3,785 research outputs found

    Gesture friendly interfaces for classroom teaching with thinking tools

    Get PDF
    Thinking tools are typically designed for students working on their own computers. When used from the front of a classroom, the complex graphical user interfaces of these tools can interfere with an instructor’s ability to lecture effectively and to use natural gestures. A thinking tool for the grade 9 mathematics topic of “relationships” has been developed with a more gesture-friendly interface. This gesture-friendly interface allows a teacher to focus more on interacting with students, creating engaging visualizations, and using natural hand and arm gestures as part of the lecture.Education for the 21 st century - impact of ICT and Digital Resources ConferenceRed de Universidades con Carreras en Informática (RedUNCI

    Emerging technologies for learning (volume 1)

    Get PDF
    Collection of 5 articles on emerging technologies and trend

    Using Augmented Reality as a Medium to Assist Teaching in Higher Education

    Get PDF
    In this paper we describe the use of a high-level augmented reality (AR) interface for the construction of collaborative educational applications that can be used in practice to enhance current teaching methods. A combination of multimedia information including spatial three-dimensional models, images, textual information, video, animations and sound, can be superimposed in a student-friendly manner into the learning environment. In several case studies different learning scenarios have been carefully designed based on human-computer interaction principles so that meaningful virtual information is presented in an interactive and compelling way. Collaboration between the participants is achieved through use of a tangible AR interface that uses marker cards as well as an immersive AR environment which is based on software user interfaces (UIs) and hardware devices. The interactive AR interface has been piloted in the classroom at two UK universities in departments of Informatics and Information Science

    Virtual reality in theatre education and design practice - new developments and applications

    Get PDF
    The global use of Information and Communication Technologies (ICTs) has already established new approaches to theatre education and research, shifting traditional methods of knowledge delivery towards a more visually enhanced experience, which is especially important for teaching scenography. In this paper, I examine the role of multimedia within the field of theatre studies, with particular focus on the theory and practice of theatre design and education. I discuss various IT applications that have transformed the way we experience, learn and co-create our cultural heritage. I explore a suite of rapidly developing communication and computer-visualization techniques that enable reciprocal exchange between students, theatre performances and artefacts. Eventually, I analyse novel technology-mediated teaching techniques that attempt to provide a new media platform for visually enhanced information transfer. My findings indicate that the recent developments in the personalization of knowledge delivery, and also in student-centred study and e-learning, necessitate the transformation of the learners from passive consumers of digital products to active and creative participants in the learning experience

    Virtual Reality in Mathematics Education (VRiME):An exploration of the integration and design of virtual reality for mathematics education

    Get PDF
    This thesis explores the use of Virtual Reality (VR) in mathematics education. Four VR prototypes were designed and developed during the PhD project to teach equations, geometry, and vectors and facilitate collaboration.Paper A investigates asymmetric VR for classroom integration and collaborative learning and presents a new taxonomy of asymmetric interfaces. Paper B proposes how VR could assist students with Autism Spectrum Disorder (ASD) in learning daily living skills involving basic mathematical concepts. Paper C investigates how VR could enhance social inclusion and mathematics learning for neurodiverse students. Paper D presents a VR prototype for teaching algebra and equation-solving strategies, noting positive student responses and the potential for knowledge transfer. Paper E investigates gesture-based interaction with dynamic geometry in VR for geometry education and presents a new taxonomy of learning environments. Finally, paper F explores the use of VR to visualise and contextualise mathematical concepts to teach software engineering students.The thesis concludes that VR offers promising avenues for transforming mathematics education. It aims to broaden our understanding of VR's educational potential, paving the way for more immersive learning experiences in mathematics education

    Multi-Modal Interfaces for Sensemaking of Graph-Connected Datasets

    Get PDF
    The visualization of hypothesized evolutionary processes is often shown through phylogenetic trees. Given evolutionary data presented in one of several widely accepted formats, software exists to render these data into a tree diagram. However, software packages commonly in use by biologists today often do not provide means to dynamically adjust and customize these diagrams for studying new hypothetical relationships, and for illustration and publication purposes. Even where these options are available, there can be a lack of intuitiveness and ease-of-use. The goal of our research is, thus, to investigate more natural and effective means of sensemaking of the data with different user input modalities. To this end, we experimented with different input modalities, designing and running a series of prototype studies, ultimately focusing our attention on pen-and-touch. Through several iterations of feedback and revision provided with the help of biology experts and students, we developed a pen-and-touch phylogenetic tree browsing and editing application called PhyloPen. This application expands on the capabilities of existing software with visualization techniques such as overview+detail, linked data views, and new interaction and manipulation techniques using pen-and-touch. To determine its impact on phylogenetic tree sensemaking, we conducted a within-subject comparative summative study against the most comparable and commonly used state-of-the-art mouse-based software system, Mesquite. Conducted with biology majors at the University of Central Florida, each used both software systems on a set number of exercise tasks of the same type. Determining effectiveness by several dependent measures, the results show PhyloPen was significantly better in terms of usefulness, satisfaction, ease-of-learning, ease-of-use, and cognitive load and relatively the same in variation of completion time. These results support an interaction paradigm that is superior to classic mouse-based interaction, which could have the potential to be applied to other communities that employ graph-based representations of their problem domains

    Toward a Semiotic Framework for Using Technology in Mathematics Education: The Case of Learning 3D Geometry

    Get PDF
    This paper proposes and examines a semiotic framework to inform the use of technology in mathematics education. Semiotics asserts that all cognition is irreducibly triadic, of the nature of a sign, fallible, and thoroughly immersed in a continuing process of interpretation (Halton, 1992). Mathematical meaning-making or meaningful knowledge construction is a continuing process of interpretation within multiple semiotic resources including typological, topological, and social-actional resources. Based on this semiotic framework, an application named VRMath has been developed to facilitate the learning of 3D geometry. VRMath utilises innovative virtual reality (VR) technology and integrates many semiotic resources to form a virtual reality learning environment (VRLE) as well as a mathematical microworld (Edwards, 1995) for learning 3D geometry. The semiotic framework and VRMath are both now being evaluated and will be re-examined continuously

    A Multimodal Learning System for Individuals with Sensorial, Neuropsychological, and Relational Impairments

    Get PDF
    This paper presents a system for an interactive multimodal environment able (i) to train the listening comprehension in various populations of pupils, both Italian and immigrants, having different disabilities and (ii) to assess speech production and discrimination. The proposed system is the result of a research project focused on pupils with sensorial, neuropsychological, and relational impairments. The project involves innovative technological systems that the users (speech terabits psychologists and preprimary and primary schools teachers) could adopt for training and assessment of language and speech. Because the system is used in a real scenario (the Italian schools are often affected by poor funding for education and teachers without informatics skills), the guidelines adopted are low-cost technology; usability; customizable system; robustness

    ARtonomous: Introducing Middle School Students to Reinforcement Learning Through Virtual Robotics

    Full text link
    Typical educational robotics approaches rely on imperative programming for robot navigation. However, with the increasing presence of AI in everyday life, these approaches miss an opportunity to introduce machine learning (ML) techniques grounded in an authentic and engaging learning context. Furthermore, the needs for costly specialized equipment and ample physical space are barriers that limit access to robotics experiences for all learners. We propose ARtonomous, a relatively low-cost, virtual alternative to physical, programming-only robotics kits. With ARtonomous, students employ reinforcement learning (RL) alongside code to train and customize virtual autonomous robotic vehicles. Through a study evaluating ARtonomous, we found that middle-school students developed an understanding of RL, reported high levels of engagement, and demonstrated curiosity for learning more about ML. This research demonstrates the feasibility of an approach like ARtonomous for 1) eliminating barriers to robotics education and 2) promoting student learning and interest in RL and ML.Comment: In Proceedings of Interaction Design and Children (IDC '22
    • …
    corecore