

School of Electrical Engineer and Computing

Department of Computing

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual

Surgery

Jie Peng

This thesis is presented for the degree of

Doctor of Philosophy

of

Curtin University

November 2013

I

Declaration

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgment has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

Signature: ________________

Date: 8
th

 November 2013

II

Abstract

Virtual simulation techniques have experienced a great deal of progress in the last

couple of decades. It has been anticipated that such techniques could be very

beneficial for medical training and pre-surgery planning. It is widely accepted that a

reform in medical teaching must be made to meet today’s high volume training

requirements. Receiving pre-training in a core set of surgical skills and procedures

before novice practitioners are exposed to the traditional apprenticeship training

model could reduce both the skill acquisition time and the risks patients are exposed

to due to surgeon inexperience. Virtual simulation offers a potential method of

providing such trainings and some current medical training simulations integrate

haptic and visual feedback to enhance procedure learning. One of the most important

advantages of computer simulators for surgical training is the opportunity they offer

for independent learning, so that the novice doctors could learn and practice surgical

skills as many times as required which is not possible in traditional apprenticeship

training model. Even for experienced surgeons, virtual simulations provide them the

opportunity to sharpen their skills on new surgical procedures or to plan and practice

prior to performing an actual surgery.

The purpose of this project is to explore the capability of Virtual Reality (VR)

technology to develop a training simulator for surgical cutting and bleeding in a

general surgery. Two specific research contributions are presented.

Firstly, this thesis shows that surface-only cutting is not sufficient for resembling the

real surgical cutting as a great deal of information about interior structures would be

generally disregarded. Although volumetric model could present large information

about the internal structures and material properties, physically based realistic

topology modification and deformation on volume data is far from being able to

implement in real time, even if GPU accelerated integration schemes are used. This

thesis proposes to combine the surface model and volume model into a hybrid model

for surgical cutting and deformation. The outer surface is responsible for smooth

realistic cutting while the inner volumetric model is employed for groove generation

and presenting internal structures after cutting. In this way, the user could get the

III

realistic visual feedback during progressive surface cutting, and subsequently could

focus on the exploration of the internal structures.

Secondly, this thesis proposes a method to simulate the bleeding effects during the

virtual surgical cutting and bone drilling. Bleeding is a common phenomenon during

a real surgery, and blood provides a very important and unique visual cue for the

surgeon. Hence the inclusion of bleeding in a surgical simulation system is essential

for a novice doctor to be well trained. The bleeding effect is implemented using a

light texture based approach. It could create a realistic visual effect in real time

without introducing major additional computational cost to the CPU by utilizing the

parallel many-core architecture of the GPU for both the computation and rendering

of the fluid.

This thesis implements and evaluates a system that integrated the two proposed

modules to perform the task of simulating surgical cutting and bleeding. A haptic

device is incorporated to allow the user to interact with virtual objects, and the force

feedback is integrated into the system as well. Different force models are designed

and implemented in different stage of the whole interactive process of the simulated

surgical procedures. The user could not only get the visual feedback, but also feel the

haptic feedback, and to be exposed to the full experience of a real surgery as much as

possible. Experiments are conducted using openly available resources such as H3D

and VHTK on some real patient CT images and several surgery scenarios are

simulated. Our results demonstrate the great potential for designing plausible surgical

simulator with complex fluid effects in real-time, particularly for virtual reality

simulator with kinaesthetically interaction.

IV

Acknowledgement

I would like to thank many people who have made this thesis possible and who have

made the last four years a stimulating and very enjoyable experience.

In particular, I would like to express my sincere gratitude to my supervisor, Professor

Ling Li at Curtin University, for her generous guidance and invaluable advice. I

would also like to express my thanks to my co-supervisor Andrew Squelch for his

excellent comments and valuable discussion.

I must thank all the people on the H3D Forum who made their software (H3DAPI

and VHTK) available for free on the Web, and always provide invaluable solutions

to my problems and confusions with great patience. In addition, special thanks must

go to the China Scholarship Council (CSC) and Curtin International Postgraduate

Research Scholarships (CIPRS) for providing me with a scholarship, without which I

could not have accomplished this project.

I greatly thank my colleagues, En Peng, Li Zhang, Yi Zhang and Gongqi Lin, for

their great support and friendship during the four years in the Computing Department

of Curtin University.

Finally, I would like to extend my gratitude to my family for allowing me to talk

endlessly about the difficulties as a PhD student. Thank you to my parents who are

always my strongest backing. Last but not least, I would like to say ‘thank you’ to

my husband, Derek, who has always been encouraging and supportive with love and

great passion throughout the period of my studies, and has helped me a lot with the

formatting of this thesis.

V

Contents

Declaration .. I

Abstract ... II

Acknowledgement ... IV

Contents... V

Chapter 1 Introduction .. 1-1

1.1 AIMS AND APPROACHES ... 1-5

1.1.1 Aims ... 1-5

1.1.2 Approaches .. 1-6

1.2 STRUCTURE OF THE THESIS .. 1-7

Chapter 2 Literature Review .. 2-1

2.1 OVERVIEW OF VIRTUAL SURGERY .. 2-3

2.1.1 Simulators for Needle-based Procedures ... 2-4

2.1.2 Simulators for Minimally Invasive Surgery .. 2-5

2.1.3 Simulators for Open Surgery .. 2-8

2.2 DATA SOURCES AND PREPROCESSING .. 2-9

2.3 SOFT TISSUE MODELLING .. 2-11

2.3.1 Geometry-based Techniques ... 2-12

2.3.2 Physics-based Techniques .. 2-13

2.3.2.1 Mass-spring Model ... 2-13

2.3.2.2 FEM ... 2-14

2.3.2.3 PAFF .. 2-14

2.4 SURFACE CUTTING ... 2-14

2.4.1 Definition of the Cut Path .. 2-15

2.4.2 Primitive Removal and Re-meshing ... 2-17

2.4.3 Number of New Primitives or Primitives Created .. 2-18

2.4.4 When Re-meshing is Performed ... 2-19

2.4.5 Representation of the Tool .. 2-19

VI

2.4.6 Section Summary ... 2-20

2.5 VOLUME DEFORMATION .. 2-21

2.6 BLOOD SIMULATION .. 2-24

2.7 HAPTIC INTERACTION... 2-28

2.8 CHAPTER SUMMARY .. 2-30

Chapter 3 Real-time Hybrid Surgery Cutting 3-1

3.1 INTRODUCTION... 3-1

3.2 SURFACE MANIPULATION ... 3-3

3.2.1 Surface Deformation .. 3-3

3.2.2 Surface Mesh Cutting .. 3-8

3.2.3 Wrinkle Effect .. 3-13

3.3 VOLUME DEFORMATION .. 3-15

3.3.1 Volumetric Data ... 3-16

3.3.1.1 Basic Data Structure.. 3-16

3.3.1.2 Visualization of Volumetric Data .. 3-18

3.3.2 ChainMail Algorithm for Groove Generation ... 3-24

3.3.2.1 The ChainMail Neighbour Constraints .. 3-25

3.3.2.2 Element Processing ... 3-26

3.3.2.3 Multiple Element Processing Avoidance .. 3-27

3.3.2.4 Move Multiple Elements... 3-30

3.3.2.5 ChainMail Deformation Results .. 3-31

3.3.3 Drill Effect .. 3-34

3.4 HYBRID CUTTING .. 3-37

3.4.1 System Overview.. 3-37

3.4.2 Iso-Surface Extraction by Marching Cubes Algorithm ... 3-38

3.4.3 Cutting and Pulling on Hybrid Model ... 3-44

3.5 CHAPTER SUMMARY .. 3-46

Chapter 4 Haptic Interaction .. 4-1

4.1 INTRODUCTION... 4-1

4.2 HAPTICS IN THE SURFACE MANIPULATION ... 4-2

VII

4.2.1 Surface Haptics .. 4-3

4.2.2 Haptics in Surface Deformation before Rupture .. 4-5

4.2.3 Haptics in Progressive Surface Mesh Cutting ... 4-6

4.2.4 Haptics in Deformation of Surface Incision .. 4-8

4.3 HAPTICS ON VOLUMETRIC MODEL .. 4-9

4.3.1 Haptics in Volume Deformation ... 4-11

4.4 CHAPTER SUMMARY .. 4-12

Chapter 5 Dynamic Fluid Visualization for Bleeding Simulation 5-1

5.1 INTRODUCTION ... 5-1

5.2 BASIC FLUID DYNAMICS .. 5-3

5.2.1 The Navier-Stokes Equation ... 5-3

5.2.2 The Continuity Equation... 5-4

5.2.3 Lagrangian Method ... 5-4

5.2.4 Euler Method ... 5-6

5.3 FLUID SIMULATION BASED ON CELLULAR AUTOMATA .. 5-8

5.3.1 Overview of Cellular Automaton .. 5-9

5.3.2 Our Bleeding Implementation based on CA ... 5-12

5.3.3 A GPU-Accelerated Hierarchical Structure: The N
3
-Tree .. 5-20

5.3.3.1 Definition .. 5-20

5.3.3.2 Implementation .. 5-20

5.3.4 Experimental Results.. 5-26

5.3.5 Discussion on Performances .. 5-32

5.4 CHAPTER SUMMARY .. 5-33

Chapter 6 Conclusion .. 6-1

6.1 SUMMARY OF CONTRIBUTIONS ... 6-2

6.2 FUTURE WORK ... 6-4

6.2.1 Fluid-Haptic Interaction ... 6-4

6.2.2 Multi-fluid Interaction .. 6-5

6.2.3 Two-handed Haptic Interface .. 6-5

6.2.4 Efficiency .. 6-5

VIII

REFERENCE .. R-1

1-1

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Chapter 1 Introduction

Apprenticeship-based model has been the major model for surgical trainings for

centuries. Experience and skills are obtained over time under the supervision and in

collaboration with attending physicians, seniors, and peers. The model is now

fundamentally threatened, however, by the numerous concurrent but divergent trends

in the social, economic, and regulatory environments of medical training and practice.

Economic demands have required increased throughput and efficiencies in the

provision of care and have diminished the resources available for surgical training.

The transfer of knowledge in an apprenticeship relationship is a time-consuming and

resource-intensive process, and as a result that process is under pressure from the

need for increasing clinical productivity. In addition, increasing social and regulatory

scrutiny has mandated more direct involvement of senior physicians in all aspects of

patient care, with the secondary consequence of diminishing the opportunities for

responsibility for junior trainees. Although arguably increasing the safety and quality

of patient care in the short-term, such changes have potentially dire long-term effects

should they result in overall degradation of surgical training.

In this context, surgical simulation is one emerging technology that may help to

alleviate this strain. The most rudimentary form of simulation, and the one with the

greatest historical precedent, is the use of human cadavers or animal models.

However, the supply of available cadavers is limited, and the procurement and

maintenance of cadavers for surgical study is expensive. Besides, the use of animal is

controversial, and there are ethical barriers to the extensive use of animals in surgical

training. Meanwhile, the widespread availability of computers of exponentially

increasing capabilities has opened an entirely new field for surgical simulation, in

which the simulation is based on a virtual reality, with varying degrees of immersion

and realism.

The potential for computers to serve as simulation platforms was initially explored

by the military, which first implemented computer simulation in training exercises

for astronauts and pilots; both of these roles require extensive training to respond to

technically challenging environments with minimal room for error. These early

experiments led to the development of the sophisticated, immersive commercial

1-2

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

flight simulators in use today, which have sufficient realism to replace or supplement

actual flight experience in the training and certification of commercial airline pilots.

The success of simulation in this venue both inspire and compel us to implement

similar technologic reforms in surgical training, as the standards for competency in

patient care should be no less than the standards for competency required of pilots.

The rapid advances in hardware, particularly in computer processing power and

technological interfaces, make this an ever more attainable goal.

With the development of Computer Graphics (CG) and Virtual Reality (VR),

computerized surgical simulators have emerged as a solution to alleviate some of the

difficulties previously mentioned. VR systems use computer generated instruments

through specially designed interfaces to manipulate computer generated objects. A

VR-based surgical simulator is actually a human-computer interface consisting of a

network of high-end hardware and software components. Providing a realistic

training environment in which trainees act as if they are operating on an actual

patient is the simulator’s essential goal. An attractive feature of VR surgical

simulators is that they can provide objective and repeated measurements, such as the

time taken to complete a task, the errors made in the process and also the efficiency

with which the movements were made in the accomplishment of the task (Haque and

Srinivasan, 2006). These metrics present the opportunity for the assessment of

competency without the need for an observer to be present. Suitable tool-tissue

interaction models (Misra et al., 2008) coupled to haptic devices allow trainees to

feel how much force needs to be applied for different manipulations and to learn

hand-eye coordination for specialized techniques (e.g., microsurgery, robot-assisted

surgery, or endoscopy). Rare variations of the anatomy can be generated at will and

dynamic elements such as breathing, heart beating, and ambient sounds can easily be

integrated for enhanced realism. By using surgical simulators, a procedure can be

created for preoperative evaluations and beforehand practices for surgeons. The

procedure can be recreated or repeated in a virtual environment without harming

patients or placing the patient at risk of trauma or injury.

Over the past decades, training systems based on VR technology for different types

of surgeries have been developed, including facial plastic surgery (Lee et al., 1999),

cataract surgery (Choi et al., 2009), neurosurgery (Wang et al., 2006), knee surgery

(Chen et al., 2001), laparoscope (Li et al., 2008), hysteroscopy (Zátonyi et al., 2005),

1-3

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

and bone dissection (Morris et al., 2004). Among them, one significant example is

the laparoscopy simulator. This is a virtual reality application in surgery simulation

for minimally invasive surgery. The technique provides training systems for

surgeries to avoid serious damage to the surrounding tissue of the actual area of

medical significance. The operation introduces a fibre optic camera and surgical

tools through a small number of portals in the skin without cutting through muscles

and other tissues lying in the way of the organs or joints of interest. The surgical

procedure is performed by operating the instruments through the portals using visual

feedback from the inserted camera. Minimally invasive surgery has been proved to

be beneficiary in reducing unnecessary tissue damage, physical pain, and recovery

time.

Despite the recent successful development of the surgical simulator, there are still

new fields of research and there still remains gaps in the field that need to be covered

to provide a more realistic surgical simulation, including every natural phenomenon

involved in the real surgery. It is a very challenging task especially given the fact that

it draws on multiple disciplines and research areas. One of the ongoing challenges in

the production of virtual reality environments is the virtual tissue modelling. A

variety of computational physics methods have been developed for realistically

modelling the virtual surgery environment (Chanthasopeephan et al., 2007;

Sokhanvar et al., 2008; Santhanam et al., 2008; Tahmasebi et al., 2008) and the user

interactions, including the collision detection and response between soft tissues and

instruments (Li et al., 2008), deformation of organs in contact with surgical

instruments (Zhu and Zhou, 2010), surgical operations including needle insertion

(Chentanez et al., 2009), cutting and sewing (Zhang et al., 2009), etc. A fast and

robust deformable model continuously providing visual and haptic feedback to users

is essential to the surgery training systems. There are four basic requirements for a

deformable model used in real-time surgical simulation: accuracy, efficiency,

robustness, and easiness to integrate into the system. In contrast to deformable

models used in video games and animations, the purpose of such models in medical

simulation is to model the behaviours of realistic biological tissues. The deformation

should be controlled by real material parameters such as Poisson Ratio and Young’s

Modulus taken from biomechanics experiments instead of intuitively adjusted

parameters. Some specific deformation effects of biological soft tissues, such as

1-4

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

viscous response and free vibration, need to be simulated too. Besides, the models

need to be fast enough to provide results within 1/30 to 1/50 second. This eliminates

most of the standard methods developed in computational physics, which are too

slow to be used in real-time applications. Furthermore, the models need to be robust

to provide results under large deformations and in large time steps. Last but not least,

the models should be easy to integrate into a complex surgical simulator. In a typical

virtual surgical environment, objects with different material properties, phases,

geometry shapes and data representations are often combined together, and different

types of interactions and responses between them need to be handled together.

Cutting simulation is the key component in surgical simulation as cutting is one of

the most common operations in both the conventional and minimal invasive surgeries.

Most surgical tasks begin with an incision to expose the surgical region. It is a

challenging task to simulate cutting operations since the object topology is changing

in real-time and a large amount of computation is usually required for realistic

cutting simulation.

The addition of a blood and fluid component to surgical simulation can enhance the

user’s experience and aid in learning the procedures and the anatomy. In the surgery,

rupture of a major blood vessel causes a great deal of bleeding, and steps must be

taken immediately to correct the error. Different kinds of fluid are commonly sucked

away or drained from the operation area from time to time. This does not happen

through the current teaching techniques using cadaveric bones, but can be replicated

using computer simulation. Due to the fact that real time fluid dynamic visualization

is computationally expensive, most existing VR surgery simulators tend to avoid

involving the fluid dynamic model. However, with the availability of high

performance graphic hardware, the improvement of visual quality and computational

accelerations become easier to achieve.

To achieve realistic and immersive virtual environments, it is necessary not only to

create visually realistic virtual environments but also to create virtual haptic

representations that respond accurately to manipulation and surgical manoeuvres.

One additional challenge is that, although visually realistic environments can be

created at a temporal resolution of 30 Hz, convincing haptic feedback requires a

much higher resolution of at least 1000 Hz.

1-5

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Given virtual surgical simulation is such a complex task, this thesis focuses on

progressive cutting and bleeding simulation for surgical operations. In this work, a

hybrid cutting model with haptic force feedback has been developed to be joined into

a surgical operation simulator. To greatly enhance the realism of the surgical

simulation, a real-time fluid model is integrated with the surgery cutting for

simulating the bleeding effects. To achieve high performance results, the fluid model

utilizes the GPUs capable streaming computations. The blood will flow on the

anatomical surface from the cutting path when the surgical knife cut the surface to a

certain thickness. The prototype employs a portable system to run a simulator on a

standard personal computer with graphic processor units (GPUs). A high fidelity of

force feedback device with specialized software also enhances the establishment of a

more realistic simulator with real-world characteristics.

1.1 Aims and Approaches

1.1.1 Aims

The main goal of this thesis is to develop a VR based surgical simulation system that

involves cutting and bleeding effect. The virtual tissue modelling should take

biomechanics properties of human anatomy and organ into consideration. The system

may provide a high-fidelity graphic display and realistic haptic feedback in real time

during a synthetic surgical operation. The user could play with the system to practice

the operation, with the added complexity of real time fluid flow phenomenon of the

blood during progressive cutting. The interior structures and material properties

would also be revealed during the cutting process to provide visual clue for the users.

The expected research outcomes can be broken down as follows:

1. Progressive cutting based on a hybrid model for the anatomy objects.

Propose an approach of realistic smooth surgical cutting on deformable

anatomy objects. The modification of topology should not lead to large

amount of new elements addition. The internal structures and material

properties of heterogeneous objects should be taken into considerations.

2. Fluid Model. Develop a method for real time fluid simulation to simulate

bleeding effect during surgical cutting for realistic visual effect. No major

additional computational cost should be introduced to the CPU as enormous

1-6

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

computational load has already been placed on the CPU for simulating

deformations, cutting, collision detection and response characteristics.

3. A prototype of surgical simulator. Establish a PC based surgical simulator

that resemble the real-world surgical operation for cutting and drilling etc.

Apart from the creation of visually realistic virtual environments, haptic

device and force feedback should also be integrated into the simulator for

high fidelity. The fluid model is to be integrated into the simulator to build a

realistic surgical simulation that resembles the real surgery.

1.1.2 Approaches

The requirements for a real time surgery simulator are quite demanding. The system

is expected to manage simultaneously the object deformation (cutting and drilling),

fluid simulation, visual rendering for display, and haptic rendering for force feedback.

Beside the computational intensiveness in object deformation and fluid computation,

the system has to handle the required threads execution between a slow and high

frame rate: slow frame rate (30Hz) for the display and high frame rate (1000Hz) for

the haptic force computation. Both of them must be synchronized to provide high

fidelity surgical simulation. Such demanding tasks are usually achieved by very

powerful computers such as a supercomputer. However, involving supercomputer

makes the system expensive and not portable, generally not applicable to an ordinary

user.

By addressing limitations in previous surgical simulator systems, this thesis proposes

several approaches to implement surgical operations such as cutting and drilling with

fluid simulation on a standard PC. The distinct approaches can be identified as

follows:

1. A hybrid model consisting of an inner volumetric model and an outer surface

model is proposed to simulate surgical cutting on deformable anatomy objects.

A node-snapping technique is presented to modify the surface topology of the

objects, without adding new elements. Progressive smooth cut is generated by

duplicating and displacing mass points that have been snapped along the

cutting path. A volumetric deformable model is employed underneath the

surface with considerations on the internal structures and material properties

of heterogeneous objects. A cutting gutter is generated by 3D ChainMail

1-7

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

deformation applied on the volumetric mode. A seamless connection is built

between these two data models so that the volumetric gutter is formed

according to the outer surface cut opening progressively.

2. The fluid model is a texture based approach that uses pixel and vertex shader

level techniques in the GPU. By utilizing the parallel many-core architecture

of the GPU for both computations and rendering of the fluid, the CPU could

be freed up for other time-critical tasks like deformations, collision detection

and collision response and the whole system could achieve real time

performance.

3. The prototype of surgical simulator is implemented using the open source

H3DAPI (http://www.h3dapi.org) and Volume Haptics Toolkit (VHTK)

(http://www.h3dapi.org/modules/mediawiki/index.php/Volume_Haptics_Too

lkit). H3DAPI is an open source haptics software development platform that

uses the open standards OpenGL and X3D with haptics in one unified scene

graph to handle both graphics and haptics. VHTK extends H3DAPI by

introducing the scene-graph nodes necessary for loading volumetric data,

handling and processing the data and for using the data to produce both visual

and haptic feedback. Our prototype could provide high-fidelity graphic

display and realistic haptic feedback during the surgical cutting and organ

deformations interactively.

By blending the three approaches above with collision detection, force calculation

and efficient visualization, a surgical simulator could be achieved with smooth

progressive cutting and realistic fluid dynamic simulation in real time.

1.2 Structure of the Thesis

This thesis is organized as follows. In Chapter 2, a review of related work in the

fields of virtual surgery simulation is presented. The overview of existing virtual

surgery simulators is first briefly presented. As a computer-based surgical simulation

system draws on multiple discipline and is such a complex research area, only some

selected technical themes closely related to the research goals are presented. Next the

sources and pre-processing of the data used in this thesis are discussed. This is

followed by discussions on virtual tissue modelling which could generally be

categorized into physically-based and geometry-based approaches. Surface cutting

1-8

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

approaches are then reviewed based on how their solutions address the following

issues: definition of the cut path, primitive removal and re-meshing, number of new

primitives created, when re-meshing is performed, and representation of the cutting

tool. Previous works in volume deformation are then discussed, focusing on the

linked volumetric representation. Finally, a detailed review is conducted on bleeding

simulation approaches, which are divided into physically-based approaches and non-

physically-based.

In Chapter 3, the surface deformation is first examined. A progressive surface mesh

cutting technique is then discussed in details, which is based on the work by Lin et al.

(2007). The deformation of the incision is also discussed for wrinkle effect during

the pulling process. A basic structure of volumetric data and the visualization of

volume data are later reviewed. A groove generation based on ChainMail algorithm

is implemented with the novelty of unlinking the neighbour elements and deforming

each side to simulate the shape of groove and to present the interior structures of the

heterogeneous objects. A drilling effect is also achieved to show the extendibility of

our volumetric model. Finally, our hybrid cutting model is built which combines the

surface model and the volumetric model. By building a tight connection between

them, the progressive cutting could be achieved simultaneously on these two data

models seamlessly.

A general introduction of haptics interaction is also given with some detailed

explanations of force calculation in Chapter 4. Firstly the roles of haptics on surface

manipulation are discussed and the force models are explored in details. The haptics

on volumetric model is then exploited for more realistic force feedback.

A lightweight fluid model is proposed in Chapter 5. Our low-cost method for

generating realistic bleeding effect in VR-based surgical simulators outsources the

computations to the GPU, thus freeing up the CPU for other time-critical tasks. This

method is independent of the complexity of the organ models in the virtual

environment. An effective hierarchical tree data structure is also generated to manage

the geometry to enhance the speed of object manipulation and keeps the computation

load stable.

Experimental results and discussions are provided at the end of Chapter 3, 4 and 5;

specifically demonstrate the effectiveness of the proposed methods.

1-9

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Finally, Chapter 6 provides a summary of the thesis, its contributions and potential

future directions in virtual surgery simulation.

1-10

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

2-1

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Chapter 2 Literature Review

Surgical training has traditionally been one of apprenticeship, where the novice

surgical trainee learns to perform surgery under the supervision of a trained surgeon

(Gurusamy et al., 2009). The operating room and the patient, however, comprise the

most common, the most readily available, and often the only setting where hands-on

training takes place. The novice surgeon acquires skills by first observing

experienced surgeons in action and then by progressively performing, under varying

degrees of supervision, more of the surgical procedures, as his/her training advances

and his/her skill level increases. Different procedures have different learning curves

(Herrell and Smith, 2005). Surgeons experienced in one procedure may not be

experienced in another, and results improve with experience in an individual

procedure.

The drawbacks of this traditional training approach have been underscored in the

2000 report by the Institute of Medicine, entitled "To Err Is Human: Building a Safer

Health System" (Kohn et al., 2000) which points out that about 100,000 deaths per

year in the United States occur as a result of medical errors, making it the eighth

leading cause of death. A three-year study by HealthGrades (Golden, CO, USA,

2008), an American healthcare ratings organization, also found that medical errors

resulted in over 230,000 deaths in American hospitals during the study period. In a

different study (Vickers et al., 2009) based on rates of cancer recurrence in 4,700

patients operated upon using keyhole techniques by 29 surgeons in seven hospitals

throughout Europe and North America, Vickers et al. reported that surgeons require

750 operations to perfect keyhole surgery procedures.

As technology progressed, many different tools and techniques have been deployed

to provide added value to the medical training process such as anesthetized animals

or cadavers (Coles et al., 2011). However, animal models and cadavers are not

considered good substitutes for human patients due to the fundamental differences in

anatomy and tissue consistency. Not only are cadavers expensive, but procedures can

only be performed once and a mistake can render the body useless to re-demonstrate

a procedure. Moreover, the use of animals and cadavers for training purposes also

raises ethical issues.

2-2

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Therefore, relatively inexpensive inanimate training methodologies such as video

tool box trainer are becoming more popular. The Society of American

Gastrointestinal Endoscopic Surgery (SAGES) is the first organization that has

officially adopted an inanimate training methodology and established the

Fundamentals of Laparoscopic Surgery (FLS) course (Peters et al., 2004), which is a

comprehensive program designed to teach the cognitive and psychomotor aspects

unique to laparoscopic surgery. The overall goal of the FLS program was to “teach a

standard set of cognitive and psychomotor skills to practitioners of laparoscopic

surgery” in the belief that knowledge and application of these fundamentals would

help “ensure a minimal standard of care for all patients undergoing laparoscopic

surgery.” The FLS program consists of two components: a didactic module for

education an examination to assess competency. The didactic learning modules are

CD-ROM based and teach the underlying physiology, fundamental concepts, and

component manual skills involved in laparoscopic surgery. The assessment

instruments were designed to be in accord with the competency movement and the

American Board of Medical Specialties recommendation for maintenance of practice

and practice-based learning and improvement.

However, both the animate and inanimate training techniques suffer from the same

drawbacks, the most important being the need for an instructor/supervisor, non-

standardized methods of feedback, inadequate provision to practice for rare medical

conditions, and lack of well-defined subjective methods of performance evaluation.

These training methods and trainers have access to a limited number of parameters

and often time is the only performance measure.

These drawbacks have prompted the development of VR based surgery simulators

where the human user is able to interact with three-dimensional virtual models of

organs using his/her sense of vision as well as actively manipulate them using his/her

sense of touch through a haptic interface device such as a PHANToM from Sensable

Technology
TM

, It is well recognized that VR based simulation systems offer a unique

way of objectively assessing performance while imparting training, providing real-

time feedback, tracking the trainee's learning curve over extended periods of time,

and providing quantitative scores while, at the same time, offering summative

evaluation during examinations .

2-3

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

A computer-based surgical simulation system draws on multiple disciplines. It has

both technical and cognitive aspects. The technical components include a virtual-

patient model and specialized input and output devices. The model must demonstrate

physical properties consistent with a live patient. Thus, virtual soft tissues should

deform with contact pressure and should have the same texture and consistency as

live tissues. The visual representation of the region of interest must be consistent

with intra-operative views, and tissue perfusion and appearance must be consistent

with actual scenes. Creating a virtual model of the relevant human anatomy draws on

research from disparate fields, such as computer science and bioengineering.

A simulator engages the surgeon through multiple sensory channels. The surgeon’s

actions are tracked and replicated in the virtual operating environment. Visual and

haptic effects such as bleeding and tissue resistance are rendered on the appropriate

hardware. These devices draw on research on visual and haptic displays.

An effective simulator integrates its technical components with medical and

educational content designed to impart specific skills or knowledge to the user. A

simulator’s cognitive components draw on research on learning theory, performance

measurement, and surgical knowledge.

As surgical simulation system is such a complex research area, it is unrealistic to

cover all the relevant fields in this thesis. Therefore, only some selected themes are

presented in this literature review. They are: Data sources and pre-processing, Soft

tissue modelling, Surface cutting, Volume deformation, Fluid simulation and Haptic

interaction. The following sections will serve as an overview of the technical themes

involved in the remaining thesis and will outline the focus of the thesis.

2.1 Overview of Virtual Surgery

Virtual surgery is a type of simulation that can be used to practice the often

dangerous surgical procedures without the need of an actual patient. This technique

refers to a virtual reality simulation of surgical procedures and is used as an analogue

for the actual surgery where doctors can practice on a virtual patient before

performing the surgery. Virtual surgery is usually associated with visualizations of

an operated organ on a three-dimensional (3D) graphic display. The user can interact

with the simulated 3D objects, such as organs and tissues, through a force feedback

2-4

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

device that resembles various surgical tools to physically feel, touch, manipulate and

operate on the objects. The 3D patient data generated from computerized

tomography (CT) and magnetic resonance imaging (MRI) scans can be reconstructed

as 3D anatomy objects in the virtual environment. Surgeons can practice the

operations multiple times without the use of cadavers or animals. Virtual surgery can

simulate real world surgical scenarios to allow for intensive training activities. This

technology would let virtually trained doctors and medical students to be more

proficient and get a better preparation with fewer errors.

The simulation of surgical procedures using virtual anatomical models is a rapidly

growing field in medical imaging. This is due to the availability of virtual reality

techniques, and also because of the availability of detailed virtual anatomical models.

Surgical simulators have been developed for a wide range of procedures. They can

be broadly classified in terms of their simulation complexity. Three classes are

considered: needle-based, minimally invasive, and open surgery (Liu et al., 2003).

2.1.1 Simulators for Needle-based Procedures

As the name implies, needle-based procedures deal with the task of controlling the

insertion of some needle-type instrument into the human body. Examples include

vascular access, catherization, biopsy and anesthesia. There can be some problems

when surgeons manually insert needles, including different treatment results and the

possibility of a complicating disease resulting from needle insertion into large blood

vessels, etc.

Some of the first prototypes of needle-based procedures focused on the haptics and to

a lesser degree visualization and general simulation of tissue. Brett et al. (1997)

developed a simulator for surgical needles with haptics only, without any additional

visualization. The CathSim simulator developed by Tasto et al. (1999) has both very

realistic graphics and custom haptic. In the CathSim the users can feel a realistic

"pop" from the puncture of a vein inside the skin. The visualization supports

different ages, skin colour and health condition. This project was commercialized as

the CathSim AccuTouch System by Immersion Medical. Cotin et al. (2005)

presented a recent high-fidelity simulator for interventional radiology, in which a

guide-wire catheter is inserted into the artery network of a patient, monitored through

live x-ray images. The simulator includes real-time deformable models and handles

2-5

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

the many concurrent collision points between guide-wire and vessel. The

visualization simulates x-rays through the deformed tissue resulting in realistic x-ray

images. Zhu et al. (2007) presented a training system designed to improve the skills

of interventional radiology trainees in ultrasound-guided needle placement

procedures. Hauser et al. (2009) presents a feedback controller that steers a needle

along 3D helical paths, and varies the helix radius to correspond to perturbations.

Their controller was evaluated under a variety of simulated perturbations, including

imaging noise, needle deflections, and curvature estimation errors and proved to be

able to reduce targeting error by up to 88% compared to open-loop execution.

Kobayashi et al. (2010) aims to develop an integrated robotic system with image

guidance and deformation simulation for the purpose of accurate needle insertion. In

vivo experiments were also conducted to verify the effectiveness of their needle

insertion manipulator. Goksel et al. (2011) presents a haptic simulator for prostate

brachytherapy. Both the needle insertion and the manipulation of the transrectal

ultrasound probe are controlled via haptic devices.

Needle-based simulators generally have limited degree of freedom in interaction and

the demands for visualization are in many cases quite limited. One area of specific

interest for these simulations is the haptic feedback, which in many needle-based

procedures is the key to a correct execution. Once the needle is inserted into the

patient the interaction is often restricted to 1 DOF in the direction of the guidance of

the needle. In some cases special-purpose haptic equipment has been built taking into

account this limited interaction, but in many cases general 6 DOFs equipment has

also been used. They are useful for teaching relatively straightforward procedures

with well-defined algorithms. Their simplicity makes them widely performed

procedures at low cost. In situations where opportunities for practice are limited or

where current methods using animal models are not optimal, needle-based simulators

could be very useful.

2.1.2 Simulators for Minimally Invasive Surgery

Minimally invasive procedures use specially designed instruments. The instruments

are inserted into the body via small incisions. Visual feedback is obtained via

inserted scopes, cameras, or fiberoptic devices, and a video display monitor is used

to show the image. Because the entry portal is small, these instruments have a limited

2-6

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

range of motion. For example, laparoscopic instruments are constrained to pivot

about the entry port on the abdominal wall. Other instruments are designed to work

in confined areas as well. For example, only the tips of bronchoscopes can be flexed

under user control. In both cases, haptic feedback is muted due to sealing gaskets

(such as in laparoscopic instruments) or the length of instrument within the patient’s

body (as with bronchoscopes).

The limited range of motion and haptic feedback, and the use of specialized tools and

video displays facilitate the development of simulator in minimally invasive surgery.

The first laparoscopic VR simulator developed for teaching technical skills was the

Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR) (Mentice,

Gothenburg, Sweden) in 1997 (Wilson et al., 1997). The MIST-VR is comprised of a

laparoscopic interface with motion-tracking devices attached to mock laparoscopic

instruments. This is attached to a computer that displays the movements of the

instruments in real time on a computer monitor (Aggarwal et al., 2004). The MIST-

VR consists of abstract psychomotor tasks, which allows it to be sued for training a

wide range of surgical specialities in basic endoscopic techniques, including

cardiothoracic, general and gynaecological surgery. However, it does not allow

training in specialist techniques that are provided by procedural and full length tasks

on other simulators.

The LapSim (Surgical Science, Gothenburg, Sweden) laparoscopic simulator was

developed in 2000. It was developed with more realistic tasks using tissue that is be

manipulated and could bleed. Tasks such as “clip and cut” and “suture” introduced

tasks that are more relevant to a surgeon. The LapSim was one of the first VR

simulators that allowed students to practice parts of operations such as laparoscopic

cholecystectomy and gynaecological procedures. The LapSim is used for training

and assessment of both surgery and gynaecology trainees (Aggarwal et al., 2006;

Hart et al., 2007).

The LAP Mentor surgery simulator (Simbionix, Chicago, USA) was developed in

2002, which provides full length operations range from basic to advanced

laparoscopic procedures. The LAP Mentor also combines the extensive range of

procedures with advanced haptic feedback hardware that allows the simulator to

transmit resistance when tissues or objects are encountered during a simulated task.

2-7

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

This enhances the realism of the simulator, and as such is used in another

laparoscopic simulator (Aggarwal et al., 2009).

At the 2006 Society of American Gastroesophageal Surgeons (SAGES) meeting, 63

attendees at the SAGES Learning Centre were invited to evaluate a new virtual

reality robotic surgery simulator (SEP Robot; SimSurgery AS, Oslo, Norway) as well

as either a computer-enhanced laparoscopic simulator (ProMIS; Haptica, Ltd.,

Dublin, Ireland) or a laparoscopic virtual reality simulator (SurgicalSIM/Surgical

Education Platform; SimSurgery; and METI, Sarasota, FL). Subjects were assessed

during one iteration of laparoscopic suturing and knot-tying on the SEP Robot and

either the ProMIS or the SurgicalSIM. A post-task survey determined users’

impressions of task realism, interface quality, and educational value. Performance

data were collected and comparisons made between user-defined groups, different

simulation platforms, and post-task survey responses. The results have shown that

with the help of SEP Rbot and either ProMIS or SurgicalMIS, it is possible to limit

patient risk and to increase training efficiency for minimally invasive procedures.

Among all minimally invasive surgery simulators, those for laparoscopy and

endoscopy are the most advanced. The interior anatomy generally contains sufficient

details and realism for educational purposes. Commercially available laparoscopic

trainers can teach basic skills such as camera navigation, grasping, suturing and knot

tying, and cauterization. There are extensive evidences to support the validity of

laparoscopy simulators for both training and assessment of technical skills (Van

Dongen et al., 2007; Bajka et al., 2010) Advantages of laparoscopic surgery include

decreased morbidity, reduced costs for society (less hospital time and quicker

recovery), and also improved long-term outcomes. Despite recent advances,

limitations still exist. Surgical effects, such as bleeding, blood pooling, and tissue

tearing, are presently simulated with limited realism. Real-time tissue and organ

deformation are generally limited to specific organs or simple structures such as

arteries, ducts, and other tubular structures. For these and other reasons, the goal of

simulating medically relevant procedures from start to finish has not yet been

reached.

2-8

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

2.1.3 Simulators for Open Surgery

Open surgery requires larger incisions on the body. The surgeon often has direct

visual and tactile contact with the region of interest. The visual field, range of haptic

feedback, and freedom of motion are considerably larger compared to minimally

invasive procedures. Open surgery is thus more difficult to simulate.

Webster et al. (2001) presented a PC based suturing simulator for wounds. The

system supports haptic feedback through Phantom Omni devices. Bielser et al. (2002)

presented what they called an "Open Surgery Simulator". The system could basically

simulate interaction between skin and surgical hooks or surgical scalpels, but without

any abdominal content. Gasson et al. (2004) presented a system for hernia repair,

supporting knives and clamps. The system used a non-linear Spring-Mass system as

the basis for haptic interaction. The system used Phantom interaction devices. Nakao

(2003) proposed his ActiveHeart system where one can practice the initial incision

into the chest and palpation of the aorta in conjunction with a pure visualization of

the heart. The later work by Mosegaard (2006) fits nicely into Nakao's research as

they investigate the actual surgical procedure after the opening of the chest. Wang et

al. (2006) focus on the simulation of surgical prodding, pulling and cutting.

Advanced features such as the separation of the cut surfaces by retractors and post-

cutting deformations are also included. Their experimental results are enhanced by

implementing 3D stereo-vision and the use of two hand-held force-feedback devices.

The work by Pang et al. (2007) focuses on the orthopaedics surgery training system

with components for modelling, for simulating the deformation, and for visualization

in an efficient way. By accelerating the computation with the Physics Processing

Unit (PPU), a high fidelity of realism and interactive frame rate can be achieved in a

virtual environment simulating both soft-tissue deformation and bleeding. However,

their visualization of blood and soft tissues need to be enhanced with advanced

rendering techniques. Beside, the use of PPU restricts the scalability of their method.

Later, their work is extended into a collaborative simulation system based on the

cluster-based hybrid network architecture by Qin et al. (2009). Multicast

transmission is employed to transmit updated information among participants in

order to reduce network latencies, while system consistency is maintained by an

administrative server.

2-9

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Though minimally invasive procedures have become the standard of care for many

types of elective thoracic and abdominal surgery, it is imperative for surgical

residents to have both the confidence and the technical skills to safely and effectively

perform open surgical procedures when the need arises. When adverse event occur,

either as a primary problem or as a complication of a minimally invasive operation,

and cannot be safely or expeditiously dealt with using minimally invasive techniques,

the standard of care dictates that an open procedure be undertaken. The design of

open surgical simulators still poses a great number of technical challenges:

appropriate soft tissue models have to be chosen and the underling differential

equations have to be solved efficiently. Very often, surgical hooks and large scalpel

intersections need to be applied simultaneously, featuring complex interactions with

the soft tissue. High speed haptic rendering of these tools requires sophisticated

mechanical models. Considerable advances in haptics, real-time deformation, organ

and tissue modelling, and visual rendering must be made before open surgery can be

simulated realistically, so that these simulators could focus on gaining experience in

the identification of open anatomy, achieving adequate intraoperative exposure,

performing surgical dissections efficiently and safely, and controlling major intra-

abdominal bleeding.

2.2 Data Sources and Preprocessing

The type of objects dealt with in this thesis is related to the shape and physical

characteristics of organs and tissue. To build realistic virtual models we need to base

them on real human anatomy data. Currently the most important techniques to

acquire medical images from human bodies are:

 Computer Tomography (CT): The CT x-ray beams are used for imaging.

The body is moved through a tube while a rotating x-ray is taking images of

cross sectional slices. For each angle the amount of radiation not absorbed is

measured. The measurements from different angles are used to compute the

content of the slice with a method called filtered back projection. The

resulting value for each discretely sampled point of the volume is directly

proportional to the density of the scanned tissue. The density is measured in

the so-called Houndsfield Units. The Houndsfield Scale starts with – 1000

HU (radio density of air). Distilled water has a value of 0 HU. The scale has

2-10

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

no maximum value but in reality it is limited to a range 12bit (-1024 to

+3071).

The downside of this technique is the exposure of patients with radiation.

 Computer Tomography Angiography (CTA): A disadvantage of the CT

method is the low contrast between blood vessels and other soft tissues. To

overcome this problem a contrast agent can be applied.

 Magnetic Resonance Imaging (MRI): MRI exploits the fact that protons

have a so-called spin and nuclei have magnetic properties. With a

combination of strong magnetic fields and radio waves the orientation of the

spin axis can be manipulated. If one of the magnetic fields is switched off the

protons react with a relaxation rotation back to the initial spin axis orientation.

This movement induces a measurable magnetic field which is used to

compute the volume data.

The measured value is the relaxation time. Two different relaxation

movements are measured.

1. T1-weighted imaging measures the longitude relaxation time. T1-

weighting needs longer relaxation times (>1000ms) but generates a

higher spatial resolution.

2. T2-weighted imaging measures the traverse relaxation time. The

relaxation times are relatively short (<100ms). T2-weighting leads to

better contrast between different tissue types.

MRI imaging provides no scale for the measured value like the Houndsfield

scale. Different values have to be interpreted relatively. In contrast to images

generated with the CT method, MRI allows a much better discrimination

between different tissue types.

The drawback of this method is that results are more noisy than images

generated through the CT method.

 Magnetic Resonance Angiography (MRA): As in CTA, magnetic

resonance angiography emphasizes the blood vessels. Blood vessels can be

emphasized either by some adjustments and enhancement on the MRI method

or alternatively a contrast agent can be used.

2-11

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Often the datasets are divided into two categories according to the types of usage:

patient-specific or general datasets. Working with acquisition of real patient datasets

means working with real patients and therefore a number of constraints apply. Firstly,

the time available to acquire the datasets and the variety of modalities possible are

limited by the comfort and safety felt by the patients. Secondly, the total resources

used for a large number of patient-specific datasets limit the amount of manual work

that can be put into each dataset. Very long post-processing times are often

unacceptable either, since this could delay the treatment process of each individual

patient. General datasets can be acquired from volunteers, in which case time and

resources are not a serious problem. The most aggressive acquisition of general

datasets can be performed when deceased donate their bodies to medical research. In

such cases long post-processing times, high-dose radiation, and destructive

acquisition can be allowed. The prime example of this is the Visible Human Project

(Ackerman, 1998) where a donated male body has been acquired with CT, MR and

cryosection (slicing of the body in millimetre thick slices and photographing each

slice). A number of projects following the Visible Human Project have arisen; the

Chinese Visible Human (Zhang et al., 2003), the Korean Visible Human (Park et al.,

2005) and the Visible Ear (Sørensen et al., 2002), just to name a few.

Preprocessing may include segmentation and surface extraction. Segmentation is the

process of dividing the image data into regions according to some measure. In the

case of medical image segmentation it seeks to identify the different parts of anatomy.

A surface can then be extracted from the segmented medical image data through e.g.

the Marching Cubes Algorithm (Lorensen and Cline, 1987). The output surface mesh

may then be processed by a modelling program such as ParaView to smoothen or

resample. The medical images can also be directly used for direct volume

deformation (DVD) and direct volume rendering (DVR).

2.3 Soft Tissue Modelling

Simulation of procedural tasks has the potential to bridge the gap between basic

skills training outside the operating room (OR) and performance of complex surgical

tasks in the OR, but it requires realistic modelling of soft tissues in an intra-operative

situation. Real-time monitoring of the forces exerted on an organ due to

manipulations by a surgical instrument during an operation would allow the

2-12

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

determination of local tissue stress. In this way, when damage thresholds for tissue

stress are known, safety margins can be imposed upon the instrument to avoid

irreparable tissue damage. An important issue for realistic modelling of the intra-

operative situation is the proper representation of the manipulated tissues. This

implies the characterisation of the in vivo mechanical properties of the tissue and

subsequently implementing these properties in a mathematical model of the organ in

question.

In computer graphics, different approaches are discussed for soft tissue modelling.

For deformable soft tissue modelling, two approaches are present in the literature:

physically-based and geometry-based models. In geometry-based techniques, the

object or surrounding space is deformed by manipulating vertices or control points.

These techniques are relatively faster and easier to implement. However, they do not

capture the physics of the problem. The physically-based techniques, on the other

hand, aim to model the physics involved in the motion and the dynamics of

interactions.

2.3.1 Geometry-based Techniques

Many methods exist as geometry-based techniques for soft tissue modelling, but

deformable spines have been the most popular in this branch. In general, splines

serve to obtain smooth and rounded curves, surface, or volumes, which can be

adjusted through a series of control points. By moving the control points, the form of

the respective curve, surface, or volume changes accordingly. Among the different

existent techniques are the well-known Bezier curve and NURBS (non-uniform

rational B-Splines). Deformable splines, also known as active contours, were the first

deformable models (in the strict sense) to be developed (Terzopoulos et al., 1988),

and they were also the first models to be applied to the field of surgery simulation

(Cover et al., 1993). As a starting point, they employ classical splines to model a 3D

object (or its surface) (Richa et al., 2010). With the fundamental theorems of

differential geometry regarding the equivalence of shapes, deformable splines then

define a potential energy, which is proportional to the degree of elastic deformation.

By using the Lagrange approach, this energy is finally minimized with respect to the

displacements enforced in some control points, thus obtaining the corresponding

deformation state.

2-13

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The elevated number of parameters equips this deformable model with a substantial

level of control over the shape and the physical properties of the mesh. However,

these parameters can only be chosen arbitrarily and are difficult to determine

empirically. In addition, the representation of an object as a smooth surface does not

coincide with the rendering algorithms of modern graphics cards, which are oriented

towards plane polygons. Thus, a further processing step is required. Even without

this additional expense, deformable splines already have a very high computational

cost. This is why solid objects usually have to be modelled as hollow shell, with the

corresponding detriment to realism.

On the whole, deformable splines are more complex and computationally costlier

than spring-mass type models, without actually offering better realism. This is why

they are hardly employed currently.

2.3.2 Physics-based Techniques

2.3.2.1 Mass-spring Model

The Mass-Spring model employs ordinary differential equation (ODE) systems

which use mathematic methods, explicit or implicit, to solve numerical

approximations. In this method, a discretized object is used. To simulate the

deformation behaviour, motion equations are derived on grid points which are called

masses, which store position, velocity and acceleration values. The connections

between neighbouring nodes are called springs, which are assigned stiffness and rest

size values (Selle et al., 2008; Mesit et al., 2010). Springs tend to keep the system in

balance - maintain a safe distance between the points of the masses. The forces

acting on each point are dependent on the distance between points adjacent to that

point and the external forces acting on the system (e.g. gravity).

The mass-spring model is widely used in surgical simulation. It is relatively easy to

implement and does not require high computational power. Visualization and

modification of the model in real time is achievable. Unfortunately, this model also

introduces important limitations. Deformations are not accurately reproduced; it is

only an approximation of the real behaviour of tissues. In addition, delays are

introduced due to the propagation of forces in the system. Any modifications to the

model, such as removing of grid points or cutting of springs, force adjustment of the

2-14

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

system parameters. It also has a tendency to oscillate, due to the iterative method for

calculating the forces acting on grid points.

2.3.2.2 FEM

Different from the Mass-Spring model, the Finite Element Method (FEM) works on

the continuum mechanic to approximate interpolation functions. In order to use an

irregular grid for deformable object simulation, the object is defined as a set of finite

element consisting of a set of nodes.

The FEM advantage is that complex geometry, general boundary conditions and

variable or non-linear material properties can be handled relatively easily (Kaufmann

et al., 2009a; Kaufmann et al., 2009b; Becker et al., 2009). However, a major

drawback of this method, especially for nonlinear description, is the significant

computation time that may be required to solve for large models.

2.3.2.3 PAFF

The Point-Associated Finite Field (PAFF) approach acts under the partial differential

equation system based on continuum mechanic. The object is discretized using a

scattered distribution of nodal points or particles that serve as the computational

primitives, much like those used in the mass-spring models. Unlike the mass-spring

models, the governing partial differential equations are solved. It is important to note

that the method is "meshless" since no direct link exists between the computational

nodes. Each node has a "region of influence" which smears out their effects and

coordinates their motions during simulation.

The PAFF is a newer method compared with the others discussed previously, and it

is more efficient over the FEM for forces distribution to the object. The PAFF is able

to generate good simulation results in real time, including haptic feedback (Lim et al.,

2005; De et al., 2006; Lim et al., 2006).

2.4 Surface Cutting

In the past, cadavers were considered the golden standard of surgical simulation.

However, cadavers are of limited supply and are costly to acquire and maintain. The

development of alternative training methods is considered important to the future of

surgical training (Malone et al., 2010). Surgical simulators provide a no-risk

2-15

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

environment where skills can be gained through harmless practice repeatedly.

Cutting simulation is the key component in surgical simulation as cutting is a

common operation in both conventional and minimal invasive surgeries. Most

surgical tasks begin with an incision to expose the surgical region. However, it is a

challenging task to simulate cutting operations since the object topology is changing

in real-time and a large amount of computation is usually required for realistic

cutting simulation.

In surgical simulation, it is generally not necessary to provide a physically-based

simulation of the internal forces involved in the deformation, as a huge

computational cost would be required. Instead, it is more important to show realistic

internal structures at the cutting site as the visual clue, especially for surgical training

and planning purposes. Therefore, priority should be given to the realistic surface

deformation and smooth cutting before there is an opening. Afterward, the users

often focus on the exploration of the interior features.

Even though a great deal of information about the interior structures and material

properties of the heterogeneous tissues are discarded, surface-based cutting methods

can provide smooth and realistic cutting effect at a low computation cost.

Complemented with volumetric models which represent appropriate internal

structures and material properties, surface-based cutting methods can have a role for

situations in which high-fidelity virtual environments are required.

According to Bruyns (2002), cutting methods can be distinguished by how their

solutions address the following major issues:

1. Definition of the cut path,

2. Primitive removal and re-meshing,

3. Number of new primitives created,

4. When re-meshing is performed, and

5. Representation of the cutting tool.

2.4.1 Definition of the Cut Path

Cutting a virtual object requires disconnecting one mesh primitive from another. For

an interactive cutting tool, the user must begin by inspecting the object and

determining where the cut should begin. After selecting this starting point, the user

2-16

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

then defines the shape of the cut path. Existing cutting tools determine the cut path

by either:

(a) Placing seed points on the mesh,

(b) Placing a template through the mesh, or

(c) Moving a virtual tool through the mesh.

In the first approach, the user selects successive points on the object’s surface. These

points determine the basic outline of the cut path, but must be linked together to form

a continuous cut through the object. Choices for linking the points include Dijkstra’s

shortest-path algorithm or constructing successive planes between the points. Using

Dijkstra’s shortest-path algorithm to link the seed points has the drawback that only

existing vertices can be used to define the cut path. Unless a regular grid is used, the

resulting contour is frequently jagged. Li et al. (2005) proposed a new topological

data structure for representing a set of polygonal curves embedded in a meshed

surface. In this implementation, the vertices of the curve do not necessarily

correspond to the vertices of the surface, thus could obtain smooth cut borders.

Moreover, in order to enable more complex cut than a simple curve, they adopted

incremental insertion of a new cutting curves, i.e. with every cutting curve designed,

new intersections between this new curve and the existing surface should be

dynamically found and updated. However, the embedded polygonal curves are

predefined, which is not suitable for progressive cutting.

In the second approach (Schutyser et al., 2000), the user has a predefined shape for

the cut path represented by another object in the virtual world. The user interactively

positions the shape, creating the desired intersection with the object to be cut. When

the shape is positioned a signal is made to cut the object.

In the implementation of the third approach, the user moves a virtual tool in the

world and the cut path is determined by successive intersections of the tool with the

object primitives (Kim et al., 2010; Turkiyyah et al., 2011). But this implementation

generally suffers from the increment of the number of elements, which may slow

down the computation.

2-17

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

2.4.2 Primitive Removal and Re-meshing

Cutting techniques may also be classified based on the way the cutting operation is

implemented. Three common methods are:

(a) Removing intersected primitives,

(b) Mesh subdivision,

(c) Mesh adaptation.

The element removal technique basically removes the elements that are intersected

by the cutting tool (Cotin et al., 2000; Choi et al., 2009). Forest et al. (2005)

proposed an efficient method for removing tetrahedral from a tetrahedral mesh while

keeping its manifold property. This algorithm is used in the context of real-time

surgery simulation where the action of an ultrasonic lancet can be simulated by the

removal of a small set of tetrahedral from a tetrahedralization. Despite of its

simplicity and computational efficiency, this method violates the physical principle

of mass conservation due to the removal of elements and, more importantly, it is

difficult to present a smooth cutting because of visual artefacts and the cut surfaces

look unnaturally jagged.

More appealing visual representations of incisions are made possible with mesh

subdivision methods (Bielser et al., 2004; Huy Viet et al., 2006). They usually

classify a cut according to the different rotational invariant intersection states.

Predefine subdivisions of mesh elements are then performed. The deficiency of this

method is the increment of the number of elements and the creation of smaller or

degenerated elements. The newly increased elements may slow down the

computation and the degenerated elements as well as the edges with widely varying

lengths may cause the instability of numerical calculations of deformation.

These problems could be ameliorated with mesh adaptation approaches. The main

idea is to approximate a cutting path with existing edges or surfaces. It enables mesh

incisions without large increase of element count and occurrence of small elements.

Mass points near cutting path are snapped to the closest points on the cutting path

such that some related edges are aligned along the cutting path. The mesh adaptation

method starts with collision detection. After the initial collision of the haptic tool

with the object surface, intersection points between the cutting path and the

2-18

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

underlying polygon edges are calculated. It is worth mentioning that the marked

intersection points are only potential as the cutting is a progressive process.

Whenever an intersection point is calculated, the local area of the mesh is updated

before moving to the next intersection point. Serby et al. (2001) and Nienhuys et al.

(2001) both proposed mesh adaptation based cutting approaches for very smooth and

realistic surgical cutting simulation. Lim et al. (2007) presented a hybrid approach to

the simulation of surgical cutting procedures by combining mesh adaptation

technique with a physically based meshfree computational scheme, the point-

associated finite field (PAFF) approach, and empirical data obtained from controlled

cutting experiments. To enhance the realism of the rendered scenarios, an innovative

way of using images obtained from videos acquired during actual surgical processes

was also proposed.

2.4.3 Number of New Primitives or Primitives Created

Cutting techniques can be further classified according to the number of new

primitives created during re-meshing. Existing cutting techniques handle re-meshing

by either:

a) Disallowing new primitives,

b) Allowing unnecessary new primitives, or

c) Creating a minimal number of new primitives.

In the first method, selecting a subset of the mesh traversed by the tool creates the cut

path. The vertices of the subset are then repositioned by moving the edges of the

traversed faces to the cut path. Finally, the edges of the subset are doubled, creating a

gap in the mesh.

Cutting tools that allow unnecessary new primitives usually include their creation for

mesh quality and symmetry purposes. As described by Bielser and Gross (2000), the

additional tetrahedral come from automatically inserting an extra node into a

completely cut face. The addition of this node allows for a more symmetric

subdivision and additional degrees of freedom in the cut surface. Adding these nodes

to two adjacent faces, however, can cause the formation of intersecting tetrahedral.

These tetrahedral are handled during re-meshing by incorporating additional tests for

their intersection and choosing an alternative re-meshing template that would avoid

self-intersection.

2-19

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Schemes that take the third approach minimize the number of new primitives by

creating new vertices only at the point of intersection between the tool and primitive.

Since the intersection point can occur very close to the original vertices in the mesh,

it is possible to create primitives having edges of widely varying lengths. Such

primitives can be problematic for subsequent numerical calculations. To mitigate this

problem, one can either shift the intersection location to the nearest vertex or modify

these primitives after re-meshing. Despite the additional mesh-quality steps that

might be required, minimal new primitive schemes have the advantage of reducing

the overall number of primitives in the mesh after the cutting operation.

2.4.4 When Re-meshing is Performed

The cutting techniques that try to minimize the number of new primitives can be

further categorized based on the time the re-meshing is performed. Re-meshing

typically occurs:

(a) While the tool and the primitive are in intersection,

(b) After the tool is no longer intersecting the primitives, or

(c) After the tool has changed direction.

One can re-mesh a primitive along the cut path, as soon as the cutting instrument

intersects it, as in progressive cutting; as soon as the instrument and primitive are no

longer in collision, as with non-progressive cutting; or after the user has moved the

tool out of the direction it was travelling in at the previous iteration.

Zhang et al. (2009) proposed a hybrid cutting method combining non-progressive

cutting with progressive cutting, in which progressive cutting was applied on the

outer hull while non-progressive cutting was applied in the inner core. It kept the

visual reality while significantly increased the efficiency and stability for consequent

soft-tissue simulation.

2.4.5 Representation of the Tool

The cutting techniques that simulate motions of the tool through the virtual

environment and handle re-meshing can be further categorized based on the

representation of the virtual tool. The tool is usually modelled as:

a) A single point of intersection;

2-20

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

b) An ideal object;

c) An object consisting of multiple primitives.

When modelling the tool as an ideal object, usually a single edge or triangle is used,

allowing for simplified intersection tests.

When modelling the cutting tool as an object with multiple primitives, a central axis

is usually used for intersection tests. This reduces the tool to a simplified model for

computation, but retains the complex model for rendering. Ranal et al. (2007)

proposed a method to simulate a cutting tool using an oriented cube that allows the

simulation of tool thickness as well as performing the desired cutting operations on

3D models.

2.4.6 Section Summary

Just as the range of applications varies, the methods of cutting virtual objects can be

very different. Many researchers have focused on developing cutting schemes for

interactive surgical simulation requiring manipulations to be performed at haptic

speeds. While it is required for some applications, other applications may find that

less computationally intensive cutting techniques are more appropriate. In this thesis,

as we want to build a realistic virtual surgical simulation system with real-time

cutting simulation, bleeding effect and haptic feedback, we would take

computational efficiency as a priority, as well as visual realism. We choose to move

a virtual tool through the mesh as the definition of the cut path. Since cutting

schemes are often linked with physically based models of the object being cut, there

is a considerable penalty for meshes with unnecessary primitives, as the running time

of dynamic solvers is on the order of the number of primitives in the mesh. Including

more primitives than necessary can be costly, particularly when using solvers that are

already prone to long running times, such as in the Finite Primitive Analysis.

Therefore we would like to keep the number of new primitives at minimal. The

element removal technique basically removes the elements that are intersected by the

cutting tool. Despite its simplicity and computational efficiency, this method cannot

present smooth cutting because of visual artefacts and the cut surfaces look

unnaturally jagged. More appealing visual representations of incisions are made

possible with mesh subdivision methods, but they often involve considerable

increase of element count. Mesh adaptation can generate good cutting path without

2-21

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

creating new elements, which fits our purpose very well. For a surgical training

environment, the user expects immediate visual and haptic feedback while the cut is

in progress, and a simulator that supports progressive cutting is needed. Hence we

choose to develop a method of progressive cutting which splits triangles while

following the motion of the cutting instrument. The instrument is represented by an

object consisting of multiple primitives in the shape of a knife with the contact point

on the tip of the blade, which could provide further realism.

2.5 Volume Deformation

Soft tissue simulation can be implemented utilizing either surface or volumetric

models. Volumetric models such as the tetrahedral model are often chosen since they

can simulate objects with an interior structure. However, topology modification of

volumetric models is extremely complex and polygonal representations are usually

obtained after a time consuming process of explicit segmentation and reconstruction.

Surface mesh models are relatively easy to manipulate compared to volumetric

models. Simple surface models however cannot display the object’s interior

structures. Bruyns et al. (2002) showed examples of cutting on surface model. Their

single surface mesh looked like a hollow cover, which had no relation to the interior

structure. Although complex surface models using multiple surface layers can offer

thickness information, and can show cutting depth as well, it is inefficient to keep

data for the hidden layers, which will not be displayed. In this thesis, a realistic and

smooth progressive cutting is implemented on the outer surface model, and an

algorithm is proposed to generate the groove and to reveal the interior structures

around the cutting area by direct volume deformation and direct volume rendering. In

fact, whenever the internal structure is important for the appearance or behaviour of a

graphical object, a volumetric object representation is necessary. Direct volume

rendering allows the efficient visualization of tomo-graphic 3D image data, using

implicit segmentation based on transfer functions for colour and opacity values.

Combining with direct volume deformation, it is capable of presenting a great deal of

information about internal structures at the cutting site to enhance the fidelity and

realism for the purpose of surgical training and planning.

Volume visualization is a method for extracting meaningful information from

volumetric datasets through the use of interactive graphics and imaging. It is

2-22

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

concerned with the representation, manipulation, and rendering of volumetric

datasets. The objective is to provide mechanisms for peering inside volumetric

datasets and for probing into voluminous and complex structures and dynamics.

Volume visualization encompasses an array of techniques for projecting and shading

a volumetric dataset, or properties thereof, and for interactively extracting from it

meaningful information using transformations, cuts, segmentation, translucency

control, measurements, and so forth. Typically, the volumetric dataset is represented

as a 3D discrete regular grid of voxels (volume elements) and is commonly stored in

a volume buffer (also called a cubic frame buffer), which is a large 3D array of

voxels.

A voxel is the cubic unit of volume centred at the integral grid point. As a unit of the

volume, the voxel is the 3D counterpart of the 2D pixel, which represents a unit of

area. Thus, we can regard the volume buffer of voxels as the 3D counterpart of the

2D frame buffer of pixels. Each voxel has numeric values associated with it to

represent some measureable properties or independent variables, for example, colour,

opacity, density, material, coverage proportion, refractive index, velocity, strength

and time of the real phenomenon or object residing in the unit volume represented by

that voxel. The aggregate of voxels tessellating the volume buffer forms the

volumetric dataset.

The source of volume data ranges from sampled data of real objects or phenomena,

computed data produced by a computer simulation, or modelled data generated from

geometric model. Examples of applications generating sampled data occur in medical

imaging, such as computed tomography (CT), magnetic resonance imaging, and

ultrasonography, biology (confocal microscopy), geoscience (seismic measurements),

industry (industrial CT inspection), and molecular systems (electron density maps).

Examples of application that generate computed datasets, typically by running a

simulation on a supercomputer, occur in meteorology (storm prediction),

computational fluid dynamics (water flow), and computational chemistry (new

materials).

Considering physically based approaches for direct deformation and visualization of

volume data, modern point based mesh free methods (Müller et al., 2005; Rivers and

James, 2007) seem to be the most natural approach to deal directly with medical

2-23

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

volume data. Theoretically, no preprocessing is required and deformation could be

directly performed on the volume if each voxel is modelled as a particle or phyxel.

Although such an approach provides physically correct deformation, due to the

computational complexity, to date it is not able to handle more than 100k elements at

interactive frame rates (Müller and Chentanez, 2011). Besides, it is inconvenient to

model real materials as it is based on geometry only (Faure et al., 2011; Gilles et al.,

2011).

Most of the previous approaches addressing the deformation of volumes directly, i.e.,

without mesh extraction and/or simplification beforehand, are mainly based on space

or ray deformation techniques: either a coarser structure, e.g. bounding boxes (Singh

and Silver, 2004), a volume or asurface geometry (Masutani et al., 2004; Xu et al.,

2011) is deformed. The deformation of the volume itself is computed as the

displacement based on the deformation shape. This can be done either directly or

indirectly by deformation of the viewing rays during rendering. However these

approaches do not perform deformation at the finest level. To capture fine structures,

extensive preprocessing (segmentation, geometric reconstruction) has to be

performed.

Spatial Transfer Functions were introduced by Chen et al. (2003). They define a

framework for specifying spatial transformation and deformation for volume objects.

A spatial transfer function typically defines the geometrical transformations of every

point in the volume. A backward-mapping operation must be performed (the inverse

of the deforming function) to determine where to sample in the original volume

dataset based on the current sample point on the ray. Although high quality rendering

was attainable, due to the computational costs involved, this approach for volume

manipulation is not yet able to support interactive manipulation on current desktop

computers (Correa et al., 2006) and it is categorized as a form of non-interactive

manipulation (Nakao et al., 2010).

Based on the linked volumetric representation, an approach to soft tissue deformation

called 3D ChainMail is proposed by Gibson (1997), which is able to perform

interactive deformation of volume datasets directly at the voxel level of the volume

following the movement of individual voxel. The ChainMail algorithm itself is not a

physically based deformation method but is capable of simulating material properties

2-24

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

to some extent. Although it is originally only able to simulate plastic deformation, an

additional relaxation step proposed by Gibson (1999) can be used to get more

realistic and elastic deformations. Furthermore, the connected data structure allows

easy manipulation and modification of the object topology, e.g., cutting and carving

by removing elements or by breaking the links between elements. The algorithm is

extended to model the differences between types of tissues and their interactions

(Schill et al., 1998). Li and Brodlie (2003) later developed the Generalized

ChainMail algorithm to operate on arbitrary meshes in 3D. By extending the

ChainMail algorithm and combines it with on-the-fly resampling and GPU ray-

casting, interactive direct volume deformation and simultaneous visualization has

been achieved for large volume datasets (Schulze et al., 2007 and 2009). ChainMail

algorithm has also been applied to 3D geologic surfaces (Faeth and Harding, 2009)

for real time deformation. The latest implementations of ChainMail involve the

simulation of needle insertion (Fortmeier et al., 2012; Fortmeier et al., 2013) and

image-based palpation simulation (Fortmeier et al., 2013). In our system, the cutting

groove underneath the surface model is generated by applying the modified

ChainMail algorithm on direct voxel level. Similar work has been done by Zhang et

al. (2004) to model the internal structures of the cut object by appending new

triangles to the surface mesh based on the position and degree of the scalpel

penetration. However, by dealing directly with the volumetric data, our algorithm is

capable of representing a great deal of information about the interior structures and

material properties of heterogeneous tissues without any extra time-consuming

preprocessing such as segmentation, simplifications, and adaptive hierarchy

generation. In addition, our inner volumetric model can be easily extended to

simulate operations such as drilling in a bone surgery or sculpting by simply

removing the voxels in contact with the haptic device, which makes it a useful

component to integrate into a comprehensive surgical simulation system.

2.6 Blood Simulation

Today’s surgical training systems commonly provide a powerful simulation of

deformable anatomical models and surgical instruments. Realistic simulation of

tissue cutting and bleeding is important components of a surgical simulator.

Surgeons use a number of instruments to perform incision and dissection of tissues

2-25

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

during surgery. For example, a coagulating hook is used to tear and spread the tissue

that surrounds organs and scissors are used to dissect the cystic duct during

cholecystectomy. During the execution of these procedures, bleeding may occur and

blood flows over the tissue surfaces. For any virtual reality surgical simulator,

bleeding has to be simulated in responsive to any actions the surgeon may be

conducing in the virtual environment. Such simulation has to be performed in real-

time, i.e. at frame-rate. However, the integration of interactive fluid models in a VR

based surgical simulator still remains a very challenging problem to date.

Most surgery procedures involve some kind of fluid which could add substantial

realism to a variety of application scenarios. Furthermore, the fluid can be employed

to improve treatment planning, e.g. in aneurysm surgery. The example of fluid

providing a realistic visual cue could be found in many open surgeries. Unpredictable

blood splashing might be resulted from incisions on organs. The existence of fluid

can sometimes obscure a surgeon’s view and make the operation more difficult.

Saline fluid is flooded into the operation area for cleaning purpose. The mixed fluid

of blood and water are commonly sucked away or drained from the operation area

from time to time. Also in endoscopic training systems, the simulation of blood flow

due to injured arterial vessels could significantly improve the visual feedback. In

aneurysm surgery, fluid simulation can provide useful information on aneurysm

hemodynamics and pathology. This information can be utilized as a design criterion

for stents which are used in the treatment of aneurysms. Thus, fluid simulation can

be used to improve the quality of the treatment planning and decrease the surgical

risk. It is clear that handling fluid is an essential part of a surgery. Fluid dynamic

modelling can therefore enhance the realism in surgical simulation. Without fluid,

surgical simulations appear dry and clean, which would be unrealistic for most

surgical procedures. Even when the inclusion of fluid dynamic might not have much

effect to haptic feedback, the visual realism provided by simulation of fluid deems it

necessary for surgical simulations.

The computer graphics community has developed strikingly realistic techniques of

animating fluid flows. One of the most notable efforts was by Stam and Fiume

(1993), simulating smoke, steam or liquid by solving the Naiver-Stokes equation

within a 3D grid. Another approach by Fedkiw et al. (2001) used vorticity

confinement to capture the small features of the fluid and rendered the smoke with a

2-26

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

photon-mapping technique for higher realism. In the work by Kim et al. (2008),

simulation of fluids at multiple levels of detail was achieved using wavelets.

However, none of these methods is suitable for real-time environments, as they are

intended for animations in which each frame is computed over many hours using

high-performance computers.

Real-time techniques for the generation of fluid may be categorized into two major

groups: physical and non physical. The physical approaches (Harris, 2008; Kerwin et

al., 2009) offer the most accurate simulation of the underlying fluid dynamics. In

general, these approaches can be further categorized into two classes: Lagrangian

based methods and Eulerian based methods. Both methods are based on the Navier-

Stokes Equations, which are the fundamental equations governing the motion of a

fluid. In the Lagrangian viewpoint, the fluid is simulated as discrete blobs of fluid.

Each particle has various properties, such as mass, velocity, etc. The benefit of this

approach is that conservation of mass comes easily for irregular discretization.

Monaghan (1992) introduced the smoothed particle hydrodynamics (SPH) method

into the computer graphics community to address the irregular discretization issue in

lagrangian method .It defines a smoothing kernel to interpolate the physical

properties (velocities, densities, etc.) at an arbitrary position from the neighbouring

particles. SPH is now becoming a more and more popular technique in the field of

fluid simulation (Zhang et al., 2008; Solenthaler and Pajarola, 2009; Krog and Elster,

2010; Zhang et al., 2011). The Eulerian viewpoint, on the other hand tracks fixed

points inside the fluid. At each fixed point, quantities are traced such as the velocity

of the fluid as it flows by, or the density of the fluid as it passes by. The Eulerian

approach corresponds to grid based techniques. Grid based techniques have the

advantage of having higher numerical accuracy, since it is easier to work with spatial

derivatives on a fixed grid, as opposed to an unstructured cloud of particles. However,

grid based techniques often suffer from mass loss, and are often slower than particle

based simulations. Finally, grid based simulations often do much better tracking

smooth water surfaces, while particle based approaches often have issues with these

smooth surfaces. A bunch of other works based on Eulerian method (Kim et al., 2007;

Brochu and Bridson, 2009; Batty et al., 2010; Chentanez and Müller, 2011) have also

produced very realistic result of fluid phenomena. These physical based methods are,

however, computationally very demanding and the cost increases dramatically with

2-27

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

increase in the grid size or the number of particles. Besides, the additional burden for

collision detection/response during the tool tissue interactions require large amounts

of computations and can cause performance bottlenecks. Although simulations with

GPU allow for computations to be performed independent of the CPU, the CPU–

GPU data transfer limitations may restrict the maximum number of particles or grid

size in a simulation, thereby affecting the realism. In addition, time step and

numerical errors may pollute the solution.

The non-physical approaches, however, are based on rendering techniques, where the

focus is to create visually appealing rather than physically accurate results. These

include techniques such as dynamic-textures (Daenzer et al., 2007), 3D textures

(Kühnapfel et al., 2000), gravity maps and height maps (Phenomena, 2004; Halic et

al., 2010).

The need to incorporate the effects of bleeding in VR-based surgical simulators has

been well recognized in previously developed simulators. In a cricothyroidotomy

simulator developed by Bhasin et al. (2005), bleeding simulation was implemented

to add realism when cutting tissues with a scalpel. Although their method had a

visually appealing result, it requires the bleeding image to be updated in every CPU

cycle, which could be prohibitive for more complex procedural simulations. A

similar approach for simulating bleeding in a laparoscopic surgery of the liver was

used in the work by Neyret et al. (2002). The visual realism was not enhance

compared to previous work but they introduced more control, such as gravity and

surface friction for blood flow; however, the authors noted performance bottlenecks

in rendering complex bleeding scenarios. The work by Sweet et al. (2002) focused

on an image-based approach to simulate blood flow in a virtual prostate surgery

simulator. Bleeding during the procedure was simulated with pre-recorded movies of

the diffusion of a red dye in the fluid, superimposed onto the camera view of the

simulator. Although this provided realism to the simulator, this technique cannot be

generalized to all types of bleeding experienced in a surgery. Qin et al. (2007)

developed a fast technique to simulate blood stream and blood flow for an

orthopaedic surgery simulator. They simulated blood flow from the vessels during

the incision using a specialized physics processing unit (PPU) hardware and a GPU

for rendering bleeding surfaces. However, this specialized hardware-based method

did not scale well, due to the limited data transfer rates. Moreover, the end of support

2-28

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

for specialized PPU hardware limited the applicability of this technique. In a virtual

hysteroscopy surgery simulator (Zátonyi et al., 2005), blood flow in a uterine cavity

was simulated in 2D. Even though the bleeding simulation was realistic, the 2D

approach was limited to a fluid environment. In a temporal bone dissection surgery

simulator (Kerwin et al., 2009), both bleeding and irrigation with water was

simulated in 2D using a GPU-based technique. The simulator demonstrated

satisfactory results from a user study. The major drawback of this method is that it

cannot simulate 3D effects. A particle based solution to simulate the interactions

between blood flow and vessel wall for virtual surgery is proposed by Qin et al.

(2010). Experiment results demonstrate that the proposed method has potential to

provide real time and realistic interactions for virtual vascular surgery systems.

However, the authors also observed that when Marching Cubes based rendering

method is employed, the performance greatly deceases. In the work by Halic et al.

(2010), an effective GPU-based technique for both bleeding and smoke simulation

was presented. Computationally expensive physical simulations of bleeding and

smoke were avoided by using image-based techniques. Both the bleeding and the

smoke techniques utilized GPU, thereby eliminating overloading of the CPU. The

major problem of this technique is the bottleneck problems between CPU and GPU

data transfer.

Given that the major goal of bleeding simulation in virtual simulators is to create a

realistic visual effect without introducing significant additional load on the CPU, it is

apparent that non-physical methods are more suitable for present day surgical

simulators, as many of the physical approaches require too much computation to be

integrated into real-time applications. This is critical for current surgical simulation

systems because of the enormous computational load already placed on the CPU

from simulating deformations, collisions and response characteristics.

2.7 Haptic Interaction

Of the human sensorial modalities (visual, auditory, touch, smell and taste), two

main modalities are currently used in surgical simulation: visual and touch. Smell

and taste will be included in the future with new products such as the ScentPalette

from EnviroScent (Ball Ground, GA, USA). Auditory cues are sometimes used to

alert a user to a fault or for guidance and can be important for the correct learning of

2-29

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

certain procedures using high-speed power tools, such as burr-based bone and tooth

drilling. The visualization component is provided using either two-dimensional or

three-dimensional displays and is well documented. The sense of touch has a great

role in enhancing a user's perceived fidelity of computer simulations for medical

procedures.

Haptics solutions are less mature than visual display technologies. In particular,

haptics require bidirectional input and output, which is difficult to model accurately

due to the large number of the different touch receptors involved. Haptics can be

considered in two main categories: tactile feedback and force/torque feedback.

Tactile feedback is sensed by receptors in and just under the skins surface allowing

humans to detect if a surface is smooth or rough, hot or cold, as well as conveying

pain. Force/torque feedback resists motion and/or rotation, for instance, stopping a

person's hand falling through a table top as they touch it. The biological receptors

providing this feedback are in muscles and at joints allowing a person to know where

their hand is in space, even with closed eyes (proprioception). Both tactile and force

feedback can be crucial to the success of carrying out a medical procedure.

The term "force feedback" is often used in place of "haptic feedback". However,

these terms are not interchangeable. In a general case of proprioceptive feedback,

where a person interacts with a simulated scene, both forces as well as torques must

be experienced. This requires six degrees of force (DOF) feedback but is not

typically provided because of the higher cost of manufacturing devices that can

provide torque as well as directional force feedback.

Several commercial devices usable for surgical simulation have become available.

One of the most commonly used devices is the PHANToM from Sensable

Technology
TM

, which is now available in several models. PHANToM is an acronym

for Personal HAptic Interface Mechanism and evolved from haptic research at the

MIT Artificial Intelligence Laboratory. Another popular force feedback device is the

Laparoscopic Impulse Engine from Immersion Corporation, which also enables

surgical tools to be tracked and manipulated in 3D space. The device interfaces with

a computer via a PVI card and the development kit supports Windows-based and

Silicon Graphics computers. The Mediseus Epidural simulator (Medic Vision) is a

commercial example of a needle insertion simulation using force feedback. The

2-30

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

simulation can be run from a laptop. It gives a vocal response if the user makes

mistakes and produces an objective report for the student (Mayooran et al., 2006). A

relatively low-cost SensAble PHANTOM Omni is encased inside the system using a

modified syringe end effector at a fixed insertion point. This transforms the three

positional DOF to one positional and two orientation DOF.

A key issue in integrating force feedback devices into a surgical simulation system is

the update rate required for high fidelity. Although the visual display can be updated

at 30 Hz, the haptic interface update rate should be around 1,000 Hz for stability

reasons and to obtain a responsive interface. This can be accomplished by a multi-

rate simulation with a high-bandwidth force feedback loop as described by

Cavusoglu and Tendick (2000).

2.8 Chapter Summary

The chapter has presented a review of existing work of six main components of a

surgical simulator that is relevant to this thesis: data sources and pre-processing, soft

tissue modelling, surface cutting, volume deformation, fluid simulation and haptic

interactions.

Surgical training has traditionally been one of apprenticeships, where the surgical

trainee learns to perform the surgery under the supervision of a trained surgeon. This

is costly, time consuming, and is of variable effectiveness. Training using virtual

reality simulator is a low cost, low risk, and hence a viable option to supplement

standard training.

In this thesis we focus on a computer-assisted approach based on virtual reality

techniques using 3D patient dataset. Although numerous methods have been

established to construct surface meshes from CT and MRI dataset, direct volume

rendering is still superior in presenting interior structures. In order to perform virtual

reality based pre-operative rehearsal in the field of open surgery, the system has to

support both interactive soft tissue cutting and accurate deformation with virtual

organs. Also, fluid simulation is an indispensable part of surgical simulation system

as it is a valuable visual clue for the users. This thesis presents a new integrated

simulation framework and aims to develop a training simulator for surgical cutting

and bleeding in a general surgery.

3-1

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Chapter 3 Real-time Hybrid Surgery Cutting

3.1 Introduction

Virtual surgical simulation is a technology dedicated to medical training and surgery

planning. To achieve a high degree of realism, the virtual surgical simulation systems

need to support the following: (1) heterogeneous scenes composed of different states

of matter (solid, liquids, and gases); (2) complex geometry and material properties of

objects within the scene; (3) dynamic and real-time interaction (palpation, cutting,

etc.) between virtual objects and tools manipulated by the user; and (4) multimodal

(visual, auditory, and haptic) rendering of the results to the user. The complexity

resulting from the four requirements above necessitates the dedicated techniques of

modelling, simulation, and rendering. In this thesis we aim to discuss some of these

key techniques and to design and develop a prototype of surgery simulation system.

Cutting simulation is the key component in surgical simulation as cutting is a

common operation in both conventional and minimal invasive surgeries. Most

surgical tasks begin with an incision to expose the surgical region. Despite

advancements in computational biomechanics, modelling and simulation of soft

tissue cutting still remain one of the most challenging problems in surgery simulation.

The difficulties lie with the need to model surgical cutting and the nonlinear

geometry and material behaviour exhibited by soft organs (Wittek et al., 2008), and

to achieve high computational speeds for real time interaction.

Soft tissue simulation can be implemented utilizing either surface or volumetric

models. Surface models are relatively easy to manipulate and surface-based cutting

methods can provide smooth and realistic cutting effect at a low computation cost,

but they suffer from important shortcomings. They cannot display the object’s

interior structures to show the result underneath a cut. With just a one-layer surface

model, the object after cutting looks like a hollow cover and could not represent the

different material properties, as the examples shown by Pan et al. (2011). Although

layered surfaces can be employed, a surface mesh is generally unable to simulate

progressive cutting in depth. Volumetric models, on the other hand, can incorporate

appropriate internal structures and material properties for situations in which high-

fidelity virtual environments are required. In fact, whenever the internal structure is

3-2

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

important for the appearance or behaviour of a graphical object, a volume object

representation is necessary.

In the current surgical simulation systems, it is generally not possible to provide a

physically-based simulation of the internal forces involved in the deformation, due to

the huge computational cost required. Instead, it is considered more important to

provide realistic visualizations of the internal structures at the cutting site as the

visual clue, especially for surgical training and planning purposes (Lin et al., 2007).

Therefore, priority should be given to the realistic surface deformation and smooth

cutting before there is an opening, and subsequently the users often focus on the

exploration of the interior features. We hence propose a hybrid method to deal with

the cutting of heterogeneous objects, which consists of an outer surface model and an

inner volumetric model. A node-snapping technique is presented to modify the

surface topology of the objects, without adding new elements. Progressive smooth

cut is generated by duplicating and displacing mass points that have been snapped

along the cutting path. Node-snapping technique is modified to allow haptic-

controlled deformation of the incision, i.e., the crack could be pulled or manipulated

for further operation. Our algorithm is easily extended to simulate other surgical

operations such as suturing by knotting the two sides of the incision back together. A

volumetric deformable model is employed underneath the surface, with

considerations on the internal structures and material properties of heterogeneous

objects without extra time-consuming preprocessings such as segmentation,

simplifications, and adaptive hierarchy generation. A cutting gutter is generated by

the modified 3D ChainMail deformation applied on the underneath volumetric model.

In addition, our inner volumetric model can be easily extended to simulate other

operations such as drilling in a bone surgery or sculpting by simply removing voxels

in contact with the haptic device, which makes it a useful component to integrate into

a comprehensive surgical simulation system. We build a tight connection between

these two data models so that the volumetric gutter is formed according to the outer

surface cut openings progressively as a hybrid model. In the next section, we will

focus on the manipulation of the outer surface model.

3-3

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.2 Surface Manipulation

3.2.1 Surface Deformation

When a tool collides with a deformable object in a cutting procedure, the object's

surface deforms until the applied force becomes larger than the yield limit of the

material being simulated. The deformation is determined by the contact point and the

motion direction of the tool. Various techniques can be found in literature for the

simulation of deformable objects. These techniques can be categorized into two main

approaches: geometrically based approaches and physically based approaches. In

geometry-based techniques, such as Bezier/B-spline based procedures and freeform

deformation techniques, the object or surrounding space is deformed by manipulating

vertices or control points. These techniques are relatively faster and easier to

implement. However, they do not capture the physics of the deformation.

The physics-based techniques, on the other hand, aim to model the physics involved

in the motion and interactions. One of the simplest physics-based models, and thus

the most likely to achieve real-time interactivity, is the mass-spring elastic network.

Mass-spring systems consist of a set of point masses, connected to each other

through a network of springs and dampers, moving under the influence of internal

and external forces. This technique has been used extensively by computer graphics

researchers in simulating soft tissue and cloth behaviour. However, for the purpose

of deformation modelling, the mass-spring model suffers from many disadvantages.

It is difficult, and sometime impossible, to determine the parameters of hundreds of

thousands of springs, dampers, and masses to represent the global behaviour of

heterogeneous soft tissues especially if nonlinear and/or viscoelastic behaviour is to

be captured. It is difficult to enforce global properties like incompressibility when

using such models and the problem is exacerbated when one tries to use relatively

fewer particles to reduce computational time. Relatively stiff springs are necessary to

model hard tissues, jeopardizing the stability of the solution scheme, and requiring

the numerical temporal integrator to take minute time steps. Finally, anisotropic

distribution of mass points necessitates fine-tuning for individual organ geometry,

difficult in controlling the variation of forces and deformations across the geometry

as well as integrating tissue properties into the model.

3-4

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

As an alternative to mass-spring models, the use of more robust but expensive finite

element analysis procedures has been proposed. In spite of accuracy and robustness,

finite element techniques suffer from certain drawbacks in real time simulation.

Firstly, the need for numerical integration and volumetric meshing results in a

slower-than-real-time performance unless extensive precomputations are performed.

Furthermore, the contact between tool and tissue must occur only at nodal points.

Hence, for a smooth visual and haptic display, a very fine mesh needs to be utilized,

resulting in extensive memory usage and high computational overhead. Large

deformations and nonlinear response of tissues cause the finite elements to behave

badly or totally fail unless re-meshing is performed frequently. Meanwhile, change

of topology, for example, during the simulation of surgical cutting, necessitates re-

meshing, which destroys any precomputed data. The number of computations would

be increased on the fly, resulting in seriously degraded real time performance.

There are, however, positive features of both the mass-spring and finite element

analysis schemes. Mass-spring models offer simplicity and speed and do not suffer

from the deleterious effects of mesh distortion. Finite element schemes are used to

solve the partial differential equations that govern the deformation and motion of soft

tissues and only a limited number of empirically determined parameters are

necessary.

Hence, an ideal combination of mass-spring and finite element-based techniques is

desirable. Such an “ideal” scheme should solve the governing partial differential

equations, but not suffer from any of the problems associated with a mesh (e.g., mesh

distortion and re-meshing when large deformations or surgical cutting have to be

modelled). It should be very flexible, in the sense that it should allow arbitrary local

refinement and multiresolution capability to zoom into region of “action” without

having to unduly refine the discretization over the entire computational domain.

Finally, the ideal scheme should allow the simulation of matter, irrespective of its

state of solid, liquid, or gas, within a single computational framework. This is

essential since one needs to simulate dissection, bleeding, and, possibly, smoke

generation within the same scenario without having to switching between various

modelling schemes stitched together through tenuous non-physical links.

3-5

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Point-associated finite field (PAFF) is such a scheme for deformation. It is based

upon the equations of motion dictated by physics without jeopardizing the

computations. This method resides between the continuum mechanics and particle-

based approaches. Like mass spring models, it is a point-based approach, using only

the nodes of a 3D object for the displacement and force calculations. PAFF

approximates the displacement field by using nonzero functions over small spherical

neighbourhoods of nodes. Like FEM, this technique uses a Galerkin formulation to

generate the discretized versions of the partial differential equations governing the

deformable object's behaviours. PAFF supports simulation of large deformations as

well as topology modifications such as cutting. It can also be used to simulate other

procedures involving particles, such as smoke generation during cauterization.

Although the technique’s brute-force implementation is computationally intensive,

users can generate localized solutions in real time. In our application, the surface

deformation of the soft tissue is computed using the mesh-free physics-based PAFF

technique up to the point of tissue rupture.

In PAFF, an object is represented, irrespective of its state, as a collection of particles

or nodes that serves as the computational primitives (Figure 3.1), much like the

mass-spring models. But unlike mass-spring models in which the governing partial

differential equations are solved, the method is “meshless”, since no direct link exists

between the computational particles. The particles pose a finite “region of influence”

which smears out their effects and coordinates their motions during simulation. Since

no mesh is used, none of the problems associated with a mesh are encountered. In

our surgical simulation system, it may be assumed that the deformation zone is

localized within a “region of influence” of the surgical tool tip. The influence zones

are spherical in shape and determined by a function known as the shape function or

approximation function.

3-6

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 (a) (b)

Figure 3.1：The point-associated finite field (PAFF) technique. (a) A general three-

dimensional body (e.g., stomach) discretized using a set of nodes. Each node has an

associated spherical influence zone. (b) The approximation function)(xhJ at node J

is “bell shaped” and is nonzero only on the spherical influence zone of radius Jr

centered at node J.

The PAFF idea is quite simple. One assumes that the variable of interest (the

displacements in the three Cartesian directions, in this case), say u at any point x

inside the computational domain, can be approximated using the following formula





N

J

JJh xhxu
1

)()( (3.1)

where N is the total number of particles in the domain, and)(xhJ is a shape function

of the form

NJxPxAxPxWxh J

T

JJ ,1)()()()()(1   (3.2)

with





N

I

T xPxPxWxA
1

111)()()()((3.3)

)(xWJ is a radial weighting function which is nonzero only on the spherical influence

zone centred at node J. To ensure that the approximation in Equation (3.1) is globally

continuous,)(xWJ needs to be chosen such that it has a zero slope on the surface of

the sphere as well at its centre. For those familiar with the theory of wavelets, this is

3-7

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

much like the condition of vanishing moments. Approximation spaces with a very

high degree of smoothness can easily be generated by choosing appropriate weight

functions.

The vector)(xP contains polynomials ensuring consistency up to a desired order (in

our implementation we have chosen TzyxxP],,,1[)( to ensure a first order accurate

scheme in 3D, similar to bilinear finite elements). In all these expressions, N is the

total number of particles in the domain and J is the nodal unknown at node J.

In PAFF, the approximation in Equation (3.1) is used to solve the governing partial

differential equations of motion of a continuum, using a method known as point

collocation. In this technique, the partial differential equations, as well as the

boundary conditions, are satisfied at the nodal points. Compared to the finite element

technique, this method is vastly simplified, since no computationally intensive

numerical integration is used.

A straightforward implementation of PAFF will not achieve real-time performance.

A key assumption is hence made such that the surgical tool - soft tissue interaction is

local and the deformation field degrades rapidly with increase in distance from the

surgical tool tip. This localization assumption is based on a Gaussian function in our

application. In Figure 3.2(a), the x axis represents the distance of a particle to the

contact point between the surgical tool tip and the surface, and the y axis represents

the depth of the deformation along the direction of penetration. It can be clearly seen

from Figure 3.2(b) that, the further the particle is from the contact point, the less

displacement it experiences.

 (a) (b)

Figure 3.2: (a) Shape function for our application. (b) Surface deformation.

3-8

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.2.2 Surface Mesh Cutting

When the deformation of the surface reaches it yield limit, a rupture or surface cut

will occur. As for cutting models, there are mainly two groups, including element

removal and re-meshing (Figure 3.3). The element removal method directly removes

elements intersecting the cutting tool (Cotin et al., 2000; Choi et al., 2009). This

method is computationally efficient. However, it violates the physical principle of

mass conservation due to the removal of elements and it is often difficult to present a

smooth cut. The element re-meshing method recreates the cutting and forms a cut

opening in the mesh (Bruyns et al., 2002; Sela et al., 2004; Sela et al., 2007). It can

be further categorized as mesh subdivision and mesh adaption methods.

(a) (b)

Figure 3.3: Handling of surface cutting: (a) Removal of intersected primitives. (b)

Re-meshing the intersected primitives.

The mesh subdivision method divides elements along the cutting plane to generate a

relatively smooth cutting path (Bielser et al., 2004; Huy et al., 2006). The deficiency

of this method is the increment of the number of elements and the creation of smaller

or degenerated elements. The newly increased elements may slow down the

computation and the degenerated elements as well as the edges with widely varying

lengths may cause the instability of numerical calculations of deformation.

The mesh adaption method, also known as node snapping, generates the cutting path

by aligning the nearby mass points and edges on it. These edges are duplicated and

separated apart to form the cut opening. In this process, no new facet is created and

the mass is conserved. As stated in Nienhuys and van der Stappen (2001),

degeneracy issues may be easily raised due to the aligned edges and the incision

simulation lags behind the scalpel. The progressive cutting simulation (Kim et al.,

3-9

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

2010; Turkiyyah et al., 2011) is required to generate the cut opening closely

following the movement of the scalpel. We present an efficient cutting algorithm

based on the idea of node-snapping that is capable of visually simulating progressive

cutting with minimum increase in the number of new elements.

Node-snapping methods have been used in geographic information systems for nodal

coordinate adjustments of digitized data, and in CAD tools for identification of

features and cleanup of data with node merging and weeding. Nienhuys and van der

Stappen (2001) proposed a similar algorithm for the modification of object geometry.

Later Lin et al. (2007, 2008) applied the approach for progressive cutting.

Figure 3.4: Cutting path intersects with mesh points.

The node-snapping method starts with collision detection. After the initial collision

of the haptic tool with the object surface, intersection points between the cutting path

and the underlying polygon edges are calculated as shown in Figure 3.4. It is worth

mentioning that the marked intersection points are only potential as the cutting is a

progressive process. Whenever an intersection point is calculated, the local area of

the mesh is updated before move to the next intersection point. Figure 3.5 illustrates

the details of the process. As the cut progresses, the mesh point nearest to the

intersection point is snapped to the cutting path and the cut will be generated by

dividing the mesh model along the cutting path and temporarily ends here. This is

especially important for visual realism when the cutting tool moves very slowly and

3-10

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

the cut should still be updated in real time. The re-oriented polygon edges

continuously follow the cutting path.

Figure 3.5: The progressive cutting.

For each intersection point, after the node-snapping, the next task is to open up the

cut by duplicating and displacing vertexes that have been snapped along the cutting

path. The snapped points except the starting (S) and ending points (E) of the cut are

duplicated and directly displaced towards the two sides of the cutting path, such as

the vertices Si1 and Si2 for the original vertex Si in Figure 3.6. The displacement

direction is perpendicular to the cutting path. The original snapped points such as

point Si are then deleted. All polygon edges connected to the deleted points are

reconnected to their duplicated points. As shown in Figure 3.6, edges originally

connected to point Si are now connected to point Si1 or Si2, depending on which side

of the cut they are located at. In particular, both Si1 and Si2 are set to be connected to

the starting cut point S. After some points on the surface are snapped, duplicated and

3-11

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

deleted, surface triangles in the vicinity of the cut need to be updated according to

the reconnected edges near the cut.

Figure 3.6: Cut opening generation.

Figure 3.7: The definition of the cut opening vector.

The displacement vectors 1tX and 2tX in Figure 3.6 are defined on the tangent plane

of the original vertex. The normal of the tangent plane of a vertex is calculated as the

average normal of its neighbouring triangles. Let W be the cut opening width at point

i, which is currently set as a user-defined controlling parameter representing the

tension of the simulated tissue, the displacement vectors of the duplicated points can

be calculated as:

COt V
W

X
2

1  (3.4)

COt V
W

X
2

2  (3.5)

3-12

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The new positions of the duplicated mesh points can hence be calculated as:

COtt V
W

SS
2

1  (3.6)

COtt V
W

SS
2

2  (3.7)

where COV is the unit vector along the displacement direction which can be

calculated according to Figure 3.7 as :

sntool

sntool

CO VV
VV

V 



1

 (3.8)

where toolV and snV are the unit vectors along the directions of the tool travelling

and the tangent plane normal at node tS , respectively.

Although this cutting method is not physically based, the generated cut is

unconditionally smooth with high level of realism. The method is computational

more efficient than the physically based numerical integration methods where the cut

is generated by the spring forces of disconnected springs. By duplicating and

displacing mass points that have been snapped along the cutting path, node-snapping

algorithm could generate very smooth cut without adding new elements. Figure 3.8

shows the cutting results on the surface on different resolution. New edges are

generated and connected to the neighbouring mesh points. Figure 3.8 (b) also shows

an example of multiple cuts on the same mesh. Cuts with different cut opening width

W are also presented in Figure 3.9.

(a) (b)

Figure 3.8: Surface cut on the mesh plane.

3-13

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 (a) (b) (c)

Figure 3.9: Cuts with different cut opening widths W.

3.2.3 Wrinkle Effect

During the progressive cutting, collision between the blade and the geometry has

been constantly detected. Once there is no more collision detected, which means that

a cutting operation has finished, the common next step in a surgery is to pull open the

cut to expose the underline surgical region. Due to the elasticity of the soft tissue, the

wrinkle effect will be generated along the cut path on the surface during the pulling.

Figure 3.10: The use of retractor in a real surgery-medical illustration.

(http://catalog.nucleusinc.com)

Retractors or spatulas are used in surgery to separate the cut surfaces while the

surgeon attempts to make further cuts or to focus on the underline region of interest

(Figure 3.10). In a real surgery, when a surgeon uses a retractor to hold back soft

tissues such as skin to open up the cut, there will be fold along the cutting edge,

because of the surface elasticity. Wang et al. (2006) used two hand-held haptic

devices to simulate the contact with retractors. However, they did not implement the

wrinkle effect when the cutting edges are pulled away by the retractor. In addition,

http://catalog.nucleusinc.com/

3-14

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

complex calculation is required to obtain the intersections between the retractor

polygon and the surface object. Correa and Silver (2007) have implemented a very

realist wrinkle effect along the cut (Figure 3.11), but the deformation is a part of the

rendering pipeline, which differs from traditional deformation methods where

deformation is considered as a modelling problem and a new mesh is required.

Obviously, such an implementation does not fit our purpose. We design a decay

function to displace the mesh points along the cutting path to simulate the wrinkle

effect. The concept is similar to the surface deformation before rupture, except that

Gaussian function is replaced by the decay function. In Figure 3.12, the x axis

represents the distance of a mesh point to the cutting path, and the y axis represents

the depth of the deformation along the direction of the penetration depth. It can be

clearly seen that, the deformation field degrades with increase in distance from the

surgical tool tip in a damping way to form the wrinkle effect. Even though the

concept of our method is very simple and straightforward, it can produce a very

realistic and smooth wrinkle effect without jeopardizing computations. Figure 3.13 is

an example of the wrinkle effect applied on a surface mesh.

Figure 3.11: Rendering of wrinkle from the work of Correa and Silver (2007).

 Figure 3.12: Decay function. Figure 3.13: Wrinkle effect.

3-15

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.3 Volume Deformation

As discussed previously, cutting algorithms based on surface mesh models are easy

and simple to manipulate. However a surface mesh is only suitable for modelling

cuttings on membrane-like structures, such as intestine or gall bladder, with a great

deal of information about the interior structures and the material properties of the

heterogeneous tissues disregarded in most surface cutting algorithms.

In contrary, volumetric models provide a good means to represent interior structures

and mechanical properties of heterogeneous volumes. By dealing directly with the

volumetric data, the heterogeneous structures could be achieved without extra

preprocessing. In fact, whenever the internal structure is important for the appearance

or behaviour of a graphical object, a volumetric object representation is necessary. In

this section we propose novel algorithms to realistically simulate surgical cutting on

deformable anatomy objects consisting of an inner volumetric model in addition to

an outer surface model.

As discussed in Chapter 2, our cutting groove on the underneath volumetric model is

implemented by modified ChainMail algorithm. The underlying data structure of the

ChainMail algorithm can be compared to a chain mail in the 2D case extended by a

third dimension in the 3D case. It is the key to the entire algorithm. The basic idea of

the algorithm works as follows. The elements of an object are linked together like

elements of a chain mail. If one element is moved there is a chance that it will also

make its neighbour elements move since they are connected like a chain. If the

moved element stays within the boundaries of the neighbours, the neighbours do not

have to be moved. If the moved element violates the boundaries of its neighbours,

the neighbours have to be moved to satisfy the boundary constraints again. If a

neighbour is move, then its neighbours are moved too if necessary. Like this, the

movement of one element is locally propagated through the object.

The ChainMail algorithm consists of two steps to calculate the deformation that

occurs when an element is moved. The first step calculates the movement of the

neighbour elements of the moved element. If any neighbour element has been

moved, the movement of their neighbours is calculated too and so forth. In the

3-16

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

second step, a relaxation step, the object is relaxed by locally adjusting the elements

until the object reaches a valid state of minimum energy.

ChainMail has the advantage that its complexity does not grow with the number of

elements of the object but only with the number of affected elements. The

performance of the algorithm is based on two features of the algorithm: 1, the

deformation is calculated depending on simple constraints; 2, each element of the

dataset is processed at most once per deformation step.

A basic discussion of volumetric data will be given in the next section, and then

followed by a detailed description of our implementation of ChainMail algorithm in

the following section.

3.3.1 Volumetric Data

3.3.1.1 Basic Data Structure

Interactions with most objects in the real world are through their surfaces, for

example, the skin of our body and the green surface of the leaves on the trees. A

volume describes not only the surfaces of a geometrical object, but also the full

distribution of information inside these surfaces. Examples are the air pressure or air

flow around the body of a car, or the value of some tissue parameter throughout the

body of a human patient. The two examples in Figure 3.14 illustrate the difference

between non-volume and volume visualizations.

 (a) (b)

Figure 3.14: Two example of visualization. (a) is an example of visualization of non-

volume (http://www.wikipidia.org) and (b) is an example of volume visualization

(http://www.volvis.org). Observe how translucency in the volume visualization

reveals internal features not present in the visualization of surface only.

http://www.wikipidia.org/

3-17

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

A volume is essentially a function in 3D space. A scalar volume is a mapping from a

position in space to a scalar parameter (V: R
3
->R) and a vector volume maps the

position to a vector property (⃗ : R
3
->R

N
 where N is typically > 3). Volumetric data

can, at any observed scale in the real world, be considered continuous down to an

unmeasurable granularity. In computers the storage space is limited, so generally

volumes in computer science are not defined continuously throughout the occupied

space, but only are collections of discrete sample points called voxels. A continuous

volumetric dataset must be defined by one or set of analytical functions that can be

numerically estimated at any position. Examples of volumetric data used in the work

presented in this thesis are CT and MRI data which are sampled scalar volumes.

Volumes that are sampled by these techniques can simply be interpolated into a

continuous function using interpolation.

A two-dimensional raster image can be used as the role model for the discrete

representation of a volume. An image consists of pixels (short for “picture elements”)

that are organized in a regular array. Pixels are the data elements of a 2D image,

holding colour values. A discrete volume dataset can be represented in a similar

fashion by just “lifting” the description from two dimensional to three dimensions. A

2D pixel is extended to a 3D voxel (short for “volume element”). Voxels are points in

3D space, along with an interpolation scheme that fills the in-between space,

organized in a regular 3D array, covering the volume dataset. The definition of a

voxel is compatible with a grid-based description of the volume dataset: voxels serve

as grid points of a uniform grid. The grid points are connected by edges, forming

hexahedral (i.e., cube-like) cells. In fact, a 3D uniform grid can be defined as a

collection of grid points that are connected to form rectangular, hexahedral cells of

equal size. Figure 3.15 illustrates a volume dataset represented on a discrete uniform

grid.

Figure 3.15: Volume dataset given on a discrete uniform grid.

3-18

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

A uniform n-dimensional grid has the advantage of being well-structured, which

leads to a compact representation in computer memory (e.g., in the form of an n-

dimensional array) and a fast access to selected data cells. Uniform grids, however,

are not very flexible. Therefore, other grid structures may be used to represent

discretized data. Higher flexibility can be achieved by permitting more flexible cell

types or a more flexible combination of cells to a grid. For example, distorted

hexahedral (i.e., with non-perpendicular cell axes) or completely different cell types

(e.g., prisms) may be used. Moreover, different kind of cells may be combined in a

single grid. Since volume data representations from CT and MRI are arranged in a

rectilinear grid naturally, we will only focus on uniform grid for simplicity and

efficiency in this thesis.

3.3.1.2 Visualization of Volumetric Data

Visualization is the process of making something perceptible to the mind or

imagination. In computer science this refers to the rendering of data onto a display to

convey a message or make understandable some abstract features contained in the

data. This display is often a monitor showing visual images, but may also be a haptic

display providing a haptic representation of the data, loudspeakers conveying

auditory cues or, in the future, even an olfactory display. Volume visualization is the

art and science of presenting the information that resides in volumetric data, or

volumes.

The amount of information contained in a volume can be immense and it is often

advantageous to process the data to make important features more easily perceivable.

The process of visualizing volumetric data includes tasks such as data reduction to

lower the amount of displayed data, data extraction to automatically select parts of

the data that may be of interest, data enhancement to improve the definition of

unclear but potentially important features, data representation to convert data into a

form that can be shown on the designed display. The main aim is to convert the data

from an abstract cloud into a representation that can be perceived and understood,

and thereby make best use of the human analytical system.

The full data of a volume should not be rendered with full opacity. That would

produce the visual impression of a solid cube where only the data at the six sides are

visible. Much of the process of creating a visual representation of volumetric data is

3-19

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

to remove unwanted and unnecessary part in the data and enhance the important

features through a more sparse visual representation. In this way unimportant,

redundant and occluding information in the volume is removed to better show the

important parts.

A typical example of removing data is the extraction and rendering of iso-surfaces in

scalar volumes. Many algorithms exist to extract from scalar data an explicit iso-

surface geometry, a geometry that can then be rendered on the screen. The rendering

of geometrical representations of volumetric data is a type of indirect volume

rendering. As such it suffers from the disadvantage that it only represents a pre-

selected subset of the data, in this case at positions defined by a simple isovalue. A

more powerful approach to produce a visual representation of volumetric data is the

direct volume rendering (DVR). In this approach the full data is considered, but only

parts that are important are rendered by manually or semi-automatically making

uninteresting parts transparent or semi-transparent. In this way the interesting parts

stand out and can be visually identified or explored by a user of the system. The

DVR approach can, by considering the full volume, potentially show properties that

cannot be represented by simple iso-surfaces such as the thickness of a surface. This

can represent, for example, the thickness of the skin in medical visualization.

It is common in volume rendering that a set of transfer functions is used, each

mapping one scalar value to another (τ: R->R), to map the scalar value of the volume

to the red, green, blue and opacity (alpha) components of the visual rendering. The

transfer functions are thus used to specify the visual impression of different values in

the volume, and which values should be transparent and how transparent they should

be.

Volume rendering techniques can be classified as either image-order or object-order

methods. Image-order approaches iterate over the pixels in the image to be produced,

rather than the elements in the scene to be rendered. The data volume is traversed

beginning at pixels. On the other hand, object-order methods follow some organized

scheme to scan the 3D volume in its object space. The traversed volume areas are

then projected onto the image plane. Some classical volume rendering approaches

are briefly introduced below.

3-20

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Ray casting. Ray casting is the most popular image-order method for volume

rendering. The basic idea is to directly evaluate the volume-rendering integral along

rays that are traversed from the camera. For each pixel in the image, a single ray is

cast into the volume (neglecting possible super-sampling on the image plane). The

volume data is resampled at discrete positions along the ray. Figure 3.16 illustrates

ray casting.

The natural traversal order is front-to-back because rays are conceptually started at

the camera. Ray casting is the most important method for CPU volume rendering; it

has been used for quite some time, and many acceleration methods have been

developed. With today’s powerful graphics cards, GPU ray casting has experienced

great development as ray casting is very easy to parallelize. GPU ray casting has the

advantages that it can be easily extended to benefit from acceleration techniques and

that it supports both uniform grids and tetrahedral grids. Therefore, GPU ray casting

has already become very popular within a short period of time – and it is safe to

assume that ray casting will play an even more important role as GPUs further

evolve.

Figure 3.16: Ray-casting principle. For each pixel, one viewing ray is traced. The ray

is sampled at discrete positions to evaluate the volume-rendering integral.

Texture slicing. Texture slicing is an object-order approach: 2D slices located in 3D

object space are used to sample the volume. The slices are projected onto the image

plane and combined according to a compositing scheme. Slices can be ordered either

in a front-to-back or back-to-front fashion – and the compositing equation has to be

chosen accordingly. Texture slicing is directly supported by graphics hardware

3-21

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

because it just needs texture support and blending (for the compositing schemes).

Therefore, texture slicing is widely available and very efficient. One drawback,

however, is that it can only be used with uniform grids.

Shear-warp volume rendering. Shear-warp volume rendering is strongly related to

2D texture-based slicing. In this object-order method, the volume is traversed in a

slice-by-slice fashion. The basic idea of shear-warp is illustrated in Figure 3.17 for

the case of an orthogonal projection. The projection does not take place directly on

the final image plane but on an intermediate image plane, called the base plane,

which is aligned with the volume. The volume itself is sheared in order to turn the

oblique projection direction into a direction that is perpendicular to the base plane,

which allows for a fast implementation of this projection. In such a set-up, an entire

slice can be projected by 2D image resampling. Finally, the base plane image has to

be warped to the final image plane. Note that this warp is only necessary once per

generated image, not once per slice. Perspective projection can be accommodated by

an additional scaling of the volume slices.

 (a) (b)

Figure 3.17: (a) The standard transformation. (b) shear-warp factorized

transformation for a parallel projection.

Two-dimensional texture slicing is directly related to shear-warp volume rendering.

When 2D textures are used to store slices of the volume data, and a stack of such

slices is texture-mapped and blended in graphics hardware, bilinear interpolation is

also substituted for triliner interpolation, similar to shear-warp. The difference

3-22

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

between shear-warp rendering and 2D texture slicing is the order of performing the

image warp and the compositing: texture slicing warps each slice and performs

compositing on the final image, whereas shear-warp rendering only warps the

intermediate image once.

A strength of the shear-warp algorithm is the possibility for optimizations. The shear-

warp algorithm with run-length-encoded volume is one of the fastest CPU-based

speed acceleration techniques developed so far for direct volume rendering (Choi et

al., 2012). However it has some defects too, such as the increases in memory

consumption and preprocessing time as well as the deterioration in image quality. By

making direct access to the memory space where initially loaded volume data is

stored, image quality could be enhanced and memory consumption could be

decreased without reducing rendering speed. By creating only one run-length-

encoded volume and by combining non-photorealistic rendering techniques with

shear-warp algorithm, those defects could also be solved. All these implementation

could also be applied on not only a GPU using API such as CUDA but also various

parallel techniques (Sathappan et al., 2011; Surendran et al., 2011) to get further

speed acceleration.

Splatting. The idea of splatting (Zhang et al., 2011) is to project 3D reconstruction

kernels onto the image plane. The 2D image of such a 3D kernel is called a footprint.

Splatting is an object-order approach: it traverses the volume in object space and

projects volume elements onto the image space. In general, splatting allows for a

quite flexible spatial order for traversing the volume. For example, it might be

applied to traverse a uniform grid in a voxel-by-voxel fashion, or it might even be

applied to scattered data (i.e., a cloud of arbitrarily distributed data points) – as long

as some spatial sorting is provided to guarantee a correct result for back-to-front or

front-to-back compositing. Image-aligned sheet-based splatting chooses a specific

order of traversal by sampling the volume along sheets (i.e., slicing slabs) that have

the same orientation as the image plane.

Cell projection. Cell projection (Marroquim et al., 2008) is an object-order approach

for the volume rendering of tetrahedral grids or even more complex unstructured

meshes. The first cell projection algorithm that made efficient use of graphics

hardware is the projected tetrahedral (PT) algorithm by Shirley and Tuchman (1990).

3-23

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The basic idea of the PT algorithm is to traverse the cells of the unstructured grid and

project these cells onto the image plane. The projection itself leads to a collection of

triangles that represent the image of the 3D cell on the image plane. The PT

algorithm consists of the following steps.

1. Decomposition of the unstructured grid into tetrahedral cells.

2. Spatial sorting of the cells according to their distance from the camera.

3. Classification of each tetrahedron according to its projected profile, along

with a decomposition of the projected tetrahedron into triangles (on the image

plane).

4. Assignment of colour and opacity values attached to the triangles.

5. Rendering and blending of the triangles.

Unfortunately, cell projection with the emission-absorption model of volume

rendering is connected to noncommutative blending (compositing). Therefore, it

requires a view-dependent depth sorting of cells, which still has to be performed on

the CPU. Whenever the camera or the volume is moved, new graphical primitives

have to be generated by the CPU and transferred to the GPU. Therefore, cell

projection benefits only in part from the performance increase of GPUs. Recent work

by Maximo et.al. (2010) is exclusively based on the rasterization of simple geometric

primitives and takes full advantage of graphics hardware. Both vertex and geometry

shaders are used to compute the tetrahedral projection, while the volume ray integral

is evaluated in a fragment shader; hence, volume rendering is performed entirely on

the GPU within a single pass through the pipeline.

We choose 3D texture mapping volume rendering as our volume visualization

technique since it is very efficient and suits our situation where only uniform grids

are considered. Texture-based volume rendering technique performs the sampling

and compositing steps by rendering a set of 2D geometric primitives inside the

volume. Each primitive is assigned some texture coordinates for sampling the

volume texture. The proxy geometry is rasterized and blended into the frame buffer

in either the back-to-front or front-to-back order. In the fragment shading stage, the

interpolated texture coordinates are used for a data texture lookup. Next, the

interpolated data values act as texture coordinates for a dependent texture lookup into

the transfer function textures. Illumination techniques may modify the resulting

3-24

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

colour before it is sent to the compositing stage of the pipeline. Figure 3.18 show two

examples of our rendering of some volumetric data using direct volume rendering: (a)

and (c) show the whole volume, while (b) and (d) show only the bones by using a

specific transfer function.

 (a)

 (b)

 (c)

 (d)

Figure 3.18: Direct volume rendering.

3.3.2 ChainMail Algorithm for Groove Generation

This section provides a more accurate explanation of the ChainMail algorithm and its

implementation. The presented implementation is based on the original 3D

ChainMail algorithm and Enhanced ChainMail algorithm, since this deformation

system is designed to handle inhomogeneous material. The Generalized ChainMail

algorithm (Li and Brodlie, 2003) is not used for our approach since in this project the

modelled voxels lie in a rectilinear grid. The extension to a non-rectilinear grid as

proposed by the Generalized ChainMail algorithm is not necessary here.

3-25

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.3.2.1 The ChainMail Neighbour Constraints

ChainMail deals with volumetric data initially ordered in an axis-aligned three-

dimensional grid. The grid structure induces axis-aligned neighbourhood

relationships which are spatially defined by the ChainMail constraints. Each chain

element defines the so-called valid areas for its neighbours as depicted in Figure

3.19. As long as the neighbours remain inside their respective valid areas they remain

static. If an element is outside its valid area, it is considered to have violated its

constraint and has to be adjusted.

 (a) (b)

Figure 3.19: (a) ChainMail constraints. (b) Constraints violation

Each element defined valid areas for each of its six neighbour elements. The valid

areas are described by the following attributes:

 minimal distance

 maximal distance

 allowed shear

All attributes are defined for each principal axis separately, so altogether nine

attributes are needed. This axis dependent property leads to the ability to define

anisotropic materials. Each valid area is defined on a fixed side of the element.

Rotation of the element and its valid area is not possible. This limits the deformation

algorithm to rather simple deformations since any rotational behaviour like bending a

structure is disabled. However this would not be a problem is our project as we only

need the deformation algorithm for generating groove which is normally in a simple

shape and no rotational behaviour are involved.

3-26

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.3.2.2 Element Processing

The deformation cycle of the ChainMail algorithm starts with an initial movement.

Commonly it is caused by a user interaction such as dragging of an element with the

mouse, or pushing with a haptic device. In our framework this initial movement is

invoked by haptic interaction. After the first element is moved all of its six

neighbours have to be checked to see whether they remain in their valid areas

defined by the moved element. If not they have to be adjusted accordingly.

The Enhanced ChainMail algorithm stores all elements which need to be adjusted

(from now on called candidates) in a priority queue. The key value for the queue is

normally the amount of constraint violation. Elements with a large violation will be

processed first. In our implementation the violation value is defined as the minimal

square distance between the elements of the corresponding valid area. For two

horizontal neighbour elements with the positions v1 and v2, the constraint violation is

calculated as follows:

amount of constraint violation = distance(v1,v2) - maxdx (3.9)

where maxdx stands for the maximum distance in X (max dis in X) in Figure 3.19.

Note that each element belongs to six valid areas defined by its six neighbours. Any

violation of the six valid areas causes the element to be adjusted because every

neighbour defines the constraint for the element. The actual valid area is the area

defined by the element (we call it sponsor) that caused the insertion to the priority

queue of the actual element.

Figure 3.20 shows how the algorithm performs on the elements in the 1D case. In the

first step, element J is moved to the right most position (red dotted circle) and forces

the left neighbours to be dragged in order to satisfy the region constraints. Note that

the drag necessary (red dotted arrow) in the third step is smaller than that in the

second step. In the fourth step no drag is necessary and the deformation terminates.

3-27

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 3.20: A sample deformation of a 1D chain.

3.3.2.3 Multiple Element Processing Avoidance

One main reason for the efficiency of the ChainMail algorithm is that each element is

processed at most one time per deformation step. However, the algorithm trades

correctness for speed and does not assure validity under every circumstance. In the

2D case as shown in Figure 3.21, the upper left element violates the constraints of

two neighbours in step 4. In this situation the upper left element could be added to

the candidate queue twice, one by its right and one by its bottom neighbour. In order

to maintain the efficiency, a method is needed to avoid multiple processing of

elements.

3-28

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 step 1 step 2

 step 3 step 4

Figure 3.21: A sample deformation of a 2D chain. Red marked elements are actually

moved while the green elements are members of the candidate queue. Valid areas

(blue) are only drawn in the directions necessary.

In the original ChainMail algorithm, this problem is solved by managing six different

candidate lists, one for each principal direction (left, right, top, bottom, back, and

front). The lists are processed in turns and each list contains a different group of

neighbours which assures that each element can only be added to one list. In the case

of a 2D ChainMail implementation, the list for the right direction would only be able

to add right, top and bottom neighbours. Similarly the list for the left direction only

accepts the left, top and bottom neighbours. For the top direction it would be allowed

to add only the top neighbours and similar for the bottom, back, and front directions.

The Enhanced ChainMail algorithm preserves the feature that each element needs to

be processed just once. However the six lists are replaced by one priority queue.

Another method is needed to ensure that each element is processed just once.

3-29

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Unfortunately it is not explained how this problem is solved in the original paper for

the Enhanced ChainMail implementation (Schill et al., 1998).

In the work by Dräger (2005), this problem is handled by an ignore direction flag

which adds the elements into the candidate queue in a similar way as in the original

ChainMail algorithm. For each element a set of flags defines which neighbours will

be ignored even though they should be added to the candidate queue. These flags are

individually set if an element is added to the queue depending on the direction of the

sponsor. The rule which defines the setting of the flags has to ensure that elements

are not added multiple times. Figure 3.22 shows an example of this ignore direction

flag mechanism for the 2D ChainMail grid. The rules are:

 If the candidate is sponsored by the left neighbour: ignore its left neighbour

 If the candidate is sponsored by the right neighbour: ignore it right neighbour

 If the candidate is sponsored by the top neighbour: ignore its left, right, top

neighbours

 If the candidate is sponsored by the bottom neighbour: ignore its left, right,

bottom neighbours

Figure 3.22: The ignore direction flag mechanism from Dräger (2005).

Unfortunately this method contradicts with the original intension of the Enhanced

ChainMail algorithm. The Enhanced ChainMail algorithm should enable a shock

wave like deformation propagation through inhomogeneous material by a constraint

violation processing order. The ignore direction flag mechanism restricts the adding

of neighbours dramatically.

3-30

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

In the work by Schulze (2006), the problem is solved through a simple timestamp

mechanism. Each time the ChainMail algorithm is invoked the timestamp is

incremented. Each element has a local timestamp. If an element should be added to

the queue, the local timestamp is first compared with the global timestamp. The

element will be added if these two numbers are not equal. Afterwards the local

timestamp is set to be the global so it cannot be added a second time. But the method

suffers from the fact that the timestamp will overflow after awhile.

Instead of realistic shock wave like deformation, we only need ChainMail for fast

and simple deformation for the groove generation. The ignore direction flag

mechanism fits our purpose very well.

3.3.2.4 Move Multiple Elements

The original ChainMail and the Enhance ChainMail algorithms addressed only the

manipulation of a single element. Often it is not appropriate to model interactions by

manipulating only one element in most deformation systems. One single element

represents just a very small part of the volume. On the other hand the simulated

interaction tools are often in much bigger sizes than the size of a voxel. It is very

common to move several elements at once.

This problem was also addressed in Dräger (2005) and solved by a so-called multi

move mechanism. Every time a deformation was performed, the algorithm initially

moved eight elements enclosing the centre of deformation. The ignore flags

mechanism was adjusted to allow the movement of these eight elements at once. The

algorithm is not able to do anything else other than moving these eight elements.

 To overcome this inflexibility, the implementation described in Schulze (2006) was

able to handle an arbitrary amount of initially moved elements. The ChainMail solver

is initialized with a list of initially moved elements. Each of these elements is

scheduled for deformation by pushing it into the candidate queue with the largest

possible violation value. The high violation value assures that the element is

processed first. The Enhanced ChainMail algorithm continues to process the

candidate queue as described in section 4.3.2.

However, allowing the movement of several elements at once leads to the possibility

of unpredictable behaviours. This can happen for example if neighbouring elements

3-31

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

are moved into different directions. Such situations would not be prevented by the

deformation system implemented in Schulze (2006). In their system, the users have

to be responsible to forward consistent movements. For our application, the

deformation behaviour is very simple and predictable, i.e., pulling the two sides of

the cutting path along the perpendicular directions to generate the groove, so we can

just restrict the application to single element moving. This initial moved element is

just the nearest voxel to the contact position between the volume and the haptic

probe in our implementation.

3.3.2.5 ChainMail Deformation Results

The Enhanced ChainMail algorithm enables efficient deformation of volumetric

datasets. An example of this deformation method is depicted in Figure 3.23. A

performance measurement is given in Figure 3.24. The plot confirms the complexity

estimation of the ChainMail algorithm of O(n) since the computation time increases

linearly with the number of moved elements. Depending on this measurement an

average performance of 7.3156 * 10
5
elements/seconds

can be estimated. The timing

tests were performed on an Intel Xeon 2.53 GHz machine within 2GB RAM.

Figure 3.23: Results of ChainMail deformation.

3-32

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 3.24: Scatterplot depicting timing test of the described ChainMail

implementation. The x axis denotes the amount of moved elements, and the y axis

denotes the computation time in seconds.

The deformation results in Figure 3.23 above show a very obvious artefact of the

axis-aligned edges on the surface. This is caused by the uneven deformation

propagation of the ChainMail algorithm. In the examples a homogeneous material is

used, so it could be estimated that deformation is propagated circularly around the

centre of deformation. The Enhanced ChainMail algorithm only assures an even

deformation - propagation along the main axis. It depends on the strict axis-aligned

neighbourhood constraints of the ChainMail data structure and results in rhombus

like deformation propagation.

This artefact is results from the ChainMail algorithm itself since it focuses on fast

deformation of volumetric data. Relaxation can be performed afterwards to compute

physically based volume deformation in most deformation systems. Relaxation is a

method which tries to solve a global optimization problem by iteratively solving

local optimizations. The goal is to minimize the global error which is defined as

 ∑ (3.10)

The global error E is the sum of the local errors of element i. Figure 3.25 shows

the results in Schulze (2006) before and after the relaxation. It can be clearly seen

here that the artefact is largely overcome by the relaxation.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

The number of moved elements

Ti
m

e
(s

)

3-33

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 (a) (b)

Figure 3.25: (a) ChainMail solution. (b) Solution through relaxation with springs.

As a matter of fact, this artefact would not cause too much problem in our

application. Realistic and smooth deformation and cutting have already been

achieved on the outer surface model. The ChainMail algorithm is only needed for

fast deformation of the underline volume for generating grooves, and to reveal the

internal heterogeneous structures and materials. Thus the time-consuming relaxation

would not be necessary for our case. By unlinking the neighbouring elements along

the cutting path and using the ignore direction flag mechanism, the deformation is

constrained as only propagated along the desired directions, i.e. the deformation on

the left side of the cutting path only propagates along the left and bottom directions,

while the right side deformation only propagates along the right and bottom

directions. The volume is hence smoothly split along the cutting path to generate the

groove, as shown in Figure 3.26. The arrows in the figure show the directions of

deformation propagation. A memory management system is implemented for the

local direct volume deformation as it is generally assumed that the deformation

around the cutting site will remain local. Only the necessary parts of the volume are

loaded into the memory for deformation calculation while the full information of the

original data is still available for visualization. Figure 3.27 is a closed-up illustration

of the process of pulling apart the tissues along the cut by our volume deformation

algorithm. Figure 3.28 presents the results of groove generation on the torso dataset

with different widths.

3-34

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 3.26: Groove generation.

 (a) (b) (c) (d)

Figure 3.27: Groove generated from our ChainMail implementation without

relaxation solution (a) A thin cut is made through a volume and the left and right

neighbours along the cut are unlinked. (b) Right side is pulled away. (c) Left part is

pulled away. (d) Left and right sides are being pulled away simultaneously and

formed the cut groove.

Figure 3.28: Groove generated on the torso model.

3.3.3 Drill Effect

Our volumetric deformation model can be extended easily to simulate other

operations such as drillings in a bone surgery. Bone drilling is a very common bone

3-35

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

surgical procedure, which is often a preliminary step for the insertion of pins or

screws during the repair of a bone fracture or installation of a prosthetic device.

Precise bone preparation is a key element for the successful long-term fixation of

orthopaedic implants. Initial stability leading to reduced micro-motion and direct

apposition of the bone against the implant are fundamental for the proper load

transfer and bone remodelling. The fit and fill of the implant are created by shaping

and sizing a cavity within the bone to accommodate the implant, which is usually

accomplished by standard machining operations such as broaching, milling and

drilling.

 (a) (b)

Figure 3.29: (a) Anatomy illustration of a knee. (b) a CT image of knee.

We choose to simulate the bone drilling procedure in a knee surgery. A knee dataset

from CT scan is used as shown in Figure 3.29. The volumetric data size is

186x229x305. The data is segmented into bone, muscle, fat and skin with the

designed transfer function as illustrated in Figure 3.30.

 (a) (b)

Figure 3.30: (a) Different materials of the knee are rendered by specific transfer

function. (b) Only bones are displayed.

3-36

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The drilling simulation is implemented by removing the voxels which are located

inside the haptic stylus modelled as a sphere with a radius and a centre as parameters.

If the distance of voxel and the stylus centre is smaller than the radius, the voxel lies

inside the haptic stylus will be removed by setting its value to zero. If the distance is

larger than the radius, no reaction will be applied to the voxel as it lies outside the

stylus. Figure 3.31 illustrates one drilling result from our system.

 (a) (b) (c)

Figure 3.31: (a) Illustration of drill holes in a knee surgery, (b) drill holes on a limb

knee and (c) drill holes created by our surgery simulation system.

Figure 3.32 shows some snapshots of drilling effect on another volume data with a

size of 256*256*256.

Figure 3.32: Drill effect on the foot dataset.

3-37

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.4 Hybrid Cutting

Although mesh-based methods are efficient for simulating simple cutting process on

a surface, maintaining and adapting a mesh-based representation is less appealing in

more complex scenarios where interior structures are important. Volumetric

representations have enjoyed popularity due to their added flexibility in dealing with

such situations. We propose a hybrid framework incorporating a volumetric model

with its corresponding outer surface mesh. Our approach begins with a smooth

progressive cutting on the outer surface mesh. It continues with the underline

volumetric model for straightforward handling of groove generation and direct

volume haptics interaction without the need for complex remeshing. So far we have

achieved realistic surface cutting in Section 3.2 and groove generation on the

volumetric model in Section 3.3. We will combine these two data models into a

seamless hybrid model for progressive surgery cutting in this section.

3.4.1 System Overview

Out system is implemented in three stages, as shown in Figure 3.33. In stage 1, the

haptic tool interacts with the outer surface model. Once there is a collision detected,

the force feedback is calculated and compared to the yield limit of the material being

simulated. If the force is within the limit, a physically based deformation (PAFF)

model will be applied to the surface model, to calculate the deformation according to

the haptic direction and haptic force feedback. If the haptic is push harder, the force

will reach the limit and this will lead to stage 2 of the system.

In stage 2, the force feedback is beyond the yield limit and a rupture will occur. The

cutting on the surface model is achieved by node-snapping algorithm and the cutting

on the volumetric model is implemented by removing the voxels in contact with the

haptic tool during haptic moving. Both processes are progressive and follow exactly

the motion of the device. After this, a small crack on the surface model and a thin

rupture on the volumetric model are formed for our hybrid model.

3-38

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 3.33: System Overview.

In stage 3, a pulling operation is applied to the hybrid model to reveal the region of

interest. In a real surgery, after a thin cut on the object, the surgeon often uses a

retractor to hold back soft tissues such as skin and muscle to open up the cut. The

haptic device is modelled as a retractor in this stage to separate the cut. During the

pulling, a wrinkle effect will occur on the surface model due to the elasticity of skin,

and a groove will be generated by our modified ChainMail algorithm on the volume

model to reveal the heterogeneous structures and material properties underneath the

surface. Both processes are controlled by haptic interaction and synchronized with

each other.

3.4.2 Iso-Surface Extraction by Marching Cubes Algorithm

To maintain the consistency between these two data models, the outer surface used in

our system is an iso-surface extracted from the inner volumetric model using the

Marching Cube algorithm (Newman and Yi, 2006).

3-39

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The standard MC algorithm, as originally described by Lorensen and Cline (1987),

takes as its input a regular scalar volumetric dataset. Such a dataset has a scalar value

residing at each lattice point of a rectilinear lattice in the 3D space. The lattice point

at row)(ii Vy and column)(jj Vx of slice kS (nk 1 , where n is the number of

slices) is directly adjacent to the lattice points at row iy and column
jx of slices 1kS

and 1kS . The MC processes the volumetric dataset by considering the “cubes” lC

that make up the volume. The cubes are defined by the volume’s lattice. Each lattice

point is a corner vertex of a cube. Figure 3.34 illustrates a cube defined by lattice

points in adjacent slices k and k+1. The lattice lines shown in Figure 3.34 (i.e., the

line segments that join adjacent corner vertices) define the edges of the cube.

Figure 3.34: Illustration of a cube formed on lattice points.

The standard MC constructs a facetized isosurface by processing the dataset in a

sequential, cube-by-cube manner in scanline order. The approach first processes the

m cubes of the first row of the first layer of the dataset in sequential order: C1, C2, … ,

Cm. During this process, each cube vertex Vi that has a value equal to or above the

isovalue 𝜶 is marked; all other vertices are left unmarked. The isosurface intersects

each cube edge Ej between one marked vertex Vjs and one unmarked vertex Vje. Any

cube that contains an intersected edge is active. The computations for finding the

active cubes can be viewed as the active cube determination component of the MC.

This component can be implemented as a stand-alone early processing step or

integrated with other processing, but in either case it involves dataset traversal in

sequential, forward-marching order.

3-40

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Since each of the eight vertices of a cube can be either marked or unmarked, there

are 256 (2
8
) possible marking scenarios for a cube. Each cube marking scenario

encodes a cube-isosurface intersection pattern (i.e., configuration). However, the

standard MC considers reflective and rotational symmetry, which results in just 15

marking scenarios. Cubes C and Ĉ are reflectively symmetric if each vertex at

position Vi in C has the opposite marking as the vertex at the same position Vi in Ĉ.

Two reflectively symmetric cubes (and their cube-isosurface intersections) are shown

at the centre and right (i.e., cubes A and AF) in Figure 3.35. In the figure, circle

symbols denote marked vertices. Cubes that are reflectively symmetric have the

same cube–isosurface intersection pattern. Two cubes C and Ĉ are rotationally

symmetric if there are some series of rotations R which, when applied to C, transform

C to a new orientation in which the marking at each transformed vertex position Vi is

identical to the marking at the same position Vi in Ĉ. The cubes A and AR in Figure

3.35 are rotationally symmetric. Rotationally symmetric cubes have equivalent cube-

isosurface intersection patterns (the patterns vary only rotationally by the aligning

transformation R).

Figure 3.35: Illustration of reflective (A with AF) and rotational (A with AR)

symmetries.

The 15 unique cube-isosurface intersection scenarios that result in when considering

both of these symmetries are shown in Figure 3.36. We will use the topological case

numbering of Figure 3.36, which is the same as the standard MC (Lorensen and

Cline, 1987), throughout this thesis. For each scenario, the standard MC facetization

of the intersecting isosurface is shown.

The isosurface-edge intersection locations can be estimated with subvertex accuracy

using an interpolation technique. Standard MC employs linear interpolation to

estimate the intersection point for each intersected edge. If a unit-length edge E has

3-41

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

end points Vs and Ve whose scalar values are Ls and Le, respectively, then given an

isovalue 𝜶, the location of intersection),(, zyx IIII  has components of the form:

       )(,,,,,,,, zyxszyxezyxszyx VVVI   , (3.11)

where

se

s

LL

L







 (3.12)

One advantage of the cube-by-cube processing of standard MC is that each edge

intersection location only needs to be computed once. Specifically, since each

intersected internal edge Ej (i.e., Ej is not on the dataset boundary) is shared by four

cubes, the point of isosurface-edge intersection Ij on Ej only needs to be computed

for one cube Ca. The intersection point Ij can be reused during later processing of

three other cubes Cb, Cc, Cd (where b, c, d > a) sharing edge Ej. Nevertheless,

algorithms that use other traversal patterns can also achieve the same computational

advantages via using supplemental data structures (e.g., hash tables).

3-42

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 3.36: The 15 basic intersection topologies (using the numbering of (Lorensen

and Cline, 1987))

The last step in MC is to generate triangular facets that represent the portion of the

isosurface that intersects each cube. The intersection points define the vertices of the

triangles, and the collection of the triangular facets across all the cubes forms the

triangular mesh (or meshes) that defines the isosurface. The facetization pattern in

each cube can be determined from the intersection topology look-up table. The

processing steps for the facetization can be viewed as the isosurface assembly

component of the MC.

3-43

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 3.37 shows the results of the surface model extracted from a volumetric

model using MC. Figure 3.37 (a) is the result from direct volume rendering of the

dataset, which is a female upper torso from CT scan with a size of 384*384*240. It

can be seen clearly from the figure that different tissues including skin, fat, flesh and

bones are rendered distinctively using transfer functions. Figures 3.37 (b) and (c)

show the extracted iso-surfaces. The two data models are combined as a hybrid

model as shown in Figures 3.37(d) and (e).

 (a)

 (b) (c)

 (d) (e)

Figure 3.37: Iso-surface extraction

3-44

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.4.3 Cutting and Pulling on Hybrid Model

For a surgical training environment, the user expects immediate visual and haptic

feedback while the cut is in progress, hence a simulator that supports progressive

cutting is needed. We propose a method of progressive cutting which realigns the

element edges while following the motion of the cutting, performed by a haptic

device. The interior structure is also deformed and updated in a progressive way. The

outer surface is an iso-surface extracted from the inner volumetric model in order to

maintain the consistency between these data models. Direct volume rendering of

interior structures provides further realism.

Progressive cutting on the surface model is illustrated in Figure 3.38(a). Free cutting

with haptic interaction on the volume model is also presented as in Figure 3.38(b).

The contact voxels with the haptic device are removed while the device is moving.

The depth of the thin cut is dependent on the force the user exerted through the

haptic device. Figures 3.38(c-e) show the results of the progressive cutting on our

hybrid model. As shown in Figures 3.38 (c-e), the cutting on the outer surface model

and inner volume model have been seamlessly integrated into the hybrid model

progressively and simultaneously.

 (a) (b)

3-45

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 (c) (d) (e)

Figure 3.38: Progressive cutting on hybrid model.

If the object is simulated only by a surface mesh, the inside of the cut is not

represented, i.e. it appears empty. In our system, volumetric representation is used

for the interior of an anatomy object which is attached with the outer surface. We

propose to generate structures in the opening as a function of the penetration depth

by the haptic-controlled instrument and the width of the crack caused by the cut

being pulled open. In a real surgery, after a thin cut on the object, the surgeon often

uses a retractor to hold back soft tissues such as skin and muscle to open up the cut.

This pulling process on the surface is achieved by real-time haptic interaction in our

framework (see Figure 3.39). The width of the surface opening D is determined by

the haptic force applied and the material properties of the organ. For example, the

tissue cannot be pulled apart further than a certain constraint limit determined by the

elasticity of the tissues. This pull-opening on the surface will cause the creation of a

groove in the corresponding part of the volumetric model since they are integrated

together. During the surface pulling process, the changing values D are passed to the

volume model to control the width and depth of the groove in real time.

Figure 3.39: Pulling effect on the hybrid model.

D

3-46

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

3.5 Chapter Summary

Simulation of surgical cutting is one of the most challenging tasks in the

development of a surgery simulator. Changes in topology during simulation render

precomputed data unusable. Moreover, the process is nonlinear and the underlying

physics is complex. Therefore, fully physically based simulation of surgical cutting

at real-time rates on single processor machines is possibly out of reach at the present

time.

In this chapter, we present a hybrid approach to the simulation of surgical cutting

procedures by combing node snapping techniques on an outer surface model and

groove generation on an inner volumetric model. It starts with the surface

deformation initiated by haptic interaction between the device and the virtual organ

surface. The outer surface model is an iso-surface extracted from the inner

volumetric model by Marching Cubes Algorithm. A rupture is generated

progressively based on node snapping algorithm while the haptic tool keeps moving

over the surface. The incision can then be deformed and pulled for further operation.

The groove is generated on the underneath volumetric model progressively to reveal

the results of the cut.

Volumetric models can represent a great deal of information about the internal

structures and mechanical properties of heterogeneous tissues by volume

deformation and volume rendering. ChainMail algorithm could provide very fast

volume deformation by constraining processing each element at most one time per

deformation step. The algorithm is neither physically based nor provides any realistic

tissue behaviour. It is hence nearly impossible to be used in an application which

aims for realistic direct volume deformation in real time. Most ChainMail

deformation systems require an extra relaxation solution for the smooth, elastic

behaviours of objects. In our application, the realistic smooth deformation and

cutting has been achieved on the outer surface model, and the underneath volume

model is only responsible for generating the groove and presenting the interior

structures and material properties. The ChainMail algorithm can hence be used for

interactive deformation without the relaxation step. Furthermore, ChainMail does not

care about the size of the whole datasets as only the small amount of elements in the

deformed area need to be processed. Since most surgical procedures are conducted in

3-47

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

a small area, the ChainMail algorithm well suited. A groove is generated at

interactive rate on the volumetric model by the modified ChainMail algorithm. A

drilling effect has also been implemented on the volume model to present the

flexibility and extendibility of our model.

In our hybrid system, the outer surface model and the inner volumetric model are

combined seamlessly to perform the cutting and pulling progressively and

interactively. Experimental results demonstrate that our system is capable of

generating realistic simulation of a surgical cut interactively. It can be included in

comprehensive virtual surgical simulators to provide a realistic, safe, controllable

environment for novice doctors to practice surgical operations at a low cost.

In the next chapter, the roles of haptics in all these processes will be discussed and

force feedback will be integrated into the simulation system for high fidelity.

3-48

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

4-1

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Chapter 4 Haptic Interaction

4.1 Introduction

In everyday life, the important of the sense of touch is eminent. Recent studies have

shown that loss of sense of touch can be catastrophic. Skilled actions, such as using

tools, holding objects, or even plain walking, may become almost impossible upon

losing the sense of touch (Robles-De-La-Torre, 2006). Touch is the earliest sense

developed in human embryology and is believed to be essential for good clinical

practice (Fager and von Wowern, 2004). Therefore, the potential of haptic

technology should not be underestimated for clinical specialities that rely on sensory

input, such as minimally invasive surgery and open surgery.

The word haptic is of Greek origin and relates to the sense of touch – that is, the

perception and manipulation of objects using the senses of touch and proprioception,

which further can be divided into what is felt by the cutaneous receptors located in

the skin allowing the detection of pressure, vibration, texture, heat, and pain and the

kinaesthetic receptors in muscles and joints that sense the position and movements of

muscles and bones (Westebring-van der Putten et al., 2008).

Although haptic devices have been around for some time, realistic haptic feedback

on VR simulators is difficult to achieve (Van der Meijden and Schijven, 2009), due

to insufficient mechanical performance of the devices, in terms of frequency

response, fidelity in fidelity in force reproduction and force resolution

(Abdulmotaleb, 2012). In addition, this technology is usually an expensive add-on

(Thompson et al., 2011) to those VR simulation systems. Nevertheless it is still

necessary to include haptic or force feedback into many VR simulators such as

virtual surgery simulators as it plays an important role during surgery. The control of

forces related to grasping, pressing and pulling is essential when performing surgery;

the ability to control these forces may result in tissue slippage if the applied pinching

forces are too small, or tissue damage if the forces are too high (Seymour, 2008). As

such, the training of skills related to haptic sensations is essential (Chmarra et al.,

2008), and the emulation of virtual haptic feedback is an important feature of a VR

surgical simulator (Basdogan et al., 2004). In this chapter, we will explore the role of

4-2

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

haptics in our hybrid cutting model, including haptics on the surface model and

haptics on the volume model.

4.2 Haptics in the Surface Manipulation

A typical haptic rendering system is composed of three parts: the haptic sensory

device, a visual output device, and the computer (Wang et al., 2009), as shown in

Figure 4.1. The system generally works as follows. Firstly, the operator applies a

force to the haptic sensory device (formed by its respective sensors and mechanical

structures). Next, based on the amount of force applied and the pre-defined model of

the object of interest, the computer computes the feedback force and the deformation

of the object, and sends the data to the haptic sensory and visual output devices. The

operator can simultaneously feel the feedback force from the object and see the

object deformation through the visual output device.

Figure 4.1: The composition of a haptic rendering system for virtual reality.

The computer is the control centre of the system. It needs to implement mainly two

algorithms: collision detection and collision response. When the operator moves the

probe, the computer estimates the new position and orientation of the probe and test

if the probe collides with the virtual object. In case of a collision, the force between

the probe and the object is computed, and the computed data are then fed back to the

operator through the haptic sensory device as a collision response. For a smooth

rendering of feedback force to the operator, the force needs to be computed at a

frequency around 1 KHz, while the visual image should be updated at around 30 Hz.

Fast and accurate collision detection is crucial in any VR-based surgery simulation

system. In collision detection, one needs to ensure that there has indeed been a

contact between the surgical tool and the objects in the scene. The bounding-box

based algorithms prove to be the most efficient data structures for collision detection.

4-3

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The main principle is to represent the object by a set of regularly shaped bounding

boxes. The tree-structured hierarchy is constructed recursively to approximate the

object as much as possible. Currently, there are various kinds of bounding boxes

developed for many applications in computer graphics and visualization (Teschner et

al., 2005), such as oriented bounding box (OBB), discrete orientation polytope (k-

DOPs), bounding sphere, and axis-aligned bounding box (AABB) (Chen et al., 2012),

etc.

Generally, the collision model in haptic rendering defines the graphical description

of the surgical tools and the nature of tool – tissue interactions. The virtual tool may

be modelled as a point, a ray, or as a 3D object. However, no matter how the virtual

tool is modelled, the collision detection generally only considers the collision

between the tip of the probe, typically referred to as the Haptic Interface Point (HIP),

and the virtual object.

Once collision has been detected, the interaction of the surgical tool with the virtual

organ model is computed during collision response. The deformed organ model is

displayed on the computer screen. The reaction forces are fed back to the user

through the haptic interface device(s). For force calculation, the depth of probe into

the object, i.e., the distance between the HIP and the surface of the object, is first

calculated. The applied force is then computed through the Hooke's Law of elasticity

F = -kx. This is a simplified calculation method. In real life computations, damping

and friction also need to be considered to ensure system stability and the validity of

the haptic sensory data.

4.2.1 Surface Haptics

Algorithms for haptic interaction with explicit surface information are designed to

generate a force feedback when the haptic probe comes in contact with the surface.

Since a force feedback device (impedance control) is incapable of explicitly

controlling the position of the haptic probe, the surface simulating control system

must allow the probe to penetrate surfaces. When a surface is penetrated, however, a

force is applied to stop the probe from penetrating further. This is the basic principle

of surface rendering which is common to all algorithms for impedance-based haptic

feedback.

4-4

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The penetration of surfaces is not as serious an issue as it might seem. Since the

kinesthetic sense of touch has a low resolution at low frequencies, the displacement

is not as prominently perceived through touch as it is through vision. Thus, the

impression of penetration can be reduced by giving the visual impression of the

haptic instrument not penetrating the surface. This way the increasing resistance

when applying increasing force and penetrating the surface further is rather perceived

as an increasing force applied to the surface.

The first developed approach used for force feedback from geometrical surfaces

applies a force that pulls the haptic probe towards the closest point on the closest

polygon of the object boundary, as shown in Figure 4.2(a). The force strength is

made proportional to the penetration depth, as if a spring was connected between the

probe and the surface. This gives a feedback force that is the effect of a "penalty"

from the penetration of the polygon surface, which gives it the name penalty method.

The penalty method suffers from artefacts that make it impractical in real

applications. Since the approach represents a static control it has, at the time the

feedback is calculated, no memory of which surface was previously palpated.

Because of this, the algorithm can suddenly start to treat another surface that is at this

instant closer to the probe than the one currently palpated. This gives rise to such

artefacts as popping-through of thin objects when the opposite side of the object

suddenly becomes closer to the probe than the first palpated side, and discontinuities

around edges and corners. To remove these artefacts the system needs a memory of

what part of the palpated object was touched the last time the haptic feedback was

estimated. This memory is implemented through a virtual object that is left on the

surface that the probe penetrates. Each time the feedback is calculated for a haptic

frame, the system now knows the previous surface position.

(a) The penalty method

generates a force towards the

closest point in the closest

polygon.

(b) The god-object method

uses a point on the polygon

surface to serve as memory

of which surface is currently

palpated.

(c) The proxy method uses a

finite sized sphere as proxy

for the haptic probe to avoid

the proxy to slip through

inter-polygonal cracks.

Figure 4.2: The three most common approaches for generating haptic feedback from

polygonal surface data.

4-5

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The first implementations following this approach used a single surface point called

a god-object, as shown in Figure 4.2(b). Using a single point as memory for

interaction, however, has some disadvantages. Numerical errors in the estimation of

triangle surfaces sometimes leave small gaps between the triangles composing the

surface of an object, and such gaps have proved large enough for the god-object.

Thus, the god-object could fall through object surfaces. The god-object method was

refined by Ruspini et al. (1997) to avoid the need for the explicit topology

information by the introduction of a finite-sized spherical proxy object, as shown in

Figure 4.2(c).

The proxy is an internal representation of the haptic probe. It is fully controlled by

the surface simulation algorithm and can be constrained by surfaces in a stable

manner. The force feedback is then calculated by simulating the coupling through a

virtual spring damper,

)()(proxyprobeproxyprobefb Dxxkf 


 (4.1)

where k is the stiffness of the coupling and D is the dampening term. In free space

the proxy is automatically moved to the position of the probe and no feedback is

generated through the virtual coupling. When an object is penetrated by the probe,

the proxy is moved over the surface towards the probe. By modulating the movement

of the proxy over the surface, other effects can be generated, such as friction, texture,

haptic shading and even bump-maps. Because both the god-object method and the

proxy-based method let surfaces constrain the movements of the proxy object, they

are sometimes also referred to as constraint-based method.

4.2.2 Haptics in Surface Deformation before Rupture

Generally each object within the virtual environment has a tree of hierarchical

bounding volumes. Deformable objects typically use bounding spheres because the

update of bounding volume is simple to implement once the object undergoes

deformation.

4-6

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 4.3: 3D model of scalpel.

The most basic cutting instrument is a straight, rigid object that has one sharp surface,

such as a scalpel in Figure 4.3. When modelling this object, we assign the tip of the

scalpel as the HIP, which means the collision detection will be based on the position

of the surgical tool tip and the soft tissue. Once a collision is detected, the force

feedback is calculated and sent back to the user. As long as the force is smaller than

the yield limit of the material being simulated, the surface will start the deformation

based on PAFF. Since in this stage the movement of the cutting instrument is

typically limited to pushing instead of moving or sliding, the force calculation could

be simplified to Hooke's Law of elasticity and no damping and friction need to be

considered, as shown in Figure 4.4. The force produced is a linear spring-damper

force between the proxy position and probe position, i.e. F = stiffness * (proxy_pos -

probe_pos).

Figure 4.4: Force calculation for surface deformation.

4.2.3 Haptics in Progressive Surface Mesh Cutting

When the haptic force has been applied on a deformable object, the surface of the

object displaces until the applied force becomes larger than the yield limit of the

material being simulated. When the breaking strength of the material is reached,

further haptic tool motion causes the object to be cut.

4-7

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

During the progressive cutting, collision between the blade and the virtual organ has

been constantly detected. Intersection points between the HIP and the underlying

polygon edges are calculated for the node snapping algorithm. When cutting with a

knife or scalpel, the shape of the blade means that the friction is not the same in

every direction. For example, it is easy to cut along the direction of the blade, but if

we try to move the knife sideways or backwards it is much harder to move. Thus the

force feedback calculation is based on a frictional surface that is dependent on the

angle of the haptic device.

Figure 4.5: Force calculation for progressive surface cutting.

Figure 4.5 illustrates how to calculate the proxy movement for our surface. The final

proxy movement will be a vector from the previous proxy position (the blue dot), to

the next proxy position (green dot). The calculation of the total proxy movement for

our directional frictional effect consists of four steps:

1. The cutting direction is determined. To do this a unit vector is projected onto the

surface representing the angle of the scalpel/device.

2. The proxy movement allowed by the friction surface is worked out which

represents friction along the cutting direction. The movement of the proxy after

performing this step is labelled as 2 in Figure 4.5. Note that the proxy moves from

the previous proxy position (blue dot) towards the device position (red dot). If the

friction parameters were zero (i.e., no friction), the proxy movement would take the

4-8

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

proxy all the way along the dotted line, to a point on the surface, closest to the device

position.

3. In step 2 the movement of the proxy permissible by friction along the line of

cutting is calculated. However the movement is always towards the device position,

and is not constrained by the direction of cutting. So the next step is to project the

proxy movement onto the cutting direction, effectively restricting movement to the

line of cutting. The resulting projection is labelled as 3 in Figure 4.5. Apart from

constraining movement to the cutting line, the movement should also be restricted to

the direction of cutting, i.e., we do not want to allow backwards movement.

Therefore, the angle between the proxy movement and the cutting direction is

checked before the projection. If the proxy movement is found to be backwards, it

would be nulled.

4. Now the movement is constrained to the cutting direction and can be affected by

friction. However, currently there is no possibility to allow any movement away

from the cutting direction. It is desirable to permit some movement away from the

cutting line. Thus the proxy movement is calculated from the proxy position on the

cutting line, which was calculated previously (labelled as 3 in Figure 4.5) towards the

device position (shown as the red dot in Figure 4.5). This allows the next proxy

position (green dot) to slip away from the cutting direction by an amount that can be

controlled by adjusting the friction parameters.

The directional friction force is fed back to the users so that they can feel the

different level of friction when they attempt to move the scalpel over the surface,

especially by holding the scalpel at different angles.

4.2.4 Haptics in Deformation of Surface Incision

In a real surgery, retractors or spatulas are used to separate the cut by holding back

soft tissues such as skin and muscle while the surgeon attempts to make further cuts

or to focus on the region of interest. In our application, this pulling process is

achieved by real-time haptic interaction. In this stage, the haptic device is modelled

as a retractor. For easy manipulation, we implemented a magnetic effect on the

virtual organ surface where the proxy is attracted to the surface, and forces are

generated in order to keep the proxy on the surface. The surface has a parameter

4-9

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

called snapDistance to define a distance from the surface within which forces are

generated to pull the proxy towards the surface. If the device is pulled outside the

distance from the surface it will be freed from the magnetic attraction. To deform the

surface incision, we hold the haptic device near one of the cutting sides. If the device

is within the snapDistance of the surface, the proxy will be attracted to the closest

point. This closest point is used as a control point for deformation and the incision is

opened up along the direction of the haptic movement until some boundary has been

reached. For example, the tissue cannot be pulled apart further than a certain

constrained limit determined by the elasticity of the tissues. Figure 4.6 shows

different incision opening controlled by haptic interface. Our algorithm can be easily

extended to simulate other surgical operations such as suturing by knotting the two

sides of the incision back together.

Figure 4.6: Different widths of surface cut opening controlled by haptic device.

4.3 Haptics on Volumetric Model

When haptic interaction was made available in computer graphics applications, it

was generally based on the notion of surfaces. Haptic feedback is generated as a

response to touching geometrical representations of surfaces in the virtual

environment, and the feedback is generally perceived as a surface. Different

algorithms for haptic interaction with surfaces all strive towards a common goal –

more stable and more correct or realistic surface feedback. Haptic interaction with

volumetric data is different. In volumetric data there are no explicit surfaces. Some

volumetric datasets contain data that could be interpreted as surfaces, but not all of

them. Since the volumetric data cannot be directly interpreted in a straightforward

haptic form, haptic representation of the contents must be generated in a selected or

designed manner. The term haptic mode was suggested by Pao and Lawrence (1998)

to describe the unique haptic impression in interaction with volumetric data. A haptic

mode is a distinct haptic representation of data that provides a unique connection

4-10

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

between data and representation. Thus, different haptic modes applied to the same

data may

1. provide haptic representations of different properties of the volumetric data

2. provide different haptic effects representing the same property of the data

Volumetric datasets may contain different types of attribute data, both with respect to

the dimensionality (scalar, vector or tensor), and with respect to what the values in

the dataset represent. A vector volume may, for example, represent air or fluid flow

information generated through CFD, or the strength and orientation of a magnetic

field. While a certain haptic mode may be compatible with scalar data, it might not

work with vector data. Similarly, a mode compatible with vector data but designed

specifically for intuitive iteration with fluid flow data might not be appropriate for

exploration of a magnetic field, even if the data is compatible. The mode could be

counter intuitive or simply not convey the most important properties of the data.

Chen and Sun (2002) created a system for sculpting both synthetic volume data and

data obtained from CT, MRI and Ultrasound sources. The direct haptic rendering

approach utilized an intermediate representation of the volume data (Chen et al.,

2000). The intermediate representation approach to haptic rendering was inspired

from its use in rendering geometric models (Mark et al., 1996). The sculpting tools

developed by Chen and Sun were treated as volumes allowing each position in the

tool volume to interact with the object volume data. They simulated a variety of

sculpting effects including melting, burning, peeling and painting.

When interacting with the volume data directly, an approach is required to provide

stiff and stable contacts in a similar fashion to the rendering achieved with geometric

representations. This is not easily accomplished when using the techniques based on

mapping volume data directly to forces and torques. One strategy is to use a proxy

constrained by the volume data instead of utilizing an intermediate representation as

in the previous example (Palmerius, 2007). Lundin et al. (2002) presented an

approach aimed at creating natural haptic feedback from density data with solid

content (CT scans). To update the movements of the proxy point, the vector between

the proxy and the Haptic Interface Point (HIP) was split into components: one along

the gradient vector (nf) and the other perpendicular to it (tf). The proxy could then

4-11

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

be moved in small increments along tf . Material properties such as friction, viscosity

and surface penetrability could be controlled by varying how the proxy position was

updated. Palmerius (2007) developed an efficient volume rendering technique to

encompass a constraint based approach with a numerical solver and importantly a

fast analytical solver. The proxy position is updated by balancing the virtual coupler

force, f, against the sum of the forces from the constraints, iF . The constraints are

represented by points, lines and planes. The balancing is achieved by minimizing the

residual term, ε, in the following equation:


i

proxyiproxy xFxf)()(


 (4.2)

By modifying the effects of the constraints in the above equation, different modes of

volume exploration can take place such as surface-like feedback and 3D friction.

Linear combinations of the constraint effects can be used to obtain the combined

residual term. An analytical solver may then be used to balance the equation and

hence find the position of the proxy. The analytical solver is attempted first for

situations where the constraints are orthogonal; however, if this fails a numerical

solver is utilized. This combination of techniques is available in the open source

software entitled Volume Haptics Toolkit (VHTK).

4.3.1 Haptics in Volume Deformation

During the groove generation, the haptic device is used as an interaction tool to pull

the two sides of the cut apart. The voxel nearest to the haptic stylus is chosen to be

the initial moved element and the deformation starts afterwards.

VHTK is employed to handle the haptic interactions of the volumetric data in our

system. VHTK provides a number of haptic modes, each giving a unique haptic

representation of the volumetric data. Haptic modes in VHTK are implemented by

controlling parameters of haptic primitives as functions of the volumetric data that

the haptic mode is representing. There are currently four primitives available in

VHTK, one constraint for each dimensionality – point (3D), line (2D) and plane (1D)

primitives and one force primitive. Each primitive has a strength parameter, which

specifies the strength of the feedback from the primitive. The force, line and plane

primitives also have a direction parameter, which can be used to represent some

4-12

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

vector feature in a haptic mode. A haptic mode may use one or several haptic

primitives to generate its specific haptic effect. The lowest-level system of VHTK

prompts the haptic modes for the instant set of haptic primitives to momentarily

represent the haptic feedback at a rate of about 1 KHz. The haptic mode then reads

off the local data properties and sets up one or more primitives to reflect these

properties. These primitives are then returned to the system to calculate the haptic

feedback for that time-frame.

Figure 4.7 and Figure 4.8 show how the incisions on volumetric model and the

hybrid model are widened up and pulled away by the haptic device respectively.

Figure 4.7: Different widths of volume cut opening controlled by haptic device.

Figure 4.8: Different widths of hybrid cut opening controlled by haptic device.

4.4 Chapter Summary

An important aspect of VR surgical simulators is the reproduction of the challenges a

surgeon encounters during surgery – challenges related to vision and touch. In

surgery, haptic or force feedback refers to the sense of touch that a surgeon

experiences – both consciously and unconsciously – while performing surgery.

Haptics provide sensation to numerous surgical procedures, varying from structure to

structure and depending on type of force applied, and relates to tissue damage,

4-13

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

straightness of suturing, and task completion time. In this chapter, haptic interactions

on surface model and volume model have been discussed which could provide high

fidelity for the simulation system.

In next chapter, a fluid model is integrated with the surgery cutting for simulating the

bleeding effects in real time to greatly enhance the realism of surgical simulations.

4-14

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

5-1

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Chapter 5 Dynamic Fluid Visualization for Bleeding

Simulation

5.1 Introduction

Bleeding is an inevitable part of most surgical procedures. A cautery tool is often

used to divide tissue with minimal blood loss. Sometimes, the tissue may also bleed

if coagulation is not efficient. Surgical errors may lead to excessive bleeding and

possibly even death. The presence of blood or haemorrhages in the operating field is

a fundamental challenge in surgery since the visibility of key anatomical structures is

impeded. Therefore, intraoperative management of bleeding is a critical skill all

surgeons must possess. Recent surgical literature prescribes the use of such cues as

important assessment factors in surgical education, e.g. control of bleeding has been

measured as a parameter while assessing the surgical skill of medical trainees and

was found to correlate well with skill level (Bemelman, 2009). These and other

studies establish the need to include bleeding as features to be integrated into surgical

simulators for skill training.

The existence of fluid during surgeries can sometimes obscure a surgeon’s view and

make the operation more difficult. For some surgical procedures, saline fluid is

injected or flooded into the operation area for cleaning purpose. Unpredictable blood

splashing might also be resulted from incisions on organs. Different kinds of fluid

are commonly sucked away or drained from the operation area from time to time.

Dynamic fluid simulation can therefore enhance the realism in surgical simulation.

Without fluid, surgical simulations appear dry and clean, which would be unrealistic

for most surgical procedures.

Although blood provides important visual cues which a surgeon-in-training must be

able to recognize to make time-critical decisions, it is, however, very challenging to

create a safe and realistic learning environment for the acquisition of such skills.

Most existing virtual realities surgery simulators tend to avoid including dynamic

fluid simulations in their system. This is due to the fact that real time fluid

visualization is computationally expensive. The calculation may slow down

rendering and impede force feedback interactions during simulations. VR-based

5-2

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

surgical simulators must be interactive, i.e. the computations must be performed in

real time. For haptic (touch)-enabled systems, response forces to the users must be

updated at 1 KHz, while visual updates must be maintained at 30 Hz for monocular

and 60 Hz for stereo rendering. This is a challenging task, as a fully functional

surgical simulator typically performs multiple tasks concurrently, including realistic

rendering of the surgical scene, collision detection, computation of tissue response,

accurate tool–tissue interactions and haptic feedback. Incorporating all of these

requires significant computational power. Since the various components of the

surgical simulation system run at different frequencies, they must also be

synchronized for data integrity and consistency. Therefore, simulation of bleeding is

mostly either ignored or simulated using highly simplified techniques, since other

computationally intensive processes compete for the available CPU resources.

With the availability of high performance graphic hardware, the improvement of

visual quality and computational accelerations become easier to achieve. Modern

GPUs are highly optimized data-parallel streaming processors. The major innovation

in recent years was the replacement of the traditional fixed-function pipeline by a

programmable pipeline, which allows the programmer to upload user-written

microprograms to be executed very efficiently. By outsourcing the computations and

rendering of fluid to the GPU, the CPU could be freed up for other time-critical tasks

and the whole system could still achieve real-time performance.

Much has been written on algorithms for computational fluid dynamics. Stam (1999)

described an algorithm for a fast Navier-Stokes equation solver that provides stable

results suitable for graphics applications. This solver has been further developed by

many seeking to enhance both the quality and performance. One example is the

system developed by Crane et al. (2007), which provides a modification of the Stam

algorithm that uses NVIDIA’s shading language Cg and frame buffer objects in

OpenGL to run the solver using programmable graphics hardware.

As discussed in Chapter 2, real-time techniques for the generation of bleeding effects

may be categorized into two major groups: non-physical, and physical. The

nonphysical approaches are based on rendering techniques, where the focus is to

create visually appealing rather than physically accurate results. The physical

approaches offer the most accurate simulation of the underlying physics, but they are

5-3

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

computationally demanding, thus not suitable for VR-based interactive applications

such as virtual surgery. Given that the major goal of bleeding simulation in virtual

simulators is to provide visual realism without introducing significant additional load

on the system, non-physical methods appear to be a sensible choice for present day

surgical simulators, as many of the physical approaches require too much

computation to be integrated into real-time applications. This is critical for current

surgical simulation systems because of the enormous computational load already

placed on the CPU from simulating deformations, collisions and response

characteristics. We have developed a texture based approach that uses pixel and

vertex shader level techniques in the GPU to utilize its parallel many-core

architecture (Owens et al., 2007) for both the computation and rendering of the fluid.

It is a non-physical simulation but capable of simulating the effect of liquid flowing

along a surface and providing a realistic visual clue in surgical simulations.

In the next section, a short introduction of both Lagrangian based and Eulerian based

fluid simulation approaches is given. Section 5.3 details our fluid implementation

based on cellular automata on programmable graphics hardware; and Section 5.4

summaries this chapter.

5.2 Basic Fluid Dynamics

Computational fluid dynamics (CFD) has been an important tool for scientists and

engineers ever since the performance of computers reached useful levels during the

1960's. Many technological feats, such as going to the moon and back, modern jet

fighter aircraft and nuclear submarines would have been more or less impossible to

achieve without the help of CFD (Anderson, 2005). It is a huge subject that has

received a great deal of attention and research funding during the last decades, partly

due to the obvious military applications. Here we will just scratch the surface and

review a couple of the most fundamental equations relevant to fluid simulation in the

context of computer graphics and visualization.

5.2.1 The Navier-Stokes Equation

The fundamental equations governing the motion of a fluid are the Navier-Stokes

equations, derived independently by the French engineer Claude Navier and the Irish

mathematician George Stokes in the first half of the nineteenth century. These

5-4

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

equations can take many forms depending on the assumptions made. The fluid is

assumed to be incompressible and Newtonian (Anderson, 1995), and thus the Navier-

Stokes equations take the following form

 ()

 (5.1)

Where v is the fluid velocity, ρ is the density, p is the pressure, μ is the kinematic

viscosity and f is the external body force. The first term on the right, () is

called the convection term. It basically represents the change of velocity of a fluid

particle caused when the particle moves from one region of the velocity field into

another region with different velocities. It can be seen as a "transport of velocity" by

the velocity field itself. The second term is the viscosity term, representing the

internal friction and normal stresses generated between fluid particles as they move

in relation to each other. The third term is the pressure term, stating that particles are

pushed in the direction of the negative pressure gradient. The last term represents

body forces, such as gravity or a magnetic field, acting directly on the matter

constituting the particle.

5.2.2 The Continuity Equation

To describe the motion of a physical fluid the Navier-Stokes equations need to be

complemented with an equation assuring that no mass is created or destroyed in the

process. This fact is described by the continuity equation,

 () (5.2)

It states that the rate of density change of an infinitesimal fluid element equals the

total amount of mass per volume entering and leaving the volume occupied by the

element. In other words, mass is conserved.

5.2.3 Lagrangian Method

The Lagrangian approach treats the continuum as a particle system. Each point in the

fluid is labelled as a separate particle, with a position x and a velocity u. with the

Lagrangian viewpoint, the incompressible Navier-Stokes equations are derived as

 (5.3)

5-5

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 (5.4)

The left hand side of the momentum equation can be interpreted as the acceleration

of a particle while the right hand side is the net force exerted. The equations have

been simplified assuming that the fluid is incompressible since most visually

appealing fluid effects in real have little compressibility (Bridson and Müller-Fischer,

2007).

Reeves (1983) introduced the idea of particle systems which are then widely used to

model the deformable bodies, clothes and other chaotic phenomena. The particle

system is an irregular discretization of the continuum. In order to solve the Navier-

Stokes equations, the gradient operator and laplacian operator should be well

defined under such as irregular discretization. Monaghan (1992) introduced the

smoothed particle hydrodynamics (SPH) method into the computer graphics

community to address this issue. It defines a smoothing kernel to interpolate the

physical properties (velocities, densities, etc.) at an arbitrary position from the

neighbouring particles. The fluid is represented by a set of particles with

positions xi, masses mi and additional attributes Ai (velocities, densities, etc.). SPH

defines how to compute a smooth continuous field A(x) from the discrete attribute

values Ai sampled at particle locations xi as

 
i

i

i

i
i hxxW

A
mxA),()(


 (5.5)

The kernel function),(hrW is typically a smooth, radial symmetric, normalized

function with finite support. For example, in Müller’s work, the kernel was designed

as





 


otherwise

hrrh

h
hrW

,0

0)(

64

315
),(

22

9
 (5.6)

The gradient and laplacian of the smoothed attribute function A(x) are

 
i

i

i

i
i hxxW

A
mxA),()(


 (5.7)

5-6

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 
i

i

i

i
i hxxW

A
mxA),()(22


 (5.8)

Consequently, the right hand side of momentum equation can be easily discretized

with the above definitions.

This meshless method of using Lagrangian particles can operate more easily with

irregular boundaries, between multiple fluids interaction and generally requires less

computational resources. Though Lagrangian approach has been widely used in

many interactive applications, due to the difficulties in surface reconstruction and

rendering, particle-based method have not yet demonstrated the same level of realism

as its grid-based counterparts.

5.2.4 Euler Method

The Eulerian approach follows another strategy. Instead of treating the fluid as

flowing particles and then tracking each particle, it looks at fixed points in space and

sees how the fluid quantities (including densities, temperatures and velocities)

measured at those points change with time. Thus, the whole fluid region is modelled

as fields of fluid quantities. For a specific time and a given position, there exists a

group of values to represent the fluid state. For instance, the vector field v(x,y,z,t) is

to characterize the velocities and the scalar field p(x,y,z,t) it to measure the pressure

inside the fluid. The incompressible Navier-Stokes equations have the following

form with Eulerian viewpoint:

 (5.9)

 ()

 (5.10)

In Eulerian methods, the above equations are discretized with the grids. The finite

difference methods are used to solve the equations numerically. There are two ways

to store the fluid quantities on the grid. The most popular way is to store the scalars,

such as pressures, level set values and temperatures at the centre of each grid and

store the vectors, such as velocities at the faces of each grid cell. This staggered

configuration of MAC grid was first presented by Harlow and Welch (1965), which

benefited from its unbiased and second order accurate central difference scheme.

Most of the state-of-art simulations adopted the staggered grid. Another way is to

5-7

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

store all the quantities at the node of each grid cell, such as in Stam’s paper (2003).

The advantage is simplicity. There is no need to handle different variables differently.

Interpolations are simplified significantly as well.

At the early stages of physically-based fluid animation, researchers did not tackle the

sophisticated Navier-Stokes equations directly. On the contrary, they made several

assumptions and reduced the governing equation to the ware equation (Kass and

Miller, 1990) or the shallow water equations. The height field was used to represent

the water surface. Although this algorithm was quite simple and efficient, a myriad

of interesting fluid phenomena, such as overturning wares, sprays and splashes,

could not be captured. Foster and Metaxas’s work (1996) was the first example that

solved the full 3D Navier-Stokes equations to animate fluids. Stam (1999) improved

it, achieving the unconditionally numerical stability by introducing the semi-

Lagrangian method for the convection term and implicit solver for the viscosity and

pressure terms. It became the standard framework to implement fluid animation

codes. The Eulerian method can be divided into four steps, from the initial velocity

v0(x) to the resultant velocity v4(x) after one time step:

The four sub-steps are

Body forces: tfxvxv )()(01 (5.11)

Advection:)),(()(12 txpvxv  (5.12)

Diffuse:

)()()(23

2 xvxvtI  (5.13)

Projection:

)()(3

2 xv
t

xp 





 (5.14)

p
t

xvxv 





)()(34
 (5.15)

Combining the Eulerian method and level set based surface tracking algorithms

(Foster and Fedkiw, 2001) has produced stunning results, simulating various

5-8

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

interesting fluid phenomena such as smoke, water, fire, droplets, non-Newtonian

flow, bubbles, etc. In general, these techniques have progressed to the point where

fluid phenomena can be modelled so realistically that a naïve viewer may have

difficulties in telling reality from simulated footage.

Although some speedup algorithms have been proposed (Carlson et al., 2004; Qin et

al., 2007), most of the physically-based methods are still not suitable for real-time

and interactive surgical simulation mostly due to the fact that they are

computationally very demanding and the cost increases dramatically with increase in

grid size or the number of particles, especially when complicated models are used for

acceptable visualization realism. In the next section we will discuss in details our

non-physical method for bleeding simulation based on Cellular Automata model.

5.3 Fluid Simulation based on Cellular Automata

In our system, the cutting simulation is augmented with real-time fluid dynamic

visualization. As physically based approaches for fluid simulation are generally

computationally expensive due to the calculation of the Navier-Stokes equations, we

propose an alternative way for fluid simulation. Rather than using physically-based

methods, a texture based fluid simulation is used to generate the bleeding effect.

Although it is not numerically accurate, it is able to provide a realistic visual cue in

surgical simulations. The computations and rendering of the fluid are both performed

on GPU so that the CPU could focus on other time critical tasks such as progressive

cuttings and real time deformations. Our method for bleeding does not depend on the

size and the geometrical shape of the organ or its associated textures, and can be

applied in any complex simulation scene without significant reduction in

performance. Unlike previous techniques (Halic et al., 2010; Rianto and Li, 2010)

where the fluid only occurs on the static surface, our fluid can start from the cutting

area on the outer surface, and propagate into the inner volumetric model during the

process of groove generation so that the whole surgical scene looks more realistic.

Our simulation is done by a cellular automaton residing on the surface of the object.

A cellular automaton is a discrete model for the description of physical dynamic

systems regulated only by local laws. Typically it consists of a regular grid of cells,

each in one of a finite number of states or properties, such as “on” and “off”. For

5-9

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

each cell, a set of cells called its neighbourhood (usually including the cell itself) is

identified. An initial state is selected by assigning a state for each cell. The system

evolves in time according to some fixed rule (generally, a mathematical function)

that determines the new state of each cell based on the current state of the cell and

the states of the cells in its neighbourhood. Typically, the rule for updating the state

of cells is the same for each cell and does not change over time, and is applied to the

whole grid simultaneously.

A common approach in fluid simulation relies on top down viewpoints that uses

2D/3D mesh based techniques in conjunction with fluid equations (Chentanez et al.,

2006). However, a common challenge is the cost of the computational animation of

the solid-fluid interaction. Recently, the ability of CA algorithms (with simple rules)

to simulate the complexity of physical models has been investigated in many studies

in order to improve dramatically the computation time of 2D surface fluid models

(Coulthard et al., 2007; Liu and Pender, 2010). These methods using bottom up

models for surface fluid flow simulation and are cheaper than the traditional ones for

fluid simulation, because there is no need to solve Partial Differential Equations

(PDEs) but to compute the non-iterative operation of the CA rules. Furthermore, CA

algorithms are well suited to be executed in parallel in modern high performance

hardware, thus obtaining a very fast speed of computation. It has been applied for

fluid simulation in VR applications such as computer games (Judice et al., 2008),

and digital terrain models (Coutinho et al., 2008; Cirbus and Podhoranyi, 2011). To

the best of our knowledge, there is no other study to date that uses this method in

surgery simulation for bleeding effect.

5.3.1 Overview of Cellular Automaton

The standard approach to simulating natural phenomena is to solve equations that

describe their global behaviour. While the results are typically numerically and

visually accurate, most of such simulations require too much computation (or small

lattice sizes) to be integrated into interactive graphics applications such as virtual

surgery. Cellular Automata models (Schiff, 2011) do not solve for the global

behaviour of a phenomenon. Rather they model the behaviour by a number of very

simple local operations. When aggregated, these local operations produce a visually

accurate approximation for the desired global behaviour.

5-10

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Cellular automata could provide an artificial, mathematical model of a dynamic

system, and be employed for the purpose of simulating real systems, by representing

the state of a dynamic system as continuous values on a discrete lattice.

A cellular automaton refers to a model consisting of the following components:

 A grid composed of cells.

 A set of ingredients.

 A set of local rules governing the behaviours of the ingredients.

 Specified initial conditions.

Once the above components of the model are defined, a simulation can be carried out.

In the simulation the system evolve via a series of discrete time-steps, or iterations,

in which the model rules are applied to all the ingredients of the system, and the

configuration of the system is updated accordingly.

The grid in a CA model may contain a single cell, or more commonly a large

collection of, possibly as many as 100,000 or more, cells. In principle, the grid itself

might be one-, two-, or three-dimensional in form, although most studies have used

two-dimensional grids. An illustration of a 7 X 7 = 49 cell grid of square cells

occupied by two types of ingredients, A and B, is shown in Figure 5.1.

Figure 5.1: A two-dimensional cellular automata grid with two sets of occupied cells

of different states, A and B. The unoccupied cells are blank.

5-11

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

The cells themselves can take a variety of shapes. They can be triangles, squares,

hexagons, or other shapes on the two-dimensional grid, with square cells being the

most common. Each cell in the grid can normally exist in a number of distinct “states”

which define the occupancy of the cell. The cell can be empty or contain a specific

ingredient, where the ingredient, if present, might represent a particle, a type of

molecule or isomer, or a particular molecular electronic state. The interactions of an

ingredient with other ingredients take place at the cell edges.

The movement and other actions of an ingredient on the grid are governed by rules,

and these rules depend only on the nature of the cells in its neighbourhood. Various

types of neighbourhood can be utilized. The most common neighbourhood used in

two-dimensional cellular automata is called the von Neumann neighbourhood. For a

cell, A, as shown in Figure 5.2(a), the von Neumann neighbourhood refers to the four

B cells adjoining its four faces. Another common neighbourhood is the Moore

neighbourhood which, as shown in Figure 5.2(b), refers to the eight B cells

completely surrounding cell A, including those cells on the diagonals. Another useful

neighbourhood is the extended von Neumann neighbourhood as shown in Figure

5.2(c), where the four C cells lying just beyond the four B cells of the von Neumann

neighbourhood are included.

 (a) (b) (c)

Figure 5.2: Cell neighbourhoods: (a) the von Neumann neighbourhood, (b) the

Moore neighbourhood, and (c) the extended von Neumann neighbourhood of cell A.

Different types of rules govern the behaviours of the ingredients on the grid, and

thereby the subsequent evolutions of the CA systems. The key features of rules are

that they are local, involving only an ingredient itself and possibly the ingredients in

its immediate neighbourhood, and that they are uniformly applied throughout the CA

simulation.

5-12

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Having defined both the grid type and size and the governing rules for a simulation,

next the remaining conditions of the simulation need to be defined. These include (1)

the natures and numbers of the starting ingredients, (2) the configuration of the initial

state of the system, (3) how many runs of the simulation are to be carried out, and (4)

the length of the run, i.e., how many iterations they should include.

Before the simulation, it is necessary to define the starting condition of the system.

Here one first declares what types of ingredients should be present at the start of the

run and how many of each type should be present. The ingredients are customarily

distinguished on the computer screen by different colours. In order for ingredients to

move on the grid, there must be empty cells available to accommodate them.

The default condition for the placement of the starting ingredients is to position them

randomly on the grid. For some applications, however, a different distribution might

be needed.

The output of a CA simulation carried out on a computer comes in two different

forms: a visual output is displayed on the computer screen, and numerical data

summaries compiled in output files that are generated during each run. The visual

output allows the observer to follow the system as it evolves, and can be very helpful

in comprehending the overall process of the system’s evolution. The data summaries

in the output files are more suitable for quantitative analysis of the details of this

evolution.

5.3.2 Our Bleeding Implementation based on CA

We use two-dimensional grid for our implementation. Experimental and numerical

studies show that the von Neumann neighbourhoods can produce satisfactory results

and performance in cellular automata surface flow simulations (Mei et al., 2007).

Thus we adopt the von Neumann neighbourhood for our implementation.

The effect we want to achieve consists of pigments spreading in every possible

direction on a surface driven by the gravity force. So firstly a per-pixel gravity value

is calculated according to the normal map of the surface and this gravity map is

saved out to a texture for later animation of the blood.

5-13

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

With a normal map consisting of per pixel normals stored in an RGB texture, the

direction of the surface points at each point is defined. One of the problems of using

normal maps to define gravity is that we need space transformation moving gravity

into a tangent space. Once the gravity is defined in a tangent space, the x and y

components of the gravity value serve as a 2D directional vector for gravitational

movement.

To determine the final directional vector, the sum of this 2D gravity vector and the x

and y components of the pixel’s normal is used. This final 2D vector then yields the

direction that the fluid will move across the surface in the tangent space. As shown in

Figure 5.3, the z value is ignored and the x and y components are used to dictate

direction. This process is applied to each point across the surface to determine a

unique gravity vector for each point and the x and y components are stored to the r

and g channels of the gravity map respectively.

Figure 5.3: The direction of fluid move across the surface.

Following the CA paradigm, the state of each cell is determined by a scalar w(x,y),

representing the amount of blood in our case. The amount of blood w is stored in a

height map, which is defined in the unused b component of the gravity map. In every

frame, the height value of the blood at each texel as well as the 2D gravity vector are

read out to calculate the new state (the amount of blood w) of the current texel.

New blood appears on the organ due to the surgical cutting, which is defined blood

source in our implementation. We need to specify the location, the radius and the

blood intensity of the source. Currently the location of the blood source is the cutting

path. So after the cutting, the cutting path is passed as a parameter to the fluid model

5-14

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

for blood simulation. The radius indicates the area that will be affected by the blood

source. The blood intensity represents the amount of blood arriving during ∆t. By

controlling the location of the source, the simulated blood will flow along every

possible direction evenly or unevenly according to the surface details and the gravity.

By changing the radius and the blood intensity, the area affected by blood

propagation could be changed, thus the speed of the blood could be controlled. Let

rt(x,y) be the blood arriving at cell (x,y) per time unit, the amount of blood is update

by a simple addition:

 () () () (5.16)

where is a global parameter that controls the overall rate of fluid increment.

The updating of the new state consists of two parts: the blood lost due to the gravity

in this frame is subtracted from the current texel; and the blood flown into the current

texel from its neighbours are added into the current texel. Let’s denote the first part

as the inflow flux from neighbour cells, and the latter part as the outflow flux

from the current cell.

The fluid flow between cells can then be calculated. Each cell (x,y) has four

neighbours which could exchange fluid with each other. It can be assumed that each

(x,y) cell has four virtual pipes to the four neighbours which transport fluid outward

from the given cell. The neighbouring cells also have four virtual pipes, transporting

fluid to opposite directions as illustrated in Figure 5.4. The fluid outflow flux is

update with the amount of blood w(x,y) difference between interconnected cells.

Let’s denote () as the outflow flux in a given (x,y) cell, where

 is the outflow flux to the left neighbour at (x-1,y), and similarly , , are the

outflow fluxes to right, top, bottom directions, respectively. The change of can

then be calculated as:

 () (

 () () (5.17)

where g is the gravity vector pointing in the direction of the current cell and

 () is the height difference between cell (x,y) and its left neighbour (x-1,y):

 () () () (5.18)

5-15

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 , , are computed in a similar way.

The blood height is updated with the new outflow flux field by collecting the inflow

flux from neighbouring cells, and sending the outflow flux away from the

current cell. For cell (x,y), the new volume change for the blood is:

 () (∑ –∑) (
 ()

 ()

 ()

 () ∑
 () (5.19)

The blood height in each cell is then updated as:

 ()() () () (5.20)

Figure 5.4: Each cell is connected to its four neighbours through virtual pipes and

exchange fluid with them.

For any fluid simulation method, boundary conditions should be taken into

consideration. Since the flow is simulated on a 2D grid, we assume no fluid can flow

out of the grid (“no slip” boundary condition). In the CA model, we specify the

outflow flux on boundary cells to satisfy the conditions. For cells (x,0) on the left

boundary, the outflow flux to the left neighbour f
L
(x,0) should be set to zero.

Similar rules apply for the other boundaries.

In order to obtain the effect of blood flowing continuously, at every time step the

current texel blood height is compared to a predefined threshold, which represents

the minimum height for the blood to exist and flow. If the current value is greater

than the threshold, the generation of the gravity map is again performed for the next

frame. This cycle continues until there are no longer any texels with blood high

5-16

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

enough to be visualized and moved. By the end of this, the blood either stoped

flowing leaving a trail on the surface, as shown in Figure 5.5 (a) and (b), or the blood

accumulated in the boundary cell, as shown in Figure 5.5 (c) and (d).

(a) (b)

 (c) (d)

Figure 5.5: Two cases when blood stops flowing.

The states are updated by a render-to-texture operation using the previous state value

and the neighbouring information as input during the simulation and stored in a 2D

texture map. The render-to-texture of each time step performs 4 suboperations:

Neighbour Sampling, Computation on Neighbours, New State Computation, and

State Update. Figure 5.6 illustrates the mapping of the suboperations to graphic

hardware. Neighbour sampling and Computation on Neighbours are performed by

the programmable texture mapping hardware. New State Computation performs

5-17

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

arithmetic on the results of the previous suboperations using programmable texture

blending. Finally, State Update feeds the results of one frame to the next by

rendering or copying the texture blending results to a texture.

Neighbour Sampling: since the state is stored in textures, neighbour sampling is

performed by offsetting texture coordinates toward the neighbours of the texel being

updated. For example, to sample the four nearest neighbour nodes of node (x,y), the

texture coordinates at the current quadrilateral are offset in the direction of each

neighbour by the width of a single texel. Texture coordinate interpolation ensures

that as rasterization proceeds, every texel’s neighbours will be correctly sampled.

Computation on Neighbours: as described above, in order to compute how much

blood will be lost and flown into the current texel, complex functions of the sampled

neighbours have to be computed. These functions are computed ahead of time and

stored in a texture for use as a lookup table. Our approach relies on dependent texture

lookups provided by the programmable texture shader functionality of GPU.

New State Computation: once we have sampled the values of neighbouring texels

and used them for function table lookups, we need to compute the new state of the

lattice. We use programmable hardware texture blending to perform arithmetic

operations. The results of these computations are written to the frame buffer.

State Update: once the new state is computed, we must store it in a state texture. In

our current implementation, we copy the newly-rendered frame buffer to a texture

using the glCopyTexSubImage2D() instruction in OpenGL. Since all simulation state

is stored in textures, our technique avoids large data transfers between the CPU and

GPU during simulation and rendering.

5-18

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 5.6: Components of a CA operation map to graphics hardware pipeline

components.

The final result of the fluid simulation is a continuously changing height map with a

2D gravity-induced directional vector defined at each point. Visually, the goal is to

produce the effect of a thick fluid flowing across a surface. The height map contains

information regarding the intensity of the colour of each point. This value is

multiplied with a given blood colour to yield a final blood colour contribution which

is added to the colour of the original surface material. The blood colour is obtained

from real surgery videos for high fidelity in realism.

Viscosity has the effect of smoothing the velocity of fluid. It corresponds to the

informal notion of “thickness”. For example, honey has a higher viscosity than water.

To create a more viscous fluid that responds in a realistic manner to surface details,

the gravity vector is raised to the third power. It creates a sort of attenuation that

ramps the effect of gravity. Figure 5.7 demonstrates this effect. Figure 5.7(a) is the

snapshot of blood flowing on the surface and Figure 5.7(b) is the wireframe of the

fish. By rotating the wireframe a little bit, as shown in the Figure 5.7(c), we can see

that the surface has the sharpest slope around the green area, and accordingly in the

Figure 5.7(a) the blood tends to accumulate around the corresponding area. This is

because for surface where the slope is sharper, the gravity vector pointing to the

below neighbour is less, thus the amount of blood falling into the below texel is less

and the blood is more likely to stay in the current texel.

5-19

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

 (a) (b)

(c)

Figure 5.7: An example to demonstrate the viscosity effect of the fluid.

In order to simulate the volume and thickness of the blood, the intensity of the blood

colour is increased. To do that, the colour contribution of the surface is decreased by

a factor of (1-BloodHeight). For added realism, compute deltas for the blood height

of each texel based on its neighbours. Derive dx = LeftHeight – RightHeight and dy =

BelowHeight – AboveHeight. These values are then added to the surface normal to

give the effect of a thick fluid.

To get the diffuse colour, the blood colour is blended with the surface colour; its

transparency varies with the blood height w. Various specular coefficients can be

5-20

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

used for organ surfaces and blood surface respectively. Phong illumination model is

employed for per pixel lighting.

When implementing the CA method, it is easy to notice that storing cells for even a

modest-size level consumes a huge amount of memory, and the processing and

memory-bandwidth requirements become severe. The trick is to not store or process

cells that are not participating in any interesting activities. An octree is ideally suited

for such an arrangement, specifically a dynamically-allocated octree. Next section

will discuss the implementation of the octree structure for speeding up the fluid

simulation further. The GPU is employed as a tree lookup generator in the simulation.

The algorithm for the texture mesh is developed based on the octree texture from the

fragment program using the tree lookup as suggested in the work by Lefebvre et al.

(2005). The octree’s leaves store the index of a pixel in the form of the three 8-bit

values (in RGB Channels) and the alpha channel is used to distinguish between a

pointer to a child and a leaf of the octree.

5.3.3 A GPU-Accelerated Hierarchical Structure: The N3-Tree

5.3.3.1 Definition

An octree is a regular hierarchical data structure. The first node of the tree, the root,

is a cube. Each node has either eight children or no children. The eight children form

a 2x2x2 regular subdivision of the parent node. A node with children is called an

internal node. A node without children is called a leaf.

In an octree, the resolution in each dimension increases by two at each subdivision

level. Thus, to reach a resolution of 256x256x256, eight levels are required (2
8
= 256).

Depending on the application, one might prefer to divide each edge by an arbitrary

number N rather than 2. Therefore a more generic structure is called an N
3
 -tree. In

an N
3
-tree, each node has N

3
 children. The octree is an N

3
-tree with N = 2. A larger

value of N reduces the tree depth required to reach a given resolution, but it tends to

waste memory because the surface is less closely matched by the tree.

5.3.3.2 Implementation

To implement our CA method as a hierarchical tree on a GPU, how to store the

structure in texture memory and how to access the structure from a fragment program

need to be defined.

5-21

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

A simple approach to implement an octree on a CPU is to use pointers to link the tree

nodes together. Each internal node contains an array of pointers to its children. A

child can be another internal node or a leaf. A leaf contains only a data field.

The implementation of an octree on the GPU could follow a similar approach.

Pointers simply become indices within a texture. They are encoded as RGB values.

The content of the leaves is directly stored as an RGB value within the parent node's

array of pointers. The alpha channel could be used to distinguish between a pointer to

a child and the content of a leaf. The implementation relies on dependent texture

lookups (or texture indirections). This requires the hardware to support an arbitrary

number of dependent texture lookups, which is the case for GeForce FX and

GeForce 6 Series GPUs.

An octree comprised of pointers and nodes is relatively easy to create and works well

for a CPU based implementation. Unfortunately, this structure is almost impossible

to transfer to GPU. In fact such structure is extremely inefficient to use on GPU. A

GPU efficient octree is a condensed octree that has been flattened into an array

structure. Essentially, all nodes in the octree that are interior nodes of leaf nodes with

data are stored in the depth-first order into an array. The leaf nodes, instead of

containing data, contain indices into a common array containing all of the surfels.

This structure allows for the minimum amount of data to be used to fully represent

the octree. This also allows for one direction octree transversal. This means that to

find an intersection it is only necessary to increment across the octree once.

The tree is stored in an 8-bit RGBA 3D texture called the indirection pool. Each

"pixel" of the indirection pool is called a cell.

The indirection pool is subdivided into indirection grids. An indirection grid is a

cube of NxNxN cells (a 2x2x2 grid for an octree). Each node of the tree is

represented by an indirection grid. It corresponds to the array of pointers in the CPU

implementation described earlier.

A cell of an indirection grid can be empty or can contain one of the following:

 data, if the corresponding child is a leaf

 the index of an indirection grid, if the corresponding child is another internal

node

5-22

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 5.8 illustrates our tree storage representation. We can see that a quadtree is

flattened into an array.

Figure 5.8: Storage in Texture Memory (2D Case).

It can be noted that S = Su x Sv x Sw which is the number of indirection grids stored in

the indirection pool and R= (N x Su) x (N x Sv) x (N x Sw) which is the resolution in

cells of the indirection pool.

The data values and indices of children are both stored as RGB triples. The alpha

channel is used as a flag to determine the cell content (alpha = 1 indicates data; alpha

= 0.5 indicates index; alpha = 0 indicates empty cell). The root of the tree is always

stored at (0, 0, 0) within the indirection pool.

Once the tree is stored in texture memory, it needs to be accessed from a fragment

program. As with standard 3D textures, the tree defines a texture within the unit cube.

We want to retrieve the value stored in the tree at a point M [0, 1]
3
. The tree lookup

starts from the root and successively visits the nodes containing the point M until a

leaf is reached.

Let I D be the index of the indirection grid of the node visited at depth D. The tree

lookup is initialized with I 0= (0, 0, 0), which corresponds to the tree root. When we

are at depth D, we know the index I D of the current node's indirection grid. How to

retrieve ID+1 from ID is explained as follows.

The lookup point M is inside the node visited at depth D. The value stored at the

location corresponding to M needs to be read out from the indirection grid ID. To do

so, the coordinates of M within the node needs to be computed.

5-23

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

At depth D, a complete tree produces a regular grid of resolution N
D

x N
D

x N
D

within the unit cube. This grid is called the depth-D grid. Each node of the tree at

depth D corresponds to a cell of this grid. In particular, M is within the cell

corresponding to the node visited at depth D. The coordinates of M within this cell

are given by frac(M x N
D

). These coordinates are used to read the value from the

indirection grid ID. The lookup coordinates within the indirection pool are thus

computed as:

S

NMfracI
P

D

D)(
 (5.21)

The RGBA value stored at P in the indirection pool is then retrieved. Depending on

the alpha value, either we will return the RGB colour if the child is a leaf, or the

RGB values will be interpreted as the index of the child's indirection grid (ID+1) and

continue to the next tree depth. Figure 5.9 summarizes this entire process for the 2D

case (quadtree).

5-24

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 5.9: Example of a Tree Lookup (Lefebvre et al. 2005)

The lookup ends when a leaf is reached. In practice, the fragment program also stops

after a fixed number of texture lookups. With most hardware, it is only possible to

implement loop statements with a fixed number of iterations. The application is

limiting the tree depth with respect to the maximum number of texture lookups done

within the fragment program. The complete tree lookup code is shown in Listing 5.1.

5-25

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Listing 5.1: The tree look-up Cg code.

The octree representation of the associate geometry is shown in the Figure 5.10. The

blood source is passed as a parameter to the fluid model to calculate the intersections

with the surface, as shown in Figure 5.10(b). These intersections might contain

maximum 27 (3*3*3) cubes. However, the octree would determine the actual number

of cubes according to the shape of the surface, as the texture information is only

stored around the surface. As shown in Figure 5.10(c), only 9 green cubes are

actually identified for the blood propagation.

 (a) (b) (c)

Figure 5.10: The octree mapping of the releasing fluid; (a) fluid moving over the

geometry surface; (b) the octree structure of the mesh (the green cube indicates the

current source of the fluid); (c) a close-up of the octree.

5-26

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

5.3.4 Experimental Results

All the results discussed in this thesis are implanted on a 2.4 GHz dual-CPU personal

computer with 2GB memory and a NVIDIA Quadro FX 4600 graphics card.

SensAble Technologies’ PHANToM premium 1.5 is used to provide force

reflectance and feedback for haptic interaction. The PAHNToM provides 6 degrees

of force feedback allowing the user to explore object models using the sense of touch.

The force feedback also provides valuable sensory feedback to the surgeon during

simulation of tissue deformation and cutting. The visual and haptic rendering were

developed based on the open source H3DAPI and Volume Haptics Toolkit (VHTK),

both are created by SenseGraphics AB.

By utilizing the GPU and octree structure, our non-physics fluid model is able to

simulate fluid flowing along a surface very realistically without adding computation

load to the CPU. Figure 5.11 shows some snapshot of the fluid simulation by adding

the fluid on the surface meshes interactively.

Figure 5.11: fluid on different mesh models

Figure 5.12 is an example to show that our fluid model is totally following the

topology of the surface, not only capable of flowing along a smooth surface, but also

a complex surface such as concave surface.

5-27

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 5.12: Fluid flowing on complex surfaces

Figure 5.13 demonstrates that our fluid model is able to simulate the fluid

phenomena in real life. The green cube in Figure 5.13 represents the blood source.

As it can be seen from Figure 5.13(a), when the source is in the top most position on

the mouth, the fluid will flow along all possible directions evenly following the

gravity force. When the source is put in a lower position as in Figures 5.13(b) and (d),

the fluid will flow totally downwards to the left or right respectively. Figures 5.13(c)

and (e) show that when the source is put in the second most top position, the fluid

will flow unevenly towards the left and right direction according to the position of

the source.

 (a)

 (b)

 (c)

5-28

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

(d)

(e)

Figure 5.13: Our fluid model resembles real life fluid phenomena as much as

possible.

Figure 5.14 exhibits the scalability of our fluid simulation by using different types of

fluid source. Figure 5.14(a) shows the top view of random blood drops as the fluid

source. Each blood drop falls on the surface with a random distribution. Figure

5.14(b) shows the top view of fixed fluid source where the location of the source can

be randomly indicated by the user, in this case shown as the green cube in Figure

5.14(c). The volume of fluid and the propagation speed can also be easily controlled

by specifying the radius and the intensity of the source.

 (a) (b) (c)

Figure 5.14: Different fluid sources.

Figure 5.15 shows a few snapshots of surgical cutting on a surface mesh followed by

blood flowing over the surface. The surface is an iso-surface extracted from the

corresponding volumetric data. The texture coordinates are defined by indexed

5-29

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

triangle mesh with customizable colour scheme. The colour scheme is designed to be

in accordance with the corresponding volumetric data.

Figure 5.15: Blood flowing on a torso surface.

According to the types of cuts, different kinds of bleeding could be simulated by

changing the amount of blood and the radius of the blood source. For example, if the

organ is cut with a very light force, a very small amount of fluid with a low flowing

speed will be produced with a thin cut. If the object is cut with a large force,

sometimes a huge amount of blood will spout out and spread the cutting area

immediately. Figure 5.16 shows such two examples with different cut widths of

0.003 and 0.3 respectively.

 (a) (b)

Figure 5.16: Different blood amount controlled by cut width. (a) With a cut width of

0.003. (b) With a cut width of 0.3.

By incorporating the volumetric model underneath, the hybrid model is able to

simulate realistic surgery cutting followed by blood flowing in the operation area

including both the surface and the volume. The surgery simulation starts with a

progressive thin cut by haptic interaction on the outer surface and the inner volume

a

 a

5-30

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

simultaneously, and then bleeding occurs along the cutting path and the blood

spreads around the cut area rapidly. This is achieved by pass the cutting path as a

parameter to the fluid model as the source of the fluid and the blood will propagate

along every possible direction driven by the gravity. The operation area is often

cleaned by sucking or wiping the blood away within a short period of time. We

implement this effect by clicking a button to clean all the previous blood tracks. The

haptic device is then used as a retractor to open up the cut resulting in the groove

generation and the display of the interior structures. Fluid simulation is triggered

again by the pulling process. During the pulling, the surface is deformed interactively

according to the shape of the inner groove. By passing the position of the groove as

the location of the blood source to the fluid model, the bleeding could happen in the

groove and the blood keeps flowing from the inner wound onto the outer surface

following the changing topology of the surface. In this way, it looks like the blood is

blocking the vision of the whole wound area which is just one of the purposes of

simulating fluid in virtual surgery. A spilling fluid from the cut is assumed as a

droplet liquid that travel over the mesh. When the dropped fluid flows on a surface,

some amount of fluid remains behind because of surface absorption and wetting. The

remaining fluid will merges into the other fluid that spills from the wound

subsequently. Figure 5.17 shows some snapshots of cut on the torso with fluid

flowing around the cutting area.

Figure 5.17: Cutting and bleeding for cut on the torso.

Another surgical scenario being simulated is the bone drilling operation. The skin is

opened up to reveal the underneath bones, which will be drilled by the haptic device,

as depicted in Figure 5.18. The drilling process is also accompanied with bleeding

effect.

5-31

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 5.18: Drilling process with bleeding effect.

Our simulation system is also applied to simulate the cutting for a knee surgery. The

whole process is shown in Figure 5.19, in which the haptic device is modelled as the

surgical instrument and force feedback are sent to the user during the cutting and the

widening. The knee is placed vertically so that the blood is flowing down along the

surface because of gravity.

c

 a

a

 a

5-32

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Figure 5.19: Cutting and bleeding for knee surgery

Figure 5.20 also shows another example when the knee is tilted with certain angle. In

this case, the blood flows in every possible direction unevenly.

Figure 5.20: Cutting and bleeding on a tilted knee.

5.3.5 Discussion on Performances

The overall system simulation includes several surgical scenarios such as knee

surgery and cutting on the chest. In order to observe the influence of fluid model to

the performance of overall system, we break the experiments into three groups and

test the performances when there is only cutting simulated or only blood simulated or

d

 a

5-33

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

both of them are simulated. The average performances observed during the

experiments are provided in the Table 5.1. The data is observed based on the frame

rate on Gfps (Graphic frame rate per second) and Hfps (Haptic frame rate per second).

Different mesh sizes are examined. (c) is the frame rate for cutting without bleeding,

and (f) is the frame rate for blood simulation without cutting, and (cf) means the

frame rate with both cutting and bleeding. As shown in the table, the graphic frame

rate remains stable for various mesh sizes either with fluid dynamic included or not.

However, when a mesh cutting through haptic is included, the simulation frame rate

fall into 12 fps for the triangles greater than 30000, no matter whether the fluid

dynamic is included or not. We can see that the fluid model does not impact on the

interaction speed but the cutting process does. This is because our fluid model is

computed and rendered totally on GPU, and the re-meshing processes and mesh

deformations need more computation on the CPU. Same trend can be observed from

the frame rates on haptic rendering, although they remain to be above 950 fps which

are acceptable. The low rendering frame rate for large data with both cutting and

fluid included could be improved by concentrating only on affected area in the future.

At this time, we only focus on the influence of fluid on the system performance.

Mesh
No. of

Triangles
Gfps Gfps(f) Gfps(c) Gfps(cf) Hfps(c) Hfps(f) Hfps(cf)

Chest 37000 59 58 13 12 953 998 950

Knee 16742 60 59 28 25 980 1000 980

Head 12280 60 60 28 28 989 1001 983

Fish 2128 60 60 59 58 1001 1001 1000

Table 5.1: Mesh sizes versus frame rate per second (fps).

5.4 Chapter Summary

The need to incorporate the effects of bleeding in surgical simulations has been well

recognized and several previously developed simulators include such effects.

However, most of these methods are not suitable for real-time environments, as they

are intended for animations in which each frame can be pre-computed for many

hours using high-performance computers before putting together to form a smooth

animation. We develop a non-physical simulation for the effect of blood flowing

5-34

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

along the anatomical surface. It utilizes the GPU parallel architecture for both the

computations and rendering of fluid so that the CPU could focus on other time-

critical tasks. The fluid model is a texture based approach that uses pixel and vertex

shader level techniques in the GPU. The actual simulation is based on cellular

automaton which is a discrete model for the description of physical dynamic systems

regulated only by local laws. A gravity-vector and a normal map of the surface are

used to calculate the amount of blood for every pixel. Finally the blood is blended

with the actual surface and they are rendered to the screen. To save up space and

improve efficiency, we use octree as our structure for texture mesh, since octrees are

one of the most efficient spatial data structures that can be implemented. Some

snapshots and performance discussions of our surgical simulator have been provided

in Section 5.3.4 and 5.3.5, which demonstrate that our fluid model could produce a

realistic bleeding simulation for virtual surgery while keep the whole system running

in real-time. Such a system can be incorporated into a comprehensive surgical

simulation system for the enhanced realism of virtual surgery.

6-1

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Chapter 6 Conclusion

This thesis has proposed a VR-based surgical simulation system for simulating

surgery cutting and bleeding effect based on some novel algorithms.

In Chapter 3, novel algorithms for surgical cutting simulations are proposed based on

a hybrid deformable models consisting of surface and volumetric data. 3D node

snapping and topology modification approaches are presented to generate the smooth

cutting on the outer surface. The cut can be manipulated and widened up to reveal

the heterogeneous interior structures and materials of the underneath volumetric

deformable models. The volumetric model can also be deformed interactively by the

haptic device to generate the cutting gutter by a modified ChainMail algorithm.

These two data models are integrated seamlessly together so that the cutting and

deformation on these two models can progressively synchronize with each other.

Drilling effects are also implemented by removing the contacting voxels on the

underneath volumetric model to present the extendibility of our model.

In Chapter 4, haptic interactions during the surgery cutting and bone drilling are

discussed. Both the surface haptics and haptics on volume data are explored. Haptic

device is modelled as different surgical tools for surface cutting, surface

manipulation, and volume deformation. Force feedbacks are calculated in every

process accordingly to provide high fidelity for the users so that they can conduct the

virtual surgery process as realistic as possible.

To greatly enhance the realism of the surgical simulation, a fluid model proposed in

Chapter 5 is integrated with the surgery cutting for simulating the bleeding effects in

real time. The fluid model uses a shader to simulate the motion of a fluid over a

dynamic surface. The actual simulation is done by a cellular automaton residing on

the changing surface of an object and is done in a pixel shader. It is a self-producing

process. By passing a gravity-vector to the pixel shader and a normal map that

defines the details of the surface, for every pixel the shader looks at its surroundings

to see whether there is any blood in the vicinity. If there is, the orientation of the

surface and the gravity are used to calculate whether the blood would reach the

current pixel. In each frame, the final step is to combine the blood texture, which is

dynamically updated, onto the actual object and render this to the screen. By taking

6-2

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

advantage of the GPU parallelism, the fluid simulation can be created and run in real

time without the need of involving a supercomputer. GPU based octree texture data

structure has also been adapted to reduce the memory usage and speed up the whole

system. The blood will flow on the anatomical surface from the cutting path when

the surgical knife cut the surface to a certain thickness. Unlike previous techniques

(Halic et al., 2010; Rianto and Li, 2010) where the fluid only occurs on the static

surface, our fluid can starts from the outer surface cutting area, propagate into the

inner volumetric model during the process of groove generation, and flow out of the

groove to other part of the surface so that the whole surgical scene looks more

realistic.

The inner volumetric model is from real patient CT-image data with a large amount

of information involving biomechanics human anatomy. Iso-surfaces including foot,

knee, and torso have successfully been created from the CT data using the Marching

Cubes Algorithm and used as polygonal geometries for the outer surface model.

Experimental results demonstrate the effectiveness of our approaches including

realistic hybrid surgical cutting simulations and dynamic fluid (blood) visualization.

It can be included in comprehensive virtual surgical simulators to provide a realistic,

safe, and controllable environment for novice doctors to practice surgical operations

at a low cost.

6.1 Summary of Contributions

The contributions of this thesis include the following:

 A hybrid anatomical deformable model is proposed for progressive surgical

cutting simulation in a VR based surgical simulators. We try to propose

solutions to the three key requirements for simulating surgical cutting:

 Realistic. The purpose of simulating surgical cutting is to provide a virtual

environment for users to learn/practice procedures and understand

operative anatomy in a no-risk environment. Therefore, the simulation

should be realistic enough to ensure that the users are exposed to the full

range of intraoperative environments. Realistic visual representations

have been achieved by surface polygons in our hybrid model, which are

overlaid with a 2D mesh to represent the surface appearance of the tissue

6-3

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

by surface rendering. To add realism, the polygons are extracted from the

actual patient scan volume data. Various pixel shading and antaliasing

techniques can be used to make the surface appear more photorealistic by

recreating natural textures and lighting effects and smoothing edges and

wet surfaces. Direct volume rendering is employed in our system which

could offer a great deal of information about the interior structures to

further enhance the realism of the virtual environments. To achieve

realistic and immersive virtual environments, however, it is necessary not

only to create visually realistic virtual environments but also to create

haptic interactions. In our simulation, a user is able to interact with the

virtual anatomical model via a haptic force- feedback device. On one

hand, this device is used by the user to cut and pull the surface and the

volume model. On the other hand, the haptic device emits forces

calculated by the simulation to make the user actually feel the forces

occurring during the cutting procedure.

 Real-time. In order to achieve real-time performance, the visual refresh

rate of the simulator needs to be around 25 Hz so as to give a visually

acceptable effect, while the haptic rendering rate needs to be around

1000Hz to give an acceptable feel. The recorded performance reveals that

our system has the average thread execution in the range of 20 frames per

second for visualization and about 950 frames per second for the haptic

force-feedback computation. This proves that the system has real time

synchronisation and can manage the advance calculation, in a joint

computation of the objects deformations, geometry and voxel

manipulations during cutting and drilling and the fluid simulation

simultaneously.

 Progressive. Our surface cutting follows the free form path of the user’s

motion, and generates a minimal set of new elements to replace

intersected triangles. Intersected elements are progressively cut to

minimize the lag between the user’s motion and model modification.

 A light fluid model has been implemented for bleeding simulation. The fluid

model is a texture based approach that uses pixel and vertex shader level

techniques in the GPU which could create a realistic visual effect without

6-4

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

introducing major additional computational cost to the CPU. Although the

fluid model is non-physical, it is able to simulate the realistic fluid properties

including the viscosity and velocity. Our fluid model does not depend on the

size and the geometry of the organ or its associated textures, and can be

applied in any complex simulation scene where fluid flowing along surface is

needed without significant modification and major reduction in performance.

 A prototype of surgical simulator which integrates the progressive hybrid

cutting and fluid simulation has been developed. The prototype is established

on a PC to resemble the real-world surgical operation for cutting and drilling.

The system is implemented on the open source H3DAPI and VHTK and

could provide high-fidelity graphic display and realistic haptic feedback

during the surgical cutting and organ deformations interactively.

6.2 Future Work

As previously discussed, our prototype system presented in this thesis is effective

and efficient to be incorporated into a comprehensive surgical simulation system.

Despite this there is a list of items that could be explored to either improve the

current system or be investigated as interesting further study. Foremost is the fact

that the proposed system did not implement the interaction between fluid and haptic

device. Additionally, multi-fluid interactions are currently not achieved in the

proposed system. Furthermore, only one haptic is used in the proposed system.

Finally, the efficiency of the proposed approach would ideally be improved.

6.2.1 Fluid-Haptic Interaction

The exploration of force feedback design and computations for haptic instruments

has been around for several years. However, only a few are on force feedback design

for fluid media. A force feedback integration with interactive fluid model has been

introduced by Baxter and Lin (2004). This method enables force and torque

generations in virtual painting applications. There is very few other study exploring

this field except in Lundin et al. (2005) for presenting fluid dynamic data and in

(Bhasin et al., 2005) for simulating droplet fluid. Both of them focused more on the

fluid visualization rather than its interaction on haptic device. Later, Rianto and Li

(2010) implemented a GPU based fluid dynamic simulation system for virtual heart

beating surgery which could achieve the interactions between haptic tip and the fluid.

6-5

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

In that system, the haptic tip performs as disturbances over the surface and the fluid

react according to the movement of the tip. The involvement of force feedback

interactions in fluid visualizations would definitely improve the realism of the virtual

environments.

6.2.2 Multi-fluid Interaction

The proposed system does not include multi-fluid interactions at the moment. Multi-

fluid interaction is common in a real surgery, such as when there is too much blood

blocking the view, the surgeon will douche around the wound and the blood and the

irrigation fluid will mix with each other.

6.2.3 Two-handed Haptic Interface

Most of the tasks that we perform in our daily life involve the use of both hands for a

wide variety of purposes ranging from a simple pickup task to a more complex and

fine manipulation such as surgery tasks. Two-handed manipulation with the haptic

interface can control a virtual object more intuitively and efficiently. By grasping a

special grip provided by each device, users can interact with virtual objects using

both hands and accomplish life-like bimanual tasks in an intuitive manner. In our

system, adding a second haptic device can assist the manipulation of the object,

either by “holding” the surface mesh during cutting or by affecting the manipulation

directly.

6.2.4 Efficiency

The efficiency of the whole system could be further improved by moving the volume

rendering into the GPU, which is currently a texture based rendering run on the CPU.

Texture based volume rendering could easily exploit the flexible programming

model and 3D texturing capabilities of modern graphics hardware as it fits well with

the texture support and blending functionalities of GPU.

Apart from those above parts, the fluid model in the proposed system considers

haemorrhages as local phenomena and the blood circulation in the whole body is not

taken into consideration at the moment. However, vascular anatomy often plays an

important role in surgical planning as well as in the execution of the surgery. For

example, finding and cauterizing the blood vessels feeding a tumor before its

removal will generally reduce blood loss for the patient. Important arteries can also

6-6

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

be located near the surgical field and additional care must then be taken to avoid

major haemorrhages which could have debilitating consequences for the patient. In

other words, simulating blood circulation in real time in a vascular model is

extremely beneficial for learning and practicing surgical hemostasis. In the future, we

can improve the definition of blood source’s location by incorporating blood

circulation, blood pressure and cutting depth, so that the blood will not always

appears at the start point of cutting path, but in a more realistic way.

Last but not least, when the system is more mature, evaluation and feedback of the

simulation system from real surgeons could certainly help to identify issues of

interest and improve its effectiveness.

R-1

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

REFERENCE

Abdulmotaleb E.S. 2012. Haptics rendering and applications. Publisher: InTech.

Ackerman, M.J. 1998. The visible human project. Proceedings of the IEEE, 86(3):

504-511.

Adams, B., Keiser, R., Pauly, M., Guibas, L., Gross, M., and Dutré, P. 2005.

Efficient Raytracing of Deforming Point‐Sampled Surfaces. In Computer

Graphics Forum, 24(3): 677-684. Blackwell Publishing, Inc.

Aggarwal, R., Moorthy, K., and Darzi, A. 2004. Laparoscopic skills training and

assessment. British Journal of Surgery, 91(12): 1549-1558.

Aggarwal, R., Grantcharov, T.P., Eriksen, J.R., Blirup, D., Kristiansen, V.B., Funch-

Jensen, P., and Darzi, A. 2006. An evidence-based virtual reality training

program for novice laparoscopic surgeons. Annals of surgery, 244(2): 310.

Aggarwal, R., Crochet, P., Dias, A., Misra, A., Ziprin, P., and Darzi, A. 2009.

Development of a virtual reality training curriculum for laparoscopic

cholecystectomy. British Journal of Surgery, 96(9): 1086-1093.

Anderson, J.D. 1995. Computational fluid dynamics, 206. New York: McGraw-Hill.

Andersson, L. 2005. Real-time fluid dynamics for virtual surgery. Master's thesis,

Engineering Physics Program, Chalmers University of Technology.

Bajka, M., Tuchschmid, S., Fink, D., Székely, G., and Harders, M. 2010.

Establishing construct validity of a virtual-reality training simulator for

hysteroscopy via a multimetric scoring system. Surgical endoscopy, 24(1):

79-88.

Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H., and Srinivasan, M.A. 2004.

Haptics in minimally invasive surgical simulation and training. Computer

Graphics and Applications, IEEE, 24(2): 56-64.

Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary

methods for accurate and flexible adaptive fluids. In Computer Graphics

Forum, 29(2): 695-704.

Baxter, W., and Lin, M.C. 2004. Haptic interaction with fluid media. In Proceedings

of graphics interface 2004, 81-88. Canadian Human-Computer

Communications Society.

Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface

flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics

symposium on Computer animation, 209-217.

Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable

solids. In Proceedings of the Fifth Eurographics conference on Natural

Phenomena, 27-34. Eurographics Association.

Bemelman, W.A. 2009. Mastery of Endoscopic and Laparoscopic Surgery.

Bhasin, Y., Liu, A., and Bowyer, M. 2005. Simulating surgical incisions without

polygon subdivision. Studies in Health Technology and Informatics, 111: 43-

49.

Bielser, D., and Gross, M.H. 2000. Interactive simulation of surgical cuts. In

Computer Graphics and Applications, 2000. Proceedings. The Eighth Pacific

Conference, 116-442. IEEE.

Bielser, D., and Gross, M.H. 2002. Open surgery simulation. Studies in Health

Technology and Informatics: 57-63.

R-2

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Bielser, D., Glardon, P., Teschner, M., and Gross, M. 2004. A state machine for real-

time cutting of tetrahedral meshes. Graphical Models, 66(6): 398-417.

Brett, P.N., Parker, T.J., Harrison, A.J., Thomas, T.A., and Carr, A. 1997. Simulation

of resistance forces acting on surgical needles. Proceedings of the Institution

of Mechanical Engineers, Part H: Journal of Engineering in Medicine 211(4):

335-347.

Bridson, R., and Müller-Fischer, M. 2007. Fluid simulation: SIGGRAPH 2007

course notes Video files associated with this course are available from the

citation page, 1-81. ACM.

Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit

surfaces. SIAM Journal on Scientific Computing, 31(4): 2472-2493.

Bruyns, C.D., and Senger, S. 2001. Interactive cutting of 3D surface meshes.

Computers & Graphics, 25(4): 635-642.

Bruyns, C.D., Senger, S., Menon, A., Montgomery, K., Wildermuth, S., and Boyle, R.

2002. A survey of interactive mesh-cutting techniques and a new method for

implementing generalized interactive mesh cutting using virtual tools‡. The

journal of visualization and computer animation, 13(1): 21-42.

Carlson, M., Mucha, P.J., and Turk, G. 2004. Rigid fluid: animating the interplay

between rigid bodies and fluid. In ACM Transactions on Graphics

(TOG), 23(3): 377-384.

Chen, H., and Sun, H. 2002. Real-time haptic sculpting in virtual volume space.

In Proceedings of the ACM symposium on Virtual reality software and

technology, 81-88.

Chen, J.X., Wechsler, H., Pullen, J.M., Zhu, Y., and MacMahon, E.B. 2001. Knee

surgery assistance: patient model construction, motion simulation, and

biomechanical visualization. Biomedical Engineering, IEEE Transactions on,

48(9): 1042-1052.

Chen, K.W., Heng, P.A., and Sun, H. 2000. Direct haptic rendering of isosurface by

intermediate representation. In Proceedings of the ACM symposium on

Virtual reality software and technology, 188-194.

Chen, M., Silver, D., Winter, A.S., Singh, V., and Cornea, N. 2003. Spatial transfer

functions: a unified approach to specifying deformation in volume modelling

and animation. In Proceedings of the 2003 Eurographics/IEEE TVCG

Workshop on Volume graphics, 35-44.

Chen, M., Correa, C., Islam, S., Jones, M.W., Shen, P.Y., Silver, D., ... and Willis,

P.J. 2005. Deforming and animating discretely sampled object representations.

Eurographics 2005 STAR Reports, 113-140.

Chen, X., Lin, Y., Wang, C., Shen, G., and Wang, X. 2012. A virtual training system

using a force feedback haptic device for oral implantology. In Transactions

on Edutainment VIII, 232-240.

Chentanez, N., Goktekin, T.G., Feldman, B.E., and O'Brien, J.F. 2006. Simultaneous

coupling of fluids and deformable bodies. In Proceedings of the 2006 ACM

SIGGRAPH/Eurographics symposium on Computer animation, 83-89.

Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K.K., Goldberg, K., ...

and O'Brien, J.F. 2009. Interactive simulation of surgical needle insertion and

steering, 28(3): 88.

Chentanez, N., and Müller, M. 2011. Real-time Eulerian water simulation using a

restricted tall cell grid. In ACM Transactions on Graphics (TOG), 30(4): 82.

R-3

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Chmarra, M.K., Dankelman, J., van den Dobbelsteen, J.J., and Jansen, F.W. 2008.

Force feedback and basic laparoscopic skills. Surgical endoscopy, 22(10):

2140-2148.

Choi, C., Kim, J., Han, H., Ahn, B., and Kim, J. 2009. Graphic and haptic modelling

of the oesophagus for VR‐based medical simulation. The International

Journal of Medical Robotics and Computer Assisted Surgery,5(3): 257-266.

Choi, K., Jo, S., Lee, H., and Jeong, C. 2012. CPU-based speed acceleration

techniques for shear warp volume rendering. Multimedia Tools and

Applications, 1-21.

Choi, K. S., Soo, S., and Chung, F. L. 2009. A virtual training simulator for learning

cataract surgery with phacoemulsification. Computers in biology and

medicine, 39(11): 1020-1031.

Cirbus, J. and Podhoranyi, M. 2011. Cellular automata for earth surface flow

simulation.

Coles, T.R., Meglan, D., and John, N.W. 2011. The role of haptics in medical

training simulators: a survey of the state of the art. Haptics, IEEE

Transactions on, 4(1): 51-66.

Correa, C.D., and Silver, D. 2007. Programmable shaders for deformation rendering.

In SIGGRAPH/EUROGRAPHICS Conference On Graphics Hardware:

Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, 4(5): 89-96.

Correa, C.D., Silver, D., and Chen, M. 2006. Feature aligned volume manipulation

for illustration and visualization. Visualization and Computer Graphics, IEEE

Transactions on, 12(5): 1069-1076.

Cotin, S., Delingette, H., and Ayache, N. 2000. A hybrid elastic model for real-time

cutting, deformations, and force feedback for surgery training and

simulation. The Visual Computer, 16(8): 437-452.

Cotin, S., Duriez, C., Lenoir, J., Neumann, P., and Dawson, S. 2005. New

approaches to catheter navigation for interventional radiology simulation. In

Medical Image Computing and Computer-Assisted Intervention–MICCAI

2005: 534-542.

Coulthard, T.J., Hicks, D.M., and Van De Wiel, M.J. 2007. Cellular modelling of

river catchments and reaches: Advantages, limitations and prospects.

Geomorphology, 90(3): 192-207.

Coutinho, B.B.S., Giraldi, G., Apolinario, A., and Rodrigues, P. 2008. GPU surface

flow simulation and multiresolution animation in digital terrain models.

Cover, S.A., Ezquerra, N.F., O'Brien, J.F., Rowe, R., Gadacz, T., and Palm, E. 1993.

Interactively deformable models for surgery simulation. Computer Graphics

and Applications, IEEE, 13(6): 68-75.

Crane, K., Llamas, I., and Tariq, S. 2007. Real-time simulation and rendering of 3D

fluids. GPU Gems, 3(1).

Cummins, S.J., and Rudman, M. 1999. An SPH projection method. Journal of

computational physics, 152(2): 584-607.

Daenzer, S., Montgomery, K., Dillmann, R., and Unterhinninghofen, R. 2007. Real-

time smoke and bleeding simulation in virtual surgery. In Medicine meets

virtual reality, 15: 94.

De, S., Lim, Y.J., Manivannan, M., and Srinivasan, M.A. 2006. Physically realistic

virtual surgery using the point-associated finite field (PAFF) approach.

Presence: Teleoperators and Virtual Environments, 15(3): 294-308.

R-4

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Dräger, C., 2005. A ChainMail Algorithm for Direct Volume Deformation in Virtual

Endoscopy Applications.

Dunkin, B., Adrales, G.L., Apelgren, K., and Mellinger, J.D. 2007. Surgical

simulation: a current review. Surgical endoscopy, 21(3): 357-366.

Faeth, A., and Harding, C. 2009. Supporting interactive haptic shaping of 3D

geologic surfaces with deformation property painting. In Eurographics 2009-

Areas Papers, 11-17.

Fager, P.J., and von Wowern, P. 2004. The use of haptics in medical

applications. The International Journal of Medical Robotics and Computer

Assisted Surgery, 1(1): 36-42.

Faure, F., Gilles, B., Bousquet, G., and Pai, D.K. 2011. Sparse meshless models of

complex deformable solids. ACM Transactions on Graphics (TOG), 30(4): 73.

Fedkiw, R., Stam, J., and Jensen, H.W. 2001. Visual simulation of smoke.

In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, 15-22.

Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical models

and image processing, 58(5): 471-483

Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of the

28th annual conference on Computer graphics and interactive techniques,

23-30. ACM.

Fortmeier, D., Mastmeyer, A., and Handels, H. 2012. GPU-based visualization of

deformable volumetric soft-tissue for real-time simulation of haptic needle

insertion. In Bildverarbeitung für die Medizin, 117-122.

Fortmeier, D., Mastmeyer, A., and Handels, H. 2013. Image-based soft tissue

deformation algorithms for real-time simulation of liver puncture. Current

Medical Imaging Reviews, 9(2): 154-165.

Fortmeier, D., Mastmeyer, A., and Handels, H. 2013. Image-based palpation

simulation with soft tissue deformations using chainmail on the GPU. In

Bildverarbeitung für die Medizin, 140-145.

Forest, C., Delingette, H., and Ayache, N. 2005. Removing tetrahedra from manifold

tetrahedralisation: application to real-time surgical simulation. Medical Image

Analysis, 9(2): 113-122.

Frisken-Gibson, S.F. 1999. Using linked volumes to model object collisions,

deformation, cutting, carving, and joining. Visualization and Computer

Graphics, IEEE Transactions on, 5(4): 333-348.

Gasson, P., Lapeer, R.J., and Linney, A.D. 2004. Modelling techniques for enhanced

realism in an open surgery simulation. In Information Visualisation, 2004. IV

2004. Proceedings. Eighth International Conference on: 73-78.

Georgii, J., and Westermann, R. 2006. A multi-grid framework for real-time

simulation of deformable bodies. Computers & Graphics, 30(3): 408-415.

Gibson, S.F. 1997. 3D chainmail: a fast algorithm for deforming volumetric objects.

In Proceedings of the 1997 symposium on Interactive 3D graphics, 149-ff.

Gibson, S.F. 1999. Using linked volumes to model object collisions, deformation,

cutting, carving, and joining. Visualization and Computer Graphics, IEEE

Transactions on, 5(4): 333-348.

Gilles, B., Bousquet, G., Faure, F., and Pai, D.K. 2011. Frame-based elastic

models. ACM Transactions on Graphics (TOG), 30(2): 15.

Goksel, O., Sapchuk, K., and Salcudean, S.E. 2011. Haptic simulator for prostate

brachytherapy with simulated needle and probe interaction. Haptics, IEEE

Transactions on, 4(3): 188-198.

R-5

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Golden Co. 2008. HealthGrades Quality Study: Fifth Annual Patient Safety in

American Hospitals Study.

Gurusamy, K.S., Rajesh, A., Latha, P., and Brian R.D. 2009. Virtual reality training

for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev 1,

no. 4.

Halic, T., Sankaranarayanan, G., and De, S. 2010. GPU‐based efficient realistic

techniques for bleeding and smoke generation in surgical simulators. The

International Journal of Medical Robotics and Computer Assisted

Surgery,6(4): 431-443.

Haque, S., and Srinivasan, S. 2006. A meta-analysis of the training effectiveness of

virtual reality surgical simulators. Information Technology in Biomedicine,

IEEE Transactions on, 10(1): 51-58.

Harlow, F.H., and Welch, J.E. 1965. Numerical calculation of time-dependent

viscous incompressible flow of fluid with free surface. Physics of fluids, 8:

2182.

Harris, M. 2008. Cuda fluid simulation in nvidia physx. Siggraph Asia, 77-84.

Hart, R., and Karthigasu, K. 2007. The benefits of virtual reality simulator training

for laparoscopic surgery. Current Opinion in Obstetrics and

Gynecology, 19(4): 297-302.

Hauser, K., Alterovitz, R., Chentanez, N., Okamura, A., and Goldberg, K. 2009.

Feedback control for steering needles through 3D deformable tissue using

helical paths. Robotics science and systems: online proceedings, 37.

Herrell, S.D., and Smith, J.A. 2005. Robotic-assisted laparoscopic prostatectomy:

what is the learning curve?. Urology, 66(5): 105-107.

Huy Viet, H.Q., Kamada, T., and Tanaka, H.T. 2006. An algorithm for cutting 3D

surface meshes. In Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, 4: 762-765.

Judice, S.F., Barcellos, B., and Giraldi, G.A. 2008. A cellular automata framework

for real time fluid animation. In Proceedings of the Brazilian Symposium on

Computer Games and Digital Entertainment, 169-176.

Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics.

ACM SIGGRAPH Computer Graphics, 24(4): 49-57.

Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009a.

Enrichment textures for detailed cutting of shells. In ACM Transactions on

Graphics (TOG), 28(3): 50. ACM.

Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2009b. Flexible simulation of

deformable models using discontinuous Galerkin FEM. Graphical Models,

71(4): 153-167.

Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A

unified lagrangian approach to solid-fluid animation. In Point-Based

Graphics, 2005. Eurographics/IEEE VGTC Symposium Proceedings, 125-

148. IEEE.

Kerwin, T., Shen, H.W., and Stredney, D. 2009. Enhancing realism of wet surfaces

in temporal bone surgical simulation. Visualization and Computer Graphics,

IEEE Transactions on, 15(5): 747-758.

Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles

in foam with the volume control method. In ACM Transactions on Graphics

(TOG), 26(3): 98.

R-6

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Kim, T., Thürey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid

simulation. In ACM Transactions on Graphics (TOG), 27(3): 50.

Kim, S., Park, J., and Park, J. 2010. Progressive mesh cutting for real-time haptic

incision simulator. In ACM SIGGRAPH ASIA 2010 Posters, 61.

Kobayashi, Y., Onishi, A., Watanabe, H., Hoshi, T., Kawamura, K., Hashizume, M.,

and Fujie, M.G. 2010. Development of an integrated needle insertion system

with image guidance and deformation simulation. Computerized Medical

Imaging and Graphics, 34(1): 9-18.

Kohn, L.T., Corrigan, J.M., and Donaldson, M.S. (Eds.). 2000. To err is human:

building a safer health system, 627. National Academies Press.

Krog, Ø.E., and Elster, A.C. 2012. Fast gpu-based fluid simulations using sph.

In Applied Parallel and Scientific Computing, 98-109.

Kühnapfel, U., Cakmak, H.K., and Maaß, H. 2000. Endoscopic surgery training

using virtual reality and deformable tissue simulation. Computers &

Graphics, 24(5): 671-682.

Lefebvre, S., Hornus, S., and Neyret, F. 2005. GPU Gems 2. chapter 37: Octree

Textures on the GPU.

Li, W.C., Levy, B., and Paul, J.C. 2005. Mesh editing with an embedded network of

curves. In Shape Modeling and Applications, 2005 International Conference,

62-71. IEEE.

Li, X., Gu, L., Zhang, S., Zhang, J., Zheng, G., Huang, P., and Xu, J. 2008.

Hierarchical spatial hashing-based collision detection and hybrid collision

response in a haptic surgery simulator. The International Journal of Medical

Robotics and Computer Assisted Surgery, 4(1): 77-86.

Li, Y., and Brodlie, K. 2003. Soft object modelling with generalised chainmail -

extending the boundaries of web-based graphics. In Computer Graphics

Forum, 22(4): 717-727. Blackwell Publishing, Inc.

Lim, Y.J., Hu, J., Chang, C.Y., and Tardella, N. 2006. Soft tissue deformation and

cutting simulation for the multimodal surgery training. In Computer-Based

Medical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on,

635-640. IEEE.

Lim, Y.J., Jin, W., and De, S. 2007. On some recent advances in multimodal surgery

simulation: A hybrid approach to surgical cutting and the use of video images

for enhanced realism. Presence: Teleoperators and Virtual Environments,

16(6): 563-583.

Lin, S., Lee, Y.S., and Narayan, R.J. 2007. Snapping algorithm and heterogeneous

bio-tissues modelling for medical surgical simulation and product

prototyping. Virtual and Physical Prototyping, 2(2): 89-101.

Lin, S.Y., Lee, Y.S. and Narayan, R. 2007. Snapping algorithm and heterogeneous

bio-tissues modelling for medical surgical simulation and product prototyping.

Virtual and Physical Prototyping, 2(2): 89-101.

Liu, A., Kaufmann, C., and Tanaka, D. 2001a. An architecture for simulating needle-

based surgical procedures. In Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2001: 1137-1144.

Liu, A., Kaufmann, C., and Ritchie, T. 2001b. A computer-based simulator for

diagnostic peritoneal lavage. Studies in health technology and informatics:

279-285.

Liu, A., Tendick, F., Cleary, K., and Kaufmann, C. 2003. A survey of surgical

simulation: applications, technology, and education. Presence: Teleoperators

& Virtual Environments, 12(6): 599-614.

R-7

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Liu, Y., and Pender, G. 2010. A new rapid flood inundation model. In Proceedings of

the first IAHR European Congress, 4-6.

Lin, S.Y., Narayan, R., and Lee, Y.S. 2008. Heterogeneous deformable modelling

and topology modification for surgical cutting simulation with haptic

interfaces. Computer-Aided Design and Applications, 5(6): 877-888.

Lorensen, W.E., and Cline, H.E. 1987. Marching cubes: A high resolution 3D

surface construction algorithm. In ACM Siggraph Computer Graphics 21(4):

163-169.

Lundin, K.E., Sillen, M., Cooper, M.D., and Ynnerman, A. 2005. Haptic

visualization of computational fluid dynamics data using reactive forces.

In Electronic Imaging 2005, 31-41.

Malone, H.R., Syed, O.N., Downes, M.S., D'Ambrosio, A.L., Quest, D.O., and

Kaiser, M.G. 2010. Simulation in neurosurgery: a review of computer-based

simulation environments and their surgical applications. Neurosurgery, 67(4):

1105-1116.

Mark, W.R., Randolph, S.C., Finch, M., Van Verth, J.M., and Taylor II, R.M. 1996.

Adding force feedback to graphics systems: Issues and solutions.

In Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques, 447-452.

Marroquim, R., Maximo, A., Farias, R., and Esperança, C. 2008. Volume and

isosurface rendering with GPU-accelerated cell projection. In Computer

Graphics Forum, 27(1): 24-35.

Masutani, Y., Inoue, Y., Ishii, K., Kumai, N., Kimura, F., and Sakuma, I. 2004.

Development of surgical simulator based on FEM and deformable volume-

rendering. In Medical Imaging 2004, 500-507. International Society for

Optics and Photonics.

Maximo, A., Marroquim, R., and Farias, R. 2010. Hardware-assisted projected

tetrahedra. In Computer Graphics Forum, 29(3): 903-912.

Mayooran, Z., Watterson, L., Withers, P., Line, J., Arnett, W., and Horley, R. 2006.

Mediseus epidural: full-procedure training simulator for epidural analgesia in

labour. In SimTecT Healthcare Simulation Conference.

Mazura, A., and Seifert, S. 1997. Virtual cutting in medical data. Studies in Health

Technology and Informatics, 420-429.

Mei, X., Decaudin, P., and Hu, B.G. 2007. Fast hydraulic erosion simulation and

visualization on GPU. In Computer Graphics and Applications, 2007. PG'07.

15th Pacific Conference on, 47-56.

Mesit, J., Guha, R.K., and Furlong, W.P. 2010. Simulation of lung respiration

function using soft body model. In Computer Modelling and Simulation

(EMS), 2010 Fourth UKSim European Symposium on: 102-107. IEEE.

Misra, S., Ramesh, K.T., and Okamura, A.M. 2008. Modelling of tool-tissue

interactions for computer-based surgical simulation: a literature review.

Monaghan, J.J. 1992. Smoothed particle hydrodynamics. Annual review of

astronomy and astrophysics, 30: 543-574.

Mor, A.B., and Kanade, T. 2000. Modifying soft tissue models: Progressive cutting

with minimal new element creation. In Medical Image Computing and

Computer-Assisted Intervention–MICCAI 2000, 598-607. Springer Berlin

Heidelberg.

Mosegaard, J., Herborg, P., and Sorensen, T.S. 2005. A GPU accelerated spring mass

system for surgical simulation. Studies in health technology and informatics,

111: 342-348.

R-8

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Mosegaard, J. 2006. Cardiac Surgery Simulation-Graphics Hardware meets

Congenital Heart Disease (Doctoral dissertation, Ph. D. thesis, Department of

Computer Science, University of Aarhus, Denmark).

Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles.

In ACM Transactions on Graphics (TOG), 30(4): 92.

Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless

deformations based on shape matching. In ACM Transactions on Graphics

(TOG), 24(3): 471-478.

Müller, M., Schirm, S., and Teschner, M. 2004. Interactive blood simulation for

virtual surgery based on smoothed particle hydrodynamics. Technology and

Health Care, 12(1): 25-31.

Nakao, M. 2003. Cardiac surgery simulation with active interaction and adaptive

physics-based Modelling. USA: Department of Social Infor-matics, Graduate

School of Informatics, Kyoto University.

Nakao, M., Hung, K.W.C., Yano, S., Yoshimura, K., and Minato, K. 2010. Adaptive

proxy geometry for direct volume manipulation. In Pacific Visualization

Symposium (PacificVis), 161-168.

Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically

based deformable models in computer graphics. In Computer Graphics

Forum, 25(4): 809-836. Blackwell Publishing Ltd.

Neyret, F., Heiss, R., and Sénégas, F. 2002. Realistic rendering of an organ surface in

real-time for laparoscopic surgery simulation. The Visual Computer, 18(3):

135-149.

Nienhuys, H.W., and van der Stappen, A.F. 2001. A surgery simulation supporting

cuts and finite element deformation. In Medical Image Computing and

Computer-Assisted Intervention–MICCAI 2001, 145-152.

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., and

Purcell, T.J. 2007. A Survey of General‐Purpose Computation on Graphics

Hardware. In Computer graphics forum, 26(1): 80-113.

Palmerius, K.L. 2007. Fast and high precision volume haptics. In EuroHaptics

Conference, 2007 and Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems. World Haptics 2007. Second

Joint, 501-506.

Pang, W.M., Qin, J., Chui, Y.P., Wong, T.T., Leung, K.S., and Heng, P.A. 2007.

Orthopedics surgery trainer with PPU-accelerated blood and tissue simulation.

In Medical Image Computing and Computer-Assisted Intervention–MICCAI,

842-849.

Pan, J. J., Chang, J., Yang, X., Zhang, J. J., Qureshi, T., Howell, R., and Hickish, T.

2011. Graphic and haptic simulation system for virtual laparoscopic rectum

surgery. The International Journal of Medical Robotics and Computer

Assisted Surgery, 7(3): 304-317.

Pao, L.Y., and Lawrence, D.A. 1998. Synergistic visual/haptic computer interfaces.

In Proc. of Japan/USA/Vietnam Workshop on Research and Education in

Systems, Computation, and Control Engineering, 155-162.

Park, J.S., Chung, M.S., Hwang, S.B., Lee, Y.S., Har, D.H., and Park, H.S. 2005.

Visible Korean human: improved serially sectioned images of the entire body.

Medical Imaging, IEEE Transactions on, 24(3): 352-360.

Peters, J. H., Fried, G.M., Swanstrom, L.L., Soper, N.J., Sillin, L.F., Schirmer, B.,

and Hoffman, K. 2004. Development and validation of a comprehensive

R-9

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

program of education and assessment of the basic fundamentals of

laparoscopic surgery. Surgery, 135(1): 21-27.

Phenomena, A. N. 2004. SDK White Paper.

Picod, G., Jambon, A.C., Vinatier, D., and Dubois, P. 2005. What can the operator

actually feel when performing a laparoscopy?. Surgical Endoscopy and Other

Interventional Techniques, 19(1): 95-100.

Premžoe, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R.T. 2003. Particle-

Based Simulation of Fluids. In Computer Graphics Forum, 22(3): 401-410.

Blackwell Publishing, Inc.

Qin, J., Pang, W.M., Chui, Y.P., Xie, Y.M., Wong, T.T., Poon, W. S., ... and Heng,

P.A. 2007. Hardware-accelerated bleeding simulation for virtual surgery.

In MICCAI 2007 Workshop Proceedings, 133.

Qin, J., Choi, K.S., Poon, W.S., and Heng, P.A. 2009. A framework using cluster-

based hybrid network architecture for collaborative virtual surgery. Computer

methods and programs in biomedicine, 96(3): 205-216.

Qin, J., Pang, W.M., Nguyen, B.P., Ni, D., and Chui, C.K. 2010. Particle-based

simulation of blood flow and vessel wall interactions in virtual surgery.

In Proceedings of the 2010 Symposium on Information and Communication

Technology, 128-133.

Ranal, M.A., Setan, H., Majid, Z., and Chong, A.K. 2007. Simulation of interactive

cutting tool for craniofacial osteotomy planning. In Computer Graphics,

Imaging and Visualisation, 2007. CGIV'07, 506-512. IEEE.

Reeves, W.T. 1983. Particle systems - a technique for modelling a class of fuzzy

objects. In ACM SIGGRAPH Computer Graphics ,17(3): 359-375. ACM.

Rianto, S., and Li, L. 2010. Fluid dynamic visualisations of cuttings-bleeding for

virtual reality heart beating surgery simulation. In Proceedings of the Thirty-

Third Australasian Conferenc on Computer Science, 102: 53-60.

Richa, R., Poignet, P., and Liu, C. (2010). Three-dimensional motion tracking for

beating heart surgery using a thin-plate spline deformable model. The

International Journal of Robotics Research, 29(2-3): 218-230.

Rivers, A.R., and James, D.L. 2007. FastLSM: fast lattice shape matching for robust

real-time deformation. In ACM Transactions on Graphics (TOG), 26(3): 82.

Robles-De-La-Torre, G. 2006. The importance of the sense of touch in virtual and

real environments. Multimedia, IEEE, 13(3): 24-30.

Ruspini, D.C., Kolarov, K., and Khatib, O. 1997. The haptic display of complex

graphical environments. In Proceedings of the 24th annual conference on

Computer graphics and interactive techniques, 345-352.

Sathappan, O.L., Chitra, P., Venkatesh, P., and Prabhu, M. 2011. Modified genetic

algorithm for multiobjective task scheduling on heterogeneous computing

system. International Journal of Information Technology, Communications

and Convergence, 1(2): 146-158.

Santhanam, A.P., Imielinska, C., Davenport, P., Kupelian, P., and Rolland, J.P. 2008.

Modelling real-time 3-D lung deformations for medical visualization.

Information Technology in Biomedicine, IEEE Transactions on, 12(2): 257-

270.

Schiff, J.L. 2011. Cellular automata: a discrete view of the world, 45.

Schill, M.A., Gibson, S.F., Bender, H.J., and Männer, R. 1998. Biomechanical

simulation of the vitreous humor in the eye using an enhanced chainmail

algorithm. In Medical Image Computing and Computer-Assisted

Interventation—MICCAI’98, 679-687.

R-10

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Schulze, F., Bühler, K., and Hadwiger, M. 2007. Interactive deformation and

visualization of large volume datasets. In Proceedings of International

Conference on Computer Graphics Theory and Applications, 39-46.

Schulze, F., Bühler, K., and Hadwiger, M. 2009. Direct volume deformation. In

Computer Vision and Computer Graphics. Theory and Applications, 59-72.

Schulze, F. 2006. Direkte Deformation von Volumendaten zur Simulation von

Weichgewebe in der Volume Rendering basierten Operationssimulation.

Newman, T.S., and Yi, H. 2006. A survey of the marching cubes algorithm.

Computers & Graphics, 30(5): 854-879.

Schutyser, F., Van Cleynenbreugel, J., Nadjmi, N., Schoenaers, J., and Suetens, P.

2000. 3D image-based planning for unilateral mandibular distraction.

Sela, G., Schein, S., and Elber, G. 2004. Real-time incision simulation using

discontinuous free form deformation. In Medical Simulation , 114-123.

Sela, G., Subag, J., Lindblad, A., Albocher, D., Schein, S., and Elber, G. 2007. Real-

time haptic incision simulation using FEM-based discontinuous free-form

deformation. Computer-Aided Design, 39(8): 685-693.

Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation.

In ACM Transactions on Graphics (TOG), 27(3): 64. ACM.

Serby, D., Harders, M., and Székely, G. 2001. A new approach to cutting into finite

element models. In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2001, 425-433. Springer Berlin Heidelberg.

Seymour, N.E. 2008. VR to OR: a review of the evidence that virtual reality

simulation improves operating room performance. World Journal of Surgery,

32(2): 182-188.

Shirley, P., and Tuchman, A. 1990. A polygonal approximation to direct scalar

volume rendering, 24(5): 63-70.

Singh, V., and Silver, D. 2004. Interactive volume manipulation with selective

rendering for improved visualization. In Volume Visualization and Graphics,

2004 IEEE Symposium, 95-102.

Singh, V., Silver, D., and Cornea, N. 2003. Real-time volume manipulation. In

Proceedings of the 2003 Eurographics/IEEE TVCG Workshop on Volume

graphics, 45-51. ACM.

Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH.

In ACM Transactions on Graphics (TOG),28(3): 40.

Sørensen, M.S., Dobrzeniecki, A.B., Larsen, P., Frisch, T., Sporring, J., and Darvann,

T. A. 2002. The visible ear: a digital image library of the temporal bone. ORL,

64(6): 378-381.

Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena.

In Proceedings of the 20th annual conference on Computer graphics and

interactive techniques, 369-376.

Stam, J., and Fiume, E. 1995. Depicting fire and other gaseous phenomena using

diffusion processes. In Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques, 129-136. ACM.

Stam, J. 1999. Stable fluids. In Proceedings of the 26th annual conference on

Computer graphics and interactive techniques, 121-128.

Stam, J. 2003. Real-time fluid dynamics for games. In Proceedings of the game

developer conference, 18.

Surendran, D., Purusothaman, T., and Balachandar, R.A. 2011. A generic interface

for resource aggregation in grid of grids. International Journal of Information

Technology, Communications and Convergence, 1(2): 159-172.

R-11

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

Sweet, R., Porter, J., Oppenheimer, P., Hendrickson, D., Gupta, A., and Weghorst, S.

2002. Third prize: simulation of bleeding in endoscopic procedures using

virtual reality. Journal of endourology, 16(7): 451-455.

Tahmasebi, A.M., Hashtrudi-Zaad, K., Thompson, D., and Abolmaesumi, P. 2008. A

framework for the design of a novel haptic-based medical training

simulator. Information Technology in Biomedicine, IEEE Transactions

on,12(5): 658-666.

Takeshita, D., Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., and Chiba, N. 2003.

Particle-based visual simulation of explosive flames. In Computer Graphics

and Applications, 2003. Proceedings. 11th Pacific Conference, 482-486.

IEEE.

Tasto, J.L., Nguyen, B.H., Cunningham, R., and Merril, G.L. (1999). CathSim™: An

intravascular catheterization simulator on a PC. Medicine Meets Virtual

Reality, 8: The Convergence of Physical and Informational Technologies:

Options for a New Era in Health Care, 62: 360.

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable

models. In ACM Siggraph Computer Graphics 21(4): 205-214.

Terzopoulos, D., and Fleischer, K. 1988. Deformable models. The Visual Computer,

4(6): 306-331.

Terzopoulos, D., and Witkin, A. 1988. Physically based models with rigid and

deformable components. Computer Graphics and Applications, IEEE, 8(6):

41-51.

Terzopoulos, D., Witkin, A., and Kass, M. 1988. Constraints on deformable models:

recovering 3D shape and non-rigid motion. Artificial intelligence, 36(1): 91-

123.

Teschner, M., Stefan K., Bruno H., Gabriel Z., Laks R., Arnulph F., M-P. Cani et al.

2005. Collision detection for deformable objects. In Computer Graphics

Forum, 24(1): 61-81.

Thompson, J.R., Leonard, A.C., Doarn, C.R., Roesch, M.J., and Broderick, T.J. 2011.

Limited value of haptics in virtual reality laparoscopic cholecystectomy

training. Surgical endoscopy, 25(4): 1107-1114.

Turkiyyah, G.M., Karam, W.B., Ajami, Z., and Nasri, A. 2011. Mesh cutting during

real-time physical simulation. Computer-Aided Design, 43(7): 809-819.

Van Dongen, K.W., Tournoij, E., Van der Zee, D.C., Schijven, M.P., and Broeders, I.

A.M.J. 2007. Construct validity of the LapSim: can the LapSim virtual reality

simulator distinguish between novices and experts?. Surgical

endoscopy, 21(8): 1413-1417.

Van der Meijden, O.A.J., and Schijven, M.P. 2009. The value of haptic feedback in

conventional and robot-assisted minimal invasive surgery and virtual reality

training: a current review. Surgical endoscopy, 23(6): 1180-1190.

Vickers, A.J., Caroline J.S., Marcel, H., Ingolf, T., Philippe, K., Luis, M., Gunther, J.,

and Bertrand G. 2009. The surgical learning curve for laparoscopic compared

to open radical prostatectomy: a retrospective cohort study. The lancet

oncology 10(5): 475.

Wang, H.Y., Wang, Y., and Esen, H. 2009. Modelling of deformable objects in

haptic rendering system for virtual reality. Proceedings of the 2009 IEEE

International Conference on Mechatronics and Automation, 90-94.

Wang, P., Becker, A.A., Jones, I.A., Glover, A.T., Benford, S.D., Greenhalgh, C.M.,

and Vloeberghs, M. 2006. A virtual reality surgery simulation of cutting and

R-12

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

retraction in neurosurgery with force-feedback. Computer methods and

programs in biomedicine, 84(1): 11-18.

Webster, R.W., Zimmerman, D.I., Mohler, B.J., Melkonian, M.G., and Haluck, R.S.

2001. A prototype haptic suturing simulator. Studies in health technology and

informatics, 81: 567.

Westebring-van der Putten, E.P., Goossens, R.H.M., Jakimowicz, J.J., and

Dankelman, J. 2008. Haptics in minimally invasive surgery-a

review. Minimally Invasive Therapy & Allied Technologies, 17(1): 3-16.

Westermann, R., and Rezk-Salama, C. 2001. Real-Time Volume Deformations.

In Computer Graphics Forum, 20(3): 443-451.

Wilson, M.S., Middlebrook, A., Sutton, C., Stone, R., and McCloy, R.F. 1997. MIST

VR: a virtual reality trainer for laparoscopic surgery assesses

performance. Annals of the Royal College of Surgeons of England, 79(6): 403.

Wittek, A., Dutta-Roy, T., Taylor, Z., Horton, A., Washio, T., Chinzei, K., and

Miller, K. 2008. Subject-specific non-linear biomechanical model of needle

insertion into brain. Computer methods in biomechanics and biomedical

engineering, 11(2): 135-146.

Wong, K.C.H., Siu, T.Y.H., Heng, P.A., and Sun, H. 1998. Interactive volume

cutting. In Graphics Interface, 99-106. CANADIAN INFORMATION

PROCESSING SOCIETY.

Xu, Q., Gledbill, D., and Xu, Z. 2011. Volume deformation based on model-fitting

surface extraction. In Automation and Computing (ICAC) 17th International

Conference on, 161-166.

Zátonyi, J., Paget, R., Székely, G., Grassi, M., and Bajka, M. 2005. Real-time

synthesis of bleeding for virtual hysteroscopy. Medical image analysis, 9(3):

255-266.

Zhang, S.X., Heng, P.A., Liu, Z.J., Tan, L.W., Qiu, M.G., Li, Q.Y., ... and Xie, Y.M.

2003. Creation of the Chinese visible human dataset. The Anatomical Record

Part B: The New Anatomist, 275(1): 190-195.

Zhang, H., Payandeh, S., and Dill, J. 2004. On cutting and dissection of virtual

deformable objects. In Robotics and Automation, 2004. Proceedings.

ICRA'04. 2004 IEEE International Conference on, 4: 3908-3913.

Zhang, Y., Solenthaler, B., and Pajarola, R. 2008. Adaptive sampling and rendering

of fluids on the GPU. In Proceedings of the Fifth Eurographics/IEEE VGTC

conference on Point-Based Graphics, 137-146.

Zhang, J., Gu, L., Li, X., and Fang, M. 2009. An advanced hybrid cutting method

with an improved state machine for surgical simulation. Computerized

Medical Imaging and Graphics, 33(1): 63-71.

Zhang, F., Hu, L., Wu, J., and Shen, X. 2011. A SPH-based method for interactive

fluids simulation on the multi-GPU. In Proceedings of the 10th international

conference on virtual reality continuum and its applications in industry, 423-

426.

Zhang, Q., Peters, T.M., and Eagleson, R. 2011. Medical image volumetric

visualization: algorithms, pipelines, and surgical applications. In Medical

Image Processing , 291-317.

Zhu, B., Gu, L., and Zhou, Z. 2010. Particle-based deformable modelling with pre-

computed surface data in real-time surgical simulation. In Medical Imaging

and Augmented Reality, 503-512.

Zhu, Y., Magee, D., Ratnalingam, R., and Kessel, D. 2007. A training system for

ultrasound-guided needle insertion procedures. In Medical Image Computing

R-13

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

and Computer-Assisted Intervention–MICCAI 2007, 566-574. Springer Berlin

Heidelberg.

R-14

Real-Time Hybrid Cutting with Dynamic Fluid Visualization for Virtual Surgery

Curtin University Department of Computing

