52 research outputs found

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions

    Finite element model set-up of colorectal tissue for analyzing surgical scenarios

    Get PDF
    Finite Element Analysis (FEA) has gained an extensive application in the medical field, such as soft tissues simulations. In particular, colorectal simulations can be used to understand the interaction with the surrounding tissues, or with instruments used in surgical procedures. Although several works have been introduced considering small displacements, as a result of the forces exerted on adjacent tissues, FEA applied to colorectal surgical scenarios is still a challenge. Therefore, this work aims to provide a sensitivity analysis on three geometric models, taking in mind different bioengineering tasks. In this way, a set of simulations has been performed using three mechanical models named Linear Elastic, Hyper-Elastic with a Mooney-Rivlin material model, and Hyper-Elastic with a YEOH material model

    Essential techniques for laparoscopic surgery simulation

    Get PDF
    Laparoscopic surgery is a complex minimum invasive operation that requires long learning curve for the new trainees to have adequate experience to become a qualified surgeon. With the development of virtual reality technology, virtual reality-based surgery simulation is playing an increasingly important role in the surgery training. The simulation of laparoscopic surgery is challenging because it involves large non-linear soft tissue deformation, frequent surgical tool interaction and complex anatomical environment. Current researches mostly focus on very specific topics (such as deformation and collision detection) rather than a consistent and efficient framework. The direct use of the existing methods cannot achieve high visual/haptic quality and a satisfactory refreshing rate at the same time, especially for complex surgery simulation. In this paper, we proposed a set of tailored key technologies for laparoscopic surgery simulation, ranging from the simulation of soft tissues with different properties, to the interactions between surgical tools and soft tissues to the rendering of complex anatomical environment. Compared with the current methods, our tailored algorithms aimed at improving the performance from accuracy, stability and efficiency perspectives. We also abstract and design a set of intuitive parameters that can provide developers with high flexibility to develop their own simulators

    Essential techniques for improving visual realism of laparoscopic surgery simulation.

    Get PDF
    With the prevalence of laparoscopic surgery, the request for reliable training and assessment is becoming increasingly important. The traditional way of training is both time consuming and cost intensive, and may cause ethical or moral issues. With the development of computer technologies, virtual reality has entered the world of consumer electronics as a new way to enhance tactile and visual sensory experiences. Virtual reality based surgical skill training gradually becomes an effective supplementary to the traditional laparoscopic skill training in many surgical theatres. To provide high fidelity virtual surgery training experiences, the presentation of the virtual world should have the same level of realism as what surgeons see and feel during real operations. However, the weak computing power limits the potential level of details on the graphics presentation and physical behaviour of virtual objects, which will further influence the fidelity of tactile interaction. Achieving visual realism (realistic graphics presentation and accurate physical behaviour) and good user experience using limited computing resources is the main challenge for laparoscopic surgery simulation. The topic of visual realism in laparoscopic surgery simulation has not been well researched. This topic mainly relates to the area of 3D anatomy modeling, soft body simulation and rendering. Current researches in computer graphics and game communities are not tailored for laparoscopic surgery simulation. The direct use of those techniques in developing surgery simulators will often result in poor quality anatomy model, inaccurate simulation, low fidelity visual effect, poor user experience and inefficient production pipeline, which significantly influence the visual realism of the virtual world. The development of laparoscopic surgery simulator is an interdiscipline of computer graphics, computational physics and haptics. However, current researches barely focus on the study of tailored techniques and efficient production pipeline which often result in the long term research cycle and daunting cost for simulator development. This research is aiming at improving the visual realism of laparoscopic surgery simulation from the perspective of computer graphics. In this research, a set of tailor techniques have been proposed to improve the visual realism for laparoscopic surgery simulation. For anatomy modeling, an automatic and efficient 3D anatomy conversion pipeline is proposed which can convert bad quality 3D anatomy into simulation ready state while preserving the original model’s surface parameterization property. For simulation, a soft tissue simulation pipeline is pro- posed which can provide multi-layer heterogeneous soft tissue modeling and intuitive physically editable simulation based on uniform polynomial based hyperelastic material representation. For interaction, a collision detection and interaction system based on adaptive circumphere structure is proposed which supports robust and efficient sliding con- tact, energized dissection and clip. For rendering, a multi-layer soft tissue rendering pipeline is proposed which decomposed the multi-layer structure of soft tissue into corresponding material asset required by state-of-art rendering techniques. Based on this research, a system framework for building a laparoscopic surgery simulator is also proposed to test the feasibility of those tailored techniques

    Copyright Protection of 3D Digitized Sculptures by Use of Haptic Device for Adding Local-Imperceptible Bumps

    Get PDF
    This research aims to improve some approaches for protecting digitized 3D models of cultural heritage objects such as the approach shown in the authors\u27 previous research on this topic. This technique can be used to protect works of art such as 3D models of sculptures, pottery, and 3D digital characters for animated film and gaming. It can also be used to preserve architectural heritage. In the research presented here adding protection to the scanned 3D model of the original sculpture was achieved using the digital sculpting technique with a haptic device. The original 3D model and the model with added protection were after that printed at the 3D printer, and then such 3D printed models were scanned. In order to measure the thickness of added protection, the original 3D model and the model with added protection were compared. Also, two scanned models of the printed sculptures were compared to define the amount of added material. The thickness of the added protection is up to 2 mm, whereas the highest difference detected between a matching scan of the original sculpture (or protected 3D model) and a scan of its printed version (or scan of the protected printed version) is about 1 mm

    Development of laparoscopic cholecystectomy simulator based on unity game engine

    Get PDF
    Fast development of the minimally invasive surgery (MIS) technology demands extra surgical skills training to meet advanced technological challenges. However, massive capital expenditures and ethical issues with safety considerations exist in traditional surgical training methods (e.g. using cadavers or animals). Those limitations turn Virtual Reality (VR) surgery simulation into a plausible alternative to provide a safe and repeatable virtual training environment. In this paper, we design and develop a game engine based laparoscopic cholecystectomy training simulator for surgeons to understand the surgery procedure and practice their surgical skills as well as decision making skills. Our design leverages physical simulation and haptic force feedback to offer trainees a realistic visual and tactile experience, respectively. We explore the possibility of using game engine rather than developing from scratch to build the surgical simulator. Based on the results and user feedbacks from a pilot experiment, we conclude that game engine is a viable option for creating a cost-effective, flexible and highly interactive virtual surgery training platform for pedagogical purpose, which can shorten the development time with some compromise in functionality

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    • …
    corecore