11,547 research outputs found

    Monomial geometric programming with fuzzy relation equation constraints regarding max-bounded difference composition operator

    Get PDF
    In this paper, an optimization model with an objective function as monomial subject to a system of the fuzzy relation equations with max-bounded difference (maxBD) composition operator is presented. We firstly determine its feasible solution set. Then some special characteristics of its feasible domain and the optimal solutions are studied. Some procedures for reducing and decomposing the problem into several subproblems with smaller dimensions are proposed. Finally, an algorithm is designed to optimize the objective function of each sub-problem.Publisher's Versio

    A Posynomial Geometric Programming Restricted to a System of Fuzzy Relation Equations

    Get PDF
    AbstractA posynomial geometric optimization problem subjected to a system of max-min fuzzy relational equations (FRE) constraints is considered. The complete solution set of FRE is characterized by unique maximal solution and finite number of minimal solutions. A two stage procedure has been suggested to compute the optimal solution for the problem. Firstly all the minimal solutions of fuzzy relation equations are determined. Then a domain specific evolutionary algorithm (EA) is designed to solve the optimization problems obtained after considering the individual sub-feasible region formed with the help of unique maximum solution and each of the minimal solutions separately as the feasible domain with same objective function. A single optimal solution for the problem is determined after solving these optimization problems. The whole procedure is illustrated with a numerical example

    Geometric Programming Subject to System of Fuzzy Relation Inequalities

    Get PDF
    In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with maxproduct composition. Simplification operations have been given to accelerate the resolution of the problem by removing the components having no effect on the solution process. Also, an algorithm and two practical examples are presented to abbreviate and illustrate the steps of the problem resolution

    A Study in function optimization with the breeder genetic algorithm

    Get PDF
    Optimization is concerned with the finding of global optima (hence the name) of problems that can be cast in the form of a function of several variables and constraints thereof. Among the searching methods, {em Evolutionary Algorithms} have been shown to be adaptable and general tools that have often outperformed traditional {em ad hoc} methods. The {em Breeder Genetic Algorithm} (BGA) combines a direct representation with a nice conceptual simplicity. This work contains a general description of the algorithm and a detailed study on a collection of function optimization tasks. The results show that the BGA is a powerful and reliable searching algorithm. The main discussion concerns the choice of genetic operators and their parameters, among which the family of Extended Intermediate Recombination (EIR) is shown to stand out. In addition, a simple method to dynamically adjust the operator is outlined and found to greatly improve on the already excellent overall performance of the algorithm.Postprint (published version

    A fuzzy inventory model with unit production cost, time depended holding cost, with-out shortages under a space constraint: a parametric geometric programming approach

    Get PDF
    In this paper, an Inventory model with unit production cost, time depended holding cost, with-out shortages is formulated and solved. We have considered here a single objective inventory model. In most real world situation, the objective and constraint function of the decision makers are imprecise in nature, hence the coefficients, indices, the objective function and constraint goals are imposed here in fuzzy environment. Geometric programming provides a powerful tool for solving a variety of imprecise optimization problem. Here we have used nearest interval approximation method to convert a triangular fuzzy number to an interval number then transform this interval number to a parametric interval-valued functional form and solve the parametric problem by geometric programming technique. Here two necessary theorems have been derived. Numerical example is given to illustrate the model through this Parametric Geometric-Programming method

    Resolution and simplification of Dombi-fuzzy relational equations and latticized optimization programming on Dombi FREs

    Full text link
    In this paper, we introduce a type of latticized optimization problem whose objective function is the maximum component function and the feasible region is defined as a system of fuzzy relational equalities (FRE) defined by the Dombi t-norm. Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of the parameter. This family of t-norms covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. Since the feasible solutions set of FREs is non-convex and the finding of all minimal solutions is an NP-hard problem, designing an efficient solution procedure for solving such problems is not a trivial job. Some necessary and sufficient conditions are derived to determine the feasibility of the problem. The feasible solution set is characterized in terms of a finite number of closed convex cells. An algorithm is presented for solving this nonlinear problem. It is proved that the algorithm can find the exact optimal solution and an example is presented to illustrate the proposed algorithm.Comment: arXiv admin note: text overlap with arXiv:2206.09716, arXiv:2207.0637

    Cobb-Douglas Based Firm Production Model under Fuzzy Environment and its Solution using Geometric Programming

    Get PDF
    In this paper, we consider Cobb-Douglas production function based model in a firm under fuzzy environment, and its solution technique by making use of geometric programming. A firm may use many finite inputs such as labour, capital, coal, iron etc. to produce one single output. It is well known that the primary intention of using production function is to determine maximum output for any given combination of inputs. Also, the firm may gain competitive advantages if it can buy and sell in any quantities at exogenously given prices, independent of initial production decisions. On the other hand, in reality, constraints and/or objective functions in an optimization model may not be crisp quantities. These are usually imprecise in nature and are better represented by using fuzzy sets. Again, geometric programming has many advantages over other optimization techniques. In this paper, Cobb-Douglas production function based models are solved by applying geometric programming technique under fuzzy environment. Illustrative numerical examples further demonstrates the feasibility and efficiency of proposed model under fuzzy environment. Conclusions are drawn at last
    • …
    corecore