61 research outputs found

    Learning to Predict Image-based Rendering Artifacts with Respect to a Hidden Reference Image

    Full text link
    Image metrics predict the perceived per-pixel difference between a reference image and its degraded (e. g., re-rendered) version. In several important applications, the reference image is not available and image metrics cannot be applied. We devise a neural network architecture and training procedure that allows predicting the MSE, SSIM or VGG16 image difference from the distorted image alone while the reference is not observed. This is enabled by two insights: The first is to inject sufficiently many un-distorted natural image patches, which can be found in arbitrary amounts and are known to have no perceivable difference to themselves. This avoids false positives. The second is to balance the learning, where it is carefully made sure that all image errors are equally likely, avoiding false negatives. Surprisingly, we observe, that the resulting no-reference metric, subjectively, can even perform better than the reference-based one, as it had to become robust against mis-alignments. We evaluate the effectiveness of our approach in an image-based rendering context, both quantitatively and qualitatively. Finally, we demonstrate two applications which reduce light field capture time and provide guidance for interactive depth adjustment.Comment: 13 pages, 11 figure

    Silhouette-Aware Warping for Image-Based Rendering

    Get PDF
    International audienceImage-based rendering (IBR) techniques allow capture and display of 3D environments using photographs. Modern IBR pipelines reconstruct proxy geometry using multi-view stereo, reproject the photographs onto the proxy and blend them to create novel views. The success of these methods depends on accurate 3D proxies, which are difficult to obtain for complex objects such as trees and cars. Large number of input images do not improve reconstruction proportionally; surface extraction is challenging even from dense range scans for scenes containing such objects. Our approach does not depend on dense accurate geometric reconstruction; instead we compensate for sparse 3D information by variational image warping. In particular, we formulate silhouette-aware warps that preserve salient depth discontinuities. This improves the rendering of difficult foreground objects, even when deviating from view interpolation. We use a semi-automatic step to identify depth discontinuities and extract a sparse set of depth constraints used to guide the warp. Our framework is lightweight and results in good quality IBR for previously challenging environments

    Exploiting Repetitions for Image-Based Rendering of Facades

    Get PDF
    International audienceAbstract Street-level imagery is now abundant but does not have sufficient capture density to be usable for Image-Based Rendering (IBR) of facades. We present a method that exploits repetitive elements in facades – such as windows – to perform data augmentation, in turn improving camera calibration, reconstructed geometry and overall rendering quality for IBR. The main intuition behind our approach is that a few views of several instances of an element provide similar information to many views of a single instance of that element. We first select similar instances of an element from 3-4 views of a facade and transform them into a common coordinate system, creating a " platonic " element. We use this common space to refine the camera calibration of each view of each instance and to reconstruct a 3D mesh of the element with multi-view stereo, that we regularize to obtain a piecewise-planar mesh aligned with dominant image contours. Observing the same element under multiple views also allows us to identify reflective areas – such as glass panels – which we use at rendering time to generate plausible reflections using an environment map. Our detailed 3D mesh, augmented set of views, and reflection mask enable image-based rendering of much higher quality than results obtained using the input images directly

    Efficient image-based rendering

    Get PDF
    Recent advancements in real-time ray tracing and deep learning have significantly enhanced the realism of computer-generated images. However, conventional 3D computer graphics (CG) can still be time-consuming and resource-intensive, particularly when creating photo-realistic simulations of complex or animated scenes. Image-based rendering (IBR) has emerged as an alternative approach that utilizes pre-captured images from the real world to generate realistic images in real-time, eliminating the need for extensive modeling. Although IBR has its advantages, it faces challenges in providing the same level of control over scene attributes as traditional CG pipelines and accurately reproducing complex scenes and objects with different materials, such as transparent objects. This thesis endeavors to address these issues by harnessing the power of deep learning and incorporating the fundamental principles of graphics and physical-based rendering. It offers an efficient solution that enables interactive manipulation of real-world dynamic scenes captured from sparse views, lighting positions, and times, as well as a physically-based approach that facilitates accurate reproduction of the view dependency effect resulting from the interaction between transparent objects and their surrounding environment. Additionally, this thesis develops a visibility metric that can identify artifacts in the reconstructed IBR images without observing the reference image, thereby contributing to the design of an effective IBR acquisition pipeline. Lastly, a perception-driven rendering technique is developed to provide high-fidelity visual content in virtual reality displays while retaining computational efficiency.Jüngste Fortschritte im Bereich Echtzeit-Raytracing und Deep Learning haben den Realismus computergenerierter Bilder erheblich verbessert. Konventionelle 3DComputergrafik (CG) kann jedoch nach wie vor zeit- und ressourcenintensiv sein, insbesondere bei der Erstellung fotorealistischer Simulationen von komplexen oder animierten Szenen. Das bildbasierte Rendering (IBR) hat sich als alternativer Ansatz herauskristallisiert, bei dem vorab aufgenommene Bilder aus der realen Welt verwendet werden, um realistische Bilder in Echtzeit zu erzeugen, so dass keine umfangreiche Modellierung erforderlich ist. Obwohl IBR seine Vorteile hat, ist es eine Herausforderung, das gleiche Maß an Kontrolle über Szenenattribute zu bieten wie traditionelle CG-Pipelines und komplexe Szenen und Objekte mit unterschiedlichen Materialien, wie z.B. transparente Objekte, akkurat wiederzugeben. In dieser Arbeit wird versucht, diese Probleme zu lösen, indem die Möglichkeiten des Deep Learning genutzt und die grundlegenden Prinzipien der Grafik und des physikalisch basierten Renderings einbezogen werden. Sie bietet eine effiziente Lösung, die eine interaktive Manipulation von dynamischen Szenen aus der realen Welt ermöglicht, die aus spärlichen Ansichten, Beleuchtungspositionen und Zeiten erfasst wurden, sowie einen physikalisch basierten Ansatz, der eine genaue Reproduktion des Effekts der Sichtabhängigkeit ermöglicht, der sich aus der Interaktion zwischen transparenten Objekten und ihrer Umgebung ergibt. Darüber hinaus wird in dieser Arbeit eine Sichtbarkeitsmetrik entwickelt, mit der Artefakte in den rekonstruierten IBR-Bildern identifiziert werden können, ohne das Referenzbild zu betrachten, und die somit zur Entwicklung einer effektiven IBR-Erfassungspipeline beiträgt. Schließlich wird ein wahrnehmungsgesteuertes Rendering-Verfahren entwickelt, um visuelle Inhalte in Virtual-Reality-Displays mit hoherWiedergabetreue zu liefern und gleichzeitig die Rechenleistung zu erhalten

    Temporally Coherent Video Stylization

    Get PDF
    International audienceThe transformation of video clips into stylized animations remains an active research topic in Computer Graphics. A key challenge is to reproduce the look of traditional artistic styles whilst minimizing distracting flickering and sliding artifacts; i.e. with temporal coherence. This chapter surveys the spectrum of available video stylization techniques, focusing on algorithms encouraging the temporally coherent placement of rendering marks, and discusses the trade-offs necessary to achieve coherence. We begin with flow-based adaptations of stroke based rendering (SBR) and texture advection capable of painting video. We then chart the development of the field, and its fusion with Computer Vision, to deliver coherent mid-level scene representations. These representations enable the rotoscoping of rendering marks on to temporally coherent video regions, enhancing the diversity and temporal coherence of stylization. In discussing coherence, we formalize the problem of temporal coherence in terms of three defined criteria, and compare and contrast video stylization using these

    3D Line textures and the visualization of confidence in Architecture

    Get PDF
    technical reportThis work introduces a technique for interactive walkthroughs of non-photorealistically rendered (NPR) scenes using 3D line primitives to define architectural features of the model, as well as indicate textural qualities. Line primitives are not typically used in this manner in favor of texture mapping techniques which can encapsulate a great deal of information in a single texture map, and take advantage of GPU optimizations for accelerated rendering. However, texture mapped images may not maintain the visual quality or aesthetic appeal that is possible when using 3D lines to simulate NPR scenes such as hand-drawn illustrations or architectural renderings. In addition, line textures can be modi ed interactively, for instance changing the sketchy quality of the lines, and can be exported as vectors to allow the automatic generation of illustrations and further modi cation in vector-based graphics programs. The technique introduced here extracts feature edges from a model, and using these edges, generates a reduced set of line textures which indicate material properties while maintaining interactive frame rates. A clipping algorithm is presented to enable 3D lines to reside only in the interior of the 3D model without exposing the underlying triangulated mesh. The resulting system produces interactive illustrations with high visual quality that are free from animation artifacts

    Roomalive: Magical experiences enabled by scalable, adaptive projector-camera units

    Get PDF
    ABSTRACT RoomAlive is a proof-of-concept prototype that transforms any room into an immersive, augmented entertainment experience. Our system enables new interactive projection mapping experiences that dynamically adapts content to any room. Users can touch, shoot, stomp, dodge and steer projected content that seamlessly co-exists with their existing physical environment. The basic building blocks of RoomAlive are projector-depth camera units, which can be combined through a scalable, distributed framework. The projector-depth camera units are individually autocalibrating, self-localizing, and create a unified model of the room with no user intervention. We investigate the design space of gaming experiences that are possible with RoomAlive and explore methods for dynamically mapping content based on room layout and user position. Finally we showcase four experience prototypes that demonstrate the novel interactive experiences that are possible with RoomAlive and discuss the design challenges of adapting any game to any room

    Real-time geometric motion blur for a deforming polygonal mesh

    Get PDF
    Motion blur is one important method for increasing the visual quality of real-time applications. This is increasingly true in the area of interactive applications, where designers often seek to add graphical flair or realism to their programs. These applications often have animated characters with a polygonal mesh wrapped around an animated skeleton; and as the skeleton moves the mesh deforms with it. This thesis presents a method for adding a geometric motion blur to a deforming polygonal mesh. The scheme presented tracks an object's motion silhouette, and uses this to create a polygonal mesh. When this mesh is added to the scene, it gives the appearance of a motion blur on a single object or particular character. The method is generic enough to work on nearly any type of moving polygonal model. Examples are given that show how the method could be expanded and how changes could be made to improve its performance

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Le cinéma omnistéréo ou l'art d'avoir des yeux tout le tour de la tête

    Full text link
    Cette thèse s'intéresse à des aspects du tournage, de la projection et de la perception du cinéma stéréo panoramique, appelé aussi cinéma omnistéréo. Elle s'inscrit en grande partie dans le domaine de la vision par ordinateur, mais elle touche aussi aux domaines de l'infographie et de la perception visuelle humaine. Le cinéma omnistéréo projette sur des écrans immersifs des vidéos qui fournissent de l'information sur la profondeur de la scène tout autour des spectateurs. Ce type de cinéma comporte des défis liés notamment au tournage de vidéos omnistéréo de scènes dynamiques, à la projection polarisée sur écrans très réfléchissants rendant difficile l'estimation de leur forme par reconstruction active, aux distorsions introduites par l'omnistéréo pouvant fausser la perception des profondeurs de la scène. Notre thèse a tenté de relever ces défis en apportant trois contributions majeures. Premièrement, nous avons développé la toute première méthode de création de vidéos omnistéréo par assemblage d'images pour des mouvements stochastiques et localisés. Nous avons mis au point une expérience psychophysique qui montre l'efficacité de la méthode pour des scènes sans structure isolée, comme des courants d'eau. Nous proposons aussi une méthode de tournage qui ajoute à ces vidéos des mouvements moins contraints, comme ceux d'acteurs. Deuxièmement, nous avons introduit de nouveaux motifs lumineux qui permettent à une caméra et un projecteur de retrouver la forme d'objets susceptibles de produire des interréflexions. Ces motifs sont assez généraux pour reconstruire non seulement les écrans omnistéréo, mais aussi des objets très complexes qui comportent des discontinuités de profondeur du point de vue de la caméra. Troisièmement, nous avons montré que les distorsions omnistéréo sont négligeables pour un spectateur placé au centre d'un écran cylindrique, puisqu'elles se situent à la périphérie du champ visuel où l'acuité devient moins précise.This thesis deals with aspects of shooting, projection and perception of stereo panoramic cinema, also called omnistereo cinema. It falls largely in the field of computer vision, but it also in the areas of computer graphics and human visual perception. Omnistereo cinema uses immersive screens to project videos that provide depth information of a scene all around the spectators. Many challenges remain in omnistereo cinema, in particular shooting omnistereo videos for dynamic scenes, polarized projection on highly reflective screens making difficult the process to recover their shape by active reconstruction, and perception of depth distortions introduced by omnistereo images. Our thesis addressed these challenges by making three major contributions. First, we developed the first mosaicing method of omnistereo videos for stochastic and localized motions. We developed a psychophysical experiment that shows the effectiveness of the method for scenes without isolated structure, such as water flows. We also propose a shooting method that adds to these videos foreground motions that are not as constrained, like a moving actor. Second, we introduced new light patterns that allow a camera and a projector to recover the shape of objects likely to produce interreflections. These patterns are general enough to not only recover the shape of omnistereo screens, but also very complex objects that have depth discontinuities from the viewpoint of the camera. Third, we showed that omnistereo distortions are negligible for a viewer located at the center of a cylindrical screen, as they are in the periphery of the visual field where the human visual system becomes less accurate
    • …
    corecore