Virtual Reality in Mathematics Education (VRiME):An exploration of the integration and design of virtual reality for mathematics education

Abstract

This thesis explores the use of Virtual Reality (VR) in mathematics education. Four VR prototypes were designed and developed during the PhD project to teach equations, geometry, and vectors and facilitate collaboration.Paper A investigates asymmetric VR for classroom integration and collaborative learning and presents a new taxonomy of asymmetric interfaces. Paper B proposes how VR could assist students with Autism Spectrum Disorder (ASD) in learning daily living skills involving basic mathematical concepts. Paper C investigates how VR could enhance social inclusion and mathematics learning for neurodiverse students. Paper D presents a VR prototype for teaching algebra and equation-solving strategies, noting positive student responses and the potential for knowledge transfer. Paper E investigates gesture-based interaction with dynamic geometry in VR for geometry education and presents a new taxonomy of learning environments. Finally, paper F explores the use of VR to visualise and contextualise mathematical concepts to teach software engineering students.The thesis concludes that VR offers promising avenues for transforming mathematics education. It aims to broaden our understanding of VR's educational potential, paving the way for more immersive learning experiences in mathematics education

    Similar works