
Efficient Image-Based Rendering

Dissertation zur Erlangung des Grades des Doktors der
Ingenieurwissenschaften der Fakultät für Mathematik und Informatik der

Universität des Saarlandes

Vorgelegt von
Mojtaba Bemana

Saarbrücken, 2023



ii

Dean: Prof. Dr. Jürgen Steimle
Date: 12.07.2023
Chair: Prof. Dr. Philipp Slusallek
Reviewers: Dr.-Ing. habil. Karol Myszkowski

Prof. Dr. Hans-Peter Seidel
Prof. Dr. Petr Kellnhofer
Prof. Dr. Tobias Ritschel

Academic Assistant: Dr. Thomas Leimkühler



iii

Abstract

Recent advancements in real-time ray tracing and deep learning have significantly
enhanced the realism of computer-generated images. However, conventional 3D
computer graphics (CG) can still be time-consuming and resource-intensive, par-
ticularly when creating photo-realistic simulations of complex or animated scenes.
Image-based rendering (IBR) has emerged as an alternative approach that utilizes
pre-captured images from the real world to generate realistic images in real-time,
eliminating the need for extensive modeling. Although IBR has its advantages, it faces
challenges in providing the same level of control over scene attributes as traditional
CG pipelines and accurately reproducing complex scenes and objects with different
materials, such as transparent objects. This thesis endeavors to address these issues by
harnessing the power of deep learning and incorporating the fundamental principles
of graphics and physical-based rendering. It offers an efficient solution that enables
interactive manipulation of real-world dynamic scenes captured from sparse views,
lighting positions, and times, as well as a physically-based approach that facilitates
accurate reproduction of the view dependency effect resulting from the interaction
between transparent objects and their surrounding environment. Additionally, this
thesis develops a visibility metric that can identify artifacts in the reconstructed IBR
images without observing the reference image, thereby contributing to the design of
an effective IBR acquisition pipeline. Lastly, a perception-driven rendering technique
is developed to provide high-fidelity visual content in virtual reality displays while
retaining computational efficiency.
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Zusammenfassung

Jüngste Fortschritte im Bereich Echtzeit-Raytracing und Deep Learning haben den
Realismus computergenerierter Bilder erheblich verbessert. Konventionelle 3D-
Computergrafik (CG) kann jedoch nach wie vor zeit- und ressourcenintensiv sein,
insbesondere bei der Erstellung fotorealistischer Simulationen von komplexen oder
animierten Szenen. Das bildbasierte Rendering (IBR) hat sich als alternativer Ansatz
herauskristallisiert, bei dem vorab aufgenommene Bilder aus der realen Welt ver-
wendet werden, um realistische Bilder in Echtzeit zu erzeugen, so dass keine um-
fangreiche Modellierung erforderlich ist. Obwohl IBR seine Vorteile hat, ist es eine
Herausforderung, das gleiche Maß an Kontrolle über Szenenattribute zu bieten wie
traditionelle CG-Pipelines und komplexe Szenen und Objekte mit unterschiedlichen
Materialien, wie z.B. transparente Objekte, akkurat wiederzugeben. In dieser Arbeit
wird versucht, diese Probleme zu lösen, indem die Möglichkeiten des Deep Learning
genutzt und die grundlegenden Prinzipien der Grafik und des physikalisch basierten
Renderings einbezogen werden. Sie bietet eine effiziente Lösung, die eine interak-
tive Manipulation von dynamischen Szenen aus der realen Welt ermöglicht, die aus
spärlichen Ansichten, Beleuchtungspositionen und Zeiten erfasst wurden, sowie
einen physikalisch basierten Ansatz, der eine genaue Reproduktion des Effekts der
Sichtabhängigkeit ermöglicht, der sich aus der Interaktion zwischen transparenten
Objekten und ihrer Umgebung ergibt. Darüber hinaus wird in dieser Arbeit eine
Sichtbarkeitsmetrik entwickelt, mit der Artefakte in den rekonstruierten IBR-Bildern
identifiziert werden können, ohne das Referenzbild zu betrachten, und die somit zur
Entwicklung einer effektiven IBR-Erfassungspipeline beiträgt. Schließlich wird ein
wahrnehmungsgesteuertes Rendering-Verfahren entwickelt, um visuelle Inhalte in
Virtual-Reality-Displays mit hoher Wiedergabetreue zu liefern und gleichzeitig die
Rechenleistung zu erhalten.
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Chapter 1

Introduction

This thesis proposes several approaches which leverage the power of deep learning
to broaden the scope of image-based rendering algorithms. This chapter describes the
motivation (Section 1.1), introduces the main contributions (Section 1.2), and gives an
overview of the whole thesis (Section 1.3).

1.1 Motivation

The role of computer graphics has become increasingly tangible in our everyday
lives. Today, computer graphics play a pivotal role in the film industry1, video games,
digital photography, smartphones, and finally, in building the metaverse, a new
world for interacting with technology [Zhao et al., 2022]. The powerful user interfaces
empowered by computer graphics allow artists and individual users to transform
their creative ideas into spectacular digital content quickly [Rombach et al., 2022].
Recent advances in artificial intelligence (AI) and deep learning techniques have
undoubtedly contributed to the democratization of computer graphics2 by reducing
costs and enhancing the quality of computer-generated images. Nevertheless, real-
time photorealistic rendering remains a significant challenge and is typically only
possible with specialized and expensive graphics hardware3. Moreover, creating
realistic 3D content and animating it in virtual reality is a laborious task that often
requires extensive time and effort by a skilled artist.

While the current graphics pipeline allows for the manipulation of the physical
attributes of a scene, such as geometry, lighting, and material appearance, there
may be instances where the goal is to reproduce real-world objects rather than
digitally crafting them. Examples of this include digitizing historical landmarks
and artifacts for preservation, which may motivate the cultural heritage industry to
explore virtual tourism opportunities. Another potential application is the creation of
digital humans, which could be more efficiently achieved by scanning actual bodies
rather than constructing them from scratch.

In fact, sensor data of real-world objects and environments obtained with a
smartphone or DSLR camera can be processed and modeled to create realistic virtual
environments in an easy and efficient way, and that’s what Image-Based Rendering (IBR)
does. IBR is an alternative approach that holds promise for producing photorealistic
images bypassing costly physical simulations. IBR techniques start with a set of
observations of real-world scenes and enable the generation of new images from
the captured images alone (Figure 1.1). Unlike the 3D model-based rendering in
traditional graphics, the rendering complexity for IBR is typically less dependent on

1www.collider.com: 8 most realistic CGI characters in movies
2www.ibc.org: How AI is reinventing visual effects
3www.blogs.nvidia.com: Leading Lights: NVIDIA researchers showcase groundbreaking advance-

ments for real-Time graphics
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Real scene

Modeling

Novel observation

2D observations
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New scene 
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FIGURE 1.1: The image-based rendering (IBR) pipeline takes a dense or sparse set of observations from
real-world scenes as input and models the underlying structure of the scene (illumination, geometry,
appearance, etc.) using an implicit or explicit 2D/3D representation. The IBR process ultimately enables
rendering novel observations of the scene by re-configuring the scene parameters (e.g., the camera or
light source position) inferred through the modeling process.

scene content, so the rendering time can be accelerated by decoupling from scene
complexity and simply re-sampling the captured images. The source of the input
images to the IBR can be actual photographs, virtual content, or even a mixture of
both. Light field (LF) rendering is one of the earliest forms of IBR, where an LF in a
given scene captures information, including both the intensity and the direction of
the light rays. By extracting appropriate 2D slices from the 4D LF, new views of the
scene can be created. IBR was initially developed to change camera viewpoints from
those that were captured; however, it has evolved beyond just visualizing scenes from
different angles, and researchers are now interested in extracting and modifying other
components of a scene, such as lighting and material properties of objects. The ability
to retrieve the parameters of a real scene allows for the seamless integration of real
and digital content, especially in augmented reality and visual effects applications.
Additionally, IBR enables more straightforward model acquisition from photographs,
which can be used to replace traditional geometric models in the modeling of complex
scenes. This can be useful in creating scene content for gaming environments using
available photos of real-world objects and environments or in helping an interior
designer avoid the time-consuming process of designing every piece of furniture
from scratch by working with a 3D model created from a collection of photos.

Nonetheless, key challenges must be addressed to regard an IBR approach as
successful. The primary challenge is achieving high-fidelity reconstruction. Recent
IBR representations [Tewari et al., 2020; Tewari et al., 2022] have demonstrated signif-
icant success in generating novel views of scenes with complex occlusion patterns
and detailed structures. However, many of these representations are suitable for
opaque surfaces and need help reproducing the correct view dependency effects for
objects with different material appearances, such as transparent objects. Though the
reconstruction provided by the current techniques is stable over time and contains
few artifacts, there is no guarantee that the generated images will retain the qual-
ity of captured images and that the texture quality will not be degraded. The next
challenge concerns the practical IBR, ensuring both the acquisition process and the
rendering step are efficient in terms of time and computation. Accurate reconstruction
of the scene primarily requires dense sampling, which, unfortunately, results in ex-
cessive storage, capturing, and processing time. Recent IBR approaches can function
with sparse and unconstrained input images, allowing for easy, low-cost acquisition;
yet, they struggle to provide fast optimization and real-time rendering. Real-time
rendering and interaction, however, are essential for virtual and augmented reality
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applications in gaming, entertainment, healthcare, simulation, education, and other
areas where hardware resources and memory bandwidth are often limited. Unrav-
eling other graphic attributes to enable additional applications is another desired
feature. With modern deep-learning-based techniques, it is now feasible to re-light
the scene by changing the position of the light source or editing material properties,
or even re-timing a dynamic sequence along with changing the viewpoint. However,
there is still a lack of a unified presentation that can offer all these functions at once.
Another concern is related to the scalability of an IBR method. It is highly desirable
that the output of an IBR process can scale to any screen resolution or type, depending
on whether it is a cell phone, a TV screen, or a head-mounted display (HMD), while
remaining computationally efficient.

The approaches presented in this thesis aim to extend the scope of IBR algorithms
by alleviating some of the remaining challenges. The first step towards achieving
this goal is designing a neural network (NN) that already knows the “basic rules” of
graphics (lighting, 3D projection, occlusion) and the “basic laws” of physical-based
rendering (volume rendering, eikonal light transport) in a compact and differentiable
form. Through the custom adaptation of NN and reformulation of the IBR represen-
tation, this thesis becomes able to (i) provide an interactive joint space, time, and
light exploration in the captured real scenes and (ii) correctly reproduce the view
dependency effect resulting from the interaction between the transparent objects and
the surrounding environment. This way, IBR will gain greater versatility and provide
more visually engaging experiences in virtual reality applications.

In the second step, inspired by the fact that humans are capable of spotting dis-
tortions in the images even without seeing their reference, this thesis develops a
visibility metric that can locate artifacts in the reconstructed IBR images without the
need to observe the reference image. Such a metric can contribute to the design of
an effective IBR acquisition pipeline that will, in turn, minimize the compromise be-
tween reconstruction quality and capturing density by guiding the acquisition device
to capture densely in regions where accurate reconstruction is highly challenging.
Moreover, the human perception system is not always susceptible to visual errors,
depending on the location, magnitude, and structure of errors in an image, hence
allowing for a degree of imperfection in the rendered images, yet it is invisible to
the human eye. Recognition of this insight enables us to develop efficient rendering
techniques for improving visual content in virtual reality displays, where it often
faces a trade-off between computational efficiency and perceptual quality.

1.2 Contributions

This thesis uses two tools to enable more efficient and versatile IBR: Implicit scene
representation and image quality evaluation.

Implicit scene representation Traditional photorealistic rendering of real-world
scenes proves tedious and challenging due to the need to reconstruct all physical
parameters describing the rendered scenes. Recently, implicit scene representations
have become a viable alternative to this task, where the entire scene is encoded into
the parameters of a neural network. This compact scene representation is learned
based on observations provided as unordered or structured sets of multi-view images.
Inspired by this representation, Chapter 3 (based on Bemana et al. [2020]) presents
X-Field,
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• a compact solution for providing high-quality interpolation within a sparse
(structured) set of light-view-time images,

• an efficient representation that can scale to high-resolution images and still
provide real-time rendering, and

• a learning-based approach that does not require a large training dataset.

Despite recent advances in scene representations, existing approaches cannot
properly reconstruct novel views of transparent objects with complex refraction and
require special treatment. This problem is tackled by lifting the assumption that light
rays are traversing in straight lines and adapting a physically correct approach to bend
the light rays when they intersect with a refractive object in the scene. Specifically,
Chapter 4 (based on Bemana et al. [2022]) integrates the physical laws of the eikonal
light transport [Ihrke et al., 2007] with a state-of-the-art novel view synthesis method
(NeRF [Mildenhall et al., 2020]) and presents

• a high-quality novel view reconstruction of refractive objects which does not
require any shape prior and can work with unconstrained capturing setup and
scene configuration,

• an implicit representation that can model refractive objects with a spatially
varying index of refraction, and

• a volume rendering formulation for the curved light rays using Ordinary Dif-
ferential Equation (ODE).

Image quality evaluation The development of an image quality metric can play
an important role in accelerating the performance of IBR techniques. Commonly
used image quality evaluations either focus on providing a single score per image or
require a reference image to access the quality [Wang et al., 2004b; Zhang et al., 2018].
However, having a visibility metric with localized error prediction is essential for
quality control, especially in IBR, where the artifacts are often localized. Moreover,
the reference images in many applications are not readily accessible; they might be
impossible to compute or unavailable. Therefore, it becomes more sensible not to
always rely on reference pairs. To this end, Chapter 5 (based on Bemana et al. [2019])
proposes

• a per-pixel no-reference quality metric for identifying IBR artifacts,

• a training strategy to avoid false positive and negative predictions, and

• two applications to validate the proposed non-reference metric in light-field
production.

A critical requirement for the faithful reconstruction of virtual 3D content is the
reproduction of accommodation cues. Recent studies have shown that multilayer
displays, such as light-field displays, are promising solutions for HMDs to provide
near-correct accommodation cues [Hua, 2017]; however, a bigger challenge is in-
volved in rendering multiple images in real-time for such advanced HMDs. In this
regard, this thesis devises a perceptual model to locally determine where a low-cost
decomposition strategy, namely, linear blending (LB) [MacKenzie et al., 2010], can
be applied instead of the costly light-field rendering (LFS) [Lee et al., 2016] without
sacrificing visual quality. Particularly Chapter 6 (based on Yu et al. [2019]) develops
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• a perception-based hybrid decomposition method that combines the advantages
of the above strategies and achieves both real-time performance and high-
fidelity results,

• a gaze-dependent viewpoint sampling of LFS to improve reconstruction quality,

• a series of targeted perceptual experiments that measure the differences in
visual quality between LB and LFS for different spatial frequencies, luminance
contrasts, depth configurations, and eccentricities,

• a domain-specific calibration of the structural similarity index (SSIM) for pre-
dicting the visible differences between LB and LFS, which provides generalized
perceptual insights beyond the scope of the perceptual experiments, and

• a unified optimization framework for the LB and LFS decompositions and
an efficient adaptation of the simultaneous algebraic reconstruction technique
(SART) to CUDA for real-time decompositions.

The author of this thesis is the main contributor of the work presented in each
chapter; however, is not engaged in some parts in Chapter 6, including the imple-
mentation of ray-tracing and eye-tracking, the preparation of the scenes, and running
perceptual experiments.

1.3 Outline

This thesis is organized as follows. Chapter 2 reviews and discusses relevant work.
Chapter 3 introduces the proposed compact solution for joint light-view-time image
interpolation. Chapter 4 presents the eikonal-based approach to correctly synthesizing
the novel view of refractive objects. Moving on to the image quality metric in
Chapter 5, where a no-reference visibility metric is designed for detecting artifacts
in IBR images. Finally, Chapter 6 discusses the proposed perception-driven hybrid
decomposition technique for multilayer accommodative displays. The conclusion of
this thesis and discussion of promising research directions are provided in Chapter 7.
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Chapter 2

Previous Work

This chapter reviews the previous work relevant to this thesis. The existing methods
on image-based interpolation and view synthesis for transparent objects are discussed
in Section 2.1 and Section 2.2, respectively. Then previous work regarding the objec-
tive image quality metrics are covered in Section 2.3. Finally, the topics related to
multi-layered displays are reviewed in Section 2.4.

2.1 Image-Based Interpolation

Image-based interpolation is a long-standing problem in the vision and graphic
community and spans many dimensions. This section reviews previous techniques
to interpolate across discrete sampled observations in view (light fields), time (video),
space-time, and illumination (reflectance fields). Table 2.1 summarizes this body of
work along multiple axes.

2.1.1 View

View interpolation, aka novel view synthesis, refers to the process of generating
novel viewpoints of a scene given a set of existing images or videos. This section
reviews existing traditional approaches and recent learning-based methods for view
interpolation.

Traditional approaches The concept of view interpolation was first introduced by
Chen and Williams [1993]. It involves creating novel views by warping input images
with pixels correspondence computed from image range data. Levoy and Hanrahan
[1996], as well as Gortler et al. [1996], were also the first to formalize the concept
of the light field (LF) and to devise acquisition hardware to capture it. Later view
interpolation solutions, such as Unstructured Lumigraph Rendering (ULR) [Buehler
et al., 2001; Chaurasia et al., 2013], involves creating proxy geometry to warp [Mark
et al., 1997] multiple observations into a novel view and blend them with specific
weights. Avoiding the difficulty of reconstructing geometry or 3D volumes has been
addressed for LFs in [Du et al., 2014; Kellnhofer et al., 2017]. More recent works have
used per-view geometry [Hedman et al., 2016b] and learned ULR blending weights
[Hedman et al., 2018] to allow sparse input and view-dependent shading.

LF methods come first in Table 2.1, where they are checked “view” as they gen-
eralize across an observer’s position and orientation. Depending on resources, a
capture setup can be considered simple (cell phone) or more involved (light stage)
as denoted in the “easy capture” column in Table 2.1. An important distinction is
that a capturing can be dense or sparse, denoted as “Sparse” in Table 2.1. Sparsity
depends less on the number of images but more on the difference between captured
images. Very similar view positions [Kalantari et al., 2016] as for a Lytro camera can
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be considered dense, while 34 views on a sphere [Lombardi et al., 2019a] or 40 lights
on a hemisphere [Malzbender et al., 2001] are sparse. The focus of this thesis is on
wide camera baselines, with typically M × N cameras spaced by 5–10 cm [Flynn
et al., 2019], and respectively a large pixel disparity ranging up to 250 pixels [Dabała
et al., 2016; Mildenhall et al., 2019], where M and N are single-digit numbers, e. g.,
3×3, 5×5 or even 2×1.

Multi-plane image representation With the advent of neural networks, Flynn et al.
[2016] proposed the first method applying deep neural networks to the problem
of view synthesis for a set of real-world images. They decompose the scene into
multiple depth planes of the output view and construct a view-dependent plane
sweep volume (PSV) to render novel views. Kalantari et al. [2016] adopt a similar
idea to learn to synthesize novel views for LF data. They indirectly learn depth maps
without depth supervision to interpolate between views in a Lytro camera. Instead of
using proxy geometry, Penner and Zhang [2017a] have suggested using a volumetric
occupancy representation. By learning how neighboring input views contribute to
the output view, the multi-plane image (MPI) representation [Zhou et al., 2018] can
be built, which enables high-quality local LF fusion [Mildenhall et al., 2019]. Inferring
a volumetric/MPI representation can be facilitated with learned gradient descent
[Flynn et al., 2019], where the gradient components directly encode visibility and
effectively inform the NN on the occlusion relations in the scene. MPI techniques
avoid the problem of explicit depth reconstruction and allow for softer, more pleasant
results. A drawback in deployment is the massive volumetric data, the difficulty of
distributing occupancy therein, and finally, the bandwidth requirements of volume
rendering itself.

This thesis also involves a learning route and uses a NN to represent the scene
implicitly (Chapter 3), and the deployment only requires a few additional kilobytes
of NN parameters on top of the input image data and rendering in real-time. From
yet another angle, ULR-inspired IBR creates an LF (view-dependent appearance) on
the surface of a proxy geometry, i. e., a surface light field. Chen et al. [2018a], using
an MLP, as well as Thies et al. [2019], using a CNN, have proposed to represent this
information using a NN defined in the texture space of a proxy object. While inspired
by the mechanics of sparse IBR, results are typically demonstrated for rather dense
observations. In contrast, this thesis does not assume any proxy to be given but jointly
represents the appearance and the geometry used to warp over many dimensions in
a single NN, trained from sparse sets of images (Chapter 3).

Flow-based methods The Appearance Flow work of Zhou et al. [2016] suggests
combining the idea of warping pixels with learning how to warp. While Zhou et al.
[2016] typically consider a single input view, Sun et al. [2018b] employ multiple views
to improve warped view quality. Both works use an implicit representation of the
warp field, i. e., a NN that for every pixel in one view predicts from where to copy
its value in the new view. While those techniques worked best for fixed camera
positions that are used in training, Chen et al. [2019b] introduces an implicit NN
of per-pixel depth that enables an arbitrary view interpolation. All these methods
require extensive training for specific classes of scenes, such as cars, chairs, or urban
city views.

This thesis takes this line of work further by constructing an implicit NN repre-
sentation that generalizes jointly over complete geometry, motion, and illumination
changes (Chapter 3). The task, on the one hand, becomes simpler as it does not need
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to generalize across different scenes, yet on the other hand, it is also harder as it
requires generalizing across many more dimensions and provides state-of-the-art
visual quality.

Implicit volumetric representation Another step of abstraction is voxel representa-
tion [Sitzmann et al., 2019a]. Instead of storing opacity and appearance in a volume,
abstract “persistent” features are derived, which are then projected using learned
ray-marching. The volume was learned per scene. Lombardi et al. [2019b] propose a
voxel grid with an interpolation that is optimized using a CNN and encodes both dy-
namic geometry and appearance. Learned warping is performed to reduce memory
requirements and improve the resolvable details. Recently, implicit scene representa-
tion [Sitzmann et al., 2019b], and [Saito et al., 2019] has become a promising approach
for high-quality novel view synthesis. Mildenhall et al. [2020] introduce a volumetric
opacity representation called NeRF that encodes geometry and appearance using
a multi-layered perceptron (MLP) trained on a large set of multiple-view RGB im-
ages and proves to be extremely successful in novel view synthesis tasks. Despite
producing high-quality results, MLP-based approaches are slow in rendering and
optimization, especially for high-resolution images. A speed-up can be achieved
with the recent grid-based structure (with no neural components) [Yu et al., 2021a; Yu
et al., 2021b] or multiresolution hash table augmented with a shallow neural network
[Müller et al., 2022], or multiple compact low-rank tensor components [Chen et al.,
2022], which they directly optimize from the input images using gradients methods.
However, these representations are usually less compact, resulting in large storage
requirements, especially for rendering large scenes or high-resolution images. Such
approaches are called “implicit” in Table 2.1 when the NN replaces the pixel basis,
i. e., the network provides a high-dimensional getPixel(x). These approaches use
an MLP that can be queried for occupancy [Chen and Zhang, 2019; Sitzmann et al.,
2019b; Saito et al., 2019], color [Oechsle et al., 2019; Sitzmann et al., 2019b; Mildenhall
et al., 2020] etc. at different 3D positions along a ray for one pixel. The X-Field
representation introduced in Chapter 3 makes two changes to this design. First, it
predicts texture coordinates rather than appearance. These drive a spatial transformer
[Jaderberg et al., 2015] that can copy details from the input images without represent-
ing them and do so at high speed (20 fps). Second, it trains a 2D CNN instead of a 3D
MLP that, for a given X-Field coordinate, will directly return a complete 2D per-pixel
depth and correspondence map. For an X-Field problem, this is more efficient than
ray-marching and evaluating a complex MLP at every step [Tewari et al., 2022].

While implicit representations have so far been demonstrated to provide a certain
level of fidelity when generalized across a class of simpler shapes (cars, chairs, etc.).
This thesis makes the task simpler and generalizes less while producing quality to
compete with the state-of-the-art view, time and light interpolation methods from
computer graphics. Inspired by [Nguyen Phuoc et al., 2018], some work [Sitzmann et
al., 2019a; Nguyen Phuoc et al., 2019; Sitzmann et al., 2019b] learns the differentiable
tomographic rendering step, while other work has shown how it can be differentiated
directly [Henzler et al., 2019a; Lombardi et al., 2019a; Mildenhall et al., 2020]. This
thesis avoids tomography and works with differentiable warping [Jaderberg et al.,
2015] with consistency handling inspired by unsupervised depth reconstruction
[Godard et al., 2017; Zhou et al., 2017]. Avoiding volumetric representations allows for
real-time playback while at the same time generalizing from view to other dimensions
such as time and light.
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2.1.2 Time (Video)

Videos comprise discrete observations of a scene over time and hence are a sparse
capture of the visual world. To get smooth interpolation, e. g., , for slow-motion
(individual frames), motion blur (averaging multiple frames) images need to be
interpolated [Mahajan et al., 2009], potentially using NNs [Sun et al., 2018a; Jiang
et al., 2018; Bao et al., 2019b; Bao et al., 2019a; Wang et al., 2018a]. More exotic
domains of video re-timing, which involve annotation of a fraction of frames and
one-off NN training, include the visual aspect in sync with spoken language [Fried
and Agrawala, 2019]. Although the recent techniques [Reda et al., 2022; Sim et al.,
2021] have shown great success in handling scenes with large uniform motion and
the presence of complex occlusions, the computational cost for these methods is
relatively high, hindering a real-time performance, especially for a high-resolution
input. One can take an existing frame interpolation framework and perform multiple
interpolation steps to reach any point within the view-time-light cube. However, even
with a fast method like Jiang et al. [2018], this approach becomes inefficient in terms
of run time, requiring up to seven steps for interpolation within the view-time-light
cube.

2.1.3 Space-Time

Warping can be applied to space or time, as well as to both jointly [Manning and
Dyer, 1999], resulting in LF video [Wang and Yang, 2005; Lipski et al., 2010; Wang
et al., 2017; Zitnick et al., 2004]. Recent work has extended deep novel-view methods
into the time domain [Lombardi et al., 2019a]. They also use warping for a very
different purpose: deforming a pixel-basis 3D representation over time to avoid
storing individual frames (motion compensation). Both methods of Sitzmann et al.
[2019a] and Lombardi et al. [2019a] are limited by the spatial 3D resolution of volume
texture and the need to process it, while this thesis works with 2D depth and color
maps only (Chapter 3). As they learn the tomographic operator, this limit in resolution
is not a classic Nyquist limit, e. g., sharp edges can be handled, but results typically
are on isolated, dominantly convex objects. Ultimately, this thesis does not claim
depth maps to be superior to volumes per se, instead suggests that 3D volumes have
their strength for seeing objects from all views (at the expense of resolution), whereas
using images is more for observing scenes from a “funnel” of views but at high 2D
resolution. No work yet is able to combine high resolution and arbitrary views, not
to mention time. Recent implicit-based representation methods [Park et al., 2021;
Pumarola et al., 2021] deal with dynamic content by jointly learning a canonical NeRF
volume and a deformation field or a dense scene flow fields [Li et al., 2022b; Gao et al.,
2021] between the scene at a particular moment in time and the scene in canonical
space. Such deformation can also be implemented as ray bending, where straight rays
are deformed non-rigidly [Tretschk et al., 2021a]. While the input to these methods
is merely a monocular video with only one view observation at each time stamp, it
often contains a dense observation in the time domain. Moreover, the training step
usually takes several days, and rendering is still far from real-time.

2.1.4 Light (Reflectance Fields)

While an LF is specific to one illumination, a reflectance field (RF) [Debevec et al., 2000]
is a generalization additionally allowing for relighting, often just for a fixed view.
Dense sampling for individually controlled directional lights can be performed using
Light Stage [Debevec et al., 2000], which leads to hundreds of captured images. The
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Method Citation Generalize Interface Implem. Remarks

Unstructured Lumigraph [Buehler et al., 2001] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ IBR
Inside Out [Hedman et al., 2016b] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ IBR; SfM; Per-view geometry
LF View Interp. [Kalantari et al., 2016] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ Lytro; Learned disparity and fusion
Soft 3D [Penner and Zhang, 2017a] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ MPI
Deep Blending [Hedman et al., 2018] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ IBR; SfM; Learned fusion
Deep Surface LFs [Chen et al., 2018a] ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ Texture; Lumitexel; MLPs
Local LF Fusion [Mildenhall et al., 2019] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ MPI
DeepView [Flynn et al., 2019] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ MPI
Neural Textures [Thies et al., 2019] ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ Texture; Lumitexel; CNNs
DeepVoxels [Sitzmann et al., 2019a] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ 3D CNN
HoloGAN [Nguyen Phuoc et al., 2019] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ Adversarial; 3D representation
Appearance Flow [Zhou et al., 2016] ✓1✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ App. Flow; Fixed views
Multi-view App. Flow [Sun et al., 2018b] ✓2✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ App. Flow; Learned fusion; Fixed views
Spatial Trans. Net IBR [Chen et al., 2019b] ✓3✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ App. Flow; Per-view geometry; Free views
NeRF [Mildenhall et al., 2020] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ MLPs, ray-marching
Plenoxels [Yu et al., 2021a] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ Voxel girds; no neural components
TensoRF [Chen et al., 2022] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ Compact low-rank tensors
Instant-NGP [Müller et al., 2022] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ Multiresolution hash table; Shallow MLP

Moving Gradients [Mahajan et al., 2009] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ Gradient domain
Super SlowMo [Jiang et al., 2018] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ Occlusions: Learns visibility maps
Video-to-video [Wang et al., 2018a] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ Adversarial; Segmented content editing
Puppet Dubbing [Fried and Agrawala, 2019] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ Visual and sound sync.
Depth-aware Frame Int. [Bao et al., 2019a] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ Occlusions: Learns depth maps
MEMC-Net [Bao et al., 2019b] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ Occlusions: Learns visibility maps
XVFI [Sim et al., 2021] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ Learns occlusions maps; 1000-fps dataset
FILM [Reda et al., 2022] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ Implicit occlusions handling

Layered Representation [Zitnick et al., 2004] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ MVS reconst.; Layered Depth Images
Video Array [Wilburn et al., 2005] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Optical flow
Virtual Video [Lipski et al., 2010] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ Structure from Motion (SfM)
Hybrid Imaging [Wang et al., 2017] ✓ ✓ ✓ ✗ ✓4 ✗ ✓ ✓ ✓ ✗ ✗ Lytro+DSLR camera system
Neural Volumes [Lombardi et al., 2019a] ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ 3D CNN; LightStage; Fixed time (video)
Scene Represent. Net [Sitzmann et al., 2019b] ✓5✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ 3D MLP
PIFu [Saito et al., 2019] ✓6✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 3D MLP
D-NeRF [Pumarola et al., 2021] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ MLPs; Deformation field
NR-NeRF [Tretschk et al., 2021a] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ MLPs; Non-rigid deformation
Neural 3D Video [Li et al., 2022b] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ MLPs; 3D motion flow fields

Polynomial Textures [Malzbender et al., 2001] ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ LightStage
Neural Relighting [Ren et al., 2015] ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ MLP; LightStage and hand-held lighting
Sparse Sample Relighting [Xu et al., 2018] ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ Optimized light positions
Deep Reflectance Fields [Meka et al., 2019] ✓7 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ LightStage; Moving Performers
Total relighting [Pandey et al., 2021] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ LightStage; Fixed-view portrait relighting
Lumos [Yeh et al., 2022] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ Portrait relighting; Synthetic LightStage

Sparse Sample View Synth. [Xu et al., 2019] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ Optimized lights as in [Xu et al., 2018]
Multi-view Relighting [Philip et al., 2019] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ Geometry proxy; Auxiliary 2D buffers
The Relightables [Guo et al., 2019] ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ LightStage; Depth sensor data
Deep Relightable Textures [Meka et al., 2020] ✓8✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ LightStage; Neural rendering
NeRV [Srinivasan et al., 2021] ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ Known illumination; Decomposed BRDF
NeRD [Boss et al., 2021] ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ MLPs; Decomposed BRDF
Relighting4D [Chen and Liu, 2022] ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ Full-body relighting; Monocular video
RANA [Iqbal et al., 2022] ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ Articulated human relighting

Ours ✗ ✓ ✓ ✓ ✓ ✗9 ✓ ✓ ✓ ✓ ✓

TABLE 2.1: Comparison of space, time, and illumination interpolation methods (rows) with respect to
capabilities (columns), with an emphasis on deep methods. (1−3,5Similar-class scenes demonstrated,
e. g., cars, chairs, urban city views; 4LF sparse in time; 6Clothed humans demonstrated; 7Human
faces shown; 8Only for human performance capture, but can generalize to unseen performance; 9Only
structured grids are shown. Should support unstructured, as long as the transformation between views
is known.)

number of images can be reduced by employing specially designed illumination
patterns [Fuchs et al., 2007; Peers et al., 2009; Reddy et al., 2012] to exploit various
forms of coherence in the light transport function. For interpolation, the signal is
frequently separated, such as into highlights, reflectance, or shadows [Chen and
Lensch, 2005]. One method in this thesis (Chapter 3) also found such a separation
helpful. Angular coherence in incoming lighting leads to an efficient reflectance field
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representation as polynomial texture maps [Malzbender et al., 2001], which can be
further improved by neural networks whose expressive power enables one to capture
non-linear spatial coherence [Ren et al., 2015], or generalize across views [Maximov et
al., 2019]. Xu et al. [2018] directly regresses images of illumination from an arbitrary
light direction when given five images from specific other light directions. The
innovation is in optimizing what should be input at test time. Still, the setup requires
custom capture dome equipment, as well as input images taken from those five very
specific directions. For scenes captured under controlled illumination for multiple
sparse views, generalization across views can be achieved by concatenation with a
view synthesis method [Xu et al., 2019]. While the results are compelling on synthetic
scenes, the method exhibits difficulties in handling complex or non-convex geometry,
as well as high-frequency details such as specularities and shadows [Meka et al.,
2019]. An approximate geometry proxy and extensive training over rendered scenes
might compensate for inaccuracies in derived shadows and overall relighting quality
[Philip et al., 2019]. Specialized systems for relighting human faces and characters
remove many such limitations, including fixed view and static scene assumptions,
using advanced Light Stage hardware that enables capturing massive data for CNN
training [Meka et al., 2019] and complex optimizations that are additionally fed with
multiple depth sensor data [Guo et al., 2019]. As only two images for an arbitrary
face or character under spherical color gradient lighting are required at the test time,
real-time dynamic performance capturing is possible. Free-viewpoint rendering of
dynamic performers can also be achieved through CNN-based, LF-style interpolation
in Meka et al. [2020], whereas Guo et al. [2019] capture complete 3D models with tex-
tures and can easily change viewpoint as well. The custom capture hardware required
in these relighting approaches hinders their use in casual photography. Pandey et al.
[2021] enables changing the lighting condition of a single portrait image but still relies
on Light Stage data for training supervision. Yeh et al. [2022] overcome this limitation
by utilizing synthetic custom data and a synthetic to real domain adaptation module,
resulting in temporally consistent video portrait relighting. This thesis employs
specific-scene training and removes the requirements for massive training data and
costly capturing hardware [Meka et al., 2020; Guo et al., 2019]. At the same time,
it enables the real-time rendering of animated scenes under interpolated dynamic
lighting and view position (Chapter 3).

Recent techniques [Boss et al., 2021; Srinivasan et al., 2021] adapt the NeRF repre-
sentation [Mildenhall et al., 2020] and employ a physically-based rendering to extract
the volume density of a scene along with BRDF material properties of the objects,
which then allows rendering novel views of the object under arbitrary illumination.
However, these techniques primarily focus on relighting static objects and do not
effectively incorporate both illumination and scene dynamics. Relighting full-body
dynamic avatars is made possible by simultaneously estimating geometry, texture,
and environment lighting from a short video clip of the person [Chen and Liu, 2022;
Iqbal et al., 2022].

2.2 View Synthesis for Transparent Objects

As the focus of this thesis in Chapter 4 is the novel-view synthesis for refractive
transparent objects, Section 2.2.1 first discusses this problem with an emphasis on
recent neural rendering solutions that can handle specular effects. Section 2.2.2 also
overviews the image-based modeling of transparent objects, which is a more general
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setup than required in this thesis, but still, some similarities can be found. Finally, the
physics-based eikonal rendering is discussed (Section 2.2.3).

2.2.1 Reproducing Specular Effects

Complementary to Section 2.1.1, this section reviews solutions for novel-view synthe-
sis in static scenes, where 3D representations such as multi-layer perceptron (MLP),
voxel grids, and multi-plane images (MPI) are disentangled from material prop-
erties and image formation processes so that classic physics-based rendering can
be employed to simulate complex lighting effects such as specular reflection and
refraction.

Neural radiance fields (NeRF) Using the NeRF MLP-based representation [Milden-
hall et al., 2020], the view-dependent RGB color and view-independent density
are learned as sharp functions in space and smooth functions in angle, where the
density determines the contribution of each location to the color integrated along
any ray traversing the NeRF volume. In the case of near-mirror or near-glass re-
flection/refraction, appearance cannot be described as a smooth function of angle
anymore [Guo et al., 2021]. As a result, low-frequency, view-dependent effects such
as highlight positions can be partially reproduced; however, the scene seen in mirror
reflections or through transparent objects appears notoriously blurry or with ghosting
artifacts [Ichnowski et al., 2021]. Some solutions exist [Zhang et al., 2021b; Boss et al.,
2021] to disentangle normal vectors and spatially-varying reflectance by manipulating
the NeRF density representation. Still, highly specular surfaces with a clearly visible
reflected environment cannot be reproduced. This thesis (Chapter 4) does not fully
rely on the NeRF geometry and uses the diffuse scene only as a backdrop. Inspired
by traditional image-based rendering [Sinha et al., 2012; Xu et al., 2021] for scenes
with planar reflections, Guo et al. [2021] introduce NeRFReN, where an additional
NeRF structure is proposed that renders a reflected image and composes it additively
with the traditional NeRF rendering. MirrorNeRF [Wang et al., 2021b] employs a
catadioptric imaging system based on an array of hemispherical mirrors, enabling
a single-shot portrait reconstruction and rendering. An implicit representation of
a continuous displacement field is learned per mirror to warp every sample point
from rays emitted by a given mirror to a common reference NeRF space. Only the
sample point position is warped, but its viewing direction is not changed, while in
this thesis, view directions are bent within a novel NeRF structure. A similar concept
of warping is employed to accommodate non-rigid object deformations to a canonical
reference NeRF [Pumarola et al., 2020; Tretschk et al., 2021b], but again straight rays
are considered in rendering. Recently, Huang et al. [2021] introduce high dynamic
range HDR-NeRF that relies on RAW-captured images that might further improve
the quality of specular effect rendering.

Other volumetric representations Sharper mirror reflection and transparency ef-
fects can be obtained using an extension of the multiplane image (MPI) representation,
where for every pixel in a stack of parallel semi-transparent planes, directional infor-
mation using learned basis functions is stored [Wizadwongsa et al., 2021]. Similarly,
as for other MPI-based and neural light fields [Attal et al., 2021] methods, only nar-
row baselines are supported. Signed distance fields (SDF), possibly encoded into an
MLP, can be used to represent surface geometry and recover non-spatially-varying
reflectance using spherical Gaussians that, in turn, enables good quality reflections
[Zhang et al., 2021a]. In an alternative point-based representation [Kolos et al., 2020],
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where each point is associated with a learnable photometric, geometric, and trans-
parency descriptor, a relatively sharp depiction of semi-transparent objects is achieved
when the non-distorted background is also known. However, specular effects are
explicitly excluded from the training data.

In all those solutions, an important limiting factor is a straight light path assump-
tion in the rendering formulation that neglects light reflection and refraction effects
for complex geometry settings. The method in this thesis (Chapter 4) additionally
reconstructs a volumetric index of refraction (IoR) field along with simulating the
laws of physics associated with refractive effects, which enables explaining the input
RGB images at the learning time and consequently provides a meaningful synthesis
of novel views at the test time.

2.2.2 Transparent Surface Reconstruction

The visual appearance of transparent objects is strongly affected by their absorptive,
refractive, and reflective properties and varies with background and illumination,
which makes image-based reconstruction of such surfaces a difficult, fundamentally
under-constrained problem that requires dedicated solutions. This section first dis-
cusses more foundational work that formulates theoretical conditions to make such
reconstruction computationally tractable. Then, the environment matting techniques
are discussed. These techniques are trying to solve a more focused problem of back-
ground deformation by a transparent object so that such an object can be composited
onto different backgrounds. Finally, this section presents the practical solutions for
reconstructing a complete transparent object geometry, e. g., in the form of explicit
meshed or point-based and implicit NeRF models that are then suitable for arbitrary
re-rendering. Typically such reconstruction is performed in controlled environments,
often with the use of structured illumination. In contrast, other applications such as
robotics require such reconstruction in the wild, in potentially cluttered scenes. Those
two scenarios are briefly discussed with an emphasis on recent machine learning
solutions, and the existing surveys [Ihrke et al., 2008; Ihrke et al., 2010] discuss a more
comprehensive treatment.

Theoretical foundations Kutulakos and Steger [2008] investigate two-interface
refractive light interaction with a surface, and for every pixel, recover multiple 3D
points so that a ray exiting the surface can be reconstructed. They show that by
using a three-viewpoint setup, they can reconstruct the underlying general geom-
etry. Importantly, they enumerate a tractable number of light bounces that can be
reconstructed along a light path for various acquisition setups. Importantly, they
also demonstrate that by purely geometric means, it is impossible to reconstruct
individual light paths when light bounces more than two times. The two-refraction
case, where the correspondence between the incident and exit is found, has been
investigated in follow-up work [Tsai et al., 2015].

Environment matting A deformation pattern in the light transport is reconstructed
for a transparent object that is imposed on differently structured backgrounds using
a sequence of images, where additionally undeformed background must be known
[Zongker et al., 1999; Chuang et al., 2000; Peers and Dutré, 2003], or may remain
unknown [Matusik et al., 2002; Wexler et al., 2002]. Khan et al. [2006] demonstrate
that even significant departs of such a deformation pattern from physical refractive
processes can be tolerated by human perception to make realistically-looking com-
positing of a transparent object over any background. Even a simple user markup
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with deformed/non-deformed stroke pairs might be sufficient to derive such a plau-
sible deformation pattern [Yeung et al., 2011]. Along a similar line, Chen et al. [2019a]
propose a massively-trained neural network that, at test time, derives a transparent
object mask, an attenuation mask, and a realistically-looking deformation pattern all
from a single photograph so that the transparent object can be composited onto any
background.

Reconstruction in controlled environments Various dedicated setups that rely on
light-field background displays [Wetzstein et al., 2011b], transmission imaging [Kim et
al., 2017b], and X-ray computational tomography (CT) scanners [Stets et al., 2017] have
been used for transparent object geometry reconstruction. In intrusive setups, which
require immersing transparent objects into a liquid with matching IoR, straight light
paths can be assumed that greatly simplifies CT reconstruction [Trifonov et al., 2006a]
or range scanning when fluorescent liquid is employed [Hullin et al., 2008]. Inspired
by environment matting, Wu et al. [2018] and Lyu et al. [2020] place a transparent
object on a turntable in front of a coded background and capture its multiple views
from a static camera position. Wu et al. [2018] derive the correspondence between the
incident (camera) and exit rays that reach the background, which additionally requires
rotating the background and finally consolidating the resulting point clouds into a
clean geometric model. Lyu et al. [2020] perform coarse-to-fine mesh optimization,
which is driven by differentiable tracing of the refractive two-bounce light path
so that the distorted refractive pattern and object silhouettes match the captured
photographs.

In-the-wild reconstruction Li et al. [2020] employ a cell phone to capture a small
number of views along with segmented transparent object masks and a known
environment map, which are provided as the input for their method. They propose
an in-network differentiable rendering layer with a physical image formation model
under an assumption of two-bounce refractive light paths to refine associated normal
vectors so that a point-cloud model can be reconstructed that, in turn, explains the
correspondence between the input images and environment map. Sajjan et al. [2020]
show that by employing an RGB-D camera, the segmentation task is greatly simplified.
At the same time, complex reflective and refractive light patterns enable a neural
network to infer surface normals even from a single input image so that potentially
unreliable depth information is further refined. Similar goals can be achieved using
even a single RGB image and a massively trained encoder-decoder network [Stets
et al., 2019]. As pointed out in Lyu et al. [2020], the domain gap can still be expected,
as these networks [Stets et al., 2019; Li et al., 2020; Sajjan et al., 2020] are trained mostly
on synthetic data. The most successful solutions for transparent object segmentation
in RGB images rely on CNN [Khaing and Masayuki, 2019] or transformer [Xie et al.,
2021] networks that, in turn, require training with large annotated datasets. Dex-NeRF
[Ichnowski et al., 2021] does not require any prior dataset and derives a transparent
object depth by searching along the ray traversing NeRF’s volume for the first sample
density whose value is larger than a given threshold. Multiple camera views are
required for geometry reconstruction, where specular reflections from multiple light
sources further improve the learned geometry quality.

2.2.3 Eikonal Rendering

Light propagation in media with varying IoR has been modeled based on formu-
lations derived from the eikonal and transport equations. In Berger et al. [1990b],
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Berger et al. [1990a], and Musgrave [1990], mirage rendering is proposed by tracing
rays through discrete atmosphere layers so that the IoR increases with elevation.
Stam and Languénou [1996] extend this discrete formulation to media with contin-
uously varying IoR by introducing the eikonal equation to rendering applications.
Gutierrez et al. [2005] revisit mirage and other atmospheric effects rendering using
such continuous formulation. Ihrke et al. [2007] derive from the eikonal equation
a wavefront tracing technique to precompute irradiance distribution in a volume
that enables the efficient rendering of media with non-homogeneous IoR. This thesis
rather deals with an inverse rendering problem and aims to learn a continuous 3D
IoR field. The eikonal equation provides a principled connection between gradients
in the learned IoR and light propagation along curved trajectories that explains the
input 2D images. In seismological applications, a factored eikonal formulation is
used to train a network to predict travel time between any source-receiver pair in a
continuous 3D space with non-homogeneous seismic velocities [Smith et al., 2021].
Training data involves massively sampled travel time measures between different
points in the 3D space, while this thesis employs 2D images with refraction patterns.
In interferometric tomography [Sweeney and Vest, 1973; Liu and Yang, 1989; Tian
et al., 2011] 3D IoR field is reconstructed for investigating physical parameters such
as temperatures or densities, e. g., in high-speed aerodynamic flows. Such techniques
typically capitalize on phase modulation that changes with the optical path length of
straight, rather than curved, light rays passing through transparent media and can be
extracted from interferograms.

2.3 Image Quality Assessment

This section first discusses the objective image quality metrics (Section 2.3.1), with
special emphasis on those that do not require a clean reference image (Section 2.3.2).
Then, Section 2.3.3 briefly characterizes IBR-specific artifacts, as well as metrics
specialized in their detection, which is the key focus of Chapter 5 in this thesis.

2.3.1 Image Metrics

Some applications and functions may only require a quality score while others need a
visibility map [Chandler, 2013].

Image quality metrics (IQMs) evaluate the distortion magnitude and are typically
trained on the mean-opinion score (MOS) data [Sheikh et al., 2006; Ponomarenko
et al., 2009] that labels the entire image as a single quality score. The most commonly
used IQMs such as PSNR, SSIM, MS-SSIM [Wang and Bovik, 2006], FSIM [Zhang
et al., 2011], and CIELAB [Zhang and Wandell, 1997] are full-reference (FR) metrics
that take as input the reference and distorted images and compute local differences
that are pooled into a global, single quality score. Recently, it has been demonstrated
that CNN-based FR-IQMs achieved the best performance in predicting MOS data
[Amirshahi et al., 2016; Bosse et al., 2018]. Zhang et al. [2018] show that the distance
between the features extracted from a pre-trained classifier such as VGG [Simonyan
and Zisserman, 2014] can be used as a perceptual measure for IQM. They also
employ crowdsourcing and create a large-scale patch-based dataset in two perceptual
experiments: (1) two-alternative forced choice (2AFC) on distortion strength and
(2) “same/not same" near-threshold distortion visibility. Then, they train different
network architectures and report, in each case, a much better performance than
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traditional FR-IQMs in predicting their data from both experiments. A higher corre-
lation with human judgment has been achieved by computing an SSIM-like texture
and structure similarity measure in VGG feature space rather than image space [Ding
et al., 2020; Ding et al., 2021].

Visibility metrics (VMs) predict the distortion perceptibility for every pixel in
the form of visibility maps. VMs are specifically tuned for detecting near-threshold
distortions, which is required in many graphics and vision applications that can-
not tolerate any perceivable quality reduction and require local information on the
distortion positions. To decide on the visibility of such near-threshold distortions,
models of human vision are often employed, where the most prominent FR-VMs
examples include: VDM [Lubin, 1995], VDP [Daly, 1992], and HDR-VDP-2 [Mantiuk
et al., 2011a]. By predicting how the human visual system responds to temporal
changes as well as the visual field, FovVideoVDP [Mantiuk et al., 2021] extends the
VM prediction for videos in addition to images. In the specific task of predicting
selected rendering and compression artifacts, the best performance has been achieved
using machine learning [Čadík et al., 2013] and CNN-based techniques [Wolski et al.,
2018a; Patney and Lefohn, 2018]. Recently, Andersson et al. [2020] presented FLIP, a
perceptual VM which focuses particularly on differences between rendered images
and ground truths.

2.3.2 No-Reference Metrics

This thesis focuses on the VMs due to the locality of their prediction; however, it
is interested in a more challenging no-reference setup, where the reference image is
unavailable. This section discusses the most successful and recent NR-IQMs that rely
on machine learning techniques, and more comprehensive metric discussions can
be found in surveys Chandler [2013] and Kim et al. [2017a]. Early machine learning
techniques employed predefined features such as SIFT and HOG [Narwaria and Lin,
2010; Moorthy and Bovik, 2010; Saad et al., 2012; Tang et al., 2011], and measured their
distortions with respect to natural image statistics [Wang and Bovik, 2006]. Recently,
CNN architectures have been applied to such feature learning as well as the MOS
regression at the same time [Bianco et al., 2016; Kang et al., 2014; Bosse et al., 2018;
Talebi and Milanfar, 2018]. To compensate for a low number of MOS-labeled images,
such solutions typically rely on patches, where they assign the same MOS score for
all patches that belong to a given image [Kim et al., 2017a]. CNN-based models often
have a fixed-size input requirement and lack the ability to fully exploit information
across all regions of an image. To address these limitations, the vision transformer,
which has been successful in vision tasks [Dosovitskiy et al., 2020; Zamir et al., 2022],
has been adopted for no-reference tasks [Yang et al., 2022; Ke et al., 2021; You and
Korhonen, 2021] and has shown to be superior to CNN-based models by capturing
more global feature. Such practice is justified for specific classes of distortions that
affect the whole image uniformly, which might be the case for certain types of image
noise or compression artifacts. Still, it might confuse the network in case of localized
distortions such as those occurring in IBR.

To compensate for the lack of true local reference images, Bosse et al. [2018] learn
the importance of local patches. Still, their key motivation is not deriving the localized
VM but rather estimating relative patch weights in the aggregated MOS rating. The
work done by Lin and Wang [2018] employs a quality-aware generative network to
hallucinate the reference image in an adversarial learning setup, which is further
refined by an IQM-discriminator that is trained on ground truth references. Their
hallucination-guided quality regression network is fed with the difference between
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the hallucinated and distorted images, as well as the distorted image itself, to predict
the MOS value. The quality-aware generative network, hallucination-guided quality
regression network, and the IQM-discriminator are jointly optimized in an end-to-
end manner. Kim and Lee [2017] apply state-of-the-art FR-IQMs such as SSIM to
generate proxy scores on patches as the ground truth to pre-train the model and then
fine-tune their target NR-IQM. At the intermediate stages, the regression network
considers mean values and the standard deviations of per-patch 100-element feature
vectors, which are then pooled to a per-image quality score. This thesis also employs
state-of-the-art FR-IQMs to perform an initial per-patch distortion annotation and
strikes the required balance between different error magnitudes in the training data,
which is essential for meaningful training and shift-invariant properties of an NR-VM.
The research on NR-VMs is extremely sparse, presumably due to limited access to
locally labeled images [Herzog et al., 2012; Čadík et al., 2013; Wolski et al., 2018a].
A notable exception is the work of Herzog et al. [2012], who employs a support
vector machine (SVM) to predict per-pixel distortions for selected rendering artifacts
(they do not consider IBR) and achieve performance comparable to FR-VMs. Here,
this thesis attempts to demonstrate that time-consuming manual per-pixel distortion
labeling is not strictly required.

In cases where training data is easy to produce–such as uniform distortions like
noise, JPEG, etc.–and no perceptual calibration is required, supervised training has
been employed to detect aliasing artifacts [Patney and Lefohn, 2018]. In contrast, the
method in this thesis (Chapter 5) deals with limited training data because only very
few ground truth images are available for IBR and require perceptual calibration.

Vogels et al. [2018] have proposed a method to denoise path-traced images. To
steer the amount of denoising, they also train a neural network to predict distortion
in terms of MC variance, which is as unknown as the pixel value to be MC-estimated
itself. Similar to their works, this thesis employs an NR metric to steer adaptation
which is controlling capture hardware in this case (Chapter 5).

Their task is different as they predict SSIM error from a pair of images, where
one is noisy and the other is denoised. This restricts the distortions to the difference
between denoised and reference, which are smaller than IBR artifacts and also do
not need to be perceptually calibrated. The fact that images with MC noise can be
generated in arbitrary amounts also underlines what is the focus of this thesis: coping
with limited training data.

2.3.3 Artifacts in Image-Based Rendering

Image-based rendering for structured or unstructured light fields (LFs) of real-world
scenes involves several computational steps, such as depth reconstruction, neigh-
boring view-image warping, warped view-image blending, and disocclusion hole
in-painting. Each of these steps is prone to inaccuracies that manifest themselves as
IBR-specific artifacts such as object shifting (incorrect depth), crumbling, distorted
edges (depth discontinuities, e. g., due to compression), popping (fluctuations in
depth), ghosting (depth inaccuracy, view blending), stretching, blurry or black re-
gions (in-painting) [Tian et al., 2018]. Specialized IBR quality metrics often leave one
view as the reference [Waechter et al., 2017; Conze et al., 2012; Solh et al., 2011; Bosc
et al., 2011] or search for matching image blocks after their registration [Battisti et al.,
2015; Gu et al., 2017], and then employ customized FR-IQMs. NR-IQMs typically
focus on detecting selected distortion types such as blurring and ghosting [Berger
et al., 2010], ghosting and popping [Guthe et al., 2016], blurring, stretching, and
black holes [Tian et al., 2018], and aggregation into one final scalar score. Perceptual
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FIGURE 2.1: When looking at objects in the real world, two mechanisms consistently occur: vergence
and accommodation. Vergence refers to the binocular eye movement that directs both eyes on the target,
while accommodation involves the adjustment of the eye lens to focus and produce clear images. In
conventional VR displays (left), vergence and accommodation only match at the virtual screen plane,
and when the user looks at objects at different depths, the accommodation cue is triggered incorrectly.
Multi-plane displays (right) offer a solution to this issue. Studies [Hua, 2017] demonstrate that these
displays are capable of projecting 3D images and triggering eye accommodation across display planes,
enabling users to focus on objects at any depth seamlessly.

experiments have been performed to understand how the observers rate the severity
of different artifacts as a function of rendering parameters such as the number of
blended views and viewing angles [Vangorp et al., 2011]. A skillful pre-processing of
depth (e. g., depth blurring in uncertain regions) and choice of particular algorithmic
solutions can substantially suppress artifacts [Hedman et al., 2016a; Serrano et al.,
2019], eventually using a neural network trained to predict blending weights to
combine the warped images [Hedman et al., 2018]. More objectionable distortion
types can be traded-off with those more visually appealing (e. g., blurry depth that is
more consistent but further from the ground truth). Instead of focusing on selected
distortion types, Ling and Le Callet [2018] propose to learn a dictionary based on
manually labeled data. The features extracted from an image allow predicting a MOS
value using support vector machine regression. Data labeling can be time-consuming,
as Ling et al. [2019] create artificial training data to simulate occlusion problems.
A Generative Adversarial Network (GAN) discriminator [Goodfellow et al., 2014],
targeted to identify in-painted image regions, is used to predict a quality score.

All the discussed work on IBR quality evaluation essentially focuses on providing
a single score per image, which also serves as a metric for performance evaluation.
While some FR-IQMs generate viable per-pixel VMs at intermediate stages [Conze
et al., 2012; Solh et al., 2011], their accuracy is not formally evaluated. The same
holds for the NR-IQM [Ling and Le Callet, 2018]. This thesis differs from all previous
work by pursuing the NR-VM setup to detect local IBR distortions using CNN-based
techniques.

2.4 Multi-Layered Displays

This section gives an overview of near-eye displays supporting accommodation
cues (Section 2.4.1) and image decomposition algorithms targeted for such displays
(Section 2.4.2), as well as selected aspects of foveated rendering (Section 2.4.3) that
are central to this thesis.
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2.4.1 Accommodative Displays

In order to support correct accommodation cues in near-eye displays, various meth-
ods have been proposed.

Multi-plane displays These display project images on different depth planes and
form near-correct 3D volumetric images (Figure 2.1). The system architecture can be
classified into two categories: systems based on time-multiplexing with switchable
lenses [Love et al., 2009; Hu and Hua, 2014] or systems based on beam splitters
and multiple physical screens [Akeley et al., 2004; MacKenzie et al., 2010]. Time-
multiplexing systems can be designed in smaller form factors, but the requirement
for high-refresh-rate screens and fast tunable-focus devices is a major obstacle. Al-
though multi-screen systems have a major drawback in their large form factor, they
offer a larger FOV than time-multiplexing systems. Another major obstacle of both
architectures is the requirement for eye tracking since the images are generated for
a fixed viewing position. Recently, focal surface displays have been developed to
represent continuous 3D imagery [Matsuda et al., 2017]. They eliminated the need
for eye tracking in the case of single-plane generation, but they are computationally
demanding and based on expensive LCoS SLMs. Another approach to avoid eye-
tracking is to perform per-region optimization at multiple gaze points, but it requires
costly optimization and precise calibration of the eye rotation axis [Lee et al., 2017].
Since eye-tracking is essential in practical multi-plane system settings, this thesis
exploits the eye-tracking system further to develop foveated rendering strategy.

Light-field displays The light-field display controls the 4D ray space of the light
generated by the display to produce the motion parallax and vergence cues. Recently,
light-field displays supporting focus cues have been proposed based on microlenses
[Lanman and Luebke, 2013; Hua and Javidi, 2014]. However, those designs have an
intrinsic trade-off between angular and spatial resolution. Light-field displays based
on multi-layered architecture [Maimone and Fuchs, 2013; Huang et al., 2015a; Moon
et al., 2017] have been demonstrated as an efficient platform for providing focus cues.

Other methods Holographic displays can project a replica of real-world scenes and
provide accurate focus cues [Yeom et al., 2015]. However, the limited pixel size and
resolution of digital wavefront modulators impose a significant trade-off between
the eyebox size and FOV [Maimone et al., 2017]. Another approach is to change the
depth of the 2D image plane dynamically with focus-tunable devices [Aksit et al.,
2017; Dunn et al., 2017]. Although viewers can observe the images with correct ac-
commodation cues, the requirement for a dynamic system may lead to latency issues.
Instead of generating complete focus cues, the vergence-accommodation conflict also
can be alleviated by projecting all-in-focus images [Konrad et al., 2017]. However,
this method has a trade-off between the spatial resolution and the reproducible focus
range. Recently, it is also demonstrated that proper rendering of chromatic aber-
ration can effectively trigger accommodation without changing optical focus cues
[Cholewiak et al., 2017].

In this thesis, the rendering strategy is mainly built on the principle of additive
light-field displays with accommodation cues [Moon et al., 2017].
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2.4.2 Decomposition Algorithms

Light-field displays In multi-layered light-field displays, the light fields are pa-
rameterized by a group of pixels on multiple layers. For multiplicative displays, the
optimization system is described in tensor form and solved by various factorization
algorithms [Wetzstein et al., 2011a; Huang et al., 2015b]. Additive light-field displays
based on the polarization LCDs [Lanman et al., 2011] or incoherent summation of
pixel intensities reflected from holographic optical elements [Lee et al., 2017] have
also been proposed. For those architectures, LFS is formulated with a linear least-
squares error problem and solved with the simultaneous algebraic reconstruction
technique (SART) for online calculation [Andersen, 1984] or the trust-region method
[Coleman and Li, 1996] for offline calculation. In LFS, the generation of target light
fields requires high computational cost, and real-time performance is only possible
by reducing the number of iterations [Lanman et al., 2011; Huang et al., 2015b]. To
enhance the rendering speed, an adaptive sampling strategy was proposed [Heide
et al., 2013], but the performance improvement was only demonstrated for offline
rendering scenarios. This thesis saves the computational cost of generating the target
light fields and decomposition through selective rendering and optimization.

Multi-plane displays In multi-plane displays, the linear blending rule assigns pixel
values proportional to the distance between a target point and display planes [Akeley
et al., 2004]. Although it can effectively trigger accommodation [MacKenzie et al.,
2010], occlusion boundaries and non-Lambertian surfaces are imperfectly rendered
in LB due to the simple consideration of a single image and depth map. In order to
correctly generate artifact-free scenes, the retinal optimization (RO) [Narain et al.,
2015; Mercier et al., 2017], which optimizes a focal stack, has been proposed. However,
the target focal stack, in fact, implicitly contains the 4D light-field information [Levin
and Durand, 2010]. Therefore, LFS that optimizes the 4D light fields also can be
employed in multi-plane display architecture. This thesis in Chapter 6 is based on
LFS since the implementations of current LFS algorithms are demonstrated to be
more efficient than RO. It also revisits LFS in the context of gaze-contingent rendering
to improve the perceived image quality and reduce computational costs.

2.4.3 Foveated Rendering

Gaze-contingent techniques have been used to improve image quality in various
applications such as tone reproduction [Jacobs et al., 2015], depth-of-field modeling
[Mauderer et al., 2014], disparity manipulation [Kellnhofer et al., 2016a], and viewing
comfort improvement [Duchowski et al., 2014] in stereoscopic displays. Foveated
rendering uses gaze information to improve rendering efficiency by reducing quality
for the periphery. This is usually achieved by reducing the density of rendered
image samples with increasing eccentricity [Guenter et al., 2012; Swafford et al., 2016;
Patney et al., 2016]. In accommodative light field displays, Sun et al. [2017] propose a
foveated rendering solution, which accounts for depth information and the current
state of the accommodation to choose optimal ray directions in the OptiX renderer. In
this thesis, the ray selection is dictated by choice of local decomposition technique for
multi-plane displays and supported by an analysis of local luminance contrast and
visibility of artifacts caused by the LB.
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Chapter 3

Implicit View, Light, and Time
Image Interpolation

This chapter introduces X-Field —a set of 2D images taken across different view, time
or illumination conditions, i. e., video, light field, reflectance fields or combinations
thereof—by learning a neural network (NN) to map their view, time or light coordi-
nates to 2D images. Executing this NN at new coordinates results in joint view, time,
or light interpolation. The key idea to make this workable is a NN that already knows
the “basic tricks” of graphics (lighting, 3D projection, occlusion) in a hard-coded and
differentiable form. The NN represents the input to that rendering as an implicit
map that for any view, time, or light coordinate and for any pixel can quantify how
it will move if view, time, or light coordinates change (Jacobian of pixel position
with respect to view, time, illumination, etc.). The proposed X-Field representation is
trained for one scene within minutes, leading to a compact set of trainable parameters
and hence real-time navigation in view, time and illumination.

3.1 Introduction

Current and future sensors capture images of one scene from different points (video),
from different angles (light fields), under varying illumination (reflectance fields),
or subject to many other possible changes. In theory, this information will allow for
exploring time, view, or light changes in Virtual Reality (VR). Regrettably, in practice,
sampling this data densely leads to excessive storage, capture, and processing re-
quirements. In higher dimensions—, here it is demonstrated as 5D—, the demands of
dense regular sampling (cubature) increase exponentially. Alternatively, sparse and
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FIGURE 3.1: This chapter presents a method to interpolate view, light, and time in a set of 2D images
labeled with coordinates (X-Field) where a neural network (NN) is trained to regress each image from
all others. The first (yellow) image is the NN output (yellow up arrow) when the blue and purple
observed images and their coordinates x, y, t, α, β are input (yellow down arrows). The blue and purple
observations form additional constraints, visualized as colored boxes. Provided with an unobserved
coordinate (black up arrow) the NN produces, from the observed images and coordinates (black down
arrow), a novel high-quality 2D image in real-time.
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irregular sampling overcomes these limitations but requires faithful interpolation
across time, view, and light. This chapter suggests taking an abstract view of all
those dimensions and simply denoting any set of images conditioned on parameters
as an “X-Field”, where X could stand for any combination of time, view, light, or
other dimensions like the color spectrum. This chapter will demonstrate how the
right neural network (NN) becomes a universal, compact, and interpolatable X-Field
representation. While NNs have been suggested to estimate depth or correspondence
across space, time, or light, this thesis, for the first time, suggests representing the
complete X-Field implicitly [Niemeyer et al., 2019; Chen and Zhang, 2019; Oechsle
et al., 2019; Sitzmann et al., 2019b], i. e., as a trainable architecture that implements
a high-dimensional getPixel. The main idea of this chapter is shown in Figure 3.1:
from sparse image observations with varying conditions and coordinates, a mapping
is learned to take the space, time, or light coordinate and generate the observed
sample image as an output. Importantly, when given a non-observed coordinate,
the output is a faithfully interpolated image. The key to making this work is the
right training and a suitable network structure involving a very primitive (but dif-
ferentiable) rendering (projection and lighting) step. The proposed architecture is
trained for one specific X-Field to generalize across its parameters, but not across
scenes. However, per-scene training is fast (minutes), and decoding occurs at high
frame rates (ca. 20 Hz) and high resolution (1024×1024). In a typical use case of
the VR exploration of an X-Field, the architecture parameters only require a few
additional kilobytes on top of the image samples. The results of the proposed method
are compared to several other state-of-the-art interpolation baselines (NN and classic,
specific to certain domains and general) as well as to ablations of the method itself.

3.2 Background

This chapter is motivated by two main observations: First, representing information
using NNs leads to interpolation. Second, this property is retained if the network
contains more useful layers, such as a differentiable rendering step. Both will be
discussed next:

Deep representations help interpolation. It is well-known that deep representa-
tions suit interpolation of 2D images [Radford et al., 2015; Reed et al., 2015; White,
2016], audio [Engel et al., 2017], or 3D shape [Dosovitskiy et al., 2015] much better
than the pixel basis. Consider the blue and orange bumps in Figure 3.2 (a); these
are observed. They represent flat-land functions of appearance (vertical axis), de-
pending on some abstract domain (horizontal axis) that later will become space,
time, reflectance, etc., in an X-Field. The aim is to interpolate something similar to
the unobserved violet bump in the middle. Linear interpolation in the pixel basis
(solid lines) will fade both in, resulting in two flat copies. Visually this would be
unappealing and distracting ghosting. This difference is also seen in the continuous
setting of Figure 3.2 (b) that can be compared to the reference in Figure 3.2 (c). When
representing the bumps as NNs to map coordinates to color (dotted lines), note that
they are slightly worse than the pixel basis and might not match the NNs. However,
the interpolated, unobserved result is much closer to the reference, and this is what
matters in X-Field interpolation. To benefit from interpolation, typically, substantial
effort is made to construct latent codes from images, such as auto-encoders [Hinton
and Salakhutdinov, 2006], variational auto-encoders [Kingma and Welling, 2013],
or adversarial networks [Goodfellow et al., 2014]. However, this step is not always
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FIGURE 3.2: NN and pixel interpolation: a) Flatland interpolation in the pixel (lines) and the NN
representations (dotted lines) compared to a reference (solid) for a 1D field (vertical axis angle;
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b,c) Comparing the continuous interpolation in the pixel and the NN representation visualized as
a (generalized) epi-polar image. Note that the NN leads to smooth interpolation, while the pixel
representation causes undesired fade-in/fade-out transitions.

required in the common graphics task of image (generalized) interpolation. In the
problem this chapter is dealing with, the latent space is given as beautifully laid-out
space-time X-Field coordinates and only need to learn to decode these into images.

(Differentiable) rendering is just another non-linearity. The second key insight is
that the above property holds for any architecture as long as all units are differentiable.
In particular, this allows for a primitive form of rendering (projection, shading,
and occlusion units). These units do not even have learnable parameters. Their
purpose, instead, is to relieve the NN from learning basic concepts like occlusion,
perspective, etc. Figure 3.2 shows interpolation of colors over space. Consider
regression of appearance using a multi-layer perceptron (MLP) [Oechsle et al., 2019;
Sitzmann et al., 2019b; Chen and Zhang, 2019] or convolutional neural network
(CNN). CNNs without the Coord-Conv trick [Liu et al., 2018] are particularly weak
at such spatially-conditioned generation. But even with Coord-Conv, this complex
function is unnecessarily hard to find and slow to fit. In contrast, methods that sample
the observations using warping [Jaderberg et al., 2015] are much more effective in
changing the view [Zhou et al., 2016]. Figure 3.3 shows a validation experiment
that compares classic pixel-basis interpolation and neural interpolation of color and
warping. Using a NN provides smooth epipolar lines, and using warping, adds the
details.

Motivated by those observations, this chapter first introduces the function that
the proposed method aims to learn (Section 3.3), followed by the architecture for
implementing it (Section 3.4).

3.3 Objective

The X-Field is represented as a non-linear function:

L(θ)
out(x) ∈ X → R3×np ,

with trainable parameters θ to map from an nd-dimensional X-Field coordinate
x ∈ X ⊂ Rnd to 2D RGB images with np pixels. The X-Field dimension depends on
the capture modality: A 4D example would be two spatial coordinates, one temporal
dimension, and one light angle. Parametrization can also be as simple as scalar 1D
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FIGURE 3.3: Validation experiment: Different interpolation (rows), for two variants (columns) of a
right-moving SIGGRAPH Asia logo (a 1D X-Field). For each method, the same epipolar slice is shown
(i. e., space on the horizontal axis; time on the vertical axis), which is marked in the input image. Nearest
and linear sampling show either blur or step artifacts. A NN to interpolate solid color depending on
time succeeds but lacks the capacity to reproduce textured details where the fine diagonal stripes are
missing. A NN that instead interpolates flow captures the textured stripes.

time for video interpolation. The symbol Lout is chosen as images are in units of
radiance with a subscript to denote them as output.

The subset of observed X-Field coordinates is denoted as Y ⊂ X for which an
image Lin(y) was captured at the known coordinate y. Typically |Y| is sparse, i. e.,
small, like 3×3, 5×5 for view changes or even 2×1 for a stereo capture. This mapping
Lout is found by optimizing for

θ = arg min
θ′

Ey∼Y ||L(θ′)
out (y)− Lin(y)||1,

where Ey∼Y is the expected value across all the discrete and sparse X-Field coordi-
nates Y . In prose, an architecture Lout is trained to map vectors y to captured images
Lin(y) in the hope of also getting plausible images Lout(x) for unobserved vectors x.
It is targeted for interpolation; X is a convex combination of Y and does not extend
beyond. Note that training never evaluates any X-Field coordinate x that is not in Y ,
as the image Lin(x) at that coordinate is not available.

3.4 Architecture

The Lout is designed using three main ideas. First, appearance is a acombination of
appearance in observed images. Second, appearance is assumed to be a product of
shading and albedo. Third, it is assumed that the unobserved shading and albedo at
x are a warped version of the observed shading and albedo at y. These assumptions
do not strictly need to hold, in particular not for splitting albedo and shading: when
they are not fulfilled, the NN just has a harder time capturing the relationship of
coordinates and images. The pipeline of proposed approach Lout, depicted in Fig-
ure 3.4, implements this in four steps: decoupling shading and albedo (Section 3.4.1),
interpolating images (Section 3.4.2) as a weighted combination of warped images (Sec-
tion 3.4.3), representing flow using a NN (Section 3.4.4) and resolving inconsistencies
(Section 3.4.5).
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FIGURE 3.4: Data flow for an example with three dimensions (one view, one light, one temporal) and
three samples, denoted as colors, as in Figure 3.1 and stacked vertically in each column. In the first
row, the 2×3 Jacobian matrix is always visualized as separate channels i. e., as three columns with two
dimensions each. Values are 2D vectors, hence visualized as false colors. At test time, the Jacobians
are evaluated at the output X-Field coordinate only; hence, only a single row is shown. In the second
row, each observation is separately warped for shading and albedo, leading to 2×3 flow, result, and
weight images. The last row shows the flow of information as a diagram. Learned is a tunable, Fixed a
non-tunable step (i. e., without learnable parameters). Data denotes access to inputs.

3.4.1 De-Light

De-lighting splits appearance into a combination of shading, which moves in one
way in response to changes in X-Field coordinates, e. g., highlights move in response
to view changes or shadows move with respect to light changes, and albedo, which is
attached to the surface and will move with geometry, i. e., textures. To this end, every
observed image is decomposed as Lin(y) = E(y)⊙ A(y), a per-pixel (Hadamard)
product ⊙ of a shading image E and an albedo image A. This is done by adding
one parameter to θ for every observed pixel channel in E, and computing A from Lin
by division as E(y) = Lin(y)⊙ A(y)−1. Both shading and albedo are interpolated
independently:

Lout(x) = int(A(Lin(y)), y → x) ⊙ int(E(Lin(y)), y → x) (3.1)

and recombined into new radiance at an unobserved location x by multiplication.
The next part details the operator int, working the same way on both shading E(Lin)
and albedo A(Lin).

3.4.2 Interpolation

Interpolation warps all observed images and merges the individual results. Both
warp and merge are performed completely identically for shading E and albedo A,
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FIGURE 3.5: Implicit maps: implicit fields (left) typically use an MLP to map 3D position to color,
occupancy etc. The proposed method (right) adds an indirection and maps pixel position to texture
coordinates to look up another image.

which is neutrally denoted as I, as in:

int(I, y → x) = ∑
y∈Y

(cons(y → x)⊙ warp(I(y), y → x)) . (3.2)

The result is a weighted combination of deformed images. Warping (Section 3.4.3)
models how an image changes when X-Field coordinates change by deforming it, and
a per-pixel weight is given to this result to handle flow consistency (Section 3.4.5).

3.4.3 Warping

Warping deforms an observed into an unobserved image, conditioned on the observed
and the unobserved X-Field coordinates:

warp(I, y → x) ∈ I ×X ×Y → I . (3.3)

which utilizes a spatial transformer (STN) [Jaderberg et al., 2015] with bi-linear
filtering, i. e., a component that computes all pixels in one image by reading them
from another image according to a given flow map. STNs are differentiable, do not
have any learnable parameters, and are efficient in executing at test time. The key
question is, (Figure 3.5) from which position q should a pixel at position p read when
the image at x is reconstructed from the one at y?

To answer this question, let’s look at the Jacobians of the mapping from X-Field
coordinates to pixel positions. Here, Jacobians capture, for example, how a pixel
moves in a certain view and light if time is changed, or its motion for one light, time
and view coordinate if the light is moved, and so forth. Formally, for a specific pixel
p, the Jacobian is:

flow∂(x)[p] =
∂p(x)

∂x
∈ X → R2×nd , (3.4)

where [·] denotes indexing into a discrete pixel array. This is a Jacobian matrix with
size 2 × nd, which holds all partial derivatives of the two image pixel coordinate
dimensions (horizontal and vertical) with respect to all nd-dimensional X-Field coor-
dinates. A Jacobian is only differential and does not yet define the finite position q to
read for at a pixel position p as required by the STN. In order to find q, the change in
X-Field coordinate y → x is projected to 2D pixel motion using finite differences:

flow∆(y → x)[p] = p + ∆(y → x)flow∂(x)[p] = q. (3.5)

Here, the finite delta in X-Field coordinates (y → x), an nd-dimensional vector, is
multiplied with an nd × 2 matrix, and added to the start position p, producing an
absolute pixel position q used by the STN to perform the warp. In other words,
Equation (3.4) specifies how pixels move for an infinitesimal change of X-Field
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coordinates, while Equation (3.5) gives a finite pixel motion for a finite change of
X-Field coordinates. In the next part, the learned representation of the Jacobian flow∂

is discussed, which is the core of the proposed approach.

3.4.4 Flow

Input to the flow computation is only the X-Field coordinate x, and output is the
Jacobian (Equation (3.4)). This function is implemented particularly using a CNN.

Implementation The implementation starts with a fully connected operation that
transforms the coordinate x into a 2×2 image with 128 channels. The Coord-Conv
[Liu et al., 2018] information (the complete x at every pixel) is added at that stage. This
is followed by as many steps as it takes to arrive at the output resolution, reducing
the number of channels to produce at nd output channels. For some input, it can be
acceptable to produce a flow map at a resolution lower than the image resolution and
warp high-resolution images using low-resolution flow, which preserves details in
color, but not in motion.

Compression Changes in some X-Field dimension can only change the pixel coor-
dinates in a limited way. One example is the view: all changes of pixel motion with
respect to known camera motion can be explained by disparity [Forsyth and Ponce,
2002]. So instead of modeling a full 2D motion to depend on all view parameters, only
a per-pixel disparity is generated, and the flow Jacobian is computed from disparity
in closed form using reprojection. For the dataset used in this chapter, this is only
applicable to view changes, as no such constraints are in place for derivatives of time
or light.

Discussion It should also be noted that no pixel-basis RGB observation Lin(y)
ever is input to flow∂, and hence, all geometric structure is encoded in the network.
Recalling Section 3.2, this can be regarded as both a burden and a requirement to
achieve the desired interpolation property: if the geometry NN can explain the
observations at a few y, it can explain their interpolation at all x. This also justifies
why flow∂ is a NN, and directly learning a pixel-basis depth-motion map is not
necessary; otherwise, it would not be interpolatable. An apparent alternative would
be to learn flow′∂(x, y) to depend on both y and x, so as not to use a Jacobian but allow
any mapping. Regrettably, this does not result in interpolation. Consider a 1D view
alone: Using flow∂(x) has to commit to one value that just minimizes image error
after soft blending. If a hypothetical flow′∂(x, y) can pick any different value for every
pair x and y, it will do so without incentive for a solution that is valid in between
them. Finally, it should be noted that using skip connections is not applicable to the
proposed setting, as the decoder input is a mere three numbers without any spatial
meaning.

3.4.5 Consistency

To combine all observed images that are warped to the unobserved X-Field coordinate,
each pixel in an image is weighted by its flow consistency. For a pixel q to contribute
to an image at pixel p, the flow at q has to map back to p. If not, evidence for not
being an occlusion is missing, and the pixel needs to be weighted down. Formally,
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consistency of one pixel p when warped to coordinate x from y is the partition of
unity of a weight function:

cons(y → x)[p] = w(y → x)[p]( ∑
y′∈Y

w(y′ → x)[p])−1. (3.6)

The weights w are smoothly decreasing functions of the 1-norm of the delta of the
pixel position p and the backward flow at the position q where p was warped to:

w(y → x)[p] = exp(−σ|p − flow∆(x → y)[q])|1). (3.7)

Here σ = 10 is a bandwidth parameter chosen manually. No benefit was observed
when making σ a vector or learning it.

Discussion In other work, consistency has been used in a loss, asking for consistent
flow for unsupervised depth [Godard et al., 2017; Zhou et al., 2017] and motion
[Zou et al., 2018] estimation. The proposed approach does not have consistency in
the loss during training but inserts it into the image compositing of the architec-
ture, i. e., also to be applied at test time. In other approaches—that aim to produce
depth, not images—consistency is not used at test time. The predicted flow can be
inconsistent: for very sparse images such as three views, many occlusions occur,
leading to inconsistencies. Also, flow due to, e. g., caustics or shadows, probably has
a fundamentally different structure compared to multi-view flow, which has not been
explored in the literature. The graphics question answered here is, however, what
to do with inconsistencies. To this end, instead of a consistency loss, the proposed
architecture applies multiple flows such that the combined result is plausible when
weighing down inconsistencies. In the worst case, no flow is consistent with any
other, and w has similar but small values for large cons, which lead to equal weights
after normalization, i. e., linear blending.

3.5 Results

This section provides a comparison of the method to other works (Section 3.5.1), an
evaluation of scalability (Section 3.5.2), and a discussion of applications (Section 3.5.3).

3.5.1 Comparison

The method is compared to other methods, following a specific protocol and by different
metrics to be explained now:

Methods The following methods are considered: PROPOSED, BLENDING, WARPING,
KALANTARIETAL, Local light-field fusion (LLFF), SUPERSLOWMO, and three abla-
tions of the method: NOCORDCONV, as well as NOWARPING and NOCONSISTENCY.
Linear BLENDING is not a serious method, but documents the sparsity: plagued by
ghosting for small baselines, as the baseline/sparsity poses a difficult interpolation
task, far from linear. It is applicable to all dimensions. WARPING and SUPERSLOWMO

first estimate the correspondence in image pairs [Sun et al., 2018a] or light field
data [Dabała et al., 2016] and later apply warping [Mark et al., 1997] with ULR-style
weights [Buehler et al., 2001]. Note how ULR weighting accounts for occlusion.
Warping is applicable to time ([Jiang et al., 2018]) and view interpolation ([Dabała
et al., 2016]). KALANTARIETAL and LLFF are the publicly available implementations
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TABLE 3.1: Results of different methods (columns) for different dimensions (rows) according to
different metrics. Below is the same data as the diagrams. Colors encode methods. The best method
according to one metric for one class of X-Field is denoted in bold font (for L2 and VGG, less is better,
while for SSIM, more is better). 1For view-time interpolation, combined with LLFF.
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of Kalantari et al. [2016] and Mildenhall et al. [2019]. Both are applicable to and
tested on light fields, i. e., view interpolation only. To evaluate other works in higher
dimensions, a hypothetical combination is introduced, such as first using LLFF for
view interpolation followed by SUPERSLOWMO for time interpolation. Finally, three
ablations of the method are presented. The first, NOCORDCONV, regresses without
Coord-Conv, i. e., will produce spatially invariant fields. The second, NOWARPING,
uses direct regression of color values without warping. The third, NOCONSISTENCY,
does not perform occlusion reasoning but averages directly. These are applicable to
all dimensions.

Protocol Success is quantified as the expected ability of a method to predict a set of
held-out LF observed coordinates H when trained on Y −H, i. e., Eh∼HLout(h)⊖m
Lin(h), where ⊖m is one of the metrics to be defined below. For dense LF, the held-out
protocol follows Kalantari et al. [2016]: four corner views as an input. Sparse LF
interpolation is on 5×5, holding out the center one. For time interpolation, a triplet is
used, i. e., the network is trained on past and future frames, while the middle one is
withheld.

Metrics The L2, SSIM, and VGG [Zhang et al., 2018] metrics are utilized for compar-
ing the predicted to the held-out view.

Data The evaluation set consists of the publicly available LF data from Levoy and
Hanrahan [1996], Penner and Zhang [2017a], Dabała et al. [2016], and Kalantari et al.
[2016], LF video data from Sabater et al. [2017], sequences from Butler et al. [2012],
relighting data from Xu et al. [2018] as well as custom captured reflectance field video.
For aggregate statistics, five LFs, three videos, and one view-time-light X-Field are
used. New X-Fields data are also proposed by this thesis which is captured using a
minimalist setup: a pair of mobile phones. The first phone takes the photo; the second
one provides the light source. Both are moved with one, two, or three degrees of
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Proposed Warping Kalantari et al. LLFF NoConsistency Proposed Ground Truth

FIGURE 3.6: Comparison of the proposed approach for view interpolation to other methods for two scenes
(rows). The top scene, from Kalantari et al. [2016] is a dense LF; the one below, from Penner and Zhang
[2017a], is sparse. Columns show, left to right, PROPOSED at the position of the withheld reference, the
results from (WARPING, KALANTARIETAL, LLFF, and NOCONSISTENCY and PROPOSED), as
well as the ground truth as insets.

Proposed Linear Blending SuperSlowMo Proposed Ground Truth

FIGURE 3.7: Temporal interpolation for two scenes (rows) using different methods (columns). See
Section 3.5.1 for a discussion.

Proposed Linear Blending SuperSlowMo+LLFF Proposed Ground Truth

FIGURE 3.8: Results for view-time interpolation. The input was a 2×2×2 X-Field: 2×2 sparse view
observations with two frames.

freedom, depending on the scene. All animation is produced by stop motion. Several
X-Fields are captured, but only one has additional reference views to quantify quality.

Results Table 3.1 summarizes the outcome of the main comparison. It can be seen
that the proposed method provides the best quality in all tasks according to all metrics
in all domains. For example, images corresponding to the plots in Table 3.1, please see
Figure 3.6 for interpolation in space, Figure 3.7 and Figure 3.9 for time, Figure 3.8 for
space-time, Figure 3.10 and Figure 3.11 for light and Figure 3.12 for view-time-light
results. Each figure shows the input view and multiple insets that visualize the results
from all competing methods. Figure 3.6 shows results for view interpolation. Here,
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FIGURE 3.9: Interpolation of two frames (shown left) compared to a reference using the proposed
approach and state-of-the-art SuperSlowMo [Jiang et al., 2018].
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FIGURE 3.10: Interpolation in the light dimension. Note that the interpolated image is plausible, even
in the presence of cast shadows or caustics and transparency, maybe at the slight expense of blurring
highlights and ghosting shadows.
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FIGURE 3.11: Comparison between Xu et al. [2018] (top), the GT (middle) and the proposed approach
(bottom) for a 10 degree baseline.

WARPING produces crisp images but pixel-level outliers that are distracting in motion,
e. g., for the bench. KALANTARIETAL and LLFF do not capture the tip of the grass
(top row). Instead, ghosted copies are observed. KALANTARIETAL is not supposed to
work for larger baselines [Kalantari et al., 2016] and is only shown for completeness
on the bench scene. LLFF produces slightly blurrier results for the sparse bench
scene. The NOCONSISTENCY shows the tip of the grass but on top of ghosting.
PROPOSED has details and plausible motion and is generally most similar to the
ground truth. The temporal interpolation comparison in Figure 3.7 indicates similar
conclusions: BLENDING is not a usable option; not handling occlusion, also in time,
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FIGURE 3.12: Exploring a view-time-light X-Field. Each column shows a change in the dominant
X-Field dimension. The input was a 3×3×3 X-Field. All images are at unobserved intermediate
coordinates. Colored arrows indicate how image features have moved in response.

TABLE 3.2: Relighting comparison to Xu et al. [2018] for different baselines.

Method
20◦ Baseline 30◦ Baseline 45◦ Baseline

VGG MSE SSIM VGG MSE SSIM VGG MSE SSIM

● XUETAL 192 .1424 .954 194 .1561 .950 196 .1580 .950
● PROPOSED 93 .0335 .989 134 .0718 .970 169 .1220 .958

creates ghosting due to overlap. SUPERSLOWMO fails for both scenes as the motion
is large. The motion size can be seen from the linear blending. Ultimately, PROPOSED

is similar to the ground truth. Interpolation between triplets of images can represent
strong, non-rigid changes involving transparency, scattering, etc (Figure 3.9). When
interpolating across view and time as in Figure 3.8, ghosting effects get stronger
for others as images get increasingly different. Interpolation across light is seen in
Figure 3.10. For light interpolation, the method of Xu et al. [2018] is an extension
of the ablation DIRECT by an additional optimization over sample placement when
assuming a capture dome. The results of the proposed method are compared to
other methods when trained on their data. Please note that their method cannot be
applied to the proposed data used as it requires a custom capture setup. Figure 3.11
shows a comparison from interpolating across a neighborhood of 3×3 images out of
the 541 dome images, covering a baseline of approximately 20 degrees. The direct
regression blurs both the shadows and the highlights, while the method deforms
the image, retaining sharpness. Table 3.2 quantifies this result as the average across
their test images “Dinosaur”, “Jewel” and “Angel”. Besides the 10-degree column
corresponding to Figure 3.11, other baselines are also included. It can be observed
that for wider baselines [Xu et al., 2018], both methods converge in quality. PROPOSED

can have difficulties where deformations are not fully rigid, as seen for faces, but
compensates for this to produce plausible images. The proposed approach can both
numerically and visually produce state-of-the-art interpolation in view and time in
high spatial resolution and at high frame rates. Next, the dependency of this success
on different factors is explored.
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SuperSlowMo Proposed Ground Truth 

FIGURE 3.13: Splitting albedo and shading: When the elephant’s shadow meets a texture of the Eiffel
Tower unprepared, a single-layer method such as SUPERSLOWMO cannot find a unique flow and
produces artifacts. the proposed method leaves both shadow and texture structures mostly intact.

Withheld view 3x3 5x5 9x9 GT

FIGURE 3.14: Visual quality of the proposed approach as a function of increasing (left to right)
training set size for view interpolation.

3.5.2 Evaluation

The approach is evaluated in terms of scalability with training effort and observation
sparsity, speed, and detail reproduction. These tests are performed on the view
interpolation only.

Analysis of albedo splitting Figure 3.13 shows an example of a scene that benefits
from albedo splitting for a light interpolation. It shows that splitting albedo and
shading is critical for shadows cast on textured surfaces.

TABLE 3.3: Error for the Crystal Ball
scene with resolution 512×512 using
different metrics (columns) for differ-
ent view counts (rows).

LF VGG19 L2 SSIM

3×3 140 .005 .90
5×5 119 .003 .93
9×9 102 .002 .95

Observation sparsity The proposed method
is also evaluated when interpolating extremely
sparse data. Table 3.3 shows the interpolation
quality of the method based on the number of
training exemplars, also seen in Figure 3.14.

Speed At deployment, the proposed design re-
quires no more than taking a couple of numbers
and passing them through a decoder for each ob-
servation, followed by warping and weighting. The end speed for view navigation is
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Withheld view Epoch 20 Epoch 80 Epoch 100 Epoch 120 Epoch 600 Epoch 1000 GT

Elapsed (m): 1.15 4.6 5.75 6.9 33.0 57.5

FIGURE 3.15: Progression of visual fidelity for different training efforts (horizontal axis) for two insets
(vertical axis) in one scene. After 500 epochs (ca. 30 minutes), the result is usable, and it converges after
1000 epochs (ca. 1h). Note that epochs are short as the training data is an LF array with a size of 5×5.

around 20 Hz (on average 46 ms per frame) at 1024×1024 for a 5×5 LF on an Nvidia
1080Ti with 12 GB RAM.

TABLE 3.4: Training time (minutes)
and network parameters for different
resolutions for a 5×5 LF array and spa-
tial interpolation.

5122 10242 17642

Time 28 60 172
Params 482 k 492 k 492 k

Training effort The proposed approach needs
to be trained again for every LF. Typical training
time is listed in Table 3.4. Figure 3.15 shows the
progression of interpolation quality over learning
time. It can be seen that even after little training,
results can be acceptable. Overall, in the proposed
approach, training of the NN requires a workable
amount of time compared to approaches trained
in the order of many hours or days.

View Time

FIGURE 3.16: Correspondence depth
and flow maps for Figure 3.8.

Smoothness The depth and flow map produced
by the method are smooth in view and time and
may lack detail. It would be easy to add skip
connections to get the details from the appearance.
Regrettably, this would only work on the input
image, which needs to be withheld at training
and is unknown at test time. An example of this
is seen in Figure 3.16. This smoothness is one
source of artifacts. Overcoming this, e. g., using
an adversarial design, is left to future work.

Coherence The method might miss details or be over-smooth, but it is coherent, as
first, it does not regress colors that flicker, only texture coordinates; second, Jacobians
are multiplied with view differentials in a linear operation, and hence smooth; third,
as the NNs used to produce Jacobians are smooth functions and, finally, soft occlusion
is smooth.

3.5.3 Applications

Figure 3.17 demonstrates motion blur (time interpolation), depth-of-field (view inter-
polation), and both (interpolating both).
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Depth-of-�eld Motion blur

FIGURE 3.17: Two LF video-enabled effects, computed using view interpolation: Depth-of-field (left)
and motion blur (right). For both, many images at X-Field coordinates are generated and averaged to
cover a lens resp. shutter.

Ground truth Proposed Ground truth Proposed

FIGURE 3.18: Two failure cases of the proposed method, documenting, left, insufficient data (the
lamp post is only visible in one view and happens to become attached to the foreground leaf) and right,
insufficiency of the capacity (the depth structure of the twigs is too complex to be represented by the
proposed architecture).

3.6 Discussion and Limitations

The success of the proposed method largely depends on three factors, Data, Model,
and Capacity, which will be discussed in the next part.

Data The method is trained using very sparse observations, often only a dozen
images. It is clear that information not present in any image will not be reconstructed.
Even parts observed in only one image can be problematic (Figure 3.18, left). A classic
example is an occlusion: if only three different views are available and two occlude
an area that is not occluded in one view, this area will be filled in. However, this
fill-in will occur in X-Field Jacobian domain. Hence, disoccluded pixels will change
their position similar to their spatial neighbors. Artifacts manifest as rubber-like
stretches between the disoccluding and the occluding object. The chair example
from Figure 3.19 shows artifacts resulting from a lack of data. Similarly, the foam
in Figure 3.19 is stochastic and different in every image, and hence unable to form
fine-scale correspondence. The consistency weighting typically removes them. Future
work might overcome this limitation by training on more than one scene.

Model The proposed approach combines a primitive, hard-wired image formation
model with a learned scene representation. As long as the data roughly follows
this model, this is a winning combination. Scenes that are entirely beyond the
model’s scope might fail and will do so independently of the amount of data or the
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FIGURE 3.19: The interpolation results of proposed method for two scenes (“Apple” and “Chair”):
Insets in red identify regions where artifacts appeared, and insets in green indicate challenging examples
that the method interpolated successfully. Artifacts mainly happened due to lack of training data; in the
apple scene (top), a 3×3×3 X-Field capture, the caustics in the shadow shows in only one view, and the
foam is stochastic and different at each level of the liquid. In these regions, appearance does not properly
interpolate but fades in and out, leading to ghosting or blurring. In the chair scene (bottom), which
is a 5×5×5 X-Field, the texture on the carpet beneath the chair gets blurry as this part of the carpet
becomes visible only in one view due to occlusion caused by the chair, and its shadow. However, the
method could handle soft shadow casting on a textured background or when there is a moving shadow of
a complex object occluded with the object itself.

representation capacity. The key assumption of the proposed design is that changes
are explained by the flow. This is not a reasonable assumption with dominant
transparency [Kopf et al., 2013]. Changes in brightness due to casual capture with
auto-exposure can cause variations that the proposed deformation model fails to
explain. In an X-Field non-unique flow is common: after one bounce, multiple indirect
shadows might overlap and move differently. This is addressed by processing the
signal so a unique flow becomes more applicable: by splitting shading and albedo, by
representing the full X-Field Jacobian, by learning a non-linear inverse flow instead of
linearly interpolating a forward flow, etc. Finally, if all flows are wrong, consistency
weighting degenerates to linear blending. Future work could learn layered flow [Sun
et al., 2012].

Capacity Finally, even if all data is available, the model is perfect, and the model
assumptions are fulfilled, the NN needs to have the capacity to represent the input
to the model. Naturally, any finite model can only be an approximation, and hence,
the flow and, consequently, shape, illumination, and motion become smooth. The
NN allows for some level of sharpness via non-linearities as in other implicit repre-
sentations [Niemeyer et al., 2019; Oechsle et al., 2019; Chen and Zhang, 2019] but
the amount of information is finite (Figure 3.18, right). Capturing sharp silhouettes
is clearly possible, but to represent a scene with stochastic variation, stochasticity
should be inserted [Karras et al., 2019] in combination with a style loss.
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3.7 Conclusion

This chapter represents the X-Field as a NN that produces images conditioned on view,
time, and light coordinates. The interpolation is high-quality and high-performance,
outperforming several competitors for dynamic changes of advanced light transport
(all BRDFs, (soft) shadows, GI, caustics, reflections, transparency), as well as fine
spatial details (plant structures), both for single objects (still-life scenes) and entire
scenes (tabletop soccer, parks). The particular structure of a network that combines
a learnable view-time geometry model, combined with warping and reasoning on
consistency has been shown to perform better than direct regression of color or
warping without handling occlusion and state-of-the-art domain-adapted solutions. It
is worth mentioning that this success becomes mainly possible because a general task
is changed to a much simpler one: instead of interpolating all possible combinations
of images, the method only interpolates within a fixed set. Strong generalization
is a useful and exciting scientific goal, in particular from an AI perspective. But,
depending on the use case, it might not be required in applied graphics: With the
proposed approach, after 20 minutes of pre-calculation, one can deploy an X-Field in
a VR application to play back at interactive rates. A user enjoying this high-quality
visual experience might not ask if the same network could generalize to a different
scene or not.

In future work, other data, such as data from Lightstages or sparse and unstruc-
tured capture, as well as extrapolation, should be explored. It is also desirable to
reduce training time further (eventually using learned gradient descent [Flynn et al.,
2019]) and explore interpolation along other domains such as wavelength or spatial
audio [Engel et al., 2017], as well as reconstruction from even sparser observations.
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Chapter 4

Novel View Synthesis for
Refractive Objects

This chapter tackles the problem of generating novel-view images from collections
of 2D images showing refractive and reflective objects. Current solutions assume
opaque or transparent light transport along straight paths following the emission-
absorption model. Instead, the proposed method in this chapter optimizes for a field
of 3D-varying Index of Refraction (IoR) and trace light through it that bends toward
the spatial gradients of said IoR according to the laws of eikonal light transport.

4.1 Introduction

Given images with different views of a refractive object, it is a challenging task to
synthesize a novel view. The issue is that the refractive object takes its appearance
from the surroundings by bending and internally reflecting the rays of light that
travel through the object. By fully digitizing the object and its surroundings, one can
synthesize novel views [Trifonov et al., 2006b; Hullin et al., 2008; Ihrke et al., 2010;
Stets et al., 2017], but this approach requires a lot more information than a simple
set of images. For instance, a dedicated hardware setup is required to digitize a
transparent object [Ihrke et al., 2010; Stets et al., 2017; Lyu et al., 2020]. Deep learning
offers an alternative approach where a Neural Network (NN) is trained to estimate
the shape of such objects in more arbitrary surroundings [Stets et al., 2019; Sajjan
et al., 2020; Li et al., 2020]. A deep learning technique based on a synthetic dataset,
however, often returns a faulty estimate when presented with an image significantly
different from those in the training data [Lyu et al., 2020].

One way to avoid the difficulties in representing a wide enough range of transpar-
ent object appearances in one synthetic dataset is to learn the radiance field of a given
object based on a set of images capturing its appearance as observed from different
directions [Lombardi et al., 2019b; Mildenhall et al., 2020]. This is useful for locating
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FIGURE 4.1: Novel-view synthesis using Neural Radiance Fields (NeRF) (top) as well as the proposed
eikonal approach in this chapter (bottom) for a real scene containing a refractive object.
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p(0)
∇n

∇n

p(1) p(2) p(0) p(1)
p(2)

v(0) v(1) v(2) v(0) v(1)
v(2)

nρ

Emission-absorption Eikonal

FIGURE 4.2: Emission-absorption (left) and eikonal light transport (right). Light is the yellow arrow,
its thickness indicates strength. Here, three discrete steps are considered, where in emission-absorption,
the direction remains unaltered. It changes in the eikonal formulation according to the gradient of the
IoR, n, a vertical gradient here. In the eikonal case, strength remains unaffected.

and estimating the distance to transparent objects [Ichnowski et al., 2021]. However,
since the neural radiance field approaches do not consider refraction, they can not be
used out of the box for refractive Novel-View Synthesis (NVS).

To enable this, this chapter devises a learning-based method that optimizes for
the field of 3D spatially-varying IoR given a set of 2D images picturing a refractive
object. Existing solutions to learn 3D fields capturing scene geometry are based
on opaque or transparent light transport along straight paths. In the presence of
transparent objects, however, light bends, i. e., it changes its direction. The precise
way in which light paths are curved depends on a certain eikonal equation operating
on spatial gradients of the IoR field, which can be solved – and differentiated over in
learning – in practice with the appropriate formulation. The resulting method allows
for novel-view synthesis (Figure 4.1) in 3D scenes with complex objects involving
strong refractive and internal reflection effects.

4.2 Light Transport ODE

This section discusses three approaches to model the interaction of light and mat-
ter as Ordinary Differential Equations (ODEs): a complete model (Section 4.2.1),
an emission-absorption-only model (Section 4.2.2) and an eikonal-only model (Sec-
tion 4.2.3). The complete one handles refractive and non-refractive scenes but was
only applied to synthetic scenes in the literature. The emission-absorption one can be
used for inverse rendering but excludes refraction. The eikonal one, in combination
with the emission-absorption one, can handle refractive transparency in practical
inverse rendering.

4.2.1 Complete Model

When light travels through a scene, it changes its radiance L due to absorption
and emission as described by the (refractive) Radiative Transfer Equation (RTE)
[Preisendorfer, 1957]

n(s)2 d(L/n2)

ds
= −σ(s)L(s) + q(s), (4.1)

where n is the IoR and s ∈ [0, ∞) is the distance along a (curved) light path, σ is the
extinction coefficient, and q/σ is the source function (which includes in-scattering)
[Chandrasekhar, 1950]. The quantity L/n2 is sometimes referred to as basic radiance.
For a spatially varying n, light also changes its position p and direction v due to
refraction according to the laws of eikonal light transport [Stam and Languénou, 1996;
Gutierrez et al., 2005; Ihrke et al., 2007], see Figure 4.2. This can be described using



4.2. Light Transport ODE 43

Hamilton’s equations for ray tracing [Ihrke et al., 2007]:

dp
ds

=
v(s)
n(s)

and
dv
ds

= ∇n(s), (4.2)

where v is not unit length but normalized by n. This model has been used in a
virtual setting to render advanced visual phenomena, including refraction, total
internal reflection, and scattering [Gutierrez et al., 2005; Ihrke et al., 2007; Ament
et al., 2014; Pediredla et al., 2020]. Unfortunately, this is an ideal model that has not
been demonstrated to be tractably used for NVS directly. A simplification can be
made by ignoring refraction and introducing a different, also simplified model that
allows NVS for refraction.

4.2.2 Emission-Absorption-Only Model

In NeRF [Mildenhall et al., 2020], radiance remains subject to emission and absorption

dL
ds

= −σ(s)L(s) + q(s), (4.3)

but travels along a constant direction v and the change of direction is assumed zero
(Figure 4.2-left):

dp
ds

= v and
dv
ds

= 0. (4.4)

This is classic ray-marching along straight rays [Max, 1995].

4.2.3 Eikonal-Only Model

Complementary and finally, a simplified light transport is considered, which does
not emit or absorb,

dL/n2

ds
= 0, (4.5)

but changes direction as per the eikonal equation (Figure 4.2-right):

dp
ds

=
v(s)

n
and

dv
ds

= ∇n(s). (4.6)

4.2.4 Solving

Concisely, all three variants can be formulated as position-motion-radiance state
vector and its derivative:

z(s) = (p, v, L) and z′(s) =
dz(s)

ds
. (4.7)

For all three approaches, coupled ODEs

z(s1) = z(s0) +
∫ s1

s0

z′(s)ds = odeSolve(s0, s1, z, z′) (4.8)

need to be solved to compute the final state given the initial state as well as the
IoR, emission and absorption fields.
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FIGURE 4.3: Overview of proposed pipeline enabling final Eikonal training: It starts by establishing
camera correspondence over all input images using COLMAP [Schönberger and Frahm, 2016]. Then
the NeRF representation is utilized to explain the scene using emission-absorption and straight rays. In
a semi-automated process, a 3D box region encompassing the refractive is identified. This refractive
volume is not properly explained and is excluded from the NeRF fit. The view-independent part of this
fit is discretized into a 3D grid which then enables the final progressive training using eikonal equations
and curved rays in the last step.

Typically, numerical integration such as Euler solvers [Hairer and Wanner, 1996] is
used to solve for the state. Working backward, to compute gradients of the emission or
absorption is done by automatic differentiation of forward Euler solvers [Mildenhall
et al., 2020; Henzler et al., 2019b]. Unfortunately, this requires memory in the order
of the number of steps a solver takes. When also accounting for IoR with many
small steps, this can quickly become prohibitive. Instead, the adjoint formulation
[Pontryagin, 1987] is adapted from NeuralODE [Chen et al., 2018b; Stam, 2020] which
uses constant memory also in backward mode to perform odeSolve.

4.3 Pipeline

The proposed approach has two main steps: First (Section 4.3.1), reconstructing the
opaque scene using a non-eikonal emission-absorption model with straight rays
(Section 4.2.2) and, second (Section 4.3.2), modeling the remaining refractive part
using an eikonal formulation (Section 4.2.3).

The result of the first step is an input to the second step, i. e., a non-refractive 3D
explanation of the world is first trained which becomes the input to a second training
that 3D-bends rays inside a fixed non-refractive world so that 2D input images can
be explained (Figure 4.3).

4.3.1 Non-Eikonal Step

In this step, assuming straight rays, a NeRF model of emission (q̄) and absorption
(σ̄) is trained. This is used to represent the background and to find the 3D region
not properly explained by the model. A multi-scale version of this model is learned,
which will be used in the next step.

Registration In the first step, the camera matrices are calculated to transform the
camera space of each input image into one reference view using COLMAP [Schön-
berger and Frahm, 2016]. Hence, the 3D ray corresponding to every 2D pixel is
known.

Diffuse-opaque init Given this information an off-the-shelf NeRF is learned that
describes emission and absorption as two Multi-Layered Perceptron (MLP)s that fit
continuous functions q̄(p, ω) ∈ R3 × Ω 7→ R3 and σ̄(p) ∈ R3 × Ω 7→ R mapping
position and direction to RGB color or scalar opacity. Let θ and ϕ denote the MLP
parameters of the emission and absorption models resulting from this optimization.
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Masking The model above of q̄ and σ̄ will not be reliable for refractive objects.
Hence, these parts of 3D space need to be eliminated and explained by the proposed
eikonal approach. The parts that are non-refractive will be input into this step. The
refractive part of the scene assumes to be bounded by a 3D box Π ∈ R3×2 that
exclusively contains refractive objects. This results in a masked emission model q,
respectively a masked σ:

q(p, ω) resp. σ(p) =
{

0 for p ∈ Π
q̄(p, ω) resp. σ̄(p) otherwise.

(4.9)

The bounding box Π is estimated as follows: For a given set of views (the 10
percent of the training images uniformly distributed around the refractive object), the
user selects a few points on the horizontal and vertical extent of the refractive object
in the scene. Given collected 2D points from the images, the depth map computed
from the NeRF model is used to compute their corresponding 3D locations. Then,
the 0.02 and 0.98 percentiles of all points along each spatial dimension are calculated,
and they are multiplied by a constant value of 1.2 to make sure the box encompasses
the entire object. The parameters of Π are given by the minimum and maximum
coordinate values of the points.

Progressive grids Solving for the eikonal directly given σ and q is challenging. The
problem is that when rays bend a lot, it becomes harder to find correspondences
between input images and background. Moreover, the bending depends on the spatial
gradient of the IoR rather than the IoR directly, which is an operation known to be
numerically demanding to optimize over. Addressing this challenge, the proposed
method in this chapter instead learns eikonal transport using different progressively
finer versions of the emission and absorption models. This is inspired by progressive
spatial encodings [Park et al., 2021], but instead of blurring the periodic spatial
functions, the radiance function itself is blurred. It is not obvious how to make a
coarser version of q or σ, which are MLPs. In particular, the preliminary experiments
using slower-varying or fewer spatial encodings did not result in the desired band-
limiting. Instead, the regular grids are considered. These are typically struggling to
resolve fine details or to work in 5D, but fortunately, this is not required here. Hence,
the masked emission and absorption solution are sampled to a 3D grid P and Q, and
the Q is averaged over the angular domain:

Qi(p) = Ey[Eω[q(y, ω)κi(|p − y|)]] (4.10)
Pi(p) = Ey[σ(y)κi(|p − y|)], (4.11)

where κi is a Gaussian kernel of increasing frequency bandwidth for increasing levels
i. In the experiments throughout this chapter, a grid size of 1283 is considered, and
the values inside the grid are interpolated with a trilinear interpolation scheme.

4.3.2 Eikonal Step

At this step, given the hierarchy of grids describing the emission and absorption in
the scene for all locations p ̸∈ Π outside the refractive box, an IoR field is defined on
p ∈ Π to explain both the non-refractive 3D grids and the 2D images.
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A

B

C
D

FIGURE 4.4: Enter and exit.

Masked traversal Figure 4.4 shows a red ray
starting from point A and traversing the world
outside Π, which is hit at point B. The emission
and absorption models q̄ and σ̄ are used to trace
the straight ray from A to B (Section 4.2.2). A key
concept is to enter and exit the refractive represen-
tations in a masked traversal, as well as training
with masked rays and progressively. Starting at
B, eikonal ray-marching curves out the yellow
path (Section 4.2.3) according to an IoR model
that maps spatial position to IoR: n(p) ∈ R3 7→ R. When this ray leaves Π at C, it
continues with emission and absorption on a straight path, eventually receiving a
contribution at D or other points along the straight line. Training of n – that is also an
MLP whose parameters are denoted as ψ – proceeds similar to NeRF, but instead of
marching geometrically, an ODE in position-motion-radiance space is solved (and
back-propagated through). Recall that the z denotes a position-motion-radiance vec-
tor. The dot notation is not utilized to pick an element in the vector so that z.p denotes
the position and z.L the radiance, for example. In the mixed refractive/non-refractive
case, the state ODE is

z′ψ(s) =
{

Eqs. 4.5 and 4.6 s.t. nψ if zψ(s).p ∈ Π
Eqs. 4.3 and 4.4 s.t. qθ and σϕ otherwise.

}
, (4.12)

so the state change is non-eikonal outside the box and eikonal inside. It is made to
depend on ψ, but not on θ and ϕ, as these are fixed both in the forward and backward
pass of this step.

Let zi denote the state of a ray through pixel i. It is then solved using

ψ⋆ = arg minψ Ei[|odeSolve(s0, s1, z, z′, ψ).L − zi.L|], (4.13)

where ψ is an extra argument for odeSolve with parameters that condition z′. As
a ray cannot change direction outside Π, the condition in Equation (4.12) can be
handled by loop splitting in practice: First, the ray is traced straight, then traced
eikonal, and then it is traced straight once more, eliminating the conditional statement
in Equation (4.12).

Masked rays Since the considered MLP for estimating the IoR is only evaluated
inside the bounding box, the eikonal training starts by making sure a batch contains
only the rays that are hitting the box.

Progression This step starts by finding an IoR field that explains a coarse version of
the emission-absorption grid. When the change of error falls below a threshold, it is
switched one level up to a finer grid (Figure 4.5). The number of parameters in the
MLP to represent the IoR is the same at all levels. Note the final images are rendered
using the full NeRF model instead of a grid.

Interior radiance field Non-transparent objects might be present in the interior
of the transparent object that is located in Π. To explain these, another NeRF is
trained for the radiance in Π. The IoR field in Π is available from the eikonal step
(Section 4.3.2), and it is fixed together with the opaque NeRF (Section 4.3.1). The
ray paths only bend when encountering the transparent object in Π. Conclusively,
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FIGURE 4.5: The eikonal solution is fit to progressively finer discrete-grid approximations of the opaque
NeRF solution and, finally, the continuous field.

the proposed solution consists of the opaque NeRF, the MLP for the IoR field, and
a NeRF for the interior of the transparent object. Together, these have been trained
sequentially to explain the input images.

4.4 Implementation Details

The NeRF implementation follows Mildenhall et al. [2020], and the second MLP
to represent the IoR field is a 6-layer MLP with 64 hidden dimensions with a skip
connection that concatenates the input to the third layer’s activation. Similar to NeRF,
positional encoding with five frequencies is applied to the input. For stable training,
as suggested by Chen et al. [2018b], the Softplus activation with β = 5 is used for
all layers instead of a non-smooth function like ReLU, and all layers are initialized
with the Xavier uniform. In the non-eikonal step (training NeRF), the same setting is
used for the training as described by Mildenhall et al. [2020], and the optimization is
done for 150k iterations. This takes around 12 hours to converge on a single NVIDIA
1080Ti with 12 GB RAM. For the Eikonal step, a batch size of 1024 rays is considered,
and the entire space is traversed with 128 ODE steps. In this step, the training takes
around 5 hours for 5k iterations. The Neural ODE PyTorch implementation Chen
et al., 2018b; Stam, 2020 is employed to backpropagate through the ODE with the
adjoint method. In the progression part, the 3D grid is filtered with a Gaussian kernel
with a normalized frequency bandwidth of 0.08 cycles per sample, and it is doubled
for every 1k iterations. The last step takes a single MLP similar to the NeRF fine
network [Mildenhall et al., 2020], but with 128 hidden dimensions to represent the
interior radiance field. As there is no hierarchical volume sampling involved, 512
steps are considered along the ray to properly sample both interior and exterior
radiance fields, which takes around 12 hours to optimize over 10k iterations. With
the complete model of the proposed method, it takes around 85 seconds to render a
frame of 672×504 resolution.

4.5 Results

The goal of this chapter is NVS with plausible coherence in scenes with transparent
objects. The result of the proposed approach is compared with existing methods
using standard Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS) metrics. It is also further
evaluated with a user study.

Scenes This thesis proposes four real scenes that include refractive objects with
unknown geometry: BALL, GLASS, PEN and WINEGLASS. An iPhone 8 camera is
used to capture 96, 97, 105, and 102 views, respectively, for each scene, and 1/10 of
all views are held out for the test set. All images are down-sampled to the resolution
672×504 pixels.
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FIGURE 4.6: The left block shows the cross-section of recovered IoR by the proposed method for a
scanline between the white dots shown in the reconstructed test view in the second block. The third block
shows insets taken from novel views produced by three different methods (rows) for different viewpoints
(columns). The right block shows a pseudo-epipolar view using a continuous camera trajectory, again
for all methods.

Methods The proposed method Proposed is compared with NeRF and another
method, namely Trivial.

In Trivial, the IoR field is simply reconstructed using the density field of refrac-
tive objects recovered by NeRF. This is done first by executing the NeRF model for
a discrete set of samples along the rays coming from the input camera poses and
crossing the bounding box Π, and setting the density to zero for the samples outside
the box. Then, for each ray, both the front and back surface position of the refrac-
tive object are estimated by forward and backward ray marching until an opacity
threshold is reached (similar to how the depth maps are computed in NeRF). For the
samples that fall between the intersections, a constant IoR value is assigned (1.5 in
the case of glass and 1.33 in the case of thin glass filled with water), and IoR value of
1.0 is considered for the regions outside. Then an MLP is employed to map each 3D
point inside the box Π to its calculated IoR.

Qualitative comparisons Figure 4.6 facilitates a visual comparison of Proposed
with NeRF and Trivial. The insets show novel view reconstructions of different
viewpoints for all methods. Please refer to the supplemental video for an animated
version of these results. NeRF tends to “fake” refraction by considering diffuse content
on the surface of the transparent object and assigning a view-dependent color for
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TABLE 4.1: Quantitative comparison according to different metrics for each method (row) and different
scenes (columns). The numbers in the User column say how often in the conducted user study, the
method was considered closer to the reference than ours. As these numbers are significantly (p < 0.01)
smaller than the chance level 50%, the proposed method was for all scenes considered closest to the
reference in the majority of the comparisons shown to the users.

BALL GLASS PEN WINEGLASS

PSNR SSIM LPIPS User PSNR SSIM LPIPS User PSNR SSIM LPIPS User PSNR SSIM LPIPS User

NeRF 27.384 0.945 0.042 0.27% 27.146 0.924 0.066 3.83% 27.749 0.933 0.059 9.58% 29.011 0.947 0.045 24.93%
Trivial 24.373 0.933 0.034 9.31% 25.930 0.914 0.059 7.39% 23.070 0.912 0.060 37.26% 26.739 0.935 0.052 1.33%
Proposed 26.720 0.951 0.023 26.525 0.922 0.050 27.803 0.935 0.047 27.789 0.940 0.042

each point on the surface. Under the condition of extreme view changes, as can be
seen in all scenes, NeRF fails to properly reproduce the color, and it tends to average
all observations leading to a blurry result. NeRF also seems to struggle with the
reconstruction of an occluder inside the transparent objects, although multi-view
consistency holds for the object inside. In the PEN scene, NeRF failed to assign
transparent content on the surface of the glass in order to properly reconstruct the
pen inside.

Trivial assumes a constant IoR field inside the entire refractive object, and in
case of spatially varying IoR, the refraction tends to be wrong for some regions
(e. g., towards the top and the bottom of the glass in the GLASS and the PEN scenes).
Trivial performs better on the BALL scene as the crystal ball has a constant IoR inside.
However, due to the mere fact that the NeRF density field for the refractive object
is not always valid, the estimated IoR of Trivial might not be very accurate, and
the refracted background becomes misplaced in some regions. In contrast, Proposed
reproduces sharper details and aligns better with the reference. Moreover, in order to
assess the temporal consistency of each method, in the right block, the corresponding
pseudo-epipolar image is also shown, which is created by stacking a selected scanline
for 30 subsequent video frames using a continuous camera trajectory. A good optical
flow continuity can be observed between the stacked scanlines for all methods, but
clearly, the flow fidelity with respect to the reference is best for Proposed. NeRF and
Trivial feature significant blur that is also visible in the insets in the middle column.

User study Unfortunately, no method exists to quantify the main aim of this work,
plausible refractive and reflective flow. To quantify the coherency, a small user study
is performed. A reference photograph and two images produced by Proposed and
either NeRF or Trivial (selected randomly) were shown to 73 participants, 10 image
triplets for each scene. The participant then had to indicate which one is visually closer
to the reference photograph in a Two-alternative Forced Choice (2AFC) experiment.
All three images are presented simultaneously without any time limit; the position of
reference is fixed while randomized for the other two images. Five different views
for each of the four scenes are selected, and the participant selections are aggregated
over those views. For each scene, Tab. 4.1 reports how often a competitor is selected;
hence less is better, while the chance level is 50%. All outcomes are significant at the
p < 0.01 level for a binomial test at N = 73.

Quantitative comparisons Tab. 4.1 presents the quantitative results of the user
study (in the “User” columns), and the different metrics averaged over the test set. It
can be seen that NeRF has consistently the highest PSNR, which is a metric relatively
insensitive to blur or structure preservation. When it comes to SSIM, which is a
metric more aware of the structures, it comes to a draw. At the most advanced metric,
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FIGURE 4.7: IoR cross-section of the proposed method (orange) and ground truth (blue) for a scanline
along the pixel marked with a dot in each inset.

LPIPS – which is based on human image artifact perception and better tolerates small
spatial misalignment with respect to the reference – Proposed always wins. Trivial
is sometimes better than other methods but never wins. The participants of the user
study almost consistently indicate that Proposed leads to less perceived differences
with respect to the reference views. A relatively high score of Trivial for PEN can
be attributed to the background sharpness and its color saturation that could have
an appeal to some of the experiment participants, who somehow neglected strong
background distortions, and the lack of pen in the water, as also visible in Figure 4.6.
Also, a relatively high score of NeRF for WINEGLASS can be attributed to some views,
where the background contained less high-frequency details, so that blur typical for
this method was less perceivable.

Reference comparison. While the proposed method makes use of an IoR, it is not
forced to use actual physical values. For a scene with a known IoR (Figure 4.7), the
method can reconstruct the image faithfully, while a cross-section shows the IoR is
indeed quite different from the reference IoR. It again needs to be mentioned that the
method is suitable for NVS, not for the reconstruction of the 3D structure.

4.6 Conclusion

Given a set of 2D images containing refractive materials, this chapter explored the
problem of optimizing for the field of 3D-spatially varying IoR with the purpose
of NVS. Existing solutions that learn 3D fields for NVS are based on opaque or
transparent light transport along straight paths. As opposed to this, the proposed
method in this chapter models the bending of light according to the eikonal equation
from geometric optics. This enables perceptually better NVS in 3D scenes with
complex objects exhibiting strong refractive effects. This chapter is subject to several
assumptions. The eikonal equation deals with refraction and total internal reflection
but is not separated into partial reflection and refraction. Partial reflection and
refraction in continuously varying media is difficult even in forward simulation
and left for future work. Moreover, the optimization is done sequentially, where
the diffuse world is first learned, followed by the transparent objects in a second
pass that relies on a user marking the bounding box of the specular object to aid
the task. Ideally, this should be done jointly and in a fully automated way. As a
consequence, it is assumed that the diffuse world is sufficiently observed, making it
unable to reconstruct parts exclusively revealed in the refraction. Despite simplifying
assumptions, this chapter, by means of eikonal light transport for the first time,
included refraction and total internal reflection in a model that learns 3D fields from
images of transparent objects to accomplish the synthesis of novel views.



51

Chapter 5

A No-Reference Metric for
Predicting IBR Artifacts

Image metrics predict the perceived per-pixel difference between a reference image
and its degraded (e. g., re-rendered) version. In several important applications, the
reference image is not available, and image metrics cannot be applied. This chapter
devises a neural network architecture and training procedure that allows predicting
the MSE, SSIM or VGG16 image difference from the distorted image alone while
the reference is not observed. This is enabled by two insights: The first is to inject
sufficiently many un-distorted natural image patches, which can be found in arbitrary
amounts and are known to have no perceivable difference to themselves. This avoids
false positives. The second is to balance the learning, where it is carefully made
sure that all image errors are equally likely, avoiding false negatives. Surprisingly,
the resulting no-reference metric, subjectively, can even perform better than the
reference-based one, as it had to become robust against misalignment.

5.1 Introduction

Computer vision or graphics experts easily recognize image artifacts that might be
highly domain-specific. An image-based rendering (IBR) specialist will quickly notice
where depth estimation failed, where transparency was not handled, or where a
highlight did not move correctly. Similarly, in computer graphics, artifacts resulting
from Monte Carlo noise in image synthesis when producing a feature film, or shadow
bias [Williams, 1978] in a computer game are easily spotted by domain experts. The
assessment typically is not limited to detection but importantly includes judging
magnitude as well as spatial locality. The importance of interacting with errors can
be seen from photographs with spatially annotated over- and under-expose artifacts,
as done, for instance, by Coleman [2012]. Remarkably, all this is not achieved by
comparing an image to a reference but by experience and intuition built from knowing

Image A (IBR) Image B (Reference)            A    B  (Ground truth)     A     B (Proposed)     

FIGURE 5.1: Given an image A (first) that is a version of a reference B (second) distorted by IBR
artifacts, the proposed method in this chapter predicts their per-pixel difference map A⊖ B (third)
without observing B. The fourth image shows the ground truth difference A⊖B. Here, it is shown for
MSE, but other metrics, such as SSIM or VGG16 are also possible.
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what natural images look like and how images with artifacts differ. Is it possible for a
machine to perform such a task?

More formally, this chapter faces the challenge illustrated in Figure 5.1. Given
an image A that is a distorted version of a reference B, the aim is to predict their
difference A⊖B without access to B. The ground truth metric response could simply
be the mean square error (MSE as used in Figure 5.1), a more perceptual metric like
SSIM [Wang et al., 2004b] or even VGG-16 activation differences that are effective as an
image metric [Simonyan and Zisserman, 2014; Zhang et al., 2018]. More particularly,
it can go beyond the typical mean opinion scores [Talebi and Milanfar, 2018] given
to uniform distortions such as noise or JPEG compression and can seek to produce
localized distortion visibility maps without accessing the reference.

This chapter chooses to study one specific form of artifacts that arise in image-
based rendering (IBR) [McMillan and Bishop, 1995; Gortler et al., 1996], in particular
when employed for novel-view synthesis from sparse light fields (LFs) [Levoy and
Hanrahan, 1996]. It is important in virtual reality and movie production, where LFs
are used to provide head motion parallax and special effects. Moreover, having a
localized error prediction is also important for quality control. In IBR, artifacts are
very localized (e. g., around certain depth edges), and creating opinion scoring or
even spatial-angular annotated datasets of LF artifacts in a size that is sufficient for
machine learning appears to be a daunting task. The proposed method proceeds
without all of this.

Addressing this challenge, the method in this chapter makes use of convolutional
neural networks. It will show how learning this mapping right away will result in
many false positives or false negatives. Instead, two important ingredients come
together in the method. First, as the number of images containing artifacts is typically
limited, the training data is augmented with natural images that are free from artifacts.
Second, the right balance between natural and distorted training data should be
considered.

Not requiring a reference is useful whenever the original is inaccessible (lost,
impossible to compute, unavailable, undefined). Furthermore, two applications of
the presented no-reference metric are demonstrated in light field production. In the
first application, a sparse light field is first captured, followed by an interpolation
of the intermediate views. If the metric indicates those intermediate views have
errors, those views will be recaptured. This allows for acquiring a higher-quality
light field in a much shorter time compared to dense LF capturing. In the second
application, metric prediction is employed to identify the local distortions as a guide
for interactive depth adjustment.

5.2 Overview

Test-time input to the proposed method is a single distorted RGB image A. While
the considered distortions are always IBR artifacts resulting from a specific depth
reconstruction and specific IBR method, the interna of how this image is generated
(e. g., the depth map) is transparent, and only the outcome result is needed. Withheld
is the reference RGB image B. In the case of IBR, such a distorted-undistorted pair is
typically produced by rendering a known image from other known views.

The output of the method is a single-channel image that predicts a given difference
metric response A⊖B, where the ⊖ operator depends on the choice of the specific
metric, e. g., MSE, SSIM [Wang et al., 2004b], or VGG16 [Simonyan and Zisserman,
2014]. High values are produced where the images are different and small values
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FIGURE 5.2: The suggested architecture consumes 32 × 32 patches (yellow left) and applies a cascade
of 3 × 3 convolutions, followed by non-linearities (ReLU). Spatial resolution is reduced (height) and
feature count increases (width) before a final prediction of the metric response is produced (blue, right).

where they are similar. This output is accurate if it has few false positives or negatives.
False positives correspond to predicting a perceived difference where there are no
artifacts, and false negatives correspond to visible artifacts the metric fails to report.
Note that two forms of approximations are made here: the first is the error that the
metric itself makes when comparing two images relative to human judgment. The
second is the error that the method has with respect to a prediction. Ultimately, the
method is a prediction of a prediction but, surprisingly, can perform better than one
prediction alone.

5.2.1 Training Data

The training data used in this chapter comprises existing metric responses A⊖B to
the distorted image A and the clean reference image B. Strictly speaking, learning
does not even observe the reference image B, but in practice, it is required to compute
the metric response A⊖B.

The training dataset consists of the captured LF images of 42 different scenes,
which come from the Stanford LF repository 1, the Fraunhofer IIS light field dataset
[Dabała et al., 2016], Google Research work [Penner and Zhang, 2017b], and Techni-
color [Sabater et al., 2017] as well as from newly captured LF images provided by
this thesis. All 4D LF datasets comprise conventional 2D images in a resolution up
to 2k×2k, taken from a range of sparse viewpoints, such as in a 3×3 camera array
with known camera positions. For each LF viewpoint, first, the depth is extracted
using a light field depth estimation technique [Dabała et al., 2016], then the images
are warped [Mark et al., 1997] to that view. For each LF, four corner views are used to
generate novel-view images at the positions of the remaining views. Each warped
view corresponds to one original view where the response of a full-reference metric is
computed to this pair. With approx. 9 views per LF and 42 LFs in total, this amounts
to only 210 unique images, i. e., a comparatively low number for a training task.
Six scenes were used for testing and the rest for training. The same split is also
applied later for the user study. The test scenes are totally different from the training
scenes, which is important as the number of scenes in the training set is small, and
generalization across them is an additional challenge. The natural images used in the
training and test dataset are sourced from the Inria Holidays image dataset [Jegou
et al., 2008], which has a comparable resolution to the LF images.

The proposed method in this chapter is independent of the actual underlying
metric ⊖ that is used for the prediction of the difference. This response will be
denoted neutrally as A⊖B. Three metrics are explored in this chapter: MSE, SSIM,
and VGG16. MSE is defined as the average per-pixel RGB difference vector length
squared. The SSIM metric uses the original implementation [Wang et al., 2004b].
VGG16 [Zhang et al., 2018] transforms both A and B into the VGG16 feature space
and picks the activations at layer five, which is 512-dimensional. The L2 difference of

1http://lightfield.stanford.edu/lfs.html

http://lightfield.stanford.edu/lfs.html
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FIGURE 5.3: When sampling uniformly from IBR patches, the error distribution is skewed towards low
errors (blue). The suggested balancing (red) adjusts the samples to have a uniform range of errors. The
three lower plots show the actual distribution before and after balancing for different metric responses.

these two vectors is used as the metric response. Each metric is normalized with the
95th percentile of their responses across the training dataset to fall between 0 and 1.

5.2.2 Architecture

The presented method is built upon a simple encoder P [Ronneberger et al., 2015]
that has learnable parameters Θ and predicts the error map P(A|Θ) by observing
A (Figure 5.2). The network comprises 5 layers (32 × 32 patch size) with the total
number of |Θ| = 175, 537 learnable parameters and is trained on all patches of the
training set in a sliding window fashion. The loss is the L1 error of the predicted
metric response, so ||P(A|Θ)− (A⊖B)||1. Note that the loss is always L1, while the
metric can be the L-norm-like MSE as well as SSIM or VGG16.

5.2.3 Balancing

So far, it has been explained why, and it will be shown from the ablation study that it
is important to have natural patches, but the question is how many. With an unlimited
number, the metric prediction simply always returns zero because natural patches
have no error to themselves. The proposed solution starts with a half-half mix of
distorted and clean patches. Regrettably, many of the distorted patches, which make
50 % of the total, also have small errors that are close to zero. These patches are exactly
those for which IBR was successful, i. e., did not have any artifacts. Depending on the
metric, this imbalance can be very strong, and in particular, for MSE, it is extremely
heavy-tailed (Figure 5.3). To address this, the proposed method suggests balancing
the error distribution for the distorted half when creating the training data as follows:
First, all patches are sorted based on their metric response into a priority queue. Then,
a random sample is uniformly drawn within the range of zero to the 95th percentile of
the metric response distribution. For every sample i with value ξi, a patch j with the
most similar metric response di is selected and will be added to the training dataset
and removed from the queue. When the minimum difference ξi − dj is larger than a
threshold ϵ, the chosen sample is rejected. This is repeated until a target patch count,
such as 250 k, is reached.

5.3 Evaluation

5.3.1 Methods

Training Strategies Three different strategies are compared for training. The first
is the proposed method, the other two are ablations. FULL is the proposed method
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TABLE 5.1: The error of the metric predictions on the test data for different variants of the method and
different partitions (ALL/CLEAN/DISTORTED) of the training data (columns) on different metrics
(rows). Winners per partition are marked in bold.

Metric
FULL NONATURAL NOBALANCE

ALL CLE. DIST. ALL CLE. DIST. ALL CLE. DIST.

MSE .098 .006 .189 .137 .092 .182 .102 .003 .201
SSIM .078 .013 .143 .143 .159 .127 .080 .012 .149
VGG .085 .006 .165 .207 .293 .121 .092 .008 .176

involving 50 % natural patches and a balancing of the other 50 % as described in
Section 5.2.2. NOBALANCE is realized by a similar 50/50-split, but the network is
trained on all distorted patches without the balancing. NONATURAL adapts the
balancing to take 100 % of the patches coming from IBR without adding the natural
patches as described in Section 5.2.2. All training sets, albeit processed differently,
have the same size of ca. .5 M patches.

Error As the goal is to predict the metric responses, the prediction error is the same
as the loss, the absolute difference between the ground truth metric response and the
prediction of that response. As these errors also come in arbitrarily different scales
for different metrics, they are normalized with the global 95th percentile of the GT
metric response across the balanced training dataset. The errors in metric prediction
errors for split subsets are additionally reported to understand the false/true-positive
and false/true-negative tendencies. In ALL, the error for the whole test dataset is
computed. Additionally, two subsets of the test dataset are considered. The first
subset is CLEAN, which includes only natural patches. The second one is DISTORTED

which contains only IBR patches, including those that might also come out with very
low or even with no error. Note that this is a partitioning of the test set and not of the
training set.

5.3.2 Quantitative Results

This section discusses both the means and full error distributions of all training
strategies for different partitions and different metrics.

Means The means of all methods are compared in Table 5.1. It can be seen that the
proposed method (FULL) has the smallest error across different metrics compared
to both other variants (bold in column ALL). By looking into the partitioning, it can
be noticed for the DISTORTED partition, the NONATURAL strategy performs best.
This is expected as training is done with all distorted patches, which comprise the
maximal variety of distortion. This makes the resulting metric sensitive to all kinds
of distortions. As a result, the probability of false negatives, i. e., claiming patches
with an error to be fine, becomes low. It also appears that for the CLEAN partition, the
NOBALANCE strategy performs best. This also is expected as in training, 50 % of data
comprises natural (undistorted) patches, and due to the NOBALANCE strategy, small
errors dominate in the distorted patches. This makes the resulting metric particularly
sensitive to near-threshold distortions. In this case, the probability of false positives,
i. e., reporting a high metric response for no-error patches, is low. All statements
are true (significant, p < .01, t-test after testing for Gaussianity) across all metrics,
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FIGURE 5.4: Analysis of metric prediction error for different metrics and variants of the proposed
method. The top plots show sorted error distributions. The bottom row plots show the correlation
between metric response and metric prediction error. All vertical axis is log scale.

indicating that the FULL approach is independent of the underlying metric. A positive
exception is VGG, where the FULL approach even performs better than NOBALANCE

on the CLEAN partition.

Distributions Figure 5.4 shows the distribution of errors for different metric predic-
tions (top) and the correlation of the prediction error and metric response (bottom).
In each plot, colors encode the variants of the proposed approach (NONATURAL,
NOBALANCE, FULL). Each plot in the first row of Figure 5.4 shows the sorted error
of the metric prediction in ascending order. The FULL approach performs better
than other variants across the entire range, with the exception of MSE prediction
for low errors. This indicates that the mean is a good characterization of the per-
formance. In all cases, there is a sudden increase in the error that occurs around
50 % of the population, i. e., the error for the first half of the population seems to
follow a different trend than the second half. This could be attributed to the patches
where reference and input are (partially) not aligned, which make up roughly 50 %
of the population as well. Unfortunately, there is no way to tell apart a misaligned
patch that is judged by FR metrics as different with respect to a displaced reference.
Hence, large errors are expected to become undetectable at some error level. The
exception is the regime in MSE where the FULL approach is worse on low errors and
slightly better on high errors, while it performs best on average in (Table 5.1). This
can be difficult to comprehend due to the log scale of the vertical axis. Each plot in
the second row in Figure 5.4 shows the error of the prediction on the vertical axis
and the metric response on the horizontal axis as a connected scatter plot. The plots
are in accordance with Table 5.1: The NONATURAL method, which performs best
in predicting high metric responses, has a high error on patches with a small metric
response (false positives). Symmetrically, the NOBALANCE method, which is the
best at predicting low metric responses, produces high errors on patches with a high
metric response (false negatives). FULL method is always a bit worse than one other
method in one region (except at the unique point where both cross), but on average,
performs best overall.
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FIGURE 5.5: Comparing the response to a pair of an image A and its distorted version B (first column).
The response of the proposed method (second column) is similar to the ground truth (third column).
When executed on the clean reference (fourth column), only very few false positives are reported.

5.3.3 Qualitative Results

Example metric outputs Figure 5.5 shows an analysis of the response of all metrics
to two different LFs from the test set. The first column shows the distorted input
A at the top, below the hidden reference B, and below these three insets from both.
The second column shows a predicted response of the proposed method A⊖B for
different metrics: MSE on top, followed by SSIM and VGG. A false-color coding,
where cold colors indicate a low response and warm colors indicate a high response,
is used. The third column shows the GT response for the same. It is evident that there
is a similarity between the prediction and the ground truth. While it slightly errs
towards conservative, i. e., miss a few errors. How some of these errors are only false
findings, i. e., a limitation of the metrics becomes apparent from the user study to
follow. The last column shows a sanity check where the proposed metric is exposed
to hidden reference image B. The hidden reference obviously does not contain any
error, and consequently, reporting one is a false positive. It shows the metric has a
response in areas that are correct but look like IBR artifacts, but in most areas has no
response. In summary, this indicates that the metric is able to localize and scale errors
to a hidden reference in images with artifacts while avoiding producing a signal
when facing clean images. It might appear that MSE has fewer false positives than
SSIM or VGG when inspecting the last column; simply more deep blue, very close
to perfect in the first row. However, such a trend is not supported by the numbers
in Table 5.1 or the plots in Figure 5.4. The true reason for this impression might be
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FIGURE 5.6: Transform-invariance of the proposed approach: When computing the distance between a
clean input image A (first column, first row) and a misaligned reference B (not shown here, 20-px
shifted or 20 degrees rotated copy of A), a common metric such as MSE will show a strong response
(first row, second and third columns). Such a response is numerically correct but far from human
assessment, which would be more similar to the response of proposed metric (first row, fourth and
fifth columns). Symmetrically, repeating the experiment on a distorted input, the proposed approach
correctly localizes the distortions around the books (inset) as if the reference had been aligned.

that the SSIM and VGG response simply have a larger receptive field per-se: MSE
is per-pixel while VGG is affected by up to 32 × 32 pixels. Even the ground truth
response is dense (less deep blue). Consequently, the metric prediction, in case of
error, also makes spatially more extended, denser mistakes.

Transformation-invariance Surprisingly, results produced by the presented method
can turn out to be better than their own supervision, as the method is forced to come
up with strategies to detect problems without seeing the reference. This makes it
immune to a common issue of many image metrics: misalignment [Kellnhofer et al.,
2016b]. Even a simple shift in image content will result in many false positives for
classic metrics (Figure 5.6). An image that has merely been shifted is reported to be
very different from a reference by all the metrics used in this chapter; however, it is
less different from the reference compared to the one with IBR artifacts. In contrast,
the proposed metric does not care about transformation, but when IBR artifacts
are added, they are detected. As the metric is oblivious to the ground truth, it is
not subject to such a misconception. While not quantifiable, the result is arguably
more similar to human judgment, as indicated by the user experiment in the next
subsection.

5.3.4 User Study

A user experiment is done to validate that the predicted responses of the proposed
metric spatially correlate with the visibility of artifacts to human subjects. The human
responses are quantified by means of per-pixel annotations, which are painted on top
of images showing IBR artifacts. Note that no user responses were used for training.

Methods Naïve users were asked to use a binary painting interface to mark errors
in a rendered image for each of the six LFs of the test dataset in an open-ended
session that took 15 minutes on average. The binary responses are then averaged into
a continuous fraction (percentage) of users that detected the location of the artifacts.

Analysis Asking N = 10 users, the Pearson linear correlation R is computed (higher
values are better; statements are highly significant as the correlation is computed
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FIGURE 5.7: Exemplary user study result (a). Correlation (significant, p < .001) of MSE/SSIM/VGG
and user responses (red) compared to the predictions of the proposed metric for the three metrics (blue)
for different scenes and as an average across scenes to the right (b). It can be seen that in the non-aligned
conditions, these differences get stronger (c).

on a high number of image pixels) and reported in Figure 5.7-b. It appears that for
many scenes, as well as for the average across scenes, the proposed method has a
higher correlation with user annotation than the metric it was supervised on. This
could be due to the fact that the network had learned to become independent of a
reference, similar robustness that the HVS employs. There is no clear trend on which
of the metric response predictions correlates the most with the user annotations. The
differences between scenes, however, seem more pronounced. The experiment is
repeated with a non-aligned reference (shifted a mere 20 px to the right), and the
correlations are reported in Figure 5.7-c. It can be observed that the proposed metric
shows higher correlations for all metrics across different scenes, indicating more
robustness to alignment issues when predicting user responses.

Perceptualization Finally, a linear correlation R is computed by fitting a model
xi = a · yi + b, where xi is the user response and yi is the response of the proposed
metric for pixel i. This allows a “perceptualization” of the metrics response. Fitting
multiple models a, b in a leave-one-out protocol to 5 of all 6 scenes produces an
average error of .05/.04/.02 for MSE/SSIM/VGG, respectively, indicating that this
perceptualization generalizes to some extent.

5.3.5 Other Architectures

Alternative architectures are explored with or without balancing. A simple solution
would be to use a supervised image translation network such as Pix2Pix [Isola et al.,
2017] to map from entire IBR images to the metric response. Unfortunately, training
these on the training data used in this chapter converges to a flat response of zero, as
artifacts are too rare and subtle to be picked without the suggested balancing. Future
work could investigate combining the balancing with other architectures.
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and IBR

Robot-arm capture

Initial cameras Novel views Adapted cameras
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Error prediction

FIGURE 5.8: Proposed pipeline for adaptive LF sampling by bounding the reconstruction error predicted
by the proposed metric.

5.4 Applications

In this part, two practical applications of an NR-IQM will be demonstrated in light
field production. The first is accelerating automated adaptive LF capture (Sec-
tion 5.4.1), and the second employs the proposed NR-IQM as feedback in an in-
teractive depth manipulation system (Section 5.4.2).

5.4.1 Adaptive Light Field Capturing

Capturing a dense set of input view images results in a high-quality reconstruction
but remains a time-consuming process or may require a bulky setup. The main
observation is that not all input view images contribute equally to the reconstruction
of novel-view images. The proposed metric helps identify and capture these. Images
from views dominated by planar diffuse surfaces can reliably be predicted from im-
ages taken from other views showing this very same surface. Hence, dense capturing
from these views is needed and thus not efficient. In contrast, occlusions and specu-
larity can be more challenging because it must be ensured that each scene element is
visible in at least two camera views (when using multi-view stereo) to compute depth.
Sparse capturing from these views would sacrifice the reconstruction quality. To both
of these ends, this chapter introduces an adaptive capturing mechanism as illustrated
in Figure 5.8 to capture an image for a view only if it cannot be extrapolated from
other views.

Setup This chapter studies adaptive capturing by means of a large-scale translation
stage equipped with a digital camera. The position of the camera can be controlled
with a precision of 80 µm in the horizontal and 50 µm in the vertical direction. This
allows for a very dense capture of the scene. While this takes longer to capture, it
serves as a unique baseline as it is possible to compare the metric prediction to the
actual error present.

Procedure First, a sparse set of images are captured, and the depth maps are esti-
mated for all views. Then, a set of intermediate views are rendered using a DIBR
method [Dabała et al., 2016], and the reconstruction error is measured for each ren-
dered view. All pixels are simply averaged in each view image, producing a single
scalar value. The capturing grid is then subdivided into smaller regions where the
average predicted reconstruction error is larger than a given threshold. This process
is repeated until the desired quality is achieved. By this approach, the number of
captured views can be substantially reduced, and the scene is recaptured only at
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FIGURE 5.10: Adaptive panoramic light field capturing: The top row shows a grid indicating the
camera placement at different iterations. The second row shows the selected rendered views based on the
keyframes that are captured. The insets in the third row show the marked patches from the rendered
views in the first iteration and in the iteration where the desired quality is achieved. The fourth row
shows the metric predictions for the corresponding patches in each iteration.

locations where reconstruction is poor. Predicting the reconstruction error of the
novel view is the key to making such an approach work. Classic full-reference image
quality metrics require a dense capture to provide reference images to compute the
error, which is not practical as the goal in this thesis is to reduce the number of
captured images in the first place. In contrast, the proposed no-reference metric in
this chapter can measure the error in the novel view images without providing their
reference images, resulting in an efficient approach.

Evaluation To evaluate the effectiveness of the metric in this application, two LF
sequences are captured and adapted according to the MSE metric.

Ground-truth Proposed

FIGURE 5.9: Reconstruction error of intermedi-
ate novel views. Left: Ground truth MSE values,
right: The proposed metric MSE prediction.

Array The scene is captured with an
array of 7×15 images as shown in Fig-
ure 5.8 (left). Figure 5.9 shows the
ground truth MSE (left) and the pro-
posed metric prediction (right), where
each grid element denotes a camera po-
sition. The dark blue grid elements indi-
cate the camera positions where actual
keyframes were captured while rendering has been performed for all remaining
intermediate positions. As can be seen, the distribution of reconstruction error, as
predicted by the metric, correlates well with the ground truth. Figure 5.8 (right) shows
new camera locations that are required to reduce the true average reconstruction
error below .004.

Panoramic The proposed metric can potentially be beneficial for efficient panoramic
(i. e., one-dimensional, linear) light field capturing. As it is shown in Figure 5.10,
depending on the scene content, not all regions in the scene require equally dense
camera placement. The metric successfully guides the capturing setup to take more
photos in the regions with thin structures, substantial disocclusions, or specularites
where accurate reconstruction is highly challenging. Overall, capturing 76 instead of
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FIGURE 5.11: Interactive depth adjustment. The marked patches show the regions in the rendered
view where the proposed method predicts the MSE (top), and the bottom row shows the corresponding
patches after applying the manual disparity refinement.

720 images – a sparsity of 10.5 % – reduces the total capture time from 59 minutes to
4.9 minutes, i. e., by 91 %.

5.4.2 Interactive Depth Adjustments

Long acquisition times involved in capturing dense light fields make it a tedious
and impractical task for some application fields. One such field is movie production,
where the presence of highly dynamic scenes and time pressure discourages the use
of dense light fields, and in such cases, only sparse light field capture using video
camera arrays is seen as a convenient solution.

Unfortunately, automatic error-free light field reconstruction from a sparse cap-
ture is still an unsolved problem. To this end, there are ongoing research efforts to
address the challenges, such as the estimation of disparity in the presence of homo-
geneous areas, repetitive structures, fine-grained objects, or specularities. In such
cases, interactive disparity estimation improvement seems to be the most promising
solution to achieve a high-quality view rendering [Wildeboer et al., 2011; Kap-Kee,
2015; Lin et al., 2012; Cao et al., 2011]. However, this requires detecting possible
view rendering artifacts as fast as possible to reduce the post-processing time. As
shown in the right-most image of the second row in Figure 5.10, spotting an artifact
is not a trivial task and sometimes requires carefully scanning the view rendering
result. The presented quality estimation metric can significantly simplify this process
by allowing the automatic analysis of several rendered views. By observing the
predicted visibility map, which identifies the local distortions, the user can quickly
spot the problematic regions. Using a post-production software suite 2 to perform
an interactive view rendering with only a small subset of cameras allows detecting
the captured view responsible for the error. The inspection of the corresponding
disparity map followed by an approach similar to Wildeboer et al. [2011] and Kap-Kee
[2015] finally allows fixing the view rendering error. This is achieved by the manual
creation of a geometry proxy in 3D space for objects whose disparity map could not

2https://www.iis.fraunhofer.de/realception

https://www.iis.fraunhofer.de/realception
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be computed automatically. The proxy is then used to bound the admissible depth
values for subsequent disparity estimation.

The results of this procedure are illustrated in Figure 5.11. The contained repetitive
structures are very challenging for automatic disparity estimation and consequently
lead to many view rendering artifacts, as clearly indicated by the depicted error map.
To solve these issues, a user has added proxy-based disparity constraints for the
waste basket (and the contained figurine), the grid structure behind the flower, and
the grid structure in the upper right corner of the image. By these means, a much
better view rendering could be achieved, as shown in Figure 5.11. The proposed
metric has reduced the time required to find those reconstruction errors, leaving more
time for a user to correct them.

5.5 Conclusion

This chapter has demonstrated that with properly adjusted training data (prioritiza-
tion and natural supervision), a CNN can learn how to predict the difference between
an image to a hidden reference. The proposed approach is independent of the metric
used and can reproduce MSE, SSIM, and VGG prediction. Other metrics such as
HDR-VDP-2 [Mantiuk et al., 2011a] or the CNN-based metric of Wolski et al. [2018a]
would likely be predictable in a similar fashion. Such a metric can be applied to
several applications. As demonstrated, this includes adaptive light field sampling
of complex scenes and interactive depth editing. Moreover, since, in contrast to any
existing no-reference metric, the proposed approach provides a predicted error map,
this opens the potential for many novel applications, such as interactive or automatic
view rendering error correction. In future work, it would be interesting to overcome
the limitations of the paired input, eventually using an adversarial [Goodfellow et al.,
2014] design, and learn the prediction only from pairs and without the metric or only
from pairs of undistorted-metric or distorted-metric.
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Chapter 6

A Perception-Driven
Decomposition for Multi-Layer
Displays

Multi-focal plane and multi-layered light-field displays are promising solutions for
addressing all visual cues observed in the real world. Unfortunately, these devices
usually require expensive optimizations to compute a suitable decomposition of the
input light field or focal stack to drive individual display layers. Although these
methods provide near-correct image reconstruction, a significant computational cost
prevents real-time applications. A simple alternative is a linear blending strategy
which decomposes a single 2D image using depth information. While it provides
real-time performance, it generates inaccurate results at occlusion boundaries and
on glossy surfaces. This chapter proposes a perception-based hybrid decomposition
technique that combines the advantages of the above strategies and achieves both
real-time performance and high-fidelity results. The fundamental idea is to apply
expensive optimizations only in regions where it is perceptually superior, e.g., depth
discontinuities at the fovea, and fall back to less costly linear blending otherwise. This
chapter presents a complete, perception-informed analysis and model that locally
determines which of the two strategies should be applied. Later. a new synthesis
method is proposed to perform image decomposition. The results are analyzed and
validated in user experiments on a custom multi-plane display.

6.1 Introduction

In recent years, head-mounted displays (HMDs) have emerged as a major virtual
(VR) and augmented reality (AR) technology, and currently, they have many potential
applications in a diverse set of fields, including gaming, video, medicine, simulation,
and aviation. Stereo HMDs can display 3D content with binocular disparity, which
is one of the critical cues for stereopsis and depth perception of the brain. As the
use of binocular disparity in HMDs has already been successfully commercialized,
research efforts are recently getting directed toward enhancing 3D perception by
introducing support for other types of cues. A critical requirement for a faithful
reconstruction of virtual 3D content is the reproduction of correct accommodation
cues, which allows a natural depth perception by triggering changes in the focal
distance of the eye [Lambooij et al., 2009; Banks et al., 2016]. However, developing
HMDs with correct accommodation cues is an extremely challenging task due to the
limitations imposed by optics on the hardware design. Any improvement in this
direction must satisfy the requirements of a consumer product, such as having a small
form factor but usually, there is a trade-off between these requirements and the optical
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capabilities of the display, such as the field of view (FOV) and display resolution
[Hua, 2017]. In addition to these hardware challenges, generating 3D content for such
displays is another important issue since it requires efficient processing of a larger
amount of data compared to 2D images. Furthermore, there is always a concern
about compatibility with different display architectures [Kramida, 2016].

Recent studies have shown that multi-layer displays, such as multi-plane displays
or light-field displays, are practical solutions for HMDs to provide near-correct
accommodation cues [Hua, 2017; Kramida, 2016]. A crucial step of rendering in
a multi-layered system is the decomposition of an input scene into layers for a
correct 3D perception [Narain et al., 2015]. The most straightforward decomposition
method is linear blending (LB), where the input is a single viewpoint image with a
depth map [Akeley et al., 2004; MacKenzie et al., 2010]. Although this technique is
computationally efficient, it usually fails at occlusion boundaries or non-Lambertian
surfaces. To overcome this limitation, two approaches have been proposed: retinal
optimization (RO) [Narain et al., 2015; Mercier et al., 2017] and light-field synthesis
(LFS) [Huang et al., 2015b; Lee et al., 2016], which optimize the decomposition based
on a focal stack and a 4D light field, respectively. The improved quality comes at a
high computational cost of the optimization (5 Hz at 512×512 resolution as reported
by Mercier et al. [2017]) and input generation. In addition, although these techniques
perform better at occlusion boundaries [Zannoli et al., 2016], they may perform worse
in driving the eye accommodation [Mercier et al., 2017].

In order to combine the desired features of different algorithms, the most promis-
ing solution would be designing a hybrid decomposition technique. Such an approach
could select the decomposition method locally depending on the scene content in
order to obtain the best perceptual quality possible. For real-time rendering applica-
tions, this type of hybrid decomposition has to be implemented efficiently. Thanks
to the recent developments in GPU hardware, new cards introduce separate cores
for massively computational tasks (e.g. recently announced Nvidia RTX platform),
which encourages such content-dependent local optimizations to be performed in
parallel to the traditional graphics pipeline. However, in order to propose a robust
hybrid algorithm, a clear understanding of the perceptual quality differences among
various decomposition methods is required. So far, there has been very little research
comparing the visual quality of LB, LFS, and RO methods. In addition, the conditions
which lead to the failure of the LB method at occlusion boundaries are not thoroughly
investigated in previous works.

To address these issues, this chapter provides a perceptual evaluation of different
decomposition methods and proposes a perception-driven hybrid decomposition
technique. In the first part, as a preliminary step towards the hybrid decomposi-
tion, an improved gaze-contingent LFS method is introduced to generate the input
viewpoints exclusively inside the pupil. This solution achieves similar results to RO
but with a significantly lower amount of computational cost. Consequently, the RO
method is skipped, and only the gaze-contingent LFS is considered. In the second
part, a perceptual evaluation methodology is designed to determine for which multi-
plane display configurations and scene content the inexpensive LB can be applied
without a loss of visual quality and when the gaze-contingent LFS is necessary. In
the evaluation analysis, only texture and occlusion boundaries are considered, as
they are more responsible for driving accommodation [Mathews and Kruger, 1994;
MacKenzie et al., 2010] and depth order perception [Zannoli et al., 2016]. Through a
series of perceptual experiments, a detection threshold is derived, which then allows
the establishment of the selection rule for the decomposition algorithm such that:
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FIGURE 6.1: Overview of the methodology in the proposed approach. First, the 3D scenes are analyzed
based on texture and depth discontinuity. The limited cases are investigated with perceptual experiments
and extended to the general cases through the prediction using custom-calibrated SSIM. The selection
rules are then derived from the predicted distinguishability between LB and LFS and closeness to the
ground truth obtained by SSIM analyses. Finally, the hybrid optimization framework is developed based
on the selection rules.

1. when LB and LFS are visually indistinguishable, LB should be selected, and

2. when LB and LFS are distinguishable, the method that yields result closer to
the ground truth should be chosen.

Based on the selection rule, the proposed hybrid decomposition approach is de-
scribed in order to combine linear blending and light-field synthesis methods. To
further improve the performance, the foveal and peripheral vision characteristics are
also taken into account. Consequently, this chapter proposes a content-dependent and
gaze-contingent hybrid decomposition algorithm for multi-layered accommodative
displays, which enables real-time rendering performance and high-quality recon-
struction.

The main contributions of this chapter are:

• a gaze-dependent viewpoint sampling of LFS for enhanced reconstruction
quality,

• a series of targeted perceptual experiments that measure the differences in the
visual quality obtained by LB and LFS for various spatial frequencies, luminance
contrasts, depth configurations, and eccentricities,

• a domain-specific structural similarity index (SSIM) calibration for visible dif-
ference prediction between the LB and LFS that generalizes perceptual insights
beyond the scope of the perceptual experiments,

• a unified optimization framework for the LB and LFS decompositions,

• an efficient adaptation of the simultaneous algebraic reconstruction technique
(SART) to CUDA for real-time decomposition.

6.2 Overview

The goal of this chapter is to develop the perceptual evaluation methods and the
hybrid decomposition of a gaze-contingent LFS (Section 6.3) and LB. The overall
pipeline is outlined in Figure 6.1. First, the 3D scenes are analyzed based on texture
(Section 6.4) and depth discontinuity (Section 6.5), which are important for quality
perception and driving accommodation. While it is ideal to evaluate all possible sce-
narios through perceptual experiments, as the parametric space of texture and depth
discontinuity is vast, perceptual experiments are performed on distinguishability
between LFS and LB in a limited parametric space. To explore the full space, a visual
quality metric SSIM [Wang et al., 2004a] is calibrated to predict the experimental
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outcomes and predict distinguishability in general cases. The employment of SSIM
is motivated by a recent study showing that advanced metrics such as SSIM and
HDR-VDP [Mantiuk et al., 2011b] provide a similar and good prediction on a narrow,
well-defined task after proper training and calibration with relevant perceptual data
[Adhikarla et al., 2017]. Specifically, the perceptual experiments are conducted for flat
textured surfaces in Section 6.4.1 and depth discontinuities at small eccentricities in
Section 6.5.1. Through the calibrations of SSIM in Section 6.4.2 and Section 6.5.3, the
distinguishability in general cases such as slanted textured surfaces in Section 6.4.4 or
depth discontinuities at large eccentricities in Section 6.6.1 are predicted. For selecting
a proper algorithm when LFS and LB are distinguishable, SSIM analysis is performed
to find the algorithm closer to the ground truth in Section 6.4.3 and Section 6.5.2.
Finally, the best decomposition algorithm is determined, which is LB for textured
surfaces and LFS for depth discontinuities depending on depth difference, luminance
contrast, and eccentricities. Since the transition between LFS and LB is required at
depth discontinuity, the selection rule is developed in Section 6.6.1, and the hybrid
optimization framework is proposed in Section 6.6.2.

6.3 Gaze-Contingent Light Field Synthesis

In order to propose the hybrid decomposition strategy, the existing decomposition
methods are evaluated for multi-layer displays with respect to computational com-
plexity and visual quality criteria. LB is a fast decomposition method, and it is suitable
for regions where an accurate reconstruction is not required. On the other hand, when
a high-quality reconstruction is required, the hybrid decomposition algorithm should
select more complex methods such as LFS and RO. While LFS reconstructs a sparse
set of light field views, RO reproduces a focal stack rendered from dense light fields
inside the pupil. Although LFS is computationally more efficient than RO, a recent
study shows that LFS suffers from contrast degradation, and RO might be a better
alternative for preserving the contrast [Lee et al., 2017]. However, the loss of contrast
in LFS might originate from using a wide eye box that is larger than the pupil size,
where some of the viewpoints fall outside the observer’s pupil [Huang et al., 2015b;
Lee et al., 2017]. On the contrary, RO provides a higher level of contrast by rendering
the dense light fields exclusively inside the pupil and further processing them to
generate focal images at multiple depths.

Both LFS and RO might be used to produce high-quality outputs when required
by a hybrid decomposition algorithm. But the issue of contrast degradation has to be
addressed to get the benefit of LFS. To this end, a gaze-contingent viewpoint sampling
approach is proposed to enhance LFS image quality compared to the implementation
using a wide eye box. The approach aims to generate light-field viewpoints only
inside the pupil, using the pupil position from an eye tracker. This solution effectively
avoids contrast degradation in the LFS method. The gaze-contingent method requires
the addition of an eye tracker device to the hardware, but as it is discussed in
Section 2.4, this requirement applies to any practical decomposition method for
multi-focal displays.

The quality of the proposed gaze-contingent LFS method is validated using
simulated contrast curves of the reconstructed images from various decompositions
(Figure 6.2). The contrast curves show the magnitude of luminance contrast for
different spatial frequencies with respect to accommodation depth. In accommodative
displays, the contrast of the images should be maximized at the object plane because
a higher gradient of the contrast curve more effectively drives the accommodation
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FIGURE 6.2: Contrast curves for various optimization algorithms for various spatial frequencies.
While LFS with a large eye box exhibits significant contrast reduction for high spatial frequencies,
gaze-contingent LFS shows much higher contrast values over the entire frequency range, providing
similar quality to LB or RO.

toward the object plane [Ravikumar et al., 2011]. In order to obtain the contrast
curves, first retinal images are generated at various focal depths between 1.4 D and
2 D. The 0.6 D gap is chosen since it is widely used to attain sufficient resolution
for triggering accommodation at intermediate planes and minimizing the number
of display planes [MacKenzie et al., 2010]. Then, the Fourier transform is used to
extract the luminance values at the target spatial frequency. Finally, all values are
normalized with the peak value of the contrast curve of the ground truth. A similar
analysis has been performed by Lee et al. [2017]. The ground truth, gaze-contingent
LFS, LFS with large eye box, LB, and RO are used for the analysis in this chapter.
During the evaluations, the number of viewpoints is set to 13 inside a 4 mm-diameter
pupil for gaze-contingent LFS. It is empirically found that using a larger number of
views does not improve the image quality for gaze-contingent LFS. The large eye
box case assumes 5 × 5 viewpoints inside an 8 × 8 mm eye box. The sinusoidal
patterns of various spatial frequencies are projected in the middle plane between two
display layers placed at 1.4 D and 2 D, respectively. The resolution is set to 15 cpd,
which is the maximum resolution supported by the display. The analysis shows that
LFS with a large eye box significantly degrades the quality beyond approximately
6 cpd. In contrast, the gaze-contingent LFS provides a quality comparable to RO or
LB for 3–9 cpd, which is the critical range for driving accommodation [Mathews and
Kruger, 1994; MacKenzie et al., 2010]. The noticeable deviations are observed for
high spatial frequencies; however, all algorithms already fail to reproduce the correct
contrast curve due to the limited frequency support of the display. The maximum
reproducible frequency increases as the distance between the displays decreases
[Narain et al., 2015]. Therefore, this suggests that the gaze-contingent LFS attains
the quality offered by RO and is suitable for use with LB in a hybrid decomposition
approach. From now on, the gaze-contingent LFS is simply referred to as LFS.

6.4 Effect of Texture on Decomposition

LB method performs poorly in regions that are affected by occlusion [Narain et
al., 2015]. However, it preserves the contrast relatively well in other regions (see
Figure 6.2). Therefore, the use of LB still can be a good option on textured regions
except at those problematic regions around occlusion boundaries where LFS gives a
better result than LB. The previous work shows that the difference between the two
methods is noticeable when the content has high spatial frequencies [Narain et al.,
2015]. Given this observation, a spatial frequency threshold is found in order to switch
from one decomposition method to the other in order to get the optimal quality. The
analysis in this chapter includes showing both flat and slanted surfaces with various
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FIGURE 6.3: The configuration of displays and stimuli (a). The probability of detecting the difference
between LB and LFS methods for various depth (b) and contrast levels (c).

slopes. First, a perceptual experiment is conducted to investigate the conditions when
two algorithms are indistinguishable for an observer viewing flat surfaces on the
prototype display. Then, a set of analyses is performed using an objective quality
metric in order to generalize the observed findings to slanted surfaces. In addition
to allowing the evaluation of different scene configurations, the use of an objective
metric helps avoid any issues due to the lack of ground truth as well. Unfortunately,
there is no domain-specific metric designed for such an evaluation. Therefore, the
data obtained from conducted perceptual experiments are used to calibrate an existing
full-reference quality metric. The Structural Similarity (SSIM) metric is employed for
this purpose, as it is widely used for the objective evaluation of visual quality in other
domains [Wang et al., 2004a].

6.4.1 Perceptual Experiment

In order to test the distinguishability between LB and LFS, a perceptual experiment
is conducted on a two-plane prototype display in a monocular viewing setting.
The stimuli consist of two pairs of flat sinusoidal patterns. One pair contains two
identical patterns generated using only LFS, and the other pair contains two different
patterns generated using LFS and LB. The experiment is done with the two-alternative
forced choice (2AFC) procedure, and the participants are asked to select a pair of
patterns that look different from each other. While two pairs are shown at the top
and bottom positions, the order of patterns is completely randomized among trials.
Then, using the number of correct responses for different combinations of Michelson
contrast, stimuli depth, and spatial frequencies from 6 to 15 cpd, the probability
of detection is computed. Figure 6.3 (a) shows representative stimuli used in the
conducted experiment, where the LB stimulus has a red frame around the pattern.
For that stimuli, the correct response is the top pair. In total, five participants took
the experiment. All participants were naïve, paid, and have a normal or corrected-to-
normal vision. The display resolution is 15 cpd, and the display separation is set to
0.6 D. Section 6.7.2 describes more details on the experimental setup.

The frequency that corresponds to 75% detection probability is taken as the
detection threshold. It is computed by fitting a psychometric sigmoidal function
to the collected data. The detection probabilities from the experiment and fitted
sigmoids are shown in Figure 6.3 (b-c). Figure 6.3 (b) is obtained for various depths
of the stimuli, while the Michelson contrast is fixed at 1. The depth is measured as
the distance from the front display, where 0.3 D corresponds to the middle plane. The
frequency threshold has the smallest value for the middle plane stimuli, where the
reconstruction quality of decomposition algorithms is the lowest [MacKenzie et al.,
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FIGURE 6.4: The minimum SSIM values of the SSIM maps between the LB and LFS for (a) contrast =
1 and (b) contrast = 0.5. (c) The RMS error between the predicted cutoff frequencies and experimental
results. (d) The SSIM value against the ground truth. The positive region: LB is closer to the ground
truth. The negative region: LFS is closer to the ground truth. The yellow region bounded by the
dashed line represents the conditions where the two methods are distinguishable. (e) The ground truth
comparison for slanted surfaces.

2010; Narain et al., 2015]. Figure 6.3 (c) shows the results for various contrasts, while
the stimuli depth is fixed to 0.3 D. These results indicate that the frequency threshold
increases as the contrast decreases.

6.4.2 Calibrating SSIM

The above experiment considers only a small subset of different texture and depth
configurations that can occur in complex scenes. One option to investigate a wider
range of stimuli is performing more extensive perceptual experiments. Instead, this
chapter relies on image quality metrics which have been recently demonstrated to
be successful in simulating the visibility of different artifacts when calibrated on a
problem-specific dataset [Adhikarla et al., 2017; Wolski et al., 2018b]. Consequently,
the SSIM metric is adapted for predicting distinguishability between LFS and LB
methods and used in further investigation. An additional and critical benefit of
such a strategy is that it allows comparing the decomposition techniques to ground-
truth images. This is challenging using perceptual experiments due to the lack of a
reference light-field display.

The proposed SSIM-based metric takes as an input two perceived images, sim-
ulated for a specific focus, and computes an SSIM map. The metric later takes the
minimum value of the map as the dissimilarity measure between the two images.
First, this procedure is used to simulate the previous experiment. To this end, the
dissimilarity index is computed between LFS and LB methods for different combina-
tions of luminance contrast, frequency, and depth, assuming that the observer focuses
on the target object plane. Figure 6.4 (a) and (b) show the results for the stimuli when
the Michelson contrast of the stimuli is fixed to 1 and 0.5. Smaller values of the maps
indicate a larger difference between the results of the two methods. Similar to the
result in Figure 6.3 (b), the transition behavior is observed around 12 cpd for the
middle plane (0.3 D), and the transition point moves towards higher frequencies for
stimuli closer to the display plane. Figure 6.4 (b) reveals that the SSIM values overall
increase for lower luminance contrast, which is in agreement with Figure 6.3 (c).

To use the metric as a visibility predictor, an SSIM threshold is selected such that
it corresponds to the visibility threshold. In other words, all the image regions for
which the SSIM index is above the SSIM threshold should contain only invisible
differences while the regions with smaller SSIM values contain visible differences.
The optimal SSIM threshold is determined as the value which minimizes the RMS
error between the predicted and measured frequency thresholds obtained in the
experiment in Section 6.4.1. The lowest error was obtained for the SSIM threshold of
0.9. The rest of the evaluations in this chapter are based on this value.
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6.4.3 Comparison with Ground Truth

The SSIM analysis is used to select the algorithm which is closer to the simulated
ground truth. First, two SSIM maps are obtained in the same way as Figure 6.4 (a) by
comparing LFS with ground truth and LB with ground truth. Then the pixel-wise
difference between the SSIM map of LFS and LB is considered. The result is shown
in Figure 6.4 (d). It is vivid that LB is better at reproducing the ground truth in the
region inside the dashed half-circle, where LFS and LB are distinguishable according
to the previous analysis. Outside this region, LFS performs better, particularly
at low frequencies, but it is still acceptable to use LB due to indistinguishability.
Interestingly, these results suggest that the computationally efficient LB provides
higher fidelity reconstruction compared to the computationally expensive LFS on
high spatial frequencies. Although previous study [Narain et al., 2015] and the
conducted analysis (Figure 6.2) suggest that such high contrast reconstruction can
lead to incorrect contrast curve, the eye accommodation is dominantly driven by
4-8 cpd and the failures of LB in reproducing contrast gradient at high frequencies are
negligible [MacKenzie et al., 2010]. Furthermore, it should be noted that even LFS or
RO fails to reproduce the correct contrast curves in such cases, as shown in Figure 6.2.
Therefore, LB is selected as the best algorithm which provides high contrast in retinal
images.

6.4.4 Generalization to Slanted Surfaces

In many studies, the quality of reconstruction has been tested on planar surfaces at a
fixed depth [MacKenzie et al., 2010; Narain et al., 2015; Lee et al., 2017]. However,
most 3D scenes contain various slanted surfaces. Hence, the analysis in this chapter
is also extended to slanted surfaces with various slopes. At each spatial frequency,
slanted surfaces up to the maximum slope of 0.1 D/pixel are created. In the designed
display prototype with the 0.6 D separation, this maximum slope corresponds to a
6-pixel-wide slanted surface extending from the front display to the back display.
Since a fewer number of pixels cannot fully represent one cycle of the minimum
spatial frequency, the steeper surfaces are regarded as occlusion boundaries. The
previous analysis of flat surfaces compared the focal images at the target stimulus
plane. In the presence of a slanted surface, however, the reconstruction quality should
be checked at every possible focal state. Therefore, seven focal images are computed
between two layers with a step size of 0.1 D. For each focal image of each algorithm,
the minimum SSIM value is found in the comparison against the ground truth focal
image. Among all focal depths, based on the minimum SSIM, the worst case is
found. Then, the difference between the SSIM map of LFS and LB is measured to
compute the closeness to the ground truth, as shown in Figure 6.4 (e). The border of
the distinguishable region is indicated with the gray dashed line. Similar to the flat
surfaces, two methods are distinguishable for high spatial frequency texture at low
slopes. Inside this distinguishable region, LB still performs better than LFS.

In summary, the conducted analyses reveal that for flat and slanted surfaces with
sinusoidal patterns as textures, LB and LFS methods are distinguishable only for
high spatial frequency textures, and LB provides higher fidelity reconstruction when
they are distinguishable. Since this holds for foveal vision, it is evident that the same
algorithm holds for peripheral vision because contrast sensitivity declines in the
peripheral region.
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FIGURE 6.5: Artifact perception at depth discontinuity. (a) The configuration of the perceptual
experiment. The values in parentheses represent the eccentricity, depth difference, foreground luminance,
and background luminance. (b–d) The experimental results on the depth difference threshold at which LB
and LFS are distinguishable. The mean values are shown with the standard deviations in parentheses.

6.5 Effect of Depth Discontinuity on Decomposition

Another factor that affects the decomposition quality is the depth difference between
two surfaces with an occlusion boundary. This part of the chapter investigates the
distinguishability between LFS and LB as a function of depth difference, luminance
contrast, and eccentricity. Contrary to the analysis on spatial frequency in Section 6.4,
the LFS is always closer to the ground truth compared to LB, but it is important to
clearly identify the conditions in which LB can still be employed without causing any
visible loss of quality.

6.5.1 Perceptual Experiment

The perceptual experiment in this part follows the one in Section 6.4.1 where the
2AFC procedure is used, and the participants are asked to select the pair consisting
of different patterns. For each luminance contrast and eccentricity, the Quest pro-
cedure is employed to find the threshold of depth difference at which LB becomes
distinguishable [Watson and Pelli, 1983]. The depth difference ranges from 0.05 D to
0.6 D with a 0.05 step size. Two representative stimuli are illustrated in Figure 6.5 (a).
While the foreground objects are fixed on the front display, only the depth of occluded
objects is altered. For the experiments at higher eccentricities, the gaze direction is
guided by a target green cross, and the observers’ gaze position is monitored using the
eye tracker. In order to avoid incorrect measurements due to accidental glances, the
stimulus is hidden when the gaze position slightly deviates from the target cross. The
whole set of stimuli spans 3◦ of visual angles. In order to avoid image degradation
due to the aberration near the boundaries of the display, the position of the stimuli is
fixed at the center of the display, and the position of the target cross is changed to
control stimulus eccentricity.

The results of this experiment are shown in Figure 6.5 (b–d). An increase in
depth difference thresholds with respect to eccentricity can be seen as expected.
This implies that the human visual system (HVS) is less sensitive to the incorrect
edges generated by LB in the peripheral visual field, and it provides the flexibility of
using LB instead of LFS at edges located in the periphery to improve performance.
Another observation is that the difference between LB and LFS decompositions is
highly distinguishable at low luminance contrast edges, which is a finding that is in
the opposite direction of the analysis on texture, where the difference between LB
and LFS is reduced with the luminance contrast reduction as shown in Figure 6.4
(a,b). Notice that at the occlusion boundaries, the mixed signals from the focused
and defocused image regions are perceived, which is not the case for local texture
perception. The following section further analyzes this interesting trend.
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These SSIM values clearly indicate that LFS surpasses LB in all cases.

6.5.2 Analysis of Edge Profiles

In order to clarify the occlusion perception, the conducted analysis in this part
investigates 1D luminance profiles (Figure 6.6) that are produced at the fovea by LB
and LFS methods while observing a depth edge between the front and back planes.
It is assumed that the eye is always focused on the front plane, which leads to the
strongest artifacts [Narain et al., 2015].

The E-1—E-3 types in Figure 6.6 show the depth discontinuity where the lumi-
nance values are the same for the front and back planes. In such conditions, the
artifact patterns in the LB decomposition can be attributed to an interaction of two
factors: optical blur in the back plane and luminance additivity in the two-plane
display. As the energy of the blurred signal increases with the back-plane luminance,
the artifact’s absolute magnitude is larger in the E-3 than in the E-1 case. However,
the artifact detectability, akin to Weber’s law, depends on its luminance contrast with
respect to the uniform background; thus, the E-1—E-3 types have similar thresholds
(Figure 6.5 (b)). In general, the eye sensitivity for this type of artifact is relatively high,
as the contrast detection thresholds at uniform backgrounds are relatively low [Legge
and Foley, 1980]. The artifact contrast increases with depth discontinuity, so that it
can easily be detected even for small depth differences (Figure 6.5 (b)).

The F-1—F-3 types in Figure 6.6 show the depth discontinuity where the front-
plane luminance values are higher than their back counterpart. Similar artifact
patterns as in the E-1—E-3 types are created, but this time they are imposed on
contrast edges that act as contrast maskers [Legge and Foley, 1980]. Effectively
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FIGURE 6.7: SSIM calibration. (a) The RMS error between the predicted depth thresholds and
experimental results. (b–d) the predicted depth difference thresholds from SSIM for various eccentricities.
The values represent the error between the predicted thresholds and the experimental outcome.

contrast discrimination thresholds for such artifacts are elevated, which requires a
significant increase in depth discontinuity to make the artifact visible (Figure 6.5 (b)).

The B-1—B-3 types in Figure 6.6 show the depth discontinuity where the back-
plane luminance values are higher than their front counterpart. This time the artifact
pattern is embedded into the edge luminance profile, which might result in a more
blurry edge appearance. Nevertheless, the HVS sensitivity for such artifact patterns is
similar to the F-1—F-3 types (Figure 6.5 (b)) with remarkably close depth thresholds
for the same luminance contrast (the F-1 and B-1, and F-3 and B-3 types). This
observation does not hold for the F-2 and B-2 types, and it can possibly be attributed
to the imperfect luminance profiles for LFS due to intensity saturation caused by
constrained optimization. Interestingly, the variance in the participant responses is
higher for the B-1—B-3 types than their F-1—F-3 counterparts.

While the analyses in this chapter avoid conducting a detailed analysis of the
eccentricity cases (Figure 6.5 (c-d)), overall, similar observations can be made.

6.5.3 Calibrating SSIM

Similar to the analysis in Section 6.4.2, the SSIM metric is calibrated to predict the
outcome of perceptual experiments (Section 6.5.1). Instead of using the previous
detection threshold, the optimal SSIM is derived to detect artifacts at occlusions
independently. This strategy follows the observations made in Swafford et al. [2016]
and Adhikarla et al. [2017], where specific training for each artifact type led to the
improvement of SSIM metric predictions.

For each combination of the luminance contrast and depth difference, the front
focal images for both LFS and LB are generated and the minimum value in the SSIM
map between the two algorithms is measured. In order to simulate the perceived
image in the peripheral vision, a Gaussian blur with the cutoff frequency according
to the quantitative HVS model by Watson and Ahumada [2011] is applied. The RMS
error between the predicted and actual depth differences is the smallest, around
0.7–0.83 (Figure 6.7 (a)), and the largest value is select as the detection threshold
conservatively. The depth difference thresholds as predicted by the SSIM are shown
in Figure 6.7 (b–d) for various eccentricities. The errors are typically acceptable when
compared to the variance in the user experiment in Figure 6.5 (b–d). However, the
SSIM prediction produces depth thresholds that are consistently too large for the
F-type distortions and too small for the B type (Figure 6.6). This discrepancy in
the SSIM sensitivity might be attributed to differences in the distortion profiles as
discussed in Section 6.5.2. Further consideration would rely on a more conservative
prediction for the B type.

Using the calibrated SSIM, the depth thresholds can be predicted for larger eccen-
tricities in display configurations with a wider field of view and extended dioptric



76 Chapter 6. A Perception-Driven Decomposition for Multi-Layer Displays

range. Based on these predictions, combined with the experiment outcome in the
fovea and near eccentricity (Section 6.5.1), The next section investigates the selection
rule for finding regions to apply LFS.

6.6 Unified Optimization

The conducted analyses reveal that LB can be applied for all textured surfaces (Sec-
tion 6.4). For occlusion boundaries, LFS is applied depending on the luminance
contrast, depth difference, and eccentricity (Section 6.5). This section establishes
the selection rule for LFS based on the occlusion analysis and proposes a unified
optimization to integrate LB and LFS.

6.6.1 Selection Rule
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FIGURE 6.8: The predicted depth dif-
ference thresholds from the SSIM. The
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0.068. For the measurement data only,
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The selection rule is designed for LFS as a
function of the Michelson contrast, eccentric-
ity, and depth. First, each combination of back-
ground and foreground luminance is expressed
as Michelson contrast. In this case, the F-1 and
B-1, F-2 and B-2, F-3 and B-3, and E-1–E-3 types
have the same contrast. Among two or three dif-
ferent depth thresholds for a given contrast, the
smallest depth threshold is selected to be on the
conservative side. In the SSIM prediction, the
perception of artifacts at large eccentricities is
also analyzed, which is expected to lead to larger
depth thresholds. In order to check the depth
separation beyond 0.6 D, a four-plane display
with a 0.6 D gap between successive layers is simulated. The experimental outcome
still holds for this display configuration since LB assigns the values to two nearby
planes only; therefore, the behavior of LB in the two-plane display and the four-plane
display is the same for edges with less than 0.6 D separation. In Figure 6.8, the
depth threshold is extrapolated to 50◦ eccentricity. Then, a 3D surface is fitted to
the predicted depth thresholds. The depth thresholds obtained from the perceptual
experiments are marked with red points, and the predicted thresholds from SSIM
are indicated with blue points. Although further confirmation is required with the
perceptual experiments, a huge computational gain could possibly be obtained in a
wide field of view multi-layered displays in the future. In the proposed method, LFS
is applied to the cases where the depth difference is larger than the depth thresholds
on the predicted surface.

Based on the selection rule, a mask is generated to identify the regions that
require LFS. The example of a mask generation for a fish scene in Figure 6.12 is
shown in Figure 6.9. From the depth map (Figure 6.9 (a)) and Michelson contrast
map (Figure 6.9 (b)), a mask is generated to apply LFS for the center gaze direction
(Figure 6.9 (c)). The A and B cases show the occlusion boundaries eliminated from the
mask due to the decreased sensitivity at high eccentricities. The C case is an example
of type E edges in Figure 6.6. Although this edge has a small depth difference, it is
still masked due to its lower luminance contrast compared to nearby edges.
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FIGURE 6.9: Mask generation. (a) Depth map. (b) Michelson contrast map. (c) Mask. White region:
masked region for the center gaze direction. Green region: masked region assuming no degradation of
HVS at high eccentricities.

6.6.2 Unified Decomposition Framework

This chapter also proposes a unified optimization scheme that solves LFS with LB
as a constraint. In practice, LFS and LB can be separately calculated which can be
then blended at intersection regions. However, keeping in mind that LFS requires
a constrained least square optimization, using LB as the boundary condition for
LFS can provide a smooth transition at intersections. The original decomposition
algorithm of LFS can be written in the following form:

L(v, u1)
L(v, u2)

...
L(v, uK)


(KN)×1

=

P11 P12 . . . P1D
...

...
...

...
PK1 PK2 . . . PKD


(KN)×(DN)


x1
x2
...

xD


(DN)×1

. (6.1)

Here, a two-plane parametrization of the light field is employed. v denotes the
spatial coordinate on the light field plane and u denotes the spatial position of the
pupil. L(v, uk) is a vectorized 2D image given a viewpoint k and xd is a vectorized 2D
pixel value on the display layer d. K is the number of viewpoints and D is the number
of layers. Without loss of generality, the number of pixels in each layer and target
light field is both equal to N. In practice, the target light fields can have different
resolutions. The submatrix Pkd of projection matrix P is defined as follows [Lee et al.,
2016]: (Pkd)i,j = 1 if L(i, uk) intersects with (xd)j, and 0 otherwise.

Each component is divided into two regions: the masked and unmasked regions.
then the full decomposition is applied to the masked region and the linear blending
rule to the unmasked region. The subscript M denotes “masked” and U denotes
“unmasked”.

L(v, uk) =

[
L(v, uk)M
L(v, uk)U

]
, Pkd =

[
Pkd,M
Pkd,U

]
, xd =

[
xd,M
xd,U

]
(6.2)

Then the original equation can be rewritten as follows:

L(v, u1)M
L(v, u1)U
L(v, u2)M
L(v, u2)U

...
L(v, uK)M
L(v, uK)U


(KN)×1

=



P11,M P12,M . . . P1D,M
P11,U P12,U . . . P1D,U
P21,M P22,M . . . P2D,M
P21,U P22,U . . . P2D,U

...
...

...
...

PK1,M PK2,M . . . PKD,M
PK1,U PK2,U . . . PKD,U


(KN)×(DN)



x1,M
x1,U
x2,M
x2,U

...
xD,M
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(DN)×1

(6.3)
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FIGURE 6.10: The display prototype. (a) The schematic, and (b) a photograph of the display system.
BS: Beam splitter, ET: Eye tracker.

Since the linear blending rule is applied for a single image, the term L(v, uk)U , Pkd,U
and xd,U for k > 1, can be eliminated assuming that u1 is the center viewpoint. Then,
the unmasked region is handled only with the center viewpoint, L(v, u1)U .


L(v, u1)M
L(v, u1)U
L(v, u2)M

...
L(v, uK)M


(N+(K−1)NM)×1

=


P11,M P12,M . . . P1D,M
P11,U P12,U . . . P1D,U
P21,M P22,M . . . P2D,M

...
...

...
...

PK1,M PK2,M . . . PKD,M


(N+(K−1)NM)×(DN)



x1,M
x1,U
x2,M
x2,U

...
xD,M
xD,U


(DN)×1

(6.4)

By applying the linear blending, the dimension of the projection matrix can be
reduced from (KN)× (DN) to (N + (K − 1)NM)× (DN), where NM denotes the
number of pixels in the masked region. For example, if K = 9, D = 3, NM = N/4,
then the dimension changes from (9N)× (3N) to (3N)× (3N).

Solving the reduced decomposition problem, however, does not provide the
correct answer because xd,U do not have enough constraints. The multi-viewpoint
images impose constraints on each pixel value, but the single viewpoint cannot.
Therefore, the pixel values should be calculated separately according to the linear
blending rule and replaced in each iteration step.

6.7 Implementation

6.7.1 Rendering and Decomposition

The proposed rendering pipeline breaks down into four steps: (1) rendering the
central viewpoint image and depth map, (2) computing the mask for LFS, (3) ren-
dering additional viewpoint images on the masked region, and (4) performing LB
and the iterative decomposition using SART. In the case of full light field synthesis
without any mask, nine views with a 1200× 1200 resolution are rendered using a
1 ray/pixel. For the proposed decomposition, a single 2D image and depth map
are first rendered. By analyzing the luminance contrast and depth gradient map,
the masked region is calculated based on the criteria in Section 6.6.1. Next, the 8
viewpoint images, except the center images falling inside the pupil, are generated
only for the masked region. Compared to the generation of full light fields, The
presented selective rendering can greatly reduce the computation time. From the
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TABLE 6.1: The rendering and decomposition timings of the proposed hybrid method for various scenes.
The rendering and decomposition timings are given in ms. The values in the parentheses indicate
timings for full LFS rendering.

Scene # polygons mask(%) rendering decomposition
Fish 20498 7.3 9.26 (27.48) 2.57 (4.11)
Dice 569810 6.5 14.11 (47.08) 2.44 (4.12)

Forest 16924 1.8 7.29 (28.31) 2.35 (4.19)

rendered target scene, the optimal decomposed images are calculated using the uni-
fied decomposition framework (Section 6.6.2). At this stage, the optimization time
is further reduced over the conventional SART implementation by developing an
efficient adaption of SART in CUDA. The rendering system is implemented using
the Nvidia OptiX ray tracer, which enables selective rendering for a given mask with
minimal overhead. The renderer is driven by a PC with a 3.60 GHz Xeon CPU and
32.0 GB RAM equipped with a single Nvidia GTX 1080 TI graphics card.

6.7.2 Eye-Tracked Multi-Layered Accommodative Display

In order to test the rendering strategy, a two-plane VR display is designed and built.
The schematic and photograph of the setup are shown in Figure 6.10. For each eye,
images from two 2560 × 1440 LCD displays (Topfoison TF60010A) are combined
with a beam splitter (Edmund Optics #64-408) and magnified with an achromatic
lens (Thorlabs AC508-080-A). Eye trackers (Pupil Labs) are placed right behind the
two lenses. The optical system for the right eye is mounted on the linear stage for
adjusting the interpupillary distance. The dioptric distances to the front and back
virtual planes are set to 2.0 D and 1.4 D, respectively.

The resolution of the display is 1200 × 1200, which is significantly higher than the
light field displays reported so far [Huang et al., 2015b; Mercier et al., 2017; Lee et al.,
2017]. FOV is 40◦, and the angular resolution of the system is 15 cpd. The designed
system has a high enough resolution and large enough FoV to study the effect of
foveation, while the resolution of current VR and AR systems rarely exceeds 10 cpd,
which is quite limited for foveated rendering.

6.8 Results

Three different scenes are rendered to evaluate the rendering strategy. First, the
computational time is measured for the proposed optimization algorithms. Then, the
visual quality of the method is compared with LB and LFS on the display prototype
and using simulations.

6.8.1 Performance

The total rendering time is calculated for the whole pipeline during monocular
viewing. For three scenes in Figure 6.12, the rendering and decomposition timings for
the proposed hybrid method and full LFS are measured in Table 1. All decompositions
are performed with 10 iterations. As the shader/geometry complexity becomes
higher, the rendering time increases. However, the computational saving of the hybrid
method is even more pronounced with respect to full LFS since, in many scene regions,
only a single view was required for LB and can avoid full LF rendering. It can be
seen that the decomposition time only depends on the percentage of masked regions.
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FIGURE 6.11: The rendering and decomposition
timings for various ratios of the masked region for
the fish scene in Figure 6.12.

The presented test scenes contain 5.19%
of LFS region on average. The frame
rates are measured as 84 Hz (×4.25), 60
Hz (×4.06), and 103 Hz (×4.50) for the
fish, dice, and forest scenes. The val-
ues in the parentheses denote the speed
enhancement over full LFS after sub-
tracting a fixed cost of a single view
rendering. If a scene contains many
depth edges, the performance gain of the
presented hybrid method reduces since
most of the regions should be rendered with LFS. For binocular viewing conditions,
the stereoscopic scenes are rendered sequentially. In this case, the total rendering
time increases by a factor of 2. In order to test the effect of the percentage of the
masked regions, the timing is also measured for various masked regions for the fish
scene as shown in Figure 6.11. Here, the masks were randomly generated instead of
using the mask generated by the selection rule in Section 6.6.1. The zero percentage
corresponds to the LB-only rendering. The total optimization time linearly increases
as the masked region grows. This trend implies that there is minimal overhead
coming from selective rendering for the randomly masked region.

6.8.2 Comparison

Figure 6.12 shows, for each scene, the real photographs from the display and the
simulated perceived images. Three algorithms are compared: LB, full LFS, and the
proposed optimization. The masks are computed assuming the gaze is directed
toward the center. For the simulated images, the SSIM is computed against ground
truth, which is the focal image generated with dense light fields. The SSIM maps
indicate that LB produces strong artifacts mostly along the occlusion boundaries.
Furthermore, the boundaries between LFS and LB in the proposed algorithm do
not produce any noticeable discontinuities, confirming the validity of the unified
decomposition framework. However, halo effects are visible around edges in captured
images for both LFS and the presented method. It is found that small errors in color
calibration between two display layers led to such artifacts, which are not visible in
the simulation.

The fish and dice scenes show various aspects of edge reconstruction analyzed
in Figure 6.6. The blue fish and gray dice are examples of the E-3- and E-2-type
occlusions. LB generates a sharp contrast, while LFS produces smooth transitions. On
the other hand, as seen around the yellow fish and reddish-brown dice, the B-2-type
edges from LB look blurry, but sharp edges are obtained in the proposed method.
The edges along the white part of the fish or the orange dice present F-2-type profiles.
Since the foreground objects are brighter, the differences among the three algorithms
are less obvious.

The forest scene demonstrates the reconstruction quality in textured regions.
The high-frequency features of slanted grass fields are preserved in LB and the pre-
sented method, but they are blurred out in LFS, which is expected from Figure 6.4(e).
Although the method provides better image quality, this enhanced contrast could
possibly lead to incorrect contrast curves as seen in Figure 6.2. However, far-focus im-
ages still look more blurry than the focused images on the grass field, which suggests
that the failure of LB at high spatial frequencies does not affect the effectiveness of
driving accommodation [MacKenzie et al., 2010]. On the other hand, low-frequency



6.8. Results 81

200 400 600 800 1000 1200

Capture Capture Capture CaptureSimulation Simulation Simulation SimulationSSIM map SSIM map

Near focus Far focus Near focus Far focus

LF
S

LB
LF

S
LB

LF
S

LB

E-3

B-2

F-2

E-2
B-2

F-2

Middle focus Far focus Middle focus Far focus

-1 0 1 -1 0 1

Pr
op

os
ed

Pr
op

os
ed

Pr
op

os
ed

FIGURE 6.12: Comparison of various decomposition methods for various scenes. The images (column
1) represent the target scenes. The upper and bottom images (column 2) are the corresponding depth
maps and masks (white region: masked region for the center gaze direction, green region: masked region
assuming no degradation of HVS at high eccentricities). For each scene, the proposed method (row 3) is
compared to the LB (row 1) and full LFS (row 2). The near or middle focus images (columns 3–5, 8–10)
show captured images from the display, simulated perceived image, and SSIM map between the ground
truth and simulation. The captured and simulated images at far focus are also shown in columns 6–7
and 11–12.

textures on the yellow and green trees are reconstructed with slightly higher contrast
for LFS, which is expected from the low-frequency region in Figure 6.4(d). However,
for those regions, the differences between the two methods are subtle, so they are
not distinguishable according to the carried out perceptual experiment and SSIM
predictions.

6.8.3 Temporal Coherence

As temporal coherence is a critical use case for real-time methods, the temporal
coherency of the proposed method is tested on dynamic scenes. Luckily, the obtained
perceptual findings allow the use of LB for textured regions, while temporal changes
occur only around edges. Since the threshold functions on edges are derived based
on indistinguishability between LB and LFS (Section 6.6.1), smooth transitions can
be achieved when a switch between LFS and LB occurs near the threshold. First,
the transition behaviors are evaluated in two dynamic scenarios. In both cases, it
is assumed that the gaze is directed toward the center, which is marked with a
red box. The captured and simulated videos do not show any noticeable artifacts
around the edges near the gaze position. In the periphery, the transition between
the two algorithms are sometimes visible, but those boundaries are not noticeable in
actual viewing conditions due to the reduced sensitivity of HVS. In Scene 1, it can be
observed that rendering artifacts around the high spatial frequency textures originate
from the low sampling rate used (1 ray per pixel) and are unrelated to the quality of
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FIGURE 6.13: The percentage of answers preferring the presented method over LB and LFS for three
scenes. The error bars indicate the standard error.

the generated mask. In order to address this issue, space-time ray-tracing methods
can be employed in the future for a better rendering quality [Glassner, 1988]. For
better visualization of various artifacts, the SSIM map is also computed between the
images generated with the proposed method and the ground truth. Here, the ground
truth is computed as focal images generated with dense light fields. The SSIM maps
indicate that high spatial frequency textures show noticeable deviations due to the
use of single ray per pixel and imperfect reconstruction of high spatial frequencies as
discussed in Figure 6.2. The SSIM videos also show an error at occlusion boundaries
in the periphery, but it is not noticeable due to the foveation. Although those artifacts
are clearly seen in the SSIM maps, the rendered videos do not exhibit significant
artifacts when they are observed alone without the comparison against the ground
truth.

6.9 Evaluation

In order to validate the perceptual quality of the proposed design, a user experiment
is conducted to compare (LB, Ours) and (gaze-contingent LFS, Ours) for four static
scenes in a binocular setting. In order to simulate the gaze-contingent sampling in
Section 6.3, gaze direction stimuli are shown to the user, and decomposed images
are optimized for a given gaze direction. To allow the accommodation change, the
gaze direction stimuli were set to rectangular boxes extending 2◦ of visual angles
for both eyes. This small gaze change does not introduce the generation of new
decomposed images in gaze-contingent LFS. The subjects are instructed to maintain
the gaze direction inside the box but to judge the overall image quality. In each trial,
the users are asked to choose the scene which produces better image quality. In each
scene, the users compare the quality of scenes in five different gaze directions. Six
subjects participated in the experiment. The outcome of the perceptual evaluation
is shown in Figure 6.13. A high preference can be observed for the method over
the LB, and the difference between the two methods is found statistically significant
in the binomial test (p < 0.05 for all scenes). This can be attributed to the better
reconstruction of edges in the method. In the forest scene, the difference between
LB and the proposed algorithm decreases since the scene mostly consists of textured
regions without occlusion. In comparison with LFS, the algorithm shows similar
preferences for fish and dice scenes (p > 0.50), which indicates the observers are
indifferent between the two methods. Considering the fact that those two scenes
contain many occlusion boundaries, the outcome of the user study suggests that
the masking algorithm in Section 6.6.1 successfully works. However, the subjects
preferred LFS over the proposed method in the forest scene, which contains high-
frequency features, and the difference is significant (p < 0.05). Although it was
not investigated formally, subjects reported that they prefer blurred texture in LFS
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over ours (Figure 6.12). Since the reconstruction of high-frequency textures requires
precise alignment, small pupil and head movements may lead to the perception of
those features as noise patterns.

6.10 Limitations

Display The optical system in the display prototype is based on magnifier lenses;
therefore, the system suffers from aberrations around the outer regions. The multi-
plane displays with holographic optical elements [Lee et al., 2017] could be a good
candidate for reducing image degradation. Although the considered display provides
a relatively wide FOV of 40◦, it is still smaller than current VR displays. The dioptric
range of the display is also limited to two-plane displays. Therefore, further validating
the occlusion analysis in wide FoV multi-plane displays with a larger dioptric range
is required. The development of the displays with the extended dioptric range also
enables the study of foveation rules on the occlusion boundaries in the context of
defocus states, while only eccentricity has been considered in the conducted study.
Similar to blurred artifacts at high eccentricities, large depth differences between the
eye focus and edge can also reduce sensitivity to edge artifacts. The current prototype
lacks devices measuring the accommodation states [Mercier et al., 2017; Koulieris
et al., 2017]. The evaluation of the effectiveness of driving accommodation with
different optimizations would be important for future work.

Perception The presented method in this chapter relied on a specific image quality
metric (SSIM). As image quality evaluation is still an open problem, the suggested
detailed masking aggregation could be affected by SSIM inaccuracies. As observed
in the validation experiment, the prediction of SSIM does not account for artifacts
induced by viewing conditions such as pupil movements and misalignment. Since
the perceived images depend greatly on the focal state, a quality metric that can
meaningfully compare light fields would be required. Such a metric should be
applied after considering display-specific limitations in reproducing light fields.
Also, a metric capable of predicting the ability to induce eye accommodation by such
reproduced light fields would be desirable in deriving possibly new foveation rules in
the proposed approach. All these interesting and difficult problems can be relegated
to future work.

Rendering In this chapter, Lambertian scenes are only considered, whereas han-
dling glossy objects would require the extension of the proposed masking algorithm
to consider such objects as a function of the visibility of view-dependent effects. Since
the boundaries between LFS and LB show smooth transitions as seen in Figure 6.12,
extending the mask region should handle non-Lambertian scenes as well. Regret-
tably, no direct comparison is performed to the RO method. Although RO performs
moderately better at 9 and 12 cpd according to the analysis in Figure 6.2, this quality
improvement comes at a significant computational speed loss. It is noteworthy that
the rendering speed of RO is reported as 5 FPS for a display resolution of 512×512
[Mercier et al., 2017], while the performance time of the method is faster than 60 FPS
for a display resolution of 1200×1200. Furthermore, none of the methods can correctly
trigger accommodation at 12 cpd; therefore, it implies that the gaze-contingent LFS
is a suitable method providing similar quality offered by RO yet with much faster
computational speed. Although a performance gain is expected without significant
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quality degradation, this comparison would be relegated to future work. The pro-
posed strategy can be potentially used to combine RO and LB techniques, but this
requires further investigation.

6.11 Conclusion

This chapter presents a hybrid decomposition framework of linear blending and light
field synthesis that enables real-time rendering and high-fidelity reconstruction in
multi-layered light field displays. The perceptual experiments and the SSIM analysis
conducted in this chapter provide a deeper insight into visual quality produced
by different decomposition algorithms. In particular, it is shown that for textured
surfaces, LB and LFS are indistinguishable for low to mid-spatial frequencies, and LB
is closer to the ground truth for high spatial frequencies. For occlusion boundaries,
LB fails at low luminance contrast edges rather than high contrast edges, which
seems counterintuitive but is a consequence of the additive combining of focused and
defocused patterns at both edge sides. Moreover, those conditions for occlusions can
be further relaxed for surfaces at sufficiently large eccentricities when the sensitivity
of the HVS drops significantly. In order to realize the proposed selective optimization
strategy, a unified optimization framework is developed to combine LB and LFS
efficiently. The proposed rendering strategy is tested with a two-layer multi-plane
display and validated the 60 Hz rendering time for 1200×1200 resolution with nine
viewpoints.

While this chapter focuses on the additive light-field display, the presented hybrid
strategy can possibly be extended to the multiplicative light-field displays since it can
be formulated with the additive light-field synthesis under logarithm [Lanman et al.,
2011]. Therefore, investigating the simple decomposition rules in a multiplicative
architecture and integrating them with the light field synthesis algorithms would be
an interesting topic. Since the major artifacts of LB around the occlusion originate
from the additive nature of the light-field display, studying the edge artifact in the
multiplicative display would lead to interesting perceptual insights in accommodative
light-field displays.
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Chapter 7

Conclusion

This thesis presented several innovative approaches to improve the quality and
practicality of image-based rendering (IBR). One approach, described in Chapter 3,
combines primitive image formation models with a learned scene representation to
enable real-time interpolation of a scene captured at sparse views, lighting positions,
and times. Although this approach is not intended to generalize across different
scenes, it effectively handles the task of generalizing across changes in geometry,
motion, and illumination, producing state-of-the-art visual quality at an interac-
tive speed. Chapter 4 presents another approach that utilizes a physically-based
formulation to optimize the 3D spatially-varying index of refraction based on 2D
observations, allowing for the reconstruction of high-quality novel views of scenes
with refractive objects in an unconstrained capturing setup. Chapter 5 presents a
no-reference visibility metric designed for detecting artifacts in IBR images, along
with a training strategy to minimize false positives and negatives. The proposed
metric is demonstrated through two applications: accelerating automated adaptive
light-field capture and providing feedback in an interactive depth manipulation
system. Finally, Chapter 6 proposed a perception-driven rendering technique for
multilayer accommodative displays, which achieves both real-time performance and
high-fidelity results.

In addition to the specific contributions made by the methods presented in this
thesis, subsequent sections delve into some insights and potential future directions
that can be gained from each chapter, respectively.

7.1 Implicit Scene Representation

Unlike traditional methods of representing signals as discrete grids of pixels or pa-
rameterizing 3D shapes as grids of voxels, point clouds, or meshes, the implicit
representation is a novel approach that represents a signal as a continuous function
mapping a domain (such as 3D coordinates or pixel positions) to a corresponding
output (such as an image). This continuous representation encodes the scene into the
weights of the neural network, and the resulting inductive bias offers several potential
benefits compared to traditional discrete representations, including increased flexi-
bility and capability for more efficient processing [Tewari et al., 2022]. The X-Field
representation in Chapter 3 builds upon this approach by introducing two modifica-
tions to the implicit representation. Firstly, similar to previous work by Zhou et al.
[2016] and Sun et al. [2018b], it predicts texture coordinates rather than appearance.
These texture coordinates are used to drive a spatial transformer [Jaderberg et al.,
2015], allowing for copying details from the input images without requiring their
explicit representation and enabling fast processing (20 fps). Secondly, the approach
utilizes a 2D CNN instead of a 3D multilayer perception (MLP) to directly return a
complete 2D per-pixel depth and correspondence map for a given input coordinate.
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This is more efficient for solving X-Field problems than ray-marching and evaluating
a complex MLP at each step. In general, utilizing flow maps to warp input images
instead of directly generating their appearance can bring several advantages. One
is that the interpolated images will retain the quality of the original input as they
are constructed by directly combining the input images. Second, as the changes in
flow are smoother compared to colors [Zhang et al., 2021c], the interpolation becomes
easier. For instance, in a stereo vision problem where there is a planar surface with
complex texture positioned at a constant depth, the motion flow (disparity) can be
described by a constant value for all pixels if the surface is shifted by a small amount
(e.g., ten pixels) when seen from another view. This smoothness in flow can make it
easier to interpolate between different views than directly regressing the color, which
may require more complex modeling. Methods that rely on directly reproducing the
appearance [Barron et al., 2021; Yu et al., 2021a; Sun et al., 2022] face an even more
significant challenge in preserving the intricate details of textures when working
with high-resolution input images. Expanding the capacity of these models through
larger MLPs or voxel grids leads to a trade-off between slower inference time and
excessive storage costs. In contrast, the proposed architecture can effectively scale to
high-resolution outputs by adding minimal layers without incurring a substantial
computational burden. Drawing inspiration from Sun et al. [2018a], this architec-
ture can be trained on lower-resolution images and then applied to the original
high-resolution photos by simply upsampling the learned flows. Additionally, the
proposed approach incorporates flow consistency into the image composition process
rather than the loss functions during training. This concept could be applied to other
image-based interpolation methods [Wang et al., 2021a; Li et al., 2022d]. Unlike
existing methods [Wang et al., 2021a; Li et al., 2022d], which demand meticulous
design of latent codes to enable semantic control of the scene, the method proposed
in Chapter 3 does not require any additional effort to construct latent codes, as they
are already provided in the form of well-organized space-time-light coordinates.
Chapter 3 assumes that changes in the scene can be explained by flow, and scenes that
do not adhere to this assumption might fail regardless of the density of input data or
the capacity of the model. For instance, the strict separation between shading and
albedo may be inadequate in explaining changes in global image brightness caused
by casual photography with automatic exposure. Despite this, the concept may be
beneficial in separating the reflective and diffuse layers for synthesizing novel views
of scenes with reflective surfaces [Kopf et al., 2013; Xu et al., 2021]. On the other
hand, if all necessary data is available and the model assumptions are met, a neural
network (NN) must have sufficient capacity to effectively process and represent the
input signals. Many current approaches to scene representation [Mildenhall et al.,
2020; Sitzmann et al., 2019b], including those presented in this thesis, use a fixed-size
NN to approximate a scene, regardless of its complexity. However, this can result in
over- or under-representation of the scene. One potential avenue for improving the
effectiveness of these representations is to design an NN whose capacity is adaptive
with respect to the complexity and resolution of the input scene, similar to the ap-
proach used by Takikawa et al. [2021], Yu et al. [2021b], and Liu et al. [2020] where a
sparse octree is used to fit volume grids to objects adaptively.

The X-Field representation requires structured input in the form of relative view
and light positions for cameras and light sources that lie in a plane. Although the
extension to unstructured view-light capture can be made possible by replacing the
flow map with a depth map, provided that the transformation between the cameras is
known, recent implicit volumetric representation approaches [Du et al., 2021; Zhang
et al., 2021b], inspired by the seminal work of Mildenhall et al. [2020], seem to serve
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better in this task as they are able to produce more "consistent" 3D reconstruction
through the combination of volume rendering and coordinated-based MLPs. How-
ever, these representations come with a high computational cost and typically require
a large number of input views to be effective, and their performance can degrade
significantly when the number of available views is very limited. Although voxel-
based optimization approaches [Sun et al., 2022; Yu et al., 2021a] can help speed up
the rendering process; still, a special treatment [Niemeyer et al., 2022] is required to
achieve accurate results when dealing with sparse observations. Investigating the
feasibility of interpolating from even sparser observations, such as using only one
observation per each X-Field dimension, could be an exciting direction for future
research.

Integrating the coord-conv layer is essential for the successful interpolation in
X-Field. Without this layer, the output flow would become a constant value, and in
the case of disparity estimation, this value would correspond to the mean disparity of
the entire scene. While the coord-conv layer, first introduced in Liu et al. [2018], was
intended to furnish features with information about their spatial position, making
the convolution process translation-invariant, further research is required to fully
comprehend the role of this layer. Alternative architectures, such as MLPs, can also be
considered to represent the X-Field signals. Instead of using cascades of convolutional
and upsampling layers to process (2D, 3D, or 5D) X-Field coordinates, similar to Attal
et al. [2022], Li et al. [2021], and Sitzmann et al. [2021] where an MLP is trained to
map 4D light field coordinates (consisting of 2D pixel positions and 2D ray directions)
to corresponding color values, an MLP could take the X-Field coordinates along with
2D pixel positions as input and output flow Jacobians. It is worth noting that this
approach can still be computationally efficient, as each pixel would only require a
single MLP evaluation, in contrast to the hundreds of evaluations per ray that are
needed for volume rendering in NeRF.

When the variations in scene content are moderate, the X-Field representation can
yield output flows that are sharp and well-defined. However, in the case of sparse
input images with more substantial changes, it may encounter difficulty in producing
detailed flows, as evidenced in Figure 3.18. A coarse-to-fine matching strategy similar
to those employed in multi-view stereo [Dabała et al., 2016], optical flow [Sun et al.,
2018a], and the progressive grid in Chapter 4 can be adopted to facilitate finding the
correspondence in larger changes in light, view, and time. Lastly, it would also be
interesting to include editing capabilities, such as changing the style and appearance
of the objects [Zhang et al., 2022; Huang et al., 2022] along with X-Field interpolation
in a consistent way.

7.2 Handling Complex Lighting Effects

Transparent objects reflect and refract light, causing it to bend and scatter in various
directions, and when they come into interact with light and their surroundings, they
produce intricate visual effects. While a few works deal with novel view synthesis
of transparent objects, most of them focus on accurately reconstructing the shape
of these materials [Xu et al., 2022; Lyu et al., 2020; Li et al., 2020]. These methods
often require specialized capturing equipment or large synthetic training datasets
and may need knowledge of the environment and the initial shape of the transparent
object with an input mask. Additionally, they are unable to handle objects with
varying indices of refraction (IoR). In contrast, Chapter 4 aims to overcome these
limitations by synthesizing plausible views of transparent objects in a general and
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unconstrained setup, using an adapted eikonal formulation [Ihrke et al., 2007] that
allows for modeling of objects with varying indices of refraction. Although it is
trained per scene, the optimization is done from scratch without requiring a shape
prior.

Chapter 4 adopts the volumetric representation approach introduced in NeRF,
which is not computationally efficient. Regrettably, it is even more demanding than
NeRF as it requires a heavy gradient calculation in each eikonal step. Additionally,
the volume rendering is done using stratified sampling with a high sample count.
Devising a sampling strategy similar to hierarchical sampling in NeRF could help to
save computation and increase the quality through allocating more samples on the
surface regions and the boundary of the IoR field [Pan et al., 2022]. To enjoy even
faster optimization, it is worth considering grid-based representation for modeling
the IoR and absorption-emission fields [Yu et al., 2021a; Sun et al., 2022]. Further
improvement in test time execution can also be achieved by pre-computing a second
volume containing the gradient of IoR volume. However, the grid-based optimization
needs to be regularized to ensure a smooth solution that an MLP-based representation
naturally provides.

The optimization in Chapter 4 is done sequentially in which the diffuse world is
learned first, and then the IoR field is learned in a second pass that requires a user to
mark the bounding box of the transparent object. While it would be ideal to perform
the optimization jointly and automatically with minimal user intervention, the joint
optimization process is highly under-constrained. It becomes especially challenging
when rays bend a lot, as it becomes harder to find correspondences between the
input images and the background. Additionally, the optimization process deals
with the spatial gradient of the index of refraction rather than the IoR itself, which
can be numerically demanding and unstable. However, coarse-to-fine optimization
through frequency annealing as suggested [Lin et al., 2021; Park et al., 2021] could be
a promising approach to make joint optimization possible.

The approach described in Chapter 4 only accounts for refraction and does not
consider other light phenomena such as reflection or dispersion. This is because the
eikonal equations used to model the propagation of light only describe refraction, and
it is not currently clear how to include reflection in these equations in a unified form.
Handling other phenomena, such as dispersion (the process of white light splitting
into its constituent colors), would require introducing wavelength-dependent param-
eters into the volume-rendering formulation. This could also enable the rendering of
colored glasses, in which a specific wavelength is reflected or refracted while all other
wavelengths are absorbed. However, these ideas would require further investigation
to determine how they could be implemented in practice.

In Chapter 4, the volume rendering technique [Max, 1995] utilized in NeRF is
reformulated as a set of ordinary differential equations (ODEs) that are specifically
tailored to the eikonal equation. The backpropagation is performed using the method
introduced in Neural ODE [Chen et al., 2018b], which employs automatic differen-
tiation to compute the gradient of the solution of the ODEs with respect to their
parameters. This approach treats the underlying ODEs as a black box and employs
the adjoint sensitivity method [Pontryagin, 1987] to compute gradients efficiently,
thus avoiding the storage of intermediate steps. This allows volume rendering to
be conducted with memory independent of the step count, enabling the efficient
processing of a substantial number of rays (up to 32k) in each iteration. An alternative
approach [Teh et al., 2022] involves the derivation of a backpropagation formulation
specifically for the refractive ray tracing task. Similarly, this approach employs the
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adjoint state method to derive the derivatives with respect to the IoR field. This re-
sults in a constant memory complexity and requires significantly less memory when
compared to previous differentiable rendering methods that utilize reverse-mode
automatic differentiation.

One of the assumptions in Chapter 4 is that the background of the transparent
object is sufficiently visible in the captured images. However, this can be a problem
if the background is only presented through transparent objects, which is common
in sparse-capturing setups. Although joint optimization may address this problem
by simultaneously optimizing transparent objects and backgrounds to handle sparse
images, a more advanced treatment is required.

The key to optimizing the IoR field in Chapter 4 is to utilize progressively coarser
and finer versions of the emission and absorption models. However, how to smooth
a continuous MLP-based radiance field is not immediately clear. The frequency
annealing approach [Park et al., 2021] does not yield the desired band-limiting;
instead, a uniform grid is fitted to the learned radiance field, and a coarse-to-fine
radiance field is provided through low-pass filtering of the grid using a simple
Gaussian blur kernel. However, recent research on band-limiting the coordinate-
based networks [Lindell et al., 2022] can prove helpful in making these networks
scale-aware. It mainly enables the control of the frequency bandwidth of the network
at intermediate MLP layers, allowing for multi-scale image/volume representation.

Last but not least, similar to NeRF, the method outlined in Chapter 4 demonstrates
effectiveness in novel view synthesis, although it is not specifically tailored for 3D
reconstruction. The generated images are visually convincing using a physically-
based rendering technique, i.e., eikonal rendering. However, the resulting IoR volume
may not always be physically accurate. As depicted in Figure 4.7, the rays within a
transparent object with constant IoR bend gradually rather than experiencing sharp
bends at the object’s boundary. This is because the direction of the light path is
determined by the spatial gradient of the IoR field, and sudden bends require high
spatial gradients to occur, which optimization naturally avoids. Instead, optimization
strives to match the rendered image to the reference by gradually bending the rays so
that they end up in the same direction as if there had been two strong, sudden bends.

7.3 Design of a No-Reference Quality Metric

A no-reference (NR) quality metric is a method of evaluating the quality of an image
or video without relying on a reference signal for comparison. The assessment
typically is not limited to detecting distortion but, importantly, includes judging
magnitude and spatial locality. In Chapter 5, an NR metric is introduced to identify
distorted regions in images generated by the IBR method. As the IBR artifacts are
generally localized (e.g., appearing around the edges of occlusions), the proposed
metric goes beyond the typical mean opinion scores (MOS) [Yang et al., 2022; Ke et al.,
2021; Talebi and Milanfar, 2018] used to assess uniform distortions such as noise or
JPEG compression and deals with a more challenging task of generating a per-pixel
error map without accessing the reference. Such an error map provides analysis of
the image quality at a local level and opens the potential for many novel applications,
such as interactive or automatic view correction of rendering errors, as demonstrated
in Section 5.4.2.

While an NR metric does not require a reference pair for evaluation, developing
an NR metric relies on a data-driven approach that uses distorted-clean pairs or sub-
jective human scores for training. Unfortunately, existing image quality assessment
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datasets, either full reference (FR) [Zhang et al., 2018; Lin et al., 2019; Jinjin et al.,
2020] or NR datasets [Ying et al., 2019; Fang et al., 2020], do not include all types
of distortions and often rely on MOS ratings. This can be a limiting factor when
developing NR metrics for specialized tasks or applications. In the case of Chapter 5,
the challenge is compounded by the limited availability of training data for IBR.
Synthetic distortions such as noise, blur, or compression can be generated in large
quantities for training purposes, but in the context of IBR, the captured images are
typically sparse (e.g., 3×3, 5×5 light field); thus, only a small number of ground truth
images are available. Chapter 5 addresses this challenge by presenting a training
strategy that aims to minimize false positives or false negatives in the metric predic-
tion. One aspect of this strategy involves augmenting the training data with natural
images that are free from artifacts, as the number of rendered images containing
artifacts is typically limited. It is essential to consider the right balance between
natural and distorted training data to avoid false positives. The second aspect of the
strategy entails carefully calibrating the learning process so that all reconstruction
errors (in terms of their magnitude) are given equal consideration, thus avoiding
false negatives. By implementing these measures, the proposed metric in Chapter 5
improved the accuracy of the NR metric in the context of IBR. As a next step, it would
be interesting to examine the robustness of the metric through the use of adversarial
examples [Carlini and Wagner, 2017]. This could involve adding an imperceivable
noise or subtle blur to the distorted input image to test the reliability of the metric
prediction.

The methodology presented in Chapter 5 is independent of the chosen metric
for estimating the dissimilarity between images. It can mimic the response of well-
established FR metrics such as PSNR, SSIM [Wang et al., 2004b], and LPIPS [Zhang
et al., 2018], thereby enabling it to adapt to a wide range of FR metrics. This feature
renders the proposed method a highly versatile tool that can potentially be used in
various image quality assessment tasks.

While the considered distortions in this thesis are always IBR artifacts resulting
from a specific IBR method [Dabała et al., 2016], the training approach is irrespective
of the underlying IBR method, and it can be trained for other existing IBR methods
[Wang et al., 2021a; Barron et al., 2021]. The proposed metric can be useful as a loss
component or regularization term when training an IBR method with sparse input
images [Niemeyer et al., 2022]. In that case, during the training, the novel views
can be generated at arbitrary positions where no ground truth is available, and their
reconstruction quality will be accessed using an NR metric.

One of the keys to successful IBR reconstruction is capturing a large number of
input views; however, the main observation is that depending on the scene content,
not all regions require equally dense camera placement. Diffuse, planar surfaces can
be accurately predicted from other views showing the same surface, so capturing
many images from these views is not necessary. On the other hand, occlusions and
specularities can be more difficult to recreate because each element in the scene must
be visible in at least two views for depth calculations. Capturing fewer images from
these views can negatively impact reconstruction quality. The proposed metric helps
to identify these challenging regions and can be used in both structured capturing se-
tups (e.g., using a robotic arm as shown in Section 5.4.1) and potentially unstructured
scenarios [Müller et al., 2022]. By providing real-time feedback to the IBR process,
the capturing setup can be directed to take more photos in areas where the rendered
images has a poor quality. Compared to the FR metric that requires the pair of images
to be aligned, an NR metric is oblivious to the pristine reference and, thus, is not
subject to misalignment. This property is beneficial in many evaluations where it is
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difficult or impossible to accurately align the images being compared.
Ultimately, it would be desirable to create a generic metric that is capable of

detecting a wide range of artifacts, including traditional ones like compression and
noise, as well as those appearing in neural network techniques like in-painting
[Li et al., 2022c], face and scene generation [Karras et al., 2020; Rombach et al.,
2022], and super-resolution [Wang et al., 2018b; Li et al., 2022a], which primarily
involve content hallucination. However, developing such a metric would necessitate
a vast dataset that encompasses a diversity of distortions, along with corresponding
reference images, which presents a significant challenge. Furthermore, obtaining
label data for certain scenarios, such as GANs-generated images, may prove difficult
or even impossible. This raises the question of whether it is possible to train a
metric using solely clean, natural images, similar to how the human visual system
(HVS) can identify a distortion in an image, even if it has never encountered that
specific type of distortion before. The HVS can extract a wide range of features from
an image to understand and interpret the scene and uses these features to form a
mental representation of the scene, which is then compared to stored memories to
make judgments about it [Walinga and Stangor, 2014]. This process is not done by
comparing an image to a reference but instead through experience and intuition
developed from recognizing what natural photos look like and how images with
artifacts differ.

7.4 Perception-Driven Rendering and Display

In recent years, head-mounted displays (HMDs) have burst onto the scene as a
powerful tool for delivering virtual and augmented reality experiences. Researchers
have been working to take these HMDs to the next level by introducing support for
other types of cues, such as accommodation cues, which allow for a more natural
and lifelike depth perception by triggering changes in the focal distance of the eye
[Lambooij et al., 2009; Banks et al., 2016]. However, developing HMDs with correct
accommodation cues requires generating 3D content, which demands the processing
of a larger amount of data compared to 2D images. Luckily, the human visual system
does have certain limitations that can be exploited to achieve an optimal balance
between visual quality and computational efficiency [Weier et al., 2017]. This is where
perception-driven rendering comes in, which aims to refine the visual experience
by leveraging a deep understanding of the human visual system to minimize the
rendering cost while still ensuring that users can perceive the full range of visual
information.

Chapter 6 presents a perception-driven rendering technique that combines two
decomposition methods, linear blending (LB) and light field synthesis (LFS), to
achieve real-time rendering and high-fidelity reconstruction in multi-layered light
field displays. The critical aspect of rendering in a multi-layered system is the efficient
decomposition of an input scene into layers for proper 3D perception. The perceptual
experiments conducted in this chapter offered a deeper understanding of the visual
quality produced by different decomposition algorithms. The perceptual analysis
results reveal that LB and LFS are indistinguishable for textured surfaces for low to
mid-spatial frequencies, with LB being closer to the ground truth for high spatial
frequencies. LB performs poorly at low-luminance contrast edges for occlusion
boundaries but better at high-contrast edges. This may seem counterintuitive, but it
is due to the additive combining of focused and defocused patterns on either side
of the edge. Additionally, occlusion conditions can be further relaxed for surfaces
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at sufficiently large eccentricities, where the sensitivity of the human visual system
decreases significantly.

The hybrid rendering strategy presented in this chapter can potentially be ex-
tended to multiplicative light field displays, which can be formulated with additive
light field synthesis [Lanman et al., 2011]. Future work could include investigating
the simple decomposition rules in a multiplicative architecture and integrating them
with LFS algorithms. Studying the edge artifact in the multiplicative display could
lead to interesting insights into accommodative light-field displays. Additionally,
the perceptual evaluation of optimization algorithms for dynamic scenes could be
an interesting topic of future research. Even though the incorrect boundaries of
LB are clearly visible in static scenes, it is unclear whether artifacts are noticeable
under motion blur. Therefore, studying the perception of artifacts in interactive and
dynamic scenes could provide additional computational benefits.

The perceptual experiments outlined in Chapter 6 are conducted within a limited
parametric space. To thoroughly explore the entire space, a visual quality metric,
specifically the structural similarity index (SSIM), is employed to predict experimental
outcomes and distinguishability in general cases. However, the SSIM measure does
not take into account the viewer’s gaze direction. To address this, similar to the ap-
proaches introduced in Wang and Li [2010], Zhang et al. [2014], and Sim et al. [2020]
where the SSIM map is fused using a weighted mean pooling based on the content
information or visual saliency in the image, one can devise a gaze-induced pooling
strategy that assigns greater weight to errors in the fovea regions (the parts of the
image that receive the most visual attention) and less weight to errors in the periph-
ery regions [Mantiuk et al., 2021; Tursun et al., 2019]. Moreover, current perceptual
metrics such as LPIPS and DISTS [Ding et al., 2020] can also be considered for this
purpose. These metrics calculate visual differences between the extracted features
from a pre-trained classification network [Ding et al., 2020] and appear to correlate
well with human visual perception.

Finally, as the process of rendering light fields can be costly, a light-weight convo-
lutional neural network can be trained to synthesize a dense LF in real-time from a
sparse set of rendered RGB-D images [Xiao et al., 2018] or even directly produce the
decomposed images that are utilized in multi-layer light field displays.
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