
Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

REAL-TIME GEOMETRIC MOTION BLUR

FOR A DEFORMING POLYGONAL MESH

A Thesis

by

NATHANIEL JONES

May 2004

Major Subject: Computer Science

Approved as to style and content by:

John Keyser
(Chair of Committee)

 Donald H. House
(Member)

Jianer Chen
(Member)

 Valerie Taylor
(Head of Department)

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

A Thesis

by

NATHANIEL JONES

REAL-TIME GEOMETRIC MOTION BLUR

FOR A DEFORMING POLYGONAL MESH

May 2004

Major Subject: Computer Science

 iii

ABSTRACT

Real-Time Geometric Motion Blur for a Deforming Polygonal Mesh. (May 2004)

Nathaniel Jones, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John Keyser

Motion blur is one important method for increasing the visual quality of real-time

applications. This is increasingly true in the area of interactive applications, where

designers often seek to add graphical flair or realism to their programs. These

applications often have animated characters with a polygonal mesh wrapped around an

animated skeleton; and as the skeleton moves the mesh deforms with it. This thesis

presents a method for adding a geometric motion blur to a deforming polygonal mesh.

The scheme presented tracks an object’s motion silhouette, and uses this to create a

polygonal mesh. When this mesh is added to the scene, it gives the appearance of a

motion blur on a single object or particular character. The method is generic enough to

work on nearly any type of moving polygonal model. Examples are given that show

how the method could be expanded and how changes could be made to improve its

performance.

 iv

DEDICATION

to my family, friends, and colleagues

 v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ..iv

LIST OF TABLES ..vi

LIST OF FIGURES..vii

1 INTRODUCTION ..1

1.1 Motivation...1
1.2 General Concept..2
1.3 Key Features..3
1.4 Layout ...4

2 PREVIOUS WORK..5

2.1 Offline Motion Blur Techniques...5
2.2 Real-Time Motion Blur Techniques ...6

3 ALGORITHM...10

3.1 Previous Algorithm and Work ..10
3.2 Current Algorithm...13
3.3 Analysis and Limitations ..26

4 RESULTS ...33

4.1 Experimental Results ..33
4.2 Resource Usage...37
4.3 Performance and Quality Tradeoffs ..39
4.4 Visual Results ...40

5 FUTURE WORK..48

6 CONCLUSION...49

REFERENCES...51

VITA ..53

 vi

LIST OF TABLES

Page

Table 1. Performance Results on an Animated Character ...35

Table 2. Performance Results on Non-Deforming Spheres ...36

 vii

LIST OF FIGURES

Page

Figure 1. Object cloning of the past four frames of an animating square7

Figure 2. A graphical summary of the method presented by Wloka and Zeleznik...........8

Figure 3. An image of NVidia’s motion blur ..9

Figure 4. First method from early research ...11

Figure 5. Second method from early research...11

Figure 6. Third method from early research ...12

Figure 7. Fourth method from early research..12

Figure 8. Graphical walk through of the method using a moving sphere16

Figure 9. Various silhouettes of motion ..19

Figure 10. The SoM as found on a polygonal mesh..21

Figure 11. Results of successive SoM updates ...22

Figure 12. A quadrilateral polygon strip generated by a polygon...................................25

Figure 13. A pair of images from an image space motion blur attempt..........................32

Figure 14. A view of a character’s legs using the motion blur technique found within

this thesis ..41

Figure 15. A series of views of the same frame of animation showing the motion blur,

the blur’s wireframe, and how the blur connects to the model42

Figure 16. A number of images from the same frame of a jumping animation43

Figure 17. A close up view of the jumping frame showing the disconnected blur

produced by the foot...44

Figure 18. Varying blur qualities ..45

Figure 19. Blur created on a moving sphere, its connection to the model, and the past

silhouettes of motion ..47

 1

1 INTRODUCTION

This thesis describes a method for generating a motion blur for an animating and

deforming polygonal mesh.

1.1 Motivation

Motion blur is important in many real-time graphical applications, such as games and

training simulators. It is one of many methods used to portray an object’s motion, and to

draw the viewer into a scene. There are a number of uses for motion blur:

One is to add realism to a scene. The open camera shutter samples the world over a

span of time. This creates a motion blur in any moving object in a film or traditional

photography; it is inherent to the filming process and the blur feels natural to most

viewers. This motion blur is often missing in real-time applications due to the difficulty

or speed loss when creating it. While motion blur is rarely noticed by viewers, its lack is

quite noticeable when one compares two computer generated films, one with motion blur

and one without; the film with motion blur will appear to be much more realistic and

appealing to the viewer. If we can add motion blur to a real-time application, then the

viewer will be drawn into the scene more so than if the blur was lacking. Therefore,

motion blur is often something designers want in their real-time applications.

This thesis follows the style and format of Proceedings of SIGGRAPH 2002.

 2

A second use for motion blur is to create a desired special effect. It can be used to

show a streaking object or just to draw attention to something in the scene. By

controlling the length of time the blur remains visible as well as display properties of the

motion blur itself, a designer can get varying effects that may not be attainable using

other methods, some of which are described in section 2.

A third use is to show an object in motion using just a still image. When viewing a

still image from a frame set with no motion blur it is often quite difficult, if not

impossible, to determine what motion is happening in a scene. Because of this, motion

blur can be useful in still media such as comic books and digital imagery, or to just show

what is happening within a scene using a single image.

There are many approaches to generating or showing motion blur; but most are

insufficient to allow for all of these needs. They either produce results that are visually

unacceptable, are not fast enough for real time, or do not deal with highly deforming

meshes as can often be found in today’s interactive applications. These other methods

are discussed in section 2.

1.2 General Concept

The motion blur method presented in this thesis satisfies the needs of these uses while

providing visually appealing results fast enough for use in real-time applications. Using

a method similar to that of swept volume construction, the method first determines the

set of edges that lie along the dividing point between the front and back of a mesh based

upon its motion; this set of edges is known as the silhouette of motion. By connecting a

 3

set of silhouettes captured at regular time intervals with increasingly transparent

polygons, the method creates a visually appealing polygonal motion blur. This

generated set of polygons is referred to as the blur shell.

1.3 Key Features

There are a number of features of the presented method that distinguish it from some

of the other motion blur techniques in use today.

The method discussed here produces a motion blur for meshes that are animating and

deforming. A number of methods that are targeted towards interactive applications

make an assumption that the object’s polygonal mesh is static. At one time this was a

valid assumption, but in today’s applications character meshes are often attached to a

skeleton and as the skeleton animates, the mesh deforms to match the skeleton’s

motions.

The method gives designers quite a bit of control over how the blur looks and behaves,

as well as the performance cost of a particular implementation. A designer could turn on

or off the blur on selective portions of the mesh’s surface or vary other attributes

associated with the blur, such as its length. In addition, since the method outputs

polygons, any polygonal operations can be done on the blur to add additional effects and

control, such using a pixel shader to augment the appearance of the blur’s polygons. It is

also quite possible to use the presented technique to show motion in a single frame

capture, which can help audiences figure out what is happening within a scene.

 4

Even when the method is implemented only in software, there is little loss in

performance and this loss can be largely alleviated by using today’s programmable

graphics hardware. Since the method manipulates and creates polygons, which are

entities for which graphics hardware is adept at using, the method is quite hardware

friendly.

Due to the generic nature of the method, it should be relatively simple to integrate it

into most real-time graphical applications that have actors or objects made from

deforming polygonal models.

1.4 Layout

The remainder of this paper is laid out as follows.

Section 2 will describe the previous work in the topic of motion blur creation, and why

we would need an additional technique to the ones described. Section 3 will describe the

method’s algorithm in detail, as well as describing potential improvements to an

implementation. In section 4, experimental performance results are examined by using

an implementation of the method, and the restrictions put on the method by computer

resources. Section 5 describes the potential future of this method, and where additional

work should be focused upon. The paper is concluded in section 6.

 5

2 PREVIOUS WORK

Since motion blur is such an important topic within graphics, there has been a good

deal of research into the topic; some of this previous work is discussed here.

2.1 Offline Motion Blur Techniques

Motion blur has been an important aspect of computer generated imagery for many

years. Some of the earliest and most fundamental work includes that of Korein and

Badler, Potmesil and Chakravarty, and Dippe and Wold [Korein and Badler 1983;

Potmesil and Chakravarty 1983; Dippe and Wold 1985]. The best looking and most

widely used motion blur technique is temporal anti-aliasing [Korein and Badler 1983;

Dachille and Kaufman 2000]. It is also the technique for adding motion blur to the

computer graphics found in films. By this method, motion blur is created by super-

sampling the scene in the time domain. What this means is that a particular pixel is

sampled at various points in time around the current frame time; and the samples are

then filtered to create the final color for a pixel. This essentially averages a pixel’s color

over a span of time. While this works well for offline rendering or ray-tracing, where

time can be extensively controlled, it is far too slow for real-time applications.

The closest method for doing temporal anti-aliasing with current graphics hardware is

to use the accumulation buffer to store past frames. The buffer and the current rendered

frame are filtered together to produce an image that will approximate temporal anti-

aliasing. One issue with this is that if an object is moving quickly, the accumulation

 6

buffer technique will likely produce image ghosting as previous frames might have the

object in a very different location than its position in the current frame.

A number of techniques have been proposed for creating motion blur in a 2D image

space by applying post production techniques or by tracking objects in image space.

These are usually too slow for real-time applications and do not use current hardware to

achieve their results [Max and Lerner 1985; Browstow and Essa 2001]. As discussed in

section 3.3.1, an attempt was made to use the method similar to the one presented in this

paper to produce a motion blur in image space. This produced unacceptable results for a

number of reasons discussed in section 3.3.1.

2.2 Real-Time Motion Blur Techniques

A common, though waning in popularity, method for creating motion blur is object

cloning. This technique copies the last n frames of an object’s motion into the scene,

with each copy being slightly more opaque than the previous, until the current object is

added to the scene at full opacity. There are a number of problems with this. One is that

the complete object must be rendered n+1 times, which can create a large increase in the

number of polygons in the scene; and all but one of the objects must be rendered

transparently. A second is that when the object picks up speed, the distance between the

different copies will increase. As seen in Figure 1 there is no coherence between the

copies and the visual result is unacceptable. This method is only acceptable for low

polygon objects moving a slow speed. Unfortunately, objects that are moving slow are

in little need of a motion blur.

 7

Figure 1. Object cloning of the past four frames of an animating square

A method proposed by Wloka and Zeleznik [Wloka and Zeleznik 1996] simulates a

sweep style motion blur by physically disconnecting the front portion of an object from

the back portion, and connecting the two halves with polygons that connect the two

sections; this process is diagramed in Figure 2. As can be seen in the figure, to simulate

the object’s motion the connecting polygons are segmented, with all segments lying

along the motion path between the current frame, where the front portion is placed, and

the previous frame, where the back portion is positioned. A downside to this approach is

that it does not consider an object using a deforming mesh; the sweep created by the

mesh can intersect itself in many places, thereby not being as useful in today’s programs

that often deal with deformable meshes wrapped around an animated skeleton.

 8

Figure 2. A graphical summary of the method presented by Wloka and Zeleznik [Wloka and Zeleznik

2001].

A geometric motion-based method along similar lines has also been proposed by

NVidia [NVidia 2001]. Using a single previous frame, their method generates a motion

vector, subdivides the model into halves, and creates an alpha-faded stretch between the

two halves as seen in Figure 3. This is easily and quickly done using real-time

hardware; however, the method is not very extensible, cannot produce a curved blur, and

the blur result is of relatively poor quality. It is quite possible that NVidia has solved

these issues using their newest hardware and programmable buffers, and has yet to share

their findings with the community.

Motion Path

 9

Figure 3. An image of NVidia’s motion blur (found on their website) [NVidia 2001].

 10

3 ALGORITHM

3.1 Previous Algorithm and Work

The method’s first incarnations came about in a survey of various ways to use

polygons to show the motion of a translating object. The focus of this early research was

to determine which of a number of geometric motion deformations produced the most

pleasing results, and which performed the best. These first set of methods used the set of

edges between the front and back sides of motion to produce effects based on the objects

motion. The four methods are discussed below.

As seen in Figure 4, the first of these methods was the most simple. The method

simply left the back half of the object at the position it had in the last displayed frame,

and moved the front half to the current position. The overall look was to stretch the

object; as expected, the visual effect was quite poor.

The second method added alpha blended quadrilateral polygons to the model, with one

edge of each polygon attached to the edges of the silhouette, and the opposite edge at the

position the corresponding edge had in the last frame. Of the methods examined, this

proved to give the best results, and it was quite fast to compute and to produce the effect

for. It was slower than the first method, but it produced results that were far superior, as

Figure 5 shows. This version of the motion blur is the basis for the remainder of this

thesis.

 11

The third method was quite similar to the first, but this time the back portion of the

model was deformed into a parabolic arc, and as seen in Figure 6 this gave the back

portion a more rounded look. The visual results were worse than the method it was

based on; consequently it was not pursued further.

Figure 4. First method from early research. This is a simple stretch across the object’s motion
silhouette.

Figure 5. Second method from early research. This is the early version of the method used for this
thesis, it attached alpha blended polygons to the motion silhouette.

 12

The fourth method combined the second and third method into a motion blur. Instead

of just adding the polygons to the silhouette edges as in the second method, it would cap

off the blur with an alpha-faded and parabolic warped version of the third method as

shown in Figure 7. Before starting this research, this was the method judged most likely

to give pleasing results. Ultimately this produced an effect that was not as pleasing as

the second method and was more computationally and graphically intensive than all the

other methods.

Figure 6. Third method from early research. Similar to the first, this created a stretch, but applied a
parabolic deformation to the back half of the object.

Figure 7. Fourth method from early research. Using a technique combination of the first and third
methods, an extra set of polygons in a parabolic shape was added to the model.

 13

None but the second method deserved extra attention, and it had many desirable visual

and computational advantages over the other methods. Once this was determined, the

second method was expanded to produce a more generic and useful algorithm.

3.2 Current Algorithm

The algorithm presented here uses a technique similar to that of swept volume

computation. Assuming that the silhouette information is not discarded, but still

connected in a manner this method uses to create the motion blur, the blur polygons

would give a reasonable approximation of the swept volume the object passed through to

get to its current position and location. Swept volume computation is a field of study that

is still receiving attention by computer scientists [Abdel-Malek et al. 2003; Kim et al.

2003].

3.2.1 Implementation Specific Values

In essence, the scheme described here is designed to create a blur shell. This is a set of

polygons that when added to the scene gives the impression that there is a motion blur

associated with the object. To do this, two pieces of information are needed:

• The length of time the blur should represent

• The number of subdivisions in the blur shell

The time span of the blur is the maximum amount of time any one part of the blur

exists in the shell; the number of subdivisions directly controls the quality of the final

blur. Depending on the effect desired, the time length can vary. To produce a longer

 14

blur, a value of 0.2 seconds was found to give pleasing results, though if one is going for

a more realistic blur the time length should be about the same as the time to render a few

frames. The number of subdivisions directly controls how many samples of the

silhouette of motion, discussed below, will be taken during the time span provided. The

more subdivisions, the smoother and more rounded the blur will look, and the more

computation will be needed to maintain it.

3.2.2 Steps to be Taken

To produce the blur, two main steps must be taken. The first regularly updates the

current silhouette of motion, which is discussed in more depth in 3.2.4. Instead of

continually updating the silhouette, it is updated at certain time intervals; the time

between these updates is

nssubdivisio
timeLength

. However, the best results are obtained when the update can be performed on every

frame. Instead of updating every few frames, the system could also update multiple

times between frames. This would give the method the ability to sample more

accurately over a time frame, and allow this method to gain some of the benefits that

exist when using temporal anti-aliasing. The implementation would be slowed

according to how often this was updated. The second main step is to build and render

the blur, which is the only portion of the method that must be performed on a per-frame

basis; the method for doing this is discussed in section 3.2.5.

 15

Using Figure 8 as a visual guide, a walk-through of the generic algorithm will be

helpful in understanding the method. The example starts with a sphere in motion, as

seen in part a. Next, in part b, the method divides the sphere into two portions. One

portion is the area of the sphere that is pointing toward the direction of motion; the other

area is the portion of the sphere pointing away from the motion. The dividing line

between these two sections is called the silhouette of motion. As seen in part c, the

sphere keeps moving, and at each update interval the method recalculates the silhouette

of motion. After a number of updates, the method has a short history of the past

silhouettes of motion. If we were to imagine connecting the silhouettes together, similar

to what can be seen in part d, we can see that a curved tube is formed, and this tube

could represent the volume swept out as the sphere moved. To actually create the

motion blur, the method connects the silhouettes with a series of polygons. The older

the silhouette that is attached to a polygon, the less opaque the polygon is. This can be

seen in part e; and at this point the method has done everything it needs to do. By

visually removing the silhouettes, the full blur effect can be seen, as shown in part f.

 This was a simple example on a non-deforming sphere. The same technique

holds if just a single portion of the object is moving while the rest of the object stays

still. Only the moving portions are affected by this algorithm.

 16

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Graphical walk through of the method using a moving sphere. The heavy line on the sphere
is the SoM, while the shaded portion is the half of the object that is facing away from the direction of

motion.

 17

3.2.3 Requirements

There are a few assumptions that are made regarding the mesh to be blurred. In order

for the method to function properly, these must be met by the implementation. These

should be easy to obtain in most real-time applications.

Unlike some other methods, the mesh to be blurred can be deformed in real-time, as by

a skeleton, but the world coordinates of each vertex must be known at the time the

silhouette is updated. In many cases, this adds little overhead, as most skeletally

animated meshes know their vertex positions in relation to the skeletal root. The world

coordinates must still be known even if an object’s mesh is not deforming, but the object

itself is moving. In addition to the world coordinate positions of the vertices, the

normal, in world space, of each vertex is also needed when updating; these normals are

primarily used to detect the silhouette of motion. The best results were obtained when

all vertices’ normals were simply the average of the connected polygon’s normals. This

is especially important on low polygon objects, since a polygon with normals that all

face the same direction cannot produce a blur. Unless stated otherwise, a vertex’s world

position and world normal will be referred to simply as its position and normal for the

remainder of this paper.

The mesh data structure must include some information needed to maintain the

silhouette of motion and to create the blur shell. Associated with each polygon are a

number of additional data structures.

The first is a circular list (represented in an array) with length equal to the number of

subdivisions to be used in the blur. Each element of the list represents one blur update

 18

and contains a flag marking whether or not an edge of the polygon exists on the

silhouette of motion, and two vertex positions and normals that represents an edge on the

silhouette of motion, if one is found. This list is needed to track the polygon’s edges that

were on past silhouettes of motion.

Each polygon also needs two indices describing the last two vertices of the polygon

that were part of the silhouette of motion. These will allow for the blur to be connected

to the original mesh. Also, a value representing the number of updates that have passed

since the polygon last had an edge on the silhouette is needed. This will be used to

determine if a polygon should stop contributing to the blur.

In addition to the per-polygon values, a global index is used to keep the system

synchronized between and during updates, referred to as the update index. This index

corresponds to which element in a polygon’s circular list is the most recent and the index

is updated on every silhouette update.

3.2.4 Finding the Silhouette of Motion

The silhouette of motion, or SoM, is a term describing the set of edges on a polygonal

mesh that represents the local silhouette as seen when looking at an object along its axis

of motion. If the majority of a mesh does not move and only one portion of the mesh is

in motion (as would be the case if a character moved just an arm) then only the SoM for

that one portion would change, not that of the rest of the mesh. A non-moving portion of

an object does not have a SoM. Figure 9 shows a variety of objects and possible

silhouettes of motion for the displayed motion.

 19

At each update the current SoM must be found. Due to the difficulty in determining a

full-mesh SoM, a per-polygon silhouette detection technique is used. The method

examines each polygon, and determines if one of its edges lies on the SoM, and then

records the edge in the polygon’s list element that corresponds to the current update

index. The collection of all edges found in this manner will be a close approximation to

the actual silhouette.

Figure 9. Various silhouettes of motion. The heavy line is the SoM, gray areas are on the back side of
motion, and the arrow depicts movement.

 20

Before finding the SoM, the method first determines which side of motion each vertex

is on. The facing of any vertex is determined by the sign of the dot product between the

world normal of the vertex and the vertex’s direction vector. The direction vector points

from the vertex’s previous position to its current position.

Next the method finds the set of edges that lie on the SoM. Each polygon with one

front facing vertex (positive dot product) and two back facing vertices (negative dot

product) records the two back facing vertices’ position and normals in the list element

corresponding to the update index. An example of this on a set of polygons is shown in

Figure 10. A note here is that the opposite method for choosing the silhouette is also

valid; a SoM edge could be the edge between two front facing vertices, if the third vertex

is back facing. As long as a consistent method is used, either is appropriate. In addition

to recording these two vertices, the flag is set in the element, stating that this polygon

has an edge to contribute to the silhouette associated with the update index. Also, the

indices corresponding to the edge’s end points are recorded in the polygon; these

represent the most recent set of vertices in the mesh to lie on the silhouette and will be

used to connect the polygon to the blur it will create. In addition, the number of updates

since the last time an edge was on the silhouette is reset to zero.

All other polygons turn off the flag, increment the value containing the number of

updates since the last time an edge of the polygon was found on the silhouette of motion

by one, and record the positions and normals of the last blurred vertices in the list

element corresponding to the update index. These two recorded vertices will be used to

seamlessly fill in holes that crop up when displaying the blur; see section 3.2.5. Unless

 21

these polygons have generated a blur within the last few updates, they will not contribute

any vertices to this blur update.

Figure 10. The SoM as found on a polygonal mesh. The heavy line are the edges on the SoM, circled
vertices are those with normals facing away from the direction of motion, and the shaded polygons are on

the back side of motion.

 22

Figure 11. Results of successive SoM updates. The sequence of SoM updates are connected to produce
a motion blur.

Once this has been done for all polygons, the method will have a set of polygon edges

that defines the silhouette of motion. By collecting these silhouettes over the course of a

number of updates, the method will be able to connect them in a manner similar to

Figure 11, thus creating the motion blur. We can know that at any one blur update there

are generally O(sqrt(n)) edges on the silhouette; where n is the number of polygons

within the mesh [Glisse 2003]. Thus, for any one update there will be relatively few

edges to deal with.

A note here is that by exploiting frame-to-frame coherence, it may be possible to

obtain the SoM more quickly. While this option has not been fully explored, it is

unlikely to offer much improvement, as silhouettes can emerge on a moving object at

Decreasing opacity

 23

locations far from the previous SoM. Due to the way most objects move, there is a good

deal of coherence between the SoM of adjacent frames, but the effort to exploit this

would likely add so much overhead as to make the effort futile.

3.2.5 Rendering the Blur Shell

In order to display the blur, the method relies on the use of polygon strips, specifically

quadrilateral strips. Each polygon independently creates a polygon strip to display any

blur associated with the edges that belong to it. To do so, a number of steps need to be

taken.

Using the value stored with each polygon, the method determines if the number of

updates since the polygon last had an edge on the silhouette is within some constant

defined by the designer. Any polygon that has not had an edge on the silhouette within

this time frame contributes no polygons to the blur shell. In addition, if the polygon

does not currently have an edge on the SoM, the entire polygon strip will be alpha faded

accordingly. As the number of updates since the polygon had an edge on the SoM

increases, the alpha value of the entire strip decreases, until it is at full transparency at

the time constant specified. This keeps the blur strips from popping out of the scene, by

giving just enough transition to smooth the visual impact of the sudden strip

disappearance. After this time, the polygon must again have an edge on the SoM in

order to display a blur.

If a polygon recently had an edge on the SoM, then it continues to contribute to the

blur shell. The polygon will add pairs of vertices to a quad strip in order to build up the

 24

blur. At most, there will be a number of vertex pairs equal to the number of subdivisions

plus one, (the extra pair connects the blur to the base mesh). To create the blur effect,

the polygon strip needs to fade out towards the end. To do this the vertices that make up

the polygon strips decrease in alpha value, relying on the graphics hardware to blend the

blur shell’s polygons.

To create the quad strip, the method first adds the mesh vertices that belonged to the

edge the polygon last had on the SoM. Then the method cycles through each of the

polygon’s list elements, starting with the one corresponding to the current update index.

The two vertices stored in each list element, with their normals, are added to the quad

strip. There, the normals are used to help retain the shading the mesh had at the point

the vertices were stored, though if the scene has moving light sources the blur’s shading

can potentially change. If a number of vertex pairs equal to the number of subdivisions

are added, the method stops adding vertices to the strip. We also stop the strip if too

many elements in a row were flagged as not having vertices on the SoM. Each time a

pair of vertices is added, the alpha value for the remaining vertices will be reduced by

nssubdivisio
initial α_

This allows the strip to start at some initial alpha value, and if the strip is displayed with

the complete number of subdivisions, the last set of vertices added will be completely

transparent.

The polygon strip created by each polygon will look similar to that found in Figure 12.

Since the silhouette update does not necessarily happen on every frame, the polygon

 25

strip is connected to the original polygon; this allows the polygon to move without

having to update the silhouette all the time. If the blur is displayed again before another

SoM update, and the polygon has moved since the blur was last rendered, the polygon

and strip would look similar to the bottom image of Figure 12, with only the mesh

polygon having moved.

Figure 12. A quadrilateral polygon strip generated by a polygon. Over the course of a few SoM
updates each polygon records the positions of an edge’s vertices. As these vertices are rendered, their

alpha value is controlled to give the strip a faded look.

Update index i

i-1
i-2

i-3

 26

Once all polygons have generated their polygonal strips, the total set of polygons

rendered will create a blur shell that is connected to the original deformed mesh. As

stated earlier, the blur shell is what gives the appearance of a motion blur.

At most, each polygon will add a number of triangles equal to twice the number of

subdivisions to the scene. So, if we look at the size of the silhouette, which is

theoretically bounded by O(sqrt(n)), then we will be adding approximately

O(sqrt(n)*subdivisions) quadrilaterals to the scene to create the motion blur. Even so,

the number of additional polygons rendered for the blur is likely less than that needed by

some of the other motion blur techniques, such as the object cloning method. In practice

there are additional polygons rendered due to polygon edges that have not been on the

silhouette in several updates, and are currently fading out their associated strips. The

speed and amount of model deformation are the prime factors that determine how many

of these dieing polygon strips are displayed. The more animated the model is, the more

likely it is to have a large number of polygon strips dieing at any one time.

3.3 Analysis and Limitations

While the method described gives very good results, there are still several issues

regarding the accuracy and visual quality of the blur. Most of these issues do not impact

the visual look of the blur much, or can be corrected with ad hoc methods.

There exist cases where the silhouette is not continuous along the mesh. These are

rare when using models with continuous meshes, and do not significantly reduce the

visual quality of the motion blur. However, if the model is not continuous, there can

 27

appear to be gaps in the blur. This is due to the silhouette of motion crossing this gap in

the model, and consequently the silhouette edges are not connected. In any case, there is

little that can be done to remedy this; and the effort would be wasted as the issue does

not hamper the visual quality much.

Several steps have been taken to reduce the appearance of holes within the blur. Holes

are caused when there are gaps within the blur caused by a polygon losing a silhouette

edge for only a few updates, and then regaining a silhouette edge, thereby continuing to

display a blur. Holes are one of the most visible errors a viewer will see when shown the

method in use; but the method patches these in such a way as to be invisible to the user.

The primary method for patching the holes is for a polygon to record the position and

normal of the last pair of vertices on the SoM, even if the polygon no longer has an edge

on the SoM. The method uses this when building the polygonal strip to fill in any hole

that is found.

After a period of updates where a polygon has not contributed an edge to the SoM, the

polygon’s strip will stop being rendered. When the strip stops being rendered, there is a

noticeable popping from one frame to the next, as in one frame there was a strip of

polygons, and in the next the strip is missing. Most viewers do not see what is

happening, but they see the popping artifact and it is unpleasant. To avoid this visual

artifact, the method fades the entire polygonal strip in proportion to the number of

updates since the polygon last had an edge on the SoM. By the time the polygonal strip

should be removed, it will have faded over the course of a few frames to an alpha value

of zero.

 28

For highly concave objects, it is possible to have the blur shell attached to the concave

section “pierce” the back of the object. The same is true if the model contains polygons

enclosed in the interior. While these detract from the appearance of the method, as there

are blur polygons that appear to be protruding out of an inappropriate location of the

mesh, both of these issues can be partially remedied by selective polygon blurring. With

this approach, certain polygons are tagged so they will not create blur shells and bypass

the SoM detection. This is also the appropriate addition to allow for interactively

turning on and off portions of the model to blur.

A minor issue occurs when the motion blur created is short, and the portion of the

object that is creating the blur is thick. What can happen is that if the silhouette of

motion runs down the middle of the area viewed, and the blur polygons do not extend far

enough beyond the SoM to be seen past the edge of the object, there can appear to be no

blur. This is usually not an issue because the artifact is usually only apparent on slow

moving portions of the mesh; and slow moving portions usually do not need a motion

blur.

When drawing the blur polygons, the method turns off z-buffer checking to keep

transparent polygons from occluding other blur polygons that might need to be rendered.

This is a well known issue when using transparent polygons in an application that uses

the z-buffer. A solution that is usually used to solve this issue is to draw the polygons

from front to back. This requires that all polygons be sorted based on their distance from

the camera. This can be a very expensive operation due to the large number of polygons

 29

that can be generated. This drastic loss in performance is unacceptable in a real-time

application, so this solution is not used in the method.

The largest issue with the proposed method is that it produces a motion blur in world

space, not image space. What this means, is that the motion blur is not dependent on the

camera’s movements. Real motion blur would arise if an object was non-moving and

the viewpoint moved such that the object moved in image space. The method described

in this paper does not produce this effect; it only produces a blur when the object is in

motion. A good example of the difference between what this method does and what is

real motion blur, is to imagine that there is an object and a camera looking at it. If the

object is spun, but not the camera, a real motion blur would show the blur when viewed

from the camera; the method will also do this, since the object is in motion. However if

the camera is moved around the object, while the object stays still, a real motion blur

would again be seen, but the method described here will produce no such blur. Under

most circumstances, the camera is not moving fast enough compared to the speed of the

animation that this becomes noticeable. However, if the camera is moving quickly, the

fact that the blur is created in world space is noticeable if one knows what to look for.

A potential solution to this would be to track the object’s silhouette of motion in

camera space instead of using world space. This would allow the object to be blurred

when the camera moves; but the ability to show motion blur in a paused scene from any

angle would be lost.

Given this however, since the blur is done in world space, the method provides the

feature that if the scene’s animation is paused, it is still possible to see the motion blur,

 30

as it is just another part of the scene. While the scene is paused, the camera can be

moved around, and at nearly any angle and position it is possible to see the motion of the

object due to the polygonal motion blur. This effect is not possible using most other

motion blur techniques.

At one point in development, an image space motion blur using the method defined

here was attempted. While the effort produced unfavorable results, it proved to be a

valuable experience.

3.3.1 Image Space Motion Blurring

Throughout the development of this thesis, a number of experiments were made.

Some produced successful results, others did not. Those that worked have been

integrated into the method.

The largest of the experiments that produced unacceptable visual results was an

attempt to use a method similar to the SoM detection given above to produce a motion

blur in image, or screen, space. Instead of using a vertex’s direction vector to determine

the SoM, the direction from the vertex to the camera was used. This way, the silhouette

found would be the one seen by the camera. This portion of the algorithm worked, and

the new silhouette was found without issue. Once the silhouette was found, the method

created the blur on the silhouette edges in 2D image space. This worked fine as long as

the camera did not move. However, once the camera started moving around the object,

the combination of object deformation, animation, and the changing view would cause

 31

the silhouette to move across the object extremely quickly and unpredictably. This

caused severe graphical artifacts that were not reasonably fixed.

Since the polygons were created in 2D image space, after the object had been

rendered, there were occlusion issues where the blur generated on edges behind another

portion of the model would appear to be in front of the object. In addition to occlusion

issues, there were blur shading issues since before the blur was being rendered in world

space with world space lighting, now the blur polygons were being rendered in 2D

image space, with no world lighting. These, and other, issues can be seen in Figure 13.

Due to these problems, little attempt was made to fix the occlusion and shading issue;

and it was determined that the method of silhouette detection and blur rendering

described in this thesis was inappropriate for producing an image space motion blur.

 32

Figure 13. A pair of images from an image space motion blur attempt. Due to a number of issues, this
extension to the method was not pursued past a certain point.

 33

4 RESULTS

4.1 Experimental Results

Experiments have been performed using a Windows® PC with an AMD® Althon®

XP 2200+ 1.8 GHz processor with 1 GB of main memory, and a GeForce 4 4400

graphics card. The first results shown are from a deforming polygonal mesh attached to

an animated character skeleton; then the results will be compared to the results for

various resolutions of spheres, in order to reduce the number of outside speed

impediments inherent in the animation system used to house the implementation.

It is important to note that the performance of this method will depend on a number of

factors that are difficult to examine exhaustively. These include the complexity of the

moving objects, how often the silhouette of motion changes, the performance of the

graphics hardware, implementation optimizations, whether the application is CPU-bound

or rendering-bound, etc. The current implementation has not been optimized to use

hardware, e.g. it does not use display lists or vertex arrays for storing and displaying

vertices; it was designed to test the validity of the generic method, not to see how fast

this particular implementation could run. However, an understanding of the complexity

of the method can still be obtained from examining a number of example cases.

The method has been implemented into an animation application co-developed with

Paul Edmondson, a previous student. The application allows the user to define a set of

animations for a skeleton, and allows for a polygonal mesh to be bound to this skeleton.

As the skeleton animates, the mesh is deformed to match the motions of the underlying

 34

skeleton in a manner similar to that found in today’s real-time graphical applications.

Unfortunately the application is not designed with speed and efficiency in mind; that was

not one of the design goals for the application. Its inefficiencies can skew the timing

results, even though the system animates at reasonable speeds, above 60 frames per

second for a character with 20 points of articulation and a mesh with over 1000

polygons. Due to these inefficiencies, performance shall not be discussed in actual

frames per second for the complete system, mesh deformation and blur; but rather the

performance lost while using the method described in this paper against the

implementation’s performance when not using the method.

The example mesh used in the first portions of these results is a 1075 polygon mesh

attached to a skeleton with 20 articulated joints. The blur is 0.2 seconds in length and it

has 10 subdivisions, a fairly high quality setting causing the SoM to update every 1/50th

of a second, or nearly once every frame.

To measure performance loss by this method, a character animating through a set of

animations, without the method turned on, is used. Then, only the SoM detection code,

without displaying the motion blur, is activated. Finally, the system is run with the full

motion blur effect enabled. For each, the percentage of the frames per second lost when

compared with the results when not using the motion blur method is given. These

results are summarized in Table 1. The values given for polygon counts in the tables are

averaged values, as the number of polygons displayed and the number that contain an

edge on the SoM change radically throughout an animation.

 35

As shown by this example, the largest loss in performance is from the rendering of the

blur shell. As stated earlier, this is mostly caused by the dieing strips created on a highly

deforming object. It will be shown that as the polygonal complexity of a mesh increases,

the SoM detection portion of the method will comprise a majority of the performance

loss.

Now results from a set of non-deforming, but animating, spheres are examined. The

spheres are of increasing polygonal complexity, so that it is possible to see the

differences in performance over a range of meshes. Due to the nature of the motion blur

method, the lack of a deforming mesh does not change the validity of the results. For

consistency, the values for the character’s blur will be the same values used for the

spheres.

Table 1.
Performance Results on an Animated Character

Model
Polygons

SoM
Edges

Blur
Shell

Polygons

SoM
Detection

Performance
Loss

SoM and
Rendered

Blur
Performance

Loss

1075 212 3566 0.37% 1.03%

 36

As can be seen in Table 2, and as stated above, the SoM detection is where most of the

performance is lost when using meshes with a large number of polygons. The blur shell

rendering overhead is largely negligible for the high resolution spheres.

Even though results are shown when using spheres, the animated character is much

more representative of the types of deforming meshes found in actual applications. Even

so, there is only approximately a 1% performance loss when using the method described.

Section 5 discusses modifications that can be made to an implementation to improve

performance. Due to the small loss in performance when using this method, it is well

suited for real-time graphics.

Table 2.
Performance Results on Non-Deforming Spheres

Model
Polygons

SoM
Edges

Blur
Shell

Polygons

SoM
Detection

Performance
Loss

SoM and
Rendered

Blur
Performance

Loss

1224 47 615 0.55% 0.60%

2484 66 828 0.77% 0.79%

5670 128 2920 0.89% 0.91%

9800 336 4362 0.94% 0.95%

 37

4.2 Resource Usage

When discussing a new algorithm or method and its impact on performance, it is

important to discuss what computer resources are used and required by said algorithm;

and to analyze ways to reduce the requirements of these resources.

As such, it is important to examine the sources of the performance loss seen in the

results in section 4.1. For a graphical application, there are two primary resources that

are needed and consumed: the main CPU and the graphics hardware of the machine.

In the implementation used to gather the results in section 4.1, finding the SoM was

strictly a CPU bound operation. All calculations needed are performed by the CPU, and

all data is managed by the main memory of the computer. By looking at the results for

the high polygon objects, we can see that the method spends most of its time calculating

the silhouette of motion. Due to this, the bottleneck of the method is in the SoM

calculation, and since it is currently managed by the CPU, the SoM detection is a CPU

bound operation. The overall method performance could be best improved by

examining ways to reduce the CPU cost to detect the SoM.

It should also be noted that the animation program used in these results is also CPU

bound; the mesh is deformed in software. By using the method, the number of polygons

in the object can be increased by 50% to 400%. If the application was rendering-bound,

and hardware bound, then this increase in the number of polygons would have a larger

impact on performance. However, since the performance loss due to the blur polygons

being rendered is so low, we can see that the animation system is CPU bound.

 38

In order to free up the CPU, it should be possible to offload most of this processing

onto the graphics hardware; though currently the storage of the SoM tracking data

structures would need to be done on the non-graphics hardware side. This will likely

change in the near future as hardware buffers become more generic. Until the time when

all of these calculations and data storage can be done on the graphics hardware, there

would need to be communications between the GPU and the CPU; and as the industry

has found out, this communication can be time intensive. So while this is a viable

direction of research, it will be a while before an optimal solution arises.

In the second portion of the algorithm, the method renders the blur using the set of

edges found on the SoM. Currently the application running on the CPU generates the

geometry, and the graphics hardware renders it to the display buffer. For modern

graphics hardware, rendering a few thousand extra polygons is often a near negligible

performance hit. However, all the blur polygons are transparent; causing many pixels to

be rendered many times, so high fill rate graphics hardware is needed to keep up

performance. Luckily, today’s hardware is specifically designed to have a high fill rate.

While the display itself is fairly cheap for the hardware, generating the geometry in the

first place is not. Since the polygon strips are created by code running on the CPU, there

is a resource bottleneck here.

There are a number of ways that could be used to improve the geometry generation

time. One way would be to use vertex arrays to manage the blur polygons. By using a

data structure that is tightly linked to the graphics hardware, it should be possible to

reduce the calls to vertex creation functions by setting values within a vertex array.

 39

Another option would be to try and move the entire set of operations onto the graphics

hardware, and to generate the polygons using some sort of shader.

Using the implementation results above as indicators we can see that as the model

complexity increases, the SoM will take the majority of the method’s computation time.

4.3 Performance and Quality Tradeoffs

When looking at the algorithm, one can see that there are many choices for a

developer to make when using this method. Such choices are how many subdivisions

the blur should have, how long the blur should last, etc. While a lot of these choices are

purely stylistic in nature, there is a practical side to making them. By manipulating the

variables associated with the method, it is possible to trade run time performance with

image quality.

Aside from moving the implementation to be based more in hardware, the most

important decision a developer using this method can make is how many subdivisions

the motion blur should have. The higher this number, the smoother the blur; but the

more computation time needed. Since this value determines how often the SoM is

updated, and as stated above, the SoM detection is the most expensive set of operations

done, it can be the most powerful customization tool for this method. If the update

speed is too high, then the method will spend more time than necessary to determine the

SoM. If the update speed is too low, the blur will appear blocky and unattractive. The

best visuals are obtained by having the SoM updated at least on every frame; but in some

applications this may require too much processing. Due to this, it is in the application

 40

designer’s best interest to carefully determine the number of subdivisions that is most

appropriate to their application. This said, it is likely possible to modify the method to

allow for on-the-fly modification of the subdivisions or SoM update interval.

4.4 Visual Results

Figure 14 shows the method in use on a character walking in place. On the left is a

full body image showing the motion blur across the entire character. Notice that even in

this still image, it is possible to tell how the character is moving. The top right image is

a close up of the blur associated with the legs. Here, the blur is rendered in wire frame

so that the individual polygons of the blur strips can be seen. The bottom right image is

of the same frame of animation, but this time the model is shown in wireframe, making

it easier to see how the blur connects to the model.

In Figure 15 a series of views from the same frame of animation is shown. Notice

how the blur easily shows the curved motion in the arms and feet. Also, when compared

to Figure 14 it is possible to tell that in this image, the character is moving faster. The

left image is the standard view of the method in use. In the middle the blur is rendered

in wireframe so that the blur polygons can be seen. The right is again the same frame,

but the model is in wireframe so that the blur is easily distinguishable from the model.

In this image it is easy to see how the blur polygons attach to the thighs of the character.

 41

Figure 14. A view of a character’s legs using the motion blur technique found within this thesis

 42

Figure 15. A series of views of the same frame of animation showing the motion blur, the blur’s
wireframe, and how the blur connects to the model.

The four images in Figure 16 again all show a single frame. However, the bottom

right image is of just the blur polygons; the character’s mesh has been completely

removed. This view is useful as it shows how by just using the motion blur, one can

show motion, even without an object to portray it. The upper left hand image is shown

larger in Figure 17. In this figure it is possible to see the non-connected blur polygons

caused by a model that does not have a continuous mesh. The vertices of the character’s

feet are not actually attached to its lower legs, causing the silhouette of motion to be

discontinuous, as discussed in section 3.3.

 43

Figure 16. A number of images from the same frame of a jumping animation. The bottom right image
just displays the blur polygons.

 44

Figure 17. A close up view of the jumping frame showing the disconnected blur produced by the foot

 45

As stated earlier in section 4.3, the number of subdivisions controls how smooth the

created motion blur is. Two different blur qualities can be seen in Figure 18. The top

two images show a high quality blur, while the bottom shows the wireframe created by a

lower quality blur.

Figure 18. Varying blur qualities

 46

In addition to seeing the blur on an animated character, it is useful to see the effect

being used on a moving sphere. Figure 19 shows two views of the same blurring sphere.

The top shows a close up of the blur, and how it attaches to the sphere; in this view it can

also be seen that the polygons are attached to the silhouette of motion. The bottom

figure shows the blur in wireframe. Here the past silhouettes of motion can be seen, they

are the rings that are visible in the trailing blur.

 47

Figure 19. Blur created on a moving sphere, its connection to the model, and the past silhouettes of
motion

 48

5 FUTURE WORK

There are a number of potential future improvements to the motion blur technique

described in this thesis. Most of these involve implementation specific changes.

One such improvement would be to use today’s graphics hardware to better manage

the blur shell and SoM updates. In addition to the examples discussed in section 4.2, one

could use programmable graphics hardware to detect SoM edges. This would allow for

much faster SoM detection and rendering, and would require less overhead when

communicating with the graphics pipeline.

Another extension to the method would be to restrict the blur to only affect certain

portions of the mesh. This would allow for selective blurring, in addition to fixing the

enclosed polygon issue discussed in section 3.3.

In addition, an object’s mesh could be managed in such a manner as to be of more

benefit to the SoM detection algorithm. The algorithm provided here works on any

generic polygonal mesh, but it should be possible to tailor a mesh to better suit the needs

of the application. One approach would be to pre-compute associations between edges

and adjacent vertices; allowing for a faster SoM calculation.

 49

6 CONCLUSION

Today, computer graphics is an important field within the computer science industry,

and it will continue to grow in importance as interactive or entertainment applications

become more widely accepted. Industry professionals and researchers have spent years

developing the current state of computer graphics. Whether this is physical simulation,

high-speed rendering techniques, special effects, exploiting hardware tricks, or just plain

using hacks is irrelevant. What matters is that developers are trying to increase the

immersion, enjoyment, and utility of real-time graphics applications; and they need

every tool at their disposal to do this.

One such tool that is gaining in popularity with real-time application developers, and

their users, is motion blur. It is a versatile tool that can used to increase the realism of

the rendered scenes, show the path of an object, produce special effects, or simply draw

a viewer’s attention to something within the scene. Due to the increasing popularity of

motion blur, it is a topic currently being researched by a number of groups and

companies, including ATI and NVidia; and it will continue to draw research for many

years to come.

The thesis above describes a method for producing a motion blur in real-time. It

allows for an object with a deforming polygonal mesh to be motion blurred by creating a

set of motion blurring polygons through the finding and use of the silhouette of motion

over the span of a few updates. It is a method that could be expanded upon and refined,

but the scheme provided is generic enough to work with nearly any application that uses

polygonal models to display its entities.

 50

Though not being graphically impressive enough for offline graphics – it is extremely

hard to compete with the results generated by temporal anti-aliasing – the method

provides a visually appealing solution to a current research topic in the area of real-time

and interactive graphics. It is quick, easy to understand, and useful for any developers

who want to add graphical flair to their application.

For these reasons, the algorithm presented in this thesis is a positive addition to the

field of computer graphics, and gives designers one more tool to use when creating

motion blurs in their real-time applications.

 51

REFERENCES

Abdel-Malek, K., Blackmore, D., and Joy, K. 2003. Swept Volumes: Foundations,

Perspectives, and Applications. http://www.engineering.uiowa.edu/~amalek

/papers/swept-volume-review.pdf (submitted to International Journal of Shape

Modeling)

Brostow, G. and Essa, I. 2001. Image-Based Motion Blur for Stop Motion Animation.

In Proceedings of Siggraph 2001, ACM Press / ACM SIGGRAPH, Computer

Graphics Proceedings, Annual Conference Series, ACM.

Dachille, F., and Kaufman, A. 2000. High-Degree Temporal Antialiasing. Proceedings

of Computer Animation 2000, 49-54.

Dippe, M., and Wold, E. 1985. Antialiasing Through Stochastic Sampling. In

Proceedings of SIGGRAPH 1985, ACM Press / ACM SIGGRAPH, Computer

Graphics Proceedings, Annual Conference Series, ACM.

Glisse, M. 2003. On the Theoretical Complexity of the Silhouette of a Polyhedron.

Master’s Thesis, INRIA Lorainne, Nancy.

Kim, Y., Varadhan, G., Lin, M., Manocha, D. 2003. Fast Swept Volume Approximation

of Complex Polyhedral Models. In Proceedings of ACM Symposium on Solid

Modeling and Applications. 11-22.

Korein, J, and Badler, N. 1983. Temporal Anti-Aliasing in Computer Generated

Animation. In Proceedings of SIGGRAPH 1983, ACM Press / ACM SIGGRAPH,

Computer Graphics Proceedings, Annual Conference Series, ACM.

 52

Max, N. and Lerner, D. 1985. A Two-and-a-half-D Motion Blur Algorithm. In

Proceedings of SIGGRAPH 1985, ACM Press / ACM SIGGRAPH, Computer

Graphics Proceedings, Annual Conference Series, ACM.

NVidia. 2001. Developer Relations Notes. http://developer.nvidia.com/object/motion_

blur.html

Potmesil, M., and Chakravarty, I. 1983. Modelling Motion Blur in Computer-Generated

Images. In Proceedings of SIGGRAPH 1983, ACM Press / ACM SIGGRAPH,

Computer Graphics Proceedings, Annual Conference Series, ACM.

Wloka, M., and Zeleznik, R. 1996. Interactive Real-Time Motion Blur. The Visual

Computer, vol. 12, no. 6, 283-295.

 53

VITA

Nathaniel Earl Jones

16310 Heatherdale

Houston, TX 77059

After attending Clear Lake High School in Houston Texas, Nathaniel Jones began his

undergraduate degree at Texas A&M University. At A&M he studied computer science,

with a focus area in art. After graduating in 2002, he began study for his degree in

computer science in A&M’s master’s program, with a primary focus in computer

graphics. He will be graduating from A&M in May 2004.

While attending college, Nathaniel’s desire to work with computer graphics and real-

time simulation grew to a passion. While researching for a class project, he decided to

work in the area of motion blur, an important topic in real-time computer graphics. The

prime focus of his coursework and research has been in the use of graphics within

computer games. With this focus, he helped to found a new student organization at

Texas A&M, the Texas Aggie Game Developers. This club is designed to help students

get additional education and experience that pertains to the game industry; something

they likely would not get through their standard coursework.

Throughout his college career Nathaniel has worked for a number of companies, but

currently is employed by the computer science department as a web application

programmer.

