202 research outputs found

    A Framework for SAR-Optical Stereogrammetry over Urban Areas

    Get PDF
    Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion techniques are required to integrate the different properties of each sensor and produce useful information. For example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereogrammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.Comment: This is the pre-acceptance version, to read the final version, please go to ISPRS Journal of Photogrammetry and Remote Sensing on ScienceDirec

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    The status of environmental satellites and availability of their data products

    Get PDF
    The latest available information about the status of unclassified environmental satellite (flown by the United States) and their data products is presented. The type of environmental satellites discussed include unmanned earth resource and meteorological satellites, and manned satellites which can act as a combination platform for instruments. The capabilities and data products of projected satellites are discussed along with those of currently operating systems

    Guidelines for Best Practice and Quality Checking of Ortho Imagery

    Get PDF
    For almost 10 years JRC's ¿Guidelines for Best Practice and Quality Control of Ortho Imagery¿ has served as a reference document for the production of orthoimagery not only for the purposes of CAP but also for many medium-to-large scale photogrammetric applications. The aim is to provide the European Commission and the remote sensing user community with a general framework of the best approaches for quality checking of orthorectified remotely sensed imagery, and the expected best practice, required to achieve good results. Since the last major revision (2003) the document was regularly updated in order to include state-of-the-art technologies. The major revision of the document was initiated last year in order to consolidate the information that was introduced to the document in the last five years. Following the internal discussion and the outcomes of the meeting with an expert panel it was decided to adopt as possible a process-based structure instead of a more sensor-based used before and also to keep the document as much generic as possible by focusing on the core aspects of the photogrammetric process. Additionally to any structural changes in the document new information was introduced mainly concerned with image resolution and radiometry, digital airborne sensors, data fusion, mosaicking and data compression. The Guidelines of best practice is used as the base for our work on the definition of technical specifications for the orthoimagery. The scope is to establish a core set of measures to ensure sufficient image quality for the purposes of CAP and particularly for the Land Parcel Identification System (PLIS), and also to define the set of metadata necessary for data documentation and overall job tracking.JRC.G.3-Agricultur

    Radar satellite imagery for humanitarian response. Bridging the gap between technology and application

    Get PDF
    This work deals with radar satellite imagery and its potential to assist of humanitarian operations. As the number of displaced people annually increases, both hosting countries and relief organizations face new challenges which are often related to unclear situations and lack of information on the number and location of people in need, as well as their environments. It was demonstrated in numerous studies that methods of earth observation can deliver this important information for the management of crises, the organization of refugee camps, and the mapping of environmental resources and natural hazards. However, most of these studies make use of -high-resolution optical imagery, while the role of radar satellites is widely neglected. At the same time, radar sensors have characteristics which make them highly suitable for humanitarian response, their potential to capture images through cloud cover and at night in the first place. Consequently, they potentially allow quicker response in cases of emergencies than optical imagery. This work demonstrates the currently unused potential of radar imagery for the assistance of humanitarian operations by case studies which cover the information needs of specific emergency situations. They are thematically grouped into topics related to population, natural hazards and the environment. Furthermore, the case studies address different levels of scientific objectives: The main intention is the development of innovative techniques of digital image processing and geospatial analysis as an answer on the identified existing research gaps. For this reason, novel approaches are presented on the mapping of refugee camps and urban areas, the allocation of biomass and environmental impact assessment. Secondly, existing methods developed for radar imagery are applied, refined, or adapted to specifically demonstrate their benefit in a humanitarian context. This is done for the monitoring of camp growth, the assessment of damages in cities affected by civil war, and the derivation of areas vulnerable to flooding or sea-surface changes. Lastly, to foster the integration of radar images into existing operational workflows of humanitarian data analysis, technically simple and easily-adaptable approaches are suggested for the mapping of rural areas for vaccination campaigns, the identification of changes within and around refugee camps, and the assessment of suitable locations for groundwater drillings. While the studies provide different levels of technical complexity and novelty, they all show that radar imagery can largely contribute to the provision of a variety of information which is required to make solid decisions and to effectively provide help in humanitarian operations. This work furthermore demonstrates that radar images are more than just an alternative image source for areas heavily affected by cloud cover. In fact, what makes them valuable is their information content regarding the characteristics of surfaces, such as shape, orientation, roughness, size, height, moisture, or conductivity. All these give decisive insights about man-made and natural environments in emergency situations and cannot be provided by optical images Finally, the findings of the case studies are put into a larger context, discussing the observed potential and limitations of the presented approaches. The major challenges are summarized which need be addressed to make radar imagery more useful in humanitarian operations in the context of upcoming technical developments. New radar satellites and technological progress in the fields of machine learning and cloud computing will bring new opportunities. At the same time, this work demonstrated the large need for further research, as well as for the collaboration and transfer of knowledge and experiences between scientists, users and relief workers in the field. It is the first extensive scientific compilation of this topic and the first step for a sustainable integration of radar imagery into operational frameworks to assist humanitarian work and to contribute to a more efficient provision of help to those in need.Die vorliegende Arbeit beschäftigt sich mit bildgebenden Radarsatelliten und ihrem potenziellen Beitrag zur Unterstützung humanitärer Einsätze. Die jährlich zunehmende Zahl an vertriebenen oder geflüchteten Menschen stellt sowohl Aufnahmeländer als auch humanitäre Organisationen vor große Herausforderungen, da sie oft mit unübersichtlichen Verhältnissen konfrontiert sind. Effektives Krisenmanagement, die Planung und Versorgung von Flüchtlingslagern, sowie der Schutz der betroffenen Menschen erfordern jedoch verlässliche Angaben über Anzahl und Aufenthaltsort der Geflüchteten und ihrer natürlichen Umwelt. Die Bereitstellung dieser Informationen durch Satellitenbilder wurde bereits in zahlreichen Studien aufgezeigt. Sie beruhen in der Regel auf hochaufgelösten optischen Aufnahmen, während bildgebende Radarsatelliten bisher kaum Anwendung finden. Dabei verfügen gerade Radarsatelliten über Eigenschaften, die hilfreich für humanitäre Einsätze sein können, allen voran ihre Unabhängigkeit von Bewölkung oder Tageslicht. Dadurch ermöglichen sie in Krisenfällen verglichen mit optischen Satelliten eine schnellere Reaktion. Diese Arbeit zeigt das derzeit noch ungenutzte Potenzial von Radardaten zur Unterstützung humanitärer Arbeit anhand von Fallstudien auf, in denen konkrete Informationen für ausgewählte Krisensituationen bereitgestellt werden. Sie sind in die Themenbereiche Bevölkerung, Naturgefahren und Ressourcen aufgeteilt, adressieren jedoch unterschiedliche wissenschaftliche Ansprüche: Der Hauptfokus der Arbeit liegt auf der Entwicklung von innovativen Methoden zur Verarbeitung von Radarbildern und räumlichen Daten als Antwort auf den identifizierten Forschungsbedarf in diesem Gebiet. Dies wird anhand der Kartierung von Flüchtlingslagern zur Abschätzung ihrer Bevölkerung, zur Bestimmung von Biomasse, sowie zur Ermittlung des Umwelteinflusses von Flüchtlingslagern aufgezeigt. Darüber hinaus werden existierende oder erprobte Ansätze für die Anwendung im humanitären Kontext angepasst oder weiterentwickelt. Dies erfolgt im Rahmen von Fallstudien zur Dynamik von Flüchtlingslagern, zur Ermittlung von Schäden an Gebäuden in Kriegsgebieten, sowie zur Erkennung von Risiken durch Überflutung. Zuletzt soll die Integration von Radardaten in bereits existierende Abläufe oder Arbeitsroutinen in der humanitären Hilfe anhand technisch vergleichsweise einfacher Ansätze vorgestellt und angeregt werden. Als Beispiele dienen hier die radargestützte Kartierung von entlegenen Gebieten zur Unterstützung von Impfkampagnen, die Identifizierung von Veränderungen in Flüchtlingslagern, sowie die Auswahl geeigneter Standorte zur Grundwasserentnahme. Obwohl sich die Fallstudien hinsichtlich ihres Innovations- und Komplexitätsgrads unterscheiden, zeigen sie alle den Mehrwert von Radardaten für die Bereitstellung von Informationen, um schnelle und fundierte Planungsentscheidungen zu unterstützen. Darüber hinaus wird in dieser Arbeit deutlich, dass Radardaten für humanitäre Zwecke mehr als nur eine Alternative in stark bewölkten Gebieten sind. Durch ihren Informationsgehalt zur Beschaffenheit von Oberflächen, beispielsweise hinsichtlich ihrer Rauigkeit, Feuchte, Form, Größe oder Höhe, sind sie optischen Daten überlegen und daher für viele Anwendungsbereiche im Kontext humanitärer Arbeit besonders. Die in den Fallstudien gewonnenen Erkenntnisse werden abschließend vor dem Hintergrund von Vor- und Nachteilen von Radardaten, sowie hinsichtlich zukünftiger Entwicklungen und Herausforderungen diskutiert. So versprechen neue Radarsatelliten und technologische Fortschritte im Bereich der Datenverarbeitung großes Potenzial. Gleichzeitig unterstreicht die Arbeit einen großen Bedarf an weiterer Forschung, sowie an Austausch und Zusammenarbeit zwischen Wissenschaftlern, Anwendern und Einsatzkräften vor Ort. Die vorliegende Arbeit ist die erste umfassende Darstellung und wissenschaftliche Aufarbeitung dieses Themenkomplexes. Sie soll als Grundstein für eine langfristige Integration von Radardaten in operationelle Abläufe dienen, um humanitäre Arbeit zu unterstützen und eine wirksame Hilfe für Menschen in Not ermöglichen

    Building change detection in Multitemporal very high resolution SAR images

    Get PDF

    Assessing the influence of DEM source on derived streamline and catchment boundary accuracy

    Get PDF
    Accurate DEM-derived streamlines and catchment boundaries are essential for hydrological modelling. Due to the popularity of hydrological parameters derived mainly from free DEMs, it is essential to investigate the accuracy of these parameters. This study compared the spatial accuracy of streamlines and catchment boundaries derived from available digital elevation models in South Africa. Two versions of Stellenbosch University DEMs (SUDEM5 and DEMSA2), the second version of the 30 m advanced spaceborne thermal emission and reflection radiometer global digital elevation model (ASTER GDEM2), the 30 and 90 m shuttle radar topography mission (SRTM30 and SRTM90 DEM), and the 90 m Water Research Commission DEM (WRC DEM) were considered. As a reference, a 1 m GEOEYE DEM was generated from GeoEye stereo images. Catchment boundaries and streamlines were extracted from the DEMs using the Arc Hydro module. A reference catchment boundary was generated from the GEOEYE DEM and verified during field visits. Reference streamlines were digitised at a scale of 1:10 000 from the 1 m orthorectified GeoEye images. Visual inspection, as well as quantitative measures such as correctness index, mean absolute error, root mean squares error and figure of merit index were used to validate the results. The study affirmed that high resolution (<30 m) DEMs produce more accurate parameters and that DEM source and resampling techniques also play a role. However, if high resolution DEMs are not available, the 30 m SRTM DEM is recommended as its vertical accuracy was relatively high and the quality of the streamlines and catchment boundary was good. In addition, it was found that the novel Euclidean distancebased MAE and RMSE proposed in this study to compare reference and DEM-extracted raster datasets of different resolutions is a more reliable indicator of geometrical accuracy than the correctness and figure of merit indices.Keywords: hydrology, catchment delineation, digital elevation model, correctness index, figure of merit index, Euclidean distance inde

    Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information

    Full text link
    [EN] Agricultural land abandonment is an increasing problem in Europe. The Comunitat Valenciana Region (Spain) is one of the most important citrus producers in Europe suffering this problem. This region characterizes by small sized citrus plots and high spatial fragmentation which makes necessary to use Very High-Resolution images to detect abandoned plots. In this paper spectral and Gray Level Co-Occurrence Matrix (GLCM)-based textural information derived from the Normalized Difference Vegetation Index (NDVI) are used to map abandoned citrus plots in Oliva municipality (eastern Spain). The proposed methodology is based on three general steps: (a) extraction of spectral and textural features from the image, (b) pixel-based classification of the image using the Random Forest algorithm, and (c) assignment of a single value per plot by majority voting. The best results were obtained when extracting the texture features with a 9 x 9 window size and the Random Forest model showed convergence around 100 decision trees. Cross-validation of the model showed an overall accuracy of the pixel-based classification of 87% and an overall accuracy of the plot-based classification of 95%. All the variables used are statistically significant for the classification, however the most important were contrast, dissimilarity, NIR band (720 nm), and blue band (620 nm). According to our results, 31% of the plots classified as citrus in Oliva by current methodology are abandoned. This is very important to avoid overestimating crop yield calculations by public administrations. The model was applied successfully outside the main study area (Oliva municipality); with a slightly lower accuracy (92%). This research provides a new approach to map small agricultural plots, especially to detect land abandonment in woody evergreen crops that have been little studied until now.This research was funded by regional government of Spain, Generalitat Valenciana, within the framework of the research project AICO/2020/246 and the APC was also funded by the research project AICO/2020/246.Morell-Monzó, S.; Sebastiá-Frasquet, M.; Estornell Cremades, J. (2021). Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sensing. 13(4):1-18. https://doi.org/10.3390/rs13040681S11813

    Fusion of VNIR Optical and C-Band Polarimetric SAR Satellite Data for Accurate Detection of Temporal Changes in Vegetated Areas

    Get PDF
    In this paper, we propose a processing chain jointly employing Sentinel-1 and Sentinel-2 data, aiming to monitor changes in the status of the vegetation cover by integrating the four 10 m visible and near-infrared (VNIR) bands with the three red-edge (RE) bands of Sentinel-2. The latter approximately span the gap between red and NIR bands (700 nm–800 nm), with bandwidths of 15/20 nm and 20 m pixel spacing. The RE bands are sharpened to 10 m, following the hypersharpening protocol, which holds, unlike pansharpening, when the sharpening band is not unique. The resulting 10 m fusion product may be integrated with polarimetric features calculated from the Interferometric Wide (IW) Ground Range Detected (GRD) product of Sentinel-1, available at 10 m pixel spacing, before the fused data are analyzed for change detection. A key point of the proposed scheme is that the fusion of optical and synthetic aperture radar (SAR) data is accomplished at level of change, through modulation of the optical change feature, namely the difference in normalized area over (reflectance) curve (NAOC), calculated from the sharpened RE bands, by the polarimetric SAR change feature, achieved as the temporal ratio of polarimetric features, where the latter is the pixel ratio between the co-polar and the cross-polar channels. Hyper-sharpening of Sentinel-2 RE bands, calculation of NAOC and modulation-based integration of Sentinel-1 polarimetric change features are applied to multitemporal datasets acquired before and after a fire event, over Mount Serra, in Italy. The optical change feature captures variations in the content of chlorophyll. The polarimetric SAR temporal change feature describes depolarization effects and changes in volumetric scattering of canopies. Their fusion shows an increased ability to highlight changes in vegetation status. In a performance comparison achieved by means of receiver operating characteristic (ROC) curves, the proposed change feature-based fusion approach surpasses a traditional area-based approach and the normalized burned ratio (NBR) index, which is widespread in the detection of burnt vegetation
    corecore