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ABSTRACT 

Real-Time Geometric Motion Blur for a Deforming Polygonal Mesh. (May 2004) 

Nathaniel Jones, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. John Keyser 

 

Motion blur is one important method for increasing the visual quality of real-time 

applications.  This is increasingly true in the area of interactive applications, where 

designers often seek to add graphical flair or realism to their programs.  These 

applications often have animated characters with a polygonal mesh wrapped around an 

animated skeleton; and as the skeleton moves the mesh deforms with it.  This thesis 

presents a method for adding a geometric motion blur to a deforming polygonal mesh.  

The scheme presented tracks an object’s motion silhouette, and uses this to create a 

polygonal mesh.  When this mesh is added to the scene, it gives the appearance of a 

motion blur on a single object or particular character.  The method is generic enough to 

work on nearly any type of moving polygonal model.  Examples are given that show 

how the method could be expanded and how changes could be made to improve its 

performance. 
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1 INTRODUCTION 

This thesis describes a method for generating a motion blur for an animating and 

deforming polygonal mesh. 

1.1 Motivation 

Motion blur is important in many real-time graphical applications, such as games and 

training simulators.  It is one of many methods used to portray an object’s motion, and to 

draw the viewer into a scene.  There are a number of uses for motion blur: 

One is to add realism to a scene.  The open camera shutter samples the world over a 

span of time.  This creates a motion blur in any moving object in a film or traditional 

photography; it is inherent to the filming process and the blur feels natural to most 

viewers.  This motion blur is often missing in real-time applications due to the difficulty 

or speed loss when creating it.  While motion blur is rarely noticed by viewers, its lack is 

quite noticeable when one compares two computer generated films, one with motion blur 

and one without; the film with motion blur will appear to be much more realistic and 

appealing to the viewer.  If we can add motion blur to a real-time application, then the 

viewer will be drawn into the scene more so than if the blur was lacking.  Therefore, 

motion blur is often something designers want in their real-time applications. 

 
This thesis follows the style and format of Proceedings of SIGGRAPH 2002. 

 



 2 

A second use for motion blur is to create a desired special effect.  It can be used to 

show a streaking object or just to draw attention to something in the scene.  By 

controlling the length of time the blur remains visible as well as display properties of the 

motion blur itself, a designer can get varying effects that may not be attainable using 

other methods, some of which are described in section 2. 

A third use is to show an object in motion using just a still image.  When viewing a 

still image from a frame set with no motion blur it is often quite difficult, if not 

impossible, to determine what motion is happening in a scene.  Because of this, motion 

blur can be useful in still media such as comic books and digital imagery, or to just show 

what is happening within a scene using a single image. 

There are many approaches to generating or showing motion blur; but most are 

insufficient to allow for all of these needs.  They either produce results that are visually 

unacceptable, are not fast enough for real time, or do not deal with highly deforming 

meshes as can often be found in today’s interactive applications.  These other methods 

are discussed in section 2. 

1.2 General Concept 

The motion blur method presented in this thesis satisfies the needs of these uses while 

providing visually appealing results fast enough for use in real-time applications.  Using 

a method similar to that of swept volume construction, the method first determines the 

set of edges that lie along the dividing point between the front and back of a mesh based 

upon its motion; this set of edges is known as the silhouette of motion.  By connecting a 
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set of silhouettes captured at regular time intervals with increasingly transparent 

polygons, the method creates a visually appealing polygonal motion blur.  This 

generated set of polygons is referred to as the blur shell. 

1.3 Key Features 

There are a number of features of the presented method that distinguish it from some 

of the other motion blur techniques in use today. 

The method discussed here produces a motion blur for meshes that are animating and 

deforming.  A number of methods that are targeted towards interactive applications 

make an assumption that the object’s polygonal mesh is static.  At one time this was a 

valid assumption, but in today’s applications character meshes are often attached to a 

skeleton and as the skeleton animates, the mesh deforms to match the skeleton’s 

motions. 

The method gives designers quite a bit of control over how the blur looks and behaves, 

as well as the performance cost of a particular implementation.  A designer could turn on 

or off the blur on selective portions of the mesh’s surface or vary other attributes 

associated with the blur, such as its length.  In addition, since the method outputs 

polygons, any polygonal operations can be done on the blur to add additional effects and 

control, such using a pixel shader to augment the appearance of the blur’s polygons.  It is 

also quite possible to use the presented technique to show motion in a single frame 

capture, which can help audiences figure out what is happening within a scene. 
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Even when the method is implemented only in software, there is little loss in 

performance and this loss can be largely alleviated by using today’s programmable 

graphics hardware.  Since the method manipulates and creates polygons, which are 

entities for which graphics hardware is adept at using, the method is quite hardware 

friendly. 

Due to the generic nature of the method, it should be relatively simple to integrate it 

into most real-time graphical applications that have actors or objects made from 

deforming polygonal models. 

1.4 Layout 

The remainder of this paper is laid out as follows. 

Section 2 will describe the previous work in the topic of motion blur creation, and why 

we would need an additional technique to the ones described.  Section 3 will describe the 

method’s algorithm in detail, as well as describing potential improvements to an 

implementation.  In section 4, experimental performance results are examined by using 

an implementation of the method, and the restrictions put on the method by computer 

resources.  Section 5 describes the potential future of this method, and where additional 

work should be focused upon.  The paper is concluded in section 6. 
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2 PREVIOUS WORK 

Since motion blur is such an important topic within graphics, there has been a good 

deal of research into the topic; some of this previous work is discussed here. 

2.1 Offline Motion Blur Techniques 

Motion blur has been an important aspect of computer generated imagery for many 

years.  Some of the earliest and most fundamental work includes that of Korein and 

Badler, Potmesil and Chakravarty, and Dippe and Wold [Korein and Badler 1983; 

Potmesil and Chakravarty 1983; Dippe and Wold 1985].  The best looking and most 

widely used motion blur technique is temporal anti-aliasing [Korein and Badler 1983; 

Dachille and Kaufman 2000].  It is also the technique for adding motion blur to the 

computer graphics found in films.  By this method, motion blur is created by super-

sampling the scene in the time domain.  What this means is that a particular pixel is 

sampled at various points in time around the current frame time; and the samples are 

then filtered to create the final color for a pixel.  This essentially averages a pixel’s color 

over a span of time.  While this works well for offline rendering or ray-tracing, where 

time can be extensively controlled, it is far too slow for real-time applications. 

The closest method for doing temporal anti-aliasing with current graphics hardware is 

to use the accumulation buffer to store past frames.  The buffer and the current rendered 

frame are filtered together to produce an image that will approximate temporal anti-

aliasing.  One issue with this is that if an object is moving quickly, the accumulation 
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buffer technique will likely produce image ghosting as previous frames might have the 

object in a very different location than its position in the current frame. 

A number of techniques have been proposed for creating motion blur in a 2D image 

space by applying post production techniques or by tracking objects in image space.  

These are usually too slow for real-time applications and do not use current hardware to 

achieve their results [Max and Lerner 1985; Browstow and Essa 2001].  As discussed in 

section 3.3.1, an attempt was made to use the method similar to the one presented in this 

paper to produce a motion blur in image space.  This produced unacceptable results for a 

number of reasons discussed in section 3.3.1. 

2.2 Real-Time Motion Blur Techniques 

A common, though waning in popularity, method for creating motion blur is object 

cloning.  This technique copies the last n frames of an object’s motion into the scene, 

with each copy being slightly more opaque than the previous, until the current object is 

added to the scene at full opacity.  There are a number of problems with this.  One is that 

the complete object must be rendered n+1 times, which can create a large increase in the 

number of polygons in the scene; and all but one of the objects must be rendered 

transparently.  A second is that when the object picks up speed, the distance between the 

different copies will increase.  As seen in Figure 1 there is no coherence between the 

copies and the visual result is unacceptable.  This method is only acceptable for low 

polygon objects moving a slow speed.  Unfortunately, objects that are moving slow are 

in little need of a motion blur. 
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Figure 1.  Object cloning of the past four frames of an animating square 

 

A method proposed by Wloka and Zeleznik [Wloka and Zeleznik 1996] simulates a 

sweep style motion blur by physically disconnecting the front portion of an object from 

the back portion, and connecting the two halves with polygons that connect the two 

sections; this process is diagramed in Figure 2.  As can be seen in the figure, to simulate 

the object’s motion the connecting polygons are segmented, with all segments lying 

along the motion path between the current frame, where the front portion is placed, and 

the previous frame, where the back portion is positioned.  A downside to this approach is 

that it does not consider an object using a deforming mesh; the sweep created by the 

mesh can intersect itself in many places, thereby not being as useful in today’s programs 

that often deal with deformable meshes wrapped around an animated skeleton. 
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Figure 2.  A graphical summary of the method presented by Wloka and Zeleznik [Wloka and Zeleznik 

2001]. 

 

A geometric motion-based method along similar lines has also been proposed by 

NVidia [NVidia 2001].  Using a single previous frame, their method generates a motion 

vector, subdivides the model into halves, and creates an alpha-faded stretch between the 

two halves as seen in Figure 3.  This is easily and quickly done using real-time 

hardware; however, the method is not very extensible, cannot produce a curved blur, and 

the blur result is of relatively poor quality.  It is quite possible that NVidia has solved 

these issues using their newest hardware and programmable buffers, and has yet to share 

their findings with the community. 

Motion Path 
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Figure 3.  An image of NVidia’s motion blur (found on their website) [NVidia 2001]. 
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3 ALGORITHM 

3.1 Previous Algorithm and Work 

The method’s first incarnations came about in a survey of various ways to use 

polygons to show the motion of a translating object.  The focus of this early research was 

to determine which of a number of geometric motion deformations produced the most 

pleasing results, and which performed the best.  These first set of methods used the set of 

edges between the front and back sides of motion to produce effects based on the objects 

motion.  The four methods are discussed below. 

As seen in Figure 4, the first of these methods was the most simple.  The method 

simply left the back half of the object at the position it had in the last displayed frame, 

and moved the front half to the current position.  The overall look was to stretch the 

object; as expected, the visual effect was quite poor. 

The second method added alpha blended quadrilateral polygons to the model, with one 

edge of each polygon attached to the edges of the silhouette, and the opposite edge at the 

position the corresponding edge had in the last frame.  Of the methods examined, this 

proved to give the best results, and it was quite fast to compute and to produce the effect 

for.  It was slower than the first method, but it produced results that were far superior, as 

Figure 5 shows.  This version of the motion blur is the basis for the remainder of this 

thesis. 
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The third method was quite similar to the first, but this time the back portion of the 

model was deformed into a parabolic arc, and as seen in Figure 6 this gave the back 

portion a more rounded look.  The visual results were worse than the method it was 

based on; consequently it was not pursued further. 

 

 

Figure 4.  First method from early research.  This is a simple stretch across the object’s motion 
silhouette. 

 

 

Figure 5.  Second method from early research.  This is the early version of the method used for this 
thesis, it attached alpha blended polygons to the motion silhouette. 
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The fourth method combined the second and third method into a motion blur.  Instead 

of just adding the polygons to the silhouette edges as in the second method, it would cap 

off the blur with an alpha-faded and parabolic warped version of the third method as 

shown in Figure 7.  Before starting this research, this was the method judged most likely 

to give pleasing results.  Ultimately this produced an effect that was not as pleasing as 

the second method and was more computationally and graphically intensive than all the 

other methods. 

 

 

Figure 6.  Third method from early research.  Similar to the first, this created a stretch, but applied a 
parabolic deformation to the back half of the object. 

 

 

Figure 7.  Fourth method from early research.  Using a technique combination of the first and third 
methods, an extra set of polygons in a parabolic shape was added to the model. 
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None but the second method deserved extra attention, and it had many desirable visual 

and computational advantages over the other methods.  Once this was determined, the 

second method was expanded to produce a more generic and useful algorithm. 

3.2 Current Algorithm 

The algorithm presented here uses a technique similar to that of swept volume 

computation.  Assuming that the silhouette information is not discarded, but still 

connected in a manner this method uses to create the motion blur, the blur polygons 

would give a reasonable approximation of the swept volume the object passed through to 

get to its current position and location. Swept volume computation is a field of study that 

is still receiving attention by computer scientists [Abdel-Malek et al. 2003; Kim et al. 

2003]. 

3.2.1 Implementation Specific Values 

In essence, the scheme described here is designed to create a blur shell.  This is a set of 

polygons that when added to the scene gives the impression that there is a motion blur 

associated with the object.  To do this, two pieces of information are needed: 

• The length of time the blur should represent 

• The number of subdivisions in the blur shell 

The time span of the blur is the maximum amount of time any one part of the blur 

exists in the shell; the number of subdivisions directly controls the quality of the final 

blur.  Depending on the effect desired, the time length can vary.  To produce a longer 
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blur, a value of 0.2 seconds was found to give pleasing results, though if one is going for 

a more realistic blur the time length should be about the same as the time to render a few 

frames.  The number of subdivisions directly controls how many samples of the 

silhouette of motion, discussed below, will be taken during the time span provided.  The 

more subdivisions, the smoother and more rounded the blur will look, and the more 

computation will be needed to maintain it. 

3.2.2 Steps to be Taken 

To produce the blur, two main steps must be taken.  The first regularly updates the 

current silhouette of motion, which is discussed in more depth in 3.2.4.  Instead of 

continually updating the silhouette, it is updated at certain time intervals; the time 

between these updates is 

nssubdivisio
timeLength  

.  However, the best results are obtained when the update can be performed on every 

frame.  Instead of updating every few frames, the system could also update multiple 

times between frames.  This would give the method the ability to sample more 

accurately over a time frame, and allow this method to gain some of the benefits that 

exist when using temporal anti-aliasing.  The implementation would be slowed 

according to how often this was updated.  The second main step is to build and render 

the blur, which is the only portion of the method that must be performed on a per-frame 

basis; the method for doing this is discussed in section 3.2.5. 
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Using Figure 8 as a visual guide, a walk-through of the generic algorithm will be 

helpful in understanding the method.  The example starts with a sphere in motion, as 

seen in part a.  Next, in part b, the method divides the sphere into two portions.  One 

portion is the area of the sphere that is pointing toward the direction of motion; the other 

area is the portion of the sphere pointing away from the motion.  The dividing line 

between these two sections is called the silhouette of motion.  As seen in part c, the 

sphere keeps moving, and at each update interval the method recalculates the silhouette 

of motion.  After a number of updates, the method has a short history of the past 

silhouettes of motion.  If we were to imagine connecting the silhouettes together, similar 

to what can be seen in part d, we can see that a curved tube is formed, and this tube 

could represent the volume swept out as the sphere moved.  To actually create the 

motion blur, the method connects the silhouettes with a series of polygons.  The older 

the silhouette that is attached to a polygon, the less opaque the polygon is.  This can be 

seen in part e; and at this point the method has done everything it needs to do.  By 

visually removing the silhouettes, the full blur effect can be seen, as shown in part f. 

 This was a simple example on a non-deforming sphere.  The same technique 

holds if just a single portion of the object is moving while the rest of the object stays 

still.  Only the moving portions are affected by this algorithm. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 8.  Graphical walk through of the method using a moving sphere.  The heavy line on the sphere 
is the SoM, while the shaded portion is the half of the object that is facing away from the direction of 

motion. 
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3.2.3 Requirements 

There are a few assumptions that are made regarding the mesh to be blurred.  In order 

for the method to function properly, these must be met by the implementation.  These 

should be easy to obtain in most real-time applications. 

Unlike some other methods, the mesh to be blurred can be deformed in real-time, as by 

a skeleton, but the world coordinates of each vertex must be known at the time the 

silhouette is updated.  In many cases, this adds little overhead, as most skeletally 

animated meshes know their vertex positions in relation to the skeletal root.  The world 

coordinates must still be known even if an object’s mesh is not deforming, but the object 

itself is moving.  In addition to the world coordinate positions of the vertices, the 

normal, in world space, of each vertex is also needed when updating; these normals are 

primarily used to detect the silhouette of motion.  The best results were obtained when 

all vertices’ normals were simply the average of the connected polygon’s normals.  This 

is especially important on low polygon objects, since a polygon with normals that all 

face the same direction cannot produce a blur.  Unless stated otherwise, a vertex’s world 

position and world normal will be referred to simply as its position and normal for the 

remainder of this paper. 

The mesh data structure must include some information needed to maintain the 

silhouette of motion and to create the blur shell.  Associated with each polygon are a 

number of additional data structures. 

The first is a circular list (represented in an array) with length equal to the number of 

subdivisions to be used in the blur.  Each element of the list represents one blur update 
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and contains a flag marking whether or not an edge of the polygon exists on the 

silhouette of motion, and two vertex positions and normals that represents an edge on the 

silhouette of motion, if one is found.  This list is needed to track the polygon’s edges that 

were on past silhouettes of motion. 

Each polygon also needs two indices describing the last two vertices of the polygon 

that were part of the silhouette of motion.  These will allow for the blur to be connected 

to the original mesh.  Also, a value representing the number of updates that have passed 

since the polygon last had an edge on the silhouette is needed.  This will be used to 

determine if a polygon should stop contributing to the blur. 

In addition to the per-polygon values, a global index is used to keep the system 

synchronized between and during updates, referred to as the update index.  This index 

corresponds to which element in a polygon’s circular list is the most recent and the index 

is updated on every silhouette update. 

3.2.4 Finding the Silhouette of Motion 

The silhouette of motion, or SoM, is a term describing the set of edges on a polygonal 

mesh that represents the local silhouette as seen when looking at an object along its axis 

of motion.  If the majority of a mesh does not move and only one portion of the mesh is 

in motion (as would be the case if a character moved just an arm) then only the SoM for 

that one portion would change, not that of the rest of the mesh.  A non-moving portion of 

an object does not have a SoM.  Figure 9 shows a variety of objects and possible 

silhouettes of motion for the displayed motion. 
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At each update the current SoM must be found.  Due to the difficulty in determining a 

full-mesh SoM, a per-polygon silhouette detection technique is used.  The method 

examines each polygon, and determines if one of its edges lies on the SoM, and then 

records the edge in the polygon’s list element that corresponds to the current update 

index.  The collection of all edges found in this manner will be a close approximation to 

the actual silhouette. 

 
 

Figure 9.  Various silhouettes of motion.  The heavy line is the SoM, gray areas are on the back side of 
motion, and the arrow depicts movement. 
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Before finding the SoM, the method first determines which side of motion each vertex 

is on.  The facing of any vertex is determined by the sign of the dot product between the 

world normal of the vertex and the vertex’s direction vector.  The direction vector points 

from the vertex’s previous position to its current position. 

Next the method finds the set of edges that lie on the SoM.  Each polygon with one 

front facing vertex (positive dot product) and two back facing vertices (negative dot 

product) records the two back facing vertices’ position and normals in the list element 

corresponding to the update index.  An example of this on a set of polygons is shown in 

Figure 10.  A note here is that the opposite method for choosing the silhouette is also 

valid; a SoM edge could be the edge between two front facing vertices, if the third vertex 

is back facing.  As long as a consistent method is used, either is appropriate.  In addition 

to recording these two vertices, the flag is set in the element, stating that this polygon 

has an edge to contribute to the silhouette associated with the update index.  Also, the 

indices corresponding to the edge’s end points are recorded in the polygon; these 

represent the most recent set of vertices in the mesh to lie on the silhouette and will be 

used to connect the polygon to the blur it will create.  In addition, the number of updates 

since the last time an edge was on the silhouette is reset to zero. 

All other polygons turn off the flag, increment the value containing the number of 

updates since the last time an edge of the polygon was found on the silhouette of motion 

by one, and record the positions and normals of the last blurred vertices in the list 

element corresponding to the update index.  These two recorded vertices will be used to 

seamlessly fill in holes that crop up when displaying the blur; see section 3.2.5.  Unless 
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these polygons have generated a blur within the last few updates, they will not contribute 

any vertices to this blur update. 

 

 

 

Figure 10.  The SoM as found on a polygonal mesh.  The heavy line are the edges on the SoM, circled 
vertices are those with normals facing away from the direction of motion, and the shaded polygons are on 

the back side of motion. 
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Figure 11.  Results of successive SoM updates.  The sequence of SoM updates are connected to produce 
a motion blur. 

 

Once this has been done for all polygons, the method will have a set of polygon edges 

that defines the silhouette of motion.  By collecting these silhouettes over the course of a 

number of updates, the method will be able to connect them in a manner similar to 

Figure 11, thus creating the motion blur.  We can know that at any one blur update there 

are generally O(sqrt(n)) edges on the silhouette; where n is the number of polygons 

within the mesh [Glisse 2003].  Thus, for any one update there will be relatively few 

edges to deal with. 

A note here is that by exploiting frame-to-frame coherence, it may be possible to 

obtain the SoM more quickly.  While this option has not been fully explored, it is 

unlikely to offer much improvement, as silhouettes can emerge on a moving object at 

Decreasing opacity 
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locations far from the previous SoM.  Due to the way most objects move, there is a good 

deal of coherence between the SoM of adjacent frames, but the effort to exploit this 

would likely add so much overhead as to make the effort futile. 

3.2.5 Rendering the Blur Shell 

In order to display the blur, the method relies on the use of polygon strips, specifically 

quadrilateral strips.  Each polygon independently creates a polygon strip to display any 

blur associated with the edges that belong to it.  To do so, a number of steps need to be 

taken. 

Using the value stored with each polygon, the method determines if the number of 

updates since the polygon last had an edge on the silhouette is within some constant 

defined by the designer.  Any polygon that has not had an edge on the silhouette within 

this time frame contributes no polygons to the blur shell.  In addition, if the polygon 

does not currently have an edge on the SoM, the entire polygon strip will be alpha faded 

accordingly.  As the number of updates since the polygon had an edge on the SoM 

increases, the alpha value of the entire strip decreases, until it is at full transparency at 

the time constant specified.  This keeps the blur strips from popping out of the scene, by 

giving just enough transition to smooth the visual impact of the sudden strip 

disappearance.  After this time, the polygon must again have an edge on the SoM in 

order to display a blur. 

If a polygon recently had an edge on the SoM, then it continues to contribute to the 

blur shell.  The polygon will add pairs of vertices to a quad strip in order to build up the 
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blur.  At most, there will be a number of vertex pairs equal to the number of subdivisions 

plus one, (the extra pair connects the blur to the base mesh).  To create the blur effect, 

the polygon strip needs to fade out towards the end.  To do this the vertices that make up 

the polygon strips decrease in alpha value, relying on the graphics hardware to blend the 

blur shell’s polygons. 

To create the quad strip, the method first adds the mesh vertices that belonged to the 

edge the polygon last had on the SoM.  Then the method cycles through each of the 

polygon’s list elements, starting with the one corresponding to the current update index.  

The two vertices stored in each list element, with their normals, are added to the quad 

strip.  There, the normals are used to help retain the shading the mesh had at the point 

the vertices were stored, though if the scene has moving light sources the blur’s shading 

can potentially change.  If a number of vertex pairs equal to the number of subdivisions 

are added, the method stops adding vertices to the strip.  We also stop the strip if too 

many elements in a row were flagged as not having vertices on the SoM.  Each time a 

pair of vertices is added, the alpha value for the remaining vertices will be reduced by 

nssubdivisio
initial α_  

This allows the strip to start at some initial alpha value, and if the strip is displayed with 

the complete number of subdivisions, the last set of vertices added will be completely 

transparent. 

The polygon strip created by each polygon will look similar to that found in Figure 12.  

Since the silhouette update does not necessarily happen on every frame, the polygon 
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strip is connected to the original polygon; this allows the polygon to move without 

having to update the silhouette all the time.  If the blur is displayed again before another 

SoM update, and the polygon has moved since the blur was last rendered, the polygon 

and strip would look similar to the bottom image of Figure 12, with only the mesh 

polygon having moved. 

 

 

 

Figure 12.  A quadrilateral polygon strip generated by a polygon.  Over the course of a few SoM 
updates each polygon records the positions of an edge’s vertices.  As these vertices are rendered, their 

alpha value is controlled to give the strip a faded look. 

Update index i 

i-1 
i-2 

i-3 
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Once all polygons have generated their polygonal strips, the total set of polygons 

rendered will create a blur shell that is connected to the original deformed mesh.  As 

stated earlier, the blur shell is what gives the appearance of a motion blur. 

At most, each polygon will add a number of triangles equal to twice the number of 

subdivisions to the scene.  So, if we look at the size of the silhouette, which is 

theoretically bounded by O(sqrt(n)), then we will be adding approximately 

O(sqrt(n)*subdivisions) quadrilaterals to the scene to create the motion blur.  Even so, 

the number of additional polygons rendered for the blur is likely less than that needed by 

some of the other motion blur techniques, such as the object cloning method.  In practice 

there are additional polygons rendered due to polygon edges that have not been on the 

silhouette in several updates, and are currently fading out their associated strips.  The 

speed and amount of model deformation are the prime factors that determine how many 

of these dieing polygon strips are displayed.  The more animated the model is, the more 

likely it is to have a large number of polygon strips dieing at any one time. 

3.3 Analysis and Limitations 

While the method described gives very good results, there are still several issues 

regarding the accuracy and visual quality of the blur. Most of these issues do not impact 

the visual look of the blur much, or can be corrected with ad hoc methods. 

There exist cases where the silhouette is not continuous along the mesh.  These are 

rare when using models with continuous meshes, and do not significantly reduce the 

visual quality of the motion blur.  However, if the model is not continuous, there can 
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appear to be gaps in the blur.  This is due to the silhouette of motion crossing this gap in 

the model, and consequently the silhouette edges are not connected.  In any case, there is 

little that can be done to remedy this; and the effort would be wasted as the issue does 

not hamper the visual quality much. 

Several steps have been taken to reduce the appearance of holes within the blur.  Holes 

are caused when there are gaps within the blur caused by a polygon losing a silhouette 

edge for only a few updates, and then regaining a silhouette edge, thereby continuing to 

display a blur.  Holes are one of the most visible errors a viewer will see when shown the 

method in use; but the method patches these in such a way as to be invisible to the user.  

The primary method for patching the holes is for a polygon to record the position and 

normal of the last pair of vertices on the SoM, even if the polygon no longer has an edge 

on the SoM.  The method uses this when building the polygonal strip to fill in any hole 

that is found.  

After a period of updates where a polygon has not contributed an edge to the SoM, the 

polygon’s strip will stop being rendered.  When the strip stops being rendered, there is a 

noticeable popping from one frame to the next, as in one frame there was a strip of 

polygons, and in the next the strip is missing.  Most viewers do not see what is 

happening, but they see the popping artifact and it is unpleasant.  To avoid this visual 

artifact, the method fades the entire polygonal strip in proportion to the number of 

updates since the polygon last had an edge on the SoM.  By the time the polygonal strip 

should be removed, it will have faded over the course of a few frames to an alpha value 

of zero. 
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For highly concave objects, it is possible to have the blur shell attached to the concave 

section “pierce” the back of the object.  The same is true if the model contains polygons 

enclosed in the interior.  While these detract from the appearance of the method, as there 

are blur polygons that appear to be protruding out of an inappropriate location of the 

mesh, both of these issues can be partially remedied by selective polygon blurring.  With 

this approach, certain polygons are tagged so they will not create blur shells and bypass 

the SoM detection.  This is also the appropriate addition to allow for interactively 

turning on and off portions of the model to blur. 

A minor issue occurs when the motion blur created is short, and the portion of the 

object that is creating the blur is thick.  What can happen is that if the silhouette of 

motion runs down the middle of the area viewed, and the blur polygons do not extend far 

enough beyond the SoM to be seen past the edge of the object, there can appear to be no 

blur.  This is usually not an issue because the artifact is usually only apparent on slow 

moving portions of the mesh; and slow moving portions usually do not need a motion 

blur. 

When drawing the blur polygons, the method turns off z-buffer checking to keep 

transparent polygons from occluding other blur polygons that might need to be rendered.  

This is a well known issue when using transparent polygons in an application that uses 

the z-buffer.  A solution that is usually used to solve this issue is to draw the polygons 

from front to back.  This requires that all polygons be sorted based on their distance from 

the camera.  This can be a very expensive operation due to the large number of polygons 
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that can be generated.  This drastic loss in performance is unacceptable in a real-time 

application, so this solution is not used in the method. 

The largest issue with the proposed method is that it produces a motion blur in world 

space, not image space.  What this means, is that the motion blur is not dependent on the 

camera’s movements.  Real motion blur would arise if an object was non-moving and 

the viewpoint moved such that the object moved in image space.  The method described 

in this paper does not produce this effect; it only produces a blur when the object is in 

motion.  A good example of the difference between what this method does and what is 

real motion blur, is to imagine that there is an object and a camera looking at it.  If the 

object is spun, but not the camera, a real motion blur would show the blur when viewed 

from the camera; the method will also do this, since the object is in motion.  However if 

the camera is moved around the object, while the object stays still, a real motion blur 

would again be seen, but the method described here will produce no such blur.  Under 

most circumstances, the camera is not moving fast enough compared to the speed of the 

animation that this becomes noticeable.  However, if the camera is moving quickly, the 

fact that the blur is created in world space is noticeable if one knows what to look for. 

A potential solution to this would be to track the object’s silhouette of motion in 

camera space instead of using world space.  This would allow the object to be blurred 

when the camera moves; but the ability to show motion blur in a paused scene from any 

angle would be lost. 

Given this however, since the blur is done in world space, the method provides the 

feature that if the scene’s animation is paused, it is still possible to see the motion blur, 



 30 

as it is just another part of the scene.  While the scene is paused, the camera can be 

moved around, and at nearly any angle and position it is possible to see the motion of the 

object due to the polygonal motion blur.  This effect is not possible using most other 

motion blur techniques. 

At one point in development, an image space motion blur using the method defined 

here was attempted.  While the effort produced unfavorable results, it proved to be a 

valuable experience. 

3.3.1 Image Space Motion Blurring 

Throughout the development of this thesis, a number of experiments were made.  

Some produced successful results, others did not.  Those that worked have been 

integrated into the method. 

The largest of the experiments that produced unacceptable visual results was an 

attempt to use a method similar to the SoM detection given above to produce a motion 

blur in image, or screen, space.  Instead of using a vertex’s direction vector to determine 

the SoM, the direction from the vertex to the camera was used.  This way, the silhouette 

found would be the one seen by the camera.  This portion of the algorithm worked, and 

the new silhouette was found without issue.  Once the silhouette was found, the method 

created the blur on the silhouette edges in 2D image space.  This worked fine as long as 

the camera did not move.  However, once the camera started moving around the object, 

the combination of object deformation, animation, and the changing view would cause 
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the silhouette to move across the object extremely quickly and unpredictably.  This 

caused severe graphical artifacts that were not reasonably fixed. 

Since the polygons were created in 2D image space, after the object had been 

rendered, there were occlusion issues where the blur generated on edges behind another 

portion of the model would appear to be in front of the object.  In addition to occlusion 

issues, there were blur shading issues since before the blur was being rendered in world 

space with world space lighting, now the blur polygons were being rendered in 2D 

image space, with no world lighting.  These, and other, issues can be seen in Figure 13.  

Due to these problems, little attempt was made to fix the occlusion and shading issue; 

and it was determined that the method of silhouette detection and blur rendering 

described in this thesis was inappropriate for producing an image space motion blur.  
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Figure 13.  A pair of images from an image space motion blur attempt.  Due to a number of issues, this 
extension to the method was not pursued past a certain point. 
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4 RESULTS 

4.1 Experimental Results 

Experiments have been performed using a Windows® PC with an AMD® Althon® 

XP 2200+ 1.8 GHz processor with 1 GB of main memory, and a GeForce 4 4400 

graphics card.  The first results shown are from a deforming polygonal mesh attached to 

an animated character skeleton; then the results will be compared to the results for 

various resolutions of spheres, in order to reduce the number of outside speed 

impediments inherent in the animation system used to house the implementation. 

It is important to note that the performance of this method will depend on a number of 

factors that are difficult to examine exhaustively.  These include the complexity of the 

moving objects, how often the silhouette of motion changes, the performance of the 

graphics hardware, implementation optimizations, whether the application is CPU-bound 

or rendering-bound, etc.  The current implementation has not been optimized to use 

hardware, e.g. it does not use display lists or vertex arrays for storing and displaying 

vertices; it was designed to test the validity of the generic method, not to see how fast 

this particular implementation could run.  However, an understanding of the complexity 

of the method can still be obtained from examining a number of example cases. 

The method has been implemented into an animation application co-developed with 

Paul Edmondson, a previous student.  The application allows the user to define a set of 

animations for a skeleton, and allows for a polygonal mesh to be bound to this skeleton.  

As the skeleton animates, the mesh is deformed to match the motions of the underlying 
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skeleton in a manner similar to that found in today’s real-time graphical applications.  

Unfortunately the application is not designed with speed and efficiency in mind; that was 

not one of the design goals for the application.  Its inefficiencies can skew the timing 

results, even though the system animates at reasonable speeds, above 60 frames per 

second for a character with 20 points of articulation and a mesh with over 1000 

polygons.  Due to these inefficiencies, performance shall not be discussed in actual 

frames per second for the complete system, mesh deformation and blur; but rather the 

performance lost while using the method described in this paper against the 

implementation’s performance when not using the method. 

The example mesh used in the first portions of these results is a 1075 polygon mesh 

attached to a skeleton with 20 articulated joints.  The blur is 0.2 seconds in length and it 

has 10 subdivisions, a fairly high quality setting causing the SoM to update every 1/50th 

of a second, or nearly once every frame. 

To measure performance loss by this method, a character animating through a set of 

animations, without the method turned on, is used.  Then, only the SoM detection code, 

without displaying the motion blur, is activated.  Finally, the system is run with the full 

motion blur effect enabled.  For each, the percentage of the frames per second lost when 

compared with the results when not using the motion blur method is given.  These 

results are summarized in Table 1.  The values given for polygon counts in the tables are 

averaged values, as the number of polygons displayed and the number that contain an 

edge on the SoM change radically throughout an animation. 
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As shown by this example, the largest loss in performance is from the rendering of the 

blur shell.  As stated earlier, this is mostly caused by the dieing strips created on a highly 

deforming object.  It will be shown that as the polygonal complexity of a mesh increases, 

the SoM detection portion of the method will comprise a majority of the performance 

loss. 

Now results from a set of non-deforming, but animating, spheres are examined.  The 

spheres are of increasing polygonal complexity, so that it is possible to see the 

differences in performance over a range of meshes.  Due to the nature of the motion blur 

method, the lack of a deforming mesh does not change the validity of the results.  For 

consistency, the values for the character’s blur will be the same values used for the 

spheres. 

Table 1. 
Performance Results on an Animated Character 

Model 
Polygons 

SoM 
Edges 

Blur 
Shell 

Polygons 

SoM 
Detection 

Performance 
Loss 

SoM and 
Rendered 

Blur 
Performance 

Loss 

1075 212 3566 0.37% 1.03% 
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As can be seen in Table 2, and as stated above, the SoM detection is where most of the 

performance is lost when using meshes with a large number of polygons.  The blur shell 

rendering overhead is largely negligible for the high resolution spheres. 

Even though results are shown when using spheres, the animated character is much 

more representative of the types of deforming meshes found in actual applications.  Even 

so, there is only approximately a 1% performance loss when using the method described.  

Section 5 discusses modifications that can be made to an implementation to improve 

performance.  Due to the small loss in performance when using this method, it is well 

suited for real-time graphics. 

Table 2. 
Performance Results on Non-Deforming Spheres 

Model 
Polygons 

SoM 
Edges 

Blur 
Shell 

Polygons 

SoM 
Detection 

Performance 
Loss 

SoM and 
Rendered 

Blur 
Performance 

Loss 

1224 47 615 0.55% 0.60% 

2484 66 828 0.77% 0.79% 

5670 128 2920 0.89% 0.91% 

9800 336 4362 0.94% 0.95% 
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4.2 Resource Usage 

When discussing a new algorithm or method and its impact on performance, it is 

important to discuss what computer resources are used and required by said algorithm; 

and to analyze ways to reduce the requirements of these resources. 

As such, it is important to examine the sources of the performance loss seen in the 

results in section 4.1.  For a graphical application, there are two primary resources that 

are needed and consumed: the main CPU and the graphics hardware of the machine. 

In the implementation used to gather the results in section 4.1, finding the SoM was 

strictly a CPU bound operation.  All calculations needed are performed by the CPU, and 

all data is managed by the main memory of the computer.  By looking at the results for 

the high polygon objects, we can see that the method spends most of its time calculating 

the silhouette of motion.  Due to this, the bottleneck of the method is in the SoM 

calculation, and since it is currently managed by the CPU, the SoM detection is a CPU 

bound operation.  The overall method performance could be best improved by 

examining ways to reduce the CPU cost to detect the SoM. 

It should also be noted that the animation program used in these results is also CPU 

bound; the mesh is deformed in software.  By using the method, the number of polygons 

in the object can be increased by 50% to 400%.  If the application was rendering-bound, 

and hardware bound, then this increase in the number of polygons would have a larger 

impact on performance.  However, since the performance loss due to the blur polygons 

being rendered is so low, we can see that the animation system is CPU bound. 
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In order to free up the CPU, it should be possible to offload most of this processing 

onto the graphics hardware; though currently the storage of the SoM tracking data 

structures would need to be done on the non-graphics hardware side.  This will likely 

change in the near future as hardware buffers become more generic.  Until the time when 

all of these calculations and data storage can be done on the graphics hardware, there 

would need to be communications between the GPU and the CPU; and as the industry 

has found out, this communication can be time intensive.  So while this is a viable 

direction of research, it will be a while before an optimal solution arises. 

In the second portion of the algorithm, the method renders the blur using the set of 

edges found on the SoM.  Currently the application running on the CPU generates the 

geometry, and the graphics hardware renders it to the display buffer.  For modern 

graphics hardware, rendering a few thousand extra polygons is often a near negligible 

performance hit.  However, all the blur polygons are transparent; causing many pixels to 

be rendered many times, so high fill rate graphics hardware is needed to keep up 

performance.  Luckily, today’s hardware is specifically designed to have a high fill rate.  

While the display itself is fairly cheap for the hardware, generating the geometry in the 

first place is not.  Since the polygon strips are created by code running on the CPU, there 

is a resource bottleneck here. 

There are a number of ways that could be used to improve the geometry generation 

time.  One way would be to use vertex arrays to manage the blur polygons.  By using a 

data structure that is tightly linked to the graphics hardware, it should be possible to 

reduce the calls to vertex creation functions by setting values within a vertex array.  
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Another option would be to try and move the entire set of operations onto the graphics 

hardware, and to generate the polygons using some sort of shader. 

Using the implementation results above as indicators we can see that as the model 

complexity increases, the SoM will take the majority of the method’s computation time. 

4.3 Performance and Quality Tradeoffs 

When looking at the algorithm, one can see that there are many choices for a 

developer to make when using this method.  Such choices are how many subdivisions 

the blur should have, how long the blur should last, etc.  While a lot of these choices are 

purely stylistic in nature, there is a practical side to making them.  By manipulating the 

variables associated with the method, it is possible to trade run time performance with 

image quality. 

Aside from moving the implementation to be based more in hardware, the most 

important decision a developer using this method can make is how many subdivisions 

the motion blur should have.  The higher this number, the smoother the blur; but the 

more computation time needed.  Since this value determines how often the SoM is 

updated, and as stated above, the SoM detection is the most expensive set of operations 

done, it can be the most powerful customization tool for this method.  If the update 

speed is too high, then the method will spend more time than necessary to determine the 

SoM.  If the update speed is too low, the blur will appear blocky and unattractive.  The 

best visuals are obtained by having the SoM updated at least on every frame; but in some 

applications this may require too much processing.  Due to this, it is in the application 
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designer’s best interest to carefully determine the number of subdivisions that is most 

appropriate to their application.  This said, it is likely possible to modify the method to 

allow for on-the-fly modification of the subdivisions or SoM update interval. 

4.4 Visual Results 

Figure 14 shows the method in use on a character walking in place.  On the left is a 

full body image showing the motion blur across the entire character.  Notice that even in 

this still image, it is possible to tell how the character is moving.  The top right image is 

a close up of the blur associated with the legs.  Here, the blur is rendered in wire frame 

so that the individual polygons of the blur strips can be seen.  The bottom right image is 

of the same frame of animation, but this time the model is shown in wireframe, making 

it easier to see how the blur connects to the model. 

In Figure 15 a series of views from the same frame of animation is shown.  Notice 

how the blur easily shows the curved motion in the arms and feet.  Also, when compared 

to Figure 14 it is possible to tell that in this image, the character is moving faster.  The 

left image is the standard view of the method in use.  In the middle the blur is rendered 

in wireframe so that the blur polygons can be seen.  The right is again the same frame, 

but the model is in wireframe so that the blur is easily distinguishable from the model.  

In this image it is easy to see how the blur polygons attach to the thighs of the character. 
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Figure 14.  A view of a character’s legs using the motion blur technique found within this thesis 
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Figure 15.  A series of views of the same frame of animation showing the motion blur, the blur’s 
wireframe, and how the blur connects to the model. 

 

The four images in Figure 16 again all show a single frame.  However, the bottom 

right image is of just the blur polygons; the character’s mesh has been completely 

removed.  This view is useful as it shows how by just using the motion blur, one can 

show motion, even without an object to portray it.  The upper left hand image is shown 

larger in Figure 17.  In this figure it is possible to see the non-connected blur polygons 

caused by a model that does not have a continuous mesh.  The vertices of the character’s 

feet are not actually attached to its lower legs, causing the silhouette of motion to be 

discontinuous, as discussed in section 3.3. 
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Figure 16.  A number of images from the same frame of a jumping animation.  The bottom right image 
just displays the blur polygons. 
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Figure 17.  A close up view of the jumping frame showing the disconnected blur produced by the foot 
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As stated earlier in section 4.3, the number of subdivisions controls how smooth the 

created motion blur is.  Two different blur qualities can be seen in Figure 18.  The top 

two images show a high quality blur, while the bottom shows the wireframe created by a 

lower quality blur.  

 

Figure 18.  Varying blur qualities 
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In addition to seeing the blur on an animated character, it is useful to see the effect 

being used on a moving sphere.  Figure 19 shows two views of the same blurring sphere.  

The top shows a close up of the blur, and how it attaches to the sphere; in this view it can 

also be seen that the polygons are attached to the silhouette of motion.  The bottom 

figure shows the blur in wireframe.  Here the past silhouettes of motion can be seen, they 

are the rings that are visible in the trailing blur. 



 47 

 
 

Figure 19.  Blur created on a moving sphere, its connection to the model, and the past silhouettes of 
motion 
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5 FUTURE WORK 

There are a number of potential future improvements to the motion blur technique 

described in this thesis.  Most of these involve implementation specific changes. 

One such improvement would be to use today’s graphics hardware to better manage 

the blur shell and SoM updates.  In addition to the examples discussed in section 4.2, one 

could use programmable graphics hardware to detect SoM edges.  This would allow for 

much faster SoM detection and rendering, and would require less overhead when 

communicating with the graphics pipeline. 

Another extension to the method would be to restrict the blur to only affect certain 

portions of the mesh.  This would allow for selective blurring, in addition to fixing the 

enclosed polygon issue discussed in section 3.3. 

In addition, an object’s mesh could be managed in such a manner as to be of more 

benefit to the SoM detection algorithm.  The algorithm provided here works on any 

generic polygonal mesh, but it should be possible to tailor a mesh to better suit the needs 

of the application.  One approach would be to pre-compute associations between edges 

and adjacent vertices; allowing for a faster SoM calculation. 
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6 CONCLUSION 

Today, computer graphics is an important field within the computer science industry, 

and it will continue to grow in importance as interactive or entertainment applications 

become more widely accepted.  Industry professionals and researchers have spent years 

developing the current state of computer graphics.  Whether this is physical simulation, 

high-speed rendering techniques, special effects, exploiting hardware tricks, or just plain 

using hacks is irrelevant.  What matters is that developers are trying to increase the 

immersion, enjoyment, and utility of real-time graphics applications; and they need 

every tool at their disposal to do this. 

One such tool that is gaining in popularity with real-time application developers, and 

their users, is motion blur.  It is a versatile tool that can used to increase the realism of 

the rendered scenes, show the path of an object, produce special effects, or simply draw 

a viewer’s attention to something within the scene.  Due to the increasing popularity of 

motion blur, it is a topic currently being researched by a number of groups and 

companies, including ATI and NVidia; and it will continue to draw research for many 

years to come. 

The thesis above describes a method for producing a motion blur in real-time.  It 

allows for an object with a deforming polygonal mesh to be motion blurred by creating a 

set of motion blurring polygons through the finding and use of the silhouette of motion 

over the span of a few updates.  It is a method that could be expanded upon and refined, 

but the scheme provided is generic enough to work with nearly any application that uses 

polygonal models to display its entities. 
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Though not being graphically impressive enough for offline graphics – it is extremely 

hard to compete with the results generated by temporal anti-aliasing – the method 

provides a visually appealing solution to a current research topic in the area of real-time 

and interactive graphics.  It is quick, easy to understand, and useful for any developers 

who want to add graphical flair to their application. 

For these reasons, the algorithm presented in this thesis is a positive addition to the 

field of computer graphics, and gives designers one more tool to use when creating 

motion blurs in their real-time applications. 
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