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A B S T R A C T

Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these
data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion
techniques are required to integrate the different properties of each sensor and produce useful information. For
example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using
stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereo-
grammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of
semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching
by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of
establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is
shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as
provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational
polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is
demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.

1. Introduction

Three-dimensional reconstruction from remote sensing data has a
range of applications across different fields, such as urban 3D modeling
and management, environmental studies, and geographic information
systems. Manifold high-resolution sensors in space provide the possi-
bility of reconstructing natural and man-made landscapes over large-
scale areas. Conventionally, 3D reconstruction in remote sensing is ei-
ther based on exploiting phase information provided by interferometric
SAR, or on space intersection in the frame of photogrammetry with
optical images or radargrammetry with SAR image pairs. In all these
stereogrammetric approaches, at least two overlapping images are re-
quired to extract 3D spatial information. Both photogrammetry
and radargrammetry, however, suffer from several drawbacks.
Photogrammetry using high-resolution optical imagery is limited by
relatively poor absolute localization accuracy and cloud effects,
whereas radargrammetry suffers from the difficulty of image matching
for severely different oblique viewing angles.

On the other hand, the huge archives of high-resolution SAR images
provided by satellites such as TerraSAR-X and the regular availability of
new data alongside archives of high-resolution optical imagery pro-
vided by sensors such as WorldView provide a great opportunity to

investigate data fusion pipelines for producing 3D spatial information
(Schmitt and Zhu, 2016). As relatively few studies have dealt with 3D
reconstruction from SAR-optical image pairs (Bloom et al., 1988;
Raggam et al., 1994; Wegner et al., 2014), there has been no in-
vestigation into the feasibility of a dense multi-sensor stereo pipeline as
known from photogrammetric computer vision yet. This paper in-
vestigates the possibility of implementing such a pipeline, and describes
all processing steps required for 3D reconstruction from very-high-re-
solution (VHR) SAR-optical image pairs.

In detail, this paper discusses both an epipolarity constraint and a
bundle adjustment formulation for SAR-optical multi-sensor stereo-
grammetry first. Regarding the complicated radiometric relationship
between SAR and optical imagery, the epipolarity constraint accelerates
the matching process and helps to identify reliable and correct con-
jugate points (Morgan et al., 2004; Scharstein et al., 2001). For this
objective, we first demonstrate the existence of an epipolarity con-
straint for SAR-optical imagery by reconstructing the rigorous geometry
models of SAR and optical sensors using both collinearity and range-
Doppler relationships. We prove that a SAR-optical epipolarity con-
straint can be rigorously modeled using the sensor geometries. Subse-
quently, rational polynomial coefficients (RPCs) are fitted to the SAR
sensor geometry to ease further processing steps. Consequently,
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epipolar curves can be established using projection and back-projection
from SAR imagery to terrain and then from terrain to optical imagery
using RPCs. In addition, the RPCs ease the formulation of multi-sensor
block adjustment for SAR-optical imagery.

The block adjustment is used to align the optical imagery with re-
spect to the SAR data. Generally, the absolute geolocalization accuracy
of optical satellite imagery is lower than that of modern SAR sensors.
Evaluations show that the absolute accuracy of geopositioning using
TerraSAR-X imagery is within a single resolution cell in both the azi-
muth and range directions, and can even go down to the cm-level
(Eineder et al., 2011). In contrast, the absolute accuracy of geolocali-
zation using basic WorldView-2 products is generally no better than 3m
(DigitalGlobe, 2018). Consequently, the block adjustment propagates
the high geometrical accuracy of SAR data into the final 3D product,
thus avoiding the need for external control points.

The main stage of SAR-optical stereogrammetry, however, is a dense
matching algorithm for 3D reconstruction (Bagheri et al., 2018). In this
study, we use the semi-global matching (SGM) method, which in-
corporates both mutual information and census, as well as their
weighted sum as cost functions, in its core.

The remainder of this paper is organized as follows. First, the
modeling of SAR sensor geometries with RPCs is explained in Section
2.1. After briefly introducing the epipolarity constraint and its benefits,
a mathematical proof of this constraint for SAR-optical image pairs is
presented in Section 2.2. In Section 2.3, the application of multi-sensor
block adjustment using RPCs for SAR-optical image pairs is introduced.
The principle of the SGM algorithm is recapitulated in Section 2.4.
Section 3 summarizes experiments and results of our implementation of
the SAR-optical stereogrammetry workflow for TerraSAR-X/World-
View-2 image pairs over two urban study areas. Based on these results,
the feasibility of stereogrammetric 3D reconstruction from SAR-optical
image pairs over urban areas, as well as its advantages and limitations,
are discussed in Section 4. Finally, Section 5 presents the conclusions to
this study.

2. SAR-optical stereogrammetry

Fig. 1 shows the general framework of SAR-optical stereogram-
metric 3D reconstruction. Similar to optical stereogrammetry, one
grayscale optical image and one amplitude SAR image form a stereo
image pair that can be processed by suitable matching methods to find
all possible conjugate pixels. However, some important pre-processing
steps are required before the matching and 3D reconstruction. Cur-
rently, most VHR optical images are delivered using RPCs. Thus, the
primary step in the SAR-optical stereogrammetry framework is to es-
timate the RPCs for SAR imagery as well. This process homogenizes the
geometry models of both sensors and simplifies the subsequent pro-
cesses of SAR-optical block adjustment and establishing an epipolarity

constraint. The next phase is to carry out multi-sensor block adjustment
to align the optical image to the SAR image. This rectifies the RPCs of
the optical imagery with respect to the SAR imagery, thus improving
the absolute geolocalization of the optical imagery and correcting the
positions of the epipolar curves on the optical imagery. A disparity map
is then produced in the frame of the reference image via a dense image
matching algorithm such as SGM. From this map, the 3D positions of
the points can be determined by reconstructing the geometry of the SAR
and optical imagery for a particular exposure. However, the success of
the aforementioned framework relies on the possibility of establishing
an epipolarity constraint for SAR-optical image pairs. Thus, the ex-
istence of the epipolarity constraint for SAR-optical image pairs must be
investigated. In the following, the details of each step of the SAR-optical
stereogrammetry framework are explained and the potential of using an
epipolarity constraint for SAR-optical image pairs is investigated.

2.1. Preparation: RPCs for SAR imagery

RPCs are a well-established substitute for the rigorously derived
optical imaging model. They are widely used for different purposes
such as epipolar curve reconstruction (Oh et al., 2010), block adjust-
ment (Grodecki and Dial, 2003), space resection-intersection and 3D
reconstruction (Fraser et al., 2006; Li et al., 2007; Tao and Hu, 2002;
Tao et al., 2004; Toutin, 2006) or image rectification (Tao and Hu,
2001). The relation between the image space and the geographic re-
ference system is created by the rational functions (Grodecki et al.,
2004)

= =c P h
P h

f h( , , )
( , , )

( , , )1

2 (1)

and

= =r P h
P h

g h( , , )
( , , )

( , , ),3

4 (2)

where r c, are normalized image coordinates, i.e. normalized rows and
columns of points in the scene and , , and h denote the normalized
latitude, longitude, and height of the respective ground point. The re-
lationship between normalized and un-normalized coordinates is given
by Tao and Hu (2001)

=X X X
S

,u o

x (3)

where X is the normalized coordinate, Xu is the un-normalized value of
the coordinate, and X S,o x are the offset and scale factors, respectively.

In Eqs. (1) and (2), Pi = …i( 1, , 4) are n-order polynomial functions
that are used to model the relationship between the image space and
the reference system. They can be written as

Fig. 1. Framework for stereogrammetric 3D reconstruction from SAR-optical image pairs.
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where = …a n( 0, 1, , 19)i n, are the polynomial coefficients.
For projection from the image space to terrain, the inverse form of

the rational function models is used:
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For this task, another set of RPCs for inverse projection as well as the
terrain height h is needed.

The main reason for using RPCs is to facilitate the computational
process of the subsequent processing tasks. Instead of describing the
stereogrammetric intersection with a combination of the range-Doppler
model for the SAR image and a push-broom model for the optical
image, from a mathematical point of view the RPC formulation
homogenizes everything to a comparably simple joint model. However,
fitting RPCs to a sensor model is challenging in its own way and de-
mands sufficient, well-distributed control points. RPCs are usually cal-
culated with either a terrain-independent or terrain-dependent ap-
proach (Tao and Hu, 2001). In the terrain-dependent approach,
accurate Ground Control Points (GCPs) are used to estimate the RPCs.
Thus, the final accuracy of the RPCs depends on the number, accuracy,
and distribution of GCPs.

While the terrain-dependent approach is an expensive way of esti-
mating RPCs (and GCPs may not be available for every study area), the
terrain-independent method allows RPCs to be estimated without any
GCPs (Tao and Hu, 2001). Instead, a set of virtual GCPs (VGCPs), which

are related to the image through the rigorous imaging model of the
respective sensor, are used to approximate the RPCs. The VGCPs are
arranged in a grid-shape format on planes located at different heights
over the study area, such as depicted in Fig. 2. The resulting cube of
points is then projected to the image space, and their corresponding
image coordinates are determined by reconstructing the rigorous
model. The RPCs can subsequently be estimated using a least-squares
calculation. Note that, when using higher-order RPCs, the least-squares
estimation suffers from an ill-posed configuration that causes the results
to deviate from their optimal values. In these circumstances, a reg-
ularization approach based on Tikhonovs method can be employed to
obtain acceptable solutions (Tikhonov and Arsenin, 1977).

The RPCs for optical sensors are usually delivered by vendors
alongside the image files. For SAR sensors – with the exception of the
Chinese satellite GaoFen-3 – however usually only ephemerids and
orbital parameters are attached to the data. Therefore, Zhang et al.
investigated the generation of RPCs for various SAR sensors based on
the terrain-independent approach (Zhang et al., 2011). Their results
show that RPCs can be used as substitutes for the range-Doppler
equations with acceptable accuracy. In this study, we use this terrain-
independent approach for SAR RPC generation.

2.2. Epipolarity constraint for SAR-optical image matching

In most stereogrammetric 3D reconstruction scenarios, the epipo-
larity constraint facilitates the procedure of image matching by redu-
cing the search space from 2D to 1D (Morgan et al., 2004). The epi-
polarity constraint always exists for optical stereo images captured by
frame-type cameras that follow a perspective projection (Cho et al.,
1993). This phenomenon is illustrated in Fig. 3.

For a point p in the left-hand image, the conjugate point in the
corresponding right-hand image is located on the so-called epipolar line.
This epipolar line lies on the plane passing through both image

Fig. 2. Procedure of estimating RPCs by terrain-independent approach.
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projection centers (O O, ) and the image point p. It can also be obtained
by changing the depth or height of p in the reference coordinate system.
While it is known that epipolar lines exist for images captured from
frame-type cameras, straightness cannot be ensured for other sensor
types (Cho et al., 1993). We thus refer to epipolar curves instead of
epipolar lines to express generality in the remainder of this paper.

With respect to remote sensing, several studies have demonstrated
that the epipolar curves for scenes acquired by linear array push-broom
sensors are not straight (Gupta and Hartley, 1997; Kim, 2000). For
example, Kim (2000) used the model developed by Orun (1994) to
prove that the epipolar curves in SPOT scenes looks like hyperbolas.
Orun and Natarajan’s model assumes that the rotational roll and pitch
parameters are constant during the flight, while the yaw can be mod-
eled by quadratic time-dependent polynomials. Morgan et al. (2004)
demonstrated that the epipolar curves would not be straight even with
uniform motion.

For a SAR sensor, the imaging geometry is completely different from
that of optical sensors, as data are collected in a side-looking manner
based on the range-Doppler geometry (Curlander, 1982). However, the
possibility of establishing the epipolarity constraint in stereo SAR image
pairs has been investigated by Gutjahr et al. (2014) and Li and Zhang
(2013) for radargrammetric 3D reconstruction. Gutjahr et al. experi-
mentally showed that epipolar curves in SAR image pairs are also not
perfectly straight, but can be approximately assumed to be straight for
radargrammetric 3D reconstruction tasks through dense matching
(Gutjahr et al., 2014).

In this research, we investigate the epipolarity constraint mathe-
matically and experimentally for the unconventional multi-sensor si-
tuation of SAR-optical image pairs. In general, epipolar curves in image
pairs captured by frame-type cameras (as shown in Fig. 3) can be de-
scribed as (Hartley and Zisserman, 2004)

=l pFr
T (7)

where lr refers to the epipolar curve in the right-hand image associated
with the image point p on the left-hand image. F is the fundamental
matrix, which includes interior and exterior orientation parameters for
projecting coordinates between the two images. Similarly, an epipolar
curve in the left-hand image can be written as =l pFl . For push-broom
satellite image pairs, the epipolarity constraint can be verified in a si-
milar way, but linear arrays are substituted for a frame image.

Furthermore, the fundamental matrix for push-broom sensors is more
complex than that for frame-type sensors. In the following, inspired by
the mathematical proof of the epipolarity constraint for stereo optical
imagery given in Morgan et al. (2004) and using the epipolar curve
equation presented in (7), a rigorous epipolar model for SAR-optical
image pairs acquired by space-borne platforms will be constructed. For
this task, the optical image is considered as the left-hand image and the
SAR image is the right-hand image. Fig. 4 shows the configuration of
the SAR-optical stereo case. The points o and s mark the positions of the
optical linear array push-broom sensor and the SAR sensor, respec-
tively. Using a collinearity condition, a rigorous model for re-
constructing the imaging geometry of linear array push-broom sensors
can be expressed as (Kratky, 1989)

=
=

x
y
f

R
X X t
Y Y t
Z Z t

0 ( )
( )
( )

,
l

l t t t

o

o

o
( ) ( ) ( )

(8)

where x y( , )l l are the coordinates of point p in the linear array co-
ordinate system, f is the focal length, X t Y t Z t( ( ), ( ), ( ))o o o represents the
satellite position at time t in the reference coordinate system, X Y Z( , , )
are the ground coordinates of the target point T, is the scale factor,
and R t t t( ) ( ) ( ) is the 3D rotational matrix computed from rotations

t t t( ), ( ), ( ) along the three dimensions at time t. Note that the
aforementioned rotational and translational components are estimated
by time-dependent polynomials.

A rigorous model based on the range-Doppler geometry (Curlander
and McDonough, 1991) (displayed in Fig. 4 as well) can also be applied
to the SAR imagery. In this model, the slant-range equation is first used
to describe the range sphere as (Curlander, 1982):

=R R RCT CS (9)

where R is the slant-range and R R,CT CS are the target point and SAR
sensor position vectors in the reference coordinate system. C refers to
the center of the reference coordinate system.

For a given pixel yr in the slant-range SAR scene, Eq. (9) can be
reformulated as

= = + = + = +R c t c t
y
f

c t c
y
f

R y(
2

)
2

,r

r

r

r
r0 0 0

(10)

where R is the slant-range of the target point, c is the velocity of light,

Fig. 3. Epipolarity constraint for frame-type camera (Morgan et al., 2004).
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t t,0 are the one-way signal transmission times for the first range pixel
and range pixel coordinate yr , respectively, and fr is the range sampling
rate. R0 gives the slant-range for the first range pixel and = c

f2 r
.

The second equation describes the geometry of the Doppler cone:

=f
R

V R R2 ·( ),D
r

CT CS (11)

where fD is the Doppler frequency, r is the SAR signal wavelength, V is
the velocity vector and · denotes the inner product operator.

For the epipolarity constraint, we assume that the target point T is
imaged at time by the push-broom sensor. If we fix the time variable t
with and consider the corresponding image coordinate in the linear
array coordinate system as y f(0, , )l , we can use Eq. (8) to back-project
from the linear array coordinate system to the terrestrial reference
system as follows:

=
X X
Y Y
Z Z

M y
f

0o
o
o

l1

(12)

where =M R T . For imaging time t, all time-dependent parameters
are estimated under the constraint =t . Thus, for this specific instance,
the variable index t is eliminated from Eq. (8). By expanding Eq. (12)
and removing the scale factor effect, we have:
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+ +
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where mij are elements of matrix M .
If the velocity vector of the SAR sensor is computed in the zero-

Doppler frequency transition, we can reformulate Eq. (11) as:

+ + =V t X X t V t Y Y t V t Z Z t( )( ( )) ( )( ( )) ( )( ( )) 0x
s

y
s

z
s (15)

where V t V t V t( ( ), ( ), ( ))x y z are the components of velocity vector V .
Hence:
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z z
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From Eqs. (13) and (14), we can derive.
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+
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Multiplying both sides of the Eqs. (17) and (18) by V t( )x and V t( )y ,
respectively, and then combining them with Eq. (16), Z can be calcu-
lated as follows:

Fig. 4. Imaging geometry for configuration of SAR-optical imagery.
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Changing the position of target point T in the Z direction is
equivalent to changing the corresponding image coordinates on the
epipolar curve. Consequently, the determination of image coordinates
in the SAR scene can be realized by tracking the sensor positions in the
respective instances. In fact, in spite of fixing the position of the target
point for the optical sensor at time , the location components
X t Y t Z t( ( ), ( ), ( ))s s s and the velocity components of the SAR sensor
V t V t V t( ( ), ( ), ( ))x y z are time-dependent and can be estimated for each
instant using time-dependent polynomials. For the sake of simplicity,
the SAR sensor trajectory can be approximated by a linear motion
model. Thus, the velocity components V t V t V t( ( ), ( ), ( ))x y z will remain
constant with time at X t Y t Z t( ( ), ( ), ( ))s s s i.e., the acceleration is 0 and
the location components X t Y t Z t( ( ), ( ), ( ))s s s can be calculated using
linear time-dependent functions:
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where X Y Z( , , )s s s
0 0 0 is the position of the SAR sensor at initial time t0.

The time ta is the azimuthal time, which can be expressed according to
the line coordinate xr in the SAR scene as

= =t x
PRF

k x ,a
r

r (21)

where PRF is the pulse repetition frequency in Hz.
Substituting the parameters expressed in Eqs. (20) and (21) into

(19), we obtain:
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Eq. (22) can be simplified to:

= +Z c c xr0 1 (23)

and substituting (23) into (17) and (18) gives:
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Eqs. (24) and (25) can be written in the form:

= +X a a xr0 1 (26)

= +Y b b xr0 1 (27)

The slant-range represented by Eq. (10) can be reformulated as:
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Substituting (26), (27), (23) and (20) into (28), we have:
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2, this can be rewritten as:

= + +y F x F x F Rr r r2
2

1 0 0 (32)

Eq. (32) is a general rigorous model representing the epipolarity
constraint for SAR-optical image pairs based on their imaging para-
meters contained in F F F, , ,0 1 2 and R0. This shows that an epipolarity-
like constraint can be established for SAR-optical image pairs. However,
the non-linear relation between yr and xr in Eq. (32) shows that SAR-
optical epipolar curves are not straight, even under the assumption of
linear motion for the SAR system. In Section 3.3, this epipolarity con-
straint will be experimentally investigated for an RPC-based imaging
model.

2.3. SAR-optical multi-sensor block adjustment

As illustrated in Fig. 1, the main step before implementing dense
image matching is to align the optical image to the SAR image. This
process is performed using a multi-sensor block adjustment which is
based on RPCs instead of rigorous sensor models as proposed in
Grodecki and Dial (2003). The block adjustment process improves the
relative orientation between both images fixed to the more accurate
SAR image orientation parameters. Through the block adjustment, the
bias components induced by attitude, ephemeris, and drift errors in the
optical image are compensated (d’Angelo and Reinartz, 2012).

The main bias compensation for the RPCs of the optical image in-
volves translating the locations of the epipolar curves to accurate po-
sitions using the SAR geopositioning accuracy. Generally, designing an
appropriate function for modeling the existing bias in the RPCs given by
the optical image depends on the sensor properties (Tong et al., 2010),
but for most sensors an affine model can be applied (Fraser and Hanley,
2005). Even for the current generation of VHR linear push-broom array
sensors such as WorldView-2, employing only the shift parameters will
be sufficient. The affine model for RPC bias compensation can be for-
mulated as

= + +
= + +

x m m x m y
y n n x n y ,

o o

o o

0 1 2

0 1 2 (33)

where x y,o o represent column and row of tie points in the optical
images and mi and ni =i( 0, 1, 2) are unknown affine parameters to be
estimated through the block adjustment procedure. Note that tie points
are the common points between the SAR and optical images, and can be
obtained by manual or automatic sparse matching between two images.
Since the automation of the tie point generation process is not the focus
of this study, we refer the reader to possible solutions described in Suri
and Reinartz (2010), Perko et al. (2011), Merkle et al. (2017).

The geographic coordinates of the tie points in the SAR image are
calculated by the inverse rational functions computed for the SAR
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imagery as described in Section 2.1:

= f x y H( , , )i
s s

i
s
i (34)

and

= g x y H( , , )i
s s

i
s
i (35)

where i and i are the normalized longitude and latitude of tie point i
with normalized image coordinates xs

i and ys
i (index s denotes the SAR

scene), and here, H is a constant, e.g., the mean height of the study area.
fs and gs are inverse rational functions computed for the SAR sensor to
project the tie points from the SAR image to the reference system. The
output is a collection of GCPs that can be applied for the RPC rectifi-
cation of the optical imagery. The resulting GCPs are then projected by
the rational function associated with the optical images to give the
image coordinates of the GCPs:

=c f H( , , )o
i

o
i i (36)

and

=r g H( , , )o
i

o
i i (37)

where c r,o
i

o
i are the normalized image coordinates of tie point i com-

puted by the forward rational functions of the optical sensor, fo and go.
From Eqs. (33), (36), and (37), the primary equations for SAR-

optical block adjustment are formed as:

= + +x c x vo
i

ou
i i

x
i (38)

and

= + +y r y vo
i

ou
i i

y
i (39)

where, xo
i and yo

i denote the column and row of tie point i in the optical
scene, and cou

i and rou
i are the un-normalized coordinates of the tie point

after projection and back-projection using the RPCs. The block

adjustment equations can then be written as:
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and
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i

ou
i i

y
i (41)

Finally, through an iterative least-squares adjustment (Grodecki and
Dial, 2003), the unknown parameters mi and ni are estimated and the
affine model can be formed. This affine model is added to the rational
functions of the optical image to improve the geolocation accuracy to
that of the SAR image.

2.4. SGM for dense multi-sensor image matching

The core step in a stereogrammetric 3D reconstruction workflow is
the dense image matching algorithm to obtain the disparity map, which
can then be transformed into the desired 3D point cloud. Generally,
there are two different dense matching rationales that can be used ac-
cording to whether local or global optimization is more important
(Brown et al., 2003). For the case of global optimization, an energy
functional consisting of two terms is established to find the optimal
disparity map (Scharstein et al., 2001):

= +E d E d E d( ) ( ) ( )data smooth (42)

where E d( )data is a fidelity term that makes the computed disparity map
consistent with the input image pairs, E d( )smooth considers the
smoothness condition for the disparity map, and is a regularization
parameter that balances the fidelity and smoothness terms.

For a given image pair, the disparity map is calculated by mini-
mizing the energy functional in (42). The main advantage of global
dense matching over local matching methods is greater robustness
against noise (Brown et al., 2003), although most existing algorithms
for global dense image matching have a greater computational cost

Fig. 5. Display the location of SAR-optical image pairs of the Munich study area. The red and blue rectangles identify areas covered by the WorldView-2 and
TerraSAR-X images, respectively, and the black rectangle displays the study subset selected for stereogrammetrix 3D reconstruction over Munich. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Hirschmüller, 2008).
For the experiments presented in this paper, we use the well-known

SGM method (Hirschmüller, 2008), which offers acceptable computa-
tional cost and high efficiency, and performs very similarly to global
dense image matching.

2.4.1. Cost functions used in SGM
In this study, the ability of performing dense image matching for

SAR-optical image pairs using SGM is investigated. For this purpose,
two different cost functions, namely Mutual Information (MI) and
Census, as well as their weighted sum, are examined for the dense
matching of high-resolution SAR and optical imagery. Typically, the
similarity measures employed in the cost function are either signal-
based or feature-based metrics (Hassaballah et al., 2016). Classically,
signal-based similarity measures such as Normalized Cross Correlation
(NCC) and MI are preferable to feature-based similarity measures when
used in dense image matching algorithms because of faster calculation.

Among the signal-based matching measures, MI was recommended
for SGM as it is known to perform well for images with complicated
illumination relationship, such as SAR-optical image pairs (Suri and
Reinartz, 2010).

Another similarity measure used in the SGM cost function is Census,
which actually acts as a nonparametric transformation. The weighted
sum of MI and Census is beneficial for 3D reconstruction in urban areas,

especially for reconstructing the footprints of buildings to produce
sharper and clearer images (Zhu et al., 2011). The weighted similarity
measure can be defined as

= +SM MI (1 ) Census, (43)

where changes from 0 to 1 to weigh the effect of Census cost in re-
lation to MI.

2.4.2. SGM settings for efficient SAR-optical dense matching
To increase the efficiency of the SGM performance, some important

settings for the dense matching of SAR-optical image pairs must be
considered. The basic principle of 3D reconstruction by dense matching
is to use the epipolarity constraint to limit the search space. Usually,
before dense matching, normal images are created by resampling the
original images according to epipolar geometry (Morgan et al., 2004;
Oh et al., 2010). In this study, we use the RPC model to realize the SAR-
optical epipolar geometry implicitly without the need to generate
normal images. This is done by implementing projections and back-
projections from the reference image to the ground and back to the
corresponding image, respectively, for a specified height range using
rational functions. Then, the search for computing disparities can be
performed along the thus-created epipolar curves.

In addition, the minimum and maximum disparity values should be
selected to restrict the length of the search space along the epipolar

Fig. 6. Display the location of SAR-optical image pairs of the Berlin study area. The red and blue rectangles identify areas covered by the WorldView-2 and TerraSAR-
X images, respectively, and the black rectangle displays the study subset selected for stereogrammetrix 3D reconstruction over Berlin. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Specifications of the TerraSAR-X and WorldView-2 images used for dense matching.

Area Sensor Acquisition Mode Off-Nadir Angle (°) Ground Pixel Spacing (m) Acquisition date

Munich TerraSAR-X Spotlight 22.99 0.85× 0.45 03.2015
WorldView-2 Panchromatic 5.2 0.5× 0.5 07.2010

Berlin TerraSAR-X Staring Spotlight 36.11 0.17× 0.45 04.2016
WorldView-2 Panchromatic 29.1 0.5× 0.5 05.2013
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curves. In general, there is more flexibility regarding the selection of
this disparity interval for optical image pairs than for SAR-optical image
pairs, and using unsuitable values will result in more outliers. The
minimum and maximum disparity values can be determined using ex-
ternal data such as the SRTM digital elevation model, which is available

for most land surfaces around the world (USGS, 2000). For sake of
exploiting the simplicity offered by comparably flat study scenes, we
just add and subtract 20-m height differences to the mean terrain
heights of the study scenes to obtain the disparity thresholds.

The next setting is to switch off the minimum region size option in the

Fig. 7. Display of SAR-optical sub-scenes extracted from Munich study areas (the left-hand image is from WorldView-2, right-hand image is from TerraSAR-X).

Fig. 8. Display of SAR-optical sub-scenes extracted from Berlin study areas (the left-hand image is from WorldView-2, right-hand image is from TerraSAR-X).
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SGM algorithm, which is usually used to decrease the noise level in the
stereogrammetric 3D reconstruction of optical image pairs by elim-
inating isolated patches from the disparity map based on their small
size. Experimental results show that, for SAR-optical image pairs, the
complex illumination relationship between the images and the different
imaging effects (especially for urban areas) make the minimum region
size criterion useless, as connectivity cannot be ensured in the disparity
map.

Similar to other dense matching cases, we use the LR (Left-Right)
check to investigate binocular half-occlusions (Egnal and Wildes,
2002). This strategy changes the reference images from left to right, and
consequently produces two disparity maps that can be checked against
each other. To reach sub-pixel accuracy, the disparity in each point is
estimated by a quadratic interpolation of neighboring disparities.

In this study, SGM is implemented at four hierarchy levels and the
aggregated cost is calculated along 16 directions around each point.

3. Experiments and results

3.1. Study areas and datasets

We selected two study areas, one in Berlin and one in Munich (both
located in Germany), to investigate the potential for 3D reconstruction
from high-resolution SAR-optical image pairs over urban areas. The
locations of TerraSAR-X and WorldView-2 images are displayed in
Figs. 5 and 6. The properties of the image pairs for each study area are

Table 2
Accuracy (standard deviation: STD) of RPCs fitted on SAR sensor model (units:
m).

Area Virtual GCPs Check points

Row Column Row Column

Munich 0.00026 0.00114 0.00025 0.00031
Berlin 0.00024 0.00027 0.00026 0.00118

Fig. 9. Epipolar curves for the WorldView-2 image (of Munich) given by changing the heights of point p (located at the corner of the Munich central train station in
the TerraSAR-X scene) for all possible height values in the image scene. The epipolar curves look like straight, but are not actually straight.
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presented in Table 1. In order to enhance the general image similarity
and facilitate the matching process, all images were resampled to
1m×1 m pixel spacing and the SAR images were filtered with a non-
local speckle filter. After implementing bundle adjustment for both
datasets, two sub-scenes (with a size of 1000×1500 pixels each) from
overlapped parts of the study areas were cropped. These sub-scenes are
displayed in Figs. 7 and 8.

3.2. Validation of RPCs to model SAR sensor geometry

As described in Section 2.1, RPCs can be used as a substitute for the
rigorous range-Doppler model, similar to the standard RPCs delivered
with optical imagery. This step is performed to simplify the multi-
sensor block adjustment and epipolarity constraint construction. The
accuracy of the RPCs can be estimated using independent virtual
checkpoints that are produced in a similar way to VGCPs using the
range-Doppler model. The word independent implies that the virtual

checkpoints are never used in the RPC fitting, i.e., they are located in
different positions respective to the VGCPs. The accuracy of the fitted
RPCs for the TerraSAR-X data in each study area is listed in Table 2.
Analysis was performed based on the residuals of the rows and columns,
given by the differences row rowRPC DR and col colRPC DR, i.e., the
differences between image coordinates computed by RPCs and range-
Doppler. The analysis results confirm that the RPCs can model the
range-Doppler geometry for TerraSAR-X data to within a millimeter,
and can thus well be used in the 3D reconstruction process.

3.3. Validity of the epipolarity constraint

A general model that proves the epipolarity constraint for SAR-op-
tical image pairs was described in Section 2.2. It was also concluded
that epipolar curves are usually not straight. Experimentally, the epi-
polarity constraint for SAR-optical image pairs can also be modeled
based on RPCs. In this paper, we evaluate the epipolarity constraint for

Fig. 10. Epipolar curves for the WorldView-2 image (of Berlin) given by changing the heights of point p (a distinct corner of a building in the Berlin TerraSAR-X
scene) for all possible height values in the image scene. The epipolar curves look like straight, but are not actually straight.
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TerraSAR-X and WorldView-2 image pairs acquired over the two study
areas.

3.3.1. Existence of epipolar curves
We analyzed the validity of the derived SAR-optical epipolarity

constraint for an exemplary point located at the corner of the Munich

central train station building (p). This point was projected to the terrain
space by changing the heights in specific steps, e.g., 10m, starting from
the lowest possible height and proceeding to the highest possible height
in the scene (for this experiment we used the interval [0m, 1200m]).
The output will be an ensemble of points with different heights, such as
depicted in Fig. 9(c). All these points were then back-projected to the

Fig. 11. Linear and quadratic polynomials fitted on the epipolar curves in the WorldView-2 images.

Fig. 12. Corresponding epipolar curves in the Munich TerraSAR-X image (left) derived from two points, q1 and q2 on the epipolar curve of the Munich WorldView-2
image (right).

Fig. 13. Difference of two corresponding epipolar curves over the column direction. The maximum difference between the two epipolar curves is less than one pixel.
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WorldView-2 image space using RPCs. The corresponding epipolar
curve for all possible heights in the study area is constructed by con-
necting the image points obtained in this way, as shown in Fig. 9(c).
Although the epipolar curve appears to be straight, more analysis is
required to determine whether this is the case. By expanding the image,
it can be seen in Fig. 9(b) that the epipolar curve nearly passes through
the conjugate point of p in the WorldView-2 image. Similarly, another
experiment was carried out using the Berlin dataset. The epipolar curve
was constructed for an exemplary point located on the corner of a

building and for all possible heights in the scene. Fig. 10(d) displays the
position of the selected point on the SAR image as well as the corre-
sponding epipolar curve in the WorldView-2 imagery (Figs. 10(e) and
(f)).

3.3.2. Straightness of epipolar curves
To clarify the straightness of the epipolar curve constructed for

point p, linear and quadratic polynomials were fitted to the image
points of the epipolar curve. Figs. 11(a) and (b) represent the least-
squares residuals with respect to the point heights for the epipolar
curves created in both study subsets. The residuals of the linear fit for
the epipolar curve established for the Munich WorldView-2 image
range from −0.25 to 0.1 pixels (i.e. meters), whereas the residuals of
the quadratic fit are close to zero.

Similar results were given by fitting linear and quadratic poly-
nomials to the image points of the epipolar curve established in the
WorldView-2 image of Berlin. Fig. 11(b) clearly shows that the re-
siduals of the epipolar points fitted to the quadratic model are zero,
whereas those of the linear fit vary between −0.15m and 0.25m. Both
analyses illustrate that the constructed epipolar curves are not straight.

Fig. 14. Gradients of two epipolar curves constructed from q1 and q2 in TerraSAR-X.

Fig. 15. Residuals of tie points after full multi-sensor block adjustment in the TerraSAR-X image space.

Table 3
Block adjustment results (units: m).

Area Sensor Bias Coefficients STD MAD Min Max No. of
Tie
Points

Munich WorldView-2 −2.47 −0.53 0.50 0.14 0.07 1.46 8
TerraSAR-X 0 0 0.50 0.14 0.07 1.46

Berlin WorldView-2 −0.73 0.28 0.51 0.13 0.19 1.59 6
TerraSAR-X 0 0 0.42 0.11 0.16 1.30
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However, their curvatures do not exceed more than one pixel over the
whole possible range of heights in these scenes.

3.3.3. Conjugacy of epipolar curves
To investigate the conjugacy of the SAR-optical epipolar curves, two

distinct points (q q,1 2) were selected from the epipolar curve in the
WorldView-2 image. From each of these points, the corresponding
epipolar curves were constructed in the TerraSAR-X image for all pos-
sible heights as in the experiments before. Fig. 12 displays the corre-
sponding epipolar curves in TerraSAR-X given by q1 and q2 located in
the WorldView-2 image. The epipolar curve appears to pass through

point p located in the SAR image. Further analysis clarifies that the
differences in the column direction between the two epipolar curves
passing through point p are less than one pixel, allowing the matching
of the two epipolar curves (Fig. 13(a)). In addition, Fig. 14(a) shows
that the gradients of the two epipolar curves change at each point, as
illustrated by the column index, whereas the maximum difference is
less than 0.001, i.e., 0.1%. This indicates that the epipolar curves can be
assumed to be parallel. The gradient changes at each point also confirm
that the epipolar curves in TerraSAR-X are not perfectly straight.

In a similar manner, the conjugacy of the epipolar curves was
evaluated for the Berlin dataset. Fig. 13(b) shows that the difference
between the epipolar curves is less than one pixel, so these lines can be
paired. Similarly, the maximum difference between the slopes of the
epipolar curves is less than 0.2%, which confirms the possibility of
epipolar curve conjugacy (Fig. 14(b)).

From the above investigations and discussions, it is clear that the
epipolarity constraint can be established for SAR-optical image pairs
such as those from TerraSAR-X and WorldView-2 data. As expected, the
epipolar curves are not perfectly straight and there are tiny differences
between the epipolar curve in one image produced from points on the
epipolar curve in the other image. However, analyses show that the
epipolar curves can be approximated as straight lines without

Fig. 16. Displacement of epipolar curves after block adjustment by RPCs. Left images show the epipolar curve positions before and after the bundle adjustment and
right images display the selected patch (identified by dashed yellow rectangles) in an enlarged image. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 4
Residuals (unit: m) of the control points for block adjustment validation.
Original indicates the residuals before the adjustment, modified those after ad-
justment.

Area RPCs Mean Max RMSE No. of Points

Munich Original 1.301 2.359 1.364 31
Modified 0.666 2.142 0.923

Berlin Original 0.775 1.736 0.866 32
Modified 0.600 1.600 0.752
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sacrificing too much, and that they can be paired together well. This
means that the epipolarity constraint can be used to ease the sub-
sequent stereogrammetric matching process.

3.4. Use of block adjustment

As discussed in Section 3.3 and mathematically proved in Section
2.2, the epipolarity constraint can be established for a SAR-optical

Fig. 17. Point clouds reconstructed from Munich and Berlin sub-scenes.

Table 5
Accuracy assessment of reconstructed point clouds with respect to LiDAR reference.

Area Mean (m) STD (m) RMSE (m)

X Y Z X Y Z X Y Z

Munich −0.003 0.025 0.080 1.285 1.350 2.652 1.285 1.351 2.653
Berlin 0.000 −0.041 0.273 1.566 1.692 3.091 1.566 1.693 3.103

Fig. 18. Euclidian distances between reconstructed points and reference planes for Munich.
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image pair. However, the positions of epipolar curves in the optical
image can be placed in a more accurate position by exploiting the high
geolocalization accuracy of the SAR image through a multi-sensor block
adjustment. The experiments described in Section 3.3 demonstrate that,
for the case of WorldView-2 imagery, the curvature of the epipolar
curves does not exceed one pixel, and using only two bias terms as shifts
in the column and row directions suffice to modify the position of the
epipolar curves.

Implementing block adjustment using RPCs requires some conjugate
points to be assigned as common tie points between the target
(WorldView-2) and the reference (TerraSAR-X) images. Theoretically,
just one tie point would be sufficient to estimate the bias in the least-
squares adjustment based on Eq. (33) (two unknowns and two equa-
tions), but using more redundancy and incorporating more tie points
allows for more accurate estimations of the bias parameter. For this
experiment, eight and six tie points were selected to match the
WorldView-2 images to the TerraSAR-X images in the Munich and
Berlin study areas, respectively. The block adjustment equations were
then established as described in Section 2.3. During the iterative least-
squares adjustment, tie points with residuals exceeding a threshold
were removed from the full adjustment process. Fig. 15(a) and (b) show
the residuals of the full multi-sensor block adjustment for each tie point.
The results demonstrate that the residuals of most points are less than
one pixel in both experiments, which indicates a successful im-
plementation of SAR-optical block adjustment. Table 3 presents the bias
of the row and column components resulting from the block adjustment
of WorldView-2 and TerraSAR-X image pairs for both study areas. As
the SAR image was selected as the reference to which the optical
imagery was aligned, the bias components for the reference SAR ima-
gery are zero. The quality of block adjustment has been evaluated by
calculating the positional errors of tie points under projection and re-
projection from the SAR image to terrain and from terrain to the optical
image, and vice versa. Statistical metrics such as the standard deviation

(STD), median absolute deviation (MAD), and minimum (Min)/max-
imum (Max) errors were calculated. The results illustrate that the major
bias component is in the row direction in both study areas and that the
epipolar curves will mostly shift in this direction after block adjust-
ment. Fig. 16(a) and (b) display the locations of the epipolar curves
before and after adjustment. By enlarging the images, it is possible to
confirm that the displacement of the epipolar curves is minimal, yet
noticeable.

To verify the success of SAR-optical block adjustment, we require
highly accurate GCPs, which are not available for the study areas.
However, we evaluated the accuracy of block adjustment in sub-scenes
of the two study areas with the assistance of available LiDAR point
clouds. First, we manually found some matched points that had been
measured in the SAR and optical sub-scenes, similar to the tie point
selection step. Next, the measured points located in the optical imagery
were projected to the terrain using the corresponding reverse rational
polynomial functions ( f c r h( , , )o and g c r h( , , )o ). To ensure exact back-
projection, the height h of each point was extracted from the available
high-resolution LiDAR point clouds of the target sub-scenes. To over-
come the noise in the LiDAR data, we considered neighboring points
around the selected measured point, and the final height of the target
point was selected based on the mode of the heights in the considered
neighborhood. The resulting ground points ( f c r h g c r h h( , , ), ( , , ),o o )
were then back-projected to the SAR scene using the forward RPCs
fitted to the SAR imagery. Finally, comparing the image coordinates of
the measured points on the SAR imagery (from manual matching) with
their coordinates derived by projection from the optical to the SAR
imagery using RPCs and LiDAR data provides an evaluation of the SAR-
optical block adjustment performance. The residuals can be calculated
as:

=
=

dc f f c r h g c r h h c
dr g f c r h g c r h h r

( ( , , ), ( , , ), )
( ( , , ), ( , , ), )

s o o s
m

s o o s
m (44)

where dc dr( , ) is the column and row difference between the measured
point c r( , )s

m
s
m located on the SAR imagery and the corresponding co-

ordinates given by the projection from the optical to the SAR imagery
using RPCs.

Table 4 presents some statistical analysis on residuals calculated
according to Eq. (44) for two states: using the original WorldView-2
RPCs for the projections and using the WorldView-2 RPCs modified
with respect to the TerraSAR-X SAR imagery. The results demonstrate
the successful implementation of RPC-based multi-sensor block ad-
justment for SAR-optical image pairs. This means that the existing bias
in the RPCs of optical imagery such as WorldView-2 can be modified

Fig. 19. Euclidian distances between reconstructed points and reference planes for Berlin.

Table 6
Accuracy assessment of point clouds after SRTM-based outlier removal.

Area Point Cloud 25%-quantile 50%-quantile 75%-quantile Mean (m)

Munich original 0.77 1.89 3.58 2.44
filtered 0.67 1.56 3.04 2.12
SRTM 0.73 1.64 3.25 2.21

Berlin original 0.89 2.01 3.67 2.75
filtered 0.79 1.76 3.22 2.35
SRTM 0.86 1.93 3.63 2.65
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according to high-resolution SAR imagery such as TerraSAR-X to im-
prove the absolute geolocalization accuracy of the optical imagery, and
consequently the modification of epipolar curves in stereo cases.

3.5. Dense matching results

The output of dense matching by SGM is a disparity map that is
calculated in the frame of the reference sensor geometry. This disparity
map should be transferred from the reference sensor geometry to a
terrestrial reference coordinate system such as UTM. The difference of
SAR and optical observation geometries and the lack of jointly visible
scene parts means that stereogrammetric 3D reconstruction leads to
sparse rather than dense point clouds over urban areas. Fig. 17(a) and
(b) display the reconstructed point clouds from SAR-optical sub-scenes

of Munich and Berlin.
The accuracy of these sparse point clouds was compared to that of

reference LiDAR point clouds with densities of 6 and 6.5 points per
square meter acquired by airborne sensors over Munich and Berlin,
respectively.

Different approaches can be used to assess the accuracy of point
clouds. The simplest way is to calculate the Euclidean distance to the
nearest-neighbor of each target point in the reference point cloud (Muja
and Lowe, 2009). This strategy, however, should only be used when
both point clouds are very dense. We therefore used another approach,
which is based on fitting a plane to the k (here is 6) nearest neighbors of
each target point in the reference point cloud (Mitra et al., 2004). The
perpendicular distance from the target point to this plane is then the
measured reconstruction error. To speed up the process of point cloud
evaluation, an octree data structure is used for the binary partitioning
of both reconstructed and reference point clouds (Schnabel and Klein,
2006). The measured distances between both point clouds are decom-
posed into three components that represent the accuracy of the re-
constructed points along the X Y, , and Z directions. Table 5 sum-
marizes the mean, STD, and Root Mean Square Error (RMSE) of the
distances along the different axes.

In addition, histograms of the Euclidean distances between re-
constructed points and k-nearest neighbors-based reference planes are
depicted in Figs. 18 and 19, while the corresponding metrics are sum-
marized in Table 6. In order to also provide an outlier-free accuracy
assessment, we additionally show results corresponding to point clouds
that were cleaned by removing points deviating from the SRTM model
by more than 5m.

Finally, Figs. 20 and 21 display high-accuracy points (i.e. those with
a Euclidean distance of less than 1m to the reference) achieved by SGM
dense matching for TerraSAR-X- WorldView-2 image pairs in Munich
and Berlin, respectively.

4. Discussion

4.1. Feasibility of SAR-optical stereogrammetry workflow

The results described in the previous section demonstrate the po-
tential of the proposed SAR-optical stereogrammetry framework. Our
analyses show that all primary steps involved in SAR-optical stereo-
grammetry, such as RPC fitting, epipolar-curve generation, and multi-
sensor block adjustment, can be successfully implemented for VHR
SAR-optical image pairs. In addition to the mathematical proof of the
existence of an epipolarity constraint for arbitrary SAR-optical image
pairs in Section 2.2, the experimental results have illustrated the va-
lidity of establishing an epipolarity constraint by showing that SAR-
optical epipolar curves are approximately straight. Using RPCs for both
sensor types paves the way for the implementation of stereogrammetry.
As a result, estimating the RPCs for SAR imagery is a prerequisite for
SAR-optical stereogrammetry. The RPCs delivered with optical imagery
must be improved with respect to the SAR sensor geometry using RPC-
based multi-sensor block adjustment. The block adjustment aligns pairs
of SAR and optical images and improves the absolute geopositioning
accuracy of the optical imagery. This ensures that the epipolar curves
pass through the correct positions of conjugate points. Applying a dense
matching algorithm such as SGM then produces a disparity map.

4.2. Potential and limitations of SAR-optical stereogrammetry

As discussed in Section 3.5, the dense matching of TerraSAR-X/
WorldView-2 imagery produces a sparse point cloud over each of the
urban study areas. However, the resulting point clouds are affected by a
significant amount of noise because of the difficult radiometric and
geometric relationships between the SAR and the optical images.
Hence, the SGM algorithm struggles to find the exact conjugate points.
On the one hand, this is related to the similarity measures employed in

Fig. 20. Position of points with subpixel accuracy (1m) achieved by dense
matching over Munich city.
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this prototypical study. The influence of similarity measures on the
height accuracy of the Munich point cloud is shown in Fig. 22.

The RMSE of the estimated heights decreases when Census and MI
are combined and used as a weighted sum cost function, although the
number of outliers increases. Identifying the optimum weighting to
balance the percentage of outliers against the height accuracy is im-
practical, because the output disparity maps are rather sparse; a vi-
sualization would not be helpful for this task. In stereogrammetric 3D
reconstruction using optical image pairs, visualizing the disparity map
enables the weight value to be tuned so as to preserve the edges and

sharpness of building footprints, whereas in the SAR-optical case, there
is no perfectly dense disparity map. Using Census alone produces points
with higher accuracy than the MI-only results, but a higher percentage
of outliers. In general, a similarity measure specifically designed for
SAR-optical matching is required.

On the other hand, the reconstruction suffers from the fact that the
SGM search strategy is designed for relatively simple isotropic geo-
metric distortions and was not adapted to the peculiarities of SAR-op-
tical matching yet. Therefore, the differences in the imaging geometries
of SAR and optical sensors in terms of their off-nadir and horizontal

Fig. 21. Position of points with subpixel accuracy (1m) achieved by dense matching over Berlin city.
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viewing angles can further decrease the matching accuracy. For ex-
ample it is known from previous research that the optimal geometrical
condition for SAR-optical stereogrammetry would be an image pair
acquired with similar viewing geometries (Qiu et al., 2018). This,
however, would make the geometrically induced dissimilarities in the
images even larger and render the matching more complicated. If both
sensors were at the same position, and thus would share the same
viewing angle, the intersection geometry would be perfect (Qiu et al.,
2018). However, due to the different imaging geometries, elevated
objects would appear to collapse away from the sensor in the optical
image, while they would appear to collapse towards the sensor in the
SAR image. Thus, the choice of a good stereo geometry will always need
to be a trade-of between image similarity and favorable intersection
angle in the SAR-optical case.

Last, but not least, many points cannot be sensed by a nadir-looking
optical sensor but are well observed by a side-looking SAR sensor, such
as points located on building facades. As has been shown before, the
joint visibility between SAR and optical VHR images of urban scenes
can be as low as about 50% (Hughes et al., 2018). In the present study,
the situation was most complicated in the Berlin case, because of dif-
ferences in both the horizontal viewing directions and the off-nadir
angles. The horizontal viewing direction of the WorldView-2 sensor was
approximately north-south, whereas that of TerraSAR-X was east-west.
This affected the visibility of common points between the two images
during 3D reconstruction negatively. Consequently, most of the re-
constructed points are located on the flat areas or outlines of buildings
that are observed by both sensors (see Figs. 20 and 21).

Finally, some differences in the image pairs may be caused by the
interval between the acquisition times of the WorldView-2 and
TerraSAR-X data (5 and 3 years for Munich and Berlin, respectively).
This can cause the matching process to fail in problematic areas, thus
affecting the quality and density of the disparity maps.

In spite of the differences in sensor geometries, acquisition times,
and illumination conditions between the two SAR-optical image pairs,
the quantitative analysis demonstrated in Section 3.5 shows that 25% of
all points are reconstructed with clear sub-pixel accuracy, while the
median accuracy lies at about 1.5–2m. The experiments also show that
the results can be further improved by filtering outliers from the re-
constructed point clouds. In this study, we employed the globally
available SRTM DEM as prior knowledge for outlier removal. As Table 6
shows, discarding points with a height difference to SRTM greater than
5m improves the results significantly.

Of course, this simple filtering strategy will probably also remove
some accurate points that just deviate a lot from the SRTM DEM (e.g.
newly built skyscrapers). In conclusion, a more sophisticated algorithm
should be developed for removing noise and outliers from derived point
clouds in the future. Nevertheless it can be confirmed that the SAR-
optical stereo results have the potential to provide both higher accuracy
and higher point density than the SRTM data, making SAR-optical

stereogrammetry another possible means for 3D reconstruction in re-
mote sensing.

5. Conclusion

In this study, we investigated the possibility of stereogrammetric 3D
reconstruction from VHR SAR-optical image pairs by developing a full
3D reconstruction framework based on the classic photogrammetric
workflow. First, we analyzed all prerequisites for this task. The main
requirement for SAR-optical stereogrammetry is to establish an epipo-
larity constraint to reduce the search space of the matching process. We
mathematically proved that the epipolarity constraint can be estab-
lished for SAR-optical image pairs. Furthermore, experimental analysis
demonstrated that the epipolarity constraint can be employed for SAR-
optical image pairs such as those from TerraSAR-X/WorldView-2, and
showed that the epipolar curves are sufficiently straight. Because of the
limited accuracy of the RPCs delivered with optical data, the relative
orientation between both images can be improved with respect to the
more accurate SAR orientation parameters using multi-sensor block
adjustment. This shifts the epipolar curves toward their correct posi-
tions. An SGM-based dense matching algorithm was implemented using
the MI and Census similarity measures, as well as their weighted sum.
The outputs were sparse point clouds with a median accuracy of about
1.5 to 2m and the 25%-quantile of best points well in the sub-pixel
accuracy domain. Finally, SRTM data were used to remove outliers
from the point clouds. This improved the accuracy of the point clouds
further. Overall, this study has demonstrated that a 3D reconstruction
framework can be designed and implemented for SAR-optical image
pairs over urban areas. Future work will have to focus on the devel-
opment of similarity metrics specific to the multi-sensor matching
problem, and on an adaption of the semi-global search strategy that
accounts for the anisotropic geometric distortions between SAR and
optical images.
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