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Building Change Detection in Multitemporal
Very High Resolution SAR Images

Carlo Marin, Student Member, IEEE, Francesca Bovolo, Senior Member, IEEE,

and Lorenzo Bruzzone, Fellow, IEEE

Abstract

The increasing availability of very high resolution (VHR) images regularly acquired over urban areas opens new
attractive opportunities for monitoring human settlements at the level of individual buildings. This paper presents a
novel approach to building change detection in multitemporal VHR Synthetic Aperture Radar (SAR) images. The
proposed approach is based on two concepts: i) the extraction of information on changes associated with increase
and decrease of backscattering at the optimal building scale; and ii) the exploitation of the expected backscattering
properties of buildings to detect either new or fully demolished buildings. Each detected change is associated with
a grade of reliability. The approach is validated on a) COSMO-SkyMed multitemporal spotlight images acquired
in 2009 on the city of L’Aquila (Italy) before and after the earthquake that hit the region, and b) TerraSAR-X
multitemporal spotlight images acquired on the urban area of the city of Trento (Italy). Results demonstrate that the
proposed approach allows an accurate identification of new and demolished buildings while presents a low false alarm

rate and a high reliability.

Index Terms

Multitemporal images, building change detection, very high geometrical resolution images, synthetic aperture

radar, change detection, remote sensing.

I. INTRODUCTION

Monitoring of urban areas is of great importance for several applications such as urban planning, cadastral map
updating, environmental monitoring, disaster assessment and so on. The uncensored synoptic view and the repeat-
pass nature of satellites render them an ideal platform from where acquiring information about human settlements.
Nonetheless, the huge amount of data acquired from the satellite sensors requires the development of automatic
algorithms that can process the data and extract the desired information without any manual processing or ground

truth information. In the last decades a new generation of satellite sensors has been operated, which can regularly
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acquire very high geometrical resolution (VHR) images i.e., images having a resolution of a meter or less. The
increasing availability of such data allows the analysis of urban areas at a detail level never reached before resulting
in the possibility of detecting buildings individually. In this context, several automatic techniques for the study of
urban areas have been developed by exploiting both active Synthetic Aperture Radar (SAR) and passive sensors [1]-
[5]. Between these two technologies, the use of SAR systems for addressing the problem of monitoring urban area
changes is very attractive from an operational point of view since, different from optical sensors, SAR is independent
from the sun illumination and it is relatively insensitive to atmospheric weather conditions. This makes it possible
to plan either the acquisition of data in advance (e.g., according to end-user requirements without unpredictable
intervention of atmospheric effects) and to ensure data availability during crisis events (e.g., floods, earthquakes).
Nowadays several SAR missions are operating that can acquire regularly VHR SAR images. Among them we
recall TerraSAR-X, Tandem-X and the COSMO-SkyMed constellation. Data acquired from these missions can be
exploited to detect changes in urban areas at the level of each single building. Nevertheless, the combination of
high resolution and multitemporal analysis leads to some challenging issues that should be addressed.

VHR SAR images are more heterogeneous than high or medium resolution data [6], [7]. Objects that are
considered homogeneous from a semantic point of view (e.g., buildings) show a signature that is inhomogeneous at
high spatial resolution because of the scattering contributions from sub-objects (e.g., facade and roof in a building).
Furthermore, on the one hand the side-looking illumination required by SAR systems leads to phenomena such as
layover, shadow and multi-path signals [8], [9], which are very pronounced in urban areas. On the other hand, the
appearance of a ground object depends on radar system parameters (i.e., wavelength, polarization, pulse length,
incidence angle, look direction, etc.), surface feature properties (e.g., dielectric constant) and environmental variables
(e.g., ground water content) [10]. On top of these aspects, SAR images are corrupted by speckle noise.

All these factors, propagated to the multitemporal analysis, make the problem of the detection of changes complex.
Due to the high resolution a large set of possible changes with different semantic meaning and scale are detectable in
multitemporal VHR SAR images. In general, each change may be associated with the cause of the change itself [11]
and may present an extension that varies from the single pixel to a relevant portion of the entire scene. For instance
it is possible to distinguish among changes due to the anthropogenic activity, the phenological evolution of the
vegetation and the natural disasters. Depending on the application, some of these may be of interest to the end-
users, whereas others may not [12]. In addition, external factors, such as different content of water on the ground
due to different weather conditions may affect the local backscattering behaviors at two dates also in absence of any
other change. Therefore, the same object may show different value of backscattering even though it is not affected
by a relevant change. This invalidates the assumption that two SAR images acquired on the same geographical
area at different times are similar to each other except for the presence of changes occurred on the ground, which
is often considered for high- and medium-resolution SAR images. Thus the use of standard pixel based change
detection (CD) techniques is not applicable as they would be affected by a large amount of false alarms. Given the
complexity of the problem, also standard context-based techniques based on a local neighborhood analysis would

fail to solve the problem since they are not able to properly take into account the high geometrical detail of VHR
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data. To achieve CD in VHR SAR images the comparison between the multitemporal images should be performed
at a higher conceptual level that models the source of change from the prospective of interactions with the incidence

electromagnetic wave.

Numerous studies have been recently presented in the literature that deal with the problems of recognition
of changes in urban areas using VHR SAR images [13]-[25]. In detail, [13]-[22] are focused on the detection
of earthquake damages, [23] is focused on the building databases updating, and [24] addresses the detection of
changes due to the urban evolution. The strategies that are exploited in these papers include post-event supervised
analysis [15], [17], [20]-[22], joint use of optical and SAR data [14], [16], joint use of LiDAR and SAR data [24],
unsupervised detection of damages at the level of aggregated blocks [13], [18] or GIS polygons [19]. Despite the
great interest, the only work that addresses the problem of building change detection using multitemporal VHR
SAR data in an unsupervised way is presented in [25]. In detail, the authors present an approach to the detection
of damaged structures in urban areas from VHR SAR images, which is based on the multitemporal detection of
double-bounce line generated by the multiple backscattering between the wall of the building and the ground. If
a double-bounce line appears (disappears) between two acquisitions a new (destroyed) building is recognized. The
method uses only one of the salient feature used for detecting a building. This partial modeling of the source of
change may generate a relevant number of missed alarms. Furthermore, the double-bounce line of a building alone

is not a reliable feature for the identification of buildings because in several cases it may be not visible [26].

In this paper, which generalizes and extends the work presented in [27] and [28], we propose a novel approach to
building change detection in VHR SAR images that: i) is unsupervised; ii) extends the studies on the backscattering
properties of buildings presented in the literature for single date images [29]-[35] to bi-temporal images; iii) takes
advantage of the multitemporal correlation between images; iv) considers the intrinsic multiscale nature of objects
present in VHR images; and v) is flexible. In greater detail, the approach is based on two concepts: i) the extraction
of information on changes associated with increase and decrease of backscattering at the optimal building scale;
and ii) the exploitation of the expected backscattering properties of buildings to detect new and fully demolished
buildings with their grade of reliability. The effectiveness of the proposed approach is demonstrated in experiments
carried out on two data-sets: the former is acquired by COSMO-SkyMed satellites over L’ Aquila, Italy, which was
heavily damaged during the 2009 earthquake. The latter is acquired by TerraSAR-X and Tandem-X over the city

of Trento, Italy and it represents the urban evolution of the city from 2011 to 2013.

The paper is organized into five sections. Section II presents and reviews the fundamentals of the backscattering
mechanism of buildings in monotemporal images. Moreover it proposes an analysis of this mechanism for bi-
temporal SAR images. This introduces the concept used in the proposed approach. The proposed approach to
building change detection is described in Section III. Section IV presents the data set and show the experimental
results. Section V draws the conclusions of the work. The mathematical notation used in the paper is listed in the

appendix.
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II. FUNDAMENTALS ON THE BUILDING BACKSCATTERING MECHANISM

In this section we analyze the backscattering mechanisms with respect to the variation of the acquisition geometry
when isolated buildings with rectangular layout are sensed by VHR SAR (Section II-A). This analysis is used to
interpret multitemporal VHR SAR images in order to study and model the effects associated with new/demolished

building (Section II-B). This study gives the base for the development of the proposed approach.

A. Building Backscattering Mechanisms in Single Detected VHR SAR Images

SAR is an active system that measures the backscatter of a transmitted signal in the microwaves portion of
the spectrum. The backscattering value is mainly determined by the geometry of acquisition, the dielectric and
geometric properties of the target, and the transmission configuration of the antenna [10], [37]. In the literature
several works have been presented that analyzed the scattering mechanism for different building models in order
to derive their appearance in SAR images [16], [31], [38]. These analyses make use of the geometrical optics
(ray theory) approximation in order to model the electromagnetic scattering. This has the power to be intuitive
and geometrically accurate even though the electromagnetic interactions and the transmission configurations of the
antenna are not taken into account. In geometrical optics the wave propagation is described by rays, which are
modeled as lines perpendicular to the wavefronts, that may be reflected, absorbed or split at the interface between
two media. By knowing the geometry of acquisition of the SAR system and by exploiting trigonometric functions
it is possible to simulate the appearance of a building in VHR SAR images [16], [31], [38].

Let us consider an isolated flat-roof building with dimensions w; X we X h illuminated by a SAR sensor that
is moving along the azimuth direction and is illuminating the building from the left (Fig. 1a). Let us consider a
building model that does not take into account the building features such as windows, eaves, ridges, railings and
so on. This is equivalent to analyze the image at the scale level comparable with the building, and it allows us to
derive the appearance of a building without losing generality. The acquisition geometry of a SAR system (Fig. 1a)
is characterized by two parameters: the incidence angle 6 (i.e., the angle defined by the incident radar beam and the
normal to the intercepting surface) that is generally included between 20° to 55°, and the aspect angle 0° < ¢ < 90°
(i.e., the angle between the azimuth direction and the orientation of an object in the horizontal plane). For the sake
of argument, let us first assume that the SAR sensor illuminates the section A-A (light blue area in Fig. 1a) of the
building from a fixed position in the azimuth. Fig. 1b shows in a qualitative way the amplitude of the backscattering
projected in ground range and slant range of A-A. Following [16] the main contributions that can be identified are:
the return a from the ground, the double bounce effect b caused by the dihedral reflector formed by the building
wall and the ground, the backscattering ¢ from the front wall, the returns d from the building roof and the shadow
area e (see Fig. 1b). As one can observe the contributions from the ground, the wall and the roof are summed up
into an area in front of the building (a + ¢ + d), which appears brighter than each of these contributions taken
singularly because of their superposition. This phenomenon, called layover, occurs when SAR sensors are imaging

a surface with a slope steeper than the incidence angle 6, such as the wall of a building. It is worth noting that
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Fig. 1: Example of backscattering mechanism for a flat roof building. (a) Simplified model of a flat roof building
oriented with a given aspect angle ¢. The SAR sensor is moving on the left of the building. Theoretical scattering
model for a given incidence angle 6 in the case the sensor is illuminating: (b) only the section A-A of the building
from a fixed position in the azimuth (the backscattering is reported in both slant and ground range); (c) the whole
extension of the building (the backscattering is in slant range geometry). Different gray levels represent different
amplitudes. Example of: (d) a real flat-roof building in Trento (Italy) acquired at 1 m resolution by TerraSAR-X

in slant range (SAR illumination is from the left); (e) the same building in an optical image [36].
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Fig. 2: Building scattering mechanisms for a fixed illumination source corresponding to: (a) a section of a building;
(b) bare ground. The comparison of Figures (a) and (b) describes the multitemporal scattering mechanism in the
case (a) a new building is built up (the envelope of backscattering of bare soil is reported for comparison in dotted
line); and (b) a building is dismissed (the envelope of backscattering of the building in (a) is reported in dotted

line).
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Fig. 3: Building scattering mechanisms in multitemporal VHR SAR images (illumination source on the left).
Idealized map highlighting decrease and increase in the value of backscattering (unchanged pixels are in white)

obtained in the case of (a) new and (b) fully demolished building.

the length of the layover, the roof contribution and the shadow depends on the width (w) and the height (h) of the
section A-A, and the incidence angle 6.

In order to derive the appearance of the whole building in a VHR SAR image it is necessary to perform the
aforementioned analysis for all the sections parallel to A-A that form the building. Nevertheless, as the width of
each parallel section changes, the length of each mentioned contribution changes accordingly. Three cases can be
observed on the basis of the relationship between the width w of the section A-A and the limit value w; defined

as [29], [38]:
h

~ tand

€]

Wh

where © and 6 are the height and the incidence angle of the building, respectively. Fig 1a shows the case in which
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w > wy. As the width of the section w decreases, the layover and shadow result larger whereas the backscattering
from the roof will be absorbed in the layover. This behavior is valid up to the limit condition w = wy; for which
the whole roof contribution is sensed in the layover area before the double-bounce. In the case w < wp two
contributions to layover areas can be distinguished: one due to the ground, the front wall and the roof (a + ¢ + d),
and one due to the backscattering from the ground and the front wall of the building (a + ¢). Fig. lc shows the
radar building footprint! generated from the building of Fig. 1a. It is a convex polygon made up of: i) a bright
L-shaped region due to the layover; ii) a dark L-shaped region due to the shadow; iii) a bright L-shaped line due
to the double bounce; iv) a rectangular region due to the direct return from the roof; and v) two bright triangular
regions due to the layover of only ground and wall (a + ¢). It is worth noting that, since in the acquisition phase the
radar is moving, the shadow casted by a ground object is moving as well resulting in a blurring of the border of the
shadow [39], [40] (see the dotted area in Fig 1c). By comparing Fig. 1c and Fig. 1d it is possible to observe that
the geometrical optics approximation can effectively describe the real behavior of scattering in VHR SAR images.

The same building may appear differently in SAR images according to the value of the aspect angle ¢. When
¢ is approaching the limit values ¢ = 0° and ¢ = 90° the layover, the double bounce and the shadow change by
approaching a rectangular shape. A special attention has to be given to the double bounce line with respect to the
variation of ¢ [8], [9]. In [26] an empirical study on the relationship between the strength of the double bounce
and the aspect angle highlighted that the double-bounce contribution drops off significantly if the aspect angle
increases from ¢ = 0° up to 10°, whereas it decays moderately for higher angles. 6 also affects the appearance of
a building in VHR SAR images. By reverting Eq. (1), it is possible to derive a limit value 6, that is equivalent to
wyp. Nonetheless, in urban areas the choice of 6 can be critical for two reasons: i) the value of backscattering is
related to 6 i.e., small value of 6 generates higher value of backscattering and vice-versa; and ii) a large value of
0 generates long shadow areas and small layover areas, and vice-versa. Thus, the backscatter has a dependence on
the incidence angle, and there is potential for choosing optimum configurations for different applications.

The same analysis described in this section for flat-roof building can be conducted for other building models e.g.,
gable-roof buildings [16]. The outcomes of such a study can be summarized as follows: the footprint of any type
of isolated buildings with a rectangular base is given by a specific convex pattern made up of a bright area (due to
layover and double bounce effects) followed by a dark area (due to the shadow effect). These features may have
different thickness, shape and internal variability of backscattering on the basis of the considered building structure
and material. Nevertheless they will systematically arise when SAR systems are sensing an isolated building with

an adequate resolution.

B. Building Backscattering Mechanisms in Multitemporal VHR SAR Images

The aim of this section is to analyze the behavior of the radar backscattering in multitemporal images when a

building changes by taking into account the single data analysis carried out in the previous section. This analysis

IDifferently from [34] here with the term footprint we always refer to the radar footprint of a building.
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introduces the basic concept on which the proposed approach is based. In order to properly illustrate the problem,
let us focus on a building that fully disappears between two acquisitions. Let us assume to sample this situation
acquiring one image when: i) the building is standing; and ii) the building is totally dismissed. Let us assume to
use a VHR SAR system configured with the same geometrical parameters (i.e., same incidence angle # and same
azimuth path) for the two acquisitions. As in Section II-A, let us start the analysis by comparing the backscattering
considering the illumination source fixed at a given point along the azimuth direction corresponding to section A-A
(Fig. 1.a) in the case the building is present. The backscattering profile obtained for the standing building is reported
in Fig. 2a. As one can notice, the backscattering behavior is the same as the one obtained in the previous section
and reported in Fig. 1b. Whereas for the case of totally dismissed building, by assuming bare ground as depicted in
Fig. 2b, the value of backscattering is approximately constant. By comparing Fig. 2a and Fig. 2b one can observe
that the region with a high value of backscattering due to the layover a + ¢ + d, the double bounce b, and the roof
contribution d decreases its value when the building disappears, whereas the region hidden by the shadow e becomes
visible to the line-of-sight of the radar and therefore increases its value (the dashed line in Fig. 2a represents the
envelope of backscattering of bare ground). In other words, in the case of a new building we are likely to observe
a structured pattern made up of two regions having increase and decrease of the backscattering oriented from near-
to-the-far-range. Vice-versa if we consider the case in which a building disappears between two acquisitions, we
expect that a structured pattern made up of two regions having decrease and increase in the backscattering values
arises in near-to-the-far-range (the dashed line in Fig. 2b represents the envelope of the backscattering amplitude
of a building).

This specific multitemporal behavior obtained when the illumination source is fixed at a given position in azimuth
can be used to retrieve the appearance of new/demolished buildings in multitemporal VHR SAR images by repeating
the same analysis for all the sections parallel to A-A that form the scene. The obtained new/destroyed radar building
footprint is made up of a pattern included in a convex polygon. The pattern includes two regions that can be classified
as: i) area of increase of the value of backscattering and, ii) area of decrease in the value of backscattering. The
order of appearance of these two regions along the near-to-far-range direction defines if the pattern is due to new
buildings (see Fig. 3a) i.e., the increase area (in this work depicted conventionally in magenta) is closer to the sensor
than the area of decrease (in this work depicted conventionally in green), or demolished building (see Fig. 3b) i.e.,
the decrease area is closer to the sensor than the increase area.

By taking into account the analysis done in section II-A on the radar signature of a general isolated building it
is possible to derive the appearance of the radar footprint of any type of newly built up or destroyed buildings in
VHR SAR multitemporal images. In detail, the change radar building footprint can be identified checking: i) the
presence of both the regions of increase and decrease in backscattering; ii) the proportion between the areas (in
pixels) of the regions of increase and decrease in backscattering. The proportion depends on the incidence angle
of the acquisition; iii) the equality between the lengths of the regions of increase and decrease in backscattering
in the azimuth direction; iv) the alignment of the regions of increase and decrease in backscattering with respect

to the range direction i.e., the barycenters of the two regions lay on the line with the range (As the regions in the
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Fig. 4: Architecture of the proposed approach to building change detection.

model are not regularized the barycenters were calculated by means of the geometric decomposition method). The
order of appearance of the two regions of increase and decrease in backscattering value determines if the changed
radar building footprint is due to a new or a destroyed building.

It is worth noting that the regions of change may have different thickness, shape and variability of backscattering
change on the basis of the considered building structure and acquisition geometry. Despite this variability, the pattern
will systematically arise when SAR systems are sensing an isolated building with an adequate resolution [27]. Hence,
a method for the detection of the changed building based on this concept results to be robust to both the noise and
the uncertainty (i.e., the impossibly of modeling the reality precisely as described in Section III-D) of multitemporal

VHR SAR data.

III. PROPOSED BUILDING CHANGE DETECTION APPROACH

Let us consider two amplitude VHR SAR images X; and X of size I x J acquired with the same incidence
angle on the same geographical area at different times 71 and 7, respectively. Let Q@ = {w,,, .} be the set of
classes of changes to be identified: w,, represents the class of pixels having unchanged backscattering value, whereas
Q¢ = {we1,we2, - - - ,wer } 18 @ meta-class that gathers all the K possible classes (kinds) of change that may arise
on the ground. One of the most critical issues dealing with this kind of scenario is related to the presence of many
kinds of changes on the ground. Nevertheless in this work we are interested to investigate an urban area with the
goal to only detect changed buildings. In detail, we consider K = 4 classes of change: i) fully destroyed buildings
(we1); 1) new buildings (w.2); iii) changes that have a size comparable to a building but do not present the typical
pattern of full new/demolished buildings (w.3); iv) all the other changes that do not show a size comparable to a
building and are therefore not related to changed buildings (w.4). In order to achieve this classification we introduce
an approach made up of two stages: i) identification of the areas affected by changes in the backscattering at the
scale of buildings; and ii) exploitation of the backscattering models presented in Section II-B in order to detect the

classes Q. = {we1,we2, - - . ,wes }- Each stage of the proposed method is explained in detail in the next subsections.

February 12, 2015 DRAFT



10 MARIN et al.: BUILDING CHANGE DETECTION IN MULTITEMPORAL VERY HIGH RESOLUTION SAR IMAGES

Fig. 4 shows the block scheme of the proposed approach.

A. Detection of Backscattering Changes at Building Scale

As described in Section II-B, under the hypothesis of using a SAR sensor with a resolution comparable to the
building size, the signature of isolated new/demolished buildings in multitemporal data is given by a pattern made
up of increase and decrease of backscattering regions. The first stage of the proposed approach is thus devoted to
extracting the areas that present whether a significant increase or decrease in the backscattering value. Nonetheless,
at a resolution of a meter or less the small objects that form the buildings such as windowsills, or rain drains
are visible. This results in an inhomogeneous signature of the building, which may affect also the appearance of
new/destroyed buildings in multitemporal images rendering the regions of increase and decrease far from being
homogeneous. Therefore, an optimum scale level for representing buildings, and not sub-parts of them, has to be
derived from the VHR images and used to identify the regions of increase and decrease of backscattering. Working
at the scale level of buildings has the additional advantages of: i) reducing the impact on the detection of small
changes and thus reducing the false alarm rate; ii) making it possible a mitigation of the speckle effect on the
detection.

In order to work at the scale of a building we propose to build a multiscale representation of the multitemporal
information made up of NN scale level. The (N — 1)*® resolution level, which represents the optimum scale level,
is select according to the minimum size of the building in the investigated scene. The multiscale representation
can be obtained by applying several methods e.g., Laplacian/Gaussian pyramid decomposition [41], or Wavelet
transform [42]. Here the two-dimensional discrete stationary wavelet transform (2D-SWT) is exploited, which has
the advantage of avoiding the down-sampling after each convolution step [43]. In detail, we used the Wavelet-
based decomposition and reconstruction of the log-ratio image approach presented in [44] for change detection in
medium resolution SAR images. The log-ratio image X g, which is derived as Xpg = log Xo/X;, efficiently
points out the differences in backscattering values. In X r unchanged pixels assume values close to zero, whereas
increase and decrease of backscattering assume positive and negative values far from zero, respectively. This is the
most common way for highlighting changes in multitemporal SAR data [45], [46]. From Xy a set of multilevel
images Xys = {X%R, e XPR e Xﬁvgl} is computed, where the superscript n, n = 0,..., N — 1, indicates
the resolution level. This is done in two steps: a decomposition phase in which Xy g is filtered through a cascade
of n filters, and a reconstruction phase in which only the information of interest is used to reconstruct the original
image at the n'" resolution level. According to [44], the decomposition is based on 2D-SWT, which applies
to the considered image appropriate level-dependent high- and low-pass filters at each resolution level n. Filter
impulse response depends on the selected Wavelet family. For each approximation sub-band XEII;\”+1 the inverse
stationary wavelet transform (2D-ISWT) is applied n + 1 times in order to reconstruct in the image space the set
Xus = {XPg, .., XPg, - - XD '}. For n ranging from 0 to N — 1, the images are characterized by resolution
that is degraded approximately by a factor of 2". Therefore, as expected by decreasing the resolution, small changes

tend to disappear and only changes of a given size are fully preserved. More details on this strategy are given in [44].
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Once the optimum scale level (opt) has been selected, a change detection (CD) map M°P! is derived from Xg‘f{
according to an unsupervised thresholding procedure. M°P' presents three classes: i) no-change (&,); ii) increase
(£7); and iii) decrease (£7) of backscattering. As the analysis of large urban areas with VHR SAR sensors leads to
the generation of large multitemporal images it is possible that the population of changed pixels is in sharp minority
in the full M°P%, This may affect the accuracy of the threshold selection technique. In order to address this issues
we adopt the thresholding method presented in [47]. This method divides the considered image into sub-images
of a given size (splits) and performs the threshold selection considering only the splits that present the highest
probabilities to contain changed pixels. This selection allows the definition of a subset of pixels in which the class
of change shows a higher prior probability than in the whole image. For our purpose, X?ffvf is split into a set of
S sub-images of a user-defined size. The choice of the split size Sk x S4 is driven by the average extension of
the expected changes. Since we are considering changes related to buildings, we can determine Sr and S, taking
into account the average size of the radar footprint of the changed buildings in the considered radar image. This
information can be inferred by considering the actual average size of the buildings i.e., wy, wo and h (see Fig. 1a)

in the considered area and converting it into SAR geometry by applying the following equations” [38]:

SrR=X+Y =
wy sin 6 + %, if 0 > tanfl(%) )
hcos® + (w1 + t5)sinf Otherwise.
Sa=ws 3)

Where X is the length of the return from the building (i.e., the sum of the lengths of contributions (a+ c+d), b and
d of Fig. 2.a) and Y the length of the shadow (i.e., the length of contribution e in Fig. 2a). Once the sizes Sr and
S are defined, the splits are identified and selected according to their probability to contain a significant amount
of changed pixels. The selection is done according to the value of the variance 02, s = 1,...,.S, computed on the
pixels of each split. This is a reasonable index for predicting the presence of changes in the log-ratio image since
the residual multiplicative noise of the ratio image becomes additive due to the log operator. The desired set Pg of
splits with the highest probabilities to contain changes is defined by selecting the splits that satisfy the following
inequality:

02>6*+Bo,:, s=1,...,8 “4)

where 2 denotes the average variance of splits, o, is the standard deviation of the variance of splits, and B > 0
is a constant. High values of B results in the selection of only those splits with high variance (i.e., the ones with the
highest probability to contain changes); vice-versa, low values of B results in the selection of more splits. The split-
based selection allows defining a subset of pixels Xs = {Xpr|XLr € Ps} in which the classes of change show a

higher prior probability than in the whole image. Consequently, the statistical estimation of the parameters related to
2Eq. (2) and Eq. (3) hold assuming flat-roof buildings with rectangular layout and SAR images in slant range geometry.
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Fig. 5: Probability density function estimated from the pixels of the selected splits X using a mixture of three
Gaussians (solid line) compared with rescaled histogram of the pixels of the selected splits X (dashed line).
Estimated distributions of the classes of no-change, decrease in backscattering and increase in backscattering are

reported with line marked with triangles, circles and squares, respectively.

the three probability density functions associated with no-change, increase, and decrease of backscattering between
the two dates (i.e., &,,&T,£7), can be correctly derived and used to separate the three classes. Fig. 5 depicts an
example of the gaussian mixture probability density function (pdf) estimated from Xy, which are extracted from real
VHR SAR data. As one can notice the three modes associated to three classes &, 1, £ are discernible by means
of two thresholds ¢+ and ¢~. Here the thresholding method described in [48] is adopted and the Bayes decision
rule for minimum error is applied to separate the 3 classes. To this end a statistical model for class distributions
is required together with an approach for class statistical parameters estimation. The Gaussian model and the well

known Expectation-Maximization (EM) algorithm [49] are employed to derive M°Pt,

In Fig. 6 an illustrative example that depicts the detection process of the proposed approach is reported for the
case of a demolished building. This example will be used in the paper to better illustrate the proposed approach.
As one can notice, in this example the CD map MP°P! reported in Fig. 6a verifies the assumptions defined for the
model presented in Section II-A: i) the detected regions of increase or decrease in backscattering at the building
scale are homogeneous; and ii) the change detection map presents a reduced number of changes smaller than the
size of buildings i.e., changes that are not related to changed buildings (w.4) are filtered out. From MP°P? it is
possible to identify the building radar footprints by locating the pattern of increase and decrease of backscattering
(building candidates) and by evaluating the matching between the properties of the building candidates with respect
to the properties of new and destroyed building models described in Section II-B. This task is preformed by the

building detection stage of the proposed approach and it will be described in detail in the following section.
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(© ()

Fig. 6: Conceptual example of detection of a destroyed building (illumination source on the left). (a) M°Pt. The
pixels associated to the classes of backscattering decrease (£ ~) and increase (£7) are reported in green and magenta,
respectively. The idealized dismissed radar building footprint is drawn in dashed line; (b) in gray the bounding box of
changed building candidate ;, containing the regions of change 61, d, . . ., ds that form the candidate; (c) illustration
of the parameters Sy, Sp,l;,lp and «, which are evaluated by the fuzzy rules described in Table I in order to check
the matching between the candidate and the expected pattern; (d) identified demolished radar building footprint (red

continuous-line) compared with the actual radar footprint (gray dashed-line).

B. Building Change Detection

This stage of the proposed approach represents the most novel contribution of this work and it is devoted to the
detection of demolished building (w.1), new buildings (w.2), changes that have a size comparable to a building
but do not present the typical pattern of full new/demolished buildings (w.3) and all the other changes that do
not show a size comparable to a building and are therefore not related to changed buildings (w.4). To this end
a procedure based on two steps is developed. First the areas of change candidate to be associate to one of the
classes w1, we3 or w3 (changed building candidate) are detected among all the backscattering changes highlighted
in MI°P*. The set of changed building candidates is denoted by T = {~1,72,...,vg }. Then the matching between
the expected backscattering behavior of changed buildings (presented in Section II-B) and the characteristics of the
changed building candidates is evaluated. This is done by considering the physical properties and the relation of
the regions of change inside each candidate i.e., A = {d1,02,...,0k }. In order to properly model the uncertainty
inherent in the process (that can be due for example to cluttered objects placed in front of buildings) fuzzy theory
is used [50]. Fig. 6b-d illustrates the process of the proposed building change detection stage for the case of a

demolished building. In the following each step is described in detail.
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Fig. 7: Windows used to derive the changed building candidates.

The first step of the change detection phase aims at detecting the set of changed building candidates I' =
{71,72,--,vm}. Ideally each changed building in M°" is made up of regions of both increase and decrease in
backscattering, whose total extension is comparable with the expected size of buildings. One simple and effective
approach to identify the changed building candidates ~1,...,vy is to use a sliding window algorithm for each
pixel in the image. Pixels within a window around it are taken and used to compute the detector output. In this
work, the window is moved in M from left to the right by one pixel and the number of changed pixels (labeled
both as increase 1 or decrease £7) is counted. The process is repeated over 5 moving windows: four rectangular
moving window showing different directions and a square window having the same area of the rectangular ones.
This choice allows us to properly capture the most of the building orientations. The detector output is given by
the window that results in the maximum value. The 5 windows are depicted in Fig. 7. The size of the windows
z1 X zo is chosen according to the minimum size of the buildings in the considered scene in order to minimize
missed alarms. Hence, let M(v’;f,_ = {MP°PY|M°Pt C W'ZB ;1 be the set of pixels of M°P" included in the windows
Wf ; centered at the pixel (4,7 )Iljwith B8 =1,...,5 indicating the different windows. Let C be the image with size
I x J that reports for each pixel C; ; an index of the size of the changes. C; ; is computed as the maximum on

the five windows as follows:

C;; = argmax { [M°PY e ¢t v MY e ¢~
" /56%,2,...,5{‘ w7, ¢ w? ¢

(2%

V oi=1,...,I; j=1,...,J. (5)

where | - | indicates the cardinality of a set. The obtained index image C exhibits relatively high values when the
sliding window contains a large amount of changes oriented in the same direction of the moving window. C exhibits
relatively low values when the sliding window contains small changes and when the windows does not match the
orientation of the change. Therefore, it is possible to detect the changed areas that can be associated in terms of

size to the expected radar footprint of changed buildings by selecting the areas of C exceeding a certain threshold
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Fig. 8: Example of sigmoid function p.,.(r) defined according to (7). The slope of the sigmoid is tuned by the
parameter a;. b; defines instead the center of the sigmoid i.e., p,(b;) = 0.5. In the represented case a; = 15 and

b; = 0.5.

Tec, thus obtaining the image C as follows:

_ 1, if C>T¢
Ce (6)

0, otherwise.

Tc is selected according to the expected minimum size of buildings z; x 2z, in the investigated scene. The map C
represents the areas containing changes with size comparable or bigger than the minimum building size and therefore
they belong to one of the classes w.1, w2, we3. As one can notice, the pixels belonging to w.4 are implicitly identified
in this operation. From the map C the set of changed building candidates I' = {v;,7o,...,vg} is extracted by
calculating the connected components considering a 8-connected neighborhood. This is done by means of a flood-fill
algorithm [51]. Each candidate v, (h = 1,..., H) contains a subset of regions A = {d1,02,...,0x} labeled as
£u, €T or £, The information associated to the kind of change is derived considering M°P! in the areas delimited
by the region 7. Fig. 6b shows an example of candidate ~y;, that contains oy (k = 1,...,8) regions for the case
of a demolished building. In general the number of regions, k may vary from 1 to K depending on the size and
proximity of the changes. For the sake of clarity, in the next step of the building change detection procedure we
assume that only two regions belonging to increase (i.e., 7 = J;, € £T) or decrease i.e., (6~ = & € £7) occur
inside a candidate. If more than 2 regions are present, all the combinations among the regions of increase and
decrease are automatically analyzed by the proposed approach and the most reliable(s) selected.

In order to properly classify each changed building candidate according to the classes w¢1,we2, and w.3, the
physical characteristics and the spatial arrangement of the pattern formed by the regions d; (h = 1,..., K) have
to match with the four characteristics of the models of new or dismissed building discussed in Section II-B. The
matching is tested exploiting four fuzzy rules called here: completeness, proportionality of areas, equivalence of

lengths and alignment. These rules aim at associating a grade of membership to the changed building candidate for
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Fig. 9: Example of a candidate v, that does not respect the equivalence of lengths. (a) M°P*. The pixels associated
to backscattering decrease (£7) and increase (£1) classes are reported in green and magenta, respectively. (b) In
gray the changed building candidate -, containing the regions ¢; and do, which form the candidate; (c) Analysis

of psychical properties and relations of the regions §+ and 5.

each of specific performed test. On the basis of the aggregate membership the final classification decision is taken.
In the following each rule is presented in detail.

1) Completeness: A pair of regions of increase and decrease is strictly needed to identify a new (w.2) or destroyed
building (w,1). The first rule evaluates the simultaneous presence of d+ and 6~ inside the candidate ~y,. This is
done by means of a crisp membership function g, that takes value 0 or 1 (u,(p) = {0,1}) depending on whether
regions of increase and decrease are simultaneously present 1i,(p) = 1 or not u,(p) = 0.

2) Proportionality of Areas: This rule aims at verifying that the area §™ is not prevailing with respect to the area
of 6, and vice-versa. The mathematical modeling of this rule depends on the parameters of acquisition and the size
of the building as discussed in Section II-A. It can be effectively represented by a sigmoid membership function
that evaluates the attribute 7, = min{s;/sp, sp/sr}, where sy and sp indicate the areas of 1 i.e. S; = |d*| and
d~ ie., Sp = |0~ |, respectively. In general, a sigmoid function is defined as follows:

- 1
o 1 -+ e_ai(r_bi)

pur (1) @)

The constant a; tunes the slope of function and the constant b; locates the center of the function. Eq. 7 returns
values in [0,1]. Fig. 8 shows an example of sigmoid function. In accordance with the model it is expected that the
smaller is r¢ the smaller is the membership grade of the candidate hence for this rule a; = a; > 0 and b; = b; > 0.

3) Equivalence of Lengths: This tule aims at checking that the lengths of the regions § and §~ in the azimuth
direction are equivalent. This is done by identifying the extrema of the regions §* and §~. To test the reliability of
a candidate with respect to this criterion, the attribute r; = min{l;/lp,lp/l;} (where I; and I are the lengths in
azimuth direction of §* and 6, respectively) is used in the sigmoid membership function defined in eq. (7) with
parameters a; = as > 0 and a; = b > 0. Since the farther is r