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Abstract. The need for users’ safety and technology acceptability has incredibly
increased with the deployment of co-bots physically interacting with humans in
industrial settings, and for people assistance. A well-studied approach to meet
these requirements is to ensure human-like robot motions and interactions. In this
manuscript, we present a research approach that moves from the understanding
of human movements and derives usefull guidelines for the planning of arm
movements and the learning of skills for physical interaction of robots with the
surrounding environment.

Keywords: human motor control, Human-like Robotic movements, Machine
Learning, Learning from Humans

1 Deriving a basis of Human movements

There are many examples in literature that have highlighted the importance of human-
likeness (HL) to ensure a safe and effective Human-Robot Interaction (HRI) and
Enviroinment-Robot Interaction [8]. This aspect has gained increasing attention, since
it could open interesting perspectives for the control of artificial systems that closely
interact with humans, as is the case of assistive, companion and rehabilitative robots.
For the latter category, for example, human-inspired movement profiles could be used
as reference trajectories for rehabilitation exoskeletons (see [10] for review), as an al-
ternative to, and/or in association with, classic rehabilitation procedures [9]. Similarly,
human likeliness of movements is of paramount importance for robots that interact with
the surrounding environment in an unstructured scenario shared with humans.

Indeed, in these cases the motion of a robot can be more easily predicted, and hence
accepted, by the user, if its movements are designed taking inspiration from actual human
movements [14], leading to a general enhancement in terms of system usability and
effectiveness. However, the design of control laws that effectively ensure human-like
behavior in robotic systems is not straightforward, representing an important topic within
the general framework of robot motion planning.
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Fig. 1. Example of the 30 different tasks included in this study. Three blocks are considered, the
first including gestures (intransitive tasks), the second actions which involve the contact with an
object (transitive tasks), while the third actions that requires an object to interat with another object
(tool-mediated tasks).

The solution we implemented to solve this problem exploits functional analysis to
derive a basis of Eigenfunctions of human movements, which encode the characteristics
of typical physiological motions.

To this end, we recorded the motion of 33 healthy subjects performing a list of 30
different actions of daily living (see Fig. 2).

Then, functional Principal Components Analysis (fPCA) was used to identify a basis
of principal functions (or eigenfunctions), characterized by the fact that they are ordered
in terms of importance. More specifically, let us assume, without any loss of generality,
a 7 DoF kinematic model to represent upper limb joint trajectories q(t) : R→ R7 where
t ∈ [0,1] is the normalized time. In these terms, generic upper limb motion q(t) can be
decomposed in terms of the weighted sum of base elements Si(t), or functional Principal
Components (fPCs):

q(t)' q̄(t)+S0(t)+
smax

∑
i=1

αi ◦Si(t) , (1)

where αi ∈ Rn is a vector of weights, Si(t) ∈ Rn - in this case n equals to 7 - is the ith

basis element or fPC and smax is the number of basis elements. The operator ◦ is the
element-wise product (Hadamard product), q̄ ∈ R7 is the average posture of q while
S0 : R→ R7 is the average trajectory, also called zero-order fPC. The output of fPCA,
which is calculated independently for each joint, is a basis of functions {S1, . . . ,Ssmax}
that maximizes the explained variance of the movements in the collected dataset. Given
a dataset with N elements collecting the trajectories recorded in a given joint j, the first
fPC S j,1(t) is the function that solves the following problem

max
S j,1

N

∑
j=1

(∫
S j,1(t)q j(t)dt

)2

subject to ||S j,1(t)||22 =
∫ 1

0
S2

j,1(t)dt = 1 .

(2)

Subsequent fPCs S j,i(t) are the functions that solve the following:
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Fig. 2. Plots of the first four orthogonal functional Principal Components extracted 33 healthy
subjects while performing a list of 30 different daily living activities. Image adapted from [3].

max
S j,i

N

∑
j=1

(∫
S j,i(t)q j(t)dt

)2

subject to ||S j,i(t)||22 = 1∫ 1

0
S j,i(t)Sp(t)dt = 0 , ∀p ∈ {1, . . . , i−1} .

(3)

A detailed implementation of this method - which bypasses the solution of the
minimization problem - is presented in [2]. The core idea is that the output of this
process is an ordered list of functions that are organised following the importance that
each function has in reconstructing the whole dataset. (See Fig. ??

Note that this formalization of human trajectories is very compact and full of infor-
mation, and can enable several practical implementations. For example, one can observe
that the higher in the number of functional PCs required to reconstruct one specific
movement, the more complex (or jerky) the motion is. This can have a direct impact for
the evaluation of motion impairment, for example as a consequence of a stroke event.
Indeed, pathological movements are typically characterized by jerky movements, and
an assessment of the level of impairment can rely on the fPCA characterization, as we
proposed in [15].

Moreover, the hierarchy in the definition of subsequent fPCs is a key characteristics,
since it can be exploited to design incremental algorithms [1] of motion planning, as
presented in the following of this manuscript.
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2 Planning Robots’ Movements with fPCs

As previously discussed, typical approaches used in literature to achieve human likeness
[12] in robotic motions rely on the strong assumption that human movements are
generated by optimizing a known cost function Jhl(q) : C1

7[0,1)→ R+, where C1
7[0,1)

is the space of smooth functions going from [0,1) to the joint space R7, and 1 stands for
the final normalized time. The function Jhl is used to produce artificial natural motions
by solving the problem

min
q∈C1

7[0,1)
Jhl(q) . (4)

How to choose Jhl is not obvious, and it is indeed a very debated topic in literature.
However only achieving human likeness is meaningless without specifying also a task to
be accomplished. For this reason also a model of the task should be added to (4). The
latter point can be formulated in terms of the minimization of an additional cost function
Jtask : C1

7→ R+. As soon as the need for minimizing Jtask is introduced, (4) becomes a
multi-objective optimization, which is of very difficult formulation and solution, except
for very simple cases [12].

The solution we proposed is able to by-pass this issue. Indeed, instead of using data
to guess a reasonable Jhl(·), and then explicitly optimize it, our solution directly embeds
human likeness in the choice of the functional subspace where the optimization occurs.
More specifically, the problem move from the infinite dimensional functional space
C1

7[0,1), to its finite dimensional subspace containing all the functions so constructed:

q(t) = q̄+S0(t)+
M

∑
i=1

αi ◦Si(t) (5)

with q̄,Si,αi defined as in the previous section. In this way the principal components can
be used to generate motions happening within any time horizon [0, t ′fin).

M ≤ smax is the number of functional Principal Components considered in the
optimization (with smax as in previous Section). According to the preliminary results
presented in [2] and further extended in [3], it is plausible to expect that a low number of
functional Principal Components should be sufficient to implement most of the human-
like motions at the joint level. Therefore the multi-object and unconstrained optimization
can be formulated as the following constrained optimization problem:

min
q̄,α1,...,αM

Jtask(q)

subject to q(t) = q̄+S0(t)+
M

∑
i=1

αi ◦Si(t) .
(6)

In this manner, the search space is narrowed, with the twofold purpose of ensuring
human likeness, and strongly simplifying the control problem (indeed, the search space
is now of dimension M+1).
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Point-to-Point Free Motions Point-to-point motion can be generated by solving the
following optimization problem, instance of the more general formulation (6)

min
q̄,α1,...,αM

||q(0)−q0||22 + ||q(1)−qfin||22

subject to q(t) = q̄+S0(t)+
M

∑
i=1

αi ◦Si(t) ,
(7)

where q(0) and q(1) are the initial and final poses of the calculated trajectory, while q0
and qfin are the desired initial and final poses respectively. In this simple case, a single
functional Principal Component (i.e. M = 1) is already sufficient to solve (7) with zero
error, and the solution can be written in closed form (see [3]).

Obstacle avoidance Let us consider the case in which we also need to avoid one or more
obstacles, while performing the point-to-point motion. The problem can be generalized
as:

min
q̄,α1,...,αM

∣∣∣∣∣∣∣∣[ q(0)−q0
q(1)−qfin

]∣∣∣∣∣∣∣∣2
2
+ρP(q,PO)

subject to q(t) = q̄+S0(t)+
M

∑
i=1

αi ◦Si(t) .

(8)

Two terms can be distinguished in this cost function. The first contribution guarantees
that the desired initial and final poses are achieved, as for the free motion case (7). The
second term takes into account the distance w.r.t. obstacles. For the sake of conciseness,
and without any loss of generality, we considered here NO spherical obstacles. Given
PO = {PO1 , . . . ,PONO

} the set containing the Cartesian coordinates of all the centers of
these obstacles, P(q,PO) is a potential-based function that sums up, for each obstacle,
a term inversely proportional to the minimum distance between the obstacle and the
closest joint trajectory, i.e.

P(q,PO) =
NO

∑
i=1

1
mi(q([0,1]),POi)

)2 (9)

where mi is the distance between the arm and the i−th obstacle, defined as mi(q([0,1]),POi)=
mink{d(hk(q([0,1])),POi)} .

The distance between the k− th point of contact with forward kinematics hk, and the
i− th sphere is

d(hk(q([0,1])),POi) = max
{

min
x∈hk(q([0,1]))

||POi − x||2,ROi

}
, (10)

with ROi radius of the sphere.

Incremental optimization procedure The problem of motion generation with obstacle
avoidance does not have a closed-form solution, hence the optimal trajectory is calculated
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T. 4

Fig. 3. In this example our approach is used to generate a ”drinking” task, with and without
obstacles along the trajectory.

via numerical optimization. One solution to do this is to exploit the hierarchy of fPCs
basis elements, according to a descending amount of the associated explained variance,
and implemented an incremental procedure (see [3] for the implementation of the
Algorithm). The proposed approach calculates, given a fixed number of fPCs enrolled,
the optimal trajectory that minimizes the error in starting and final position while
maximizing the distance from the obstacles. If the corresponding solution is sufficiently
far from the obstacles, this choice already defines the globally optimal solution. If the
obstacles are not very close to the aforementioned trajectory, then solving (8) with
M = 1 would fine tune the initial guess, achieving good results. In case of obstacles very
close to or even intercepting the free-motion trajectory, at least one more fPC should
be enrolled to suitably solve the problem. The more are the basis elements enrolled,
the more complex are the final trajectories that can be implemented (see e.g. ?? for the
generation of a ”drinking” task).

3 Learning from Humans How to Grasp: Enhancing the Reaching
Strategy

Deriving useful information from Humans can be pushed even further through the
usage of machine learning techniques. However, it is important to recall that learning
based techniques can only achieve solutions that are close enough to the desired ones,
rather than exact. This uncertainty can be naturally compensated by the ability of soft
hands to locally adapt to unknown environments. Following this approach, part of our
effort has been devoted to the development of a human inspired multi-modal, multi-
layer architecture that combines feedforward components, predicted by a Deep Neural
Network, with reactive sensor-triggered actions (more details in [5]).

Humans are able to accomplish very complex grasps by employing a vast range of
different strategies [7]. This comes with the challenging problem of finding the right
strategy to use for a given scenario. It is commonly suggested that the animal brain
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Fig. 4. High level organization of the proposed architecture, which combines anticipatory actions
and reactive behavior. A deep classifier looks at the scene and predicts the strategy that a human
operator would use to grasp the object. This output is employed to select the corresponding
robotic primitive. These primitives define the posture of the hand over time, to produce a natural,
human-like motion. The IMUs placed on the fingers of the hand detect the contact with the items
and triggers a suitable reactive grasp behavior.

addresses this challenge by first constructing representations of the world, which are
used to make a decision, and then by computing and executing an action plan [11].
Rather than learning a monolithic end-to-end map, we built the proposed architecture as
combination of interpretable basic elements organized as in Fig. 4. The intelligence is
here distributed on three levels of abstractions; i) high level: a classifier which plans the
correct action among all the available ones, ii) medium level: a set of human-inspired
low level strategies implementing both the approaching phase and the sensor-triggered
reaction, iii) low level: a soft hand whose embodied intelligence mechanically manages
local uncertainties. All the three levels are human-inspired.

The classifier was realized through a deep neural network, trained to predict the
object-directed grasp action chosen among nine human-labeled strategies, using as input
only a first-person RBG image extracted from a video. These actions were implemented
on the robotic side to reproduce the motions observed in the videos. A reactive component
was then introduced, following the philosophy of [4]. This component take as input the
accelerations coming from six IMUs placed on the soft hand to generate the desired
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Fig. 5. Photosequence of a grasp produced by the proposed architecture during validation. The
hand starts from the initial configuration of the primitive in panel (a). The contact happens in panel
(b), triggering the reactive routine. In panel (f) the object is firmly lifted.

evolution of the hand pose. The lower level of intelligence consists of the soft hand
itself, which can take care of local uncertainties relying on its intrinsic compliance. Any
robotic hand being soft and anthropomorphic both in its motions and in its kinematics
can serve to the scope (as for example the Pisa/IIT SoftHand).

3.1 Deep Classifier

The aim of this deep neural network is to associate to an object detected from the scene
the correct primitive (i.e. hand pose evolution) humans would perform to grasp it. The
deep learning model consists of two stages, depicted in Fig. 4: one for detecting the
object, and the second one to perform the actual association with the required motion.

Dataset creation and human primitive labeling The network was trained on 6336 first
person RGB videos (single-object, table-top scenario), from 11 right-handed subjects
grasping the 36 objects. The list of objects was chosen to span a wide range of possible
grasps, taking inspiration from [6]. During the experiments, subjects were comfortably
seated in front of a table, where the object was placed. They were asked to grasp the
object starting from a rest position (hand on the table, palm down). Each task was
repeated 4 times from 4 points of view (the four central points of the table edges). To
extract and label the strategies, videos were visually inspected to identify ten main
primitives (power, pinch, sliding, lateral and flip grasps in different relative orientations).
The choice of these primitives was done taking inspiration from literature [6,7], and to
provide a representative yet concise description of human behavior, without any claim of
exhaustiveness. The first frame of each video showing only the object in the environment
was extracted, and elaborated through the object detection part of the network (see next
subsection). The cropped image was then labeled with the strategy used by the subject
in the remaining part of the video. This is the dataset that we used to train the network.

Object detection and Primitive classification Object detection is implemented using
the state of the art detector YOLOv2 [13]. Given the RGB input image, YOLOv2
produces as output a set of labeled bounding boxes containing all the objects in the
scene. Assuming that the target is localized close to the center of the image, we select
the bounding box closest to the scene center. Then, a modification of Inception-v3 [16],
trained on the ImageNet data set, was used to classify objects from images and extract
high level semantic descriptions that can be applied to objects with similar characteristics.
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Fig. 6. Photosequence of a grasp produced by the proposed architecture during validation: slide
grasp of a flat plate. Panels (a-c) depicts the approaching phase. In panels (d-e) the environment is
exploited to guide the object to the table edge. In panels (f-g) the hand changes its relative position
w.r.t. the object so to favor the grasp, which is established in panels (h-i). In panel (j) the item is
firmly lifted.

Technical details on training and validation are here omitted, the interested reader is
invited to refer to [5].

3.2 Robotic Grasping Primitives

The output of the network introduced in the previous section is a direction of approach,
described in terms of an high level description of the human preference for the specific
object shape and orientation. For each primitive, a Human-Like approaching trajectory
needs to be planned (following, for example, the approach presented in section II).

As a trade-off between performance and complexity, the approaching phase is
associated with an additional reactive behavior. The role of the latter is to introduce a
feedback control leveraging on measures recorded through IMUs at the fingertip level,
with the ultimate goal of locally precisely arrange the relative configuration between
hand and object (see [4]). The transition between the first and the second phase is
triggered by a contact event, detected as an abrupt acceleration of the fingertips (as read
by IMUs). In [4], a subject was asked to reach and grasp a tennis ball while maneuvering
a Pisa/IIT SoftHand. The grasp was repeated 13 times, from different approaching
directions. The user was instructed to move the hand until the contact with the object,
and then to react by adapting the hand/wrist pose w.r.t. the object. Poses of the hand
were recorded through a PhaseSpace motion tracking system. We subtract from the hand
evolution recorded between the contact and the grasp (T represents the time between
them) the posture of the hand during the contact. The resulting function ∆i : [0,T ]→ R7

describes the rearrangement performed by the subject to grasp the object. Acceleration
signals α1 . . .α13 : [0,T ]→R5 were measured too through the IMUs. To transform these
recordings into a local adaptation strategy, we considered the acceleration patterns as
a characteristic feature of the interaction with the object. When the Pisa/IIT SoftHand
touches the object, IMUs read an acceleration profile a : [0,T ]→ R5. The triggered
sub-strategy is defined by the local rearrangement ∆ j, with

j = argmax
i

∫ T

0
aT(τ)αi(τ)dτ . (11)
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When this motion is completely executed, the hand starts closing until the object is
grasped.

We extensively tested the proposed architecture with 20 objects, different than the
ones used for the training of the network. Results demonstrated that this approach is very
reliable, achieving a success rate of 81.1 % over 111 grasps tested, thus demonstrating
that taking inspiration from humans can provide very interesting solutions for classic
and novel problems toward a new generation of anthropomorphic robots.
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