacency matrix given by

Ãl = Λ−1STl ĀSl, (1.29)

where Λ−1 = diag{n1, . . . , nm}.
Finally, we define the average inter-layer degree from α to β as

dαβ =
1

nα

∑
i∈Vα
j∈Vβ

aij . (1.30)

This represents the average connectivity from a node in Gα to any node in Gβ. If

α = β we write dα for dαα, and call it the average intra-layer degree. Thus, each node

corresponds to a layer, with a self loop weighted by the average intra-layer degree dα,

and there is a directed edge from layer α to layer β weighted by the average inter-layer

degree dαβ.

1.4 Supra-walk matrices and loopless aggregate net-

work

In this section we will investigate the relation between the supra-walk representation

of a multiplex and its loopless aggregate network, considering the case of node-aligned
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multiplex networks.

We start with two basic observations:

STnSn = mIn

SnS
T
n = IN + C = Ĉ(1, 1). (1.31)

Then, for a node-aligned multiplex network when changing layer has no cost we

can write:

AĈ = ASnS
T
n . (1.32)

Note that the second equation in 1.31 is true for a multiplex network with no switch

cost even if it is not node-aligned, but the same does not hold for the first.

It then follows that

(AĈ)l = ASSTASST . . . ASST = AS(STAS)l−1ST . (1.33)

We can multiply both sides of 1.33 by STn from the left and by Sn from the right,

yielding

STn (AĈ)lSn = ml+1W̃l = mlWl. (1.34)

In this way, we have obtained a relation between the powers of the supra-walk ma-

trix AĈ and the powers of the adjacency matrix of the loopless aggregate network,

mediated by the supra-node characteristic matrix. Since powers of an adjacency ma-

trix contain the number of walks between two nodes, we have a relation between the

number of supra-walks in a multiplex network and the weight of weighted walks in

its aggregate network when the multiplex is node-aligned and switching layer has no

cost.

By writing 1.34 explicitly in terms of the elements of W̃, this relation will be more

explicit. Assuming summation over repeated indices, we have

ml+1(W̃)uv = sui(AĈ)lijsjv =
∑

i∈l(u)j∈l(v)

(AĈ)lij. (1.35)

By construction, mW̃ = W is the adjacency matrix of a multigraph in which there

is an edge between node u and node v for every edge that exists between each pair

of representatives in every layer. The elements of W can be interpreted as number

of edges or as weights. Thus, we have demonstrated that the number of supra-walks

in the multiplex between every representative of two supra-nodes u and v is equal to
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the number of walks in the multiedge aggregate network times the number of layers.

It is also interesting to look at closed walks, i.e., cycles. We have

sui(AĈ)lijsju =
∑

i∈l(u)j∈l(u)

(AĈ)lij =
∑
i∈l(u)

(AĈ)lii +
∑

i∈l(u)j∈l(u)i 6=j

(AĈ)lij (1.36)

If we note that each block line of AĈ has identical blocks, i.e., that

(AĈ)lii = (AĈ)lij, ∀j ∈ l−1(i),

we can write ∑
i∈l(u)

(AĈ)lii = ml(W̃l)uu = Wl. (1.37)

Thus, the number of closed supra-walks in the multiplex between every representa-

tive of two supra-nodes u and v is equal to the number of walks in the sum aggregate

network.

This observation give us a hint on what happens when we transform a multiplex

network that is not node-aligned into a node-aligned one, by adding spurious repre-

sentatives of a node in layers where it has not. Essentially, this implies to magnify

the number of walks existing between layers by adding dead-ending supra-walks.

To conclude, with these relations we can say that, when the multiplex is node-aligned,

switching layers has no cost, and the separate identity of the representative of nodes

in different layers is not informative, an aggregate representation of a multiplex net-

work is equivalent to a supra-walk representation. In fact, the information about the

identity of the representative of a node in different layers is the only we lose. The

following observation make explicit the relation:

m−1STnAĈSn = W (1.38)

i.e.,the sum aggregate network is the quotient of the supra-walk multiplex.

This relation holds true even for multiplex networks that are not node-aligned, but

to prove whether this is true or not for other relations is not so straightforward in

that case.
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Chapter 2

Structural Metrics

A structural metric of a network is a measure of some property directly dependent on

the system of relations between the components of the network, i.e.,by representing

the network with a graph, a structural metric is a measure of a property that depends

on the edge set. Since there is a correspondence between graph and adjacency matrix,

a structural metric can be expressed as a function of the adjacency matrix, but it is

not necessary. This fact differentiates between structural metrics and other kind of

metrics, such as spectral metrics, that are defined only once an adjacency matrix is

introduced.

Structural metrics can be local or global. A local metric p measures the property of

a single node or pair of nodes, and we refer to the value of that metric on a node i

or a pair of nodes i, j as pi, pij respectively. The global version P of p measures the

corresponding overall property of the network. In general, a global metric is defined

as a mean of local ones.

An example of a structural metric is the connectivity k. As we have seen, the con-

nectivity ki of a node i is the number of neighbours the node i has. The global

connectivity is defined as the mean connectivity K = 1
N

∑
i ki. The characteris-

tic path length L is a global metric defined as L = 1
n(n−1)

∑
i 6=j lij, where lij is the

geodesic distance between the nodes i and j measured as the minimum number of

edges connecting i and j.

Although in the two examples given above the global metric is simple the mean of

the local one, it is not always the case, as for the clustering coefficient (see note 2 in

section 2.1). The term local and global may have a different meaning in this context,

in fact they may refer to the topological scale at which the system is considered. In

this sense, the connectivity is a local measure since it takes into account only the

first neighbours of a node, while the geodesic distance between two nodes is a global

metric since it takes into account the whole network.
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The quantitative description of structural network properties is a core task of complex

network research. Firstly, it allows for the classification of different structures and

the description of different categories. On the other hand, is the first step for the

investigation of the relations between structure and function. Finally, it allows the

construction of models that reproduce the structural features of an empiric system

under study, as well as it allows to inquiry if a property of a system is the result of

chance or if it reveals something on the particular way of evolving of the system. An

example of the latter is the fact that, recognizing that the clustering coefficient of an

empiric social network is on average greater than that of a random graph, allowed

to propose the triadic closure as a crucial mechanism in the evolution of social net-

works. The other way around, the quantitative evaluation of the clustering coefficient

between model networks and empirical ones allows the validation of the triadic clo-

sure hypothesis.

Thus, it is crucial to define a set of structural metrics for multiplex networks.

Here, we dare to suggests a list of requirement a structural metric should fulfil in

order to be properly defined.

A structural metric for multiplex networks should

• reduce to the ordinary single-layer metric (if defined) when layers reduce to one

• be defined for node-layer pairs

• be defined for non-node-aligned multiplex networks

The first requirement refers to generalization of standard single-layer metrics to mul-

tiplex networks. It seems reasonable, although it is not trivial. In fact, usually

generalizing “the naive way” leads to metrics that do not fulfil this requirement. We

discuss this point in the next session in the particular case of the clustering coefficient.

The second requirement takes into account the fact that node-layer pairs are the basic

objects that build up a multiplex network, thus, in general, to define a metric only

on some version of the aggregate network is not enough.

The third requirement comes from the fact that, although it is easier to deal with

node-aligned multiplex networks from an analytical point of view, real world multi-

plex networks in general are not node-aligned. Because of that, it is worth defining

metrics for the general case, even when an analytic treatment is only possible in the

node-aligned case.

An additional requirement is needed only in the case of intensive metrics:
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• For a multiplex of identical layers when changing layer has no cost, an intensive

structural metric should take the same value when measured on the multiplex

network and on one layer taken as an isolated network.

This last requirement, that ask for a sort of “normalization”, is needed in order to

avoid spurious amplification of the value that a quantity takes just because of the

number of layers. We will see this requirement at work in the case of sub-graphs

centrality.

This list of requirements has not the pretension to be interpreted as a set of axioms

and surely it is not definitive nor complete, but in our opinion it has the power to

guide the generalization of standard single-layer metrics to multiplex networks in a

systematic way, as well as to guide the theoretical development of new genuinely

multiplex metrics.

In summary, we can recognize that it is insufficient to generalize existing diagnostics

in a näıve manner and that one must instead construct their generalizations from

first principles. In the following sections of this chapter, we will build on the basic

notion of walks and cycles to properly generalize clustering coefficients and sub-graphs

centrality to multiplex networks.

2.1 Structure of triadic relations in multiplex net-

works

In the present section, we focus on one of the most important structural properties

of networks: triadic relations, which are used to describe the simplest and most

fundamental type of transitivity in networks [55, 97, 95, 65, 47]. We develop multiplex

generalizations of clustering coefficients, which can be done in myriad ways, and (as

we will illustrate) the most appropriate generalization depends on the application

under study.

There have been several attempts to define multiplex clustering coefficients [7, 16, 15,

24, 8], but there are significant shortcomings in these definitions. For example, some

of them do not reduce to the standard single-layer clustering coefficient or are not

properly normalized (see appendix A).

The fact that existing definitions of multiplex clustering coefficients are mostly ad hoc

makes them difficult to interpret. In our definitions, we start from the basic concepts

of walks and cycles to obtain a transparent and general definition of transitivity.

This approach also guarantees that our clustering coefficients are always properly

23



normalized. It reduces to a weighted clustering coefficient [102] of an aggregated

network for particular values of the parameters; this allows comparison with existing

single-layer diagnostics. We also address two additional, very important issues: (1)

Multiplex networks have many types of connections, and our multiplex clustering

coefficients are (by construction) decomposable, so that the contribution of each type

of connection is explicit; (2) because our notion of multiplex clustering coefficients

builds on walks and cycles, we do not require every node to be present in all layers,

which removes a major (and very unrealistic) simplification that is used in existing

definitions.

The local clustering coefficient Cu of node u in an unweighted monoplex network is

the number of triangles (i.e., triads) that include node u divided by the number of

connected triples with node u in the center [97, 65]. The local clustering coefficient

is a measure of transitivity [55], and it can be interpreted as the density of a focal

node’s neighborhood. For our purposes, it is convenient to define the local clustering

coefficient Cu as the number of 3-cycles tu that start and end at the focal node u

divided by the number of 3-cycles du such that the second step of the cycle occurs in

a complete graph (i.e., assuming that the neighborhood of the focal node is as dense

as possible).1 In mathematical terms, tu = (A3)uu and du = (AFA)uu, where A is

the adjacency matrix of the graph and F is the adjacency matrix of a complete graph

with no self-edges. (In other words, F = J− I, where J is a complete square matrix

of 1s and I is the identity matrix.)

The local clustering coefficient is thus given by the formulas Cu = tu/du. This is

equivalent to the usual definition of the local clustering coefficient: Cu = tu/(ku(ku−
1)), where ku ≥ 2 is the degree of node u. (The local clustering coefficient is 0 for

nodes of degree 0 and 1.) One can calculate a single global clustering coefficient for a

monoplex network either by averaging Cu over all nodes or by computing C =
∑
u tu∑
u du

.

Henceforth, we will use the term global clustering coefficient for the latter quantity.2

In the following we will define clustering coefficients for multiplex networks, in D we

use a simple example to illustrate the differences between the various notions.

1Note that we use the term “cycle” to refer to a walk that starts and ends at the same physical
node u. It is permissible (and relevant) to return to the same node via a different layer from the one
that was used originally to leave the node.

2The definition we adopt for the global clustering coefficient is an example of a global structural
metric that is not defined as the mean value over all the nodes of its local version. Actually, it is
defined as the ratio between the mean number of closed triple and the mean number of open triples.
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2.1.1 Triads on Multiplex Networks

In addition to 3-cycles (i.e., triads) that occur within a single layer, multiplex net-

works also contain cycles that can traverse different additional layers but still have 3

intra-layer steps. Such cycles are important for the analysis of transitivity in multi-

plex networks. In social networks, for example, transitivity involves social ties across

multiple social environments [95, 91]. In transportation networks, there typically exist

several means of transport to return to one’s starting location, and different combi-

nations of transportation modes are important in different cities [35]. For dynamical

processes on multiplex networks, it is important to consider 3-cycles that traverse

different numbers of layers, so one needs to take them into account when defining a

multiplex clustering coefficient. For this reasons, we build the clustering coefficient

on the notion of supra-walk. Thus, the number of 3-cycles for node i is then

tM,i = [(AĈ)3 + (ĈA)3]ii , (2.1)

where the first term corresponds to cycles in which the inter-layer step is taken after

an intra-layer one and the second term corresponds to cycles in which the inter-layer

step is taken before an intra-layer one. The subscript M refers to the particular

way that we define a supra-walk in a multiplex network through the multiplex walk

matrices AĈ and ĈA. However, one can also use other types of supra-walks (see ref

B), and we will use different subscripts when we refer to them. We can simplify

Eq. 2.1 by exploiting the fact that both A and Ĉ are symmetric. This yields

tM,i = 2[(AĈ)3]ii . (2.2)

It is useful to decompose multiplex clustering coefficients that are defined in terms

of multilayer cycles into so-called elementary cycles by expanding Eq. 2.2 and writ-

ing it in terms of the matrices A and C. That is, we write tM,i =
∑
E∈E wE(E)ii,

where E denotes the set of elementary cycles and wE are weights of different el-

ementary cycles. We can use symmetries in our definition of cycles and thereby

express all of the elementary cycles in a standard form with terms from the set

E = {AAA,AACAC,ACAAC,ACACA,ACACAC}. See Fig. 2.1 for an illustration

of elementary cycles and 2.1.2 for details on deriving the elementary cycles. Note

that some of the alternatives definition of a 3-cycle—which we discuss in B— lead to

more elementary cycles than the ones that we just enumerated.

To define multiplex clustering coefficients, we need both the number t∗,i of cycles

and a normalization d∗,i. The symbol ∗ stands for any type of cycle: the 3-cycle

25



Figure 2.1: Sketch of the elementary cycles AAA, AACAC, ACAAC, ACACA, and
ACACAC. The orange node is the starting point of the cycle. The intra-layer edges
are the solid lines, and the intra-layer edges are the dotted curves. In each case, the
yellow line represents the second intra-layer step.

that we define in the main text, an elementary cycle, or the alternatives definition

of 3-cycles that we give in B. Choosing a particular definition coincides to a given

way to calculate the associated expression for t∗,i. To determine the normalization,

it is natural to follow the same procedure as with monoplex clustering coefficients

and use a complete multiplex network F =
⊕

α F(α), where F(α) = J(α) − I(α) is

the adjacency matrix for a complete graph on layer α. We can then proceed from

any definition of t∗,i to d∗,i by replacing the second intra-layer step with a step in

the complete multiplex network. For example, we obtain dM,i = 2(AĈFĈAĈ)ii for

tM,i = 2[(AĈ)3]ii. Similarly, one can use any other definition of a cycle (e.g., any

of the elementary cycles or the cycles that we discuss in B) as a starting point for

defining a multiplex clustering coefficient.

The above formulation allows us to define local and global clustering coefficients

for multiplex networks analogously to monoplex networks. We can calculate a natural

multiplex analog to the usual monoplex local clustering coefficient for any node i of

the supra-graph. Additionally, in a multiplex network, a node u of an intra-layer

network allows an intermediate description for clustering between local and the global

clustering coefficients. We define

c∗,i =
t∗,i
d∗,i

, (2.3)

C∗,u =

∑
i∈l(u) t∗,i∑
i∈l(u) d∗,i

, (2.4)

C∗ =

∑
i t∗,i∑
i d∗,i

, (2.5)

where l(u) is as defined before.

We can decompose the expression in Eq. 2.5 in terms of the contributions from
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cycles that traverse exactly one, two, and three layers (i.e., for m = 1, 2, 3) to give

t∗,i = t∗,1,iβ
3 + t∗,2,iβγ

2 + t∗,3,iγ
3 , (2.6)

d∗,i = d∗,1,iβ
3 + d∗,2,iβγ

2 + d∗,3,iγ
3 , (2.7)

C(m)
∗ =

∑
i t∗,m,i∑
i d∗,m,i

. (2.8)

We can similarly decompose Eqs. 2.3 and 2.4. Using the decomposition in Eq. 2.6

yields an alternative way to average over contributions from the three types of cycles:

C∗(ω1, ω2, ω3) =
3∑
m

ωmC
(m)
∗ , (2.9)

where ~ω is a vector that gives the relative weights of the different contributions.

We use the term layer-decomposed clustering coefficients for C
(1)
∗ , C

(2)
∗ , and C

(3)
∗ .

There are also analogs of Eq. 2.9 for the clustering coefficients defined in Eqs. 2.3

and 2.4. Each of the clustering coefficients in Eqs. 2.3–2.5 depends on the values of

the parameters β and γ, but the dependence vanishes if β = γ. Unless we explicitly

indicate otherwise, we assume in our calculations that β = γ.

2.1.2 Expressing Clustering Coefficients Using Elementary
3-Cycles

We now give a detailed explanation of the process of decomposing any of our walk-

based clustering coefficients into elementary cycles. An elementary cycle is a term

that consists of products of the matrices A and C (i.e., there are no sums) after one

expands the expression for a cycle (which is a weighted sum of such terms). Because

we are only interested in the diagonal elements of the terms and we consider only

undirected intra-layer supra-graphs and coupling supra-graphs, we can transpose the

terms and still write them in terms of the matrices A and C rather than also using

their transposes. There are also multiple ways of writing non-symmetric elementary

cycles [e.g., (AACAC)ii = (CACAA)ii].

We adopt a convention in which we transpose all elementary cycles so that we select

the one in which the first element is A rather than C when comparing the two versions

of the term from left to right. That is, for two equivalent terms, we choose the one

that comes first in alphabetical order. To calculate the clustering coefficients that we

defined in the appendix (see B), we also need to include elementary cycles that start

and end in an inter-layer step. The set of elementary 3-cycles is thus E = {AAA,

AACAC, ACAAC, ACACA, ACACAC, CAAAC, CAACAC, CACACAC}.

27



Figure 2.2: Sketches of elementary cycles for which both the first and the last step are
allowed to be an inter-layer step. These elementary cycles are CAAAC, CAACAC,
and CACACAC. The orange node is the starting point of the cycle. The intra-layer
edges are the solid lines, and the intra-layer edges are the dotted curves. In each case,
the yellow line represents the second intra-layer step. Note that the elementary cycle
CACACAC also includes three “degenerate” versions in which the 3-cycle returns to
a previously-visited layer.

We now write our clustering coefficients using elementary 3-cycles. We obtain the

normalization formulas by using the elementary 3-cycles and then replacing the second

A term with F . This yields a standard form for any of our local multiplex clustering

coefficients:

c∗,i =
t∗,i
d∗,i

, (2.10)

where

t∗,i = [wAAAAAA+ wAACACAACAC + wACAACACAAC

+ wACACAACACA+ wACACACACACAC

+ wCAAACCAAAC + wCAACACCAACAC

+ wCACACACCACACAC]ii (2.11)

d∗,i = [wAAAAFA+ wAACACAFCAC + wACAACACFAC

+ wACACAACFCA+ wACACACACFCAC

+ wCAAACCAFAC + wCAACACCAFCAC

+ wCACACACCACFCAC]ii , (2.12)

where i is a node-layer pair and the wE coefficients are scalars that correspond to the

weights for each type of elementary cycle. (These weights are different for different

types of clustering coefficients; one can choose whatever is appropriate for a given

problem.) Note that we have absorbed the parameters β and γ into these coefficients

(see below and Table 2.1). We illustrate the possible elementary cycles in Fig. 2.1

and in Fig. 2.2.
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One can even express the cycles that include two consecutive inter-layer steps in

the standard form of Eqs. 2.11–2.12 for node-aligned multiplex networks, because

CC = (m− 1)I + (m− 2)C in this case. Without the assumption that β = γ = 1, the

expansion for the coefficient cSM is cumbersome because it includes coefficients βkγh

with all possible combinations of k and h such that k+h = 6 and h 6= 1. Furthermore,

in the general case, it is also not possible to infer the number of layers in which a walk

traverses an intra-layer edge based on the exponents of β and γ for cSM and cSM ′ . For

example, in cSM ′ , the intra-layer elementary triangle AAA includes a contribution

from both β3 (i.e., the walk stays in the original layer) and βγ2 (i.e., the walk visits

some other layer but then comes back to the original layer without traversing any

intra-layer edges while it was gone). Moreover, all of the terms with m arise from a

walk moving to a new layer and then coming right back to the original layer in the

next step. Because there are m− 1 other layers from which to choose, the influence

of cycles with such transient layer visits is amplified by the total number of layers in

a network. That is, adding more layers (even ones that do not contain any edges)

changes the relative importance of different types of elementary cycles.

In Table 2.1, we show the values of the coefficients wE for the different ways that

we define 3-cycles in multiplex networks. In Table 2.2, we show their corresponding

expansions in terms of elementary cycles for the case β = γ = 1. These cycle

decompositions illuminate the difference between cM.i, cM ′,i, cSM,i, and cSM ′,i. The

clustering coefficient cM,i gives equal weight to each elementary cycle, whereas cM ′,i

gives half of the weight to AAA and ACACA cycles (i.e., the cycles that include an

implicit double-counting of cycles) as compared to the other cycles.

2.1.3 Clustering Coefficients for Aggregated Networks

A common way to study multiplex networks is to aggregate layers to obtain either

multi-graphs or weighted networks, where the number of edges or the weight of an

edge is the number of different types of edges between a pair of nodes [1]. One can then

use any of the numerous ways to define clustering coefficients for weighted monoplex

networks [84, 68] to calculate clustering coefficients for the aggregated network.

One of the weighted clustering coefficients is a special case of our multiplex clustering

coefficient (for others, see References [102, 3, 42] calculated a weighted clustering

coefficient as

CZ,u =

∑
vwWuvWvwWwu

wmax

∑
v 6=wWuvWuw

=
(W3)uu

((W(wmaxF)W)uu
, (2.13)
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where W is the sum aggregate adjacency matrix as defined before, the quantity

wmax = maxu,v Wuv is the maximum weight in W, and F is the adjacency matrix

of the complete unweighted graph. We can define the global version CZ of CZ,u by

summing over all of the nodes in the numerator and the denominator of Eq. 2.13

(analogously to Eq. 2.5).

For node-aligned multiplex networks, the clustering coefficients CZ,u and CZ are re-

lated to our multiplex clustering coefficients CM,u and CM . Letting β = γ = 1 and

summing over all layers yields
∑

i∈l(u)((AĈ)3)ii = (W3)uu (see section 1.4). That

is, in this special case, the weighted clustering coefficients CZ,u and CZ are equiv-

alent to the corresponding multiplex clustering coefficients CM,u and CM . That is,

CM,u(β = γ) = wmaxCZ,u and CM(β = γ) = wmaxCZ .

Note that this relationship between our multiplex clustering coefficient and the weighted

clustering coefficient in Eq. 2.13 is only true for node-aligned multiplex networks. If

some nodes are not shared among all layers, then the normalization of our multiplex

clustering coefficient depends on how many nodes are present in the local neighbor-

hood of the focal node. This contrasts with the “global” normalization by wmax used

by the weighted clustering coefficient in Eq. 2.13.

2.1.4 Clustering Coefficients in Erdős-Rényi (ER) networks

Almost all real networks contain some amount of transitivity, and it is often desirable

to know if a network contains more transitivity than would be expected by chance.

In order to examine this question, one typically compares clustering-coefficient values

of a network to what would be expected from some random network that acts as a

null model. The simplest random network to use is an Erdős-Rényi (ER) network.

In this section, we give formulas for expected clustering coefficients in node-aligned

multiplex networks in which each intra-layer network is an ER network that is created

independently of other intra-layer networks and the inter-layer connections are created

as described in chapter 1.

The expected value of the local clustering coefficient in an unweighted monoplex ER

network is equal to the probability p of an edge to exist. That is, the density of the

neighborhood of a node, measured by the local clustering coefficient, has the same

expectation as the density of the entire network for an ensemble of ER networks. In

multiplex networks with ER intra-layer graphs with connection probabilities pα, the

same result holds only when all of the layers are statistically identical (i.e., pα = p

for all α). Note that this is true even if the network is not node-aligned. However,

heterogeneity among layers complicates the behavior of clustering coefficients. If
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the layers have different connection probabilities, then the expected value of the

mean clustering coefficient is a nontrivial function of the connection probabilities.

In particular, it is not always equal to the mean of the connection probabilities. For

example, the formulas for the expected global layer-decomposed clustering coefficients

are

〈C(1)
M 〉 =

∑
α p

3
α∑

α p
2
α

≡ p3

p2
, (2.14)

〈C(2)
M 〉 =

3
∑

α 6=κ pαp
2
κ

(b− 1)
∑

α p
2
α + 2

∑
α 6=κ pαpκ

, (2.15)

〈C(3)
M 〉 =

∑
α 6=κ,κ6=µ,µ 6=α pαpκpµ

(b− 2)
∑

α 6=κ pαpκ
. (2.16)

The expected values of the local clustering coefficients in node-aligned ER multiplex

networks are

〈cAAA,i〉 =
1

b

∑
α∈L

pα ≡ p , (2.17)

〈cAACAC,i〉 =
1

b

∑
α∈L

pα ≡ p , (2.18)

〈cACAAC,i〉 =
1

b

∑
α∈L

∑
κ6=α p

2
κ∑

κ6=α pκ
, (2.19)

〈cACACA,i〉 =
1

b

∑
α∈L

pα ≡ p , (2.20)

〈cACACAC,i〉 =
1

b(b− 1)

∑
α∈L

∑
κ6=α;µ 6=κ,α pκpµ∑

κ6=α pκ
. (2.21)

Note that c
(1)
M,i = cAAA,i and c

(3)
M,i = cACACAC,i, but the 2-layer clustering coefficient c

(2)
M,i

arises from a weighted sum of contributions from three different elementary cycles.

In Fig. 2.3, we illustrate the behavior of the global and local clustering coeffi-

cients in multiplex networks in which the layers consist of ER networks with varying

amounts of heterogeneity in the intra-layer edge densities. Although the global and

mean local clustering coefficients are equal to each other when averaged over en-

sembles of monoplex ER networks, we do not obtain a similar result for multiplex

networks with ER layers unless the layers have the same value of the parameter p.

The global clustering coefficients give more weight than the mean local clustering

coefficients to denser layers. This is evident for the intra-layer clustering coefficients

c
(1)
M,i and C

(1)
M , for which the ensemble average of the mean of the local clustering co-

efficient c
(1)
M,i is always equal to the mean edge density, whereas the ensemble average
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Figure 2.3: (A, B, C) Global and (D, E, F) local multiplex clustering coefficients
in multiplex networks that consist of ER layers. The markers give the results of
simulations of 100-node ER node-aligned multiplex networks that we average over 10
realizations. The solid curves are theoretical approximations (see Eqs. 2.14–2.16 of
the main text). Panels (A, C, D, F) show the results for three-layer networks, and
panels (B, E) show the results for six-layer networks. The ER edge probabilities of the
layers are (A, D) {0.1, 0.1, x}, (B, E) {0.1, 0.1, 0.1, 0.1, x, x}, and (C, F) {0.1, x, 1−x}.

of the global clustering coefficient C
(1)
M has values that are greater than or equal to

the mean edge density. This effect is a good example of a case in which the situation

in multiplex networks differs from the results and intuition from monoplex networks.

In particular, failing to take into account the heterogeneity of edge densities in mul-

tiplex networks can lead to incorrect or misleading results when trying to distinguish

among values of a clustering coefficient that are what one would expect from an ER

random network versus those that are a signature of a triadic-closure process (see

Fig. 2.3).

2.2 Transitivity in empirical multiplex networks

We investigate transitivity in empirical multiplex networks by calculating clustering

coefficients. In Table 2.3, we give the values of layer-decomposed global clustering

coefficients for multiplex networks (four social networks and two transportation net-

works) constructed from real data. Note that the two transportation networks have

different numbers of nodes in different layers (i.e., they are not “node-aligned” [1]).

To help give context to the values, the table also includes the clustering-coefficient

values that we obtain for ER networks with matching edge densities in each layer.

See C for a similar table that uses an alternative null model in which we shuffle the

inter-layer connections.
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As we will now discuss, multiplex clustering coefficients give insights that are impos-

sible to infer by calculating weighted clustering coefficients for aggregated networks

or even by calculating them separately for each layer of a multiplex network.

For each social network in Table 2.3, note that CM < C
(1)
M and C

(1)
M > C

(2)
M > C

(3)
M .

Consequently, the primary contribution to the triadic structure of these multiplex

networks arises from 3-cycles that stay within a given layer. To check that the or-

dering of the different clustering coefficients is not an artifact of the heterogeneity of

densities of the different layers, we also calculate the expected values of the clustering

coefficients in ER networks with identical edge densities to the data. We observe

that all clustering coefficients exhibit larger inter-layer transitivities than would be

expected in a ER networks with identical edge densities, and that the same ordering

relationship (i.e.,C
(1)
M > C

(2)
M > C

(3)
M ) holds. This observation suggests that triadic-

closure mechanisms in social networks cannot be considered purely at the aggregated

network level, because these mechanisms appear to be more effective inside of layers

than between layers. For example, if there is a connection between individuals u and

v and also a connection between v and w in the same layer, then it is more likely that

u and w “meet” in the same layer than in some other layer.

The transportation networks that we examine exhibit the opposite pattern from the

social networks. For example, for the London Underground (“Tube”) network, in

which each layer corresponds to a line, we observe that C
(3)
M > C

(2)
M > C

(1)
M . This

reflects the fact that single lines in the Tube are designed to avoid redundant connec-

tions. A single-layer triangle would require a line to make a loop among 3 stations.

Two-layer triangles, which are a bit more frequent than single-layer ones, entail that

two lines run in almost parallel directions and that one line jumps over a single sta-

tion. For 3-layer triangles, the geographical constraints do not matter because one

can construct a triangle with three straight lines.

We also analyze the local triadic closure of the Kapferer tailor-shop social net-

work by examining the local clustering-coefficient values. In Fig. ??A, we show a

comparison of the layer-decomposed local clustering coefficients (also see Fig. 6a of

[8]). Observe that the condition c
(1)
M,i > c2

M,i > c
(3)
M,i holds for most of the nodes. In

Fig. ??B, we subtract the expected values of the clustering coefficients of nodes in a

network generated with the configuration model3 from the corresponding clustering-

coefficient values observed in the data to discern whether we should also expect to

3We use the configuration model instead of an ER network as a null model because the local
clustering-coefficient values are typically correlated with node degree in monoplex networks [65],
and an ER-network null model would not preserve degree sequence.
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Figure 2.4: Comparison of different local clustering coefficients in the Kapferer tailor-
shop network. Each point corresponds to a node. (A) The raw values of the clustering
coefficient. (B) The value of the clustering coefficients minus the expected value of the
clustering coefficient for the corresponding node from a mean over 1000 realizations
of a configuration model with the same degree sequence in each layer as in the orig-
inal network. In a realization of the multiplex configuration model, each intra-layer
network is an independent realization of the monoplex configuration model.

observe the relative order of the local clustering coefficients in an associated random

network (with the same layer densities and degree sequences as the data). Similar

to our results for global clustering coefficients, we see that taking a null model into

account lessens—but does not remove—the difference between the coefficients that

count different numbers of layers.

We investigate the dependence of local triadic structure on degree for one social

network and one transportation network. In Fig. 2.5A, we show how the different

multiplex clustering coefficients depend on the unweighted degrees of the nodes in

the aggregated network for the Kapferer tailor shop. Note that the relative order

of the mean clustering coefficients is independent of the degree. In Fig. 2.5B, we

illustrate that the aggregated network for the airline transportation network exhibits

a non-constant difference between the curves of CM,u and the weighted clustering

coefficient CZ,u. Using a global normalization (see the discussion in Section 2.1.3)

reduces the clustering coefficient for the small airports much more than it does for

the large airports. That, in turn, introduces a bias.

The airline network is organized differently from the London Tube network. When

comparing these networks, note that each layer in the former encompasses flights from

a single airline. For the airline network (see Fig. 2.5B), we observe that the two-layer

local clustering coefficient is larger than the single-layer one for hubs (i.e., high-

degree nodes), but it is smaller for small airports (i.e., low-degree nodes). However,

the global clustering coefficient counts the total number of 3-cycles and connected
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Figure 2.5: Local clustering coefficients versus unweighted degree of the aggregated
network for (A) the Kapferer tailor-shop network and (B) the airline network. The
curves give the mean values of the clustering coefficients for a degree range (i.e., we
bin similar degrees). Note that the horizontal axis in panel (B) is on a logarithmic
scale.

triplets and it thus gives more weight to high-degree nodes than to low-degree nodes,

and we thus find that the global clustering coefficients for the airline network satisfies

C
(2)
M > C

(1)
M > C

(3)
M . The intra-airline clustering coefficients have small values, pre-

sumably because it is not in the interest of an airline to introduce new flights between

two airports that can already be reached by two flights via the same airline through

some major airport. The two-layer cycles correspond to cases in which an airline has

a connection from an airport to two other airports and a second airline has a direct

connection between those two airports. Completing a three-layer cycle requires using

three distinct airlines, and this type of congregation of airlines to the same area is

not frequent in the data. Three-layer cycles are more likely than single-layer cycles

only for a few of the largest airports.

We derived measurements of transitivity for multiplex networks by developing

multiplex generalizations of triadic relationships and clustering coefficients. By using

examples from empirical data in diverse settings, we showed that different notions

of multiplex transitivity are important in different situations. For example, the bal-

ance between intra-layer versus inter-layer clustering is different in social networks

versus transportation networks (and even in different types of networks within each

category, as we illustrated explicitly for transportation networks), reflecting the fact

that multilayer transitivity can arise from different mechanisms. Such differences are

rooted in the new degrees of freedom that arise from inter-layer connections and are

invisible to calculations of clustering coefficients on single-layer networks obtained via

aggregation. In other words, transitivity is inherently a multilayer phenomenon: all
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of these diverse flavors of transitivity reduce to the same description when one throws

away the multilayer information. Generalizing clustering coefficients for multiplex

networks makes it possible to explore such phenomena and to gain deeper insights

into different types of transitivity in networks. The existence of multiple types of

transitivity also has important implications for multiplex network motifs and multi-

plex community structure. In particular, our work on multiplex clustering coefficients

demonstrates that the definition of any clustering notion for multiplex networks needs

to be able to handle such features.

The case of social multiplex networks is of particular interest, since our measures

point to the fact that triadic closure mechanism is context dependent.

2.3 Subgraph centrality

In this section we scale up the topological scale at which we consider the system

and we will look at cycles of all lengths. In monoplex networks subgraph centrality

is a well established metric to measure the connectedness of a node at all scales

as a generalisation of the clustering coefficient that looks at a local scale. Having

established the parallelism between walks in monoplex networks and supra-walks in

multiplex networks, we can generalise the definition of subgraph centrality in a direct

and standardised way.

2.3.1 Subgraph centrality and Estrada index in monoplex
network

Estrada and Rodŕıguez-Velázquez [32] defined the subgraph centrality of a node i in

a complex network as the infinite weighted sum of closed walks of different lengths

in the network starting and ending at vertex i, where the weights are the factorial of

the length of each walk, i.e.

SCi =
∑
l

µi(l)

l!
(2.22)

where the number of cycles of length l attached to i is µi(l) = (Al)ii.

It is easy to recognize that the subgraph centrality has the following functional form:

SCi = (exp(A))ii (2.23)

The Estrada index of a network is defined as

SC =
∑
i

SCi = Tr exp(A) (2.24)
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2.3.2 Supra-walks and subgraph centrality for multiplex net-
works

As done for the clustering coefficient, we generalize the subgraph centrality to multi-

plex networks constructing on the notion of supra-walk. Thus:

scM,i =
∑
l

(AĈ)l

ml−1l!
(2.25)

SCM,u =
1

κu

∑
i∈l(u)

sci (2.26)

A slight modification of the same functional form 2.23 applies, that is

scM,i = m(exp(m−1AĈ))ii. (2.27)

Note that, while in the case of monoplex networks the off-diagonal element (exp(A))ij

is the communicability between node i and node j , this is not the case for multiplex

networks. This is because, while (AĈ)l exactly count the number of closed walks

(cycles) of length l, it is not true for open walks (see section 1.4). Note, additionally,

that we need the factor ml−1 in the normalization in order to take into account

redundant cycles. In other words, the number of cycles attached to i is given by

AĈ
l
+ ĈA

l
= 2AĈ

l
. The possible number of different cycles that touch the same set

on nodes in the same order (i.e.,they touch different representatives of the same nodes

in different layers in the same order) is exactly 2ml−1. Normalized in this way, the

subgraph centrality is intensive in the number of layers and takes the same value as

the standard single layer one one when layers are identical and there is no cost to

change layer. Besides, for identical layers, we have:

scM,i = scM,u,∀i ∈ l(u) (2.28)

Finally, accordingly to the traditional definition for single layer networks, we define

the supra-walk Estrada index of a multiplex network as

SC =
1

m

∑
i

scM,i = Tr(exp(m−1AĈ)) (2.29)

It results that:

SC =
∑
u

scu (2.30)
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2.3.3 Subgraph centrality on aggregate network

The subgraph centrality in a weighted network with weighted adjacency matrix W

is defined as [31]

scu = exp(W)uu. (2.31)

For node-aligned multiplex networks, we have that 1
ml

∑
i∈l(u)

(AĈ)ii
ml

= ˜(W)
l

uu (see

section 1.4). That is, in this special case, the weighted subgraph centrality measured

on the aggregate loopless network is equals to the subgraph centrality measured on

the multiplex network,

SCu = SCM,u (2.32)

For the Estrada index we also have

SC(W̃) = SCM (2.33)
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Chapter 3

Spectra

Important information on the topological properties of a graph can be extracted from

the eigenvalues of the associated adjacency, Laplacian or any other type of graph

related matrix. Thus, like spectroscopy for condensed matter physics, graph spectra

are central in the study of the structural properties of a complex network.

An N × N adjacency matrix A is a real symmetric matrix. As such, has N real

eigenvalues, which we order as λ1 ≤ λ2 ≤ · · · ≤ λN . The set of eigenvalues with

corresponding eigenvectors is unique apart from a similarity transformation, i.e.,a

relabelling of the nodes in the graph that obviously does not alter the structure of

the graph but merely expresses the eigenvectors in a different base.

Accordingly to that, A can be written as

A = XΛXT (3.1)

where theN×N orthogonal matrix X contains, as columns, the eigenvectors x1,x2, . . . ,

xN of A belonging to the real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN and where the ma-

trix Λ = diag(λi). The eigendecomposition 3.1 is the basic relation that equates the

topology (structural) domain of a network, represented by the adjacency matrix, to

the spectral domain of its graph, represented by the orthogonal matrix X and the

diagonal matrix of the eigenvalues Λ.

A core subject in network theory is the connection between structure and dynamic,

especially the way in which the structure affects critical phenomena. The eigen-

decomposition 3.1 allows to explain this connection in terms of the spectra of the

adjacency matrix thus giving the basic relation that relates the topology a network,

to the critical properties of the dynamics occurring on it.
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3.1 The largest eigenvalue of supra-adjacency ma-

trix

Consider the adjacency matrix A of a graph. The Perron Frobenius Theorem for

non negative square matrices states that λN is simple and non negative, and that its

associated eigenvector is the only eigenvector of A with non negative components.

The largest eigenvalue λN is also called the spectral radius of the graph. Since Ā is

symmetric and non-negative, we have that the largest eigenvalue λ̄N is simple and

non negative possessing the only eigenvector of Ā with non negative components.

The largest eigenvalue of the adjacency matrix associated to a network has emerged

as a key quantity for the study of a variety of different dynamical processes [65],

as well as a variety of structural properties, as the entropy density per step of the

ensemble of walks in a network.

In order to study the effect of the multiplexity on the spectral radius of a multiplex

network, in the following we will interpret Ā as a perturbed version of A, C being the

perturbation. This choice is reasonable whenever

|| C ||<|| A ||, (3.2)

where || |̇ | is some matrix metric.

Consider the largest eigenvalue λ of A. Since A is a block diagonal matrix, the

spectrum of A, σ(A), is

σ(A) =
⋃
α

σ(Aα), (3.3)

σ(Aα) being the spectrum of the layer-adjacency matrix Aα. So, the largest eigen-

value λ of A is

λ = max
α

λα (3.4)

with λα being the largest eigenvalue of Aα. We will look for the largest eigenvalue λ̄

of Ā as

λ̄ = λ+ ∆λ, (3.5)

where ∆λ is the perturbation to λ due to the coupling C. For this reason, we call

the layer δ for which λδ = λ the dominant layer. Consider a node-aligned multiplex

network. Let 1α be a vector of size m with all entries equal to 0 except for the δ-th

entry. If φδ is the eigenvector of Aδ associated to λδ, we have that

φ = φδ ⊗ 1α (3.6)
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is the eigenvector associated to λ. Observe that φ has dimension n, while 1α has

dimension m, where n is the number of nodes, yielding to a product of dimension N =

n×m. In the case in which the multiplex is not node-aligned, we must construct the

vector φ with zeros on all positions, except on the position of the leading eigenvector

of the dominant layer.

We can approximate ∆λ as

∆λ ≈ φTCφ
φTφ

+
1

λ

φTC2φ

φTφ
. (3.7)

Because of the structure of φ and C, the first term on the r.h.s. is zero, while only

the diagonal blocks of C2 take part in the product φTC2φ. The diagonal blocks of C2

are diagonals and

(C2)ii =
∑
i′

Cii′Ci′i = ci. (3.8)

Thus, we have that the perturbation is

∆λ ≈ z

λ
, (3.9)

where we have defined the effective multiplexity z as the weighted mean of the coupling

degree with the weight given by the squares of the entries of the leading eigenvector

of A:

z =
∑
i

ci
φ2
i

φTφ
, (3.10)

where z = 0 in a monoplex network and z = m − 1 in a node-aligned multiplex.

Summing up, we have that the largest eigenvalue of the supra-adjacency matrix is

equal to the largest eigenvalue of the adjacency matrix of the dominant layer at a

first order approximation. As a consequence, for example, we will see in chapter 5

that the critical point for an epidemic outbreak in a multiplex network is settled by

that of the dominant layer at a first order approximation.

At second order, the deviation of λ̄ from λ depends on the effective multiplexity and

goes to zero with λ. See figure 3.1 and 3.2. Moreover, the approximation given in Eq.

(3.9) can fail when the largest eigenvalue is near degenerated. We have two cases in

which this can happen:

• the dominant layer is near degenerated,

• there is one (or more) layers with the largest eigenvalue near that of the domi-

nant layer.
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The accuracy of the approximation is related to the formula

∆λ ≈ φTCφ+
∑
i

(φ(i)TCφ)

λ− λ(i)
, (3.11)

where λ(i) and φ(i) are the non-dominant eigenvalues and the associated eigenvectors.

In the first case it is evident that the second term on the r.h.s. will diverge, while in

the latter, because of the structure of C, φ, and φ(i), it is zero. In that case, we say

that the multiplex network is near degenerated and we call the layers with the largest

eigenvalues co-dominant layers.

When the multiplex network is near degenerated, the φ used in the approximation of

equation (3.9) has a different structure. Consider that we have l co-dominant layers

δi, i = 1, . . . , l. If φδi is the eigenvector of Aδi associated to λδi , we have that

φ =
l∑

i=1

φδi ⊗ 1δi . (3.12)

Note that the same comment on Eq. (3.6) also applies here. The term linear in C in

the approximation of equation (3.9) is no more zero. We have

zc =
φTCφ
φTφ

=
1

φTφ

∑
l,m:l 6=m

φTδlφδm (3.13)

and we name zc the correlated multiplexity. We can decompose zc in the contribution

of each single node-layer pair

zci =
1

φTφ

∑
m:m 6=l

∑
j

φδl iCijφδmj. (3.14)

and we call zci the correlated multiplexity degree of node-layer i. By definition, coupled

node-layer pairs have the same correlated multiplexity degree. So, if we have md co-

dominant layers in the multiplex, we get

∆λ ≈ zc +
z

λ
= md

∑
i∈δ

zci +

∑
i∈δ zi

λ
. (3.15)

3.1.1 Statistics of walks

Given a network with adjacency matrix A, the number of walks of length l is given

by

Nij(l) = (Al)ij =
∑
r

xrixrjλ
l
r (3.16)
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Figure 3.1: Effective multiplexity z as a function of the fraction of nodes coupled s
for a two layers multiplex with 800 nodes with a power law distribution with γ = 2.3
in each layer. For each value of s, 40 different realizations of the coupling are shown
while the intra-layer structure is fixed. In the panel on the top the z shows a two
band structure, while in the panel on the bottom, it is continuous. The difference is
due to the structure of the eigenvector.

where xri indicates the i− th entry of the normalized eigenvector xr belonging to the

eigenvalue λr. Define the entropy Hij(l) of the ensemble of paths {πij(l)} of length l

between nodes i and j as

Hij(l) = lnNij(l). (3.17)

For large walks l −→∞, it results

Hij(l) = lnλN + ln(xNixNj) (3.18)
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Figure 3.2: Same setting of top panel of previous figure. On the top: calculated λ̄.
We can see two branches corresponding to the two branches of the previous figure.
Bottom: calculated vs approximated λ̄

The leading term is independent of the positions of the endpoints. So, for large l, the

entropy production rate is

h = lim
l←∞

Hij(l)

l
= lnλN . (3.19)

That is, h only depends on the largest eigenvalue of the adjacency matrix.

Now, consider walks on multiplex networks that treat in the same way inter- and

intra- layer steps, thus we have the supra-adjacency matrix as the supra walk matrix.

From the perturbative approximation above, we have that the entropy production
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rate on a multiplex network is:

h̄ = ln λ̄N ∼ ln(λ+
z

λ
) (3.20)

That is, large walks on a multiplex are dominated by walks on the dominant layer

plus a term due to the entropy production needed to reach the dominant layer from

non-dominant ones.

3.2 Dimensionality reduction and spectral proper-

ties

In this section, we relate the adjacency and Laplacian eigenvalues of a multiplex

network to the two quotient networks we have defined in Chapter 1. The main

theoretical result that we will exploit is that the eigenvalues of a quotient interlace

the eigenvalues of its parent network. Let m < n and consider two sets of real numbers

µ1 ≤ · · · ≤ µm and λ1 ≤ . . . λn.

We say that the first set interlaces the second if

λi ≤ µi ≤ λi+(n−m), for i = 1, . . . ,m. (3.21)

The key spectral result is that the adjacency eigenvalues of a quotient network in-

terlace the adjacency eigenvalues of the parent network. The same result applies for

Laplacian eigenvalues, if the Laplacian matrix of the quotient is defined appropriately,

i.e., as we have defined it in chapter 1.

3.2.1 Interlacing Eigenvalues

All the interlacing results we refer to are a consequence of the theorem below, which

in turn follows from the Courant-Fisher max-min theorem

Theorem. ([43], Thm. 2.1(i)). Let A be a symmetric matrix of order n, and let U

be an n ×m matrix such that UTU = I. Then the eigenvalues of UTAU interlace

those of A.

Observe that the matrix UTAU is symmetric, and hence it has real eigenvalues.

If U is the characteristic matrix of a subset α ⊂ {1, 2 . . . , n}, that is, U = (uij) of

size n× | α | and non-zero entries uiα = 1 if i ∈ α, then UTAU equals the principal

submatrix of A with respect to α. As UTU is the identity, we conclude from the

theorem above:
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Corollary. ([43], Cor. 2.2). Let B be a principal submatrix of A. Then the eigen-

values of B interlace the eigenvalues of A.

On the other hand, if S is the characteristic matrix of the partition, then STS = Λ

is a diagonal non-singular matrix, and hence U = SΛ−1/2 satisfies the hypothesis

of the theorem. We conclude that the eigenvalues of UTAU = Λ−1/2STASΛ−172

interlace those of A. Using the Lemma 1.3.1.1, we conclude:

Corollary. ([11], Cor. 2.3(i)). Let B be a quotient matrix of A with respect to some

partition. Then the eigenvalues of B interlace the eigenvalues of A.

3.2.2 Equitable partitions

Equation 1.22 defines equitable partitions. This can be expressed in matrix form as

AS = SQ(A).

We call the matrix Q(A) a regular quotient if it is the quotient of an equitable

partition. If the quotient is regular, then the eigenvalues of Q(A) not only interlace

but are a subset of the eigenvalues of A. In fact, there is a lifting relating both sets

of eigenvalues, as we explain now.

If v,w are column vectors of size m and n, we say that Sv represents the vector v

lifted to A, and STw the vector w projected to Q(A). The vector Sv has constant

coordinates on each Xi, while the vector STw is created by adding the coordinates on

each Xi. The vector w is called orthogonal to the partition if STw = 0, that is, the

sum of the coordinates over each Xi is zero. If the quotient is regular, the spectrum

of A decomposes into the spectrum of B lifted to A (i.e.,eigenvectors constant on

each Xi), and the remaining spectrum is orthogonal to the partition (i.e.,eigenvectors

with coordinates adding to zero on each Xi):

Theorem. Let B be the quotient matrix of A with respect to an equitable partition

with characteristic matrix S. Then the spectrum of B is a subset of the spectrum of

A. More precisely, (λ,v) is an eigenpair of B if and only if (λ,Sv) is an eigenpair

of A.

Moreover, there is an eigenbasis of A of the form {Sv1, . . . ,Svm,w1, . . . ,w(n−m)}
such that {v1, . . . ,vm} is any eigenbasis of B, and STwi = 0 for all i.

Proof. The first part follows easily from the identity AS = SB (note that Sv 6= 0

as Ker(S) = 0). For the second part, note that S is an isomorphism onto Im(S),

49



as it has trivial kernel, so {Sv1, . . . ,Svm} is a basis of Im(S). It is easy to show

that the orthogonal complement Im(S)⊥ equals Ker(ST ), hence we can complete the

linearly independent set of eigenvectors {Sv1, . . . ,Svm} to an eigenbasis of Rn =

Im(S) + Im(S)⊥

3.2.3 Laplacian Eigenvalues

We want to show that the Laplacian of a quotient graph is the quotient of the Lapla-

cian matrix, as this will allow us to extend the interlacing results to the Laplacian

eigenvalues. First, we need to clarify what we mean by the Laplacian of a non-

symmetric matrix.

If A = (aij) is a real symmetric (adjacency) matrix, define the node out-degrees as

douti =
∑
j

aij (row sum). (3.22)

The out-degree Laplacian is the matrix

Lout = Dout −A (3.23)

where Dout is the diagonal matrix of the out-degrees.

We define dini , Din, and the in-degree Laplacian Lin analogously. Note that both

Laplacian matrices ignore the diagonal values of A. If A is the adjacency matrix

of a graph, we say that the Laplacian ignores self-loops. Consider the left and right

quotients of A with respect to a given partition. Observe that the row sums of Ql(A)

are

d̄i =
1

ni

∑
k∈Vi

dk (3.24)

the average node degree in Vi.

Let D̄ be the diagonal matrix of the average node degrees. Then we define the quotient

Laplacian as the matrix

LQ = D̄ −Ql(A) (3.25)

that is, the out-degree Laplacian of the left quotient matrix. Alternatively, we could

have defined LQ as the in-degree Laplacian of the right quotient matrix, giving a

transpose matrix with the same eigenvalues. (Note that there is no obvious way of

interpreting the symmetric quotient Qs(L) as the Laplacian of a graph.)

Now we can prove that the Laplacian of the quotient is the quotient of the Laplacian,

in the following sense.
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Theorem. Let G be a graph with adjacency matrix A and Laplacian matrix L. Then:

Lout(Ql(A)) = Ql(L)

.

The analogous result holds for the right quotients and the in-degree Laplacian.

Proof. By definition (see):

Ql(L) = Λ−1STLS = Λ−1ST (D−A)S = Λ−1STDS− Λ−1STAS = D̄−A

The second statement follows by transposing the equation above.

This theorem allows us to use the interlacing results of 3.2.1 for Laplacian eigenval-

ues. We finish by studying equitable partitions in the context of Laplacian matrices.

We demonstrate that a partition being regular for the Laplacian matrix is equivalent

to the partition being almost regular for the adjacency matrix. In particular, the spec-

tral results of subsection 3.2.2 will hold for almost regular quotients and Laplacian

eigenvalues.

Theorem. Let G be a graph with adjacency matrix A and Laplacian matrix L. Then

a partition is equitable with respect to L if and only if it is almost equitable with

respect to A.

Proof. By relabelling the nodes if necessary, we can assume the block decomposition

A =

A11 . . . A1m
...

. . .
...

Am1 . . . Amm

 , (3.26)

where the ni × nj submatrix Aij represents the edges from Vi to Vj. The matrix L

has then a similar block decomposition into submatrices Lij. As L = D−A and D

is diagonal, we have Lij = −Aij for all i 6= j. In particular, the row sums of Lij are

constant if and only if the row sums of Aij is constant, for all i 6= j. On the other

hand, as the row sums in L are zero, the row sums in Lii equals the sum of the row

sums of the matrices Lij for j 6= i, and the result follows.
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3.3 Network of layers and Aggregate Network

Applying the spectral results we have already presented, we conclude that the ad-

jacency, respectively Laplacian, eigenvalues of the network of layers interlace the

adjacency, respectively Laplacian, eigenvalues of the multiplex network. Namely, if

µ1, . . . , µm are the (adjacency resp. Laplacian) eigenvalues of the network of layers,

then

λi ≤ µi ≤ λi+(N−m) for i = 1, . . . ,m, (3.27)

where λ1, . . . , λN are the (adjacency resp. Laplacian) eigenvalues of the multilayer

network.

The network of layers, ignoring weights and self-loops, simply represents the layer

connection configuration (Fig. 1.2). The connectivity of this reduced representation,

measured in terms of the eigenvalues, thus relates to the connectivity of the entire

multiplex network via the interlacing results.

We turn to the question of when the layer partition is equitable. This requires, in

particular, that the intra-layer degrees are constant, that is, each layer must be a

dα-regular graph, a very strong condition unlikely to be satisfied in real-world multi-

plex networks. Instead, we call a multilayer network regular if the layer partition is

almost equitable, that is, the inter-layer connections are independent of the chosen

vertices. This is a more natural condition, and in particular it is equivalent to require

the multiplex being node-aligned.

If the multiplex network is regular, i.e.,node aligned, then, in addition to the interlac-

ing, the Laplacian eigenvalues of the network of layers are a subset of the Laplacian

eigenvalues of the multiplex, and we can lift a Laplacian eigenbasis of the quotient,

as described in Section 3.2.3. This latter result has also been derived in [89] without

referring to the theory of quotient graphs.

Finally, using the spectral results, we conclude that the adjacency (respectively Lapla-

cian) eigenvalues of the aggregate network interlace the adjacency (respectively Lapla-

cian) eigenvalues of the multiplex. Namely, in a multiplex network with N node-layer

pairs and n nodes, the (adjacency resp. Laplacian) eigenvalues of the aggregate net-

work quotient µ1, . . . , µn satisfy

λi ≤ µi ≤ λi+(n−ñ) for i = 1, . . . , ñ, (3.28)

where λ1, . . . , λN are the (adjacency resp. Laplacian) eigenvalues of the multiplex

network.

Observe that requiring the aggregate network to be regular, or almost regular, is in
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this case very restrictive, as it would require that every pair of nodes connects in

the same uniform way on every layer, and thus it is not likely to occur on real-world

multiplex networks.

The results obtained in this section will be crucial in studying structural transitions

as we will show in the next chapter1.

3.4 Layer subnetworks

Evidently, the layers of a multiplex form subnetworks, and it is natural to relate the

eigenvalues of each layer to the eigenvalues of the multiplex. The interlacing result

applies to the adjacency eigenvalues of an induced subnetwork, such as the layers,

and partial interlacing also holds for the Laplacian eigenvalues. More precisely, if a

layer-graph Gα has nα nodes and adjacency (resp. Laplacian) eigenvalues µ1, . . . , µα,

and λ1, . . . , λN are the adjacency (resp. Laplacian) eigenvalues of the whole multilayer

network, then

λi ≤ µi ≤ λi+(N−nα) for i = 1, . . . , nα, resp. (3.29)

µi ≤ λi+(N−nα) for i = 1, . . . , nα. (3.30)

3.5 Discussion and some Applications

From a physical point of view, the adjacency and Laplacian spectra of a network

encode information on structural properties of the system represented by the network

related to different dynamical processes occurring upon it. We now discuss some

consequences and applications of the spectral results derived in the previous sections.

In the following, let us write λi(A) for the ith smallest eigenvalue of a matrix A.

3.5.1 Adjacency spectrum

The spectrum of the adjacency matrix is directly related to different dynamical pro-

cesses that take place on the system, such as spreading processes, for which it has

been shown that critical properties are related to the inverse of the largest eigenvalue

of this matrix. As an example, consider a contact process on the multilayer network

M whose dynamic is described by the equation

pi(t+ 1) = β
∑
j

āijpj(t)− µ pi(t) (3.31)

1Although here we deal only with multiplex network, the spectral theory of quotient graphs also
applies to the more general framework of multilayer networks
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in which pi(t) is the probability of node i to be infected at time t, β is the infection

rate, µ is the recovery rate and āij are the elements of the supra-adjacency matrix

Ā. This model is a special case of the more general one introduced in Chapter 5. In

this model, each infected node contacts its neighbours with probability 1, and tries to

infect them. The contact between two instances of the same object in different layers

is modelled in the same way as the contact between any two other nodes.

The critical value of the infection rate for which the infection survives is given by

βc =
µ

λN(Ā)
. (3.32)

From the interlacing result for the layer subnetworks we have that

λnα(Aα) ≤ λN(Ā), (3.33)

where Aα is the adjacency matrix of the layer α. This means that the critical point

for the multiplex network βc is bounded from above by the corresponding critical

points of the independent layers. This implies that the multiplex network is more

efficient as far as a spreading processes are concerned than the most efficient of its

layers on its own.

On the other hand, if λm is the largest adjacency eigenvalue of the network of layers,

then

λm ≤ λN(A), (3.34)

which means that the connections between layers also impose constraints to the dy-

namics on the multilayer network. In particular, the critical point of the spreading

dynamics on the multilayer network is bounded from above by the corresponding crit-

ical point of the network of layers. Interestingly, the existence of this bound explain

the existence of a mixed phase [28].

Consider now the same process (3.31), this time defined on the aggregate network

pu(t+ 1) = β
∑
v

auvpv(t)− µ pu(t). (3.35)

Here auv are the elements of Q(Ā), the adjacency matrix of the aggregate graph. The

critical value is given by

β̃c =
µ

λn(Q(Ā))
(3.36)

where n is the number of nodes in M (the size of the aggregate network). From the

interlacing result we have that

β̃c ≥ βc.
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Therefore the spreading process on M is at least as efficient as the same spreading

process on the aggregate network.It is important to note that Equations 3.31 and 3.35

describe two rather different processes, that is, two different strategies that actors can

adopt in order to spread information across the multiplex network. In the former,

a node can infect any other node on any layer, while in the latter, each supra-node

chooses at each time step with uniform probability a layer in which an instance rep-

resenting it is present and then contacts all its neighbours in that layer. Our results

show that the former strategy is more effective than the latter, as expressed by the

relation between the critical points.

3.5.2 Laplacian spectrum

The Laplacian of a network L = (lij) is the operator of the dynamical process de-

scribed by

ṗij(t) = −
∑
k

pik(t) lki (3.37)

where pij(t) represents the transition probability of a particle from node i to node j

at time t.

The second smallest eigenvalue of the Laplacian matrix sets the time scale of the

process. From the interlacing results applied to the Laplacian matrix we have that

for any quotient

λ2(L̄) ≤ λ2(Q(L̄)). (3.38)

That is, the relaxation time on the multiplex is at most the relaxation time on any

quotient, in particular the network of layers or the aggregate network. If we interpret

λ2 of the Laplacian of a network as algebraic connectivity [17], Eq. 3.38 means that

the algebraic connectivity of the multiplex network is always bounded above by the

algebraic connectivity of any of its quotients.

On the other hand, the Laplacian of the aggregated network is the operator corre-

sponding to the dynamical process described by

ṗuv(t) =
∑
w

puw(t) awv − du puv(t) =
∑
w

puw(t) l̃wu (3.39)

where puv(t) is the transition probability of a particle from supra-node u to supra-

node v at time t, auw are the elements of the adjacency matrix of the aggregated

contact network, L̃ = (l̃ij) is the Laplacian matrix of the aggregate contact network
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(i.e. L̃ = Q(L̄)) and du =
∑

v auv is the strength or degree of a node in the aggregate

network). Note that if we define the overlapping degree [8] of a node as

ou =
∑
v

auv

then we have that

du =
1

κu
ou.

From the interlacing result for the Laplacian we have that

λ2(L̄) ≤ λ2(Q(L̄)). (3.40)

That is, the diffusion process on the aggregate network (Eq. 3.39) is faster than the

diffusion process on the entire multiplex network (Eq. 3.37). Note that in [89], in a

setting in which the multiplex is node-aligned, the authors obtained by means of a

perturbative analysis that λ2(L̄) ∼ λ2(Q(L̄)) when the diffusion parameter between

layers is large enough. In [2] this result is generalized (in a different framework, since

they are interested in structural properties of interdependent networks) to all almost

regular multilayer networks. In the framework of quotient networks that we have

presented here those results arise in a very natural way. Besides, eigenvalue interlac-

ing between multilayer and quotient eigenvalues holds for every possible inter-layer

connection scheme. In the next chapter we will discuss the existence and location of

an abrupt transition in the structure of a multiplex network by constructing on the

interlacing results for the Laplacian. We finally note that, in the context of synchro-

nization, the smallest non-zero Laplacian eigenvalue λ2 is also related to the stability

of a synchronized state [5], and indeed the larger λ2 is, the more stable is the syn-

chronized state. Considering a multiplex network, the bound in (3.38) means that

the synchronized state of a system supported on the multiplex network is at most as

stable as the synchronized state on any of its quotients.

3.6 The algebraic connectivity

The algebraic connectivity of a graph G is the second-smallest eigenvalue of the

Laplacian matrix of G [100]. We naturally define the algebraic connectivity of a

multiplex as the second-smallest eigenvalue of its the supra-Laplacian matrix.

From the interlacing results of the previous section, we know that

µ̄2 ≤ µ̃a2 (3.41)

µ̄2 ≤ m (3.42)
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We also know that m is always an eigenvalue of the supra-Laplacian, so, we can look

for the condition under which µ̄2 = m holds. By combining equations 3.41 and 3.42,

we arrive to the conclusion that

if m ≥ µ̃a2, then µ̄2 6= m.

On the other hand, we can approximate µ̄2 as

µ̄2 ∼ µ2 +4µ2 (3.43)

where µ2 is the second-smallest eigenvalue of L and

4µ2 =
∑
i<j

cij(xi − xj)2 (3.44)

where x is the unity norm eigenvector associated to µ2 and xi its i−th entry. Because

of the structure of C and x, it results

4µ2 = m− 1 (3.45)

for a node-aligned multiplex network. Thus, since m is always an eigenvalue of L̄ ,

for that approximation to be correct, the following condition must hold

µ2 +m− 1 < m (3.46)

from which we can conclude that

if µ2 < 1 then µ̄2 6= m.

In summary, we have that

if µ̃a2 < m or µ2 > 1 then µ̄2 6= m,

the converse not being true in general.
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Chapter 4

Structural organization and
transitions

Complex networks show non-traditional critical effects due to their extreme com-

pactness (small-world property) together with their complex organization [30]. The

introduction of multilayer networks in general, and multiplex in particular, as a more

natural substrate for a plethora of phenomena, poses the central theoretical question

of whether critical phenomena will behave differently on such networks with respect

to traditional networks. So far theoretical studies have pointed out that such dif-

ferences in the critical behaviours indeed exists [70, 90]. In [2] and in [76] it has be

showed that a multiplex network can exists in different structural phases, the transi-

tion among them being abrupt under some conditions.

The main observation is that three different topological scales can be naturally iden-

tified in a multiplex: that of the individual layers, that of the network of layers, and

that of the aggregate network. The notion of quotient graph that we have introduced

in Chapter 1 gives the connection between those scales in therms of spectral proper-

ties of the parent multiplex network an its aggregate representation.

In the rest of this chapter we will focus on the spectra of the supra-Laplacian in order

to show how the interplay between those scales affect the whole structural organiza-

tion of the multiplex network. The spectrum of the Laplacian is a natural choice to

address this problem, since it reveals a number of structural properties. In particular,

eigengaps are known to unveil a number of structural and dynamical properties of the

network related to the presence of different topological scales in it, from communities

at different topological scales to synchronization patterns [6, 87]. Thus, the emerging

of an eigengap points to structural changes going on, that will result in qualitatively

different dynamical patterns. For this reason, we will introduce a weight parameter

p for the coupling. This parameter will allow us to tune the relative strength of the
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Figure 4.1: Eigenvaluse of a toy multiplex with 4 nodes per layers. Continuous lines
are the eigenvalues of the multiplex networks; dashed lines are the eigenvalues of the
aggregate network

coupling with respect to intra-layer connectivity 1.

The supra-Laplacian 1.14 with the weight parameter p reads as:

L̄ =
⊕
α

Lα + pLC , (4.1)

and in the special case of node-aligned multiplex networks it takes the simple form:

L̄ =
⊕
α

(L(α) + p(m− 1)In)− pKm ⊗ In. (4.2)

Remember that, in this special case, the spectrum of the Laplacian of the network

of layers is a subset of the spectrum of the parent supra-Laplacian. In figure 4.1 the

full spectrum of a toy multiplex of 4 nodes and 2 layers (then 8 node-layer pairs) is

showed. The first thing to note - as already observed in [39] and [89]- is that the

spectrum splits in two groups: one made up by eigenvalues that stay bounded while

increasing p, and one group of eigenvalues that diverge by increasing p. The whole

characterization of the structural changes in a multiplex network basically depends

on that splitting, i.e. on the emerging of gaps in the spectrum.

4.1 Eigengap and structural transitions

The Laplacian spectrum of the network of layers is composed of just two eigenvalues:

0 with multiplicity 1, and mp with multiplicity (m − 1). Because of the inclusion

1The weight p may have a physical meaning, like the (inverse of) the commuting time in a
transportation multiplex network, however it can be always intended as a tuning parameter.
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relation between the cross-grained and the parent spectra, mp will be always an

eigenvalue of the supra-Laplacian. It results that, for low enough values of p, mp

will be the smallest non-zero eigenvalue of L̄. On the other hand, each eigenvalue µ̄i,

with i = 1 . . . n, will be bounded by the respective Laplacian eigenvalue µ̃
(a)
i of the

aggregate network because of the interlace.

It is evident that, by increasing p, at some value p = p∗, it will happen that µ̄2 6= mp

and that it will approach its bound µ̃
(a)
2 . For continuity, at p∗, µ̄3 = mp must hold,

since mp is always an eigenvalue of the supra-Laplacian. p = p∗ is the point at which

the structural transition described in [2, 59] occurs, as already noted by Darabi Sahneh

et al. [83]. Each eigenvalue up to µ̄n will follow the same pattern, following the line

µ̄i = mp and leaving it to approach its bound µ̃
(a)
i when it hits the next eigenvalue

µ̄i = mp (see Fig.:4.1). At the point p = p� at which µ̄n 6= mp, µ̄n+1 = mp must hold

and it will hold forever, since µ̄n+1 is not bounded.

Following this reasoning, we realize that the supra-Laplacian spectrum for p > p�

can be divided into two groups: one of n bounded eigenvalues that will approach

the aggregated Laplacian eigenvalues as p increases, and one of N − n = n(m − 1)

eigenvalues diverging with p. Because of that, the system can be characterized by an

eigengap emerging at p�.Moreover, while the splitting of the eigenvalues in those two

groups is always present (because of the interlacing), the crossing of the eigenvalues

at p∗ and at p� (and between those points) only happens when the multiplex is node-

aligned, this is because the inclusion relation only holds in that case.

In order to quantify an eigengap, we introduce the following metric:

gk =
log(µ̄k+1)− log(µ̄k)

log(µ̄k+1)
(4.3)

and we will focus on gn(p), i.e. the gap emerging between the last bounded eigenvalue

and the first unbounded at p�.

By construction

gn(p�) = 0. (4.4)

For p > p�, log(µ̄n+1) will diverge while log(µ̄n) will remain bounded by µ̃
(a)
n , so gn

will approach 1. For p < p�, in general both µ̄n+1 and µ̄n will be in the continuous

part of the spectrum, so gn will be 0 in the large size limit. That is,

gn = 0, p ≤ p�

gn 6= 0, p > p�. (4.5)

This phenomenology is confirmed by our numerical experiment (see Fig. 4.2), and
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Figure 4.2: Eigengap between the last bounded and the first unbounded eigenvalue
for a multiplex network of two Erdosh-Reniy of 200 nodes and < k >= 5. Dashed
line is the bound given in the text

it describes a structural transition occurring at p�. In the case of a non node-aligned

multiplex network, where p� is not defined since there is no crossing, gn(p) can be

used to operationally define it.

An upper bound for p� can be given in terms of the structural properties of the layers.

If ω
(α)
i is the strength of node u in layer α, its strength in the aggregate network is

ω̃i = 1
m

∑
α ω

(α)
i Next define

ω̃ij = ω̃i + ω̃j,∀i ∼ j (4.6)

where i ∼ j indicates a link between i and j in the aggregate network. We have that

[25]

µ̃(a)
n ≤ maxi∼j{ω̃ij}, (4.7)

and we can give the following bound for p�

p� ≤ maxi∼j{ω̃ij}
m

, (4.8)

and

p� ≤
maxi∼j{

∑
α ω

α
ij}

m2
(4.9)

The exact value of p� can be derived following [83] to be

p� =
1

2
λn(Q) (4.10)

being, for the case of two layers, Q = L+ − L−L+†L−, L± = 1
2
(L1 ± L2), and A† the

Moore-Penrose pseudoinverse of A.
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4.2 The Aggregate-Equivalent Multiplex and the

structural organization of a multiplex network

In order to characterize this transition, we want to compare a multiplex network M
with the coarse-grained networks associated to it. However, a direct comparison is

not possible, since those structures have different dimensionality. To overcome this

problem, we define an auxiliary structure that has the same properties of the aggregate

network and the network of layers, but also the same dimensionality ofM. We call it

the Aggregate-Equivalent Multiplex (AEM). The AEM of a parent multiplex network

M is a multiplex network with the same number of layers of M, each layer being

identical to the aggregate network of M. Additionally, node-layer pairs representing

the same nodes are connected with a connection pattern identical to the network of

layers. Formally speaking, the AEM is given by the Cartesian product between the

aggregate network and the network of layers. Thus, its adjacency matrix is given by

A = Im ⊗ Ã + pKm ⊗ In, (4.11)

and its Laplacian matrix is given by

L = Im ⊗ L̃a + pL̃l ⊗ In. (4.12)

Its Laplacian spectrum is completely determined in terms of the spectra of L̃a and of

the spectra of L̃l. In particular, we have

σ(L) = {µ̃a + µ̃l | µ̃a ∈ σ(L̃a), µ̃l ∈ σ(L̃l)}. (4.13)

In words, each eigenvalue of L is the sum of an eigenvalue of L̃a and an eigenvalue of

L̃l. We can note that, since 0 is an eigenvalue of both coarse-grained Laplacians, the

spectrum of both L̃a and L̃l are included in the spectrum of L̃a.

To compare the parent multiplex network with its AEM, we compute the quantum

relative entropies between the former and the latter. The quantum entropy (or Von-

Neumann entropy) of M being defined as

Sq(M) = Tr(ρ log ρ) (4.14)

where ρ = L̄
2E+N(m−1)p

, with E being the number of intra-layer links in M [71], i.e.,

ρ is the supra-Laplacian normalized by the degree sum. Thus, the quantum relative

entropy of the multiplex network M with its associated AEM is defined as

Rq(M || AEM(M)) = Trρ(log ρ− log σ), (4.15)
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Figure 4.3: Relative entropy (×10) (top), and Quantum Entropy (bottom) for the
same system of figure 4.2. The vertical line indicates the exact transition point p�.

with σ being the supra-Laplacian of the AEM normalized by its degree sum. In

Fig.:4.3 we show the quantum relative entropy between the parent multiplex and its

AEM: it goes to 0 by increasing p, meaning that the parent multiplex will be indis-

tinguishable from the AEM.

Finally, it is informative to look at the quantum entropy. S(M) shows a clear peak

after p∗ and before p� (see Fig.:4.3), i.e. in the region after the transition observed

in [2, 59] and before that one we have introduced here. By studying the sign of the

derivative of Sq at p∗ and at p�, it can be proven that the quantum entropy must have

a peak between those two points.
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4.3 Dynamical consequences and discussions

To gain intuition on the phenomenology, it is enlightening to look at it in terms

of diffusion dynamic. The large time scale is dominated by the bounded group of

eigenvalues for p ≥ p�. Those eigenvalues are close to that of the aggregate network,

meaning that each layer shows practically the same behaviour of the aggregate net-

work. This is because the fast time scale is dominated by the diverging group of

eigenvalues that are close to those of the aggregate network plus those of the network

of layers. In summary, the network of layers determines how each node-layer pair

accommodates with its replica on a fast time scale, being always “at equilibrium”,

while the aggregate network determines how and on what time scale the global equi-

librium is attained. From that point of view, the “world” will look the same from

each layer and it will look like in the aggregate network. From a random walk point

of view, we can look at the average commute time c(i, j), i.e. the mean time needed

by a walker starting in i to hit node j for the first time and coming back. It can be

expressed in terms of the eigenvalue of L̄†, the pseudoinverse of the supra-laplacian.

Since the eigenvalues of L̄† are the reciprocal of the eigenvalues of L̄, the aggregate

network mean commute time c̃(i, j) is a good approximation of c(i, j) after p�[82]:

‖ c(i, j)− c̃(i, j) ‖≤ E
n(m− 1)

2p
. (4.16)

It is interesting to note that the eigenvalues of the aggregate network do not depend

on p.

Summarizing, before p∗ the system is structurally dominated by the network of lay-

ers, whereas after p� it is structurally dominated by the aggregate network. Between

those two points the system is in an effective multiplex state, i.e., neither of the

coarse-grained structures dominate. In this region the VN-entropy -a measure of

structural complexity - shows a peak. Finally, we observe that the relative entropy

between the parent multiplex and its AEM varies smoothly with p, meaning that the

two transition are smooth from a global point of view.
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Chapter 5

Dynamical Processes on Multiplex
Networks

5.1 Contact-based Social Contagion

In this chapter we develop a theoretical framework for the study of epidemic-like

social contagion in large scale social systems by considering the most general setting

in which different communication platforms or categories form multiplex networks.

Specifically, we propose a contact-based information spreading model, and show that

the critical point of the multiplex system associated to the active phase is determined

by the dominant layer. The framework is applied to a number of different situations,

including a real multiplex system. Finally, we also show that when the system through

which information is disseminating is inherently multiplex, working with the aggregate

network is inaccurate.

5.1.1 Social contagion processes

Social contagion processes such as the adoption of a belief, the propagation of opin-

ions and behaviors, and the massive social movements that have recently unfolded

worldwide [20, 101, 92, 80, 22, 11, 40] are determined by many factors, among which

the structure of the underlying topology and the dynamics of information spreading

[94]. The advent of new communication platforms such as online social networks

(OSN), has made the study of social contagion more challenging. Today, individu-

als are increasingly exposed to many diverse sources of information, all of which they

value differently [34], giving raise to new communication patterns that directly impact

both the dynamics of information spreading and the structure of the social networks

[66, 48, 44, 63]. One way to address the latter is to consider that the process of

contagion occurs in a system made up of different layers, i.e., in a multiplex network.
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The dynamics of this kind of processes can be modeled using different classes of

approaches. Threshold models [41, 96, 61, 10] assume that individuals enroll in the

process being modeled if a given intrinsic propensity level, the threshold, is surpassed.

Although this class of models is useful to address the emergence of collective behav-

ior, they are generally designed to simulate a single contagion process and therefore

individuals, once they are active, remain so forever. This is not convenient in many

situations that are characterized by self-sustained activity patterns [11, 40]. For in-

stance, think of an online social network in which tags are used to identify the topic

of the information being transmitted (like hashtags in Twitter): individuals can use

the same tag many times, but they can also decide not to use it after a number of

times, thus being again susceptible to the contagion or in the language of threshold

models, inactive. The latter features can be captured if one uses epidemic-like models

of social contagion [78, 37]. In particular, the Susceptible-Infected-Susceptible (SIS)

model [64], a classical approach to the study of disease spreading, allows individuals

to cyclically change their dynamical state from susceptible (i.e., exposed to the tag)

to infected (actively participating in the spreading process) and back to susceptible.

Here, we propose a contact-based Markov chain approach [38] to study epidemic-like

social contagion in multiplex networks. We derive the conditions under which the

dynamics reaches a steady state with active (infected) individuals coexisting with

non-adopters. Our results show that the dynamics of the multiplex system is charac-

terized by a critical point that depends solely on the dominant layer 3. We also show

how our modeling framework can be applied to different scenarios and that working

with the aggregated network is not accurate.

5.1.2 The model

Let us consider a multiplex system made up of N nodes and M layers (see Figure

5.1), and let the supra-contact probability matrix R̄ = {Rij} be

R̄ =
⊕
α

Rα +

(
~γ

β

)T
C (5.1)

where the Rα’s are the contact probability matrices of each layer α and C is the

interlayer coupling matrix 1. Moreover, for a given layer α, Rα is defined as in the

single-layer scenario [38], i.e.,

(Rα)ij = 1−
(

1− (Aα)ij
kαi

)λαi
, (5.2)
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Figure 5.1: (color online) Schematic of a 2-layer multiplex system where the contagion
dynamics takes place. There are actors that take part in more than one layer (green
nodes connected by the dotted edges), whereas others are present only in one layer
(red nodes). β1,2 is the contagion rate within the same layer whereas γ1,2 represents
the probability that the contagion occurs between layers. The right panel shows a
small network and its associated C and A =

⊕
αAα.

being Aα the adjacency matrix of layer α and kαi the degree of node i in layer α.

In addition, all vectors are column vectors of the form ~xT = (x1
~1T1 , . . . , xM~1

T
m), and

~1α are the vectors of all 1s whose size is equal to the number of nodes Nα in layer

α. Thus, R̄ is a block matrix with the Rα on the diagonal blocks and
γli
βli
Clilj on the

off-diagonal block (li, lj).

As in the simplex network, in each layer, the parameter λαi determines the number

of contacts that are made, so that one may go from a contact process (one contact

per unit time) when λαi = 1 to a fully reactive process (all neighbors within the layer

are contacted) in the limit λαi −→ ∞. Moreover, the contagion between the layers

is characterized by the ratio γα
βα

, where βα is the rate at which the contagion spreads

in layer α. Finally, γα has the same meaning of β but characterizes how contagion

spreads from other layers to layer α (see Fig. 5.1), i.e., it is the rate at which a node

in layer α gets infected if its counterparts in others layers are infected.

With the above ingredients, it is easy to see that the discrete-time evolution

equation for the probability of contagion of a node i of the multiplex system has the
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same functional form as in the single-layer case [38], namely,

~p(t+ 1) = (~1− ~p(t)) ∗ (~1− ~q(t)) + (~1− ~µ) ∗ ~p(t)

+ ~µ ∗ (~1− ~q(t)) ∗ ~p(t), (5.3)

where ∗ stands for elements’ wise multiplication of two vectors, i.e., (~p∗~q)i = piqi and

~µ is a vector whose components are the rates at which adopters are again susceptible.

Moreover, qi(t) is the probability that node i will not be infected by any neighbor

qi(t) =
∏
j

(1− βRijpj(t)). (5.4)

5.1.3 Critical condition

Let us now assume that γα
βα

= γ
β

and µα
βα

= µ
β
,∀α = 1, . . . ,M . The phase diagram can

be studied by solving Eq. (5.3) at the stationary state

~p = (1− ~q) + (1− ~µ)~p ∗ ~q (5.5)

This equation has always the trivial solution pi = 0, ∀i = 1, . . . , N . Other non-trivial

solutions are given by non zero fixed points of Eq. (5.5) and can be easily computed

numerically by iteration. Linearizing qi around 0, at first order we get

[R̄− µ

β
I]p = 0 (5.6)

that has non-trivial solutions if and only if µ
β

is an eigenvalue of R̄. Since we are

looking for the onset of the macroscopic social contagion, namely, the critical point,

the lowest value of β
µ

satisfying Eq. (5.6) is(
β

µ

)
c

=
1

Λ̄max

, (5.7)

where Λ̄max is the largest eigenvalue of the matrix R̄.

It is worth analyzing this result by means of a perturbative analysis. Let Λ̄max '
Λ + ε4Λ, where Λ is the largest eigenvalue of R =

⊕
αRα and consider R̄ = R+ εC,

with ε = γ
β
� 1. Since R is a block diagonal matrix, it has the same set of eigenvalues

of {Rα} and thus we can analyze the system in terms of the largest eigenvalues of

the contact matrices Rα of the layers α. For simplicity, we take the calculation in

the case of two layers (i.e., α = 1, 2), but generalization to any number of layers is
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straightforward. The change in the eigenvalue (eigenvector) can be estimated using

a first order approximation [62]

4Λmax =
~vTC~v

~vT~v
, (5.8)

4~v =
C

Λ
~v, (5.9)

where ~v is the eigenvector associated to the largest eigenvalue Λ of the unperturbed

matrix R.

Two cases are possible: i) Λ1 � Λ2 (Λ2 � Λ1 is completely equivalent), and ii)

Λ1 ' Λ2, where Λ1 (Λ2) is the largest eigenvalue of R1 (R2). In the first case, the

eigenvector associated to the largest eigenvalue Λ = Λ1 is

~v =

(
~v(1)

0

)
. (5.10)

Hence, 4Λ = 0 and

4~v =

(
0

ε
Λ
~v(1)

)
. (5.11)

Therefore, at first order approximation, we have that the largest eigenvalue of R̄ is

Λ̄max = maxα{Λα}, and hence the emergence of a macroscopic steady state for the

dynamics is determined by the layer with the largest eigenvalue. We call that layer

the dominant layer. Besides, the probability of a node to catch the contagion at the

critical point in a non-dominant layer is also specified by the probability of being

infected in the dominant one.

In the second case (ii), the eigenvector associated with the largest eigenvalue Λ =

Λ1 = Λ2 is

~v =

(
~v(1)

~v(2)

)
, (5.12)

where ~v(1) (~v(2)) is the eigenvector associated to Λ1 (Λ2). Thus, at first order we have

4Λ =
~v(1)C12~v(2) + ~v(2)C21~v(1)

~vT(1)~v(1) + ~vT(2)~v(2)

, (5.13)

and

4~v =

(
ε
Λ
~v(2)
ε
Λ
~v(1)

)
. (5.14)

The previous expression indicates that in this scenario, the critical point is smaller

and that the correction depends on the relation between the eigenvector centralities of

the nodes in both layers. To further analyze the dynamical features of the contagion

process, we numerically solve the system of equations given by Eqs. (5.4) and (5.5)
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Figure 5.2: Panel (a): Density
of adopters (ρ) at the steady
state against the rescaled conta-
gion probability β

µ
for a multi-

plex system composed of two lay-
ers with N = 104 nodes each for
different values of the ratio η =
γ
β
. The arrows represent the in-

verse of the largest eigenvalues of
the two layers, whereas the inset
shows the case in which both lay-
ers are completely disconnected.
Panel (b): the same quantity of
panel (a), for η = 2.0, is rep-
resented but computed at each
layer. The inset is a zoom around
the critical point. See the text for
further details.

for the different scenarios considered above. In the first case, when Λ1 � Λ2, the

dynamics of the multiplex system is completely dominated by the layer with the

largest eigenvalue of Rα. Thus, we expect that the contagion threshold coincides

with the one of the dominant layer and no effect of the inter-layer diffusion parameter

ε = γ
β

near the threshold.

Figure 5.2a depicts the fraction of infectees, ρ = 1
N

∑
i pi, at the steady state against

the rescaled contagion probability β
µ

for a multiplex composed by two layers of N1 =

N2 = 104 nodes (thus N = N1 + N2 = 2 · 104). Both layers have been obtained

using the uncorrelated configuration model with degree distribution P (k) ∼ k−g with

g = 2.3 for the first layer and g = 3.0 for the second one. Furthermore, we have

assumed a fully reactive scenario in both layers of the system (i.e., λ1 = λ2 → ∞
in Eq. (5.2)). As seen in panel (a), where arrows represent the inverse of the largest

eigenvalues, the contagion threshold is set by 1/Λ1. It is worth noticing that the

perturbative result still hold even for γ
β

= 1. This is due to the fact that the number

of links added to the multiplex is small compared to the number of intra-layer links

and the perturbation can still be considered small [62]. On the other hand, the inset

shows the results one would obtain if both layers were disconnected. In this case, each

one would have their independent contagion thresholds determined by their largest

eigenvalues.
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Figure 5.3: Dependence of the
largest eigenvalues of the contact
probability matrices, Rα’s, on λα
for the system in Fig. 5.2. As
it can be seen, there might be a
crossover signaling that the dom-
inant layer changes. This cross-
over occurs only if the activity of
the topologically dominant layer
is small enough: in the example,
it should be smaller than λ1 = 32.

It is also of interest to inspect the phase diagrams of the two layers separately.

This is what is shown in Fig. 5.2b, where we represent the fraction of infectees at

the steady state of each layer. As already discussed, the dominant layer fixes the

contagion threshold of the multiplex network. However, it also induces a shift of the

critical point of the second layer to smaller values. In other words, the multiplex

nature of the system leads to an earlier transition to an active phase also in the non-

dominant layer, as its critical point is now smaller than the expected value for the

isolated system, i.e., (β
µ
)c2 <

1
Λ2

.

Furthermore, a unique feature of the model directly linked to the multiplex nature

of the system is worth stressing. As the largest eigenvalues involved in the calcula-

tions are those associated to the matrices Rα, they depend not only on the adjacency

matrices Aα, but also on λαi (see Eq. (5.2)). This dependency has an interesting

and novel effect as shown in Fig. 5.3: as the λα’s characterize the number of effec-

tive contacts per unit time, a layer that does not prevail in the contagion dynamics

because it is not topologically dominant (in terms of its Aα) can compensate its lack

of structural strength by increasing λα so as to eventually become the one with the

largest eigenvalue of the multiplex network. The previous feature opens the door to

potential applications in which by tuning the activity on one layer, the latter can take

over the rest of the system and set its critical properties. Similarly, the above mecha-

nism could explain situations in which the system is in the critical region despite the

fact that by observing one layer one would expect the contrary. In other words, to

determine whether the system is in a critical regime, one should have access to both

the topological and activity features of all layers. This is in line with the findings

in [18], however, our model shows that once the dominant layer (if there is one) is

detected, the analysis of the system dynamics can be carried out only on that layer.
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We have also explored the scenario ii), Λ1 ' Λ2, for which the largest eigenvalue

of the multiplex is given as Λmax = max{1,2}{Λ1,Λ2} + O(ε). In particular, as one

needs two networks with similar (very similar in this case) largest eigenvalues, we

have used the same network in each layer and reshuffled the nodes from one layer to

another to avoid correlation between the degree and the neighborhood of a node in

the two layers. Also in this case (figure not shown), numerical results confirm the

theoretical expectation.

5.1.4 The process on the aggregate network

We study the differences in the contagion process when considering the aggregate

network (see chapter 1). Since the largest eigenvalue of the aggregate network is

larger than that of the multiplex, we expect the contagion threshold of the projected

network to be smaller than that of the multiplex system. In addition, the number of

infectees at the steady state should also be smaller for the multiplex network, since

the correction to the probabilities of being infected, pi’s, is small in this system. Fig-

ure 5.4 shows results of numerical calculations for both systems. As it can be seen

more clearly in the inset of panel, the contagion thresholds are different. More im-

portantly, the figure provides grounded evidences of why one cannot reduce a system

that is inherently multi-level to a projected network − the observed level of preva-

lence significantly differs from one system to the other. For instance, fixing the ratio
β
µ

that characterizes the spreading process within one layer, one can get estimates

for the contagion incidence as higher as twice the actual value (that of the multiplex

network).
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Figure 5.4: Density of adopters
(ρ) at the steady state as a func-
tion of the rescaled contagion
probability β

µ
for a multiplex sys-

tem composed of two layers with
N = 104 nodes each (lines with
symbols) and the corresponding
aggregated graph (dotted lines).
Different curves represent differ-
ent values of the ratio η = γ

β
as

indicated. The inset is a zoom of
the region around the contagion
threshold.
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Conclusions

In chapter 1 we have introduced the basic formalism to describe multiplex networks in

terms of graphs. In a multiplex network we have different types of interactions among

the constituents of the system that we call layers. We have introduced the participa-

tion graph GP = (V, L, P ) that models the participation of a node in an interaction

network. This graph implicitly defines the notion of node-layer pair, i.e. the represen-

tative of a node in a particular layer of interaction. Node-layer pairs are basic objects

of the graph model of a multiplex network, since them preserve the identity of the

components of a multiplex network, while allowing for differentiation among different

interaction networks. If we think in multiplex social networks, we are modelling the

fact that individuals have different faces in different contexts, especially online [77].

Yet, despite their involvement in different contexts they are still the same persons. In

[77], Lee Rainie and Barry Wellman talk about a “networked self”, which resonates

well with the concept of supra-node introduced in chapter 1. However, this situa-

tion is not specific of social networks, as, for instance, in the biological realm we can

think of a chemical species that plays different roles in a variety of signalling channels.

As in traditional monoplex network studies, we represent each layer of interaction

as a graph Gα and we next consider the set of all layer graphs M = {Gα}α∈L. The

(disjoint) union of all the graphs in M together with the coupling graph GC that

encodes the relations between different node-layer pairs representing the same node

constitutes our proposal for a comprehensive representation of a multiplex network.

Once we have defined a graph representation of the multiplex network we can asso-

ciate matrices to it (section 1.2). The convenience of associating matrices to graph

resides in the possibility to use tools from linear algebra and random matrix theory

to study the structural properties of complex networks in general and, in particular,

multiplex networks.
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First we have introduced the supra-adjacency matrix Ā (section 1.2.1) and the

supra-Laplacian matrix L̄ that are direct generalizations of the adjacency and Lapla-

cian matrices of a graph. Due to the peculiar nature of multiplex networks, we have

also introduced multiplex walk matrices (section 1.2.3) to represent the multiple ways

a multiplex can be walked. Such matrices are needed because often it is of interest

to treat intra and inter-layer edges differently. On those matrices are based the defi-

nitions of the clustering coefficients and of the subgraph centrality we have given in

chapter 2.

Finally, we have defined a coarse-grained representation of a multiplex network

(section 1.3). This representation is just a network in which the interaction patterns

of each layer or among layers are aggregated in a single network somehow. The op-

eration can be performed in a variety of arbitrary ways. Our definition is based on

the notion of quotient graphs (section 1.3.1), that is intimately related to the parti-

tioning of the node set of a graph. Since we can recognize two natural partitions in

multiplex networks -that associated to supra-nodes and that associated to layers-, we

have been able to define two coarse-grained networks: the aggregate network, that

aggregates interactions across layers, and the network of layers that encodes the pat-

tern of interactions between layers. Having defined the coarse-grained representations

of multiplex networks through quotient graphs, we exploited the spectral interlacing

results that exists between a quotient and its parent graph. In that sense, we say

that the notion of quotient graph underpins the notion of multiplex network, since

a number of spectral properties, -and thus structural ones-, of the parent multiplex

network can be deduced from its coarse-grained representation, as we have done in

chapter 3 and in chapter 4.

We have also explored the relations between supra-walk matrices and the aggre-

gate network (section 1.4). Those relations open up an entirely new line of research

that is promising in order to understand the structural organization of multiplex net-

works and their intimately different nature in comparison to traditional monoplex

networks. Armed with the formalism developed in chapter 1, we have been able to

define some structural metrics for multiplex networks in terms of its walks matrices

(chapter 2). Based on the experience gained during the course of this thesis, we pro-

pose a list of requirements that a structural metric should fulfil in order to be properly

defined. The aim of this list is to help with the generalization of standard monoplex

metrics to multiplex networks in a systematic way, as well as to guide the theoretical
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development of new genuinely multiplex metrics. In particular, it is grounded on the

relation that exists between multiplex walk matrices and the aggregate network.

In section 2.1 we have studied triadic relations in multiplex networks by defining

multiplex generalizations of clustering coefficients. The definition already existing in

the literature has different problems, the solution of which aimed our research and

guides our list of requirement. The main point is that multiplex networks also con-

tain cycles that can traverse different additional layers but still have 3 intra-layer

steps. To take into account this, we based our definition on multiplex walk matrices.

Depending on the application, one can define a way to walk the multiplex and hence

a walk matrix from which the local and global clustering coefficients derive. It is

useful to decompose multiplex clustering coefficients into elementary cycles. This de-

composition allows, as we discuss in section 2.2, to unveil that multilayer transitivity

can arise from different mechanisms. In particular, we show that the triadic closure

mechanism in social networks is context-dependent, in the sense that triangles in one

layer are statistically more abundant than those spanning two o three layers. This

claim is based on our analytical derivation for the expected clustering coefficients in

node-aligned multiplex networks with Erdős-Rényi layers and on comparisons with

randomized versions of the empirical multiplex networks that were studied.

Clustering coefficients characterize the system at a very small topological scale.

For larger scales, we have generalized the definition of subgraph centrality of multi-

plex networks (section 2.3) capitalizing on the notion of supra-walk and walk matrices.

Those example show the power of multiplex walk matrices as a general representa-

tion of a multiplex network when studying its structural properties. The connection

given between supra-walk matrices and coarse-grained representations made it clear

the need to deal differently with inter- and intra- layer links in each situation.

In chapter 4 we have discussed the structural transitions that a multiplex network

undergoes when changing the coupling parameter p between layers. We have seen

that two critical values can be defined. Before the first point p∗ the multiplex net-

work is structurally dominated by the topological scale of the network of layers, while

after the second point p� the topological scale of the aggregate network dominates.

Focusing on the first transition at p∗, that was the first observed in literature [2, 59],

the main quantity is the algebraic connectivity, i.e., the first non-zero eigenvalue of
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the supra-Laplacian, and its associated eigenvector, named Fiedler eigenvector. Fol-

lowing [59], one can identify the algebraic connectivity with the internal energy of

a thermodynamical system, then its first derivative exhibits a discontinuity at p∗,

although its second derivative doesn’t diverge, as in second order thermodynamical

phase transitions.

On the other hand, if one identifies the algebraic connectivity with a thermo-

dynamic potential, its Legendre transform exhibits a discontinuity at p∗, as in first

order phase transitions. However, as noted in [59], “despite this interesting parallel,

it is worth noting that the Fiedler eigenvalue and its Legendre transform are not

extensive quantities and, hence, they cannot be properly regarded as thermodynamic

potentials”. However, we should note that the algebraic connectivity indeed is ex-

tensive in the number of layers, i.e. µ2 = mp for a node-aligned multiples network.

Let’s focus on the Fiedler vector, i.e., the eigenvector associated to the first non-zero

eigenvalue of the supra-Laplacian. As a consequence of the inclusion relation (see

section 3.3) between the laplacian spectrum of the network of layers an that of the

supra-Laplacian for node-aligned multiplex networks, the Fiedler vector of the whole

system is a lifting of the Fiedler vector of the network of layers before p∗, i.e., there is

a privileged direction defined by the network of layers. Therefore, the Fiedler cut of

the graph 1 only intercepts inter-layer links. At p∗ the second and third eigenvalues

swap and after p∗ the Fiedler vector has no privileged direction. As a consequence,

the Fiedler cut intercepts intra-layer links. One can interpret the Shannon entropy

of the Fielder vector as an order parameter : it is zero before p∗, while it is different

from zero after p∗.

This observation unveils the role played by symmetries. The non-analyticity of

the Fiedler eigenvalue as a function of p is a consequence of the inclusion relation that

only holds for node-aligned multiplex networks, i.e., when the partition induced by

layers is almost regular and the network of layers is a (weighted) symmetric graph.

If the multiplex is not node-aligned, the inclusion relation doesn’t hold and the al-

gebraic connectivity is analytic in p. In other words, there is no actual transition.

In [59], authors suggest to view p as a coupling parameter of a main-field multiplex

1A graph bipartition is defined as a partition of the nodes set in two clusters. Given a bipartition,
a cut is the set of edges between nodes in distinct clusters. A minimum cut is that obtained by
partitioning the nodes such that the size of the cut is the minimum possible. The Fiedler cut is the
cut obtained partitioning the nodes set according to the sign of the entries of the Fiedler vector. It
can be shown that it is a good approximation of the minimum cut [75]
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network in which a fraction p of node-layer pairs is coupled across all layers. In that

case, the mean-field is adding spurious symmetries that the real system does not have.

At this point, we are able to propose the Aggregate Equivalent Multiplex network

defined in chapter 4 as a mean-field model of the parent multiplex network, where

more spurious symmetries are added, since in the AEM all layers are identical. The

system will approach the mean-field in the limit of infinite p.

The transition at p� is better characterized in terms of an eigengap. In fact,

as observed in chapter 4, at this point a gap appears in the spectrum of the supra-

Laplacian. However, a characterization in terms of the non-analyticity of the (n+1)th

supra-Laplacian eigenvalue is also possible. Moreover, after p� this eigenvalue has the

lifted Fielder vector of the network of layers as its associated eigenvector, because

of the inclusion relation. That makes it possible the interpretation of the Shannon

entropy of that vector as an order parameter also here. The same considerations done

before regarding non node-aligned multiplex networks apply here. The non analytic-

ity in p of the (n+ 1)th supra-Laplacian eigenvalue and the behavior of the Shannon

entropy of its associated eigenvector depend on the inclusion relations of the spectrum

that only hold for node-aligned multiplex networks. Node-layer pairs with different

couplings destroy the symmetries that characterize the transitions. Because of that,

a non node-aligned multiplex networks can not display an actual transition, but only

a transition like behavior.

Finally, in Chapter 5, we have developed a theoretical framework for the study of

epidemic-like social contagion in large scale social systems. Capitalizing on the per-

turbative results on the largest eigenvalue of the supra-adjacency matrix obtained in

Chapter 3, we showed that the existence of a dominant layer sets the condition for the

emergence of a macroscopic steady state for the dynamics. Besides, the probability

of a node to catch the contagion at the critical point in a non-dominant layer is also

specified by the probability of being infected in the dominant one, making clear the

relevance of the effective multiplexity measure we have defined in Chapter 3.

Multiplex networks represent a challenge and an opportunity of innovation for the

science of complex networks. The power of complex networks science as an inter-

disciplinary toolbox resides in its high level of abstraction in representing empirical

systems in a common and well established mathematical framework. Thus, the first

basic challenge is represented by the need of a common formal language to represent
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them. On the other hand, the necessity to reconsider the very foundations of the

discipline in order to take into account the new level of complexity represented by

multiplexity, is an opportunity to enrich and refine all the mathematical parapherna-

lia that is at the core of complex networks science. This is the case, for example, of

the relation between the Laplacian spectrum and structural transitions going on in

the system.

The formal and quantitative study of multiplexity is another key step for the hy-

pothesis that the structure and function are intimately related to one another, thus

representing the natural evolution of complex networks science as a mature discipline

and the opportunity to enlarge the framework of interactions with other specialized

sciences, such as social sciences and systems biology. In the last few years, the bases

to face such challenges have been laid, this thesis being intended to be a contribution

in that line. Special effort was devoted in setting a formal language and exploring its

possibilities in the characterization of multiplex networks. In particular, the notion

of quotient graph as underpinning that of multiplex networks has proved to be useful

in order to understand the spectra, and thus the structure, of multiplex networks. In

the same way, the representation of multiplex networks in terms of multiplex walk

matrices as a base to generalize different structural metrics has proved to be versatile

enough to deal with very different empirical systems, as well as in the understanding

of the structural organization of multiplex networks and their relation to its natural

coarse-grained representation (i.e., the aggregate network).

Constructing on that, there are different possibilities for future work, among which

we want to mention a few: the statistical characterization of the Laplacian and ad-

jacency spectra of ensembles of multiplex networks; the generalization of more struc-

tural metrics in the common framework settled up by the walk matrix representation;

and finally, a deeper understanding of structural transitions in multiplex networks and

eventually their dynamical implications, especially with regard to the role played by

symmetries and correlations among and across layers.
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Appendix A

Multiplex Clustering Coefficient in
the Literature

Let A(α) denote the layer adjacency matrix for layer α. For a weighted multiplex

network, we use W(α) to denote the layer weight matrix (i.e., the weighted layer ad-

jacency matrix) for layer α. We use W to denote the weight matrix of the aggregated

sum network (See Section 1.4). The clustering coefficient that was defined in [7] for

node-aligned multiplex networks is

CBe,u =

∑
v,w

∑
αA

(α)
uv

∑
κA

(κ)
uw

∑
µA

(µ)
uw∑

v,w

∑
κA

(κ)
uv

∑
α max(A

(α)
uw , A

(α)
vw )

, (A.1)

which can be expressed in terms of the aggregated network as

CBe,u =

∑
v,wWuvWuwWvw∑

v,wWuv

∑
α max

(
A

(α)
uw , A

(α)
vw

) . (A.2)

The numerator of Eq. A.2 is the same as the numerator of the weighted clustering

coefficient CZ,u, but the denominator is different. Because of the denominator in

Eq. A.2, the values of the clustering coefficient CBe,u do not have to lie in the interval

[0, 1]. For example, CBe,u = (n− 2)b/n for a complete multiplex network (where n is

the number of nodes in the multiplex network), so CBe,u > 1 when b > n
n−2

.

References [16, 15] defined a family of local clustering coefficients for directed and

weighted multiplex networks:

CBr,u,t =

∑
α∈L

∑
v,w∈N(u,t)(W

(α)
wv +W

(α)
vw )

2|N(u, t)|m
, (A.3)

where N(u, t) = {v : |{α : A
(α)
uv = 1 and A

(α)
vu = 1}| ≥ t}, t is a threshold, and we

recall that L = {1, . . . ,m} is the set of layers. The clustering coefficient A.3 does not
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yield the ordinary monoplex local clustering coefficient for unweighted (i.e., networks

with binary weights) and undirected networks when it is calculated for the special case

of a monoplex network (i.e., a multiplex network with m = 1 layer). Furthermore, its

values are not normalized to lie between 0 and 1. For example, consider a complete

multiplex network with n nodes and an arbitrary number of layers. In this case, the

clustering coefficient A.3 takes the value of n−2 for each node. If a multiplex network

is undirected (and unweighted), then CBr,u,t can always be calculated when one is only

given an aggregated network and the total number of layers in the multiplex network.

As an example, for the threshold value t = 1, one obtains

CBr,u,1 =
1

kum

∑
v,w

Wvw

2
AuvAuwAvw , (A.4)

where A is the binary adjacency matrix corresponding to the weighted adjacency

matrix W and ku =
∑

v Auv is the degree of node u.

Reference [?] defined a clustering coefficient for multiplex networks that are not

necessarily node-aligned as

CCr,u =
2
∑

α∈L |Eα(u)|∑
α |Γα(u)|(|Γα(u)| − 1)

, (A.5)

where L = {1, . . . ,m} is again the set of layers, Γα(u) = Γ(u)∩Vα, the quantity Γ(u) is

the set of neighbors of node u in the aggregate network, Vα is the set of nodes in layer

α, and Eα(u) is the set of edges in the subgraph induced by Γα(u) in the aggregated

network. For a node-aligned multiplex network, Vα = V and Γα(u) = Γ(u), so one

can write

CCr,u =

∑
vw AuvWvwAwu

b
∑

v 6=w AuvAwu
, (A.6)

which is a local clustering coefficient for the aggregated network.

Battiston et al. [8] defined two versions of clustering coefficients for node-aligned

multiplex networks:

CBat1,u =

∑
α

∑
κ6=α

∑
v 6=u,w 6=uA

(α)
uv A

(κ)
vwA

(α)
wu

(m− 1)
∑

α

∑
v 6=u,w 6=uA

(α)
uv A

(α)
wu

, (A.7)

CBat2,u =

∑
α

∑
κ6=α

∑
µ 6=α,κ

∑
v 6=u,w 6=uA

(α)
uv A

(µ)
vwA

(κ)
wu

(b− 2)
∑

α

∑
κ6=α

∑
v 6=u,w 6=uA

(α)
uv A

(κ)
wu

. (A.8)

The first definition, CBat1,u, counts the number of ACACA-type elementary cycles;

and the second definition, CBat2,u, counts the 3-layer elementary cycles ACACAC.
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Property CM(,u) CBe,u CZ(,u) CBa,u CO,u CBr,u CCr,u CBat(1,2),u

(1) Reduces to monoplex c X X X X X X
(2) C∗ ≤ 1 X X X X X X
(3) C∗ = p in multiplex ER X X
(4) Monoplex C for copied layers X X X X X
(5) Defined for node-layer pairs X
(6) Defined for non-node-aligned X X

Table A.1: Summary of the properties of the different multiplex clustering coefficients.
The notation C∗(,u) means that the property holds for both the global version and the
local version of the associated clustering coefficient.

In both of these definitions, note that the sums in the denominators allow terms in

which v = w, so a complete multiplex network has a local clustering coefficient of

(n− 1)/(n− 2) for every node.

Reference [27] proposed definitions for global clustering coefficients using a tenso-

rial formalism for multilayer networks; when representing a multiplex network as a

third-order tensor, the formulas in [27] reduce to the clustering coefficients that we

propose (See Eq. 2.5). Parshani et al. [70] defined an “inter-clustering coefficient”

for two-layer interdependent networks that can be interpreted as multiplex networks

[1]. Their definition is similar to edge “overlap” [8]; in our framework, it corresponds

to counting 2-cycles of type (AC)2. A few other scholars [29, 73] have also defined

generalizations of clustering coefficients for multilayer networks that cannot be inter-

preted as multiplex networks [1].

In Table A.1, we show a summary of the properties satisfied by several different (lo-

cal and global) multiplex clustering coefficients. In particular, we check the following

properties. (1) The value of the clustering coefficient reduces to the values of the

associated monoplex clustering coefficient for a single-layer network. (2) The value

of the clustering coefficient is normalized so that it takes values that are less than

or equal to 1. (All of the clustering coefficients are nonnegative.) (3) The clustering

coefficient has a value of p in a large (i.e., when the number of nodes n→∞) node-

aligned multiplex network in which each layer is an independent ER network with

an edge probability of p in each layer. (4) Suppose that we construct a multiplex

network by replicating the same given monoplex network in each layer. We indicate

whether the clustering coefficient for the multiplex network has the same value as for

the monoplex network. (5) There exists a version of the clustering coefficient that is

defined for each node-layer pair separately. (6) The clustering coefficient is defined

for multiplex networks that are not node-aligned.
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Appendix B

Other Possible Definitions of
Cycles

There are many possible ways to define cycles in multiplex networks. If we relax the

condition of disallowing two consecutive inter-layer steps, then we can write

tSM,i = [(ĈAĈ)3]ii , (B.1)

tSM ′,i = [(Ĉ ′A+AĈ ′)3]ii , (B.2)

where Ĉ ′ = 1
2
βI + γC. Unlike the matrices in definition Eq. 2.1 in section 2.1.1, the

matrices ĈAĈ and Ĉ ′A+AĈ ′ are symmetric. We can thus interpret them as weighted

adjacency matrices of symmetric supra-graphs, and we can then calculate cycles and

clustering coefficients in these supra-graphs.

It is sometimes desirable to forbid the option of staying inside of a layer in the first

step of the second term of Eq. B.2. In this case, one can write

tM ′,i = [(AĈ)3 + γCA(ĈA)2]ii . (B.3)

With this restriction, cycles that traverse two adjacent edges to the focal node i are

only calculated two times instead of four times.

In this case, we simplify Eq. B.3 to obtain

tM ′,i = [2(AĈ)2AĈ ′]ii , (B.4)

which is similar to Eq. 2.2 in section 2.1.1. In Table B.1, we show the values of

the clustering coefficients that we calculate using this last definition of cycle for the

empirical networks that we studied in the main text.

An elegant way to generalize clustering coefficients for multiplex networks is to

define a new (possibly weighted) auxiliary supra-graph GM as in section 1.2.3 so that
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CC Families Bank Tailor Shop Management Tube Airline
CM ′ 0.218 0.289 0.320 0.206 0.070 0.102

C
(1)
M ′ 0.289 0.537 0.406 0.436 0.013 0.100

C
(2)
M ′ 0.202 0.368 0.338 0.297 0.041 0.173

C
(3)
M ′ - 0.227 0.288 0.192 0.314 0.086

CM ′(
1
3
, 1

3
, 1

3
) 0.164 0.377 0.344 0.309 0.123 0.120

CCr,u 0.342 0.254 0.308 0.150 0.038 0.329
CBa,u 0.195 0.811 0.612 2.019 - -
CBr,u 0.674 1.761 4.289 1.636 - -
CO,u 0.303 0.268 0.260 0.133 - -
CBe,u 0.486 0.775 0.629 0.715 - -
CBat1,u 0.159 0.199 0.271 0.169 - -
CBat2,u - 0.190 0.282 0.179 - -

Table B.1: Clustering coefficients (rows) for the same empirical networks (columns)
from Table 1 in the main text. For the Tube and the Airline networks, we only
calculate clustering coefficients for non-node-aligned networks. For local clustering
coefficients we average over all nodes, C∗,u = 1

n

∑
uC∗,u.

one can define cycles of interest as weighted 3-cycles in GM .

Once we have a function that produces the auxiliary supra-adjacency matrix M =

M(A, C), we can define the auxiliary complete supra-adjacency matrixMF =M(F , C).
One can then define a local clustering coefficient for node-layer pair i with the formula

ci =
(M3)ii

(MMFM)ii
. (B.5)

As with a monoplex network, the denominator written in terms of the complete matrix

MF is equivalent to the usual one written in terms of connectivity. We thereby

consider the connectivity of a node in the supra-graph induced by the multiplex walk

matrix M.

A key advantage of defining clustering coefficients using an auxiliary supra-graph is

that one can then use it to calculate other diagnostics (e.g., degree or strength) for

nodes. One can thereby investigate correlations between clustering-coefficient values

and the size of the multiplex neighborhood of a node. (The size of the neighborhood

is the number of nodes that are reachable in a single step via connections defined by

matrix M.)
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We can write the symmetric multiplex walk matrices in Eqs. B.1 and B.2 as

MSM =ĈAĈ , (B.6)

MSM ′ =(Ĉ ′A+AĈ ′) . (B.7)

To avoid double-counting intra-layer steps in the definition of MSM ′ , we need to

rescale either the intra-layer weight parameter β (i.e., we can write Ĉ ′ = β′I + γC =
1
2
βI + γC) or the inter-layer weight parameter γ [i.e., we can write Ĉ ′ = βI + γ′C =

βI + 2γC and also define MSM ′ = 1
2
(AĈ ′ + Ĉ ′A)].

Consider a supra-graph induced by a multiplex walk matrix. The distinction between

the matrices MSM and MSM ′ is that MSM also includes terms of the form CAC
that take into account walks that have an inter-layer step (C) followed by an intra-

layer step (A) and then another inter-layer step (C). Therefore, in the supra-graph

induced byMSM , two nodes in the same layer that are not adjacent in that layer are

nevertheless adjacent if the same nodes are adjacent in another layer.

The matrix Ĉ sums the contributions of all node-layer pairs that correspond to the

same physical node when β = γ = 1. In other words, if we associate a vector of the

canonical basis ei to each node-layer pair i, then

Ĉei =
∑

j∈l−1(i)

ej (B.8)

produces a vector whose entries are equal to 1 for nodes that belong to the basis

vector and which are equal to 0 for nodes that do not belong to that vector.

Consequently, MSM is related to the weighted adjacency matrix of the aggregated

graph for β = γ = 1. To be precise, we obtain the following relation:

(ĈAĈ)ij = Wuv , i ∈ l(u), j ∈ l(v) . (B.9)

Taking into account the 1.31 in 1.4, the same relation can be written in the compact

form:

ĈAĈ = SnWSTn (B.10)

One can also write the multiplex clustering coefficient induced by Eq. 2.1 in terms

of the auxiliary supra-adjacency matrix by considering Eq. 2.2, which is a simplified

version of the equation that counts cycles only in one direction. This yields

MM =
3
√

2AĈ . (B.11)

The matrix MM is not symmetric, which implies that the associated graph is a

directed supra-graph. Nevertheless, the clustering coefficient induced by MM is the

same as that induced by its transpose MT
M if A is symmetric.
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Appendix C

Null Model for Shuffling
Inter-layer Connections

In Table C.1, we compare empirical values of layer-decomposed global clustering

coefficients with clustering-coefficient values for a null model in which we preserve

the topology of each intra-layer network but for which we independently shuffle the

labels of the nodes inside of each layer.

That is, for each intra-layer network Gα = (V α, Eα) we choose a permutation π :

V α 7→ V α uniformly at random and construct a new multiplex network starting from

{π(Gα)}, where π(Gα) = (π(V α), π(Eα)) and π(Eα) = {(π(u), π(v))|(u, v) ∈ Eα}. In

this way, we effectively randomize inter-layer edges but preserve both the structure of

intra-layer networks and the number of inter-layer edges between each pair of layers.

For our comparisons using this null model, most of the clustering coefficients take

values that are significant for our data sets (see Table C.1). Because of the way that

we construct the null model, the global single-layer clustering coefficients are exactly

the same for the original data and the null model.
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Appendix D

A Simple Example illustrating
differences between different
multiplex clustering coefficients

Figure D.1: A simple, illustrative
example of a multiplex network.

We now use a simple example (see Fig. D.1) to illustrate the differences between

the different notions of a multiplex clustering coefficient. Consider a two-layer mul-

tiplex network with three nodes in layer a1 and two nodes in layer a2. The three

node-layer pairs in layer a1 form a connected triple, the two node-layer pairs that

are not part of this connected triple are adjacent via inter-layer edges to the two

node-layer pairs in layer a2, and these last two node-layer pairs are adjacent to each

other.

The adjacency matrix A for the intra-layer graph is

A =


0 1 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 , (D.1)

and the adjacency matrix C of the coupling supra-graph is

C =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 . (D.2)
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Therefore, the supra-adjacency matrix is

Ā =


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

 . (D.3)

The multiplex walk matrix MM is

MM =
3
√

2


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
0 0 1 0 1
0 1 0 1 0

 , (D.4)

and we note that it is not symmetric. For example, node-layer pair (2, a2) is reach-

able from (1, a1), but node-layer pair (1, a1) is not reachable from (2, a2). The edge

[(1, a1), (2, a2)] in this supra-graph represents the walk {(1, a1), (2, a1), (2, a2)} in the

multiplex network. The symmetric walk matrix MSM ′ is

MSM ′ =


0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0

 . (D.5)

The matrixMSM ′ is the sum ofMM andMT
M with rescaled diagonal blocks in order

to not double-count the edges [(1, a1), (2, a1)] and [(1, a1), (3, a1)]. Additionally,

MSM =


0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

 , (D.6)

which differs from MSM ′ in the fact that node-layer pairs (2, a1) and (3, a1) are

connected through the multiplex walk {(2, a1), (2, a2), (3, a2), (3, a1)}.
The adjacency matrix of the aggregated graph is

W =

 0 1 1
1 0 1
1 1 0

 . (D.7)

That is, it is a complete graph without self-edges.

We now calculate c∗,i using different definitions of a multiplex clustering coefficient.
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To calculate cM,i, we need to compute the auxiliary complete supra-adjacency matrix

MF
M according to Eq. B.11. We obtain

MF
M =

3
√

2FĈ =
3
√

2


0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0

 . (D.8)

The clustering coefficient of node-layer pair (1, a1), which is part of two triangles that

are reachable along the directions of the edges, is

cM,(1,a1) =
1

2
. (D.9)

For node-layer pair (2, a1), we get

cM,(2,a1) = 1 , (D.10)

which is the same as the clustering-coefficient values of the remaining node-layer pairs.

To calculate cSM ′,i, we need to compute MF
SM′ , which we obtain using Eq. B.7. We

thus obtain

MF
SM ′ = FĈ + ĈF =


0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

 . (D.11)

In the supra-graph associated with the supra-adjacency matrix FĈ + ĈF , all node-

layer pairs are adjacent to all other node-layer pairs except those that correspond to

the same physical nodes.

The clustering coefficient of node-layer pair (1, a1), which is part of six triangles, is

cSM ′,(1,a1) =
1

2
= cM,(1,a1) . (D.12)

The clustering coefficient of node-layer pair (2, a1), which is part of one triangle, is

cSM ′,(2,a1) = 1 . (D.13)

To calculate cSM,i, we compute MF
SM using Eq. B.6. We thus obtain

MF
SM = ĈFĈ =


0 1 1 1 1
1 0 2 0 2
1 2 0 2 0
1 0 2 0 2
1 2 0 2 0

 . (D.14)
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The only difference between the graphs associated with the matrices ĈFĈ and FĈ +

ĈF is the weight of the edges in ĈFĈ that take into account the fact that intra-layer

edges might be repeated in the two layers.

The clustering coefficient of node-layer pair (1, a1), which is part of eight triangles, is

cSM,(1,a1) =
8

12
=

2

3
. (D.15)

The clustering coefficient of node-layer pair (2, a1), which is part of four triangles, is

cSM,(2,a1) =
4

6
=

2

3
. (D.16)

Because we are weighting edges based on the number of times an edge between

two nodes is repeated in different layers among a given pair of physical nodes in the

normalization, none of the node-layer pairs has a clustering coefficient equal to 1. By

contrast, all nodes have clustering coefficients with the same value in the aggregated

network, for which the layer information has been lost. In particular, they each

have a clustering-coefficient value of 1, independent of the definition of the multiplex

clustering coefficient.
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Appendix E

Random Boolean Multilevel
Networks

The material presented in this appendix was developed during the very early stage of

the investigation reported in this thesis. Partially because of that, it is in a notation

and in a formal language slightly different from the rest of the thesis. Although it

would have been possible to fit it in the homogeneous framework developed in the

first chapter of this thesis, we think that its original formulation is better suited to

represent Multilevel Boolean Networks. For these reasons, we present it here in a

separate appendix and not in the main text.

Nearly four decades ago, Random Boolean Networks (RBNs) were introduced as a

way to describe the dynamics of biochemical networks [49, 12, 4, 13, 52, 51, 26]. RBNs

consider that each gene of a genetic regulatory network is a node of a directed graph,

the direction corresponding to the effect of one gene on the expression of another.

The nodes can be in one of two states: they are either on (1) or off (0) - i.e. in

the case of a gene its target protein is expressed or not. The system so composed

evolves at discrete time steps. At each time step nodes are updated according to a

boolean rule assigned to each node that is a function of its inputs. Notwithstand-

ing the high simplicity of RBNs models, they can capture the behavior of some real

regulatory networks [54] allowing for the study of several dynamical features, above

all their critical properties. However, although some coupled Boolean networks have

been investigated [86, 85], the vast majority of works has considered RBNs as classical

monoplex networks.

The previous description implicitly assumes that all biochemical signals are equiv-

alent and then collapses information from different pathways. Actually, in cellular

biochemical networks, many different signaling channels do work in parallel [60, 72],

i.e., the same gene or biochemical specie can be involved in a regulatory interaction,
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in a metabolic reaction or in another signaling pathway. Considering that different

operational levels (pathways) are interconnected layers of interaction is a more ac-

curate set up for the topology of biochemical networks. Thus, this topology is more

consistent with a multiplex network in which each level would represent the different

signaling pathways or channels the element participates in. On the other hand, ac-

counting for the multilevel nature of the system dynamics also represents a point of

interest by itself, as this allows to inspect what are the consequences of new ways of

interdependency between the structure and the dynamics. In this sense, a Boolean

dynamic is general enough so as to serve as a null model for many other complex

dynamical processes.

We inspect a Boolean multiplex network model, in which each node participates in

one or more layers of interactions, being its state in a layer constrained by its own

state in another layer. Therefore, we focus on the case of canalizing rules as a way to

integrate information across layers. Boolean functions are canalizing if whenever the

canalizing variable takes a given value, the canalizing one, the function always yields

the same output. Capitalizing on a semi-annealed approximation, we analytically and

numerically study the conditions defining the stability of the aforementioned system.

By doing so, we show that the interdependency between the layers can be enough to

either stabilize the different levels or the whole system. Remarkably, this also hap-

pens for parameter values where the sub-systems, if isolated, were unstable.

To make thing simple, we use an ad-hoc representation of the multiplex network in

that case, which came directly by how boolean rules at different levels integrate. Even

if this representation is consistent with that of 1, and can be rewritten in those terms,

we prefer to leave it in its original formulation.

We encode the structure of the multiplex in two objects. First, we have the partic-

ipation matrix P = piα,as in chapter 1 , whose elements are 1 if node i appears in

layer α and 0 otherwise. Secondly, we introduce an adjacency tensor, Aijα, whose

elements are 1 if there is a link between nodes i and j in layer α and 0 otherwise. The

adjacency tensor Aijα is just another way to represent intra-layer connections, more

compact then the intra-layer adjacency matrix A. In terms of the adjacency tensor,

the total degree of node i will be Ki =
∑

jαAijα =
∑

αKiα, where Kiα is the degree

of node i in layer α. We remember that the multiplexity degree of a node is defined

as the number of layers in which it appears as κi =
∑

α piα. Note that the number of

different nodes in the multiplex will be then Ñ = NM −
∑

i(κi − 1).

Next, let us consider a state vector

x̃(t) = (x̃1(t), ..., x̃Ñ(t)), (E.1)
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where x̃i(t) ∈ {0, 1} and a set of update functions such that

x̃i(t) = f̃i(x̃j∈Γin
α (i)(t− 1)). (E.2)

where Γin
α(i) refers to all the incoming neighbors j of node i at each layer α, with

α = 1 . . .M .

Equations (E.1-E.2) define a Boolean multiplex network. In addition, due to the

multiplex nature of the network, we also define a set of update functions for each

layer as

xli(t) = f li ((x̃j∈Γin
l (i)(t− 1))). (E.3)

where now the arguments of the function are restricted to the specific layer α = l.

Equation (E.3) governs how each node is updated in each layer. So, Eq. (E.2) can be

rewritten as

x̃i(t) = f̃i(f
1
i , . . . f

M
i ), (E.4)

where f̃i is a canalizing function of its inputs. These definitions allow investigating

how the stability of the Boolean model is affected by the multiplex structure of the

system and by the existence of nodes with different multiplexity degrees.

E.1 The Average Sensitivity

We first inspect the dependency of the average sensitivity sf , which has been shown

to be a useful order parameter in RBNs [88, 56], on the multiplexity degree κi. Fol-

lowing [74], we write the activity afj of the variable xj in a function f of K inputs

as afj = 1
2K

∑
x∈{0,1}

∂f(x)
∂xj

, where ∂f(x)
∂xj

= f(x(j,0)) ⊕ f(x(j,1)) and x(j,R) represents a

random vector x ∈ 0, 1 with the jth input fixed to R and ⊕ is the arithmetic addition

modulo 2.

Similarly, assuming that the inputs are also uniformly distributed, the average sensi-

tivity is equal to the sum of the activities, i.e., sf =
∑K

i=1E[χ[f(x⊕ ei) 6= f(x)]] =∑K
i=1 a

f
j , where ei is a zeroes vector with 1 in the i-th position, and χ[A] is an indi-

cator function that is equal to 1 if and only if A is true.

To illustrate how multiplexity affects the sensitivity of a node, without loss of gener-

ality, we study analytically and numerically a multiplex network of two layers. Let

us denote by p the bias of the Boolean functions, and α and β the two respective

layers. A node i in our model depends on the state of its neighbors in layer α and

also on the state of its neighbors in β via the auxiliary function f̃β. Suppose that the

canalizing state in α and β is 1 (the discussion for 0 would be identical). Then, the
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updating function of i can be written as f̃i(f
α
i , f

β
i ) = fα ∨ fβ, being ∨ the Boolean

operator OR. From the definition of the activities and the previous relation, it follows

that E[af̃j ] = 2−(κi−1)2p(1− p), which is different from the value one would obtain in

the case of a simple canalizing function. Similarly, for the sensitivity one gets

E[s̃f̃ ] = 2−(κi−1)
∑
α

E[sf
α

], (E.5)

where E[sf
α
] = 2p(1− p)Kα is the expected average sensitivity of a function in layer

α if it were isolated.

E.2 Semi-annealed approximation

We study the stability of the Boolean multiplex system using a semi-annealed approx-

imation. This approach considers the network as a static topological object while the

update functions f li (l = α, β) are assigned randomly at each time step as well as

the couplings. Thus, we can write the update function for the components of the

difference vector ỹ(t) = 〈| x̃(t)− ˆ̃x(t) |〉, where ˆ̃x is a perturbed replica of x̃ in which

a (small) fraction of the nodes were flipped, yielding

ỹi(t) = q̃i[1−
∏
j∈Γi

(1− ỹj(t− 1))] (E.6)

which is equivalent to the expression derived in [74], but also taking into account Eq.

(E.5), with qi = 2p(1−p) for a monoplex network and Γi being the set of all neighbors

of i in all layers. Considering a small perturbation, linearization of Eq. (E.6) around

the fixed point solution ỹ(t) = 0 leads to

ỹi(t+ 1) ≈ 2−(κi−1)qi

M∑
α=1

N∑
j=1

Aijαỹj(t) (E.7)

that can be written in matrix form as ỹ(t+1) =
∑

αQαỹ(t), withQijα = 2−(κi−1)qiAijα.

The largest eigenvalue, λQ, of the matrix Q =
∑

αQα governs the stability of the sys-

tem [74]. It is worth noticing that the latter refers to the stability condition for

the whole system and, given a fixed topology for each layer, it depends on the mul-

tiplexity degree. For the case of nonuniform κi we obtain an analogous mean-field

approximation to λQ in [74],

λQ ≈
〈2−(κi−1)qiK

in
i K

out
i 〉

〈K〉
, (E.8)
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Figure E.1: Color-coded average
Hamming distance for the whole
system with fixed observed con-
nectivity 〈Ko〉 = 2.9 for different
values of the hidden connectivity
〈Kh〉, and the probability for a
node in a layer to be present also
in the other layer σ. The network
is composed of N = 103 nodes
per layer as explained in Fig ??.
The continuos line is the solution
(zeros) of Eq. (E.11). Simula-
tions were performed for an initial
Hamming distance of 0.01 and the
results are averages over 50 real-
izations of the network and 300
random initial conditions.

where 〈K〉 is the average degree of the multiplex. Note that the stability of the

multiplex depends on κi and K in
i K

out
i , which, in general, are not independent variables

− thus, q̃i and Ki are anticorrelated. To find the critical condition let P̃ (κ = n) be

the probability that a node in the whole system has multiplexity degree n. This

magnitude depends on the same quantity but at the single layer level as P̃ (κ = n) =
N
Ñ
M
n
P (κ = n), where P (κ = n) is the probability that a randomly chosen node of a

layer has multiplexity degree n. For the average degree of the multiplex we have:

〈K〉 =
∑
n

(
M−1
n−1

)(
M
n

) P̃ (κ = n)
∑
l

〈Kl〉 =
N

Ñ

∑
l

〈Kl〉, (E.9)

where 〈Kl〉 is the average degree of layer l.

Inserting the previous expression into Eq. (E.8) and considering the case in which

there are no correlations between Kin and Kout, one gets,

〈q̃〉
∑
l

〈Kl〉 −
2(M〈q̃〉 − 〈κq̃〉)

M − 1

∑
l1<l2

〈Kl1〉〈Kl2〉∑
l〈Kl〉

= 1, (E.10)

with l1 = 1 . . . ,M , l2 = 1 . . . ,M and 〈q̃〉 =
∑M

n=1 q̃(κ = n)P (κ = n) is the average

sensitivity on a layer. It is worth noticing that the first term on the l.h.s. of Eq. (E.10)

is the expression one would obtain using an annealed approximation. The second term

is always positive. Therefore, it captures the stabilizing effects of multiplexity, rightly

predicting ordered behavior in regions in which the annealed approximation would

not.
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Figure E.2: The lines are the solu-
tion (zeros) of Eq. (E.11) for dif-
ferent values of the hidden con-
nectivity 〈Kh〉, the observed con-
nectivity 〈Ko〉 and the probability
of a node belongs to both layers
σ. We have set qi = q = 1

2
.

E.3 Numerical Simulations for a two-layers system

Once we have derived the critical condition for a system made up of an arbitrary

number of layers, let us compare the analytical results with numerical simulations for

a two-layers system with qi = q. Let σ be the probability for a node in a layer to be

present also in the other layer, then we have P (κ = 2) = σ and P (κ = 1) = 1 − σ.

Besides, for the sake of simplicity, consider that the average connectivity of one layer

is observed, 〈Ko〉, and fixed (for instance, because one measures it), and that the

average connectivity of the other layer is unknown or hidden 〈Kh〉. Recalling that

the size of the multiplex system is Ñ = (2− σ)N −where N is the number of nodes

per layer−, the mean connectivity 〈K〉 can be written as 〈K〉 =
〈Kh〉+〈Ko〉

(2−σ)
, which

leads to the following expression for the critical condition of the two-layers system

2− σ
4

(〈Kh〉+ 〈Ko〉)− (1− σ)
〈Kh〉〈Ko〉
〈Kh〉+ 〈Ko〉

=
1

2q
(E.11)

that as a function of σ and 〈Kh〉 gives an hyperbolic critical curve.

To verify that our analytical calculations are valid, we have performed extensive

numerical simulations of the Boolean dynamics on a random multiplex network made

up of two layers in which N nodes are randomly connected among them and only a

fraction σ of them are present on both layers. As it is customarily done, we test the

stability of the system by measuring the long-time Hamming distance for different

trajectories generated from two close initial states. Figure 3.2 shows the results

obtained when the mean connectivity 〈Ko〉 of a layer is fixed and both σ and the

mean connectivity of the other layer 〈Kh〉 change (the Hamming distance is color

coded as indicated). First, we note that the transition from stability to an unstable

regime nicely agrees with the theoretical prediction. Secondly, it is worth highlighting
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Figure E.3: (color online) Critical curves for a network made up of 104 nodes per
layer as a function of the probability of a node to be part of both layers σ, and the
hidden connectivity 〈Kh〉. The blue line corresponds to the critical curve when a
single layer is observed while the red one refers to the whole system. The rest of
simulation parameters are the same as for the other figures.

a new effect linked to the multi-level nature of the system: the region of low 〈Kh〉 and

low σ is unstable despite the fact that those values of 〈Kh〉 would make the hidden

layer, in a simplex graph description, stable. However, due to the low coupling (σ),

the instability of the multiplex is determined by that of the observed layer, the leading

one. Admittedly, when increasing the coupling σ the stable (hidden) layer is able to

stabilize the whole system.

We have further explored the dependency between the stability of the multiplex and

the average degrees of both layers. Figure E.2 shows the analytical solution of Eq.

(E.11) for different values of 〈Kh〉 and 〈Ko〉. The results show a very rich phase

diagram. Depending on the values of both connectivities, a double transition from a

chaotic regime to an ordered one and again to another chaotic regime is predicted.

More interestingly, the transition from the ordered to the disordered regime does not

depend on σ only when both layers operate at their respective critical points, namely,

when 〈Kh〉 = 〈Ko〉 = 1/q = 2.

Up to now, we have analyzed the stability of the multiplex system. In practice, it

is more common to have access to only one layer, so that one can measure the stability

of that layer given that it is connected to a hidden (inaccessible) one. Therefore, it is

also important to inspect the stability condition of a single layer within the multiplex.

To this end, we should solve Eq. (E.8) taking into account only the nodes that belong
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to the layer whose stability is scrutinized. In this case, the critical condition reads

σ

4
(〈Kh〉2 − 〈Ko〉2 + 2〈Kh〉〈Ko〉) +

〈Ko〉2

2
=
〈Ko〉+ σ〈Kh〉

2q
. (E.12)

Figure E.3 compares results of simulations for a larger network of N = 104 nodes

per layer with the theoretical solution (Eq. (E.12), blue line) showing again a good

agreement between analytical and simulation results. Remarkably, the results show

that a single ingredient −the multilevel nature of the system − can explain why there

are biologically stable systems that are however theoretically expected to operate in

the unstable regime (i.e., their average degree is larger than 1/q). In other words,

the sole reason could be that these systems are not isolated, but are coupled to

other hidden layers that, if ordered, can stabilize the system. Finally, for the sake of

comparisons, we have also represented in Fig. E.3 (red line) the case shown in Fig.

3.2 but for the same larger system size.

98



Bibliography

[1] Kivela M. Arenas A. Barthelemy M. Gleeson J. P. Moreno Y. Porter M. A.

Multilayer networks. Journal of Complex Networks, 2(3):203–271, 2014.

[2] Radicchi F. Arenas A. Abrupt transition in the structural formation of inter-

connected networks. Nat. Phys., 9:717–720, 2013.

[3] Sebastian E Ahnert, Diego Garlaschelli, TMA Fink, and Guido Caldarelli. En-

semble approach to the analysis of weighted networks. Physical Review E,

76(1):016101, 2007.

[4] Maximino Aldana, Susan Coppersmith, and Leo P Kadanoff. Boolean dynamics

with random couplings. In Perspectives and Problems in Nolinear Science, pages

23–89. Springer, 2003.

[5] Juan A Almendral and Albert Dı́az-Guilera. Dynamical and spectral properties

of complex networks. New Journal of Physics, 9(6):187, 2007.

[6] Alex Arenas, Albert Dı́az-Guilera, and Conrad J Pérez-Vicente. Synchroniza-
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Yamir Moreno, Mason A Porter, Sergio Gómez, and Alex Arenas. Mathematical
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[48] Márton Karsai, Mikko Kivelä, Raj Kumar Pan, Kimmo Kaski, János Kertész,
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