26 research outputs found

    Data-Efficient Decentralized Visual SLAM

    Full text link
    Decentralized visual simultaneous localization and mapping (SLAM) is a powerful tool for multi-robot applications in environments where absolute positioning systems are not available. Being visual, it relies on cameras, cheap, lightweight and versatile sensors, and being decentralized, it does not rely on communication to a central ground station. In this work, we integrate state-of-the-art decentralized SLAM components into a new, complete decentralized visual SLAM system. To allow for data association and co-optimization, existing decentralized visual SLAM systems regularly exchange the full map data between all robots, incurring large data transfers at a complexity that scales quadratically with the robot count. In contrast, our method performs efficient data association in two stages: in the first stage a compact full-image descriptor is deterministically sent to only one robot. In the second stage, which is only executed if the first stage succeeded, the data required for relative pose estimation is sent, again to only one robot. Thus, data association scales linearly with the robot count and uses highly compact place representations. For optimization, a state-of-the-art decentralized pose-graph optimization method is used. It exchanges a minimum amount of data which is linear with trajectory overlap. We characterize the resulting system and identify bottlenecks in its components. The system is evaluated on publicly available data and we provide open access to the code.Comment: 8 pages, submitted to ICRA 201

    Compact Environment Modelling from Unconstrained Camera Platforms

    Get PDF
    Mobile robotic systems need to perceive their surroundings in order to act independently. In this work a perception framework is developed which interprets the data of a binocular camera in order to transform it into a compact, expressive model of the environment. This model enables a mobile system to move in a targeted way and interact with its surroundings. It is shown how the developed methods also provide a solid basis for technical assistive aids for visually impaired people

    Line Primitives and Their Applications in Geometric Computer Vision

    Get PDF
    Line primitives are widely found in structured scenes which provide a higher level of structure information about the scenes than point primitives. Furthermore, line primitives in space are closely related to Euclidean transformations, because the dual vector (also known as Pluecker coordinates) representation of 3D lines is the counterpart of the dual quaternion which depicts an Euclidean transformation. These geometric properties of line primitives motivate the work in this thesis with the following contributions: Firstly, by combining local appearances of lines and geometric constraints between line pairs in images, a line segment matching algorithm is developed which constructs a novel line band descriptor to depict the local appearance of a line and builds a relational graph to measure the pair-wise consistency between line correspondences. Experiments show that the matching algorithm is robust to various image transformations and more efficient than conventional graph based line matching algorithms. Secondly, by investigating the symmetric property of line directions in space, this thesis presents a complete analysis about the solutions of the Perspective-3-Line (P3L) problem which estimates the camera pose from three reference lines in space and their 2D projections. For three spatial lines in general configurations, a P3L polynomial is derived which is employed to develop a solution of the Perspective-n-Line problem. The proposed robust PnL algorithm can efficiently and accurately estimate the camera pose for both small numbers and large numbers of line correspondences. For three spatial lines in special configurations (e.g., in a Manhattan world which consists of three mutually orthogonal dominant directions), the solution of the P3L problem is employed to solve the vanishing point estimation and line classification problem. The proposed vanishing point estimation algorithm achieves high accuracy and efficiency by thoroughly utilizing the Manhattan world characteristic. Another advantage of the proposed framework is that it can be easily generalized to images taken by central catadioptric cameras or uncalibrated cameras. The third major contribution of this thesis is about structure-from-motion using line primitives. To circumvent the Pluecker constraints on the Pluecker coordinates of lines, the Cayley representation of lines is developed which is inspired by the geometric property of the Pluecker coordinates of lines. To build the line observation model, two derivations of line projection functions are presented: one is based on the dual relationship between points and lines; and the other is based on the relationship between Pluecker coordinates and the Pluecker matrix. Then the motion and structure parameters are initialized by an incremental approach and optimized by sparse bundle adjustment. Quantitative validations show the increase in performance when compared to conventional line reconstruction algorithms

    Visual motion estimation and tracking of rigid bodies by physical simulation

    Get PDF
    This thesis applies knowledge of the physical dynamics of objects to estimating object motion from vision when estimation from vision alone fails. It differentiates itself from existing physics-based vision by building in robustness to situations where existing visual estimation tends to fail: fast motion, blur, glare, distractors, and partial or full occlusion. A real-time physics simulator is incorporated into a stochastic framework by adding several different models of how noise is injected into the dynamics. Several different algorithms are proposed and experimentally validated on two problems: motion estimation and object tracking. The performance of visual motion estimation from colour histograms of a ball moving in two dimensions is improved considerably when a physics simulator is integrated into a MAP procedure involving non-linear optimisation and RANSAC-like methods. Process noise or initial condition noise in conjunction with a physics-based dynamics results in improved robustness on hard visual problems. A particle filter applied to the task of full 6D visual tracking of the pose an object being pushed by a robot in a table-top environment is improved on difficult visual problems by incorporating a simulator as a dynamics model and injecting noise as forces into the simulator.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Interactive Remote Collaboration Using Augmented Reality

    Get PDF
    With the widespread deployment of fast data connections and availability of a variety of sensors for different modalities, the potential of remote collaboration has greatly increased. While the now ubiquitous video conferencing applications take advantage of some of these capabilities, the use of video between remote users is limited to passively watching disjoint video feeds and provides no means for interaction with the remote environment. However, collaboration often involves sharing, exploring, referencing, or even manipulating the physical world, and thus tools should provide support for these interactions.We suggest that augmented reality is an intuitive and user-friendly paradigm to communicate information about the physical environment, and that integration of computer vision and augmented reality facilitates more immersive and more direct interaction with the remote environment than what is possible with today's tools.In this dissertation, we present contributions to realizing this vision on several levels. First, we describe a conceptual framework for unobtrusive mobile video-mediated communication in which the remote user can explore the live scene independent of the local user's current camera movement, and can communicate information by creating spatial annotations that are immediately visible to the local user in augmented reality. Second, we describe the design and implementation of several, increasingly more flexible and immersive user interfaces and system prototypes that implement this concept. Our systems do not require any preparation or instrumentation of the environment; instead, the physical scene is tracked and modeled incrementally using monocular computer vision. The emerging model then supports anchoring of annotations, virtual navigation, and synthesis of novel views of the scene. Third, we describe the design, execution and analysis of three user studies comparing our prototype implementations with more conventional interfaces and/or evaluating specific design elements. Study participants overwhelmingly preferred our technology, and their task performance was significantly better compared with a video-only interface, though no task performance difference was observed compared with a ``static marker'' interface. Last, we address a particular technical limitation of current monocular tracking and mapping systems which was found to be impeding and present a conceptual solution; namely, we describe a concept and proof-of-concept implementation for automatic model selection which allows tracking and modeling to cope with both parallax-inducing and rotation-only camera movements.We suggest that our results demonstrate the maturity and usability of our systems, and, more importantly, the potential of our approach to improve video-mediated communication and broaden its applicability

    Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization

    Get PDF
    Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output.

    Room layout estimation on mobile devices

    Get PDF
    Room layout generation is the problem of generating a drawing or a digital model of an existing room from a set of measurements such as laser data or images. The generation of floor plans can find application in the building industry to assess the quality and the correctness of an ongoing construction w.r.t. the initial model, or to quickly sketch the renovation of an apartment. Real estate industry can rely on automatic generation of floor plans to ease the process of checking the livable surface and to propose virtual visits to prospective customers. As for the general public, the room layout can be integrated into mixed reality games to provide a better immersiveness experience, or used in other related augmented reality applications such room redecoration. The goal of this industrial thesis (CIFRE) is to investigate and take advantage of the state-of-the art mobile devices in order to automate the process of generating room layouts. Nowadays, modern mobile devices usually come a wide range of sensors, such as inertial motion unit (IMU), RGB cameras and, more recently, depth cameras. Moreover, tactile touchscreens offer a natural and simple way to interact with the user, thus favoring the development of interactive applications, in which the user can be part of the processing loop. This work aims at exploiting the richness of such devices to address the room layout generation problem. The thesis has three major contributions. We first show how the classic problem of detecting vanishing points in an image can benefit from an a-priori given by the IMU sensor. We propose a simple and effective algorithm for detecting vanishing points relying on the gravity vector estimated by the IMU. A new public dataset containing images and the relevant IMU data is introduced to help assessing vanishing point algorithms and foster further studies in the field. As a second contribution, we explored the state of-the-art of real-time localization and map optimization algorithms for RGB-D sensors. Real-time localization is a fundamental task to enable augmented reality applications, and thus it is a critical component when designing interactive applications. We propose an evaluation of existing algorithms for the common desktop set-up in order to be employed on a mobile device. For each considered method, we assess the accuracy of the localization as well as the computational performances when ported on a mobile device. Finally, we present a proof of concept of application able to generate the room layout relying on a Project Tango tablet equipped with an RGB-D sensor. In particular, we propose an algorithm that incrementally processes and fuses the 3D data provided by the sensor in order to obtain the layout of the room. We show how our algorithm can rely on the user interactions in order to correct the generated 3D model during the acquisition process
    corecore