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Abstract 
 
In this paper, an optimization model with geometric objective function is presented. Geometric 
programming is widely used; many objective functions in optimization problems can be analyzed 
by geometric programming. We often encounter these in resource allocation and structure 
optimization and technology management, etc. On the other hand, fuzzy relation equalities and 
inequalities are also used in many areas. We here present a geometric programming model with a 
monomial objective function subject to the fuzzy relation inequality constraints with max-
product composition. Simplification operations have been given to accelerate the resolution of 
the problem by removing the components having no effect on the solution process. Also, an 
algorithm and two practical examples are presented to abbreviate and illustrate the steps of the 
problem resolution. 
 
Keywords:  Geometric programming; Fuzzy relation equalities and inequalities; Max- product 

composition 
 
MSC 2010:  90C70, 94D05, 47S40 
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1. Introduction  
 
Fuzzy relation equations (FRE), fuzzy relation inequalities (FRI) and their connected problems 
have been investigated by many researchers in both theoretical and applied areas Han (2006), 
Hassanzadeh (2011), Di Nola (1984), Zener (1971), Fang and Puthenpura (1993), Higashi and 
Klir (1984), Guo et al. (1988), Shivanian and Khorram (2007), Shivanian and Khorram (2010), 
Khorram (2008), Abbasi-Molai (2010), Perfilieva and Novák (2007), Abbasi-Molai (2010), 
Shieh (2007), Ghodousian and Khorram (2008). Sanchez (1977), started a development of the 
theory and applications of FRE treated as a formalized model for non-precise concepts. 
Generally, FRE and FRI have a number of properties that make them suitable for formulating the 
uncertain information upon which many applied concepts are usually based. The application of 
(FRE) and (FRI) can be seen in many areas, for instance, fuzzy control, fuzzy decision making, 
system analysis, fuzzy modeling, fuzzy arithmetic, fuzzy symptom diagnosis, and especially 
fuzzy medical diagnosis, and so on (see Alayón et al. (2007), Berrached et al. (2002), Di Nola 
and Russo (2007), Zener (1971), Dubois and Prade (1980), Jian-Xin (2004), Loia (2005), 
Nobuhara et al. (2006), Pappis and Karacapilidis (1995), Pedrycz (1981), Perfilieva and Novák 
(2007), Vasantha et al. (2004), Homayouni et al. (2009). 
 
An interesting extensively investigated kind of such problems is the optimization of the objective 
functions on the region whose set of feasible solutions have been defined as FRE or FRI 
constraints Brouke et al. (1998), Fang and  Li (1999), Guo and  Xia (2006), Jian-Xin (2008), 
Shivanian (2007), Loetamonphong  (2001), Wu (2008). Fang and Li (1999) solved the linear 
optimization problem with respect to the FRE constraints by considering the max-min 
composition Fang and Li (1999). The max-min composition is commonly used when a system 
requires conservative solutions in the sense that the goodness of one value cannot compensate 
the badness of another value Loetamonphong (2001). Recent results in the literature, however, 
show that the min operator is not always the best choice for the intersection operation. Instead, 
the max-product composition provided results better or equivalent to the max-min composition 
in some applications Alayón et al. (2007). 
 
The fundamental result for fuzzy relation equations with max-product composition goes back to 
Pedrycz (1981). A recent study in this regard can be found in Bourk and Fisher (1998). They 
extended the study of an inverse solution of a system of fuzzy relation equations with max-
product composition. They provided theoretical results for determining the complete sets of 
solutions as well as the conditions for the existence of resolutions. Their results showed that such 
complete sets of solutions can be characterized by one maximum solution and a number of 
minimal solutions. A problem of optimization was studied by Loetamonfong and Fang with max-
product composition Loetamonphong (2001), which was improved by Jian-Xin by shrinking the 
search region Jian-Xin (2008). The linear objective optimization problem with FRI was 
investigated by Zhang et al. (2003), where the fuzzy operator is considered as max-min 
composition. Also, Guo and Xia presented an algorithm to accelerate the resolution of this 
problem Guo and Xia (2006). Zener, Duffin and Peterson proposed the geometric programming 
theory in 1961 Duffin et al. (1967), Peterson (1967). A large number of applications can be 
found in business administration, economic analysis, resource allocation, and environmental 
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engineering Zener (1971). In 1987, Cao proposed the fuzzy geometric programming problem 
Cao (2001). He solved several problems of power systems Cao (1999). Liu applied it to 
economic management Liu (2004). Verma and Biswal have applied the theory Biswal (1992), 
Verma (1990). In view of the importance of geometric programming and the fuzzy relation 
equation in theory and applications, Yang and Cao have proposed a fuzzy relation geometric 
programming, discussed optimal solutions with two kinds of objective functions based on fuzzy 
max product operator Yang and Cao (2005a), Yang and Cao (2005b). 
 
In this paper, we generalize the geometric programming of the FRE with the max-product 
operator Yang and Cao (2005b), by considering the fuzzy relation inequalities instead of the 
equations in the constraints. This problem can be formulated as follows: 
 

1,2,3,...,

1

2

min max { . }

[0,1] ,

j

j j
j n

n

Z c x

subject to A x d

B x d

x






 

 



                                                                                           (1) 

 
where Rc jj , , 0jc  and nmijaA  )(  , ]1,0[ija , nlijbB  )( , ]1,0[ijb , are fuzzy matrices, 

m
midd ]1,0[)( 1

11   , l
lidd ]1,0[)( 1

22    are fuzzy vectors, n
nj Rcc  1)(  is the vector of cost 

coefficients, and n
njxx ]1,0[)( 1    is  an unknown vector, and “  ” denotes the fuzzy max-

product operator as defined below. Problem (1) can be rewritten as the following problem in 
detail: 

 

1 1

2 2

min max{ . }

{1, 2,..., }

{1, 2,..., }

0 1 {1, 2,..., },

j

j j
j J

i i

i i

j

Z c x

subject to a x d i I m

b x d i I l

x j J n






   

   
   

 

(2) 

 
where ia  and ib  are the i th row of the matrices A  and B , respectively, and the constraints are 

expressed by the max-product operator definition as: 
 

22

11

}{max

}{max

Iidxbxb

Iidxaxa

ijij
Jj

i

ijij
Jj

i








                                                                                     (3)  

 
In section 2, the set of the feasible solutions of problem 2 and its properties are studied. A 
necessary condition and a sufficient condition are given to realize the feasibility of problem 2. In 
section 3, some simplification operations are presented to accelerate the resolution process. Also, 
in section 4 an algorithm is introduced to solve the problem using the results of the previous 
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sections, and two practical examples are given to illustrate the algorithm in this section. Finally, 
a conclusion is stated in section 5.  
 
2.  The Characteristics of the Set of Feasible Solution     

 
Notations:  
 
We shall use, during the paper, these notations as follows: 
 

}:]1,0[{),( 11
ii

n
i dxaxdAS   for each 1Ii  

 

}:]1,0[{),( 22
ii

n
i dxbxdBS   for each 2Ii   

 
}:]1,0[{),(),( 111

1
dxAxdASdAS n

i
Ii



   

 
}:]1,0[{),(),( 222

2
dxBxdBSdBS n

i
Ii



   

 
},:]1,0[{),(),(),,,( 212121 dxBdxAxdBSdASddBAS n   . 

 
 
Corollary 1:  
 

idASx ),( 1  for each 1Ii  if  and only if there exists some Jji  such that
i

i

ij

i
j a

d
x

1

 , 

similarly, idBSx ),( 2  for each 2Ii if  and only if
ij

i
j b

d
x

2

 , Jj . 

 
Proof: 
 
This clearly results from relations (3).  
 
Lemma 1:  
 

(a) ),( 1dAS   if and only if for each 1Ii  there exists some Jji   such that 1
iij da

i
 . 

 

(b) If ),( 1dAS  then t
n 1]1,...,1,1[1  is the greatest element in set ),( 1dAS . 
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Proof:  
 

(a) Suppose ),( 1dAS  and ),( 1dASx . Thus, idASx ),( 1 , 1Ii and then for each 

1Ii  we have 
i

i

ij

i
j a

d
x

1

  for some Jji   from Corollary 1. Therefore, since ),( 1dASx  

then nx ]1,0[  and then 1
1


iij

i

a

d
, 1Ii which implies that there is a Jji  such 

that 1 1, .
iij ia d i I   Conversely, suppose that there exists some Jji  such that 1

iij da
i
 , 1Ii . 

Set t
nx  1]1,...,1,1[1  , since nx ]1,0[  and

i

i

ij

i
j a

d
x

1

1  , 1Ii  then idASx ),( 1 , 1Ii  

from Corollary 1, and then ),( 1dASx . 
 
 
(b) Proof is attained from the part (a) and Corollary 1. 
 
 
Lemma 2:   
 
(a) ),( 2dBS .  
 

(b) The smallest element in set ),( 2dBS  is t
n 1]0,...,0,0[0 .  

 
Proof:  
 

Set t
nx  1]0,...,0,0[0 . Since  02 id  and 0ijb (in case 0ib  the problem is always well 

defined and it is clear), then 0
2


iij

i

b

d
. Therefore, JjIi

b

d
x

iij

i
j  ,, 2

2

, then Corollary 1 

implies that ),( 2dBSx and then part (a) and (b) are proved. 
 
Theorem 1: Necessary Condition  
 

If ),,,( 21 ddBAS , then for each 1Ii there exist Jj  such that 1
iij da   . 

 
Proof: 
  
Suppose that 1 2( , , , ) ,S A B d d   then, since 1 2 1 2( , , , ) ( , ) ( , ),S A B d d S A d S B d   then 

),( 1dAS , at this time the theorem is proved by using part (a) of Lemma 1.  
 
Definition 1:  
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Set 1)(  njxx  where 

 
2

2
2

1,...

1, :

min : , otherwise.

ij i

j
i

ij i
i l

ij

i b d

x d
b d

b

  
     

   

 

 
Lemma 3:  
 

If ),( 2dBS  then x  is the greatest element in set ),( 2dBS . 
 
Proof: 
  
See Shivanian (2010). 
 
Corollary 2: 
 

],0[}:]1,0[{),( 22 xdxBxdBS n  , in which x  and 0  are as defined in Definition 
1 and Lemma 2, respectively.  
 
Proof: 
 

Since ),( 2dBS  then 0  and x  are the single smallest element and greatest element, 

respectively, from Lemmas 2 and 3. Let ],0[ xx , then nx ]1,0[  and xx  , Thus, 
2
iii dxbxb  , 2Ii  that implies ),( 2dBSx . Conversely, let ),( 2dBSx  from part (b) 

of Lemma 2, x0  and also idBSx ),( 2 , 2Ii . Then, Corollary 1 requires
ij

i
j b

d
x

2

 , 

2Ii  and Jj . Hence, jj xx  , Jj  that means xx  . Therefore, ],0[ xx . 

 
Definition 2: 
 

Let }:{ 1
iiji daJjJ  , 1Ii . For each iJj  , we define 1)()( )(  njxjx k

ii  such that 

 
1

( )

,

0, .
k

i

ijx j

d
k j

ai

k j


 

 
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Lemma 4: 
 

Consider a fixed 1Ii .  

(a) If 1 0,id  then the vectors )( jxi are the only minimal 

elements of  idAS ),( 1  for each iJj . 

 

(b) If 01 id  then 0  is the smallest element in idAS ),( 1 . 

 
Proof: 

(a) Suppose iJj  and 1Ii  . Since
ij

i
jx a

d
i

j

1

)(  , then ijx dASi ),( 1
)(  , from Corollary 1. By 

contradiction, suppose idASx ),( 1  and )( jxix   . Hence we must have 
ij

i
j a

d
x

1

   and 0kx  for 

Jk   and jk  . Then
ij

i
j a

d
x

1

 , Jj  and then idASx ),( 1  from Corollary 1, which is a 

contradiction. 
 
(b)  It is clear from Corollary 1 and the fact that 0jx , Jj . 

 
Corollary 3: 
 

If idAS ),( 1 , then 1 1
( )( , ) { [0,1] : } [ ,1],

i

n
i i i x j

j J
S A d x a x d i


       where 1Ii   and )( jxi  is 

as defined in Definition 2. 
 
Proof: 
 

If  idAS ),( 1  then from Lemmas 1 and 4, the vector 1 is the maximum solution and the 

vectors )( jxi , iJj  are the minimal solutions in idAS ),( 1 . Let ]1,[ )( jx
Jj

ix
i

  .Then ]1,[ )( jxix  

for some iJj and, then, nx ]1,0[  and 
ij

i
jxj a

d
ix

j

1

)(   from Definition 2, hence, idASx ),( 1  

from Corollary 1. Conversely, let idASx ),( 1 . Then there exits some Jj   such that 

ji

i
j a

d
x


 

1

 from Corollary 1. Since nx ]1,0[ , then 1
1


ji

i

a

d
, and then, iJj  . Therefore, 

1)(  xi jx  that implies ]1,[ )( jx
Jj

ix
i

  .  

 
 
Definition 3: 
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Let mJJJmeeee  ...))(),...2(),1(( 21  such that iJjie )( .We define 1))(()(  njexex , in 

which 















ij

i

Iijiex
Ii

j a

d
iex

e
j

e
j

1

))(( max}{max)(  if e
jI  and 0)( jex  if ,e

jI   where 

})(:{ 1 jieIiI e
j  . 

 
Corollary 4:  
 
(a)  If 01 id  for some 1Ii , then we can remove the i th row of matrix A  with no effect on the 

calculation of the vectors )(ex for each mI JJJJe  ...21 . 

 

(b)  If iJj , 1Ii , then we can remove the j th column of the matrix A  before calculating 

the vectors )(ex , IJe  and set 0)( jex  for each IJe  

 
Proof: 
 
(a) It is proved from Definition 3 and part (b) of Lemma 4, because we will get the minimal 
elements of ),( 1dAS .  
 
(b)  It is proved by only using Definition 3. 
 
Lemma 5: 
 

Suppose ),( 1dAS then ]1),([),(
)(

1 exdAS
eX
 where }:)({)( IJeexeX  . 

 
Proof: 

 

If ),( 1dAS , then idAS ),( 1 , 1Ii . It is clear that ( )x e is minimal it would be the 

solution i.e. 1( ) ( , )x e S A d , so at first step, we prove it is solution. Suppose that i is fixed and 

( ) ie i j J   then 
1 1

( ( ))( ) max{ } max
e e
j j

i i
j x e i j

i I i I
ij ij

d d
x e i

a a 

     
  

  from Definition 3 and so 

1( )ij j ia x e d , hence 1( ) ( , )j ix e S A d  then 1( ) ( , )x e S A d . Therefore, we have 

  

1 1 1

11

1 1
( ) ( ( ))

( )

( ( )) ( ( ))
( )

( , ) ( , ) [ [ ,1]] [ [ ,1]]

[ [ ,1]] [max{ },1] [ ( ),1] [ ( ),1],

i i

I I I

i x j x e i
j J e i Ji I i I i I

x e i x e i
i Ie J e J e J X ei I

S A d S A d i i

i i x e x e

   

  

  

   

    

    
 

 
from Corollary 3 and Definition 3.  
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From Lemma 5, it is obvious that ]1),([),(
)(

1

0

exdAS
eX
  and ),()( 1

00 dASeX  , 

where )(0 eX and ),( 1
0 dAS  are the set of minimal solutions in )(eX  and ),( 1dAS , respectively. 

 
Theorem 2:  
 

If ),,,( 21 ddBAS , then ]),([),,,(
)(

21

0

xexddBAS
eX
 . 

Proof:  
 

By using Corollary 2 and the result of Lemma 5, we have 
 

]),([],0[]}1),([{),(),(),,,(
)()(

2121

00

xexxexdBSdASddBAS
eXeX
   

 
and the proof is complete.  
 
Corollary 5: Necessary and Sufficient Conditions 
 

),,,( 21 ddBAS  if and only if ),( 1dASx . Equivalently, ),,,( 21 ddBAS  if and only if 

there exists some IJe  such that xex )( . 
 
Proof:  
  

Suppose that ),,,( 21 ddBAS , then ]),([),,,(
)(

21

0

xexddBAS
eX
  by Theorem 2, 

then ),,,( 21 ddBASx , and hence ),( 1dASx . Conversely let ),( 1dASx . Meanwhile we 

know ),( 2dBSx , therefore ),,,(),(),( 2121 ddBASdBSdASx   .    
 
3.  Simplification Operations and the Resolution Algorithm  
 
In order to solve problem (1), we first convert it into the two sub-problems below: 

 

1

2

min max{ . }

.

[0,1] ,

j

j j
j R

n

Z c x

s t A x d

B x d

x






 

 



      (4a)                                        
1

2

min max{ . }

.

[0,1] ,

j

j j
j R

n

Z c x

s t A x d

B x d

x






 

 



             (4b) 

 

where  : 0,jR j j J     and  : 0,jR j j J    . 

 
Lemma 6: 
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The optimal solution of problem (4b) is x  in Definition 1. 
 
Proof:  
 

In objective function (4b) 0j  therefore, j

jx   is a monotone decreasing function of jx  in 

interval 10  jx  for each  Rj , so is }.{max j

jj
Rj

xc 


 of jx  too. Hence x  is optimal solution 

because x  is the greatest element in the set ),,,( 21 ddBAS .  
 
Lemma 7: 
 
The optimal solution of problem (4a) belongs to )(0 eX .  

 
Proof: 
 

In objective function (4a), 0j  therefore, j

jx   is a monotone increasing function of jx  in 

interval 10  jx  for each  Rj , so is }.{max j

jj
Rj

xc 


 of jx  too. Now, suppose that 

),,,( 21 ddBASy   has selected arbitrary then, there exists )()( 00 eXex  such that )( 0exy  . 

Since }.{max j

jj
Rj

xc 


 is a monotone increasing function of jx  then, 

})(.{max}.{max 0
jj

jj
Rj

jj
Rj

excyc 
 

  therefore, one of the elements of )(0 eX  is the optimal solution 

of problem (4a). 
 
Theorem 3: 
 
Assume that )( 0ex  be an optimal solution of problem (4a) (it is possible not to be unique)  then, 

the optimal solution of problem (1) is x , defined as follow: 
 

0

,

( ) ,

j

j

j

x j R
x

x e j R






  


 

 
Proof: 
 
Suppose that ),,,( 21 ddBAS  then by Lemmas 6 and 7, we have 
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0

max{ . } max{ . }max{ . }

max{ . ( ) }max{ . }

max{ . }.

j j j

jj

j

j j j j j j
j J j R j R

jj j j
j R j R

j j
j J

c x c x c x

c x e c x

c x

  





 

 

  

 











 

 
Therefore, x  is optimal solution of problem (1) and the proof is completed. 
 

For calculating x  it is sufficient to find x  and )( 0ex  from Theorem 3. While x  is easily 

attained by Definition 1, )( 0ex  is usually hard to find. Since )(0 eX is attained by pair wise 

comparison between the members of set )(eX , then the finding process of set )(0 eX  is time-

consuming if )(eX  has many members. Therefore, a simplification operation can accelerate the 

resolution of problem (4a) by removing the vectors IJe   such that )(ex is not optimal in (4a). 
One of such operations is given by Corollary 4. Other operations are attained by the theorems 
below.  
 
Theorem 4: 
 
The set of feasible solutions for problem (1), namely ),,,( 21 ddBAS , is nonempty if and only if 

for each 1Ii  set 












 j

ij

i
ii x

a

d
JjJ

1

:  is nonempty, where x  is defined by Definition 1. 

 
Proof:  
 

Suppose ),,,( 21 ddBAS . From Corollary 5, ),,,( 21 ddBASx  and then we 

have idASx ),( 1 , 1Ii . Thus, for each 1Ii there exists some Jj such that 
ij

i
j

a

d
x

1

  

from Corollary 1 which means iJ  , 1Ii . Conversely, suppose iJ  , 1Ii . Then 

there exists some Jj  such that
ij

i
j

a

d
x

1

 , 1Ii . Hence, idASx ),( 1 , 1Ii from Corollary 

1 that implies ),( 1dASx . These facts together with Lemma 3 imply ),,,( 21 ddBASx , and 

therefore ),,,( 21 ddBAS . 
 
Theorem 5: 
 
If ),,,( 21 ddBAS , then 

 

]),([),,,(
)(

21 xexddBAS
eX
  where }...:)({)( 21 mI JJJJeexeX  . 
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Proof:  
 

By Theorem 2, it is sufficient to show ),,,()( 21 ddBASex   if IJe . Suppose IJe . Thus, 

there exist 1Ii   and iJj   such that jie )(  and
ji

i
j

a

d
x




 

1

. Then e
jIi   and by Definition 

3 we have j

ji

i

ji

i

Ii
j x

a

d

a

d
ex

e
j








 
















11

max)( . Therefore, xex )(  is not correct, which implies 

),,,()( 21 ddBASex   by Theorem 2. 
 

From defined notation of theorem 4, ii JJ  , 1Ii ,which requires )()( eXeX  , also, 

)(),,,( 21
0 eXddBAS   by Theorem 4 in which ),,,( 21

0 ddBAS  is the minimal elements of 

),,,( 21 ddBAS ,  thus Theorem 5 reduces the region of search to find set ),,,( 21
0 ddBAS . 

 
Definition 4: 
 

We define }:{ ii JjandRjjJ    for 1Ii . 

 
Theorem 6: 
 

Suppose )( 0ex is an optimal solution in (4a) and 
iJ  for some 1Ii  , then there exist )(ex   

such that 
 iJie )(  , and also )(ex   is the optimal solution in (4a).  

 
Proof:  
 

Suppose 
iJ  for some 1Ii   and 0 ( )e i j  . Define IJe    such that 

 iJkie )(  and 

)()( 0 ieie  for each 1Ii and ii  . From Definition 3 we have: 

 

j
ji

i

ii
Ii

ji

i

Ii
j ex

a

d

a

d
ex

e
j

e
j







 




























)(maxmax)(
11

0
00

 

 
Also, jj exex )()( 0   for each Jj  and kjj , . Therefore, by noting that  Rk  we have 

   

0 0 0max{ . ( ) } max{ . ( ) , max{ . ( ) }}

max{ . ( ) , max{ . ( ) }} max{ . ( ) }.

j j j

j j j

j j j j j j
j R j R

j j

j j j j j j
j R j R
j j

c x e c x e c x e

c x e c x e c x e

  

  



 



 

 
 



 
 





   
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Therefore )(ex   is the optimal solution in (4a), and then the proof is complete. 
 
Corollary 6: 
 

If 
iJ  for some 1Ii  then, we can remove the i th row of matrix A  without any effect on 

finding an optimal solution of problem (4a).  
 
Definition 5: 
 
Let Jjj 21 ,  , 0

1
j  and 0

2
j . We say 2j  dominates 1j  if and only if 

 

(a)  iJj 1  implies iJj 2 , 1Ii . 

(b)  For each 1Ii such that iJj 1 we have 2

2

2

1

1

1
).().(

11
jj

ij

i
j

ij

i
j a

d
c

a

d
c

  .   

 
Theorem 7: 
 
Suppose )( 0ex  is the optimal solution in (4a) and 2j  dominates 1j  for  Rjj 21 , , then there 

exists )(ex   such that e
jI
1

, and also )(ex   is the optimal solution in (4a). (Notification: 0
1
j  

and 0
2
j ). 

 
Proof:  
 
Define 1))((  miee  such that 

 
0

1

0

1

0

2

( ), ,
( )

, .

e
j

e
j

e i i I
e i

j i I

   


 

 
It is obvious that e

jI
1

 and, then, 0)(
1
 jex . Also, jj exex )()( 0   for each Jj  

and 21, jjj  . From Definition 3, 
20

0

2

1

)(
ji

i

j a

d
ex  . Now, if 0

10
e
jIi  , then 

20

0

22

1

0 )()(
ji

i

jj a

d
exex  . 

 
So, we have 
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1

1 1

1

1

0 0 0

0

max{ . ( ) } max{ . ( ) , max{ . ( ) }}

max{ . ( ) } max{ . ( ) }.

jj j

j j

j j j j j j
j R j R

j j

j j j j
j R j R
j j

c x e c x e c x e

c x e c x e

 

 

 

 

 


 




 
 

 
The proof is complete in this case. Otherwise, suppose 0

10 .e
ji I  We show 

0max{ . ( ) } max{ . ( ) }.j j

j j j j
j R j R

c x e c x e 
  

  By Definition 3, let
2

2

1

0( ) .i
j

ij

d
x e

a
  Then, we have 

0)(.
22 0 jj exc  from part (a) of Corollary 4 and Definition 5. Therefore, since 

   

}})(.{max,)(.,)(.max{})(.{max 0

,

000

21

2

22

1

11

jjjj

jj

jjj
Rj

jjjjjj
Rj

excexcexcexc 


 

  

 
and 
 

}})(.{max,)(.max{})(.{max

21

2

22

,

jjj

jj

jjj
Rj

jjjj
Rj

excexcexc  

 

, 

 

it is sufficient to show
2211

)(.)(. 0 jjjj excexc  . Let 
1

1

1

0 )(
ji

i
j a

d
ex



  from Definition 3. Since 2j  

dominates 1j , then we have 
 

2

20

0

2

1

1

1
).().(

11
jj

ji

i
j

ji

i
j a

d
c

a

d
c

 




,
 

 
which means 

2211
)(.)(. 0 jjjj excexc  if ii 0 . Otherwise, suppose ii 0 . Since 0

10
e
jIi   and 2j  

dominates 1j , then 
 

2

20

0

2

1

10

0

1
).().(

11

jj

ji

i

j
ji

i

j a

d
c

a

d
c

 
.
 

 
Also, by Definition 3, we have 
 

11

0
1

1

11

0 }{max)(
ji

i

ij

i

Ii
j a

d

a

d
ex

e
j 




 . 

 
This implies 
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1

1

1

1

)()(
11

jj

ij

i

ji

i

a

d

a

d  


  , 0

1

e
jIi . 

 
Therefore, 

2

20

0

2

1

10

0

1

1

1

1
).().().(

111
jjj

ji

i

j
ji

i

j
ji

i
j a

d
c

a

d
c

a

d
c

 



, 

 

which requires 
2211

)(.)(. 0 jjjj excexc  . Hence, })(.{max})(.{max 0
jj

jj
Rj

jj
Rj

excexc  
 

 and the 

proof is completed. 
 
Corollary 7:  
 
If 2j  dominates 1j  for some  Rjj 21 , , then we can remove the 1j th column of the matrix A  

without any effect on finding the optimal solution )( 0ex  in (4a). 

 
4.  Algorithm for Finding an Optimal Solution and Examples 
 
 
Definition 6:  
 
Consider problem (1). We call nmijaA  )(  and nlijbB  )( the characteristic matrices of 

matrix A  and matrix B , respectively, where 
ij

i
ij

a

d
a

1

  for each 1Ii and Jj , also  

ij

i
ij

b

d
b

2

  for each 2Ii and Jj . (set 1
0

0
  and 

0

k
) 

 
Algorithm: 
 
Given problem (2), 

 

1. Find matrices A and B  by Definition 6. 
 

2. If there exists 1Ii such that 1ija  , Jj , then stop. Problem 2 is infeasible (see 
Theorem 1). 

3. Calculate x  from B  by Definition 1. 

4. If there exists 1Ii  such that 01 id , then remove the i’th row of matrix A  (see part (a) 

of Corollary 4). 

5. If jij xa  , then set 0ija , 1Ii and Jj . 

15
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6. If there exists 1Ii  such that 0ija , Jj , then stop. Problem (2) is infeasible (see 
Theorems 4 and 5) 

7. If there exists Jj   such that 0jia , 1Ii , then remove the j th column of the 

matrix A (see part (b) of Corollary 4) and set 0)( 0 jex .  

8. For each 1Ii , if 
iJ  then remove the ith row of the matrix A  (see Corollary 6) 

9. Remove each column Jj  from A  such that  Rj and set 0)( 0 jex . 

10. If 2j  dominates 1j , (  Rjj 21 , ) then remove column 1j  from A , Jjj  21 ,  (see 

Corollary 7) and set 0)(
10 jex .  

11. Let }0:{  iji
new
i aJjJ and new

m
newnewnew

I JJJJ  ...21 . Find the vectors )(ex , 
new
IJe  , by Definition 3 from A , and )( 0ex by pair wise comparison between the 

vectors )(ex . 

12. Find x from Theorem 3.     
  

 
Example 1:  
 
We consider the problem below which was given by J. H. Yang & B. Y. Cao, Yang and Cao 
(2005b), and solve by above algorithm. We will see the results are the similar. 
      









 
2

4
2

1

3
2

3

2
2

1

1 )(1.0,)(6.0,)(7.0,)(4.0maxmin xxxxZ  

1

2

3

4

0.5 0 0.6 0.8 0.4

0.5 0.2 0 0.4 0.2 ,

0.2 0.1 0.3 0.2 0.2

x

x

x

x

 
    
         
       

    

0 1, 1, 2,3, 4.jx j  

 
 
This problem is a simple case from problem (1). Matrices

 
A and B  are equal in this

 
problem, 

which means the constraints are bxA  and bxA  . 
 
Step 1: 
 



























1
3

2
21

5.014.0

5.0
3

2
8.0

A . 

 
Step 2: 
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Step 3: 
 

]5.0,
3

2
,1,4.0[x  

 
Step 4: 
Step 5: 























0
3

2
00

5.0014.0

5.0
3

2
00

A  

 
Step 6: 
Step 7: 
Step 8: 
 

}4{1 J and }4,1{2 J , therefore first and second rows are removed. Then  
 





 0

3

2
00A  

 
Step 9: 
 

By this step, first and fourth columns are removed, and then the new matrix A  is as follow: 
 







3

2
0A  

 
Step 10: 
 
It is clear that 3j  dominates 2j  by Definition 5, so we remove the second column from  

 







3

2
0A   

 
and obtain  
 






3

2
A  

 
Step 11: 
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)0,
3

2
,0,0()( 0 ex  

 
Step 12: 
 

)5.0,
3

2
,0,4.0(x  

 
1 3 1

22 2 2
2

max 0.4 (0.4) ,0.7 (0) ,0.6 ( ) ,0.1 (0.5) max 0.63,0,0.48,0.4 0.63.
3

Z
  

       
 

 

  
Example 2: Consider the problem below:                               

 










 2

1

4
2

1

3
1

2
2

1 )(3,)(,)(3,)(2maxmin xxxxZ

  



























































65.0

8.0

9.0

4.0

64.08.06.055.0

8.045.012.0

86.0192.09.0

25.035.08.05.0

4

3

2

1

x

x

x

x

 
1

2

3

4

0.6 0.5 0.1 0.1 0.48

0.2 0.6 0.6 0.5 0.56 ,

0.5 0.9 0.8 0.4 0.72

x

x

x

x

 
    
         
       

 

   0 1, 1, 2,3, 4.jx j    

 
Step 1: 
 
Matrices, A  and B  are as follows:  
 





















01.181.008.118.1

177.18.04

04.19.097.01

6.114.15.08.0

A  

 


















8.19.08.044.1

12.193.093.08.2

8.48.496.08.0

B  

 
Step 2: 
Step 3: 
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]1,9.0,8.0,8.0[x  
 
Step 4: 
Step 5: 
 
By considering this step, matrix A  is converted to the following: 
 





















081.000

108.00

09.000

005.08.0

A  

 
Step 6: 
Step 7: 
Step 8: 
 
According to this step, since }2{1 J and }4,2{3 J , therefore we can remove the first and third 

rows, then we have:  
 











081.000

09.000
A  

 
Step 9: 
 
By this step, we remove the second and fourth columns, and we set 0)()( 4020  exex , then: 

 











81.00

9.00
A  

 
Step 10: 
 
The first column is removed by this step. 
 











81.0

9.0
A  

 
Step 11: 
 

)0,9.0,0,0()( 0 ex  

 
Step 12: 
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By this x  and *Z are calculated as follows: 
 

)1,9.0,8.0,0(x  
 

75.3)1.(3,)9.0(,)8.0.(3,)0.(2max 2

1

2

1
12* 










Z  . 

 
5.  Conclusion  
 
In this paper, we have studied the geometric programming with fuzzy relational inequality 
constraints defined by the max-product operator. Since the difficulty of this problem is finding 
the minimal solutions optimizing the same problem with the objective 

function min max{ . }j

j j
j R

Z c x 


 , has been presented in an algorithm together with some 

simplifying operations to accelerate the problem resolution. Also, we have been given two 
examples to illustrate the proposed algorithm. 
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