
HAL Id: inria-00607039
https://hal.inria.fr/inria-00607039v2

Submitted on 21 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Silhouette-Aware Warping for Image-Based Rendering
Gaurav Chaurasia, Olga Sorkine, George Drettakis

To cite this version:
Gaurav Chaurasia, Olga Sorkine, George Drettakis. Silhouette-Aware Warping for Image-Based Ren-
dering. Computer Graphics Forum, Wiley, 2011, Proceedings of the Eurographics Symposium on
Rendering, 30 (4), �10.1111/j.1467-8659.2011.01981.x�. �inria-00607039v2�

https://hal.inria.fr/inria-00607039v2
https://hal.archives-ouvertes.fr


Eurographics Symposium on Rendering 2011

Ravi Ramamoorthi and Erik Reinhard

(Guest Editors)

Volume 30 (2011), Number 4

Silhouette-Aware Warping for Image-Based Rendering

Gaurav Chaurasia1, Olga Sorkine2,George Drettakis1

1REVES/INRIA Sophia Antipolis, France
2ETH Zurich, Switzerland

Abstract

Image-based rendering (IBR) techniques allow capture and display of 3D environments using photographs. Mod-

ern IBR pipelines reconstruct proxy geometry using multi-view stereo, reproject the photographs onto the proxy

and blend them to create novel views. The success of these methods depends on accurate 3D proxies, which are

difficult to obtain for complex objects such as trees and cars. Large number of input images do not improve re-

construction proportionally; surface extraction is challenging even from dense range scans for scenes containing

such objects. Our approach does not depend on dense accurate geometric reconstruction; instead we compensate

for sparse 3D information by variational image warping. In particular, we formulate silhouette-aware warps that

preserve salient depth discontinuities. This improves the rendering of difficult foreground objects, even when devi-

ating from view interpolation. We use a semi-automatic step to identify depth discontinuities and extract a sparse

set of depth constraints used to guide the warp. Our framework is lightweight and results in good quality IBR for

previously challenging environments.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image

Generation—Display algorithms;

1. Introduction

Image-based rendering (IBR) [DTM96, LH96, GGSC96] is

a powerful approach to easily capture and display 3D en-

vironments from photographs. Recent advances in com-

puter vision and geometry processing make it possible

to take 10-20 photographs, use automatic camera cali-

bration [SSS06] and multi-view stereo to obtain dense

depth/disparity maps [GSC∗07, FP09]. A final surface re-

construction step [KBH06] can then be used to merge these

depth maps. The resulting approximate 3D geometry or

proxy can be rendered by re-projecting the input photographs

onto the proxy and blending closest views in the style of

Unstructured Lumigraph Rendering (ULR) [BBM∗01]. This

method combines recent vision techniques with ULR to

achieve what we believe is the best result possible in our con-

text, using existing solutions. Nonetheless, the solutions de-

scribed above still have several limitations. First, multi-view

stereo and reconstruction approaches have difficulty produc-

ing 3D geometry of sufficiently good quality for foreground

objects with complex shapes such as trees, or sharp depth

discontinuities such as vehicles parked in front of façades.

Such situations are very frequent, especially in urban scenes.

Consequently, IBR approaches that rely on accurate geom-

etry can suffer from artifacts for such scenes. Second, most

recent fully image-based methods which can handle com-

plex scenes [SLW∗08,MHM∗09], have been developed only

for small “baselines” and most often operate on paths inter-

polating input camera positions and orientations. Lastly, for

many cases it is possible to improve the quality of 3D re-

construction by taking more images. However, for complex

foreground objects reconstruction often does not improve,

while leading to more “heavyweight” capture.

We present a new approach which addresses these limi-

tations. Our central idea is to compensate for incorrect or

incomplete geometric information by introducing silhouette-

aware variational warping [SS09]. We focus on scenes con-

taining complex foreground geometry that is hard to recon-

struct and on wide baseline IBR, i.e., with a large camera

displacement between photographs.

We first manually select important depth discontinuities,

or silhouettes, and generate a uniform reconstructed point

cloud for each image which guide our silhouette-aware

warp. We thus preserve important depth discontinuities dur-

ing the warp operation by letting parts of the mesh around

the silhouettes become very “elastic”. Finally, we present

an efficient multi-pass rendering algorithm which blends the
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Figure 1: (a) We use 10-20 input photographs and multi-view stereo to create a dense 3D point cloud. (b) With our user-assisted

point pre-processing the user designates important silhouettes and we reduce the cloud to ∼6,000 points per image. (c) The

silhouettes and 3D point cloud guide a silhouette-aware warp, applied to 4 images at each frame. (d) Our renderer generates

a high-quality final image which handles hard cases such as trees and other foreground objects. (e) Compared to previous

geometry-based methods, many artifacts are removed.

warped images. We define appropriate weights for elastic vs.

non-elastic parts of blended images, and post-process to pro-

vide a trade-off between blurring and color discontinuities.

Previous approaches [DRE∗10, DCC∗09] directly re-

project warp mesh vertices into a novel view, result-

ing in a “hard warp”. Such approaches require dense

depth maps [DRE∗10] or warp mesh vertices tracked over

time [DCC∗09]. Since our setting typically has sparse or un-

reliable depth information, temporal jumping artifacts en-

sue [LGJA09]. To avoid these artifacts, we use a varia-

tional warp with sparse depth information as guiding con-

straints. Mesh cutting is used to handle occlusion in hard

warps [DCC∗09]. Such a solution is however inapplicable

with smooth variational warping, which is why we introduce

a silhouette-aware formulation (see Sect. 2 for further dis-

cussion).

Our main contributions can be thus summarized as fol-

lows:

• The representation consisting of sparse depth constraints

and silhouette edges, which enables depth-preserving

variational warping for wide-baseline IBR.

• The introduction of silhouette-aware warping for IBR in

which “elastic” edges absorb distortions while depth dis-

continuities are preserved.

• An efficient rendering algorithm with a good trade-off be-

tween blurring and color discontinuities.

Our approach greatly reduces artifacts compared to the

best combination of state-of-the art reconstruction and

IBR techniques, while overcoming the limitations discussed

above (see results Fig. 7). In particular we treat scenes with

hard-to-reconstruct objects and viewing paths which do not

interpolate the input cameras. Finally, only a small number

of images is required, resulting in a lightweight capture pro-

cess.

2. Previous Work

The earliest work in image-based rendering (IBR) did not

use any geometric information about the scene [MB95,

LH96] and depended on a large number of input images

to avoid rendering artifacts. Other approaches such as the

Lumigraph [GGSC96] and view-dependent texture map-

ping [DTM96] used an approximate geometric proxy to cre-

ate novel views with fewer input images. Unstructured Lu-

migraph (ULR) [BBM∗01] generalized this to arbitrary un-

structured input cameras; this method remains the most gen-

eral free-viewpoint IBR algorithm.

Modern graphics hardware can be used to enhance ULR

by per-pixel blending and visibility handling [EDM∗08].

The results improve dramatically with better geometric re-

construction. Consequently, there has been a lot of recent

work coupling 3D reconstruction and IBR, mainly focusing

on developing more accurate geometric proxies.

Multi-view stereo. A detailed survey of multi-view

stereo algorithms is described in [SCD∗06]. The de-

velopment of structure-from-motion for automatic cam-

era calibration [SSS06] has further accelerated multi-view

stereo research. Goesele et al. [GSC∗07] extract dense

depth/disparity maps from input images which then can

be merged using surface reconstruction techniques, e.g.,

Poisson reconstruction [KBH06]. Patch-based multi-view

stereo [FP09] is one of the most general multi-view stereo

algorithms which extracts 3D point clouds for all classes

of scenes: outdoor, objects, indoors, etc. Hornung and

Kobbelt [HK09] propose a generalized approach for stereo

reconstruction and rendering on the GPU, avoiding the need

for an explicit proxy. However, their method effectively

builds on standard stereo reconstruction; complex scenes

with wide baselines thus become hard to handle.

Another class of algorithms has been developed specif-

ically for IBR applications. Piecewise-planar reconstruc-

c© 2013 The Author(s)
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tion [SSS09] and Manhattan-world priors [FCSS09] have

been used for improved IBR. These approaches bypass sur-

face reconstruction and produce lightweight proxies con-

sisting of planes. However, they often have difficulties for

scenes with non-planar or irregular geometry, or complex

foreground objects, such as vehicles or trees.

Image interpolation. Image interpolation has been used

to transform two neighboring images of the same scene

separated in space and/or time to generate in-between

images without any 3D scene information. Chen and

Williams [CW93] interpolated dense optical flow between

input images, Seitz and Dyer [SD96] generated target

views on the line joining the optical centers of two

input views assuming no occlusions, and Lhuillier and

Quan [LQ99] interpolated matched image regions. More re-

cently, perceptually-motivated image interpolation was de-

scribed in [SLW∗08] and spatio-temporal view interpolation

was presented in [LLB∗10]. A high-quality approach for in-

terpolating two images is presented in [MHM∗09]; they pre-

serve frequency content of images by using graph-cut to cre-

ate seamless transitions.

These approaches are powerful and robust but re-

quire a very small baseline between images. Mahajan et

al. [MHM∗09] report a 30-pixel maximum baseline, with

2D correspondences becoming unreliable beyond this limit.

Moreover, they are restricted to view interpolation paths.

IBR has been used in a different context in [SSS06] for

navigating photo collections. This is further generalized to

video navigation in [BBPP10] which uses scene geome-

try and foreground segmentation to reduce artifacts on the

salient scene object (e.g., performer) during view interpola-

tion. Reconstructed point clouds are used in [GAF∗10] for

wide baseline view interpolation of prominent scene object.

Their goal is to generate visually pleasing transitions in an

image sequence rather than photo-realistic novel views of

the whole scene.

Image warping. Modifying the image content by means of

warping has been used for morphing, image editing, artis-

tic manipulation [CAA10] and re-targeting [SS09]. In vari-

ational warping, an objective functional is formulated ac-

cording to the image content and the desired goal. Such

goals can be preservation of salient features while resiz-

ing [GSCO06] or attaining an optimal disparity for a stereo

image pair [LHW∗10]). This functional is then optimized on

a grid mesh overlaid on the image subject to boundary con-

straints. So far, mostly 2D constraints (e.g., new boundary

dimensions) have been employed; in contrast, we use recon-

structed 3D points to guide the global warp.

A related approach that uses reprojected 3D constraints is

the video stabilization technique of [LGJA09], which warps

frames of an input video to a novel viewpoint that lies on

a smoothed camera path. However, their approach requires

small baseline warping without (dis)occlusions. Our tech-

nique includes a novel silhouette-aware warp formulation to

handle these cases which are very common for wide-baseline

warping. Further differences are discussed in Sec. 5.2.

When dense, per-pixel depth [DRE∗10] is avail-

able or mesh vertices are tracked across successive

frames [DCC∗09] direct re-projection into the novel view

can be used. This gives a “hard warp” (see also Sect. 1).

However, in our wide baseline multi-view setting, mesh ver-

tices may not be reliably reconstructed in neighboring views.

and thus hard warps result in jumping artifacts as observed

in [LGJA09]. To provide smoother temporal effects, we use

variational warping.

In this variational warping context, we need to incorpo-

rate silhouettes and “elastic edges” to absorb distortion, to

preserve complex foreground object shapes. The mesh cut-

ting approach of [DCC∗09] would not work well with a

variational approach. Specifically, it is impractical to set up

a separate variational warp for each depth layer of scene

since silhouettes are generally not closed and multiple ob-

jects would give too many separate layers for each image.

In addition, special treatment, such as inpainting or texture

synthesis would be necessary for all “cut” regions.

3. Overview

The input to our method is a set of images calibrated using

Bundler [SSS06] and a dense 3D point cloud generated us-

ing [FP09]. Our approach has three main steps (see Fig. 1):

Pre-processing. Our approach first selects silhouettes

around complex foreground objects (trees, cars, etc.) for

each input image (Sec. 4.1). These silhouettes are used to

correctly handle depth discontinuities. A 3D point cleanup

step then decimates the dense multi-view stereo point cloud

down to a sparse point cloud with uniform spatial distri-

bution. This step also fills in poorly reconstructed regions

using depth from neighboring points (Sec. 4.2). The result-

ing sparse point set provides stable constraints for our image

warp.

Silhouette-aware image warp. The points from each input

image are mapped to their respective desired final positions

by reprojecting them into the novel view. These act as guid-

ing constraints for our image warp in the form of projection

energy. A similarity transform energy prevents deformation

of warp mesh triangles. We define “elastic” triangles around

silhouettes which absorb the distortion because of depth dif-

ferences. The last energy term minimizes warping artifacts

that distort the shape of silhouettes (Sec. 5.2).

Rendering. At any pixel we blend two images to get correct

motion parallax and fill in disoccluded regions. We define

appropriate weights to correctly diminish the visual impact

of strong distortion produced by the elastic edges around

the silhouettes. Finally, we use an optional Poisson synthesis

step to alleviate seams.

Our image warping works for poorly reconstructed ob-

c© 2013 The Author(s)
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jects because the silhouettes segment the image into contigu-

ous regions at different depths. The sparse but uniform re-

construction given by 3D point processing provides enough

constraints for correct 2D warping of each region, result-

ing in significant quality improvement compared to methods

which rely on accurate geometry.

4. Extracting the Silhouette and Sparse Constraint

Representation

Our approach requires pre-annotated silhouettes (Fig. 2(a))

and uniform distribution of reconstructed points on each im-

age (Fig. 2(a),(c)), both of which can be provided by a vari-

ety of approaches. Our core image-based rendering approach

is independent of the methodology used for providing either

of these.

(a) (b) (c)

Figure 2: (a) Silhouettes marked at sharp depth differences;

(b) Original reconstructed point cloud with 118,049 points;

(c) Sparse uniform point cloud with 6324 points selected by

our approach. Note the regions with no original 3D points

are also filled with new points (see Sec. 4.2).

4.1. Silhouette Selection

Silhouettes can be manually authored in each input image

or computed (semi) automatically. Modern image segmen-

tation algorithms [AMFM11] can be used to extract image

boundaries automatically. Considering the importance of sil-

houettes for a variety of applications (object recognition,

3D reconstruction etc.), segmentation techniques have been

adapted for extracting silhouettes or occlusion boundaries

from a single image [HSEH07] or motion sequences [SH09,

HY10]. Even though the edge maps returned by these ap-

proaches are impressive, they often have many false posi-

tives which need to be removed manually and missing edges

have to be manually added. In addition, edge-maps have to

converted to binary maps using a dataset dependent thresh-

old. Then, they need to be converted into polygonal curves

using chaining [TC89] and line segment decomposition by

Douglas-Peucker algorithm [DP72]. Noisy edge-maps such

as those in our scenes can make polygonal approximation

ambiguous.

We have experimented with such approaches extensively,

both by applying them directly, and developing direct exten-

sions. We observed that, in practice, segmentation followed

by same degree of user interaction does not give the same ac-

curacy as manual authoring and can actually be longer than

direct manual edge marking. Please refer to supplementary

material for a summary of our extensive tests and a compar-

ison of automatic methods with manual authoring.

In view of the above, we prefer manual silhouette author-

ing over a combination of segmentation and user interven-

tion. Manual authoring took 40-60 seconds for each image

in our datasets (see video). This is much faster compared to

the time needed to manually create pixel-accurate geometry

by hand. For objects such as trees, such geometry creation

would require a skilled and experienced modeler and even

then would probably require hours of work.

We expect that the silhouette extraction step can be largely

automated with advances in the state of the art (see discus-

sion in Sec. 8).

4.2. 3D Point Selection

The goal of this step is to retain a uniform distribution of 3D

points over the image, fill regions that have few or no points

and remove erroneous points near silhouettes or specular re-

gions.

We select a uniform spatial distribution by splatting the

points on the image with a large splat size (21×21 or more)

and select the suitably-sized subset of points which cover

the largest number of pixels. This approach gives regularly

spaced points. Poorly reconstructed regions such as holes in

the point set are filled by adding new points placed at the

depth of nearest available point.

To avoid mixing foreground and background points on

either side of the silhouettes, our approach conservatively

removes all existing points within a small distance of sil-

houettes and replaces them with points using the depth from

their respective side. This ensures that the silhouettes clearly

separate points with different depths. We observed that such

narrow regions are too small to contain significant depth gra-

dients. Hence, this does not compromise warp accuracy. It is

important to note that the newly added points are generated

on a per-image basis and have no correspondence across im-

ages. As such, they are not true 3D points and do not aug-

ment the reconstruction. They simply provide constraints for

stabilizing the image warp described next.

Some regions such as specular surfaces have incorrect 3D

points, which are removed manually. This step is required

only if a large number of incorrect 3D points are observed in

a certain region.

In our examples, the reconstruction produced 120K-200K

points. Using the process described above, we retained 5-6K

points for each image, which we call the set Pi. We observed

that 6-9K points did not improve the warp quality and less

than 3K points led to warping artifacts. The optimal num-

ber of points depends on desired output image resolution. A

higher desired level-of-detail would require more constraints

c© 2013 The Author(s)
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for the warp, hence more points.The entire process, includ-

ing user interaction (if needed), took about 4 minutes for

a dataset of 15 images. For more implementation details,

please refer to supplementary material.

5. Image Warping using 3D Constraints

Given a novel view, expressed by a camera projection matrix

Cn, our goal is to warp the input images I1, I2, . . . , IN so that

they match the actual scene as it would have appeared in

that view as faithfully as possible. We then use the warped

images in the IBR pipeline (Sec. 6).

Denote by Ci the camera projection matrix of input image

Ii. If we knew the mapping Ui from every pixel q ∈ Ii to the

corresponding 3D point p ∈R
3 that is captured in this pixel

(Ci(p) = Ci(Ui(q)) = q), then the warp of image Ii into the

new view would be simply

W =Cn ◦Ui. (1)

However, we do not have a dense per-pixel 3D reconstruc-

tion of the scene. On the contrary, we wish to use only a

small set of 3D points that suffices for effective image warp-

ing. We therefore replace the per-pixel warp above with

a sparse set of constraints on pixel positions and a warp

prior that dictates the warping function to be smooth (ex-

cept where (dis)occlusions happen) and locally preserve the

shape of the image content. We handle occlusions by explic-

itly modeling the desired warp behavior along silhouettes,

as will be described in Sec. 5.2. Together, the positional con-

straints and warp behavior priors define an energy functional

E, and we find the warp that minimizes this energy using

variational optimization.

Setup. In order to compute the optimized variational warp,

we discretize the image domain by overlaying a triangle

mesh Mi on image Ii, with vertices Vi = {v1, . . . ,vNi
} and

faces Fi. We denote the warped vertex positions as v′j =
W (v j). The warp function W minimizes the energy func-

tional E(W ) which we describe next. W is piecewise-linear

(linear within each mesh face); therefore, to compute it we

need to find the warped positions v′j .

5.1. Smooth Image Warping

3D constraints. Let Pi ⊆R
3 be the set of 3D points whose

projected location in image Ii is known, obtained with the

method of Sec. 4. For each point p ∈ Pi we have a corre-

sponding 2D position q in the image, i.e., q =Ci(p). The 3D

points should be projected correctly onto the novel view Cn;

therefore the warp should satisfy

W (q) =Cn(p). (2)

To formulate the above constraint in terms of the mesh ver-

tices, denote the triangle that q belongs to by ( j,k, l) ∈ Fi,

and let α(q),β(q),γ(q) be the barycentric coordinates of q

w.r.t. that triangle. The least-squares energy term for the 3D

warp constraints is thus

Ep(W ) = ∑
p∈Pi

∥

∥

(

α(q)v′j +β(q)v′k + γ(q)v′l
)

−Cn(p)
∥

∥

2
.(3)

We could have imposed Eq. (2) as a hard constraint by in-

cluding the points q as vertices of the triangulation Mi;

however, as pointed out in [LGJA09], this can lead to tem-

poral incoherence.

Similarity warp prior. To minimize the distortion caused by

the warp, we would like W to be locally shape-preserving.

We therefore use a similarity energy term, such that the

transformation of each mesh triangle by W is as close as pos-

sible to a similarity transformation. Analogous energy terms

were used in [LGJA09, ZCHM09, WLSL10].

Consider a mesh triangle t = (v j,vk,vl) and attach a local

orthogonal frame to it:
{

vk −v j, R90(vk −v j)
}

, where R90

is a counterclockwise rotation by 90 degrees. Assume that v j

is the origin of the local frame; vk can then be expressed sim-

ply as (1,0) in the local coordinate system, and vl as some

(a,b). If the triangle undergoes a similarity transformation,

the local frame remains orthogonal and the coordinates of

the triangle’s vertices remain the same. The similarity en-

ergy term can thus be expressed as

Es(W ) = ∑
t∈Fi

∥

∥v
′
l −

(

v
′
j +a(v′k −v

′
j)+b(R90(v

′
k −v

′
j))

)∥

∥

2
,(4)

where

a = (vl −v j)
T (vk −v j)/‖vk −v j‖ (5)

b = (vl −v j)
T

R90(vk −v j)/‖vk −v j‖ (6)

are computed from the original mesh.

5.2. Silhouette-aware Warp

The energies Ep and Es described so far are minimized by

warp functions that are smooth and shape-preserving ev-

erywhere. However, we know that the warp should have

discontinuities in the vicinity of object silhouettes because

of the depth discontinuity there. When considering a small

neighborhood around a silhouette edge, the warp may

have a discontinuity perpendicular to the edge (to mimic

(dis)occlusion) while remaining shape-preserving in the tan-

gent direction. We model this behavior by conceptually in-

serting a narrow and highly elastic band parallel to the sil-

houette that is allowed to absorb heavy distortion due to dis-

continuity (see Fig. 3(b)). The shape of the silhouette itself,

on the other hand, is preserved by adding a curve-similarity

energy term described below, thus avoiding distortion of

foreground objects.

To properly discretize the image domain and formulate

the silhouette-specific energy, we take all the silhouette poly-

lines (obtained in Sec. 4) and duplicate them, offsetting the

resulting parallel edges by 2 pixels (see Fig. 3(b)). The rest

c© 2013 The Author(s)
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(a) (b)

Figure 3: (a) Conforming triangulation used as warp mesh

with constrained silhouette polylines shown in red. (b) Two

parallel constrained polylines (shown in red) added for the

silhouette polyline. Any three consecutive vertices on either

of these polylines form an edgelet. The triangles wedged be-

tween these edges form the elastic band.

of the image domain is sampled uniformly, and we create a

constrained conformal triangulation where the (doubled) sil-

houette edges are fixed (see Fig. 3(a)). All triangles between

silhouette lines belong to the elastic band and are excluded

from the energy term Es (Eq. (4)), thus allowing the band to

be elastic.

To preserve the shape of the silhouette itself, we require

the silhouette curve to locally undergo a shape-preserving

(i.e., similarity) transformation. The energy formulation is

similar to Es, but it is defined on the silhouette curve this

time, instead of a 2D domain. Consider three consecu-

tive vertices lying on the curve, indexed w.l.o.g. as e =
(v0,v1,v2). We call such a sequence of two curve edges an

edgelet (see Fig. 3(b)). A similarity transformation of the

edgelet e means that the angle θ between the two edges, as

well as the length ratio ‖v0 − v1‖/‖v2 − v1‖, remains the

same. We can therefore write the curve similarity energy

term as

Eb(W ) = ∑
e∈E

∥

∥

∥

∥

(

v
′
0 −v

′
1

)

−
‖v0 −v1‖

‖v2 −v1‖
Rθ

(

v
′
2 −v

′
1

)

∥

∥

∥

∥

2

, (7)

where E is the set of all edgelets and Rθ is the 2× 2 rota-

tion matrix that rotates the edge (v2 − v1) onto (v0 − v1).
The effect of the above silhouette-aware discontinuous im-

age warp is shown in Fig. 4. The smooth warp described in

Sec. 5.1 will cause heavy distortion near depth discontinu-

ities (see Fig. 4(a),(b)).

Liu et al. [LGJA09] use energies Ep and Es alone and

would allow homogeneous distribution of the heavy distor-

tion over the entire image. In contrast, our silhouette-specific

energy term Eb preserves the local shape of the silhouettes

by absorbing all the distortion in the elastic band. When pix-

els become occluded, the elastic band enables accurate mesh

fold-over along the silhouette. When pixels are disoccluded,

the elastic band stretches without deforming the silhouette

(shown in red in Fig. 4(c),(d)). These bands are later filled

using texture from a different image in the final result (ex-

(a) (b)

(c) (d)

Figure 4: Top row: An input image warped to different novel

views without any silhouette handling. Bottom row: Same

image warped to same views using our silhouette-aware dis-

continuous warp. The elastic band that absorbs all the dis-

tortion is shown in red.

plained in Sec. 6). Thus, our image warp is robust to wide-

baseline (dis)occlusion.

5.3. Total Warp Energy

The optimal warp W minimizes the weighted sum of the 3D

constraints, similarity, and silhouette energies (Eqs. (2), (4),

(7)):

E(W ) = wpEp +wsEs +wbEb. (8)

We use ws = 1,wp = wb = 2 in our implementation.

The energy E(W ) is quadratic in the unknown warped ver-

tex positions v′, therefore it has a unique minimum that is

found by solving the sparse linear equation ∇E(W ) = 0. We

use the direct sparse Cholesky solver TAUCS [Tol03]. Note

that the system matrix does not change for different desired

views Cn since only the right-hand side of the linear sys-

tem changes. We therefore precompute the matrix factoriza-

tion and only perform back-substitutions at runtime, which

is very efficient.

Warp optimization implementation. In our experiments,

we found initial sampling on a 30×30 vertex grid to be suf-

ficient for 800×600 pixel output frame resolution. This sam-

pling is locally refined to insert the silhouette edges, as de-

scribed above; we compute the final constrained conformal

triangulation using CGAL [Rin10]. Every input image Ii has

its own mesh and associated linear system; we thus employ

OpenMP to warp multiple images on parallel cores. Finally,

the warped meshes are rendered using texture coordinates as

their original positions to create the warped images.

c© 2013 The Author(s)
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Figure 5: Rendering pipeline. (a) Warped images. (b) Composite textures R0 and R1. Pixels from same warped image are

shown in same color. (c) R generated by blending from R0 and R1. (d) Poisson synthesis output R′ using R as initialization

and gradient G from R0.

6. Implementation and Rendering

Our rendering approach has several similarities to

ULR [BBM∗01]. For clarity we thus summarize this

method here.

ULR with per-pixel blending and visibility. A set of im-

ages with calibrated cameras and a geometric proxy are

taken as input. For every pixel of a novel view, the corre-

sponding 3D point p on the proxy is found. This point is

used to select the input images used, and it is reprojected

back into these images. The colors of the corresponding pix-

els are then blended together using weights that depend on

the angle between the view vectors of the input and tar-

get views (Fig. 6(a)), as well as the distance to the proxy

(see [BBM∗01] for exact details).

In our approach the novel view is generated by first select-

ing a set W of 4 images which can be used for all pixels in

the final image. We observed that 3-4 input images are suffi-

cient to synthesize a novel view. We then warp these images

to the target view using our warp formulation in Sec. 5. Re-

call that the 3D points in Pi of each image Ii project to the

same position in the novel view. As a result, the warped im-

ages are well registered.

Blending weights. For each pixel, we select the best two

images for blending using a penalty scheme inspired by

ULR [BBM∗01]. Consider pixel (x,y) of the novel view with

center of projection cn and a warped input image I′i ∈ W
whose center of projection is ci. Let pn(x,y) be the point

where the ray shot from cn through pixel (x,y) intersects

the scene geometry. The required geometry is generated by

splatting all 3D points ∪Pi into the novel view; holes are

avoided by extracting depth from a triangulation of Pi. Note

that this geometry is typically much coarser than a geomet-

ric proxy generated by 3D reconstruction [FP09] and sur-

face extraction [KBH06]. However, our approach is robust

to geometric inaccuracies because geometry is only used to

compute blending weights.

We use the angle between (cn − pn(x,y)) and (ci −

(a) (b)

Figure 6: (a) Diagram showing the angle θ used for

Pang(I
′
i ,x,y). (b) Warped image showing pixels outside the

warp mesh Mi in blue and pixels inside elastic band in red.

pn(x,y)) as an angle penalty similarly to ULR (see Fig. 6(a)).

We also define a “field of view” penalty that checks whether

the pixel lies inside the warp mesh Mi of I′i (shown in blue

in Fig. 6(b)). Our last term penalizes elastic band pixels be-

cause the texture in such regions is expected to be heavily

distorted (shown in red in Fig. 6(b)).

Pang(I
′
i ,x,y) = arccos(〈cn −pn(x,y), ci −pn(x,y)〉)

Pfov(I
′
i ,x,y) =

{

∞ if (x,y) lies outside Mi,

0 otherwise

Pe(I
′
i ,x,y) =

{

∞ if (x,y) lies inside elastic band,

0 otherwise

The final penalty is

P(I′i ,x,y) = Pang(I
′
i ,x,y)+Pfov(I

′
i ,x,y)+Pe(I

′
i ,x,y). (9)

We create two textures R0 and R1, where R0 is composed

of pixels having the lowest penalties from all warped images

I′i ∈ W and R1 the second lowest. A patch is a contiguous

block of pixels looked up from the same warped image. The

patches constituting R0 and R1 are shown in different colors

in Fig. 5.

Blending weights are calculated from penalties and stored

in the alpha channels of R0 and R1, respectively. The

weights correspond to those used in the original ULR ap-
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proach, with the addition of a factor 0 < Ψ ≤ 1:

wR0
(x,y) = 1−Ψ

P(R0,x,y)

P(R1,x,y)
,

wR1
(x,y) = 1−Ψ

P(R1,x,y)

P(R1,x,y)
= 1−Ψ. (10)

The textures R0 and R1 are alpha-blended to give the tex-

ture R. The factor Ψ amplifies the difference in the penal-

ties of R0 and R1. For example, Ψ = 1 would cause wR1

to always remain 0. If the ratio of penalties P(R0):P(R1)
is 1:2, setting Ψ = 0.87 would cause the ratio of weights

wR0
:wR1

to become 4.33:1. This greatly reduces the con-

tribution of R1 everywhere except where its penalty is very

close to that of R0. In all examples presented here, we have

used Ψ = 0.87, which gives good results in all our examples.

Poisson synthesis. The blended texture R may have spatial

discontinuities: the patch boundaries or seams of R0 and

R1 may remain visible, especially the elastic band regions

where the texture originates from an image with substan-

tially different view. To create a better final output image,

we use Poisson synthesis to essentially inpaint the seam ar-

eas more gracefully. We create the gradient map G from R0,

and its divergence map divG. Note that the gradient inside

any patch of R0 is the same as the gradient of the original

image, which is important to retain crisp detail. We force the

gradient of the final image R′ to 0 for all pixels lying on

patch boundaries B0 of R0, which amounts to smooth com-

pletion of those areas. Thus, we solve the following Poisson

equation:

∇2R′ = divG subject to ∇R′
∣

∣

B0
= 0. (11)

We do not pose explicit Dirichlet conditions but rather ini-

tialize the solver with the blended image R and perform a

few Jacobi iterations. This suffices, since the initial guess is

very close to the solution. This (optional) Poisson synthe-

sis step alleviates spatial artifacts, while initialization with

R helps temporal coherence. This can be seen in the inset

of Fig. 5 (right). Our approach thus prefers smooth spatio-

temporal transitions over blending more images, which leads

to ghosting [MHM∗09].

7. Results

To provide fair comparisons, we have combined state of

the proxy reconstruction with the best set of techniques

available for free viewpoint, wide-baseline IBR. In partic-

ular, we extend ULR to use per-pixel blending on the GPU,

in contrast to vertex blending used in the original method

[BBM∗01]. We have also added a recent visibility checking

algorithm [EDM∗08] to further improve quality. In what fol-

lows, we call this method IULR for "Improved" ULR.

Given the lack of accurate geometry for foreground ob-

jects, IULR results have ghosting artifacts and incorrect oc-

clusion handling. Visibility checking does not alleviate oc-

clusion artifacts because the proxy used for creating visibil-

ity maps is erroneous.

Dataset
Best Same-size Our

proxy proxy approach

Castle-P30 49.1 MB 4.7 MB 2.5 MB

Street-10 25.3 MB 3.6 MB 1.5 MB

Tree-18 21.2 MB 3.0 MB 3.1 MB

Aquarium-20 32.9 MB 15.4 MB 2.9 MB

Yellowhouse-12 26.0 MB 20.0 MB 1.8 MB

Table 1: Storage for the proxy (used by IULR) and our

approach. Proxy sizes are meshes (vertices/faces, no nor-

mals/colors/texture coordinates) in ASCII ".obj" format.

Storage. Our method requires the storage of 5-6k points per

image. In contrast, detailed proxies can be quite large for

complex scenes with trees etc. (see Table 1). In our analy-

sis, we compare to a “best proxy” which is the geometry of

highest resolution and quality that could be extracted from

the dataset, and to “same-size proxy” i.e., a proxy of similar

size to our storage requirements,

We have tested our approach on challenging datasets

which cannot be reconstructed accurately. Castle-P30 is

a standard multi-view stereo dataset [SvHG∗08] with a

foreground object (tractor) in very wide baseline images.

Piecewise-planar reconstruction [SSS09] gives unacceptable

artifacts on the tractor. Aquarium-20 has multiple foreground

objects at different depths, which are known to be difficult to

handle [MHM∗09]. Street-10 and Tree-18 show our results

for general urban scenes with vehicles and trees. The Tree-

18 dataset had many incorrectly reconstructed points on the

tree, which were manually removed. The presence of vege-

tation makes 3D reconstruction and surface extraction very

difficult; manually modeling such scenes is also very diffi-

cult and tedious. The baselines in our datasets vary from 275

pixels (14% of image height) in Aquarium-20; 260 pixels

(16%) in Street-10 to 530 pixels (24%) in Castle-P30. With

minimal user input, our approach generates much improved

quality novel views from a free-viewpoint camera path even

for poorly reconstructed datasets.

Performance. We tested our method on an Intel Xeon (2.8

Ghz) running Windows 7 with NVIDIA Quadro 6000. Set-

ting up the warp mesh and factoring the linear system for

each input image with TAUCS takes 2-13 seconds. At run

time, warping 4 input images on parallel cores takes 8-22

ms. The overall frame rate is 15 FPS with Poisson synthesis

and 30-35 FPS for 1600×1200 size render targets.

8. Discussion and Future Work

The results show that overall, our approach has significantly

fewer disocclusion and ghosting artifacts compared to Im-

proved ULR, even when the “best proxy” is used. With

“same-size proxy” the improvement is more pronounced.

This indicates two advantages of our method: (i) limited user
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Figure 7: Top two rows: “best proxy” IULR (right) compared to our results (left) for novel views. From top to bottom, left to

right: Castle-P30, Street-10, Aquarium-20, Tree-18. Last row: Yellowhouse-12: ours, “same-size” and “best” proxy.

interaction and silhouette-aware warp enable greatly reduced

artifacts compared to previous methods, especially for chal-

lenging scenes, and (ii) our solution is very compact.

We believe that the introduction of silhouette-aware warp-

ing for IBR breaks new ground, and will hopefully have ap-

plications in other image-related tasks. In particular, we have

demonstrated how to introduce content preserving disconti-

nuities in a smooth variational warp. Our framework pro-

vides a trade-off between 2D image warping and 3D recon-

struction. The method is robust to inaccurate geometric de-

tail, since, other than the original (reliable) 3D reconstructed

points, we only use geometry to compute blending weights.

In contrast, existing techniques use the geometry to fetch

texture from input images, making them sensitive to small

geometric inaccuracies.

Limitations and Future Work. Our approach does not han-

dle transparent or see-through objects such as railings, as our

discontinuous warp expects somewhat contiguous objects.

However, such transparent objects cannot be handled within

any other IBR framework that uses geometry because depth

estimation and surface reconstruction become very challeng-

ing for such cases. Our blending strategy favors using a sin-

gle image than blending heavily. This causes occasional tem-

poral popping especially on non-lambertian surfaces which

appear different in different views. On the other hand, exces-

sive blending alleviates popping but synthesized images are

not crisp. Adaptive blending weights based on image con-

tent, in conjunction with 3D geometry is a promising re-

search direction to address this limitation.

Our discontinuous warp works best for contiguous fore-

ground objects, though we do demonstrate results for narrow

objects such as tree trunks. Similar objects (e.g., lamp posts)

can be handled more robustly with an adaptive-resolution

warp mesh in regions with many silhouettes, as opposed to

our uniform mesh.

Finally, there is scope for completely automating the sil-

houette extraction step, which would make our approach ap-

plicable to larger and more complex scenes. Our experiments

with existing approaches (e.g., [SH09, HY10, AMFM11])

show that direct or obvious extensions of these methods

do not provide adequate solutions. We consider this to be

an interesting and self-contained research problem, since it

would provide a new “multi-view” segmentation approach

for wide-baseline image sets. Promising directions include

the use of available depth and correspondence cues to elim-

inate false matches (see supplementary material), and auto-

matic propagation of potentially manual silhouette informa-

tion from one image to all other images in the dataset.

9. Acknowledgments

The authors acknowledge the support of the INRIA ARC

NIEVE project, NVIDIA (Professor partnership program),

Adobe Systems (research gift), Autodesk (Maya donation)

and NSF award IIS-0905502.

References

[AMFM11] ARBELAEZ P., MAIRE M., FOWLKES C., MALIK

J.: Contour detection and hierarchical image segmentation. IEEE

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



G. Chaurasia, O. Sorkine, G. Drettakis / Silhouette-Aware Warping for IBR

Trans. Pattern Anal. Mach. Intell. to appear (2011). 4, 9

[BBM∗01] BUEHLER C., BOSSE M., MCMILLAN L., GORTLER

S., COHEN M.: Unstructured lumigraph rendering. In Proc.

SIGGRAPH (2001), pp. 425–432. 1, 2, 6, 7, 8

[BBPP10] BALLAN L., BROSTOW G. J., PUWEIN J., POLLE-
FEYS M.: Unstructured video-based rendering: Interactive ex-
ploration of casually captured videos. ACM Trans. Graph (July
2010), 1–11. 3

[CAA10] CARROLL R., AGARWALA A., AGRAWALA M.: Image
warps for artistic perspective manipulation. ACM Trans. Graph.

29 (July 2010), 127:1–127:9. 3

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for im-
age synthesis. In Proc. SIGGRAPH (1993), pp. 279–288. 3

[DCC∗09] DURAND F., COHEN M., CHEN J., PARIS S., WANG

J., MATUSIK W.: The Video Mesh: A Data Structure for Image-

based Video Editing. Tech. Rep. MIT-CSAIL-TR-2009-062 (ac-
cepted to ICCP 2011), MIT CSAIL, 2009. 2, 3

[DP72] DOUGLAS D., PEUCKER T.: Algorithms for the reduc-
tion of the number of points required to represent a digitized line
or its caricature. The Canadian Cartographer 10, 2 (1972). 4

[DRE∗10] DIDYK P., RITSCHEL T., EISEMANN E.,
MYSZKOWSKI K., SEIDEL H.-P.: Adaptive image-space
stereo view synthesis. In Vision, Modeling and Visualization

Workshop (Siegen, Germany, 2010), pp. 299–306. 2, 3

[DTM96] DEBEVEC P. E., TAYLOR C. J., MALIK J.: Modeling
and rendering architecture from photographs: A hybrid geometry
and image-based approach. Proc. SIGGRAPH (1996). 1, 2

[EDM∗08] EISEMANN M., DECKER B. D., MAGNOR M.,
BEKAERT P., DE AGUIAR E., AHMED N., THEOBALT C., SEL-
LENT A.: Floating Textures. Comput. Graph. Forum (Proc. Eu-

rographics) 27, 2 (4 2008), 409–418. 2, 8

[FCSS09] FURUKAWA Y., CURLESS B., SEITZ S. M., SZELISKI

R.: Manhattan-world stereo. In Proc. CVPR (2009), pp. 1422–
1429. 2

[FP09] FURUKAWA Y., PONCE J.: Accurate, dense, and robust
multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell.

32, 8 (2009), 1362–1376. 1, 2, 3, 7

[GAF∗10] GOESELE M., ACKERMANN J., FUHRMANN S.,
HAUBOLD C., KLOWSKY R., DARMSTADT T.: Ambient point
clouds for view interpolation. ACM Trans. Graph. 29 (July 2010),
95:1–95:6. 3

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., CO-
HEN M. F.: The Lumigraph. In Proc. SIGGRAPH (1996),
pp. 43–54. 1, 2

[GSC∗07] GOESELE M., SNAVELY N., CURLESS B., HOPPE

H., SEITZ S. M.: Multi-view stereo for community photo col-
lections. In Proc. ICCV (2007), pp. 1–8. 1, 2

[GSCO06] GAL R., SORKINE O., COHEN-OR D.: Feature-
aware texturing. In Proc. EGSR (2006), pp. 297–303. 3

[HK09] HORNUNG A., KOBBELT L.: Interactive pixel-accurate
free viewpoint rendering from images with silhouette aware sam-
pling. Comput. Graph. Forum 28, 8 (2009), 2090–2103. 2

[HSEH07] HOIEM D., STEIN A. N., EFROS A. A., HEBERT M.:
Recovering occlusion boundaries from a single image. ICCV

(2007), 1–8. 4

[HY10] HE X., YUILLE A.: Occlusion boundary detection us-
ing pseudo-depth. In Proceedings of the 11th European con-

ference on Computer vision: Part IV (Berlin, Heidelberg, 2010),
ECCV’10, Springer-Verlag, pp. 539–552. 4, 9

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson sur-
face reconstruction. In Proc. SGP (2006), pp. 61–70. 1, 2, 7

[LGJA09] LIU F., GLEICHER M., JIN H., AGARWALA A.:
Content-preserving warps for 3D video stabilization. ACM Trans.

Graph. 28 (2009), 44:1–44:9. 2, 3, 5, 6

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In
Proc. SIGGRAPH (1996), pp. 31–42. 1, 2

[LHW∗10] LANG M., HORNUNG A., WANG O., POULAKOS S.,
SMOLIC A., GROSS M.: Nonlinear disparity mapping for stereo-
scopic 3D. ACM Trans. Graph. 29, 3 (2010). 3

[LLB∗10] LIPSKI C., LINZ C., BERGER K., SELLENT A.,
MAGNOR M.: Virtual video camera: Image-based viewpoint
navigation through space and time. Computer Graphics Forum

29, 8 (2010), 2555–2568. 3

[LQ99] LHUILLIER M., QUAN L.: Image interpolation by joint
view triangulation. In Proc. CVPR (1999), vol. 2. 3

[MB95] MCMILLAN L., BISHOP G.: Plenoptic modeling: an
image-based rendering system. In Proc. SIGGRAPH (1995),
pp. 39–46. 2

[MHM∗09] MAHAJAN D., HUANG F.-C., MATUSIK W., RA-
MAMOORTHI R., BELHUMEUR P.: Moving gradients: A path-
based method for plausible image interpolation. ACM Trans.

Graph. 28, 3 (2009). 1, 3, 8

[Rin10] RINEAU L.: 2D conforming triangulations and meshes.
In CGAL User and Ref. Manual, 3.7 ed. CGAL Ed. Bd., 2010. 6

[SCD∗06] SEITZ S. M., CURLESS B., DIEBEL J., SCHARSTEIN

D., SZELISKI R.: A comparison and evaluation of multi-view
stereo reconstruction algorithms. In Proc. CVPR (2006), vol. 1.
2

[SD96] SEITZ S. M., DYER C. R.: View morphing. In Proc.

SIGGRAPH (1996), pp. 21–30. 3

[SH09] STEIN A. N., HEBERT M.: Occlusion boundaries from
motion: Low-level detection and mid-level reasoning. Int. J.

Comput. Vision 82 (May 2009), 325–357. 4, 9

[SLW∗08] STICH T., LINZ C., WALLRAVEN C., CUNNINGHAM

D., MAGNOR M.: Perception-motivated interpolation of image
sequences. In Proc. APGV (2008), pp. 97–106. 1, 3

[SS09] SHAMIR A., SORKINE O.: Visual media retargeting. In
ACM SIGGRAPH Asia Courses (2009). 1, 3

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo
tourism: exploring photo collections in 3D. ACM Trans. Graph.

25, 3 (2006), 835–846. 1, 2, 3

[SSS09] SINHA S. N., STEEDLY D., SZELISKI R.: Piecewise
planar stereo for image-based rendering. In Proc. ICCV (2009),
pp. 1881–1888. 2, 8

[SvHG∗08] STRECHA C., VON HANSEN W., GOOL L. J. V.,
FUA P., THOENNESSEN U.: On benchmarking camera calibra-
tion and multi-view stereo for high resolution imagery. In Proc.

CVPR (2008). 8

[TC89] TEH C.-H., CHIN R.: On the detection of dominant
points on digital curves. IEEE Trans. Pattern Anal. Mach. In-

tell. 11, 8 (Aug. 1989). 4

[Tol03] TOLEDO S.: TAUCS: A Library of Sparse Linear

Solvers, version 2.2. Tel-Aviv University, Available online at
http://www.tau.ac.il/~stoledo/taucs/, 2003. 6

[WLSL10] WANG Y.-S., LIN H.-C., SORKINE O., LEE T.-Y.:
Motion-based video retargeting with optimized crop-and-warp.
ACM Trans. Graph. 29, 4 (2010), article no. 90. 5

[ZCHM09] ZHANG G.-X., CHENG M.-M., HU S.-M., MARTIN

R. R.: A shape-preserving approach to image resizing. Comput.

Graph. Forum 28, 7 (2009), 1897–1906. 5

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

http://www.tau.ac.il/~stoledo/taucs/

