
Development of articulated robot trajectory planning 

Zhe Li, Gongfa Li, Ying Sun*,  
Guozhang Jiang and Jianyi Kong 
College of Machinery and Automation, 
Wuhan University of Science and Technology, 
Wuhan, 430080, China 
Email: 1653485877@qq.com 
Email: ligongfa@wust.edu.cn 
Email: 493530316@qq.com 
Email: whjgz@wust.edu.cn 
Email: 15697188659@wo.com.cn 
*Corresponding author

Honghai Liu 
State Key Laboratory of Mechanical System and Vibration, 
School of Mechanical Engineering, 
Shanghai Jiao Tong University, 
Shanghai; 200240, China 
and 
Intelligent Systems and Biomedical Robotics Group, 
School of Computing, 
University of Portsmouth, 
Portsmouth, PO1 3HE, UK 
Email: honghai.liu@sjtu.edu.cn 
Email: honghai.liu@port.ac.uk 

Abstract: Articulated robot is now widely employed in manufacture, such as, 
welding, painting, and assembly, with high precision and endurance. It plays an 
important role in scientific and technological innovation. Trajectory planning of 
articulated robot is one of the key researches in industrial robot. The commonly 
used trajectory planning algorithm of articulated robot, such as, polynomial 
interpolation algorithm in joint space and linear interpolation in Cartesian space 
are introduced. Researches on articulated robot trajectory planning are 
surveyed. Meanwhile these articulated robot trajectory planning algorithms are 
analysed. Some further researches and developing trend of articulated robot 
trajectory planning are indicated. 
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1 Introduction 

Articulated robot, also known as joint arm robot or joint mechanical arm, is one of the 
most common form of industrial robot now (Gasparetto and Zanotto, 2010). The main 
characteristic of articulated robot is to imitate the basic structure of human’s arm and 
waist, so body structure includes frame structure, the waist joints, rotating device, large 
arm structure, large joints rotating device, forearm rotation device, wrist and forearm 
joint, wrist joint rotation device, and the end executor (Abdel-Malek et al., 2006). 
Articulated robot has larger relative space and absolute work space than other robot under 
the condition of same size (Liu et al., 2013). It has a high degree of freedom, suitable for 
almost any work with different track or angle. Automatic work can be done by robot free 
programming. It can improve production efficiency, and can control error rate. It is 
suitable for mechanical automation operation in many industrial fields, such as, automatic 
assembling, spray paint, handling, welding. 



The purpose of tractor planning is to calculate the expected trajectory, namely, to 
describe the robot’s task, motion path, and trajectory, and to real-time calculate the 
displacement, velocity and acceleration of the robot (Gasparetto and Zanotto, 2008). 
Articulated robot trajectory planning is the key to the development and application of 
robots is also research hotspot in the field of robot in recent years (Kohrt et al., 2013). 
Articulated robot trajectory planning plays an important role in the control of the robot, 
its performance has a decisive significance to the robot’s working efficiency, running 
smoothness and energy consumption (Chettibi et al., 2004). In actual production 
application robot mechanical system should be stable and no vibration, as far as possible 
to avoid mutations of displacement, velocity and acceleration in the process of 
movement. Mutation of motion requires a great deal of power. Motor limited by physical 
condition, cannot provide so much energy. It will cause the wear of robot’s joints and 
reduce service life of the robot (Yong et al., 2005). To meet these requirements that the 
robot’s each joint can not only make the smooth movement without vibration, and can 
achieve the goal of high efficiency and energy saving, the appropriate method for robot 
trajectory planning must be selected. When articulated robot works the shape of related 
trajectory should be analysed, related information should be acquired and input into 
control system to control the robot to work (Cesare and Sergio, 2013). Articulated robot 
trajectory planning as an important module in the control system is significant for motion 
stability of articulated robot. However, researches on articulated robot trajectory planning 
are rarely surveyed. Therefore, researches on articulated robot trajectory planning are 
systematically analysed in this paper. Meanwhile these articulated robot trajectory 
planning algorithms are compared. Some further researches and developing trend of 
articulated robot trajectory planning are indicated. 

2 Trajectory planning in joint space 

The joint variables are expressed as a function of time, and its first and second order time 
derivative are planned when trajectory planning is in joint space (Elnagar and Hussein, 
2000). Joint space method does not consider the shape of path between two points, and its 
calculation is not complex. Because the corresponding relationship between joint space 
and Cartesian space is not continuous, it would not exist singularity problem (Liu et al., 
2010). Commonly used method (polynomial interpolation algorithm) is described below. 

In the process of robot movement, if the beginning and end position of end-effector is 
known, two corresponding position’s joint angle can be obtained by inverse kinematics 
equations (Piazzi and Visioli, 2000). The trajectory of end-effector in joint space can be 
decrypted by the start and end points of joint angle’s smooth trajectory function θ(t). To 
achieve the smooth movement of the robot, the trajectory of each joint function θ(t) need 
to meet at least four constraint conditions, namely, the two endpoint location and speed of 
two endpoint constraints. Endpoint location constraint refers to the joint angle of the 
starting position and end position. The initial value is the initial joint angle θ0, and the 
terminal value is terminal joint angle θf, namely 
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To meet the requirements of continuity of the joint movement speed, start and end points 
of joint speed can be set to zero, namely, 
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Given above four constraints can uniquely identify a cubic polynomial: 
2
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In the process of movement joint velocity and acceleration are as follows: 
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The joint movement’s initial and terminal speed is zero. And its cubic polynomial 
interpolation function that meets the requirements of continuous smooth movement: 
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The joint angular velocity and angular acceleration expression is: 
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3 Trajectory planning in Cartesian space 

In certain cases, the trajectory shape of the end-effector have to meet specific 
requirements, there have various shapes of trajectory except simple straight trajectory 
between different points (Plessis and Snyman, 2003). It is needed to plan trajectory for 
robot in Cartesian space. In fact, all of the methods used in joint space trajectory planning 
can be used in Cartesian space trajectory planning. The most essential difference is that 
Cartesian space trajectory planning requires solving inverse kinematics equation to 
calculate the joint angle repeatedly, by computing the inverse Jacobi matrix to solve the 
joint angular velocity of the robot. Function obtained in the Cartesian space trajectory 
planning is posture of the robot end-effector, a lot of inverse solution of kinematics 
solution is needed so that it can be converted into joint value (Koen et al., 2014). 
Commonly used method (linear interpolation algorithm) is described below. 

The starting point of the straight line is known to find position of the middle point 
(interpolation point) (Saramago and Ceccareli, 2002). For most of the robot, its position 
remains the same in the movement along a straight line. Linear interpolation steps are as 
follows: 



1 The coordinate location of starting point is p0(x0, y0, z0), pf(xf, yf, zf), where p0 and pf 
are relative coordinate system. Calculate the length 
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2 The interval trip is divided into several ways, such as, uniform speed, acceleration, 
deceleration to discuss: 
a uniform speed: if the speed is v, the trip in interpolation period Ts is d1 = vTs 
b acceleration: if the acceleration is a and starting speed is v0, the trip in 
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c deceleration: if the acceleration is a and starting speed is v1, the trip in 
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3 Calculate total time t = t1 + t2 + t3. calculate interpolation points .
s
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4 Judge which period interpolation point in (the accelerating period, uniform section, 
or deceleration section), determine the increment of each shaft, real-time computing 
the interpolation point coordinates value. 

5 According to the coordinate values, using inverse kinematics to calculate each joint 
angle. 

6 Interpolation calculation of joint angle. 

The robot realised a space trajectory (trajectory discrete points). These discrete points are 
very close to each other and the robot trajectory with sufficient precision to approximate 
trajectory (Rubio et al., 2012). 

In order to ensure the density of discrete points, time interpolation and distance 
interpolation can use. 

4 Development of trajectory planning 

The point-to-point movement problem of robot optimal trajectory planning is studied by 
literature (Saramago and Steffen, 2000) under the premise of hypothesis and 
approximate. The trajectory in joint space is planned by cubic polynomial method in 
literature (Rubio et al., 2010). There has a diagonal equation to solve. When solving the 
equation if the intermediate nodes of the trajectory increases will cause the increase of 
calculation in the process of solving. The trajectory planning based on cubic spline 
function which optimises the running time of the trajectory has realised online 
implementation in literature (Saramago and Steffen, 2001). But the acceleration 
continuity between the path points cannot be guaranteed. The time optimal trajectory 



planning based on cubic spline function is studied in literature (Carlos et al., 2015). The 
pulse optimal trajectory planning based on cubic spline function is studied in literature 
(Saravanan et al., 2009). The minimum pulse and pulse continuous trajectory planning 
method is proposed in literature (Boryga, 2014; Valero et al., 2006). The method can 
avoid vibration of mechanical arm and improve the trajectory tracking precision. The 
kinematic method is used for robot time optimal trajectory planning in literature 
(Mansouri et al., 2008). The time optimal trajectory planning that the limit of maximum 
joint torque is instead by the limit of joint acceleration is studied in literature (Masehian 
and Amin-Naseri, 2004). The method can decrease the difficulty of problem, but it still 
exist error. Because the hyperbolic function method is simple, the robot trajectory in joint 
space is planned by the method in literature (Marek et al., 2015). But hyperbolic function 
also has its disadvantages, namely, when determining the parameters it needs a lot of 
experience. It puts forward a new time optical method in literature (Pires et al., 2009). 
The constraint of end-effector’s path, joint speed, and drive torque is considered in the 
method. These constraints are transferred to the path parameter space by the method that 
parameterised system is dynamic close to a solution space. And then the model of DAE is 
established for the trajectory planning. Dynamic programming algorithms are introduced 
in literature (Peng-Cheng et al., 2014; Brogardh, 2007). A kind of non-strict time optimal 
trajectory planning method is put forward in literature (Piltan et al., 2011; Chong et al., 
2009). The driver’s acceleration is limited in this method. The trajectory obtained by the 
method can be implemented effectively. For example, spline function (such smooth 
trajectory) is widely used in kinematic and dynamic trajectory planning in the literature to 
get the trajectory with its acceleration continuous. A time optimal online trajectory 
planning method is proposed in literature (Liu et al., 2013). The dynamics constraints of 
mechanical arm are considered. Given path points are made dynamics calculation, which 
can determine the kinematics constraints of mechanical arm. This method improves the 
traditional industrial robot trajectory planning method. Interpolation method based on  
B-spline curve for trajectory planning is proposed in literature (Lieberknecht et al., 2009).
The algorithms based on curve optimum above are local optimum. The algorithm
proposed in literature (Ghasemi et al., 2012) makes up for the shortcoming of local
optimum algorithm based on curve, the global optimal results are obtained. A novel robot
trajectory planning method (hybrid cubic B-spline curve convex optimisation method) is
proposed in literature (Verscheure et al., 2009), this method can get smooth joint
trajectory. The time optimal method based on the simple iterative of drive torque and
transmission limit is proposed in literature (Ahn et al., 2012). An indirect control strategy
of open-loop optimal is used in this method, and the optimal control problem is
transformed into a nonlinear two-point boundary value problem.

5 Conclusions and prospects 

 The articulated robot trajectory planning can either be in joint space or in Cartesian 
space, but the trajectory planning function must be continuous and smooth and make 
movement of robot stable and no-quiver. B-spline curve gradually has been widely used 
because of the advantages of derivative continuity, piecewise, small joint displacement 
rate, and local support. On the basis of this, different optimisation algorithms are used in 
related kinematic and dynamic constraints to optimise the robot’s movement trajectory. 
In recent years, intelligent algorithms are used to solve the problem of robot trajectory 



planning; it becomes the research focus in this field. Such as, simulated annealing, 
genetic algorithm, neural network, ant colony algorithm, particle swarm optimisation 
(PSO) algorithm, and other intelligent algorithms have been successively applied in robot 
trajectory planning problem. 
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