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Abstract: This paper presents a new, highly effective approach for optimal smooth trajectory planning of high-speed pick-and-place 

parallel robots. The pick-and-place path is decomposed into two orthogonal coordinate axes in the Cartesian space and quintic B-spline 

curves are used to generate the motion profile along each axis for achieving C4-continuity. By using symmetrical properties of the 

geometric path defined, the proposed motion profile becomes essentially dominated by two key factors, representing the ratios of the 

time intervals for the end-effector to move from the initial point to the adjacent virtual and/or the via-points on the path. These two 

factors can then be determined by maximizing a weighted sum of two normalized single-objective functions and expressed by curve 

fitting as functions of the width/height ratio of the pick-and-place path, so allowing them to be stored in a look-up table to enable 

real-time implementation. Experimental results on a 4-DOF SCARA type parallel robot show that the residual vibration of the 

end-effector can be substantially reduced thanks to the very continuous and smooth joint torques obtained. 
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1 Introduction 

Recent years have seen ever increasing demands from food, pharmaceutical, packaging and many other light industries 

for high-speed pick-and-place parallel robots using limbs containing proximal revolute actuated joints and parallelograms. 

This is exemplified by the many very successful applications of Delta robots and similar types [1-5]. From a system 

viewpoint, the capability and efficiency of high-speed pick-and-place parallel robots clearly depends on desirable dynamic 

characteristics and good quality computer control, but also requires sound trajectory planning for achieving superior 

performance in terms of smoother joint torques, lower residual vibrations and shorter cycle times [6-9]. Large amounts of 

effort have been devoted to trajectory planning of pick-and-place operations over the last few decades. The currently 

available approaches can be broadly classified into two categories: path-based trajectory planning and coordinate-based 

trajectory planning.  

Path-based trajectory planning is concerned with first generating an appropriate geometric path parameterized with 

respect to the arc length and then designing a proper motion profile along that path. For example, Gauthier et al. [10] took 

Lamé curves with G2-continuity at square corners linking the vertical and horizontal segments, and employed a ‘4-5-6-7 

polynomial’ with C3-continuity as the motion profile. The trajectory was then generated by minimizing the 

root-mean-square value of the time-derivative of the kinetic energy per unit mass of the payload. However, although the 

Lamé curve parameters can be optimized off-line, the point coordinates of the curve cannot be expressed explicitly in terms 

of the arc length. Therefore, a nonlinear algebraic equation has to be solved in the on-line coarse interpolation to determine 

the point coordinates associated with an interpolated arc length. In order to reduce the computational burdens in real time 

implementation, Masey et al. [11] suggested taking a bisected ellipse as the geometric path such that the arc length along 

the path could be approximated as a linear function of two normalized parameters so as to include any specified durations 

of constant velocity or degree of asymmetry. They concluded that the use of an asymmetry factor would be helpful to 

reduce peak joint torques. The transition linking the vertical and horizontal segments could also be shaped as a Bézier curve, 

clothoid spline or quintic polynomial for achieving at least G2-continuity [12-16].  
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Compared to path-based trajectory planning, it can be easier to use coordinate-based trajectory planning in either the 

Cartesian or the joint space. Planning in the joint space involves first transforming the coordinates of a set of via-points on 

a geometric path into a sequence of joint displacements via inverse kinematics, and then generating the motion profiles for 

each joint by interpolation subject to a set of specific constraints provided by the design requirements [17-21]. For example, 

Gosselin et al. [18] employed a ninth-order polynomial for a single motion profile to guarantee C3-continuity by inserting a 

lift-off and a set-down point. They concluded that undesirable joint torque fluctuations arising from the use of higher order 

polynomials could be improved by adjusting the time intervals when the lift-off and set-down points are reached or by 

using a combination of a number of piecewise lower order polynomials. There are many other well-developed piecewise 

motion profiles available for this purpose, achieving at most C3-continuity throughout the entire trajectory, for instance 

3-4-5 polynomial, 4-5-6-7 polynomial, modified sine, modified trapezoid, and many others [6].  

In order to achieve C4-continuity for a smooth motion profile throughout the entire trajectory, there can be potential 

advantages in using a fifth-order B-spline as the interpolation function. The trajectory planning problem can then be stated 

as the determination of the sequence of time intervals necessary for a spline to connect two adjacent knots by minimizing a 

weighted performance index subject to a set of specific constraints. In this context, Constantinescu et al. [22] proposed a 

method for minimum time trajectory planning subject to the limits imposed upon the joint torques and their first derivatives. 

Gasparetto et al. [23-25] presented an algorithm for optimal smooth trajectory planning by minimizing, subject to limits on 

joint velocity, acceleration and jerk, a weighted sum of the integral of joint jerk squared and the total cycle time. Similarly, 

trajectory planning in the Cartesian space involves first generating motion profiles along two orthogonal axes of a path 

lying in a plane and passing through a set of via-points, and then transforming the interpolated point coordinates into the 

corresponding joint variables via inverse kinematics [26-29]. Optimization problems can be formulated in the Cartesian 

space similar to those in the joint space.  

With the B-spline interpolation ensuring C4-continuity, an obvious advantage of optimal trajectory planning in the joint 

space is that it should be easier to impose a set of specified limits upon the actuated joints. However, a problem encountered 

in practice is that the optimized motion profiles are configuration dependent; it is difficult, if not impossible, to solve the 

resulting complicated nonlinear programming problems online. Note that a smooth motion profile planned in the Cartesian 

space ensures that in the joint space at nonsingular configurations, and the joint torques are closely related to the joint 

accelerations. Therefore, the development of a widely-effective, architecture and configuration free approach to generate 

the smooth motion profiles in the Cartesian space would be highly beneficial for real-time implementation. 

Responding to the many practical needs and inspired by the method proposed in [23], this paper presents a new approach 

for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines. The method features 

an initial offline determination of two key factors dominating the normalized motion profiles along a path defined in a local 

frame of the Cartesian space, followed by the online generation of the smooth joint trajectories using a look-up table. The 

remainder of this paper is organized as follows. Section 2 defines a pick-and-place path in a local frame, employs 

fifth-order B-splines to generate the motion profile along each axis of the path with C4-continuity, and so identifies two 

non-dimensional control factors. In Section 3, the influence of these two factors on the maximum acceleration and jerk over 

the path is investigated, leading to an optimization problem by maximizing a weighted performance index. This allows the 

relationship between the two factors and the width/height ratio of the path to be established offline by curve fitting, which, 

in turn, enables ready online generation of the smooth joint trajectory for real-time implementation. Section 4 presents 

results from both simulations and experiments using a 4-DOF SCARA type parallel robot [5] to demonstrate the good 

performance of the proposed approach for achieving smooth joint torques and thereby reducing residual vibrations of the 

end-effector. Conclusions are drawn in Section 5. 

2 Generation of Geometric Path and Motion Profile in the Cartesian Space  

2.1 Description of the geometric path 

As shown in Fig. 1, let  1 1 1 1, ,P x y z  and  , ,f f f fP x y z  be the initial and final points of the end effector in a 

pick-and-place operation, where 1 1 1, ,x y z  and , ,f f fx y z  are the coordinates of 1P  and fP  with respect to the reference 

frame O xyz . When the pick-and-place operation is planned in an environment free of obstacles, it is not in principle  
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necessary to specify the Cartesian trajectory that will be followed by the end-effector because only the initial and final 

points are relevant to the task to be performed. However, it is preferable to insert a lift-off point 2P  and a set-down point 

1fP   on the path so that acceptable departure and arrival motions can be provided. In addition, a middle point 1

2

fP   is also 

considered. Thus, at least 5f   via-points in total need to be set along the path to fulfill these requirements. 

Without loss of generality, let the pick-and-place path be located in a plane u v  which is normal to the x y  plane and 

let 1 fz z . Then, the coordinates of an arbitrary point ( , , )P x y z  on the path with respect to the global frame O xyz  can 

be expressed in terms of those with respect to the local frame 1P uv  shown in Fig. 1 by the coordinate transformation 

1

1

1

cos sin 0

sin cos 0 0

0 0 1

x u x

y y

z v z

 
 

       
             
             

                                                            (1) 

where 1

1

arctan f

f

y y

x x






. In addition, the width/height ratio of the path is defined as  

b

h
   with    2 2

1 1f fb x x y y     and 1 1( )

2

f fh z z                                            (2) 

2.2 Generation of a motion profile along an axis using quintic B-splines  

A brief review of quintic B-splines [30] will lead to the formulation of the normalized motion profile along an axis of the 

geometric path. A B-spline of degree p  is a linear combination of polynomials  ,i pN  , called base or blending functions, 

weighted by coefficients iQ  named control points.   is a normalized independent parameter here taken to represent time. 

The normalized motion profile  s   is then constructed as 

   ,
1

n

i i p
i

s Q N 


  , 0 1                                                                  (3) 

with  ,i pN   satisfying the De Boor formula [30] 

 

     

1
,0

1
, , 1 1, 1

1 1

1,

0, elsewhere
i i

i

i pi
i p i p i p

i p i i p i

N

N N N

  


    
   



 
  

   

  
 


     

                                               (4) 

where i ( 1,2, , 1i m n p    ) define a sequence of nodes necessary for building  s   by interpolation. 

 

Fig. 1. A pick-and-place path defined in a local frame 
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It can be proved that the thr  derivative of ( )s   with respect to   can be expressed as  

 , ,
1

d

d

r n r

i r i p rr
i

s
Q N 








                                                                         (5) 

where ,i rQ ( 1,2, ,i n r  ) is the control point of the thr  derivative of ( )s   and can be obtained recursively by  

 ,
1, 1 , 1

1

0

1
0

i

i r
i r i r

i p i r

Q r

p rQ
Q Q r p

    
  


       

                                                     (6) 

The nodes at both ends of the path must be repeated 1p   times so that the control points coincide with the initial and 

final via-points, i.e. 1(0)s Q  and (1) ns Q . Furthermore, two virtual points need to be introduced at the second and the 

second-last positions of the node sequence in order to obtain a trajectory with no jerk at either end [23]. These 

considerations result in 2( 1)m p f    and 1n p f   , with the required sequence of nodes being  

 2 3 4 1

1 12

0,0, ,0, , , , , , ,1,1, ,1p p p p f p f

p pf

         

 

   
                                                (7) 

Since a B-spline of degree p  is of 1pC  -continuity, it is necessary to take 5p   to ensure a smooth trajectory in terms 

of jerk. This leads to 6n f   and 12m f  . Consequently, f  constraint equations can be formulated using Eq. (4) 

and sequence (7) to ensure that the trajectory passes through f  via-points, 

 

   
 

1 1

1 , 1
1

0

2,3, , 1

1

n

p j j i p p j i
i

f n

s s Q

s s N Q j f

s s Q

    


  

     

  

                                                 (8) 

Also, six constraint equations are obtained by imposing the boundary conditions in terms of velocity, acceleration and jerk 

at both ends of the trajectory,  

1

1, ,
10

, ,

1

d
0

d
   1,2,3

d
0

d

r r

r i r ir
i

r n

n r r i r ir
i n r

s
Q C Q

r
s

Q C Q














 


   

 
    





                                                         (9) 

where the coefficients ,i rC ( 1, , 1i r   and , ,i n r n   ) can be determined using Eqs. (5) and (6) in a recursive 

manner. Rewriting Eqs. (8) and (9) in matrix form then yields the solution to the control points 

1q A b                                                                                  (10) 

where 

 T

1 2 nQ Q Qq   

1

2

 
  
 

A
A

A
, 1

2

 
  
 

b
b

b
 

   T T

1 1 2 2,  0 0 0 0 0 0fs s s b b  
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     
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     

1, 3 2, 3 , 3

1, 4 2, 4 , 4
1

1, 2, ,

1 0 0

0 0 1

p p p p n p p

p p p p n p p

p p f p p f n p p f

f n

N N N

N N N

N N N

  

  

  

  

  

  



 
 
 
 
   
 
 
 
  

A







   





 

1,1 2,1

1,2 2,2 3,2

1,3 2,3 3,3 4,3
2
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 
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 
 
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A








0

0

 

 

2.3 Generation of a motion profile along a path 

The motion profile along the path will be generated from the profiles along the two orthogonal axes of 1P uv . Using the 

path description in Section 2.1, take 5f   such that 6 11n f    and 12 17m f   . This leads to five via-points, 

sequentially denoted by  ,i i iP u v ( 1,2, ,5i   ), where 2P  is the lift-off point, 4P  is the set-down point and 3P  is the 

middle point. As discussed above, introduce two virtual points, 1vP  between 1P  and 2P , and 2vP  between 4P  and 5P . The 

whole set of relevant points is assumed to be symmetrical with respect to 3P . Hence, the sequence of via-points (including 

the virtual points) can be described by  

         1 1 2 3 4 2 50,0 0, 2, , ,0v vP P P h P b h P b h P P b                                      (11) 

where 0 1   is defined as the lift-off/set-down ratio, namely, the ratio of the v-coordinate of 2(4)P  to that of 3P . 

Corresponding to sequence (7), the sequence of nodes becomes 

 7 8 9 10 11

6 63

0,0, ,0, , , , , ,1,1, ,1                                                                (12) 

Two time ratio factors are now defined by 

1 8 9 2 7 8,   k k                                                                           (13) 

where 10 1k   denotes the ratio between the time for the end-effector to move from 1P  to 2P  and the time from 1P  to 3P , 

whereas 20 1k   represents the ratio of the time from 1P  to 1vP  to that from 1P  to 2P . Keeping in mind the geometric 

symmetry of the point locations, the nodes can then be expressed in terms of 1k  and 2k  as 

1 2 1 1 1 2
1 6 7 8 9 10 11 12 17

1
0,  ,  ,  ,  1 ,  1 ,  1

2 2 2 2 2

k k k k k k                                           (14) 

Adding a subscript ‘u’ or ‘v’ to identify the motion profile (see Eq. (3)) associated with an axis, the position vector,  tr , 

of an arbitrary point on the path can be expressed as  

           1
0 u v

b
t u t v t s s

T
  

  r , t T                                              (15) 
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where T  is the time taken for the end-effector to move from 1P  to 5P  by passing through all the via-points in between. In 

using Eq. (10) to determine the control points of  us   and  vs  , note that u vA A  and ,2 ,2u vb b , while  

   T

,1 ,10 0 1 2 1 1 ,  0 1 0u v   b b                                                (16) 

Taking the thr  derivative of Eq. (15) with respect to time and normalizing the outcomes by rb T , yields the 

dimensionless position, velocity, acceleration and jerk of a point on the path, 

        

   

1 1

2 2 3 3
1 1

2 2 3 3

d d
,  

d d

d d d d
,   

d d d d

u v
u v

u v u v

s s
s s

s s s s

     
 

   
   


 

 

 

    
 

   
    
   

s v

a j

                                            (17) 

Thus, given a reasonable value of   for a pick-and-place operation,  s ,  v ,  a  and  j  are dominated by 1k  

and 2k  once   is specified. The method for determining 1k  and 2k  will now be addressed. 

3 Smooth Trajectory Planning in the Cartesian Space 

3.1 The performance indices 

Just as for trajectory planning in the joint space, the quality of a trajectory planned in the Cartesian space can be 

evaluated using appropriate performance indices based upon the second and third time derivatives of the motion profile 

(acceleration and jerk) of the end-effector. This is because the peak values and smoothness of the time histories of the joint 

torques are closely related via inverse kinematics and dynamics to those of acceleration and jerk of the end-effector at 

non-singular configurations [31]. Given a specified width/height ratio  , two pairs of performance indices are proposed 

for evaluating acceleration and jerk of the end-effector over the entire normalized path within the normalized time duration, 

that is effectively taking 1b   and 1T  . They are defined as functions of 1k  and 2k , 

   max 1 2
0 1

, maxa k k



 

 a ,    
21

rms 1 2 0
, da k k    a                                             (18) 

   max 1 2
0 1

, maxj k k



 

 j ,    
21

rms 1 2 0
, dj k k    j                                              (19) 

The two indices in the first pair (Eq. (18)) represent the maximum and root mean square acceleration, whereas those in the 

second are related to the jerk. 

An example suffices to assess these indices without loss of generality. Taking 28   and 0.5   for the Extended 

Adept Cycle (EAC) [3], Fig. 2(a) and (b) show distributions of maxa  and rmsa  vs. 1k  and 2k . They look extremely similar 

to each other in shape. The local minimum of maxa ( rmsa ) lies along a valley represented by a nearly straight line (see the red 

line in the contour diagram) and monotonically increases with increasing 2k  such that it takes a global minimum at 

1 0.21k  ( 1 0.23k  ) when 2 0k  . Also, max rms( )a a   when 1 0k   or 1 1k  . The distributions of maxj  and rmsj  vs. 

1k  and 2k  shown in Fig. 3(a) and (b) behave in a similar way. The global minimum of maxj  occurs at 1 0.34k   and 

2 0.07k  , while rmsj  takes a minimum value at 1 0.31k   when 2 0k  . Since 2 0k   leads to violation of the jerk 

boundary conditions, it is rational to use maxa  and maxj  as the performance indices of a trajectory. 
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3.2 The optimization problem 

Considering that maxa  and maxj  are functions of 1k  and 2k , two normalized single objective functions can be 

formulated for maximization, i.e.,  

 
 

 
1 2

max 1 20 1 0 1
1 2

max 1 2

min min ,
, max

,
k k

a

a k k
F k k

a k k
                                                           (20) 

 
 

 
1 2

max 1 20 1 0 1
1 2

max 1 2

min min ,
, max

,
k k

j

j k k
F k k

j k k
                                                           (21) 

Obviously, the maximum acceleration (jerk) takes its minimum value when ( ) 1a jF F  . Hence, a weighed objective 

function is created using the linear scalarization method,  

1 2

max

subject to:

         0 1,  0 1

a a j jF w F w F

k k

 

   
                                                                   (22) 

where the weights 0aw   and 0jw   with 1a jw w   can be suitably adjusted to trade off the significance between two 

normalized single-objective functions aF  and jF  to best match particular applications. For example, a larger weight of aF  

will lead to lower joint torques, while a larger weight of jF  will lead to lower rates of change of joint torques. 

Concentrating here on the most likely, general-purpose case where 0.5a jw w  , Fig. 4 shows that the maximum value of  

Fig. 3. Distributions of maxj  and rmsj  versus 1k  and 2k  with 28   and 0.5   
(b)(a) 

Fig. 2. Distributions of maxa  and rmsa  versus 1k  and 2k  with 28   and 0.5   
(b)(a) 
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F  is achieved at 1 0.31k    and 2 0.12k   . Global optimality exists because F  and its gradient are continuous and F  is 

convex in the feasible domain of 1k  and 2k  (see Fig. 4). Thus, the optimization problem can be solved with ease by, for 

example, calling the fmincon function in the Matlab® Optimization Toolbox. 

Again taking the EAC path with 28   and 0.5  , Fig.5 shows the norms of acceleration and jerk generated by three 

pick-and-place trajectories planned in the Cartesian space. The first uses two symmetric Lamé curves to link the lift-off and 

set-down points with a 4-5-6-7 polynomial providing the motion profile along the entire path [10]. The second employs 

piecewise 4-5-6-7 polynomials [4] for the motion profile along two coordinate axes with the optimized 0.35v u   , 

where v and u are the normalized time spent from 1P  to 2P and from 2P  to 3P , respectively. The third adopts the 

fifth-order B-spline as the motion profile along two coordinate axes with the optimized 1 0.31k    and 2 0.12k    as 

proposed in this paper. We name three trajectories as ‘Lamé curve’, ‘Piecewise poly’ and ‘B-spline’, for short. The reasons 

why this comparison study considers only the Lamé curve and the 4-5-6-7 polynomial motion profile are: (1) for 

path-based trajectory planning, the Lamé curve exhibits superior smoothness over many other paths, the clothoid for 

instance [15]; (2) for coordinate-based trajectory planning, the 4-5-6-7 polynomial exhibits better performance than the 

cycloid and modified trapezoid, etc.  Fig. 5 shows that the ‘B-spline’ exhibits overall superior behavior in terms of both 

peak value and smoothness compared with the other two trajectories. Table 1 shows their performance indices. 

 

 

 

Fig. 5. Behaviors of three trajectories planned in the Cartesian space 

Fig. 4. Variation of F  versus 1k  and 2k  ( 0.5a jw w  ) 
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Finally, an analytical expression of the optimized 1k   and 2k   vs.   can be developed by means of curve fitting using a 

third-order polynomial 

3

,
0

j
i i j

j

k g



  , 1,2i                                                                        (23) 

where the coefficients ,i jg  are given in Table 2 and the fitted curves are shown in Fig. 6. This treatment allows a look-up 

table to be developed to determine 1k   and 2k   for any   assigned within a reasonable range. Obviously, 1k   and 2k   are 

independent of the horizontal width b  and the cycle time T .  

 

 

 
 

3.3 Determination of T  

In real-time implementation, b  can directly be determined by the distance between the initial and final via-points, while 

the cycle time T  must be subject to the limits of motor’s speed and torque constraints. These limits can be set in 

accordance with the specifications of the motor and gear reducer used. Then, the velocity and acceleration limits of the 

end-effector, defined as the movement capacity and denoted by  v  and  a , over the entire task workspace can be 

determined by means of the singular decomposition technique proposed in [5], leading to the following constraints  

 max
0

d
max

dt T

b
v v

t T 
 

r
                                                                       (24) 

 
2

max2 20

d
max

dt T

b
a a

t T 
 

r
                                                                      (25) 

Fig. 6. The optimized *
1k  and *

2k  versus 

Table 1 Performance indices of three motion profiles 

 Lamé curve Piecewise poly B-spline 

maxa  7.8 13.7 9.0 

maxj  242.1 132.5 84.0 

Table 2 Coefficients of the third-order polynomial, Eq. (23) 

 0j   1j   2j   3j   

1, jg  0.579  21.99 10  45.09 10 64.91 10   

2, jg  0.218  21.09 10  44.15 10 65.41 10   
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where  max
0 1
maxv




 
 v  and  max

0 1
maxa




 
 a . Hence, the cycle time T must be subject to  

   
max maxmax

v b a b
T

v a

 
   

 
                                                                     (26) 

Consequently, given T and b, the optimal smooth motion profiles  u t  and  v t  given in Eq. (15) can be interpolated, 

transformed into the coordinates  x t ,  y t  and  z t  with respect to O xyz  by Eq. (1), and converted into joint 

variables via inverse kinematics for real-time implementation. Finally, it is worthwhile pointing out that the proposed 

trajectory is not time-minimum because the limits  v and  a represent the upper bounds of the maximum allowable 

velocity and acceleration of the end-effector according to the motor specifications.  

4 Verification 

Both simulation and physical experiments have been carried out on a 4-DOF SCARA type parallel robot [5] to verify the 

effectiveness of the proposed approach. Fig. 7 shows a 3D view of the robot used. It has two identical closed-loop 

sub-chains, each consisting of two identical R-(SS)2 limbs connected with the base at one end and with either subpart 1 or 2 

of the travelling plate at the other. Subparts 1 and 2 are articulated by prismatic joints to subpart 3 (the end-effector). The 

required rotation of  ±π  about the z axis is generated from relative translation between subparts 1 and 2 via a 

rack-and-pinion assembly centered on subpart 3. For details about the dimensional and structural parameters of the robot, 

please refer to [5]. Note that the joint axes of the four forearms are symmetrically placed with respect to the u v  plane, as 

shown in Fig. 8, such that the motion of joint 1(3) is the same as that of joint 2(4). Thus, only the motions of joints 1 and 3 

will be analyzed.  

The simulations assume that the end-effector undergoes pure translation along the specified EAC path by fixing the 

rotation about the vertical axis. Given   10 m sv   and   2160 m sa   according to the movement capacity of the robot, 

the cycle time for ‘Lamé curve’, ‘Piecewise poly’ and ‘B-spline’ is 0.185 s, 0.245 s and 0.198 s, respectively. Hence, 

0.25 sT   is taken for the comparative study. Fig. 9 shows that the joint acceleration generated by ‘B-spline’ is similar in 

magnitude to that generated by ‘Lamé curve’ but much less than that generated by ‘Piecewise poly’. Furthermore, the 

overall acceleration curves generated by ‘B-spline’ are smoother than those of the other two trajectories. Similar 

conclusions are drawn from Fig. 10 for the jerk analysis. These results clearly demonstrate that desirably small, continuous 

and smooth joint torques are achieved using a trajectory planned by the fifth-order B-splines in the Cartesian space. 

 

         

Fig. 8. Path of the Extended Adept Cycle in the 
cylindrical task workspace of the robot Fig. 7. 3D view of the 4-DOF SCARA parallel robot 
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With the simulations providing confidence in the method, experiments were carried out on the prototype robot shown in 

Fig. 11 to examine the realistic joint torques and the residual vibrations of the traveling plate. The joint torques were sensed 

by the servomotor currents, and the residual vibrations along the u and v axes measured by an IEPE MEAS 7131A-0500 3D 

accelerometer and analyzed by an LMS Test Lab-Signature Testing Processor. Fig. 12 shows the measured joint torque 

curves. It is easy to see that the toque curve of joint 1 (3) is similar in shape to that of joint 2(4) because of trajectory 

symmetry. The peak values of the joint torques generated by ‘B-spline’ are similar to those generated by ‘Lamé curve’ but 

up to 40% less than those generated by ‘Piecewise poly’. The overall torque curves generated by ‘B-spline’ are smoother 

than those generated by the other two trajectories. These observations coincide exactly with the conclusions from 

acceleration analysis via the simulation. In addition, Fig. 12 clearly indicates that the residual fluctuations in joint torques 

associated with ‘Lamé curve’, ‘Piecewise poly and ‘B-spline’ decrease successively. Consequently, the maximum 

magnitude of the residual vibration generated by ‘B-spline’ along the u axis is 39% and 53%, respectively, of that 

associated with ‘Lamé curve’ and ‘Piecewise poly’. The corresponding reductions along the v axis are 46% and 55%. The 

results, summarized in Fig. 13 and Table 3, clearly show that the new approach enhances the dynamic positioning accuracy 

of the end-effector. The experiments for asymmetrical trajectories were also carried out to test the generality of the 

proposed method, resulting in the similar observations though they will not be reported here due to space limitations. Hence, 

the proposed trajectory planned in the Cartesian space is highly effective in residual vibration suppression thanks to the 

very continuous and smooth joint torques it generates. 

Fig. 10. Jerk of (a) joint 1 and (b) joint 3 versus time

(a) (b)

Fig. 9. Acceleration of (a) joint 1 and (b) joint 3 versus time 

(a) (b)
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5 Conclusions 

This paper proposes and demonstrates a new approach for optimal smooth trajectory planning of high-speed 

pick-and-place parallel robots using the fifth-order B-splines. It exploits the symmetric properties of the path defined in a 

local frame to propose a motion profile that is essentially dominated by two time ratio parameters. They can be determined 

in an off-line manner by maximizing a weighted sum of two single-objective functions and expressed as a function of the 

width/height ratio of the pick-and-place path in the Cartesian space. This then allows the online generation of the smooth 

joint trajectories using a look-up table. Compared with two existing trajectories planned in the Cartesian space, both 

simulation and experimental results on a 4-DOF SCARA type parallel robot show that the time profiles of the joint torques 

are relatively small and very continuous and smooth, with residual vibration of the end-effector substantially reduced. 

Fig. 12. Measured torque of four actuated joints 

Fig. 11. Experimental set-up 
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