27 research outputs found

    Smooth trajectory generation for rotating extensible manipulators

    Get PDF
    In this study the generation of smooth trajectories of the end-effector of a rotating extensible manipulator arm is considered. Possible trajectories are modelled using Cartesian and polar piecewise cubic interpolants expressed as polynomial Hermite-type functions. The use of polar piecewise cubic interpolants devises continuous first and - in some cases - second order derivatives and allows easy calculation of kinematics variables such as velocity and acceleration. Moreover, the manipulator equations of motion can be easily handled, and the constrained trajectory of the non-active end of the manipulator derived directly from the position of the end-effector. To verify the proposed approach, numerical simulations are conducted for two different configurations

    Optimal Motion of Flexible Objects with Oscillations Elimination at the Final Point

    Get PDF
    International audienceIn this article, a theoretical justification of one type of skew-symmetric optimal translational motion (moving in the minimal acceptable time) of a flexible object carried by a robot from its initial to its final position of absolute quiescence with the exception of the oscillations at the end of the motion is presented. The Hamilton-Ostrogradsky principle is used as a criterion for searching an optimal control. The data of experimental verification of the control are presented using the Orthoglide robot for translational motions and several masses were attached to a flexible beam

    Experimental Validation of a Dynamic Model for Lightweight Robots

    Get PDF
    Nowadays, one of the main topics in robotics research is dynamic performance improvement by means of a lightening of the overall system structure. The effective motion and control of these lightweight robotic systems occurs with the use of suitable motion planning and control process. In order to do so, model-based approaches can be adopted by exploiting accurate dynamic models that take into account the inertial and elastic terms that are usually neglected in a heavy rigid link configuration. In this paper, an effective method for modelling spatial lightweight industrial robots based on an Equivalent Rigid Link System approach is considered from an experimental validation perspective. A dynamic simulator implementing the formulation is used and an experimental test-bench is set-up. Experimental tests are carried out with a benchmark L-shape mechanism

    Modeling Human Motor Skills to Enhance Robots’ Physical Interaction

    Get PDF
    The need for users’ safety and technology acceptability has incredibly increased with the deployment of co-bots physically interacting with humans in industrial settings, and for people assistance. A well-studied approach to meet these requirements is to ensure human-like robot motions and interactions. In this manuscript, we present a research approach that moves from the understanding of human movements and derives usefull guidelines for the planning of arm movements and the learning of skills for physical interaction of robots with the surrounding environment

    Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints

    Full text link
    This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here https://riunet.upv.es/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.[EN] Purpose - The purpose of this paper is to analyze the impact of the torque, power, jerk and energy consumed constraints on the generation of minimum time collision-free trajectories for industrial robots in a complex environment. Design/methodology/approach - An algorithm is presented in which the trajectory is generated under real working constraints (specifically torque, power, jerk and energy consumed). It also takes into account the presence of obstacles (to avoid collisions) and the dynamics of the robotic system. The method solves an optimization problem to find the minimum time trajectory to perform the tasks the robot should do. Findings - Important conclusions have been reached when solving the trajectory planning problem related to the value of the torque, power, jerk and energy consumed and the relationship between them, therefore enabling the user to choose the most efficient way of working depending on which parameter he is most interested in optimizing. From the examples solved the authors have found the relationship between the maximum and minimum values of the parameters studied. Research limitations/implications - This new approach tries to model the real behaviour of the actuators in order to be able to upgrade the trajectory quality, so a lot of work has to be done in this field. Practical implications - The algorithm solves the trajectory planning problem for any industrial robot and the real characteristics of the actuators are taken into account, which is essential to improve the performance of it. Originality/value - This new tool enables the performance of the robot to be improved by combining adequately the values of the mentioned parameters (torque, power, jerk and consumed energy).This paper has been made possible thanks to support from the Spanish Ministry of Science and Innovation, through the Project for Research and Technological Development, ref. DPI2010-20 814-C02-01.Rubio Montoya, FJ.; Valero Chuliá, FJ.; Suñer Martinez, JL.; Cuadrado Iglesias, JI. (2012). Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Industrial Robot: An International Journal. 39(1):92-100. doi:10.1108/01439911211192538]S9210039

    An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines

    Get PDF
    This paper presents a new, highly effective approach for optimal smooth trajectory planning of high-speed pick-and-place parallel robots. The pick-and-place path is decomposed into two orthogonal coordinate axes in the Cartesian space and quintic B-spline curves are used to generate the motion profile along each axis for achieving C4-continuity. By using symmetrical properties of the geometric path defined, the proposed motion profile becomes essentially dominated by two key factors, representing the ratios of the time intervals for the end-effector to move from the initial point to the adjacent virtual and/or the via-points on the path. These two factors can then be determined by maximizing a weighted sum of two normalized single-objective functions and expressed by curve fitting as functions of the width/height ratio of the pick-and-place path, so allowing them to be stored in a look-up table to enable real-time implementation. Experimental results on a 4-DOF SCARA type parallel robot show that the residual vibration of the end-effector can be substantially reduced thanks to the very continuous and smooth joint torques obtained
    corecore