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Abstract

Mobile robotic systems need to perceive their surroundings in order to act
independently. They need to determine the space of safe movement and
detect obstacles and understand their motion. To this end they are equipped
with sensors which provide information about the unknown environment.
By interpreting sensor measurements, a representation of their environment
arises that provides the relevant information in an accessible way. Mobile
systems are subject to constraints that render this perception process chal-
lenging and unsolved in many aspects. Hardware and sensors must be small,
lightweight and energy efficient while providing perception ranges as wide
as possible. The requirement of minimal processing times conflicts with
clear computational performance limits. In this work we present a percep-
tion framework that meets these requirements and builds upon the versatile
possibilities of a binocular camera as sensory input.
The perception framework is neither limited to a specific task, nor to a spe-
cific platform. Only minimal assumptions are made regarding the potential
motion or orientation of the cameras. This allows for the application to
unevenly walking robotic systems or also for completely passive sensing e.g.
with the cameras attached to a human wearer. The framework transforms the
raw camera data into a compact meta representation consisting of instances
of arbitrary objects. By strongly abstracting from details, a compact model of
the environment is formed, which emphasizes the essential information. Dur-
ing the modelling only little assumptions can be made regarding the objects
that surround the system. Classical methods to detect objects of specific cate-
gories are infeasible and are therefore replaced by means of different scene
cues. We introduce a number of different algorithms which complement each
other to first explain the static scene background structure and subsequently
model generic objects and their motion in the scene foreground.
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Abstract

For autonomous mobile systems the representation is an efficient basis for
subsequent algorithms that e.g. perform path planning. The abstract scene
model is immediately applicable for collision avoidance and targeted nav-
igation towards or around objects, and enables to orient along background
structures like building facades. The applications are not limited to closed
technical systems. The compactness of the representation allows to efficiently
communicate the surrounding situation to a human user. In an experiment
we show applications of augmented reality, for instance in entertainment or
education. Based on the environment modelling we develop a new kind of
technical assistance system for visually impaired persons. The high level
of abstraction enabled an acoustic feedback design, which informs the user
about hazards in the surrounding and is intuitive to use without lengthy train-
ing periods. An experimental study shows how visually impaired users can
benefit from such system.
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Kurzfassung

Mobile Robotersysteme müssen ihre Umgebung wahrnehmen, um selbststän-
dig agieren zu können. Sie müssen den freien Raum bestimmen, in dem sie
sich sicher bewegen können, und Hindernisse und deren Bewegung erken-
nen. Sensoren ermöglichen ihnen dabei die Erfassung ihrer Umwelt. Durch
Interpretation der Sensordaten entsteht ein Modell der Umgebung, das die
relevanten Informationen auf geeignete Weise bereitstellt und zugänglich
macht. Mobile Systeme unterliegen einigen Einschränkungen, welche diesen
Prozess der Wahrnehmung erschweren und in vielerlei Hinsicht zu einem
ungelösten Problem machen. Ihre Hardware und Sensorik muss klein, leicht
und energieeffizient sein und dabei einen möglichst großen Wahrnehmungs-
bereich abdecken. Die eingeschränkten Rechenleistungen mobiler Hardware
stehen im Konflikt mit erforderlichen minimalen Verarbeitungszeiten. In
dieser Arbeit stellen wir ein Wahrnehmungsframework vor, das diese Vor-
aussetzungen berücksichtigt und auf den vielseitigen Möglichkeiten eines
binokularen Kamerasystems aufbaut.
Das Framework ist weder auf eine bestimmte Anwendung noch auf eine be-
stimmte Plattform beschränkt. Es werden nur minimale Annahmen bezüglich
der potentiellen Bewegung oder Orientierung der Kameras gemacht. Dies
ermöglicht den Einsatz z.B. auf stark bewegten Laufrobotern oder auch eine
komplett passive Umwelterfassung mit am Körper getragenen Kameras. Das
Framework transformiert Kameradaten in eine Umgebungsrepräsentation
auf Basis von Objektinstanzen beliebiger Art. Durch starke Abstraktion von
Details entsteht ein kompaktes Modell der Umgebung, das die essentiellen
Informationen herausstellt. Während der Modellierung können nur wenige
Annahmen über die Objekte in der Umgebung getroffen werden. Klassische
Methoden zur Detektion von Objekten bestimmter Kategorien sind nicht
einsetzbar und werden mithilfe des Szenenkontexts ersetzt. Wir stellen ver-
schiedene Algorithmen vor, die sich gegenseitig ergänzen, um zunächst den
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Kurzfassung

statischen Szenenhintergrund zu ermitteln und darauf aufbauend beliebige
Objekte und deren Bewegung im Szenenvordergrund modellieren.
Für autonome Systeme ist die Repräsentation eine effiziente Basis für nach-
folgende Algorithmen z.B. zur Pfadplanung. Das abstrakte Szenenmodell
kann unmittelbar zur Kollisionsvermeidung oder zur zielgerichteten Naviga-
tion eingesetzt werden und ermöglicht dabei die Orientierung entlang von
Hintergrundstrukturen wie etwa Gebäudefassaden. Die Anwendungen sind
nicht auf technische Systeme begrenzt. Die Kompaktheit des Modells er-
möglicht es, die Umgebungsinformationen effizient an einen menschlichen
Nutzer zu übermitteln. In einem Experiment zeigen wir Anwendungen der
erweiterten Realität, zum Beispiel zu Unterhaltungs- oder Schulungszwe-
cken. Auf Grundlage der Umgebungsmodellierung stellen wir ein neuartiges
Assistenzsystem für Blinde vor. Das hohe Abstraktionslevel ermöglicht den
Einsatz eines akustischen Feedbackdesigns, das den Nutzer ohne langwierige
Lernphase intuitiv verständlich über Gefahren in der Umgebung informiert.
Eine experimentelle Studie zeigt abschließend den potentiellen Nutzen eines
solchen Systems.
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1 Introduction

Mobile robotic systems are expected to become a natural part of our every-
day environments in midterm future. Autonomous cars are just one prime
example for such systems. Advances in computational engineering, battery
and sensor technology provide a promising basis for the research done within
the last decades. Already today it has matured into intelligent autonomous
systems that transport goods, guide tourists, mow the lawn, inspect bridges,
or alert of intruders.
In order to operate in unknown environments, such systems need to perceive
their surrounding. For safe and targeted navigation they need to be aware
of obstacles, dangers and potential objects of interest. It allows them to
derive the space of safe movement, derive a navigation strategy, or also to
interact with their environment. Environments are very diverse and complex,
especially in urban settings. Besides the immense variety of different scene
elements, these environments are subject to frequent change. Dynamic
objects are moving through the scene and temporally occlude parts of the
environment and other objects. Additionally, the systems themselves are
moving. As a result, not only their environment, but also their sensory
impression of it is constantly changing. In such environments, the systems
need to be aware of the presence of objects and their potential movements,
but also of their own movement. All information has to be derived from the
raw data of sensors, that connect the system with their surrounding world.
The interpretation of sensory information into a comprehensible and useful
representation is the challenging problem of perception.
Mobile systems exhibit a number of limitations. Their small design and con-
struction constrains the size and weight of computational hardware, batteries
and sensors. This leads to limited computational capacities, limited operation
time, and sensors with low bandwidth and accuracy. Perception methods
need to be robust, while computationally lightweight in order to process data

1



1 Introduction

in real-time on hardware that is pared down for energy efficiency. This thesis
presents a framework to perceive the environment of a mobile system under
these conditions using solely the input of a binocular camera.
To facilitate high-level tasks like behavioural planning, most mobile robotic
systems apply multiple stages of abstraction to the low level sensor data.
They create a meta representation that contains the sensed information in a
semantically enriched and better accessible form. Besides representing the
current sensor readings the representation may incorporate past observations,
so that it forms a model of the surrounding environment. The modelling
is usually geared to specific tasks or situations and differs accordingly in
expressiveness, compactness and its semantic level. Our physical world
is made up of objects that we have learned to group into concepts and
categories, which share certain attributes and enable high-level thinking.
For artificial reasoning processes a similar degree of semantic information
would be desired. Yet, unless explicitly modelled or learned, this abstract
concept knowledge is not available to a machine. For many tasks such high
level of information is not required, but a semantic level of general object
instances is sufficient. Consider a collision avoidance scenario, for which
it is irrelevant at first, whether an approaching obstacle is a static pole, or
a dynamic cyclist. However, it is advantageous to recognize a pole or a
cyclist as individual instances of some arbitrary concept. Such a level of
object instance modelling provides a basis for reasoning processes. It leads
to extremely compact environment representations, which abstract from the
details and highlight the essential information. However, this modelling
process is very difficult. Since nothing is known about the objects, hardly
any assumptions can be made to facilitate their recognition and separation
from the scene. Especially the typical object shape or size, typical motion or
typical appearance would be valuable prior knowledge. Moreover, without
referring to known concepts, it is not even clear what exactly constitutes a
valid object.
The methods proposed in this thesis aim at modelling the environment on
such level from the input of a binocular camera. A meta representation
is found that is useful in different application scenarios. The modelling
concerns a local area around the system, in which individual object and

2



1.1 Environment Representations

obstacle instances are detected and modelled in temporal as well as spatial
manner. These enable a system to carry out tasks like close range navigation,
collision avoidance with moving objects, up to interaction with objects. The
system itself must not be static and might be subject to passive motion that is
beyond its control.

1.1 Environment Representations
In mobile robotic systems, meta representations are found in different forms.
They can represent data of a single sensor reading, but they can also repre-
sent data of possibly multiple different sensors accumulated over time and
different sensor poses. These latter representations often resemble a spatial
map of the environment. The system performs a mapping of sensor data into
the environment model. To this end it estimates its pose with respect to the
model. Thereby the model can be extended over time, and past information
can be accessed, which is not in sensor range any more. This facilitates to
model scene structures that are larger than the actual sensor range. Figure 1.1
shows two examples of environment models, that are often found in the
context of traversability analysis.

Figure 1.1: Left: Scene representation in form of a two-dimensional floor occupancy
map (top view). Red color denotes elevated parts of the scene, white cells are free.
Cells are updated over time with the current measurements and the estimated sensor
movement. Right: The intermediate Stixel representation models the limit of free
space using the current sensor data.1

1 The implementation was kindly provided by Martin Lauer (occupancy map) and Hannes
Harms (Stixel)

3



1 Introduction

about the topological connection to the previous visit. Only if it recognizes
the place this connection can be established. For systems that perform active
exploration a topologically consistent model is of utter importance. For
other tasks, which are primarily concerned about the local environment, it
is dispensable. The ability of recognizing these events termed loop-closure
comes at the cost of storing and maintaining a model of the entire visited
environment. Though the density of the actual representation can greatly
vary from sparse landmarks to dense 3D point clouds or closed surfaces, the
problem of scalability is not easy to overcome. Where global consistency is
not important, a locally consistent model of the environment is much less
resource consuming. Past data can simply be forgotten without affecting the
functionalities that the model fulfills locally around the system.
An assumption made during the basic mapping methodology is that the en-
vironment is static. Dynamic parts of the environment are treated as model
violations and need to be explicitly detected in order to avoid dynamic objects
from being mapped spuriously. However, when moving in populated envi-
ronments, dynamic objects play a key-role. Latest when planning a collision
free route, the dynamics of moving objects need to be modelled in addition
to the static scene. Otherwise, route planning may completely fail if solely
the current freespace is considered [23]. The importance of dynamic objects
has led to several extensions that target the detection and tracking of moving
objects (DATMO) in conjunction with mapping the environment. The result
is a map of the static environment, that is augmented with independently
moving objects [91]. It allows to move freely while avoiding collision with
the static scene and other moving objects, or also allows to follow these
objects, as long as they are moving.
As soon as interaction with the environment is required, the environ-
ment must be understood on a higher level. Beyond sensing free space,
it becomes important to explain what is limiting the free space. Such
level of scene understanding provides very valuable context knowledge to
higher level tasks. This potential is well recognized and has led to vari-
ous approaches to augment unstructured maps with semantic information.

4
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1.1 Environment Representations

Figure 1.2: Examples of environment models enriched with semantic information:
Left: Floor plan with room type labeling [96]. Top: Semantic road scene reconstruc-
tion [90]. Bottom: Instance mapping of known objects [76].

1.2). Maps that are semantically labeled in such manner provide spatial con-
text information. They state whether the system is positioned on a pavement
or on the road, whether an area ahead is a large water basin or drivable lawn,
or state that the current room is a kitchen. Such context strongly supports
object recognition [66]. Many higher level tasks like object interaction
require information on a level of concept instances. A semantic map will
contain the information that certain parts of the map are cars, but not how
many and what the different instances of cars are. This kind of information
requires a decomposition of the map into concept instances – or objects.
When object instance perception is required, the most common solution
is to teach the system about the typical appearance [14, 70], or provide a
geometric model [76] of the required concept (Figure 1.2). This facilitates
direct instance recognition, e.g. by sliding window classification or model
fitting. Unfortunately, the principle does not generalize very well and is
infeasible in urban environments with a large number of different object
concepts. The earlier introduced DATMO methodology works around this
problem by detecting objects by their movement. In general though, objects
should be modelled as such whether they are moving or not. This is a keynote
of the perception framework that is proposed in this work.

5
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1 Introduction

1.2 Contribution
The proposed methods abstract raw sensor data of a binocular camera and
create a high-level spatio-temporal object instance representation, which
is useful in a variety of applications (Figure 1.3). Besides its potential for
high level interaction tasks and reasoning, an object instance level percep-
tion allows efficient representations of the environment through geometric
primitives. A wall, once recognized as a wall, can be expressed as a ge-
ometric surface with few parameters, compared to thousands of low level
measurements in an unstructured model as e.g. in a metric point cloud. The
large amount of information that surrounds the system becomes strongly con-
densed. This results in an extremely compact representation well suited for
mobile platforms where limited computational resources have to be handled
economically. On algorithmic side, maintaining an environment model of
geometric primitives alters from a plain mapping to complex registration and
multi-model estimation problems.
To this end, several well-matched algorithms are introduced: The concept of
vanishing points is exploited to gather information about the scene geometry.
An efficient algorithm is developed that maintains an accurate model of
current prominent scene directions while the system traverses through the
scene. This knowledge is utilized in different ways. First, a method is
presented to track geometric surfaces under the special conditions of full
occlusion and invisibility. Of particular interest is the navigable ground
surface, which is widely assumed to remain in perception range permanently.
With free moving, uncontrolled camera setups this assumption is frequently
violated. Vanishing points are shown to provide a strong geometric feature to
handle these situations. Afterwards, an algorithm is introduced that extends
the range of operation to multi-floor environments by specifically modelling
stair transitions. Here, vanishing points provide the stair and step orientation
during traversal.
The focus of the proposed representation are tasks within the local environ-
ment. Other than the related field of environment mapping, global model
consistency and topological correctness are ignored consciously. However,
a method is presented that makes use of the modelled scene information in
order to extend the consistency to the surrounding scene.

6



1.2 Contribution

Figure 1.3: The system transforms raw data from a binocular camera into an abstract
environment model on a semantic level of object instances.

Finally, a method is presented which detects objects of arbitrary kind and
models them spatially as well as temporally. A tracking formulation is
presented that simultaneously estimates shape and motion of surrounding
objects. This enables to track objects through occlusions and after they have
left the visible sensor range.
Strongly limited computational capabilities and physical constraints of mo-
bile systems require several trade-offs, which all algorithms have to cope
with. Sensors for mobile systems need to be small and lightweight while cov-
ering a sensing range as large as possible. Short binocular camera baselines
and wide angle lenses with short focal length contribute to large uncertainties
in depth measurements. Low image resolutions are inevitable in order to
keep processing times within tight limits. All algorithms are trimmed to be
applicable in real-time on standard hardware without demand of specific
hardware like graphic processors (GPUs). To exploit the potential of current
multi-core platforms, a parallelized software architecture is developed, which
ensures small latencies while keeping processing rates as high as possible.
Little assumptions are made regarding the camera motion. This allows to
deploy the methods also in unconventional settings, as for instance unevenly
walking robotic platforms, or cameras attached to a human wearer. This
makes the framework interesting for virtual reality entertainment applications,
or in the assistance of visually impaired persons. Exemplary applications are
implemented and their potential use discussed within the experiments.

7



1 Introduction

Organization In Chapter 2 we first recapitulate the basics of depth percep-
tion and egomotion estimation using a binocular camera, with a focus on
relevant sources of errors and general weaknesses. This provides the basis
for the proposed framework to model the environment which we detail in
Chapter 3. The experimental platforms and considerations regarding the
implementation are subject of Chapter 4. Two experiments demonstrate
the potential use for wearable systems. Concluding remarks are given in
Chapter 5.

8



2 Depth and Egomotion Estimation

The basis of the proposed framework are algorithms to estimate scene depth
and the platform’s motion from the binocular camera images. Efficient
solutions exist for both problems. Estimating the motion that the cameras
undergo allows to incrementally estimate the system’s pose with respect
to an initial starting point. The measured scene depth can be transformed
to metric measurements. The combination of both algorithms enables to
reconstruct scenes that are larger than the sensor range. A prerequisite is a
camera setup with known intrinsic and extrinsic calibration. To facilitate the
point correspondence search between both views, a rectification step virtually
aligns the undistorted camera images horizontally on a common image plane.
A general configuration of such system is depicted in Figure 2.1. A scene
point in the Euclidean camera space 𝐿, denoted as P𝐿, generates a measure-
ment in image space p = (𝑢, 𝑣, 𝛿) with pixel position (𝑢, 𝑣) and disparity 𝛿
(termed 𝑢𝑣𝛿 point in the remainder). P is transformed to the scene fixed coor-
dinate space 𝑊 as P𝑊 = 𝑇𝑊P𝐿. The transformation 𝑇𝑊 is incrementally
estimated by odometry measurements.

𝑊

𝑇𝑊

𝐿

p

P
𝑣
𝑢

𝛿

Figure 2.1: Relations between image space with measured point p, Euclidean camera
space 𝐿 and scene fixed coordinate space 𝑊 .
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2 Depth and Egomotion Estimation

In problems of projective geometry the Euclidean space is usually represented
in the system of homogeneous coordinates. A point in Cartesian coordinates
𝑃 = (𝑋,𝑌, 𝑍) is expressed in homogeneous coordinates with an additional
coordinate ℎ and becomes P = (ℎ𝑋, ℎ𝑌, ℎ𝑍, ℎ). The Cartesian coordinates
are recovered as (𝑋/ℎ, 𝑌/ℎ, 𝑍/ℎ). Consequently, the coordinates P and 𝑘P
represent the same point for all non-zero values of 𝑘. This notation allows
to represent points in infinity with finite values (ℎ = 0). Points (𝑋,𝑌, 𝑍, 0)

lie on an ideal plane in infinite distance and are handled just like finite scene
points. Besides this, homogeneous coordinates simplify the notation of trans-
formations between coordinate systems. An affine transformation 𝑇 with
linear part 𝑅 and translation t is written as augmented matrix 𝑇 =

(︀
𝑅 t
0T 1

)︀
.

The transformation of a point P is then achieved by the matrix multiplication
𝑇P.

2.1 Depth Estimation and Reconstruction
In a pair of rectified binocular images, depth is measured as the image column
offset between the projections of a scene point into the left and right image.
The offset is commonly termed disparity and relates an image point (𝑢, 𝑣)

in the left image with the image point (𝑢 + 𝛿(𝑢, 𝑣), 𝑣) in the right image.
Efficient algorithms exist to estimate the disparity for each image point of
the first camera by seeking the corresponding image point in the image of
the second camera.
The Euclidean camera coordinates of a 𝑢𝑣𝛿 point p = (𝑢, 𝑣, 𝛿(𝑢, 𝑣)) are
reconstructed via

P𝐿 =

⎛⎝𝑋𝑌
𝑍

⎞⎠𝐿

= 𝐹 (p) =
𝐵

𝛿

⎛⎝𝑢− 𝑐𝑢𝑣 − 𝑐𝑣
𝑓

⎞⎠ (2.1)

where 𝐵 is the camera baseline, 𝑓 the focal length, and (𝑐𝑢, 𝑐𝑣) the princi-
pal point that model a pinhole camera. The non-linear mapping causes the
measurable depth resolution to decrease with increasing distance from the
camera. Assuming a typical mobile setup with a baseline of 20 cm and an
image column resolution of 640 pixels, 1 pixel disparity difference covers
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2.1 Depth Estimation and Reconstruction

a range of more than 30 m in a camera distance of 30 m where 𝛿 ≈ 1. This
range grows to∞ for 𝛿 → 0. Typically, 8 sub-pixel disparities are estimated
by non-linear refinement, which mitigates the effect to a distance resolu-
tion still as big as 1 m in 25 m camera distance. An approximation for the
covariance 𝑆 of reconstructed points is given by a Taylor approximation as

Σ = 𝐽𝐹 ·𝑀𝑢𝑣𝛿 · 𝐽𝑇𝐹 (2.2)

𝐽𝐹 (𝑢, 𝑣, 𝛿) =

⎛⎝𝑑𝐹𝑋

𝑑𝑢
𝑑𝐹𝑋

𝑑𝑣
𝑑𝐹𝑋

𝑑𝛿
𝑑𝐹𝑌

𝑑𝑢
𝑑𝐹𝑌

𝑑𝑣
𝑑𝐹𝑌

𝑑𝛿
𝑑𝐹𝑍

𝑑𝑢
𝑑𝐹𝑍

𝑑𝑣
𝑑𝐹𝑍

𝑑𝛿

⎞⎠ =

⎛⎜⎝𝐵
𝛿 0 −𝐵(𝑢−𝑐𝑢)

𝛿2

0 𝐵
𝛿

−𝐵(𝑣−𝑐𝑣)
𝛿2

0 0 −𝐵𝑓
𝛿2

⎞⎟⎠ (2.3)

where 𝐽𝐹 is the Jacobian of 𝐹 (·), and 𝑀𝑢𝑣𝛿 is the diagonal matrix of mea-
surement variances 𝑀𝑢𝑣𝛿 = diag(𝜎2

𝑢, 𝜎
2
𝑣 , 𝜎

2
𝛿 ).

In practice a trade-off between quality and measurement frequency has to
be found. Figure 2.2 shows a visual comparison between two extreme algo-
rithm configurations. Some errors appear independent of matching strategy,
refinement or image resolution. These are of principal nature and concern
image areas which lack texture information (e.g. caused by overexposure),
depict very repetitive structures, or depict reflective surfaces, as e.g. on cars.
All cases can cause enormous errors which are almost impossible to discern.
Accordingly, algorithms that process disparity depth data have to be robust
to such errors.

Left input image (a) OpenCV SGBM
640x480 pixel

(b) libToast2 320x240 pixel
no subpixel refinement

Figure 2.2: A visual comparison of disparity estimators where color encodes depth.
Configuration (a) achieves a measurement frequency of 10Hz (modified semi-global
matching implementation [39]), configuration (b) lowers quality but achieves almost
100Hz (block matching implementation [73])

11



2 Depth and Egomotion Estimation

2.2 Egomotion Estimation
Mobile systems that explore unknown environments usually do not have
access to a global positioning reference. The platform position cannot be
directly measured in such environments, but has to be estimated relative to
some starting location by integrating measurements of the travelled distance.
The estimated position is subject to the accumulating measurement error, also
termed drift. Borrowed from the term odometry, the process of estimating
the motion of a camera solely from the captured image data is commonly
referred to as visual odometry.
The general goal of visual odometry is to find a rotation 𝑅 and a translation t

that relates the camera pose at time 𝑘 to the camera pose at time 𝑘−1 through
the rigid transformation

𝑇𝑘−1,𝑘(= 𝑇𝑘) =

(︂
𝑅 t

0 1

)︂
.

Most available methods are based on salient image features x which can be
unambiguously matched across subsequent images. A geometric distance
error between the feature point locations (x𝑘−1 ↔ x𝑘) at times 𝑘 − 1 and
𝑘 is minimized to find 𝑇𝑘. This distance error is typically defined as a
reprojection error in image space, a metric error in Euclidean space, or a
mixture of both. In the monocular camera case, the translation part t remains
principally unscaled. A recent overview about the sub-problems can be found
in [77].
A byproduct of feature based visual odometry is the motion compensated
scene flow between feature matches (x𝑘−1 ↔ x𝑘). It results from forward
projecting the image feature points x𝑘−1 with the estimated transformation
𝑇𝑘. The compensated feature match becomes

(︀
𝐹−1 (𝑇𝑘 · 𝐹 (x𝑘−1))↔ x𝑘

)︀
.

It vanishes for static scene parts, and represents the motion of moving scene
parts as if measured from a static camera at time 𝑘.
Similar to disparity estimation, feature based visual odometry depends on
sufficiently textured scenes to generate point correspondences across im-
ages. The scene has to contain apparent static parts and camera motion has
to be small enough to ensure overlap with the previously captured image.
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2.2 Egomotion Estimation

...

𝑇𝑊𝑘

𝑇𝑊𝑘−1

𝑘𝑘 − 1𝑘 − 2𝑘 − 𝑛
𝑇𝑘𝑇𝑘−1

Figure 2.3: The global transformation 𝑇𝑊 is incrementally estimated through odo-
metric measurements 𝑇𝑘.

This can be met by high measurement rates, which come along with a high
computational load.
Usually one is not only interested in the camera pose to pose motion, but also
in the overall travelled path, or the current pose 𝑇𝑊𝑘

at time 𝑘 with respect
to the initial global coordinate frame at time 𝑘 − 𝑛. This transformation
incrementally accumulates as visualized in Figure 2.3 to

𝑇𝑊𝑘
= 𝑇−1

𝑘−𝑛+1 · · · 𝑇
−1
𝑘−1 · 𝑇

−1
𝑘 (2.4)

= 𝑇𝑊𝑘−1
· 𝑇−1

𝑘 . (2.5)

Because of its incremental nature this estimation is inherently subject to drift,
caused by errors made in the estimation of 𝑇𝑘 which accumulate over time
(Figure 2.4). Different strategies exist to minimize this drift. When features
are tracked over multiple frames, drift can be reduced by windowed bundle
adjustment which jointly optimizes feature locations and camera poses over
the last few estimation steps [89]. However, drift can still grow unlimitedly.
To achieve a global bound, the earlier mentioned concept of loop-closure
detection has to be incorporated. A different strategy consists of measuring
a global property of the scene. For instance, inertial aided odometry uses
the direction of gravity and the magnetic north to gather referenced tilt and
heading measurements. These can be correlated with the odometry to correct
the small estimation errors in the rotational part. This approach will be
detailed in Section 3.1.5, where it is applied with solely visual references.
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2 Depth and Egomotion Estimation

Figure 2.4: Odometric position estimation is afflicted with drift. The red path is a
visual odometry estimate of the true path indicated in green. The sequence is captured
with a head-worn binocular camera during walking. The cameras are subject to strong
egomotion which leads to increased inaccuracies when compared to e.g. wheeled
platforms. A visual inertial filter can compensate for the drift by incorporating the
referenced heading and tilt measurements of an inertial measurement unit (blue path)
[100]. Background image: Google Earth, © 2016 AeroWest.
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3 Visual Scene Perception

While a mobile system is moving through an environment it is faced with
large amounts of possibly different kinds of sensor data. The task of the
perception framework is to fuse these measurements and convert them into a
representation which is accessible and useful for the envisioned application.
This representation, referred to as environment model, facilitates the tasks
of the system. A very common such task could be movement in unknown
environments.
Safe navigation involves two aspects: On one side, a high-level routing
problem must be solved that leads to a certain goal. In unknown environments
and limited perception range (consider 20-30 meter with a mobile camera
setup), this compulsorily reduces to a lower-level local path planning problem
that leads into a certain direction. Man-made environments provide many
cues that are helpful at this. Consider for example the direction of a curbstone
that separates street from sidewalk, or the alignment of building facades.
Afterwards, the actual movement into the given direction has to be performed.
Different objects might be placed on the path, large objects might extend into
the path, persons might be moving across or along. Avoiding collision with
such obstacles, or heading towards objects of interest is the other side of safe
navigation.
The environment model must provide information that enable to handle these
situations. Certainly, path planning in static environments is a prime example
for environment representations that model the free space. However, reasons
of expressiveness, meaningfulness and compactness advocate a representa-
tion that instead focuses on the objects that constrain the navigable space. It
is a step towards higher-level scene understanding and offers interactive op-
portunities far beneath path planning. This chapter deals with the questions,
how such representation could look, and how it can be derived from the data
provided by a binocular camera system.
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3 Visual Scene Perception

Without embedding prior knowledge about the world, typical top-down
reasoning from concepts to objects (i.e. based on features like appearance,
shape, size, etc.) remains precluded. Other features are required that allow a
bottom-up modelling process from sensor data to object instances. General
conditions to form an object could be summarized as follows:

(a) Objects are not traversable and need to be avoided.

(b) Objects feature a limited size and a clear boundary,
so they can be circumnavigated.

(c) Objects might be moving, but they might as well be static.

(d) Objects are meaningful in a way that they represent
a concept on a medium level of abstraction.

(e) Objects are neither a mixture of different such concepts,
nor merely a part of such.

A wheel on a car is part of the concept car, and not an own object instance. In
contrast, the same wheel lying on the road is by itself a valid object instance.
This toy-example points up the difficulty in the mere definition of an object.
It is highly context dependent. To dissolve ambiguities high-level knowledge
is required, but not available.
Looking at urban environments it is striking that large parts of the scene
cannot be explained using these conditions. Man-made environments feature
large buildings, fences and hedges, stairways, etc. All are either of un-
clear extent or theoretically well traversable, and always immovable. Rather
than being objects, these structures can be understood as a limiting frame
of the scene, consisting of an arrangement of surfaces. As Gibson noted
in his psychological view on perception, "the impression of a continuous
surface may account for visual space conceived as a background" [31], it
provides a background context, in front of which objects form the scene
foreground. Background structure plays an important role during scene
perception.Gibson further noticed that "there is literally no such thing as a per-
ception of space without the perception of a continuous background surface".
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3 Visual Scene Perception

  

Visual Odometry Vanishing Points Disparity Map

Background Geometry Foreground Objects

Figure 3.1: High-level overview of the applied algorithms.

Background surfaces allow the impression of distance without measuring
depth, and provide important orientation clues. Of special importance in this
context is the ground – a mobile system without ability to perceive ground
orientation can be considered completely disoriented.
The task of the perception framework is to build and maintain the environ-
ment model consisting of background structure and foreground objects while
moving through the scene. The sensor range will typically only cover a frac-
tion of the surrounding environment. New measurements need to extend or
update existing parts of the model. An overview is provided in Figure 3.1: All
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3 Visual Scene Perception

measurements are derived from the binocular camera system. The disparity
depth map provides metric measurements of the scene, while the egomotion
estimation in terms of visual odometry ensures a locally consistent modelling
in spatial and temporal regards. As an additional mid-level feature to mea-
sure prominent scene orientations vanishing points will be introduced. These
three features provide the basis for modelling the scene background structure
(Section 3.1), and for modelling foreground objects (Section 3.2).

3.1 Geometric Scene Background
The most obvious background feature is the ground floor, which constitutes
the theoretically navigable space. Further delimiting structures are found
with buildings, walls, fences or hedges, which are usually vertically aligned
with the ground surface. In a limited area around the point of view, all these
can be seen as continuous surfaces and as such be modelled geometrically.
Geometric surface models are attractive in terms of compactness and because
they efficiently provide scene context knowledge, which can be exploited e.g.
as size constraint in object detection [15]. Distances of objects residing on
the ground surface can be computed without depth measurement. Motion of
objects is usually restricted along the surface, which can be useful during
state estimation. Vertical surfaces restrict the moveable area, for the system
itself, but also for all other dynamic objects within the scene. They are useful
orientation clues and can provide rough directions of possible movement [26].
Because of its strong contextual information, the extraction of geometric
scene knowledge has been subject of diverse work. It has been formulated
as recognition problem based on texture [40] and physical plausibility [36],
as optimization problem [4] jointly reasoning about the most likely config-
uration of vanishing points and horizon, or by geometric reasoning e.g. on
line segments [50]. However, the computational complexity of these single
image methods precludes a real-time application on sequences of images.
When depth measurements are available as in this work, random model
sampling or region growing using local consistency criteria like surface
normals are two ways to directly achieve a scene segmentation that covers
large background surfaces. However, the combination of short-baseline
stereo, wide angle lenses and large measurement distances in urban scenarios
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3.1 Geometric Scene Background

poses challenging conditions. Additionally, methods need to be robust to
occlusion caused by other traffic participants and static infrastructure. New
measurements must update the existing knowledge about the scene in a
consistent way.
Regarding the actual representation of the scene geometry, different geomet-
ric models come into question. The model complexity should be chosen
depending on different factors such as the environment of operation, the
quality of available measurements, the required accuracy, the range of inter-
est and, of course, the intended usage. In inner-urban environments with a
range of interest of around 20 meters, the assumption of a flat world can be
justified. Modelled as a planar surface with a geometric plane, this is the
most abstract, compact and computational most efficient representation. We
adopt this representation also for vertical structures to meet the requirements
of a very lightweight geometric background model. It consists of a common
ground plane and a variable number of vertically aligned planes that represent
building facades, fences and alike.
These plane models are fitted in disparity depth data and tracked over time
using the estimated egomotion (Section 3.1.1). On unconstrained platforms
without influence on camera orientation, surfaces are often subject to heavy
occlusion and invisibility. To support model tracking in these situations, the
geometric feature of vanishing points is introduced in Section 3.1.2. Plane
estimation and vanishing points are combined in Section 3.1.3 to form the
background model. It is then extended by the special background construct of
stairways in Section 3.1.4. The estimated scene model provides strong clues
for orientation. In Section 3.1.5 we discuss how the observed background
structure can be fed back into the egomotion estimation in order to mitigate
the drift of unreferenced odometry.

3.1.1 Feature 1: Geometric Planes

A plane in camera space can be written as

n𝑥𝑋 + n𝑦𝑌 + n𝑧𝑍 + 𝑑 = 0 (3.1)
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3 Visual Scene Perception

with the homogeneous plane representation 𝜋 = (n, 𝑑)T, where n is the
plane normal vector fixed in the camera origin and 𝑑

||n|| the distance to the
plane. All points P = (𝑋,𝑌, 𝑍, 1)T satisfying |𝜋TP| < 𝜖 can be considered
lying in the plane, where 𝜖 sets a margin around the plane.
There are different options to measure planes from image evidence. In
monoscopic camera setups a popular way is to estimate the homography
induced by the planar surface. Four feature point correspondences on the
plane between two views are required to calculate the homography using the
DLT algorithm [86]. Its parameters can then be tracked with particle [56] or
Kalman filters [13]. If the transformation between the views is known, the
homography can be decomposed uniquely into the plane parameters [95]. In
binocular camera setups models can be fitted using the depth information,
or directly by minimizing the photometric error between both views [16].
When the camera is aligned to the ground with zero roll angle, the row
wise depth image histogram (also known as v-disparity) depicts flat surfaces
as lines which are easily extracted by line fitting algorithms [48]. While
a zero roll assumption might apply in vehicle mounted camera setups, it
is usually heavily violated for free moving cameras and would require a
roll compensation beforehand [113]. Therefore, we adopt the classical, less
constrained method using general least squares fitting in 3D or depth data.

3.1.1.1 Measuring Planes in Euclidean Space

Three non-collinear points 𝑃1, 𝑃2, 𝑃3 in Cartesian coordinates generate a
unique plane

n =
(𝑃2 − 𝑃1)× (𝑃3 − 𝑃1)

||(𝑃2 − 𝑃1)× (𝑃3 − 𝑃1)||
(3.2)

𝑑 = −𝑃1n
T (3.3)

With more than three points the problem is overdetermined. A solution is
to extract the normal vector as the last principal component of the point set.
The plane distance 𝑑 is then calculated following (3.3) with 𝑃1 set to the
mean of all points.
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3.1 Geometric Scene Background

In practice, we want to approximate a given point set with a number of planes.
This involves two steps. First, partitioning the data into groups of points
which belong to the same plane, and secondly, fitting the optimal plane to
each group of points. Data partitioning can be solved following the RANSAC
scheme by random plane hypothesis sampling. A random minimal set of
three points is chosen to span a plane, which is evaluated by measuring the
support of all remaining points. This measurement represents the probability
of a point belonging to the plane and is in its simplest form 1 if the point lies
within a plane distance 𝜖 and 0 otherwise.
Following Section 2.1, points reconstructed from binocular images are subject
to position uncertainty depending on their measured 𝑢𝑣𝛿 image coordinates.
A statistical correct measure accounts for this uncertainty in the point to plane
distance function. This is primarily important in the data partitioning step to
avoid discarding points in large distance with accordingly large uncertainties.
Furthermore, the uncertainty of points should be considered when fitting the
model in a least squares sense. An approximation for such distance function
consists in employing the linearly approximated point covariance (2.3) to
derive the Mahalanobis point to plane distance [79]. However, the covariance
has to be explicitly computed for each image point. This computational
expense can be avoided when measurements are taken in the image space
instead.
Measurement errors in 𝑢𝑣𝛿 image space are distributed close to a normal
distribution [84]. This property makes it advantageous to measure planes in
image space. However, we are usually interested in their properties in camera
space (e.g. their orientation with respect to the camera or their orientation
with respect to each other). When measuring planes by means of least
squares optimization, the objective function will calculate a difference in
image space, while any optimization constraints will be given in camera
space. When applying camera transformations, these are related to camera
space while plane parameters are measured in image space. Hence, we will
need to use both representations alongside each other. The transformation
from camera space to image space is plane preserving. Thus, it is possible
to use the same linear tools to measure planes in image space and transform
their parameters to camera space. On the other hand, the transformation is
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3 Visual Scene Perception

not angle-preserving, orthogonal planes in camera space are not mapped to
orthogonal planes in image space.

3.1.1.2 Measuring Planes in Image Space

We represent a plane in 𝑢𝑣𝛿 image space as

𝛼 · 𝑢+ 𝛽 · 𝑣 + 𝛾 + 𝛿(𝑢, 𝑣) = 0 (3.4)

Just as in Euclidean camera space, planes can be found using the RANSAC
scheme by repeatedly sampling planes through 3 random points. A plane
is evaluated by counting the number of support points with point-to-plane
distance |𝛼𝑢+ 𝛽𝑣 + 𝛾 − 𝛿| smaller than a disparity margin 𝜖.
We want to minimize the cost function

min
𝛼,𝛽,𝛾

𝑁∑︁
𝑖=1

(𝛼 · 𝑢𝑖 + 𝛽 · 𝑣𝑖 + 𝛾 + 𝛿𝑖)
2, (3.5)

which leads to the linear equation system⎛⎝ ∑︀
𝑢2𝑖

∑︀
𝑢𝑖𝑣𝑖

∑︀
𝑢𝑖∑︀

𝑢𝑖𝑣𝑖
∑︀
𝑣2𝑖

∑︀
𝑣𝑖∑︀

𝑢𝑖
∑︀
𝑣𝑖 𝑁

⎞⎠
⏟  ⏞  

𝐻T𝐻

·

⎛⎝𝛼𝛽
𝛾

⎞⎠ =

⎛⎝−∑︀𝑢𝑖𝛿𝑖
−
∑︀
𝑣𝑖𝛿𝑖

−
∑︀
𝛿𝑖

⎞⎠
⏟  ⏞  

𝐻Ty

. (3.6)

This is equal to the ordinary least-squares solution with measurement matrix
𝐻 = [𝑢1..𝑁 𝑣1..𝑁 1] and the corresponding disparity measurements y, but
more efficient to compute in terms of memory consumption. Note, that this
does not minimize an orthogonal point to plane distance as in camera space.
The image coordinates (𝑢, 𝑣) can be assumed error-free and are independent
variables. To allow for imprecise data partitioning of plane and non-plane
points and further increase the estimation accuracy, we iteratively alternate
between plane support point selection and parameter optimization for a few
times.
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3.1 Geometric Scene Background

Transforming 𝑢, 𝑣 and 𝛿 in (3.4) according to 𝐹 (·) (2.1, page 10) leads to the
𝑢𝑣𝛿 plane to Euclidean plane parameter transformation⎛⎜⎜⎝

n𝑥
n𝑦
n𝑧
𝑑

⎞⎟⎟⎠ ∝
⎛⎜⎜⎝

𝛼𝑓

𝛽𝑓

𝛼𝑐𝑢 + 𝛽𝑐𝑣 + 𝛾

𝐵𝑓

⎞⎟⎟⎠ (3.7)

and vice versa ⎛⎝𝛼𝛽
𝛾

⎞⎠ = −𝐵
𝑑

⎛⎝ n𝑥
n𝑦

n𝑧𝑓 − n𝑥𝑐𝑢 − n𝑦𝑐𝑣

⎞⎠ . (3.8)

3.1.1.3 Tracking Planes by Optimization

In theory, the iterative least-squares procedure from the previous section can
be applied to constantly remeasure a plane over time from one camera pose
to the next. The parameter estimate from the last camera pose provides the
starting point for support point selection with subsequent iterative optimiza-
tion in the current image. In practice however, convergence to the correct
plane parameters depends strongly on the outlier ratio of the selected support
points. The optimization only succeeds when camera motion between the
camera poses is small enough. In certain setups this can be assumed [16, 57],
but in general this cannot be guaranteed in case of unconstrained cameras.
If an estimate of the camera motion between the camera poses is available, it
can be applied to predict the plane parameters to initialize the least-squares
refinement:
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Let 𝑇𝑘 =
(︀
𝑅 t
0T 1

)︀
be the estimated transformation between camera poses

at time 𝑘 − 1 and 𝑘. For a point P, we have P𝑘 = 𝑇𝑘P𝑘−1. For the
transformation of a plane 𝜋 =

(︀
n, 𝑑

)︀T
this results in

𝜋T
𝑘P𝑘 = 𝜋T

𝑘−1P𝑘−1 (3.9)

⇔ 𝜋T
𝑘 (𝑇𝑘P𝑘−1) = 𝜋T

𝑘−1P𝑘−1 (3.10)

⇔ 𝜋T
𝑘 = 𝜋T

𝑘−1𝑇
−1
𝑘 (3.11)

⇔ 𝜋𝑘 =
(︀
𝜋T
𝑘−1𝑇

−1
𝑘

)︀T
=
(︀
𝑇−1
𝑘

)︀T
𝜋𝑘−1, (3.12)

with (︀
𝑇−1
𝑘

)︀T
=

(︂
𝑅T −𝑅Tt

0T 1

)︂T

=

(︂
𝑅 0

−tT𝑅 1

)︂
. (3.13)

The predicted parameters 𝜋𝑘 allow for a proper selection of support points
and are a sufficient initialization for parameter optimization. Such prediction
and optimization scheme enables to track a plane under arbitrary camera
movements, provided that the plane is visible and can be measured. As
obvious this condition is, as often is it violated in real scenarios with uncon-
trolled viewing direction. Reasons are twofold. Objects and scene clutter
can heavily occlude the plane up to total occlusion. Or, the camera might be
oriented in a way that the plane is temporarily not visible. Both conditions
occur frequently in inner-urban scenes and quickly lead to loss of tracking
if not explicitly treated. Short periods of full occlusion can be handled by
predicting the parameters according to (3.12), but even small drift in the esti-
mated egomotion quickly leads to a large divergence from the true parameters
with consequent loss of tracking. To deal with situations like these, robust
estimation techniques are required. In Section 3.1.3.1 we will introduce a
filter approach to this end, which is based on the additional geometric feature
of vanishing points.
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3.1 Geometric Scene Background

3.1.2 Feature 2: Vanishing Directions

Man-made scenes exhibit clear structures. On a low level they are com-
posed of many orthogonal and parallel structures, for instance created by
brickstones, the windows and doors in building facades, fences and many
more. On a higher level, these low level structures compose more complex
structures like buildings, which in turn compose streets, junctions, and so
on. On all levels a high degree of alignment and parallelism is a common
feature of these environments. When the scene is projected to the image
space, the so called vanishing points emerge from structure which is paral-
lel in the three-dimensional scene. A vanishing point is the projection of
a point positioned infinitely far in the direction of parallel scene structure.
In a calibrated camera a direction vector can be converted into an image
point and vice versa, and vanishing point and vanishing direction become
interchangeable names for the same property.
Vanishing directions have a few interesting properties in the context of scene
understanding. Foremost, they are a property of the scene and, as such,
provide a scene referenced measurement. From two known vanishing points,
the camera orientation with respect to the scene can be completely recovered.
Similar to a compass reading, a single vanishing point can provide a reference
during egopose estimation, as will be later shown in Section 3.1.5.
Vanishing directions are obtained from a monoscopic image, and yet provide
valuable spatial information about the scene. Especially the orientation of
structure becomes directly measurable. Man-made flat surfaces are usually
aligned with two vanishing directions. One pointing vertical corresponding to
the direction of gravity, the other pointing towards the horizon. The direction
orthogonal to both corresponds to the surface normal. If all vanishing points
of a scene are known, large parts of the projected image can be explained
in terms of orientation and alignment to each other. The orientation of an
urban street canyon is contained in a single vanishing direction measurement,
and the relative orientation of two streets is simply the relative orientation of
their corresponding vanishing directions.
A direction measurement is independent of the observer’s position. The
environment does not change when the camera moves or rotates. Wher-
ever vanishing points are measured within the local scene, their relative
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orientations do not change. The measurement is invariant under translational
viewpoint change, only a camera rotation affects the measurement. Mea-
suring scene vanishing directions from two different viewpoints allows to
recover the orientation between these viewpoints. However, nothing can be
deducted regarding the viewpoint positions. Position invariance implies that
all measurements taken to estimate vanishing directions are ambiguous in
terms of their camera distance. The scale of the scene remains unobservable.
In this section an algorithm is proposed that detects vanishing points in
sequences of images and models them consistently over time. The vanishing
directions provide a powerful feature that will facilitate the recognition and
interpretation of the scene background.

3.1.2.1 Measuring Vanishing Directions

Various methods have been developed to estimate vanishing points from a
single image. In most recent approaches the input images are abstracted to
line or edge segments. It has been shown that operating on geometric edge
primitives does not necessarily come at the cost of accuracy when compared
to direct estimation methods using e.g. continuous image gradients [21].

l1l2

𝜋1

𝜋2

l𝑣

𝜋𝑣 Vℎ

pℎ

Figure 3.2: Geometric relations of lines in image space and their vanishing directions.
Lines l1 and l2 intersect in the vanishing point pℎ (vanishing direction Vℎ). The hor-
izontal plane 𝜋𝑣 projects to the image plane as vanishing line l𝑣 , which corresponds
to the horizon.
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When aiming at real-time applications this massive data reduction is hence
easily justified. Basic geometric relations allow to detect vanishing directions
from line or edge segment measurements.
A line in image space can be described as 𝑎𝑢 + 𝑏𝑣 + 𝑐ℎ = 0 with an
implicit line representation l = (𝑎, 𝑏, 𝑐) and homogeneous image coordinates
(𝑢, 𝑣, ℎ). Two image points p = (𝑝1, 𝑝2, 𝑝3) and q = (𝑞1, 𝑞2, 𝑞3) lie on
the line l = p × q. Due to the principle of duality, points and lines are
interchangeable in projective geometry. The intersection point k of two lines
m and n is given by k = m× n.
In a calibrated camera with intrinsic camera matrix𝐾, a line l in image space
is the projection of an (interpretation) plane 𝜋 through the camera origin with
𝜋 = 𝐾Tl (Figure 3.2). The intersection of two such planes, spanned by two
lines l1 and l2, yields a direction vector Vℎ. It intersects the image plane in
pℎ = 𝐾Vℎ with image coordinates (𝑝1𝑝3 ,

𝑝2
𝑝3

), which is coincident with the
intersection of l1 and l2.
The direction Vℎ is called a vanishing direction, under the assumption that
the line observations l1 and l2 were generated by scene structure which
is parallel in the 3D space. When the intrinsic camera parameters 𝐾 are
known, each vanishing direction can be transformed into the corresponding
image projection pℎ called vanishing point, and vice versa. Both terms
are used interchangeably in the remainder. The intersection of each pair
of line observations creates a potential vanishing point. However, due to
the projection ambiguity it is impossible to detect a real vanishing point
from only two line observations. Robustly recognizing vanishing directions
requires to analyse the scene in its entirety.
The problem of detecting a scene’s vanishing directions is a problem of multi
model fitting and can be treated with different strategies, which all need
to deal with a few common sub-problems. First, a method to hypothesize
potential vanishing points is required. To evaluate these hypotheses, an
assignment needs to be found between line segments and vanishing point
hypotheses. This requires a consistency measurement which quantifies the
support of a line to a vanishing point. With the assigned, or grouped line
segments, the vanishing directions need to be estimated that explain the
assigned observations in an optimal way.
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In his early work of [5] Barnard suggested a Hough transform to find vanish-
ing point candidates, in which the Gaussian sphere is used as voting space.
The interpretation planes of line observations intersect the sphere in great
circles and create modes on the sphere which correspond to the vanishing
directions (Figure 3.2). A line observation l is assigned to a vanishing direc-
tion V, if V lies within the interpretation plane 𝜋𝑙 according to their inner
product ⟨V, 𝜋𝑙⟩.
Alternatively, the analysis can be carried out in the (unbound) image space
directly by evaluating a pixel error between line and vanishing point. Various
variants exist, the most commonly used consistency measurements were
recently evaluated in [93]. Their deficiencies in terms of ignoring edge length
or being variant to image position are often a trade-off between optimality
and simple and fast computability. Clearly, consistency measuring is also
possible directly using the continuous space of image gradients [17, 78, 59],
with the drawback of high computational costs.
A consistency measure allows the immediate application of unsupervised data
analysis, like k-means, multi-model RANSAC or any hierarchical clustering
algorithm [87] to group the edges. These methods have the advantage of
operating in continuous parameter space, which obviates the difficult choice
of parameter discretization as required in the classic implementation of
Hough space methods. After clustering, optimal vanishing directions are
the result of non-linear refinement. To avoid hard assignments between
edge observations and vanishing directions, the expectation maximization
framework is often utilized in this context [2, 45, 78].
Many recent methods make use of prior scene knowledge. Man-made en-
vironments usually follow a clear alignment with the direction of gravity,
building facades are flat and meet each other in distinct angles. In the ex-
treme case, structures are aligned to each other in an orthogonal fashion.
These scenes are composed of three orthogonal vanishing directions and are
referred to as a Manhattan world. In these settings, where the arrangement of
vanishing directions is known, all directions can be estimated simultaneously
[17, 62, 6, 94]. Unfortunately, the Manhattan world assumption is often
violated and renders it necessary to also estimate the scene geometry, at least
partly. A relaxation was proposed in [78] with the so called Atlanta world.
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Figure 3.3: Vanishing directions detected independently from 10 slightly different
viewpoints in a sequence of images. Most detections are correct in terms of the
scene layout, but show varying amounts of noise. Background image: Google Earth,
© 2009 GeoBasis-DE/BKG.

Here, the Manhattan frame is extended by arbitrarily many horizontal van-
ishing directions, which are orthogonal to a common vertical axis that corre-
sponds to the direction of gravity. Such representation can depict the typical
layout of the majority of man-made environments, which are usually aligned
with gravity. It is the representation that we will also adopt in this work.
Independent of the measurement and model assumptions, the estimates of
all methods are afflicted with noise which is propagated from sensor level
to image gradients and edge segment measurements. This noise inevitably
affects the accuracy of an estimated vanishing point. Especially scene parts
located far away from the sensor become problematic, since they are usually
depicted only with short and noisy edge segments. The variance in initialized
vanishing directions is large in these cases. Figure 3.3 shows the situation.
Here, vanishing directions are initialized using the state of the art approach
of Tardif [87] independently for all images of a short sequence. Using the
ground truth camera orientation from an inertial measurement unit (IMU)
the four most certain vanishing points from each position are registered in
the IMU reference frame. None of these initializations is wrong in terms of
scene layout, but their estimates are subject to obvious uncertainties. The
forward direction is initialized with small variance, the parking cars create a
very noisy vanishing point roughly orthogonal to it. Here, we are interested

29



3 Visual Scene Perception

in the intersecting street, which can be recognised in a blurred cluster. How
should this direction be initialized with respect to the frontal direction, using
the sequence of images?
The evidence of each single viewpoint is not very strong, but we can expect
the detections from many slightly different viewpoints to accumulate around
the real directions. The center of these clusters will statistically be a better
estimate than each single view detection. A strategy should thus be, to
accumulate measurements and defer the initialization until enough evidence
is available. This is hindered by the fact, that the orientation between the
different camera poses of the sequence is usually not known. To accumulate
vanishing point detections, we have to know the camera orientation with
respect to the scene. However, we can estimate the camera orientation only
robustly, if the scene layout is known. Tracking an assembly of known
vanishing directions (termed vanishing direction model in the remainder) and
tracking camera orientation become interchangeable problems in this case.
Tracking vanishing points can been understood as a constrained multi object
tracking problem, and can thus be handled with the same tools. Following
the tracking by detection scheme, vanishing points would be detected inde-
pendently in consecutive images and associated to form a track. While this
is feasible, when the model structure is known (e.g. Manhattan [22]), it be-
comes very sensitive when the model has to be estimated along. Apart from
that, valuable information from the past remains unconsidered. History can
be incorporated by casting the problem into a min flow cost optimization of a
graph over a batch of images, as recently proposed in [46]. While achieving
convincing results, such kind of batch processing is computationally expen-
sive. To retain real-time capabilities, a sequential update strategy would be
desirable, which considers the measurement history, but keeps track of the
model using only the current, new measurements.
Such strategies have been implemented for instance in the frameworks of
Bayesian inference [17, 59] or expectation maximization [78]. Vanishing
directions are tracked by optimizing their parameters based on their last
known estimates, instead of detecting and associating them independently.
However, it is assumed here again that the model itself does not change during
the sequence. Recognizing a change in the model (e.g. due to an emerging
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side street), or even recognizing the loss of tracking is difficult since the
optimization might converge in local minima. In this case an independent
detector can provide a solution.
Our approach combines both methodologies. We will track the model of
vanishing directions by continuously optimizing its parameters to adapt it
to the changing camera orientation, while we simultaneously adapt it to the
changes in the observed scene. To judge about the correctness of the model
and its number of parameters, we propose an algorithm that detects vanishing
directions independently. By accumulating these detections over time we can
defer decisions about model changes until enough evidence has accumulated.
That way we make use of the long history of past detections.

3.1.2.2 Tracking Multiple Vanishing Directions

Our approach is based on edge segments. We experiment with two different
edge extraction methods. An implementation based on a Canny edge detector
taken from [87], and the recent approach of EDLines [1]. Both provide edge
segments fitted with a line model e, which set up the edge list E.
We measure the consistency between a vanishing direction 𝑉 and an edge
segment e in image space as the orthogonal distance between one of the line
endpoints 𝑒1 and the line l, that connects the vanishing point v with the edge
centroid 𝑒𝑐 (Figure 3.4). The distance 𝐷 is calculated as

𝐷(v, e) = dist(𝑒1, l) =
⟨𝑒1, l⟩√︀
𝑙21 + 𝑙22

, with l = 𝑒𝑐 × v. (3.14)

e

𝑒1

𝑒𝑐 l v
𝐷(v, e)

Figure 3.4: Error 𝐷 between edgelet e and vanishing point v.
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By evaluating 𝐷 < 𝜖 for a set of edges E we can select the support edges
E𝑉 for a given vanishing direction 𝑉 (𝜃, 𝜙) and a distance threshold 𝜖. The
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vanishing direction that maximizes the consistency with E𝑉 is found by
minimizing

𝑉 + = min
𝜃,𝜙

∑︁
e∈E𝑉

𝐷( 𝐾 𝑉 (𝜃, 𝜙), e) (3.15)

where 𝑉 is defined by the minimal two spherical coordinates 𝜃 and 𝜙. The
intrinsic camera matrix 𝐾 projects the vanishing direction 𝑉 to its vanishing
point on the image plane.
Depending on the intensity of camera motion this minimization can be
already sufficient to track a vanishing direction over sequences of images.
The optimization usually converges after 3 to 4 iterations between inlier
selection and minimization. Problems can be caused by spurious inlier
selection. Due to the direction ambiguity of line observations, edges might
be selected as inlier, although they belong to completely different vanishing
directions.
In practice, scenes are composed of multiple vanishing directions, which
should all be tracked simultaneously. The previous inlier selection is now
modified into an assignment between edges and vanishing directions. An
obvious solution to this is nearest-neighbour assignment using 𝐷(·). Related
work has also treated this task as soft-classification using expectation maxi-
mization [2, 45, 78]. The idea is to iterate between a weighted assignment
in the expectation step, and the optimization of all vanishing directions in
the maximization step using the current weight. In our experiments this
scheme performed most robustly, when ambiguously assigned edges with
mixed weights were completely disregarded in the maximization step. This
lets us opt for an efficient two step solution. In a first step, inlier edges are
found for each vanishing direction independently. Afterwards, all edges are
rejected which were assigned to more than one direction. Maybe this reflects
reality, where the assignment is strictly distinct and an edge cannot belong to
two different vanishing directions.
Having clustered the edges, we can proceed to optimize each vanishing
direction with the respective inlier edges using (3.15). Since vanishing
directions are fixed with respect to each other, the optimization would need
to be complemented with according constraints (e.g. to enforce a Manhattan
world model: ⟨𝑉1, 𝑉2⟩ = ⟨𝑉2, 𝑉3⟩ = ⟨𝑉1, 𝑉3⟩ = 0). A more intuitive

32



3.1 Geometric Scene Background

and efficient way is to rotate the camera, instead of rotating the single
vanishing directions. We seek the spatial rotation 𝑅 that needs to be applied
to all vanishing directions in order to minimize their cost functions. This is
expressed as

min
𝜃,𝜑,𝜓

∑︁
𝑉𝑛

∑︁
e∈E𝑉𝑛

𝐷( 𝐾 𝑅(𝜃, 𝜑, 𝜓) 𝑉𝑛, e). (3.16)

The updated vanishing directions are then obtained as

𝑉 +
𝑛 = 𝑅(𝜃, 𝜑, 𝜓) 𝑉𝑛. (3.17)

This has two big advantages: We have to optimize 3 rotation parameters for
arbitrary many vanishing directions instead of 2 𝑛 parameters for 𝑛 directions
in an independent optimization. Furthermore, each edge contributes to each
direction. This leads to more observations to estimate fewer parameters.
Consequently, the estimation is much more robust. The prerequisite is, that
the arrangement of vanishing directions correctly models the scene layout. In
inner-urban scenarios, the street layout changes frequently during traversal,
mainly due to side streets that emerge and disappear. We are able to track the
camera orientation jointly with the given vanishing directions of a scene. For
practical applicability, we need to adapt the model to the environment over
time.

3.1.2.3 Vanishing Direction Model

Our scene model is based on the Atlanta world of [78]. Here, vanishing direc-
tions are arranged orthogonally to a common vertical axis, which corresponds
to the direction of gravity. This model can represent the majority of inner
urban scenes, while it offers great simplifications for efficient estimation.
All horizontal vanishing directions lie in a plane 𝜋𝑣 through the camera
origin (Figure 3.2). The projection of 𝜋𝑣 to the image plane is the vanishing
line l𝑣 which corresponds to the horizon. All vanishing directions coherent
with our model project to vanishing points which lie on l𝑣 .
Under the assumption that an edge segment e belongs to a horizontal vanish-
ing direction which lies within 𝜋𝑣 , it can be transformed into a 3D direction.
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Figure 3.5: All hypotheses for horizontal vanishing directions obtained from the red
edge segments. A zero azimuth angle 𝜑 corresponds to the frontal direction and edge
length is encoded with radius.

The potential vanishing point in image space is given as the intersection of
the edge with the vanishing line l𝑣 × e, or, its direction 𝐸 in Euclidean space
as

𝜋𝑒 = 𝐾𝑇e

𝐸 = 𝜋𝑒 × 𝜋𝑣. (3.18)

A horizontal vanishing direction can now be represented by a single parameter
𝜑 as the angle to an arbitrarily chosen frontal direction 𝐹 lying in 𝜋𝑉 . Using
(3.18), each edge generates one datapoint 𝜑𝑒 = ⟨𝐹,𝐸⟩ in an accumulator
A. Figure 3.5 shows the accumulator for an exemplary single frame. The
accumulator contains all edges that do not belong to the vertical direction
according to the data association in Section 3.1.2.2. Intuitively, modes in this
accumulator entail the horizontal vanishing directions of the scene. Clusters
can be recognised at an azimuth angle 𝜑 of 0° meeting the frontal vanishing
direction, at around -30°, corresponding to the side street, and at 90° mainly
caused by the parking cars.
A model of at least two vanishing directions is sufficient to track the camera
orientation from frame to frame using the method presented in Section 3.1.2.2.
The current orientation of the camera 𝑅𝑊𝑘

to an initial reference frame
𝑊 updates according to 𝑅𝑊𝑘

= 𝑅(𝜃, 𝜑, 𝜓)𝑅𝑊𝑘−1
from frame to frame,
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-𝜋/2 -𝜋/4 0 𝜋/4 𝜋/2
Azimuth 𝜑

Direction hypotheses

Figure 3.6: Vanishing direction hypotheses generated from all non-vertical edges,
accumulated in a reference frame over 10 images. The data value corresponds to the
edge segment length.

Knowing 𝑅𝑊𝑘
we can accumulate the direction hypotheses in 𝑊 over an

arbitrarily long history of frames. Evidence for new vanishing directions
moving into the view accumulates over time, while it disappears in the
same manner when vanishing directions move out of view. Angles at which
measurements pile up are an indicator for the prominent scene directions. We
will use this to decide about adding or removing horizontal directions from
the model. The correct model in turn allows to track the camera orientation.

Accumulator Analysis Figure 3.6 shows the accumulator for a history
length of 10 frames. We want to use this feature space for two purposes: On
one hand, decide whether a certain vanishing direction needs to be added to
the model. On the other hand, decide whether existing vanishing directions
should be kept or be discarded. In both cases, the decisive feature is the
amount of support from the accumulator. Measuring support for a given
direction is straight forward, the simplest solution would sum up all data
values within a margin around the respective azimuth angle. By contrast,
finding new directions requires to analyse the whole accumulator for clusters
of data. Computational cost puts a narrow limit on the amount of data and
thus the size of history length here.
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Figure 3.7: The von Mises distribution for 𝜇 = 0 and different concentration param-
eters 𝜅. It resembles a normal distribution wrapped around a circle.

Our method is based on non-parametric feature space analysis using a kernel
density estimator

𝑃ℎ(𝑥) =
1

ℎ𝑛
𝑓ℎ(𝑥) =

1

ℎ𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝐾
(︁𝑥− 𝑥𝑖

ℎ

)︁
, (3.19)

which estimates the probability density function 𝑃ℎ of data points 𝑥𝑖 with
a kernel function 𝐾(·). A bandwidth parameter ℎ controls the degree of
smoothing. The individual data points 𝑥𝑖 might be weighted with a normal-
ized weight 𝑤𝑖 which satisfies

∑︀𝑛
𝑖=1 𝑤𝑖 = 1. The kernel 𝐾(·) should reflect

the circularity of our data. We use the von-Mises distribution

𝑓𝑉𝑀 (𝑥 | 𝜇, 𝜅) = 𝐶(𝜅)𝑒𝜅 cos(𝑥−𝜇),

which approximates the normal distribution wrapped around a unit circle.
𝜇 is the center of the distribution and 𝜅 is a concentration parameter which
controls the spread of the distribution (Figure 3.7). 𝐶(𝜅) = (2𝜋𝐼0(𝜅))−1

normalizes the distribution, 𝐼0(·) is the modified Bessel function of order 0.
The Kernel becomes 𝐾(𝑥) = 𝐶(𝜅) exp(𝜅 cos(𝑥)).
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The unscaled density profile 𝑓ℎ(·) is shown as a red curve in Figure 3.6
(ℎ = 1, 𝜅 = 100, 𝑤𝑖 ∝ length of edge). The locations of potential vanishing
directions are clearly exposed as modes of the profile.
Locating the modes of such function is the objective of the mean shift
algorithm [25]. The mean shift procedure is an iterative algorithm that shifts
a data sample into the maximum gradient direction until it converges in a
local maximum. It is attractive for the analysis also of larger feature spaces,
since it does not require to estimate the complete shape of 𝑃ℎ(𝑥) explicitly.
Only the weighted mean of the data 𝑥𝑖 around the shifting sample has to be
estimated.
The mean shift is defined as

𝑚(𝑥) =

∑︀𝑛
𝑖=1 𝑤𝑖𝐾(𝑥−𝑥𝑖

ℎ )𝑥𝑖∑︀𝑛
𝑖=1 𝑤𝑖𝐾(𝑥−𝑥𝑖

ℎ )
− 𝑥. (3.20)

Modes M are located by iteratively updating a set of sample points 𝑠𝑖 accord-
ing to 𝑠𝑖 ← 𝑚(𝑠𝑖) until convergence. Samples that converge into the same
mode are merged in a post-processing step. The initial sample points can be
chosen equally distributed over the parameter space.
For each mode 𝑚 ∈ M the support 𝑠𝑚 = 𝑓ℎ(𝑚) (3.19) is evaluated. The
model is extended with a new vanishing direction, if 𝑠𝑚 exceeds an ini-
tialization threshold. Evaluating the support 𝑓ℎ(𝑣𝑖) for the model’s exist-
ing vanishing directions 𝑣𝑖 allows to recognize directions that do not exist
anymore.
The computational cost of the mean shift procedure depends linearly on the
amount of data points 𝑥𝑖 that have to be analysed. When looking at the
input edges in Figure 3.5 it becomes obvious that many edges originate from
scene clutter (here mainly cars) which should at best be neglected during the
estimation. In the accumulator it causes a large amount of background noise.
From a point of speed up, stability and robustness it is desirable to increase
the signal to noise ratio here. True vanishing directions are supported by a
whole group of edges. Instead of using each single edge to generate a data
point in the accumulator, we will use groups of edges that clearly belong to
the same direction. Finding such groups of edges leads back to the problem
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of detecting vanishing points. However, the detection can be restricted to
vanishing points that conform with the model.

Edge Clustering Very intuitively formulated, two edges are geometrically
similar when they support the same vanishing point. Given a set of vanishing
points, we first evaluate, which vanishing points are supported by which edge.
If two edges vote for the same vanishing points, they are likely similar to
each other and can be grouped into the same cluster. This is the basic idea
behind the J-Linkage clustering algorithm presented in [88] and applied to
the problem of vanishing point detection in [87]. For each edge e𝑛 a binary
feature vector called preference set is build that contains one entry for each
vanishing point v𝑚. It is 1 if e𝑛 supports v𝑚 according to 𝐷(v𝑚, e𝑛) < 𝜖

(3.14), and 0 otherwise. Afterwards, the edges are grouped based on the
Jaccard coefficient of their preference sets 𝐽(𝐴,𝐵) = |𝐴∩𝐵|

|𝐴∪𝐵| , which is 0
for disjoint sets and 1 for identical sets. The basis for the algorithm is a
set of vanishing point hypotheses v𝑚. To be in accordance with our model,
a hypotheses must lie on the vanishing line l𝑣 (Figure 3.2). As previously
discussed, each edge generates one such hypotheses (3.18). These form
the input of the algorithm, the output are clusters of edges. Each cluster
is fitted with the optimal vanishing direction using (3.15) and added to the
accumulator.
Figure 3.8 demonstrates the difference to the direct method, in which each
edge is treated as measurement in the accumulator. The results are measure-
ments which are quantitatively less, but qualitatively representing the real
scene structure in a more accurate way with less noise. Additionally, the
reduced amount of data allows to accumulate measurements over a longer
history of images.

3.1.2.4 Implementation Overview

The overall implementation consists of two parts: Tracking the vanishing
points by continuously optimizing the extrinsic camera orientation with
respect to the vanishing direction model. This succeeds, as long as the
model correctly represents the scene structure. To adapt the model, we use
the support 𝑓ℎ(𝜑) over directions 𝜑 which is provided by an independent
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detector. The modes of 𝑓ℎ tell about potential new directions. The support
of current model directions reflects their correctness and currentness. We
define three support levels to this end (Figure 3.8). We initialize a new
direction from a mode 𝑚 when 𝑓ℎ(𝑚) > 𝑇𝑖𝑛𝑖𝑡. The new direction is initially
tracked independently along with the model (3.15). If it does not diverge
from the model it is eventually added as new direction, or applied as update
to an existing direction, if it falls below the minimal accepted angle between
model directions (15°). For each direction in the model 𝑣𝑖 we estimate
𝑓ℎ(𝑣𝑖) and deactivate the direction if it falls below the level 𝑇𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒. In
this state it is kept in the model but ignored during the camera orientation
estimation. This is useful to allow for temporary invisibility due to changes
in the viewing direction. The direction is either reactivated, when 𝑓ℎ(𝑣𝑖)

raises above 𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, or otherwise deleted from the model after a certain
time. A hysteresis between 𝑇𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 and 𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 prevents that invisible
directions become accidentally reactivated by scene clutter. A high-level
overview of the processing sequence is given on the next page.

-𝜋/2 -𝜋/4 0 𝜋/4 𝜋/2
𝑇𝑑𝑒𝑎𝑐𝑡.
𝑇𝑎𝑐𝑡.

𝑇𝑖𝑛𝑖𝑡

Azimuth 𝜑

Edge hypotheses
J-linkage hypotheses

Figure 3.8: Vanishing direction hypotheses generated from clustered non-vertical
edges, accumulated in the reference frame over 30 images. The data value corre-
sponds to the cluster size. Hypotheses generated directly from edges (Figure 3.6) are
underlaid for comparison. Three levels 𝑇{𝑖𝑛𝑖𝑡,𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒} are used to decide
about model modifications, see text for details.
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Algorithm 1: High-level overview of the proposed method.
Initialize a minimal direction model V consisting of the vertical axis and the
most prominent vertical direction with existing single image methods (e.g.
[62, 6, 94, 87])
Initialize empty accumulator A and initial camera pose 𝑅𝑊
foreach new image at time 𝑘 do

Extract all 𝑑 edges E from the image
Estimate change of camera orientation 𝑅 with all active vanishing
directions (3.16)
Update camera pose: 𝑅𝑊𝑘

= 𝑅(𝜃, 𝜑, 𝜓)𝑅𝑊𝑘−1

Generate 𝑑 vanishing point hypotheses V𝐻 (3.18)
Run J-Linkage with V𝐻 and E to find direction hypotheses 𝐻
Add directions 𝐻𝑖 to accumulator A as 𝑅𝑊𝑘

𝐻𝑖

Delete data from A that is older than 30 frames
Find modes M in A using meanshift
foreach mode 𝑚 in M do

Calculate 𝑓ℎ(𝑚) (3.19)
if 𝑓ℎ(𝑚) > 𝑇𝑖𝑛𝑖𝑡 then

Add direction of 𝑚 to model V or
Update existing model direction

end
end
foreach direction 𝑣 in model V do

Calculate 𝑓ℎ(𝑣) (3.19)
if 𝑓ℎ(𝑣) < 𝑇𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 then

Deactivate 𝑣
If deactivated since more than 30 frames, delete 𝑣

end
if 𝑓ℎ(𝑣) > 𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 then

Activate 𝑣
end

end
end

40



3.1 Geometric Scene Background

3.1.2.5 Evaluation

The eventual goal was to measure the scene vanishing directions in local
camera coordinates for each frame of a sequence. There are two aspects
to evaluate: 1. How accurate is the measurement of a vanishing direction?
2. How accurately do the measurements represent the structure of the scene?
Both aspects are interrelated.
The accuracy of a direction measurement can be quantified as the angular
deviation between the ground truth direction and the measured direction in
camera coordinates for each analysed image of the sequence. The proposed
method measures vanishing directions indirectly by estimating the camera
rotation between two images. Hence, the camera orientation error reflects
the measurement error of the vanishing directions. We use an IMU attached
to the camera to measure a ground truth frame to frame orientation delta
𝑀𝑅𝑖𝑚𝑢𝑀

T. This is directly comparable to the frame to frame orientation
estimate 𝑅 using the vanishing direction model. 𝑀 denotes the extrinsic
orientation between IMU and camera (Section 4.1).
Figure 3.9 shows the error distribution for 𝑅 in yaw, pitch and roll angles for
an indoor sequence of 240 m length. The path and exemplary measurements
of this sequence are shown on pages 75 and 76. To cut out errors originating
from inaccuracies in the estimated scene model, the model was set fixed to
the three orthogonal directions of the building. The errors are similar in all
axes with virtually zero mean error.
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Figure 3.9: Frame to frame camera orientation errors compared to IMU ground truth
in a Manhattan scene with correct model. Plots show histograms of errors in degrees
divided into yaw, pitch and roll rotation, including (mean ± standard deviation).
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axis, but will affect all horizontal vanishing directions. Figure 3.10b shows
the direction measurements mapped into the reference IMU frame, where
the different noise distributions become apparent. The noticeably higher
variance in the horizontal directions is explained by the fact, that the head
worn camera typically rotates most around the vertical yaw axis. Inlier line
segments for the horizontal directions can differ strongly between consecutive
frames. Besides that, the accuracy depends on the scene itself. In sparsely
built-up areas horizontal directions are often poorly supported and result in
higher uncertainties. The standard deviation for the vanishing directions in
this sequence amounts to around 1° for the azimuth angle and 0.6° for the
elevation angle.
In the usual application the scene model is unknown and needs to be estimated
along with the camera orientation. The question that arises is how accurately
the model directions represent the scene structure. An indicator are the
relative angles between model directions, which should conform with the
real world scene. A ground truth for these angles can be determined from
maps and high resolution satellite imagery. One can expect a measurable
ground truth precision between 0.5° and 1°, depending on the scene.

1°

1°

1°

(a) (b) (c)

Figure 3.10: Local vanishing direction measurements mapped into the reference
IMU frame. (b) shows the variance for the correct (Manhattan) model (magnification
in (a)). In (c), an erroneous model was applied for estimation, which causes a higher
variance.
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The error in 𝑅 affects the accuracy of each vanishing direction in a different
way. For instance, a yaw error in 𝑅 will not have any effect onto the vertical



3.1 Geometric Scene Background

sequences consist mainly of sidewalks with turns into branching sidestreets.
Figure 3.11 shows 15 such junctions and the estimated horizontal model
directions. The measurement is taken shortly after the direction was added
to the model, the position is indicated in the map. The average absolute
error over all sequences adds up to 2.04±1.86°. Replacing the Canny edge
detector with the faster EDLines Detector reduces the accuracy and precision
marginally to 2.53 ± 2.25°. The biggest error with 9° (EDlines) can be noted
in scene (4). The branching street is not yet visible but already initialized
only based on the ground structure. Outlier measurements on the crane in the
background and the opposite building lead to the comparably large deviation.
When combining both parts – model estimation and camera orientation
tracking – the question arises in how far errors in the estimated scene model
affect the accuracy and in general the ability of keeping track of the model.
In Figure 3.10c the lateral direction of the model was disturbed by 6°. A
higher variance in the estimated directions becomes obvious, but the effect
is difficult to quantify since it depends strongly on the scene and camera
orientation. The optimization of 𝑅 is influenced by the amount of support in
the different directions. An erroneous model usually causes 𝑅 to converge
into a minimum, which is accurate for the strongest supported direction but
rolled around this direction. In practice, the frontal direction usually has
most support, followed by the vertical and the lateral direction. A wrong
model is fitted into the scene with a small roll bias in this case, but camera
orientation can still be tracked (albeit with increased variance).
Loss of tracking becomes apparent in identity switches of horizontal model
directions. The tracking mechanism requires a minimal number of one hori-
zontal direction. As long as the camera is in motion and is roughly oriented
horizontally, this minimal configuration usually converges into a minimum
after few images. After an id switch happened, a stable new configuration is
automatically recovered within few frames, but the global orientation with
respect to the scene gets lost. Id switches are usually not caused by slight
errors in the model, but rather by a combination of strong camera motion
and missing or wrongly assigned spurious edge segments in very cluttered or
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We evaluate the estimated relative intersection angles for a dataset of inner
urban scenarios. Captured using a head-worn camera (Section 4.1) the
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(1) 0.26° 3.29° (2) 0.60° 0.33° (3) 0.39° 2.31°

(4) 3.01° 9.15° (5) 0.67° 0.57° (6) 1.77° 3.10°

(7) 3.02° 2.11° (8) 1.60° 0.58° (9) 6.32° 3.73°
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(10) 4.62° 2.02° (11) 4.10° 4.23° (12) 3.38° 3.36°

(13) 0.12° 0.27° (14) 0.52° 0.78° (15) 0.45° 3.89°

Figure 3.11: Sequences tested to analyse the accuracy of initialized directions. The
support over directions is plotted as blue line, mean shift modes are indicated by dots
on the line. The thresholds 𝑇𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 < 𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 < 𝑇𝑖𝑛𝑖𝑡 are plotted as dashed red
circles, the model directions with colored lines, and the camera heading as blue cone.
Relative errors between directions compared to ground truth are given underneath
for EDLines and Canny edge segment detection. Background images: Google Earth,
© 2009 GeoBasis-DE/BKG.

45



3 Visual Scene Perception

(a) (b)

Figure 3.12: (a) Three failure cases in unstructured scenes and ill-conditioned lighting
conditions. (b) Loss of tracking upon entering a staircase. The vertical component
flips into the horizontal plane and cannot be recovered automatically.

the correct model orientation is lost 15 times with automatic recovery. Unre-
coverable tracking loss can happen when the vertical component switches
into the horizontal plane. This situation is usually result of very sparse edge
measurements, and occurred once in the dataset during a staircase entry (see
Figure 3.12b). The orientation estimation as introduced is unfiltered. A single
strong outlier estimate can cause these errors. Many failure cases could be
caught by evaluating the estimated frame to frame orientation 𝑅 against a
reasonably chosen bound of the expected camera rotation rate. Alternatively,
an independent odometric measurement can easily be used as prediction
to initialize the optimization in Section 3.1.2.2. This way also very strong
camera motion can be handled.
The processing time of the algorithm allows real-time operation on a wearable
platform with an average runtime of around 25 ms per frame on a single CPU
core. Bottlenecks are the line extraction and J-linkage stages. The latter
depends on the numbers of line segments and sampled direction hypotheses,
which both could be limited to reach a desired constant computation time.
The mean-shift algorithm is computed for 10 equally positioned probes to
locate the density modes and finishes within 1-2 ms for an accumulator size of
30 images. With these processing times it is absolutely competitive to related
work that operates on image sequences. The batch processing algorithm of
[46] operates in 2 s per image, the very recent Kalman filter approach of
[51] with frame to frame line tracking computes 40 ms per frame. Earlier
implementations that focus on single image optimization (e.g. [17, 21, 87])
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unstructured environments (see Figure 3.12 for three examples). The evalu-
ated dataset contains 3.5 km of walking captured in 34000 images. Overall
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3.1.2.6 Conclusions

The aim of this work was to recover the vanishing directions that underlie
a local scene. Other than in the majority of existing work, only minimal
assumptions regarding the scene structure are made. The proposed method
jointly estimates the parameters of a vanishing direction model and the
orientation of the camera with respect to this model. To exploit the fact
that moving mobile systems permanently change their viewpoint and reveal
new information about the scene, the problem is treated using sequences of
images as input.
The key-problem is the unknown model and especially its unknown and
changing number of parameters. Every multi-instance tracking algorithm
requires a decision regarding the initialization of new and closing of existing
tracks. When implemented following the tracking-by-detection scheme, an
additional assignment decision is required between tracks and measurements.
An alternative strategy are approaches that seek the tracked instance by
optimizing its last known state using correlation or likelihood maximiza-
tion. Here, tracking loss is hard to recognise, and additional mechanisms
are required to estimate the number of instances or model parameters. The
proposed method combines both strategies. Vanishing directions are tracked
by optimizing the camera orientation with respect to the model. An inde-
pendent detector accumulates evidence using the history of images. This
evidence over scene directions offers an elegant way to decide about required
modifications to adapt the model to changes in the passing scene.
The evaluation shows a measurement precision of vanishing directions within
1° standard deviation for a given scene model. The accuracy of the estimated
scene models varies around 2°. The algorithm itself is very lightweight and
one of very few implementations applicable in real-time on a single core of
current standard hardware.
The ability of measuring scene orientations can be an enabler for a variety of
different applications. In a local view, vanishing directions provide accurate
information about surface orientations. In the following Section 3.1.3.1 this
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finish between seconds and minutes. The proposed method is thus one of the
very few methods with actual real-time applicability.
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from multiple viewpoints. In Section 3.1.4 an algorithm is introduced that
uses parallel lines and their orientation to detect staircases along with their
geometric properties. Vanishing points can furthermore provide valuable
context information during obstacle detection, since foreground objects are
often aligned with the scene geometry. An example will be given in Section
3.2. In a global view, vanishing directions can be exploited to estimate the
camera orientation with respect to the scene, which is a byproduct of the pro-
posed algorithm. In combination with odometric measurements, a drift free,
scene referenced position estimate can be achieved, as will be demonstrated
in Section 3.1.5.

3.1.3 Scene Background Model

Two features were introduced to measure properties of the scene background:
geometric plane models, which can be measured from depth data by combin-
ing random model sampling and least-squares optimization, and vanishing
directions, which can be extracted from the image information. In this sec-
tion, both features are combined in order to estimate a scene background
model. It consists of a ground plane, complemented by a varying number of
vertical planes, which represent background structures like buildings, fences
or bushes. The ground plane is of particular importance, since it provides the
common reference. It needs to be reliably tracked, also during ill conditioned
situations where it is not visible.

Figure 3.13: Three situations in which objects and scene clutter heavily occlude the
ground plane.
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is utilized to track planar surfaces even in cases where they are not directly
visible. Once a line observation is assigned to a vanishing point its 3D orien-
tation is known. This facilitates the correct reconstruction of line segments
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3.1.3.1 Tracking Occluded and Invisible Planes

As detailed earlier, tracking plane parameters can principally be done by
iterative least-squares optimization. In real applications, especially when
no influence on camera orientation is possible, several situations pose chal-
lenging problems. Objects and scene clutter might occlude the surface up to
total occlusion (Figure 3.13). The camera might be oriented in a way that the
surface is not visible at all. Though these situations are only temporal in prac-
tice, they surely lead to tracking loss if not noticed and treated. This section
presents a robust filter to track the ground surface under such conditions.
Certainly, an obvious solution in these cases would be to discard the erro-
neous measurement and propagate the prediction until valid measurements
can be gathered again. The estimated camera transformation is subject to
drift in orientation as well as translation, which will propagate as error to the
parameters. If the accumulated error grows over a limit, the optimization will
not converge anymore when the plane comes back into view. Slight errors
in plane orientation lead to quickly growing errors in the plane translation
parameter 𝑑. This is visualized in Figure 3.14. If this drift remains uncor-
rected, the support point selection for plane fitting becomes erroneous and
eventually the plane track cannot be recovered.
Interestingly, this problem is usually neglected in related systems. Sometimes
the system design provides enough constraints on camera orientation and
prevents the case of the surface moving out of view, as e.g. in car mounted
setups. In unconstrained setups, the ground is usually assumed to be the
most prominent surface and tracked by independent detections via random
sampling (e.g. [55, 74]). When the ground is not visible, another prominent
surface will be picked instead. Ground orientation gets lost in this moment.
When elevation over ground is used for obstacle detection, this leads to total
failure. In [105] we have proposed to combine two independent measure-
ments to this end. The commonly applied plane fit in depth data, and the
vertical vanishing direction measured from image evidence. In the case of a
calibrated pinhole camera, this direction coincides with the normal vector of
the (non-inclined) ground plane.
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𝜃 [rad]

−𝜙 [rad]

𝑑 [m]

frame number

Figure 3.14: Ground plane parameters (n(𝜃, 𝜙), 𝑑) propagated by visual odometry.
Without correcting drift in the attitude parameters 𝜃 and 𝜙, the error in plane distance
𝑑 grows with increasing rate. Dashed lines are the IMU ground truth, solid lines
the predicted parameters. Ground truth for 𝑑 is not available, the true camera height
oscillates around 1.8m.

range of the camera. Moreover, in inner-urban environments with high
building facades this measurement is in principle the more accurate, the
further the camera points away from the ground because more of the building
structure becomes visible. Though the plane distance is not measurable
from the vanishing direction alone, two of the three degrees of freedom are
recoverable. On the other hand, when the camera is directed towards the
floor, the depth data allows to extract an accurate plane fit which includes the
plane distance.
We want to follow the principle of Section 3.1.1.3 and use both measure-
ments to correct the plane prediction, which we obtain by propagating the
parameters with visual odometry. Since we are solely interested in the cur-
rent best estimate for the local plane 𝜋 = (n(𝜃, 𝜙), 𝑑), we apply a recursive
estimator to fuse the information. An extended Kalman filter fullfills our
requirement here. The state of the filter are plane parameters in camera
coordinates, where the plane normal vector is expressed in minimal form
with spherical coordinates. We have x = (𝜃, 𝜙, 𝑑)T. In the remainder the
formulation of [85] is adopted, in which x−

𝑘 denotes the estimate of x before
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These measurements are highly complementary: First of all, we are able to
measure the vanishing direction also when the plane is not in the viewable
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after incorporating the measurement. The local plane parameters change
from camera pose to pose according to the egomotion 𝑇 . The egomotion can
be understood as a control input, which transforms the plane parameters to
the current view. We do not employ a camera motion model at this point, so
the egomotion estimate constitutes the prediction step of the filter.

x−
𝑘 = 𝑓(x+

𝑘−1, 𝑇𝑘) = 𝑓
(︀
[𝜃, 𝜙, 𝑑]T, 𝑇𝑘

)︀
(3.21)

= 𝑔𝑠𝑝ℎ

(︁(︀
𝑇−1
𝑘

)︀T
𝑔𝑒𝑢𝑐

(︀
[𝜃, 𝜙, 𝑑]T

)︀)︁
(3.22)

where 𝑔𝑠𝑝ℎ (·) transforms the Euclidean plane representation into spherical
coordinates and 𝑔𝑒𝑢𝑐 (·) vice versa:⎛⎝𝜃𝜙

𝑑

⎞⎠ = 𝑔𝑠𝑝ℎ

(︂[︂
n

𝑑

]︂)︂
=

⎛⎝ arccos(n𝑧)

atan2(n𝑦,n𝑥)

𝑑

⎞⎠ (3.23)

⎛⎜⎜⎝
n𝑥
n𝑦
n𝑧
𝑑

⎞⎟⎟⎠ = 𝑔𝑒𝑢𝑐

⎛⎝⎡⎣𝜃𝜙
𝑑

⎤⎦⎞⎠ =

⎛⎜⎜⎝
sin(𝜃) cos(𝜙)

sin(𝜃) sin(𝜙)

cos(𝜃)

𝑑

⎞⎟⎟⎠ (3.24)

The state transition function 𝑓 (·) is thus nonlinear and requires the use of an
extended Kalman filter with the state transition matrix approximated by the
Jacobian 𝐹 = 𝜕𝑓

𝜕x

⃒⃒⃒
x+
𝑘−1,𝑇𝑘

.

We use the state prediction x−
𝑘 as initialization to re-measure the vanishing

direction and plane parameters. The plane representation is modified to
𝛼𝑛𝑢𝑛 + 𝛽𝑛𝑣𝑛 + 𝛾𝑛 + 𝛿(𝑢, 𝑣) = 0 with normalized image coordinates
𝑢𝑛 = 𝑢−𝑐𝑢

𝑓 and 𝑣𝑛 = 𝑣−𝑐𝑣
𝑓 . This simplifies the observation model to

⎛⎝𝛼𝑛𝛽𝑛
𝛾𝑛

⎞⎠ = −𝐵𝑓
𝑑

n = ℎ𝑢𝑣𝛿

⎛⎝⎡⎣𝜃𝜙
𝑑

⎤⎦⎞⎠ = −𝐵𝑓
𝑑

⎛⎝sin (𝜃) cos (𝜙)

sin (𝜃) sin (𝜙)

cos (𝜃)

⎞⎠ (3.25)

with stereo baseline 𝐵 and camera focal length 𝑓 .
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incorporating the measurement of time 𝑘 (predicted state), x+
𝑘 the estimate
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The correction step of the filter consists of two parts. The plane estimation
(p. 22) provides the measurement m𝐿𝑆 = (𝛼𝑛, 𝛽𝑛, 𝛾𝑛)T. The vanishing
point estimation (p. 31) results in a measurement m𝑉 𝑃 = (𝜃, 𝜙)T. The
measurements are related to the filter state according to

m𝐿𝑆 = ℎ𝑢𝑣𝛿(x
−
𝑘 ) (3.26)

m𝑉 𝑃 =

(︂
1 0 0

0 1 0

)︂
x−
𝑘 (3.27)

While m𝑉 𝑃 is always applied, m𝐿𝑆 is considered depending on the camera
pitch angle and the number of inlier points. To filter outlier measurements,
both correction steps are validated with a gate around 𝑒2 = rT𝑆−1r, where
r is the update residual and 𝑆 the innovation covariance [85].

3.1.3.2 Building Facades

The scene background is described by an arrangement of flat surfaces, mod-
elled with geometric planes in Euclidean space. These planes are enforced to
be orthogonally aligned with the ground plane. Thereby we take the typical
gravity alignment of man made structures into account and at the same time
simplify the optimization of plane parameters from three to two degrees of
freedom.
The plane fitting cost function is extended by a constraint that enforces the
inner product of the Euclidean plane normal vectors to be zero. Again, the
optimization is kept in 𝑢𝑣𝛿 image space to avoid the non-linear reconstruction
error. We minimize

min
𝛼,𝛽

𝑁∑︁
𝑖=1

(𝛼 · 𝑢𝑖 + 𝛽 · 𝑣𝑖 + 𝛾 + 𝛿𝑖)
2

subject to n𝑥(𝛼𝑓) + n𝑦(𝛽𝑓) + n𝑧(𝛼𝑐𝑢 + 𝛽𝑐𝑣 + 𝛾) = 0,

(3.28)

where n is the ground plane normal vector. The constraint is derived from the
plane transformation between image space and camera space in (3.7) (p. 23).
To initialize planes vertical to the ground we modify the 3-point RANSAC
method. Vertical plane hypotheses are created from two 𝑢𝑣𝛿 points sampled
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Figure 3.15: Examples of vertical structure modelled as planar surfaces. Right:
During initialization new hypotheses are checked for plausibility. The red hypothesis
is rejected, since it would occlude the green surface in the background.

from all current non-background points and the orthogonal ground plane
normal vector. Planes are tracked following the methodology of Section
3.1.1.3, but applying the constrained optimization (3.28). Other than the
ground surface, vertical surfaces have distinct extents and should not be
modelled as unlimited planes. For each plane we estimate the horizontal
range that encloses its inlier 𝑢𝑣𝛿 points [49]. Together with the limiting
ground plane and a fixed height over ground, a rectangular planar 3D patch
is determined that is stored in the environment model. The projection of the
plane patches to the image space enables to check pairs of planes for mutual
occlusion. Impossible configurations can be filtered during initialization, as
shown in Figure 3.15. Planes are deleted from the environment model after
they could not be remeasured for a few subsequent frames.
In certain applications it might be of interest what kind of surfaces are
represented by the planar patches. In [118] we developed a classifier that
classifies each surface into the classes building facade, vegetation or fence.
A combination of texture features (autocorrelation in horizontal and vertical
direction, image gradient histograms, local binary patterns) was extracted
to train a multi-class support vector machine on a dataset of 1500 labeled
image patches. For the three class problem a misclassification rate as little as
1.3% could be reached. For an in-depth evaluation refer to [118].

3.1.3.3 Evaluation

The environment model should be evaluated under different aspects. An
obvious quantitative measure for the performance of the scene background
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estimation is the parameter accuracy and precision. This is first addressed in
an empirical analysis of the variances of plane parameters. These are used
to parametrize the process and measurement noise of the ground plane filter.
Afterwards, the accuracy gain, that is achieved by considering vanishing
point information, is quantified.
While parameter accuracy is a performance indicator, another crucial aspect
is robustness. For an unconstrained system, the ability to maintain the ground
reference is of particular importance, since it provides the basis for almost
any succeeding perception tasks. A lost ground plane reference might lead to
complete system failure. Foremost, this requires the ground plane parameter
estimation to be robust against vanishing amounts of inlier points up to
complete invisibility. To set challenging conditions, all datasets we use
during the evaluation are captured with a head-worn camera setup (Section
4.1), which features substantial egomotion.
A last aspect that is analysed regards the completeness of the scene model.
The estimated surfaces should explain all parts of the scene background, but
should also not lead to an over-simplified representation that crops parts of
the scene foreground.

Parameter Variance We empirically estimate the measurement variances
of the least-squares parameter fit for 𝛼𝑛, 𝛽𝑛, 𝛾𝑛, the vanishing point direc-
tion 𝜃𝑉 𝑃 , 𝜙𝑉 𝑃 and the uncertainty in estimated camera motion in a set of
experiments.

Figure 3.16: Measurement setup for parameter variance estimation. Left: Plane
support points are colored green, edges supporting the vertical vanishing point are
highlighted pink. Right: Corresponding disparity image.
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For the 𝑢𝑣𝛿-plane fitting we re-estimate plane parameters 1000 times from
a fixed camera position (see Figure 3.16), using the same initial solution
for the support point selection. In the same manner we obtain variances
for 𝜃𝑉 𝑃 , 𝜙𝑉 𝑃 by re-measuring the vertical vanishing point from an initial
solution.
For a 𝑢𝑣𝛿-plane fitted in a half-resolution SGBM disparity image the param-
eters vary with
𝜎𝛼𝑛

= 0.038 𝜎𝛽𝑛
= 0.045 𝜎𝛾𝑛 = 0.016.

The vanishing point direction varies with
𝜎𝜃𝑉 𝑃

= 0.0007 𝜎𝜙𝑉 𝑃
= 0.0004.

These values can be used as an approximation to parameterize the measure-
ment noise in the Kalman filter. Obviously, the parameter variances are
influenced by the scene itself, for instance by the size of the visible floor area,
or the amount and length of visible edge segments. These factors were not
considered here. The filter process noise needs to cover the uncertainty in
parameter prediction, which corresponds to the uncertainty in the estimated
camera motion. An approximation is discussed in Section 4.1.

Ground plane accuracy To assess the accuracy we compare the estimated
plane normal to the vertical axis of the gravity-referenced IMU. For each
filter update we measure the absolute deviation in degrees from the IMU
ground truth for both attitude parameters n(𝜃, 𝜙). We evaluate the tracking
over a sequence of 4740 frames with different disparity estimators, Table 3.1
shows the mean and standard deviation. As baseline we compare our result
to the mere least-squares plane fit (LS) on the predicted plane, this corre-
sponds to conventional ground plane fitting methods as e.g. in [81, 57, 55].
Our results after adding the vertical vanishing direction are shown in the
highlighted box (LS+VP). Both attitude parameters benefit significantly from
the vanishing direction, widely independent of the choice of the disparity
estimator. Particularly the roll parameter 𝜙 becomes more accurate. The
distributions of parameter deviations are shown in Figure 3.17, where this
also becomes apparent. The effect can be explained by different facts. First,
the ground plane is often occluded by cars or buildings in lateral direction,
which can lead to imprecise support point selection and consequently an
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𝜃 𝜙
SGBM plane fit (LS) 1.25± 1.04 2.04± 1.21

plane fit + vanishing point (LS+VP)
SGBM [39] 0.64± 0.54 0.53± 0.69
libElas [29] 0.50± 0.40 0.52± 0.52
libToast2 [73] 0.82± 0.62 0.54± 0.65
libToast2 w/o subpix 0.81± 0.65 0.53± 0.59

Table 3.1: Mean absolute angular deviation of ground plane normal from IMU ground
truth. Errors are given in degrees ± standard deviation and evaluated for different
disparity estimators. Conventional least-squares plane fitting is given as baseline.

𝜃
𝜃LS plane fit

−4 −2 0 2 4

𝜙
𝜙LS plane fit

−4 −2 0 2 4

Figure 3.17: Distribution of angular error of 𝜃 and 𝜙 in degrees with and without
inclusion of vanishing direction. The roll parameter 𝜙 benefits most, since objects in
lateral direction often disturb the least-squares fit.

erroneous least-squares fit. Secondly, the planar surface assumption often
does not hold perfectly (e.g., when walking on a slightly elevated pavement)
which results in tilted measurements. See Figure 3.19 for an example. This
section of the dataset lasts around 1000 frames. The absolute errors here
are 1.57° for 𝜃 and 3.08° for 𝜙 with the baseline approach and decrease to
0.73° for 𝜃 and 0.41° for 𝜙 after adding the vanishing direction. Finally, the
filtered parameters for the whole dataset are plotted in Figure 3.18.

Ground plane stability To test the long-term stability we ran the ground
plane estimation on a dataset consisting of 45 minutes walking through inner-
urban scenes, which was mostly captured on narrow side-walks between
house facades and cars, but also contains some vast spaces with persons and
objects frequently occluding the free view onto the ground. The lighting
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𝜃 [rad] −𝜙 [rad] 𝑑 [m]

frame number

Figure 3.18: Ground plane parameters (𝜃, 𝜙, 𝑑) for the evaluation dataset. Shown
is the least-squares ground plane fit (LS), the vanishing direction (VP), the filter
result and the IMU ground truth. The top row contains exemplary frames from the
sequence.

𝜙𝜙LS plane fit

−3 0 +3

Figure 3.19: Effect of planar surface model violation with (middle) and without
(right) vanishing direction measurement. Ground plane support points are colored
green and the plane is overlayed schematically. The IMU ground truth virtual horizon
is drawn in red, the measured virtual horizon in green. The according error distribution
for a sequence of 1000 frames around the depicted scenario is shown on the left.
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Figure 3.20: Example scenes from the city dataset. Bottom row shows the corre-
sponding disparity measurements.

Figure 3.21: Typical failure examples without vanishing point correction.

conditions are challenging with considerably over- and underexposed image
areas that lack disparity measurements. Figures 3.20, 3.21 and 3.22 contain
some example shots. The method is able to keep track of the ground plane
throughout the whole sequence (except for major violations of the continuous,
non-inclined surface assumption, as e.g. on stairways).
The dataset we used for quantitative comparison does not contain scenes
with total occlusion or situations where the ground plane is out of view. This
is different here and leads to various situations in which the baseline least-
squares approach looses track. In the right scene of Figure 3.21 a passing
car blocks the view onto the street for a series of frames and the disparity
clutter causes the plane to drift away. The vanishing direction effectively
helps to keep the correct plane attitude in such cases. Figure 3.22 shows
a sequence with the ground out of view due to a high camera inclination.
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Figure 3.22: Sequence with ground plane not in free view due to camera inclination
(third image). Only the vanishing direction is considered here to correct the plane
parameters.

dismisses the erroneous plane fit and uses only the vanishing direction in
such case.

Vertical structures The methods that are applied to estimate vertical sur-
faces are essentially similar to the methods used to track the ground plane.
Nevertheless, they have to cope with few important differences.
The first major difference is that vertical surfaces are way more often subject
to discontinuities. There is no single flat background surface as could be
assumed for the ground. The background is composed of multiple surfaces
with limited extent which appear and vanish as one moves through the
scene. This adds the difficulties of multi-model estimation problems. It is
not sufficient to track the surface parameters, additionally a mechanism is
required to initialize new and remove vanished surfaces from the model.
A second difference is that background structure is much more variable in
form and appearance. Even building facades are far less flat than the ground.
Doors and windows are embedded, and ornaments, window frames, sunblinds
or balconies stick out of the facade. Neighboured buildings often show
unobvious discontinuities. Suchlike effects apply for open structures like
bushes and fences. In summary, the modelling of vertical scene background
as planar surfaces is of noticeably higher abstraction than it is for the ground
surface in a local, limited area.
Other differences affect the measurement of plane model parameters. The
distances in which background structures have to be measured are much
larger. The ground stays in a camera distance of around 2 m, but building
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Without considering the vertical vanishing direction, the uncorrected drift
in parameter prediction leads to tracking loss in this situation. The filter
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a camera baseline of 20 cm and a disparity estimator with a typical sub-pixel
refinement of 0.125 pixels, the depth resolution in only 25 m distance already
amounts to 1 m. Even if planes are measured in 𝑢𝑣𝛿 space, the disparity
discretization limits the expectable accuracy of fitted plane models.
The estimated vertical structures are evaluated under the aspects of accu-
racy and completeness. While accuracy is required to apply a tracking by
optimization scheme, the completeness of the background model directly
influences the precision of any foreground object detector. Missed back-
ground structure will lead to the initialization of false foreground objects. A
typical scenario are street canyons, where the scene is laterally delimited by
high, parallel buildings. The expected environment model consists of two
planes, which intersect in a small, constant angle and have a constant distance
to each other. Figure 3.23 shows a few examples with the progression of
intersection angle and distance over time. The distance varies in a reasonable
constant range, the intersection angle varies by quite a few degrees. Both
parameters stay in a range that allows to track the models by optimization
over periods of several hundreds of frames. Track length is usually limited
by discontinuities on the surface as e.g. the vegetation in the third image.
The angle and distance distribution over all 5000 frames of this dataset is
plotted underneath and reveals a similar picture.
To assess the completeness of the representation a sequence of 2200 frames
in a typical urban scenario was evaluated regarding the number of missed
detections and false plane models, that were initialized in scene clutter. Figure
3.24 shows some examples. In this sequence a recall of 91% is reached at
a precision of 95%, speaking for a small number of false detections. The
missed detections (which affect the recall) mainly occur during fast camera
turns, in large distances, or when new walls enter the visible scene in a very
shallow angle. Some of such typical failure examples are shown in Figure
3.25. As will be shown in Section 3.2, the detection and error rate is well
sufficient in order to dismiss the scene background for local foreground
object handling.
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facades face to face are often more than 10 m apart. The depth resolution of
reconstructed points becomes smaller with increasing distance. Considering
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Figure 3.23: Top: Progression of intersection angle and distance of tracked planes
in street canyon scenarios. Bottom: Distribution of intersection angle and distance
over all 5000 frames in this dataset.

Figure 3.24: Examples from the evaluated inner urban sequence.

Figure 3.25: Failure examples. The first three images show examples of false detec-
tions on vegetation, the fourth image shows a missed detection on the right facade
due to a very shallow viewing angle after turning around the corner.
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3.1.3.4 Conclusions

The methods introduced in this section build a model of the geometric
scene background. It consists of a common ground plane complemented
by multiple vertical planes which represent scene delimiting structures like
buildings, fences and bushes. A method was introduced to track plane model
parameters through situations of total invisibility. Keeping track of the
common ground also in such conditions is a fundamental ability for freely
moving systems. Often, this problem is circumvented by constraining the
camera orientation. We avoided this difficult restriction by extending the
classical plane fitting in depth data with the complementary visual feature of
vanishing points. The estimated vertical surfaces effectively cover all vertical
background scene structure and allows to classify depth and image data into
scene foreground and background. This will constitute the basis for obstacle
detection presented in Section 3.2.
The accuracy of estimated vertical structures is principally limited, mainly
by the camera baseline and image resolution, which lead to vanishing dis-
parity gradients with increasing distance. In the evaluated camera setup
(Section 4.1) this becomes apparent already in distances of 20 meters. The
scenes in Figure 3.24 were previously evaluated in the context of vanishing
directions (Figure 3.11 (5,6) (page 45)). The intersection angle between these
planes deviates between 10° and 20° from the measured ground truth. The
estimated vanishing direction model is far more accurate in suchlike scenes
with large measurement distances. Hence, a logical extension of the methods
presented here would consider the horizontal vanishing directions. First,
in order to further constrain the model initialization with plausible surface
normals, and second, to support the parameter tracking in the same manner
as applied for the ground plane. Currently, there are no relations between
the estimated vertical surfaces, despite sharing a common ground. A global
reasoning step could connect single surfaces into a closed geometry. While
impressive work with similar ideas exists for single viewpoint problems (e.g.
[36]), consistent modelling over time and real-time ability are challenges that
have to be overcome.
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3.1.4 Stairways

The perception framework models the environment as a flat world. Consider-
ing the limited perception range this is usually a valid representation in urban
scenarios. A major violation is posed by multi-level environments. Regarded
level by level our model can represent such environments. Transitions be-
tween floors, typically in form of stairs, can neither be described correctly by
the planar ground, nor by vertical structures, nor by foreground objects. In
this setting, stairways are a special type of navigable scene background that
requires individual treatment.
The detection of stairways offers valuable high-level knowledge to a variety
of different intelligent systems. It is vital for systems that need to expand
their range of operation to multiple floors. Systems that assist visually im-
paired people can provide guidance towards a stairway and provide helpful
information as for instance the number of remaining steps. Not least, systems
that rely on a flat world assumption need to recognise the traversal of a stair-
way passage to ensure proper functionality. Besides detecting the presence
of a staircase also some of its properties are relevant to know. To traverse a
stair the alignment, or traversal direction, the number of steps and the step
height and depth have to be known. These parameters define a geometric
stair model that can fully describe most regular, non-circular stairs. In this
section an algorithm is detailed which detects staircases and continuously
estimates these model parameters to enable a stair traversal.
Regular stairs are an assembly of treads with prominent edges which are
most often aligned with the ground surface. These distinct features have been
used in various approaches to detect stairs in camera images. In the early
works of [80] and [64], assemblies of line features are detected with a Canny
edge detector followed by Hough transform. [38] applies a Gabor filter that
responds to the periodic nature of stairs. [92] and [52] trained classifiers
based on Haar features to find stairs in images. Approaches that also assess
the stair geometry make use of stereo vision or laser scanners. Here, stairs
are measured either by detecting their tread or riser planes in the 3D data,
or by reconstructing their edges. [58] proposes a curvature index to classify
edges into concave and convex using a depth image. Similar is the work
of [99], in which concave and convex 3D edges are extracted directly from
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Figure 3.26: The stair is modelled with a stair plane (green) and tread planes (orange)
that are evenly aligned with the ground plane.

stereo disparity data. As in [20], the edges are mapped over time. Alternative
methods measure the tread surfaces. [67] compares two plane segmentation
methods especially for use in sparse lidar point clouds. [72] and [69] estimate
point cloud normals to segment the data into planar patches by clustering
or region growing. The primitives – 3D edges, or planar patches – are then
connected with some heuristics to form a stair, and if required estimate the
parameters of a generative geometric model.
The focus of this work is threefold. Stairs need to be robustly detected
from distance to initialize a minimal generative stair model. Instead of es-
timating the parameters from a single viewpoint, as focused by almost all
related approaches, the stair model should be refined with the more accurate
measurements that become available during stair traversal. For online appli-
cability especially a light-weight measurement principle is required which
can robustly deal with the noisy low-resolution disparity depth data. We have
published early versions of the developed method in [111, 119].

3.1.4.1 Stair Model

Our staircase model consists of a plane that lies on the convex step edges
(see Figure 3.26, further referred to as stair plane), the step height, and the
number of steps. We assume the treads to be evenly aligned with the ground
floor. Then, the stair inclination, or the step depth respectively, is given with
the ground plane as reference.
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sweep plane

stair plane

n𝑆

n𝐺𝑃

n𝑉

𝜃

𝜃

Detected tread

  Step track
cost 1

cost 2

Figure 3.27: Left: Geometric relations in the stair model. The highlighted region of
interest for sweep plane evaluation is given by intersecting the sweep plane and stair
plane margins. Right: For plane association over time the horizontal as well as the
vertical offset is taken into account.

are sampled in disparity data that corresponds to image line segments. A
valid stair plane intersects the ground plane with an angle between 20° and
40° and features a required minimum number of support points. After a few
successful re-detections the stair plane is tracked using continuous parameter
optimization as introduced in Section 3.1.1.3. The vanishing direction of the
line segments n𝑉 corresponds to the intersection vector of ground plane and
stair plane. Ground plane normal and stair plane normal are related by the
angle axis rotation 𝑅(n𝑉 , 𝜃), with a stair inclination angle 𝜃 (Figure 3.27).
In order to traverse the stair, knowledge about step height and the number
of steps is required. Related work with depth information tackles this in
two different ways: Either the prominent concave and convex edges are
reconstructed [58, 20, 99], or the scene is segmented into individual planar
patches which are then combined to form the stair [72, 67, 69]. Particular
difficulties arise when oversegmentation occurs, or when treads are split into
multiple segments due to objects which occlude parts of the stair. To avoid
handling these cases and spare the computational cost of full depth data
segmentation, we propose a sweep plane approach to directly estimate the
height of individual stair steps. We sweep the ground plane along its normal
direction in discrete steps and count the support points for each position in the
disparity data (Figure 3.27). The peaks of the originating profile correspond
to the height over ground of each tread (Figure 3.28). This method exploits
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Line segments (see Section 3.1.2.2), clustered according to the scene van-
ishing directions, are used for the initial detection of a stair. Stair planes



3 Visual Scene Perception

Figure 3.28: Sweep plane evaluation and corresponding image points: the left graph
shows the number of points supporting the plane which is swept along the ground
plane normal vector. The right image overlays the support points for the detected
peaks.

prerequisite is knowledge of the correct ground plane normal, also during
stair traversal when the ground plane is not visible any more. The ground
plane tracking method in Section 3.1.3.1 uses the vertical vanishing direction
to avoid the accumulating drift in these situations and is well suited here. In
unstructured environments without clear vertical structures, the ground plane
normal can alternatively be obtained from the stair plane normal and the stair
inclination as mentioned earlier.
Long stairs can usually not be fully measured from a single viewpoint. Princi-
pally, the surfaces of treads located above the camera are not visible. In order
to estimate the number of steps in such cases and refine the model parameters
over time we track the individual treads. Sweep plane measurements are as-
sociated to the globally referenced stair model by Hungarian assignment [47].
The assignment cost is calculated as sum of the difference in height over
ground and horizontal distance to the step edge (compare Figure 3.27 (right)).
New stair treads are initialized from unassigned measurements.

3.1.4.2 Evaluation

The distance in which a stair is initially detected mainly depends on the
lighting conditions which influence the amount of extracted edges. With
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the assumption that stair treads are aligned with the ground. An important
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Figure 3.29: Tracking of a staircase: Visible step tracks are overlayed with different
colors to indicate their identity. Cubes visualize position and size of measured steps.
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Figure 3.30: Estimated treads after passing the stair in Figure 3.29 with 11 steps.
Left graph shows the height of each step w.r.t. the ground (first tread). The number of
detections per tread is shown on the right. Since the lower steps move out of view as
the camera is moving upstairs, they are detected less often than the higher ones.
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about 7 m distance. When the tracked stair plane comes into a 3 m range the
sweep plane measurement is initiated and each step is tracked individually
by its tread plane. In Figure 3.29 we show tracking results on an outdoor
staircase. Figure 3.30 shows the step heights after tracking the stair over
the sequence of 120 frames. Despite that each step is tracked individually
without enforcing a constant step height, the estimated treads are equally
spread.

the camera setup used throughout this work (Section 4.1) it succeeds from
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For quantitative evaluation a dataset of nine different stairs was recorded and
their ground truth step height and depth manually measured. The dataset
contains indoor as well as outdoor scenarios to depict varying light and
stair size conditions. All stairs were recorded during ascend, three stairs
additionally during descend. For each image in the sequence of a tracked
stair two quantities are measured: The step height using the sweep plane
method, and the stair inclination which is the angle between ground plane
and stair plane. The step depth is not measured but can be derived from the
inclination. The averaged value of step height and step depth are compared
to ground truth in Figure 3.31 for all 12 sequences.
Over the dataset the step height is estimated with an accuracy varying between
0.1 and 1.5 cm (mean 0.7 ± 0.5 cm). The average step height in the dataset
is 16.5 cm. Steps of real stairs are usually not distributed perfectly equal and
easily vary in their height by a few millimetres. The estimation accuracy of
the algorithm falls into the range of acquired ground truth accuracy.
The step depth estimation shows an accuracy reaching from 0.1 cm up to 4 cm
(mean 1.6 ± 1.3 cm), hence being less accurate than step height estimation.
The inaccuracy results from a stair plane inclination error of 1.18 ± 0.9° on
average. It can be explained by the influence of disparity clutter in the
stair vicinity and lacking or spurious edge measurements due to low light
conditions or cast shadows.

Step Height (cm) Step Depth (cm)
Proposed method 0.71 ± 0.46 (4.4%) 1.56 ± 1.30 (5.4%)
Edges, Kinect [20] 1.7 ± 1.4 (8.9%) 1.2 ± 1.6 (4.2%)
Edges, Stereo [99] 0.12 ± 0.66 (0.8%) 0.24 ± 1.14 (0.85%)
Planes, SLG, Lidar[67] 0.42 ± 0.31 (6.0%) 1.17 ± 0.67 (6.5%)
Planes, TPRS, Lidar [67] 0.68 ± 0.54 (9.7%) 0.90 ± 0.61 (5.0%)
Planes, RG, RGB-D [69] 1.44 ± 0.59 (8.5%) 0.61 ± 1.89 (2.0%)

Table 3.2: Mean absolute error ± standard deviation, as well as error percentage
of stair slope and step height: The comparison is performed between our method,
and reported accuracies of the 3D edge-based method in [20] and [99], plane-based
scan-line grouping (SLG) and two-point random sampling (TPRS) from [67], and
planar region-growing (RG) in [69].
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A comparison of estimation errors between our method and the reported
results of [67], [20], [69] and [99] are presented in Table 3.2. The results
are difficult to compare. There is no commonly used benchmark dataset and
the approaches differ in the type of depth sensor. Furthermore, the height
of the viewpoint differs which has a big influence on how much and which
parts of the stair are visible. Despite working on low resolution disparity
data, the accuracy and precision of the proposed method is well on a level
with related approaches based on way more accurate depth data from laser
scanners, RGB-D cameras, or higher resolution disparity data. For many of
the evaluated stairs our results are more accurate. Little can be said about
the repeatability and robustness of related approaches, since commonly a
maximum of 3 different stairs is evaluated. These are usually of the same
kind and primarily leading upstairs. Principally, the accuracy can be expected
higher here, due to smaller measurement distances and the full visibility of
treads.
After all, the step dimension estimation is only one part of the problem.
The primary focus here lies on traversing the stair. Besides a stable initial
detection of the staircase itself this requires to keep track of the stair plane
and the location of steps, also those which only come into view at a later
point in time.
During walking in urban scenarios, the initial detector for staircases produces
around 1 erroneous detections per 500 images. For these miss-detections
usually no valid step measurements can be obtained, whereupon the stair
track is interrupted quickly again within a few frames. Embedded into the
whole perception framework, surfaces classified as vertical structure are
removed from depth data prior to detecting stairs, which lets the error rate
drop to literally no fail detections.
Other than active robotic platforms, our passive perception framework cannot
influence camera orientation and movement. It is not possible to direct the
attention from step to step. By contrast, given the high viewpoint of our
experimental setup the immediate next two steps are usually not visible.
Approaches that require the ground plane as visible reference suffer from ori-
entation loss as soon the stair is entered. Stair traversal under such conditions
is only treated here and in our related work of [99].
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Height
Depth

(a) 10/10 steps
0.1 ± 0.3cm (0.44%)
0.9 ± 1.2cm (3.25%)

(b) 11/10 steps
0.4 ± 0.5cm (2.22%)
0.2 ± 1.3cm (0.82%)

(c) 5/5 steps
1.3 ± 0.8cm (8.62%)
1.2 ± 2.5cm (3.42%)

Height
Depth

(d) 15/16 steps
0.6 ± 0.6cm (3.03%)

4.4 ± 6.7cm (15.96%)

(e) 10/10 steps
0.6 ± 0.4cm (3.29%)

3.1 ± 2.2cm (10.20%)

(f) 11/11 steps
0.3 ± 0.4cm (1.93%)
0.1 ± 1.3cm (0.36%)

Height
Depth

(g) 6/6 steps
1.5 ± 0.4cm (8.70%)
1.0 ± 1.9cm (3.81%)

(h) 20/20 steps
1.2 ± 0.3cm (7.66%)
2.5 ± 1.1cm (8.84%)

(i) 19/19 steps
0.2 ± 0.4cm (1.06%)
1.8 ± 1.0cm (6.24%)

Down-
stairs

Height
Depth

(j) 6/6 steps
0.8 ± 1.5cm (4.64%)
0.8 ± 3.3cm (2.88%)

(k) 7/20 steps
0.3 ± 2.9cm (2.00%)
0.1 ± 6.0cm (0.35%)

(l) 13/19 steps
1.2 ± 1.9cm (7.31%)
1.6 ± 4.2cm (5.44%)

Figure 3.31: The 12 stair sequences used in the evaluation. Errors of step height
and depth are given as mean absolute error ± standard deviation, and the percentage
of the error compared to the measured ground truth. Additionally, the number of
estimated steps is given. The dataset contains closed as well as open stairs (e), and
ascending (a-i) as well as descending (j-l) sequences. The stairs in (j-l) are the same
as the stairs in (g-i), but are captured while moving downstairs.
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Tracking the stair model succeeds in all ascending stairs contained in our
dataset. Tracking the single steps fails in few cases. In b) and d) errors
in the data association lead to a wrong overall step count. This is usually
seen in cases where the camera is temporarily pointing away from the stair.
During stair descend the method does not reach the same stability. In k)
the stair plane gets lost which stops the algorithm. In l) many step mea-
surements are wrongly associated resulting in 6 missing steps after traversal.
The performance gap can mainly be explained by the larger measurement
distances compared to an ascending stairway. Additionally, all step treads are
partly occluded by the previous steps and hence smaller than in the ascending
traversal.
The computation time of our approach during stair traversal amounts to
35-40 ms after disparity estimation and allows to track the stair model with
around 12 fps. Along with [20, 69] and the scan-line grouping of [67] our ap-
proach is one of the few methods lightweight enough for online applicability
on wearable hardware.

3.1.4.3 Conclusion

We presented a method to measure and track stairways using a binocular
camera. Based on the assumption of evenly aligned stair treads, an efficient
sweep plane method was proposed to measure the step height. Steps are
tracked over time in order to refine the minimal geometric stair model during
traversal. The measurement principle can be applied to ascending as well
as descending stairways, and works for closed as well as open stairs that
consist only of treads. The evaluation shows robustness on a wide range of
diverse stairways, while achieving measurement accuracies equal to methods
designed for more accurate depth sensors. Therewith, the method can be
an enabler for different applications in the domain of mobile robotics or
wearable perception platforms.

3.1.5 Correcting Odometry Drift

During environment modelling we treat geometry estimation and egomotion
estimation as independent problems. This leads to an environment model,
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A

B
Figure 3.32: Top view of an estimated path. Systematic drift as well as short term
odometry errors can cause large position errors (red). Both types can be corrected
(blue) by considering the scene vanishing directions A and B.
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which is consistent in a local sense, but is directly afflicted with the odometric
drift when regarded globally. As argued before, this does usually not imply
functional restrictions for tasks that concern the immediate local environment.
Clearly however, model consistency becomes the more important, the wider
the range of interest. Based on our previous work [104], we will show
how the scene background information can be fed back into the egopose
estimation to extend local consistency to the whole surrounding scene.
Errors in egopose estimation are caused by long term systematic drift, or
also by single erroneous odometry readings. Consider the scenario depicted
in top view in Figure 3.32. While travelling into direction A, the yaw drift
causes the position to slowly deviate from the true travelled path. The
platform then performs a hard turn into a side road. The error that happens
during the short period of turning is propagated and cannot be recovered. A
compass reference measurement would be sufficient to correct both kinds of
errors in the fashion of an inertial filter. On a vision only platform we can
mimic the function of a compass by measuring one scene vanishing direction,
say 𝐴. Such idea has been investigated, e.g. in [44, 75], to counteract the
systematic drift. Once the platform turns into direction 𝐵, direction 𝐴

becomes immeasurable and the scene reference is lost. To correct the turn
error, the reference needs to be switched to direction 𝐵. Yet, to guarantee
scene consistency, the relation between 𝐴 and 𝐵 has to be known. In many
constrained environments this is the case. The interior of buildings for
instance most often conforms with the Manhattan assumption where all
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Figure 3.33: Three vanishing directions typically found in indoor scenarios. A
measurement of these directions provides a scene fixed reference that we apply to
counteract the drift in odometric pose estimation. Background image: Google Earth,
© 2009 GeoBasis-DE/BKG.
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directions are orthogonally aligned. Estimating these relations between
directions in unknown, changing environments was focus of Section 3.1.2.

3.1.5.1 Visual Orientation Filter

We are interested in the attitude (orientation) and position of the platform
with respect to a scene fixed coordinate system𝑊 . In discrete timesteps 𝑘 we
obtain odometric measurements 𝑇𝑘 consisting of rotation 𝑅𝑘 and translation
t𝑘. They accumulate to the overall transformation

𝑇𝑊𝑘
=

(︂
𝑅𝑊𝑘

t𝑊𝑘

0𝑇 1

)︂
= 𝑇𝑊𝑘−1

𝑇−1
𝑘 = 𝑇𝑊𝑘−1

(︂
𝑅T
𝑘 −𝑅T

𝑘 t𝑘
0𝑇 1

)︂
(3.29)

as earlier depicted in Figure 2.3 (p. 13). This incremental update step can be
decomposed into attitude and position as

𝑅𝑊𝑘
= 𝑅𝑊𝑘−1

𝑅T
𝑘 (3.30)

t𝑊𝑘
= t𝑊𝑘−1

+ (−𝑅𝑊𝑘−1
𝑅T
𝑘 t𝑘)

= t𝑊𝑘−1
−𝑅𝑊𝑘

t𝑘. (3.31)
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Notice, that estimation errors in the odometry rotation𝑅𝑘 are propagated into
the position update. This dependency causes the largest part of accumulated
position drift. Even if the velocity of the platform can be perfectly estimated,
incrementing the movement into an error-prone direction leads to large
position errors. By implication, correcting the rotation error with a referenced
direction measurement will strongly improve the estimated position.
From two vanishing directions we could directly determine the camera ori-
entation with respect to the scene 𝑅𝑊𝑘

, free of incremental drift. In the
usual case however, the frequency of odometry measurements will be higher
than that of vanishing directions. Therefore, the odometry measurements 𝑅𝑘
are used as (non-referenced) attitude prediction. The vanishing directions
are then applied as correction to counteract the small errors. We use the
Kalman filter framework to implement this as an recursive state estimator. In
principle it is not possible to correct for translation drift in t𝑘 with referenced
direction measurements alone. Therefore, the translation update is treated
independently without any drawbacks.
The global attitude 𝑅𝑊𝑘

constitutes the filter state and is expressed as an
orientation quaterion q. The odometry orientation component 𝑅𝑘 is received
as quaternion v. Equivalent to (3.30), the filter prediction step is given by

q−
𝑘 = q𝑘−1v

* (3.32)

where v* denotes the conjugate of v. We can write this in matrix form as

q−
𝑘 = 𝐴q𝑘−1 =

⎛⎜⎜⎝
v0 v1 v2 v3

−v1 v0 −v3 v2

−v2 v3 v0 −v1

−v3 −v2 v1 v0

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
q0

q1

q2

q3

⎞⎟⎟⎠
𝑘−1

(3.33)

and propagate the state covariance Σ according to Σ𝑘 = 𝐴Σ𝑘−1𝐴
T + Σ𝑄.

The process noise Σ𝑄 is chosen large enough to accommodate the visual
odometry uncertainty (an estimate is given in Section 4.1).
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(a) (b) (c) (d)

Figure 3.34: Example shots from the image sequence. Positions are marked in Figure
3.35.

The 𝑖 scene vanishing directions are fixed in 𝑊 with spherical coordinates
(𝜃𝑊𝑖

, 𝜙𝑊𝑖
). The measurement model for a direction (𝜃𝑊 , 𝜙𝑊 ) from current

attitude q−
𝑘 reads as

ℎ(q−
k , 𝜃𝑊 , 𝜙𝑊 ) =

(︂
𝜃

𝜙

)︂
= 𝑔𝑠𝑝ℎ

⎛⎝𝑅(q−
𝑘 )

⎛⎝sin (𝜃𝑊 ) cos (𝜙𝑊 )

sin (𝜃𝑊 ) sin (𝜙𝑊 )

cos (𝜃𝑊 )

⎞⎠⎞⎠
(3.34)

where 𝑅(q) is the left-handed rotation matrix equivalent to the rotation
quaternion q and (︂

𝜃

𝜙

)︂
= 𝑔𝑠𝑝ℎ(n) =

(︂
arccos(n𝑧)

atan2(n𝑦,n𝑥)

)︂
(3.35)

is the transformation between Euclidean and spherical coordinates.
For each vanishing direction we apply one correction step with the local
measurements (𝜃𝑗 , 𝜙𝑗). The Kalman update with linearised measurement

model 𝐻 = 𝜕ℎ
𝜕q

⃒⃒⃒
q−
𝑘

yields the updated attitude estimate q+
𝑘 .

To complete the process, the odometry translation measurement t𝑘 is trans-
formed into the local frame and incremented following (3.31) as

(0,d) = q𝑘 (0,−t𝑘) q*
𝑘 (3.36)

t𝐺𝑘
= t𝐺𝑘−1

+ d (3.37)
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)
(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

40 m

Figure 3.35: Top: Comparison of filtered trajectory in blue and plain visual odom-
etry in red. The plotted coordinate system corresponds to the global vanishing
directions. A slight drift can be seen in the upper top-view, the side-view below
reveals a large drift in vertical direction. Background image: Google Earth, © 2009
GeoBasis-DE/BKG. Bottom: A mapping system could produce an almost consistent
reconstruction of the building (before and after drift correction).
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Figure 3.36: Distribution of attitude error in degrees without (left) and with (right)
vanishing direction reference compared to IMU ground truth. Mind the differently
scaled x-axis of the plots.

3.1.5.2 Evaluation

The introduced method is general in the sense that it can be applied on top
of any odometric sensor as e.g. wheel encoders in robotic applications. In
our case these measurements are derived from the camera itself by visual
odometry. This is no restriction but rather the most unconstrained case, as
position and orientation have to be estimated in all 6 degrees of freedom.
Experiments indoor as well as outdoor demonstrate the gain in estimation
accuracy. The first scenario consists of a 240 m loop through a building
including two staircases connecting the two floors as well as glass doors in
the corridors that had to be opened during the passage. Opening doors is a
challenging situation for visual odometry, since large parts of the observed
scene are moving and violating the static scene assumption.
The achievable accuracy is limited by the accuracy of the estimated vanish-
ing directions. The measured vanishing directions for this scenario were
evaluated in Section 3.1.2.5. Figure 3.10b (p. 42) shows the measurements
transformed into the IMU reference frame. The variances of the measured
parameters 𝜃 and 𝜙 can be determined from this mapping (𝜎𝜃,𝜙 = 10−4) and
are used to parameterize the measurement noise of the filter correction step.
The estimated path is plotted in Figure 3.35. The horizontal drift of un-
corrected visual odometry (red path) becomes obvious on the long straight
corridors (top), the vertical drift appears even stronger in this sequence (bot-
tom). The filter is able to correct this drift (blue path) by using the three
orthogonal vanishing directions (corresponding to the axis of the plotted
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50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m50 m

Figure 3.37: Comparison of filtered trajectory (blue) and plain visual odometry (red)
in an outdoor scenario. Only the vertical vanishing direction was used to correct the
odometry. Background image: Google Earth, © 2009 GeoBasis-DE/BKG.
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coordinate system) as environment fixed reference. The overall position
error after closing the loop decreases from 3.6% to 1.2% using the filtered
estimate. Compared to IMU ground truth, the uncorrected incremental visual
odometry deviates by up to 40° from the true attitude, after correction this
reduces to a mean deviation of around 1° (Figure 3.36). This corresponds to
the noise found in the vanishing direction estimation. The position increment
benefits accordingly. A mapping system could produce an almost consistent
reconstruction of the building, as is shown in the lower part of Figure 3.35.
Note, that it would not suffice to detect the loop-closure in the end to correct
for the drift within the loop. This correction requires a scene wide measure-
ment. The remaining small drift can be tied to accumulating errors in the
odometric translation component t𝑘, which can principally not be corrected
with direction references only.
The second scenario in Figure 3.37 was recorded outdoor on an approx.
400 m loop. Other than in the indoor scenario, only the vertical vanishing
direction was measured here as reference to correct the odometry. Even
though no horizontal reference was used, the effect is strong. With one
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direction reference we can correct two degrees of freedom (here pitch and
roll). The odometry drift afflicts mainly the pitch angle in this scenario and
leads to a maximal vertical deviation of up to around 40 m.
The idea of using vanishing directions as a visual compass has been imple-
mented in different forms with differing sensor setups. In [53] a solution for
measurements originating from laser scanners is presented. Implementations
based on cameras are found in [43, 75]. Also camera-based are [44, 12], but
integrated into visual inertial platforms which additionally use an inertial
measurement unit.
The comparable approaches of [44] and [75] solely make use of the frontal
vanishing direction, which they reinitialize after a turn. While they can
mitigate the orientation drift in straight passages, it is impossible to correctly
estimate the direction of the turn. None of the approaches makes use of the
fact, that vanishing directions are fixed with respect to each other. As shown
in Section 3.1.2 this facilitates the measurement itself, but also provides
valuable knowledge about the scene which we exploited here.

3.2 Generic Multi-Object Detection and Tracking
Once the geometric scene background is known, the largest part of the scene
can already be explained. What remains unexplained is the scene foreground,
which is composed of individual objects placed within the scene. These may
be of interest as goals of navigation, or as obstacles to be avoided during path
planning. Modelling these objects is subject of this section.
Object handling in context of a mobile, intelligent system should be con-
sidered as a continuous problem. We are not only interested in reliably
detecting the presence of an object, but also in its movement in order to
react properly to dynamic objects. To this end, objects need to be recognized
between sensor readings and tracked over time. More generally, the task is to
continuously estimate the state of the object, which over time forms an object
track. The state characterizes the object and may contain the position in the
environment model, its velocity and direction of movement. Each camera
image contains a measurement to refine the state estimate.
In most object tracking systems a "small object" assumption is made. Objects
are assumed to be points in the measurement space, that can be modelled
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without spatial extent and that generate at most one measurement per sensor
readout. In the multi-object case objects are treated independently. Each
sensor readout contains measurements that are generated by the objects,
albeit the association is unknown. If exactly one measurement per object
exists, the optimal global solution to this assignment problem is given by the
Hungarian method [47]. In practice though, measurements are ambiguous.
Measurements can be missing, or be falsely generated by noise. Additionally,
the number of objects is unknown – objects can appear and disappear from
the scene. This renders multi-object tracking a challenging problem.
Camera-based object tracking systems are usually provided with measure-
ments from an object specific detector. Such detector provides point like
measurements of the object, usually of its position and size in the image
space. Associating detections over time leads to the popular tracking-by-
detection scheme. It is applicable when object types of interest are limited
and known in advance, which is clearly not fulfilled in our scenario. When
domain and object specific knowledge does not exist, the measurements
need to be provided by a partitioning of sensor data into object signal and
background noise. Moving objects are often separated by evaluating the
egomotion compensated scene flow (e.g. [54]), which, however, vanishes
for static objects. In our case a partitioning is partly given by the scene
background model. Missing is a partitioning of the scene foreground into
distinct objects.
Since the characteristic appearance of objects is extremely variable and here
also unknown, it is hard to exploit appearance as a segmentation feature.
More general are spatial considerations, as for instance the fact that objects
usually appear separated from each other. Spatial information is provided
by binocular depth data, however, the measurements are of low-resolution,
noisy and corrupted for any reflective or overexposed part of the scene.
Objects can be arbitrarily sized, they can be occluded by other objects, or
only visible partly when entering and leaving the sensing range. Under
these conditions there exists no solution to reliably segment depth data into
object hypotheses. Each object will typically generate many measurements,
caused by the fact that real objects are no point sources in sensor space but
have an unknown shape and spatial extent. In order to track such objects,
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their shape cannot be neglected. It is an important clue during measurement
association and enables to reason about occlusion. In each timestep, typically
only some parts of the object shape are measurable due to self and inter-
object occlusion. A complete shape model of the object arises only after
accumulating measurements over multiple timesteps, while simultaneously
estimating the unknown object motion. As opposed to tracking of small point
like features, the problem is known as "extended object tracking" [35].

3.2.1 Object Model

Each object 𝑂 is represented by its shape O and its kinematic state x. The
shape is an unstructured set of 3D points O = {𝑥1..𝑥𝑛, 𝑦1..𝑦𝑛, 𝑧1..𝑧𝑛}𝑊 in
the global reference frame 𝑊 . Different forms of shape models B can be de-
rived from O to determine the spatial object extensions. The kinematic state
x = (P, Ṗ)𝑊 = (𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�)𝑊 comprises the object’s 3D position and
a constant velocity component in 𝑊 . The state uncertainty Σx is expressed
by covariances Σ𝑊P and Σ𝑊

Ṗ
. The goal is to continuously estimate the set

of objects {𝑂 ∈ O | 𝑂 = (x,Σx,O,B)} with unknown and changing
cardinality using measurements derived from the disparity data. Over time,
each object forms an object track.

3.2.2 Measurement Generation

Measurements are groups of 𝑢𝑣𝛿 points 𝑆 = (𝑢1..𝑢𝑛, 𝑣1..𝑣𝑛, 𝛿1..𝛿𝑛), which
result from a segmentation of the disparity data. During segmentation three
cases may occur. (a) A single segment represents the whole object. (b)
Multiple segments represent the object (oversegmentation). (c) A segment
represents multiple objects (undersegmentation). Case (a) cannot be guar-
anteed, since generic semantic segmentation can be considered an unsolved
problem. Undersegmentation (c) causes various difficulties. It leads to initial-
ized objects, which span over multiple actually independent instances. An
explicit method is required to recognize such unintended merges and split
the objects accordingly. Handling potential undersegmentation during state
estimation requires the explicit option to associate multiple object tracks to
the same measurement. Oversegmentation (b) on the other hand may lead
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Figure 3.38: After discarding the scene background (left) from the disparity map
(middle), remaining points are clustered (right). Strong disparity gradients (red) form
barriers, which prevent undersegmentation.

to multiple spurious tracks initialized for the same object. In general this
situation is easier to handle than case (c) and leads to less severe errors or
tracking loss. Simple temporal filtering alone can mitigate many of these
errors. In practice, over- or undersegmentation cannot be avoided reliably.
However, by tweaking the scene segmentation towards oversegmentation, the
problems of undersegmentation can be avoided and neglected. Then, each
segment is known to be generated by either exactly one object, or background
clutter.
A simple and fast oversegmentation is computed by single agglomerative
clustering. As distance function between two neighboured pixels their dispar-
ity difference is evaluated. To avoid undersegmentation over spurious object
contours, large disparity gradients are removed in advance with a gradient
filter. As a result, the data is clustered into a varying number of 𝑢𝑣𝛿 point
segments 𝑆𝑖 ∈ S, see Figure 3.38 for an example.

3.2.3 Measurement Partitioning

The fact that each object will generate multiple incomplete measurements
through an unknown sensor model (the sensor being the segmentation al-
gorithm) makes a direct state estimation from the measurements infeasible.
An intermediate step is required which groups measurements into sets, or
detections, that reflect whole objects. Essentially, each segment could have
been generated by each existing object track, by a new object, or by noise.
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small amounts of segments, the number of possible sets leads to infeasible
computational problems (more than 105 possible sets for as little as 10 mea-
surements). To keep the problem tractable, meaningful set approximations
are required. It is likely that segments located close to each other were gen-
erated by the same object. Furthermore, it is likely that segments aggregate
close to the existing objects. This motivates us to cluster the segments based
on their distance to existing objects.
The probability that a segment 𝑆 was generated by an object 𝑂 is approxi-
mated by evaluating the Mahalanobis distance𝐷𝑀 between the reconstructed
segment and the object position. For normally distributed measurements the
squared Mahalanobis distance 𝐷2

𝑀 is 𝜒2
𝑘 distributed (with the degrees of

freedom 𝑘 equal to the dimensionality of the measurement, i.e. 𝑘 = 3). The
probability that a measurement originates from an object is then given by the
cumulative distribution. A validation gate 𝑉 (𝛾) = 𝐷𝑀 6 𝛾 can be set up
around the objects by defining the required probability 𝑃 (𝑆 ∈ 𝑉 (𝛾)) [18].
Certainly, in the present setting this can only be seen as an approximation,
since the assumption of normally distributed measurements will not com-
pletely be true. It is presumably violated by the segmentation process, which
yields varying numbers of differently sized segments, and by the segment
reconstruction process, which introduces a slight distortion to the normal
distribution even if measurements were normally distributed in 𝑢𝑣𝛿 image
space. Nevertheless, the Mahalanobis distance itself is an efficient measure
to compare measurements under uncertainties in a consistent way. This is
important especially during the association of reconstructed camera measure-
ments, which show measurement uncertainties growing quadratically with
increasing camera distance, as was previously discussed in Section 2.1.
We calculate 𝐷𝑀 between object and segment positions in local Euclidean
space (see Figure 3.39). Object tracks are maintained in global Euclidean
space 𝑊 with position P𝑊 and position uncertainty Σ𝑊P , while segments
are measured in local 𝑢𝑣𝛿 image space. Thus, both need to be transformed.
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Σ𝑆𝜇𝑆
Σ𝐿S

S𝐿
Σ𝐿P

P𝐿

𝑆

𝑂

Figure 3.39: Distance (red) between an object 𝑂, positioned at P𝐿 with covariance
Σ𝐿

P, and a 𝑢𝑣𝛿 segment 𝑆 in image space. S𝐿 and Σ𝐿
S are reconstructed from the

segment centroid 𝜇𝑆 , considering its covariance Σ𝑆 .

The local position of an object and the associated covariance are obtained as

P𝐿 = 𝑇−1
𝑊 P𝑊 (3.38)

Σ𝐿P = 𝑇𝑅Σ𝑊P 𝑇T
𝑅 (3.39)

with 𝑇𝑊 =

(︂
𝑇𝑅 𝑇t
0T 1

)︂
being the current egopose estimate.

The position and uncertainty of a segment 𝑆 is reconstructed from the seg-
ment centroid 𝜇𝑆 = (�̄�, 𝑣, 𝛿) by

S𝐿 = 𝐹 (𝜇𝑆) (3.40)

Σ𝐿S = 𝐽𝐹 (𝜇𝑆) · Σ𝑆 · 𝐽𝐹 (𝜇𝑆)𝑇 . (3.41)

Σ𝑆 reflects the position uncertainty in image space and is given as the
covariance of 𝑢𝑣𝛿 points Σ𝑆 = Cov(𝑆) (Figure 3.39). 𝐹 (·) and 𝐽𝐹 (·) are
the inverse camera projection function and its Jacobian (Section 2.1). This
way the uncertain location of the segment centroid as well as the uncertain
disparity measurement are considered.
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The Mahalanobis distance is then calculated as

𝐷𝑀 (P𝐿,S𝐿) =
√︁

(P𝐿 − S𝐿)T(Σ𝐿P + Σ𝐿S)−1(P𝐿 − S𝐿). (3.42)

The segment measurements are clustered into sets 𝐺 by assigning them to
the most likely objects according to 𝐷𝑀 , considering the gating volumes
𝑉 as defined above. Besides building useful measurement sets, also the
data association between sets and objects is solved by this step. For each
measurement set 𝐺 the centroid 𝜇𝐺 = (�̄�, 𝑣, 𝛿) and its covariance Σ𝐺 is
determined. The sets form detections of the objects and are used in the
following to update their states.

3.2.4 State and Shape Estimation

The object states are tracked in the global reference frame with independent
Kalman filters using either a constant position or constant velocity model.
Objects enter the detection range in around 15-20 m distance and new tracks
have to be initialized. In these distances the measurement noise is larger than
the apparent motion of slowly moving objects like pedestrians. Their mere
distinction from static objects is difficult. In consequence, the established
filter velocity components are very unreliable here. Moreover, for static
objects, the constant velocity model is overparameterized and deteriorates
the position estimate. Therefore, a constant position filter model is initially
applied upon track initialization. Two conditions can switch the filter to a
constant velocity model. Either a high percentage of motion features (see
Section 2.2) within the object hull (see Figure 3.40), or a sufficiently large
position displacement over the last few state updates.
For a time step ∆𝑡 the process function becomes

x−
𝑘 =

(︂
P𝑊

Ṗ𝑊

)︂−

𝑘

=

⎧⎪⎪⎨⎪⎪⎩
x+
𝑘−1 upon initialization, and(︃
1 ∆𝑡

0 1

)︃
x+
𝑘−1 after apparent motion was observed.

(3.43)
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𝐻

Figure 3.40: Left: Input image with final aligned 3D bounding box B. Middle:
Disparity clusters S generated by the cyclist, projected object hull 𝐻 and feature
flow (red lines). Right: Object shape O accumulated over 20 state updates, and
downsampled shape information (green points) used to determine the hull 𝐻 .

To incorporate the detections, the observation model needs to map the posi-
tion P𝑊 to image space, where segments are measured. This transformation
is given as⎛⎝𝑢𝑣

𝛿

⎞⎠ = ℎ
(︀
P𝑊

)︀
= 𝐹−1

(︀
𝑇𝑊P𝑊

)︀
= 𝐹−1

⎛⎝⎡⎣𝑥𝑦
𝑧

⎤⎦⎞⎠ =

⎛⎝𝑥𝑓
𝑧 + 𝑐𝑢
𝑦𝑓
𝑧 + 𝑐𝑣
𝐵𝑓
𝑧

⎞⎠
(3.44)

The Kalman update is carried out with 𝜇𝐺 and its covariance Σ𝐺 to find the
new state estimate x+

𝑘 .
The object shape O consists of the 3D points of the past detections and is
transformed along with each position update. In order to further compress
the environmental information, the object shape is abstracted to a minimal
three-dimensional aligned bounding box model B = (𝑤, ℎ, 𝑙, 𝛼). The box is
centred on the state position P𝑊 and defined by three dimension parameters
and one alignment angle. The parameters are measured from the shape O.
A principal component analysis is applied to find the current alignment and
estimate the box dimensions along the principal components.
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𝐴

𝐵

(a)

𝐴

𝐵

(b)

Figure 3.41: (a) Object A occludes Object B. The criterion is the overlap of the
projected hulls. (b) The missed detection of object A allows the conclusion that track
A does not exist anymore, since it would prevent the detection of B.

3.2.5 Object Track Management

A robust multi-object tracking system requires a logic that maintains the
object tracks. It is responsible for track initialization and track deletion.
Detections which cannot be explained by existing tracks should lead to the
initialization of new tracks. Existing tracks which cannot be confirmed with
current measurements should be deleted.
New tracks are initialized with segments which could not be assigned to
existing tracks. More considerations are required to terminate existing tracks.
Intuitively, a track should be deleted after the object could not be detected
for a certain time. Often however, it can be explained why an object was
currently not detected. The object can have left the sensor range, or it can be
occluded by another object. In both cases even a series of missing detections
is not a criterion to terminate a track. In other words, an object can only be
deleted if it is currently measurable, i.e. within the detection range of the
sensor and also visible.
Reasoning about the measurability means reasoning about the occlusion state
of an object. The criterion used here is based on the projected object hulls 𝐻
in image space. For object A to occlude another object B, the conditions are:
1. A is located closer to the camera than B. 2. Object hull B is covered by
A to a certain amount 𝐻𝐴∩𝐻𝐵

𝐻𝐵
> 𝜖 (Figure 3.41a). In a similar way overlap

with the visible camera range can be determined.
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Object tracks are terminated and deleted from the model based on two
possible conditions: 1. an object is measurable but could not be detected
for a certain time. 2. an object is measurable but was not detected, and it
occludes another detected object. See Figure 3.41b for an example. Object A
occludes object B in this scenario. One can expect to detect object A, while
object B is not measurable. If in this situation object B is detected, and
object A remains undetected, the conclusion can be drawn that object A does
not exist anymore – it would prevent the detection of B. The track of object A
is consequently terminated.

3.2.6 Evaluation

The introduced method recognizes the presence of objects and approximates
their dimensions, and their movement. This information is immediately
useful for targeted close range navigation with avoidance of static obstacles
and collision with moving objects. Beyond detection, these tasks require
stable tracking of the surrounding objects. Strong noise in the underlying
depth estimation and frequent inter-object occlusions give rise to a large
set of possible failure sources that can manifest in state estimation errors,
undetected objects, or tracking loss.
Clearly, the overall accuracy and precision of such system is a function of the
sensor to object distance. The tracking scheme includes a loop, in which the
current detections are partly influenced by the existing tracks. On one hand
this facilitates a low-level sensor data segmentation without prior knowledge
about the objects, on the other hand it poses the risk to amplify early made
estimation errors over long periods of time. Non-occluded objects enter
the scene at the limit of sensor perception range. During forward motion
with small turn rates, static objects usually emerge at the sensor distance
limit rather than at the lateral sensing limit. Thus, new objects are mostly
initialized at the point of greatest measurement uncertainty. Decisions made
at this point are carried on until the object track is deleted from the model. A
typical such decision can be a merge of two pedestrians into one object.
The maximal range of reliable perception depends on the sensed image reso-
lution. The sensed resolution contributes linearly to the algorithms runtime
(low level segmentation) and limits the possible measurement frequency.
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Reliable data association of moving objects across sensor readings requires a
measurement frequency as high as possible. Thus, the system design needs to
balance perceived distance against the ability to handle objects with increased
relative velocities.
To ensure a measurement frequency of at least 10 Hz, the input disparity
data is downsampled by factor four in our setting, resulting in an effective
resolution of 160 × 120 image points. For reliable object initialization a
minimal segment size of 5 image points is requested which allows to detect
small poles in around 15 m distance. Assuming a moderate ego-velocity of
5 km h−1 the time to collision with such obstacles amounts to 10 s and allows
for a targeted circumnavigation.
To evaluate the performance of the algorithm quantitatively, we investigate
the number of wrong object detections (false positives) and missed object
detections (false negatives). False positives occur mainly as consequence
of loosing track of a moving object. The lost track is kept in the model
until it becomes deleted after a number of missing detections. Other reasons
for false positives are single objects that are modelled with multiple, partly
overlapping tracks. False negatives result mainly from inaccurate scene
background estimation (Section 3.1). The data that is fed into the algorithm
is assumed to belong to scene foreground solely. Consequently, an erroneous
scene background partitioning propagates as error into the object tracking.
Scene parts that are concealed behind false positive (non-existing) vertical
structures are disregarded and lead to false negative (missed) object detec-
tions. Undetected vertical structures on the other hand lead to false positive
objects, for instance on building walls.
In Figures 3.42, 3.44, 3.45 and 3.46 we show results of the algorithm in
different scenarios and camera setups. The first sequence is captured using
our head-worn helmet setup (Section 4.1) in a typical urban street canyon
scenario with many static scene elements (cars, signs, plants, close walls) and
some moving objects like cars and cyclists. The second and third sequence
originate from the series of work of Ess et al. [23] and are captured from a
stroller in populated pedestrian zones with many moving persons but less
static objects. Compared to our own data, the camera motion is substantially
smaller and smoother in this setting. Finally in Figure 3.46 qualitative results
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Figure 3.42: Results on the first sequence, captured with a head-worn camera in a
typical urban street canyon scenario.

from an automotive setup are shown. To assess the performance, true positive,
false positive and negative detections as well as identity (id-)switches are
counted frame-wise in the visible perception range with a limit of 15 m for
the first two sequences.
Figure 3.42 shows results of the first sequence. It consists of 2147 frames,
which contain 6783 possible object detections. The second image (left to
right, top to bottom) shows missed detections due to a false positive vertical
surface that spans over foreground objects (third image), the fourth image
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Figure 3.43: The alignment of obstacle bounding boxes can be inaccurate due to
occluded parts of the objects (left). Taking scene context knowledge in form of
building orientation into account, these errors can be mitigated. In the right image the
frontal vanishing point is used for box alignment.

contains a false detection due to the missed background structure and a false
object in the foreground (cyclist that was leaving the perception range). Since
objects that have left the view are not removed from the model, the car (id
10) can be recognised in the fifth image after around 400 frames of non-
visibility. In image 7 the long track of the cyclist becomes temporally merged
with the signpost. The last 5 images show examples of different tracked
moving objects with the ability to handle occlusion. Of all 6783 possible
detections, 649 are missed (425 due to errors in background estimation).
1985 objects are falsely reported, 928 of these lie on building facades due to
missed detections of background structure and are considered false positives.
Overall an average recall of 90% at a precision of 76% is achieved. If
background estimation errors are neglected these numbers raise to 96% recall
at a precision of 86%. During the sequence 2 id-switches occur, where tracks
switch onto another object.
In Figure 3.42 the current object shape models are contained (O projected
as dots with bounding hull), in addition to the more abstract and compact
aligned bounding box representation. The estimated box orientation often
appears inaccurate for larger objects. Principally, only one side of the objects
is visible. The measured "L"-shapes e.g. of cars lead to skewed principal
components. Not only does it affect the box orientation, but it also leads to
an erroneous dimension estimation. In structured urban environments one
can exploit the typical alignment of objects with the surrounding geometric
background scene structure, that is depicted accurately by the vanishing
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Figure 3.44: Results on the second sequence Jelmoli [23] which is captured from a
stroller.

directions. Replacing the principal component orientation estimation with
the direction of the frontal vanishing point can mitigate this problem as
shown in Figure 3.43.
From the second dataset shown in Figure 3.44 we quantitatively evaluate 500
frames in which 2243 possible detections occur. The upper 6 images show
some typical tracks with merged objects. Since no concept knowledge is
available, these tracks cannot be considered as erroneous detections (person
with stroller, parents with child, two persons walking close to each other). The
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lower 6 images show some failure cases. A car partly enters the perception
range due to camera rotation and initializes a false positive object. The child
and the adult switch identity in the second image. Their tracks get lost upon
leaving the perception range and cause false positive detections in the third
image, besides two false negative detections (undetected poles on the right).
The last two images show false positive detections in background clutter,
a person in front tracked by two tracks (false positive), but also two long
true positive tracks (purple) through full occlusion. Of the 2243 possible
detections 205 are missed while 204 false detections are reported and 4 object
tracks switch identity. It results in an averaged recall of 92% with a precision
of 91%.
In Figure 3.45 results of the third sequence captured in a pedestrian zone
are shown. Selected subsequences demonstrate the ability to create long
consistent tracks also in dynamic environments with frequent full inter-object
occlusion.
In Figure 3.46 a completely different camera setup was tested, as it is typically
found in automotive platforms. Due to the higher image resolution and
wider camera baseline the perception range could be increased to 30 m. The
approach works well for small static obstacles and moderately moving traffic
participants as cyclists. The high relative velocities of cars, coupled with
the lower frame rate of 10 Hz in this dataset, require adjustments to the filter
and the data association step. Particularly, the optical feature flow should be
considered during the object prediction step. While it is unreliable for slowly
moving objects, it should be a supportive clue here.

3.2.7 Discussion

The evaluation shows that the method is well able to detect generic objects
with small amounts of missed detections and false alarms. Evaluated from
the viewpoint of an object tracking system, a missed detection does not imply
that the system is unaware of the object. It can simply be the result of delayed
track initialization. Object handling, e.g. for motion planning, is a continuous
problem in which the objects and their properties are the essence. Detecting
the objects is only the intermediate step to learn about the objects, estimate
their geometric appearance and their behaviour over time. Regarding the
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Figure 3.45: Results on the third sequence Bahnhof [23].

object detection metrics, the tracking scheme that is applied here leads to
an increase in recall compared to an independent detector, since missed
detections can be bridged. On the other hand, it also leads to a decrease in
precision, since objects that get lost during tracking are kept as false detection
for many frames until they are eventually removed from the model.
As important as detecting objects is the ability to correctly estimate their
motion. Only this allows to predict the surrounding situation, which is neces-
sary to plan in dynamic environments. In this work, objects are described
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by their shape in form of an unorganized set of 3D points and a constant
velocity assumption. This simple modelling provides the means to track
objects over long times, including situations in which they temporarily leave
the camera perception range, or in situations of full inter-object occlusion.
The rough object shape estimation makes the state of occlusion observable.
The estimated motion state allows to predict the object position over the
period of missing measurements. This enables to proceed without explicit
object detectors.
In the three typical scenarios there is no object within the 15 m range that
remains completely unseen by the system over the whole sequence. This
would be a requirement when used for collision avoidance with the static
environment. The low number of id switches indicates accurate tracking also
for moving objects. As argued earlier, a perception range of 15 m allows
a collision time of 10 s for static obstacles at a moderate moving speed of
5 km h−1. It can easily be assessed, however, that planning to cross a road in
highly dynamic situations with cars – even when assuming moderate speeds
of 30 km h−1 – requires a perception range of at least twice the current length.
The perception limit of the system is mainly due to the strongly downsampled
input data (disparity map by factor 2, foreground disparity points by factor 4).
This hinders the reliable generation of object hypotheses in a distance greater
than 20 m. Due to the small baselines, disparity gradients become very small
and lead to more frequent undersegmentation in the early low-level stages of
the algorithm. These propagate as merged objects over time and are currently
not resolved.
The approach is not limited to our specific setup. We demonstrate this
by evaluating datasets from different platforms with different viewpoints,
different cameras, different baselines and different types of ego motion. Even
the deployment in automotive settings is feasible as shown in our experiments
in Figure 3.46, though few chosen parameters need further adjustment to the
increased sensor resolution and viewing range.
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Figure 3.46: Some example scenes from a binocular camera in an automotive setup
(part of the Kitti benchmark suite [27]). The perception range was increased to
30m here. Besides traffic participants like cars, cyclists and pedestrians, also small
obstacles like poles, bushes and signposts are recognized. The last two pictures show
a comparison to related work of [68], in which semantic labels are used to filter
objects from background.
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3.2.8 Related and Future Work

The proposed approach resides among few other works of generic object
tracking, that do not exploit concept knowledge about e.g. shape or appear-
ance. Though binocular depth data is found in many applications for e.g.
pedestrian detection, it is usually accompanied by object specific detectors.
The depth data is applied to generate regions of interest to improve and disam-
biguate the detections. The sequences 2 and 3 were used in related work of
Ess et al., e.g. [23], who use an appearance based detector to generate initial
pedestrian hypotheses. Their reported performance shows especially a lower
recall, that is likely explained by the fact that it explicitly relates to pedestrian
detection, where groups of pedestrians that are merged into a single track
count as false positive detections. Other approaches that build upon binocular
depth data segmentation to generate detections include [3],[63] and [68]. All
use grid maps in Euclidean space and segment by mode seeking, instead
of directly segmenting the disparity map. The segmentation is followed by
different strategies to discard background clutter. [3] and [63] eventually
aim at pedestrian detection and verify segments with geometric properties or
knowledge about appearance. [68] uses a pixel-wise semantic labeling that
was trained to separate objects of arbitrary kind from background structure.
The idea follows the recent trend of using object proposal methods [41]
(which classify image regions based on a generic objectiveness criterion)
to guide and speed up sliding window detectors. This allows to reduce the
depth data to relevant object structure.
The most evident inaccuracies of the proposed approach are objects that some-
times seem too greedily merged, as for instance two persons walking next
too each other. These cases almost always originate from object initialization
in distance, where the low data resolution does not yet provide evidence
to start multiple separate tracks. An object model is build that consists of
two persons, which is tracked as such, as long the persons’ paths do not di-
verge. It seems questionable whether two pedestrians walking close together
constitute a valid object. There is, however, no way to tackle such problem
without incorporating concept specific a-priori knowledge whatsoever, be it
appearance, size, or shape to name a few. There is an obvious limit of what
can be reached without knowing about the meaning of objects. A logical
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extension of this work should hence make use of top-down reasoning, for
instance by incorporating the promising upcoming results of appearance
based semantic scene labeling, as was to some extent demonstrated by [68].
Currently however, the hardware required for online application of these
algorithms exceeds our targeted platforms.
Another worthwhile extension might target the crucial and important mea-
surement association step. In this work immediate, hard decisions about
assigning measurements to object tracks are taken. A more robust strategy
could delay the assignment and accumulate more evidence before decisions
are made. Respectively, decide not only based on the current measurements
but jointly decide for all measurements in a past timeframe. These kind
of multiple-hypotheses tracking (MHT) algorithms surely have potential to
dissolve a few mistaken assignments that lead to id switches or mistakenly
instantiated object tracks. The chances come at the cost of a massive increase
in computational complexity. Carefully chosen heuristic strategies to prune
hypotheses are required in order to counteract the combinatorial explosion of
assignments. In order to avoid hard assignment decisions, joint probabilistic
data association (JPDA) filters are often applied. For each combination of
measurement and object track the probabilities are estimated that the mea-
surement originates from the object. During state estimation, each object
track becomes updated with all measurements, weighted according to these
probabilities. The standard JPDA framework assumes knowledge about the
number of tracked objects, and further that each object generates at most one
measurement per timestep – assumptions that both need to be overcome in
our setting. Increasing interest growth around methods based on finite set
statistics [33]. The mathematical framework provides statistical means to cast
multi-object, possibly multi-sensor tracking into a single-sensor single-object
Bayesian filter problem. Thereby, unifying the estimation of object number
and their states in a single procedure where object appearance and disappear-
ance become modelled within the state time transition. Sensors, objects, and
the measurements they generate are modelled as random finite sets (RFS),
sets of random variables with random cardinalities. This inherently allows
for multiple measurements per object without the requirement of an explicit
data association, which makes it interesting for extended object tracking
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problems (e.g. [7]). However, as pointed out earlier, the amount of possible
measurement sets quickly grows to an intractable number and necessitates
suitable approximations of probable sets. In this work the partitioning of sets
was approximated as a clustering problem, using the current object positions
and their uncertainties as a clue. As such it could provide a starting point
to embed the problem into the computational feasible approximations of
RFS tracking algorithms, including the probability hypothesis density (PHD)
filter, the Cardinalized PHD (CPHD) filter, or multi-Bernoulli (MB) filters.
Eventually though, the performance of any such filter will be limited by the
correctness of required assumptions regarding the environmental and sensor
statistics. Not only are figures like object birth or false alarm rate hard to
quantify, in mobile systems they are also highly dependent on the ever chang-
ing surrounding situation. This renders tracking of multiple generic extended
objects a challenging problem that involves way more than following a signal
through clutter.
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4.1 Experimental Setup
Two wearable setups were build to test the system experimentally. Their
basis is a binocular setup consisting of two PointGrey FL2-14S3M Firewire
cameras, and Toshiba BU238 USB-3.0 cameras respectively. Kowa lenses
with a focal length of 3.5 mm result in an opening angle of approximately
65° horizontally and 45° vertically. Images are captured monochrome with
640x480 pixel at 30 frames per second, synchronized via the Firewire/USB-
Bus. Both setups are further equipped with an inertial measurement unit
(IMU), which provides a ground truth of the camera orientation. The com-
putational platform is a notebook that can be carried in a backpack. For
disparity estimation we apply the semi-global matching [39] implementa-
tion of OpenCV1 at half-resolution (320x240 pixel). Visual odometry is
calculated using the libViso22 implementation [30].
The first setup, that is shown in Figure 4.1, was used to record the datasets
used throughout this work. It uses a bicycle helmet as platform, in which
all sensors are flush-mounted. The camera baseline amounts to 18 cm. It
allows to record data from a natural viewpoint without interfering normal
movement. The captured data is representative for first-person (egocentric)
video understanding applications. The embedded IMU is an Xsens MTi-300
which is drift compensated using gravity and the earth’s magnetic field. In
scenarios of short translational accelerations the orientation estimate of this
MEMS sensor based unit is a suitable reference.

1 http://opencv.org
2 http://www.cvlibs.net/software/libviso/
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M

Figure 4.1: Experimental setup used to record data from an egocentric viewpoint. It
is equipped with cameras, an IMU (orange) and attached headphones.

direction of the user. The HMD contains an embedded IMU, which is used
by virtual reality applications to determine the head orientation.

Sensor Calibration The cameras are calibrated intrinsically using a pin-
hole model as well as extrinsically with respect to each other with the one
shot solution of [28], which uses multiple chessboard patterns as calibration
targets. The orientation between camera rig and the IMU is given by the rigid
transformation M ∈ SO(3). Since the IMU is solely used as orientation
reference, the translational component can be neglected here without any
loss. After gathering corresponding delta orientations of IMU ΔRimui

and
camera (visual odometry) ΔRcami we find M by minimizing the Frobenius
norm

min
M(θ,ϕ,ρ)

∑

i

||M ΔRimui
MT −ΔRcami

||F . (4.1)

The delta orientations need to cover all three degrees of freedom, which can
easily be accomplished with the small sized setup.
Assuming error-free inertial measurements, an estimate of the visual odom-
etry errors can be made. Comparing frame to frame delta poses a standard
deviation of σR ≈ 0.2° around all three axis can be observed, at small
biases in the range of 10−3°. Since the IMU does not provide translational
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The second setup in Figure 4.3 is a demonstrator for virtual reality applica-
tions. The cameras are mounted sideways onto an Oculus Rift stereoscopic
head-mounted display (HMD), such that they point into the current viewing
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avg
Object tracking 16 ms
Vertical planes 24 ms
Ground plane 3 ms
Vanishing points 16 ms
Visual odometry 46 ms
Disparity 37 ms

142 ms

1

Scene geometry

time

Rectification
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Image 2Image 1

IMU Filter

Object detection and tracking

...

Visual odometry

Vanishing points

Feedback

latency

...Image 3

Figure 4.2: Top: Individual processing times of the main tasks over 100 frames
on a dual core 2.4GHz CPU. Disparity estimation and visual odometry account for
more than half of the processing time. Bottom: Parallel processing and pipelining of
modules leads to a schedule with smaller latency and higher throughput.

referenced setup used in the KITTI benchmark [27] ground truth to find an
estimate of 𝜎t ≈ 0.05 m.

4.1.1 Software Framework

The overall perception process can be broken down into a small number of
different tasks, some of which are independent of each other, some of which
are not. These main tasks are disparity estimation, feature matching and
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tasks need to be embedded into a software architecture that minimizes the
overall latency between a new input image and the high-level output of
foreground objects and scene geometry, while maximizing the throughput
of individual tasks in terms of processed images per time. This is crucial
particularly in case of the egomotion estimation task, which depends on a
high throughput to ensure camera pose tracking also under fast motion.
To fulfil these requirements, the framework is implemented as a blackboard
architecture. Each task is processed by an individual module. All modules
communicate with each other via a common storage (blackboard). A module
starts processing, whenever all required information are available in the
storage and stores its processed and enriched information back to the storage.
This in turn triggers other modules, which depend on this information, to start
their task. The scheduling of tasks arises implicitly by defining the module
dependencies. Modules work in parallel whenever possible. This ensures a
small latency by exploiting the full potential of current multi-core processing
units. Modules process data preemptive, which leads to a pipelining effect
that ensures a high overall throughput. Individual module times are shown in
Figure 4.2 (top) over 100 input frames. Sequentially processing all modules
would cause an average latency of 142 ms, or a framerate of 8 Hz. In practice,
disparity estimation, visual odometry and vanishing points do not depend
on each other and can be processed in parallel. Obstacle detection requires
the background scene geometry, thus both should be run sequentially. To
parallel these tasks nonetheless, the obstacle detector uses a prediction of the
background geometry with the current egopose. A schematic of the resulting
module schedule is visualized in Figure 4.2 (bottom). The effective latency
for the obstacle output is reduced to 62 ms, which corresponds to a framerate
of 15 Hz.
The time-wise last module in the process chain is an information sink that
provides the scene geometry, obstacles, and the egopose over a network con-
nection. Arbitrary client applications can connect to this server to receive the
modelled environment information. Experiments with two such applications
are described in the following.
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Figure 4.3: Hardware setup and substitution of visual scene perception as used in
this virtual reality experiment.

4.2 Virtual Reality Experiment
If solely the abstract environment model was available to a human operator,
could he or she still successfully plan a path, negotiate obstacles, or navigate
towards objects? This question inspired a virtual reality experiment, in
which the person is provided with a three-dimensional visual rendering of the
modelled data in the head-mounted stereoscopic display. The side mounted
cameras point into the viewing direction such that they perceive information
similar to the human visual sense. The user’s visual perception is substituted
by algorithms that detect objects and model scene geometry. Figure 4.3
shows an impression of the virtual view.
By coupling the system’s feedback with a human operator a special loop is
created, in which the system’s output influences the immediate behaviour of
the user, which in turn affects the future input of the system. The influence

105



4 Experimental Platform

Figure 4.4: Results of the virtual reality experiment. The colored overlay visualizes
the path which the participants took while navigating from tree to tree back to the
starting point.
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of such loop can not be considered in offline experiments with recorded
data. A critical issue of this coupling is the problem of latency. Human
perception immediately adapts to changes in the visual field caused by the
own action, e.g. a rotation of the head. Delaying or suppressing the visual
impressions causes a conflict between action and perception that leads to the
common problem of motion sickness. To avoid motion sickness, latencies
of a few milliseconds must not be exceeded, which can hardly be achieved
by a sequential computer vision process. Even though we have been able
to reduce the latency to around 60 ms by exploiting parallel computing, it
remains a magnitude to high. A solution is to predict the perception based
on the environment model. The viewing direction is available with smaller
latency from visual odometry, or almost free of latency when using the IMU.
The user is constantly provided with (maximally 60 ms) aged data, which is,
however, perceived correctly with negligible delay. Furthermore, it allows to
increase the refresh rate of given feedback independently of the processing
time of all underlying perception algorithms.
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Figure 4.4 shows the setting of the conducted experiment. Participants started
on the right hand side into a given initial starting direction. Their task was
to navigate from tree to tree in a circle until they reached their rough initial
starting position, which was marked within the visualization. The scene was
filmed from the viewpoint in Figure 4.4 in order to record and overlay the
paths walked by the participants.
Some conclusions can be drawn from these experiments. The walked paths
show that the modelled object information principally suffices to navigate
towards and around objects in the range of 15 m. Compared to the visual
impression that the human perception provides, the artificial visualization is
very sparse. This concerns especially the medium distant scene background,
which usually provides important orientation clues, but is largely absent
here. This leads to a quickly settling feeling of disorientation, even though
the representation itself is consistent. The final offset between starting and
finishing position gives an idea about the accumulated position drift during
the time of walking. To mitigate the orientation drift, the IMU was used to
correct the visual odometry estimate in this experiment.

The virtual reality experiment indicates the usefulness of the abstract in-
formation for a human user during medium range navigation and obstacle
avoidance tasks. The human visual perception, that particularly includes
the interpretation and understanding of the vast amount of sensed visual
information, was almost entirely replaced by the perception framework. The
visual sense was merely used to transmit the abstracted information.
If one succeeds in substituting this visual feedback with another sensory
modality, the perception framework can serve as a powerful technical assis-
tance aid for visually impaired persons. The difficulty in substituting the
visual sensory channel is its immense capacity. The reasonable alternatives
are the tactile and acoustic modalities. However, these are trained to sense
information complementary to the visual world. Neuroscience research has
shown the ability of the brain to perform a substitution of sensory modalities
through other signals. A well known example is The vOICe system [61],
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which aims to substitute the visual with the auditory sense. Camera images
are directly mapped into sounds by a left-to-right scan through each single
video frame, which the user perceives with a headphone. Similar studies have
been conducted using tactile feedback [10]. After long periods of training the
brain can adapt to these signals and transform them into visual perceptions.
Many different technical prototypes have been developed to assist visually
impaired persons in a more easily accessible way [11, 19, 112]. Such systems
usually aim to inform the user about non-traversable directions in the scene
(e.g. [74, 24]). Depending on the sensor this can require the user to actively
scan the environment similar to a torch [8, 42]. In these systems the feedback
can be directly coupled with the sensed information. In cases where a wide
sensor range permits passive sensing, the design of intuitive feedback is hard,
because the amount of information remains very high. The interpretation
of the complex feedback signals is left to the user [32, 60, 10], and can
cause substantial cognitive load. Another strategy is to lead the user into
walk-able free space by solving a path planning problem [83, 71]. Intuitive
tactile feedback can be given for instance with vibrating elements around a
belt. However, the system takes high-level decisions for the user, which can
constitute a serious barrier for usage.
The perception framework presented in this work can enable a solution in
between these approaches. A system, that passively senses the environment,
informs the user with intuitive feedback and does not take decisions but leaves
the user in full control. The challenge consists in first, filtering the relevant
information from the large amount of sensed data and second, providing it
in a form that is intuitively understandable. The abstract representation of
the framework provides the necessary basis. Rather than informing about the
free space, the user can be specifically informed about potential obstacles,
their kind and their behaviour.
In context of the OIWOB project [65], this was realized by augmenting
the acoustic reality of visually impaired users with spatial sounds that are
perceived through an open headphone. Each object emits a sound that the
user perceives spatially as if a speaker was attached to it. This is achieved by
binaural rendering, which creates sounds that can be correctly localized in
direction and distance using a headphone [37]. It requires the (individual)
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head-related transfer function (HRTF) of both ears to render a sound depend-
ing on the direction and distance as if it was naturally distorted through the
outer ear and delayed according to the ear distance [9]. The choice of sounds
was made based on a number of simulator studies with visually impaired
users. Besides informing about the location of objects, different sounds
can encode semantic information, e.g. the object type. Sounds were chosen
to be clearly distinguishable from natural sounds, while still inducing an
association with common semantic concepts. Further design choices had to
regard the localizability of chosen sounds and their harmony with respect to
each other. A summary of these considerations and the conducted studies
can be found in [106].
The system was prototypically realized using the helmet setup in Figure 4.1,
and a notebook carried in a backpack. All tracked objects were additionally
geometrically classified into the classes flat, pole-like, overhanging and
dynamic, and a characteristic sound was assigned to each class. A field test
with 8 visually impaired participants was conducted to confirm the principal
function of such system.

Fieldtest The field test consisted of an artificial obstacle course (Figure 4.5,
top row). The participants’ task was to orientate themselves along the edge
between lawn and pavement with the white cane, while avoiding different
obstacles that were placed along the path, some directly on the edge, some to
the left or right.
A familiarization with the virtual spatial sound sources could be observed for
most participants within minutes of practice. A single obstacle is sufficient
in this phase to experience the principal of scene fixed sounds that adjust
according to the movement and head rotations. To keep the cognitive load
of untrained users within a reasonable limit, the three most relevant objects
in terms of distance and viewing direction were selected and converted
into sounds. This can include objects which are located lateral, outside the
visible camera range. Therefore, stable object tracking also under temporary
invisibility is a prerequisite. In the beginning of the parcours, the users
tended to stop walking whenever a new obstacle was sonified and turn their
head in order to confirm the sound direction. Later they slowed down their

109



4 Experimental Platform

Figure 4.5: Impressions of the conducted field tests with visually impaired people.
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walking speed until the obstacle was in reach of the white cane. The obstacle
distance was perceived by sound volume, which turned out to be very difficult
to judge. A longer training phase is required to learn the relation between
sound volume and distance. Other options are conceivable, for example an
intermittent sound presentation that encodes distance by the frequency of
sound pulses. Those participants, who are independent and mobile on their
everyday routes, could achieve an obstacle avoidance behaviour in a second
or third walk through the parcours. Two participants who felt instantly very
comfortable with the system were taken on a free walk on the sidewalk of
a nearby road. They communicated their impressions verbally. Besides
avoiding collisions, they were also able to follow the sound that a guiding
person virtually emitted. Remaining difficulties were caused by the unknown
object extensions. Though it is modelled by the perception system, the size of
objects is currently not reflected in the feedback. It remains an open question
how the size of objects sounds, mainly because it is a feature out of the usual
scope of hearing.



4.3 Application to Assist Visually Impaired Persons

far not exhausted. In real environments, sound reflections on surfaces give
impressions of space, and Doppler effects indicate the motion of objects.
Furthermore, the feedback could include less concrete information such as
the direction of vanishing points, which might be a valuable orientation clue.
The versatile camera-based setup allows to extend and refine the environ-
ment model to particular demands of visually impaired people. Detecting
crosswalks, bus stops, signs or recognizing text are just a few examples of
expressed wishes.
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Many extensions to this prototype are imaginable. The framework’s envi-
ronment model contains additional information that could be helpful for
a visually impaired user, and also the potential of acoustic feedback is by





5 Conclusion

In this work a framework was presented that enables a mobile system to
perceive its environment with a binocular camera. In order to operate in
unknown environments these systems need to understand their surrounding
in a spatial as well as temporal manner. To facilitate common, yet unspecific
tasks like targeted navigation, interaction or obstacle avoidance, methods
were presented that abstract the raw camera data into a semantically enriched
meta representation. It models the environment on a semantic level of object
instances. This forms a basis for higher level reasoning tasks and leads
to a very compact environment representation that is well suited for the
constrained resources of a mobile platform.
These opportunities are accompanied by various technical challenges. Cog-
nitive object detection and recognition processes are to a great part driven
by top down reasoning from known concepts to sensory features. Such
knowledge is not available unless it is explicitly modelled or learned. Thus,
it needs to be substituted by other clues. The technical possibilities of mobile
systems are limited, not only in terms of computational power but also in
terms of sensor coverage and accuracy. Perception algorithms have to cope
with low resolution sensor data, have to be robust to erroneous measurements
and have to be efficient enough to allow for real-time operation.
Different algorithms were introduced that, taken in combination, solve this
problem. We first argued that typical environments of mobile systems can
be decomposed into a static scene background structure which is filled by
independent, possibly moving objects in the scene foreground. The scene
background structure was modelled with geometric planes which express
the ground around the system, and typical surfaces like building facades,
fences or bushes. Estimating and tracking these surfaces is difficult because
of their large variability, their large distances and large depth uncertainties
in the binocular reconstruction. As a complementary mid-level feature the
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concept of vanishing points was introduced. An algorithm was developed to
estimate and track an accurate model of scene directions using a sequence of
past images. The estimated directions were exploited in different ways. The
direction of vanishing points enabled us to keep track of the ground surface
also during major occlusions and temporal invisibilities due to the surface
being out of view. Other than in most related systems, permanent ground
visibility cannot be assumed due to the unconstrained camera setup. Based
on the ground orientation we developed a method to estimate the background
structure that delimits the scene. It is represented by geometric planes which
are vertically aligned with the floor. Afterwards, a geometric representation
was found for staircases. Image edge observations and vanishing directions
were used to develop an efficient algorithm that models stairs with a minimal
set of geometric parameters. Stair steps are tracked over time in order to
enable the traversal of the staircase.
Pose estimation and scene modelling were treated independently in this work.
The environment model is locally consistent but is globally afflicted with the
drift of the visual odometry. In order to mitigate this drift, we showed how
scene vanishing directions can be fed back into the pose estimation. This
leads to an environment model that is consistent with the surrounding scene.
The scene background model finally enabled to separate foreground objects
from the scene. A method was proposed to track multiple unknown objects
in low resolution disparity measurements. For each object we estimated the
direction of movement, the velocity, and a shape model, which enabled to
track objects through full occlusions. Experiments on challenging inner urban
datasets showed that the methods are able to handle cluttered scenes with
many independently moving objects and major occlusions. The perception
range of 15 meters allows for targeted path planning under moderate ego-
velocities. It could easily be extended on less limiting platforms, where
wider binocular baselines are possible, or image resolution can be increased.
This was demonstrated on data from an automotive platform. The object
tracking itself produces a very small object miss-rate. Most errors occur due
to inaccuracies of the background model in the limit of the perception range
and are uncritical in terms of collision avoidance.
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Foreground objects, scene background model and the relative camera pose
are the output of the framework. Arbitrary applications can build upon this
meta representation of the environment. We demonstrated two applications
related to wearable systems, in which the cameras are worn on a persons’
head. The human perception was largely replaced by a visual or acoustical
rendering of the modelled information. These applications are particularly
challenging because of their highly dynamic camera motion. The system
output influences the behaviour of the user, and thereby the future input of
the system. The visual feedback resembled the natural three-dimensional
visual impression that a sighted person has, albeit reduced to a minimum. In
the acoustical feedback, object locations were indicated by spatial, binau-
ral sounds. This form of feedback has great potentials in the assistance of
visually impaired people. Both experiments could show that the modelled
environment information is sufficient to move towards and around obstacles.
A targeted navigation becomes possible in the current perception range of
15 meters. This was widely independent of the feedback modality. For
sighted persons the visual feedback was very clear and obvious. Visually
impaired users were able to make use of the acoustic environment augmen-
tation after few minutes of practice. This intuitive kind of feedback was
made possible by the high degree of sensor data abstraction. The semantic
level of information used here is currently unique in the field of technical
aids for visually impaired people. The increased perception range allows to
sense potential dangers earlier and avoid them in a targeted way. Moreover,
overhanging objects are detected which pose a particular danger since they
cannot be sensed with the white cane. As such, a system like this could
contribute to the safety and independent mobility of visually impaired people.
The versatile camera setup allows for many potential functional extensions,
some of which were discussed in Section 4.3.
To make a system like this suitable for daily use, few user-oriented adap-
tations are conceivable. A small sized binocular camera system embedded
into a light pair of glasses is feasible. A practical issue is the calibration of
the camera setup. A onetime calibration requires a torsionally rigid frame,
which contradicts the wish for unobtrusiveness. Instead, an online calibra-
tion method should be embedded to continuously accommodate at least the
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extrinsic camera alignment. None of our proposed algorithms relies on highly
parallelized graphical processing units. With careful adjustments the compu-
tational power of a state-of-the-art smartphone could already be sufficient as
computational platform. In a recent project, Google Tango [34] demonstrates
spatial sensing for indoor scenarios on hand-held devices, which includes
localization and depth sensing. These are essential parts of the proposed
framework and account for more than half of the workload (Figure 4.2). An
efficient implementation of these modules for the architecture of mobile
devices would be a requirement but appears in very close reach.
Some future directions and possible algorithmic extensions were discussed
in Sections 3.1.3.4 and 3.2.7. Other extensions of this work could aim at
special application scenarios. The proposed environment representation is
well suited for close range navigation tasks. Objects can be used as navigation
targets, and background geometry gives valuable clues about the general
scene alignment. Scenes contain more features which could be helpful here.
Consider for instance guidelines like curbstones, the route of a pedestrian path
through a garden, or crosswalks in traffic scenarios. The floor condition (e.g.
lawn, flowerbed, water) can be a valuable feature to judge about traversable
and impassable areas. A scene background model for an autonomous vehicle
should be extended by a model of the road and its lanes. All these extensions
require to provide more specific domain knowledge than was done in this
work. Our only assumption was a flat world, that is delimited by vertical
surfaces and populated with movable boxes.
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Mobile robotic systems need to perceive their surroundings in order to 
act independently. They need to determine the space of safe movement 
and detect obstacles and understand their motion. To this end they are 
equipped with sensors which provide information about the unknown 
environment. By interpreting sensor measurements, a representation 
of their environment arises that provides the relevant information in 
an accessible way. Mobile systems are subject to constraints that ren-
der this perception process challenging and unsolved in many aspects. 
Hardware and sensors must be small, lightweight and energy effi cient 
while providing perception ranges as wide as possible. Clear computa-
tional performance limits confl ict with required fast processing times. 
In this work we present a perception framework that meets these 
requirements and builds upon the versatility of a binocular camera as 
sensory input. It transforms the raw camera data into a compact meta 
representation consisting of instances of arbitrary objects. We intro-
duce a number of different algorithms which complement each other 
to fi rst explain the static scene background structure and subsequently 
model generic objects and their motion in the scene foreground. For 
autonomous mobile systems this abstract scene model is immediately 
applicable for collision avoidance and targeted navigation towards or 
around objects. The applications are not limited to closed technical 
systems. We develop a new kind of technical assistance system for 
visually impaired persons, which intuitively informs the user about the 
surrounding. An experimental study shows how visually impaired users 
can benefi t from such system.
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