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Abstract 

In this paper, we consider Cobb-Douglas production function based model in a firm under 

fuzzy environment, and its solution technique by making use of geometric programming. A 

firm may use many finite inputs such as labour, capital, coal, iron etc. to produce one single 

output. It is well known that the primary intention of using production function is to 

determine maximum output for any given combination of inputs. Also, the firm may gain 

competitive advantages if it can buy and sell in any quantities at exogenously given prices, 

independent of initial production decisions. On the other hand, in reality, constraints and/or 

objective functions in an optimization model may not be crisp quantities. These are usually 

imprecise in nature and are better represented by using fuzzy sets. Again, geometric 

programming has many advantages over other optimization techniques. In this paper, Cobb-

Douglas production function based models are solved by applying geometric programming 

technique under fuzzy environment. Illustrative numerical examples further demonstrates the 

feasibility and efficiency of proposed model under fuzzy environment. Conclusions are 

drawn at last. 
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1. Introduction 

The Cobb-Douglas production function is widely used to represent the relationship of an 

output to inputs. Knut Wicksell (1906) had initially proposed the production function. It was 

tested against statistical evidence by Cobb et al. (1928). Cobb et al. (1928) published a study 

in which they modelled the growth of American economy during the period 1899-1922. They 

considered a simplified view of the economy in which production output is determined by the 

amount of labour involved and the amount of capital invested. While there are many other 

factors affecting the production output, their model was remarkably accurate. The production 

function used in that model was as follows:  

 ,  .P L K aL K   

Here, 

P: Total monetary value of all production (goods produced in a year) 

L: Total labour input (number of person–hours worked in a year) 

K: Total capital input (the monetary worth of all machinery, equipment and buildings) 

a : Total factor productivity, 

,  : The output elasticity of labour and capital respectively.  

Available technology may determine these values and they are usually constants. It may be 

noted that output elasticity measures the response of output to change in level of either labour 

or capital used in production, e.g., for =0.25, single 1% increase in labour may lead to 

approximately 0.25% increase in output. When 1   , the production function has constant 

returns to scale. Hence, an increase of 10% in both L and K increases P by 10%. Here returns 

to scale is a technical property of production, which examines changes in output subsequent 

to proportional change in all inputs, where all inputs increase by a constant factor. Again for 

1   , returns to scale are decreasing; and for 1   , returns to scale are increasing. In 

the case of perfect competition,  and    are labours’ and capitals’ share of output. Analogous 

to Shivanian et al. (2013), inference is viewed as a process of propagation of elastic 

constraints. 

One important modification or change in classical set theory that guided a paradigm shift in 

mathematics is the concept of fuzzy set theory. It was introduced by Lotfi Asker Zadeh in 

1965. According to Bellman et al. (1970), a fuzzy set is a better representation of real life 

situations than classical crisp set. In production planning, Cobb-Douglas production function 

may also be considered under fuzzy environment. As Cao (2010) mentioned, it is well known 

that geometric programming technique provides us with a systematic approach for solving a 

class of non-linear optimization problems by finding the optimal value of the objective 

function and then the optimal values of decision variables are obtained. Consequently, as 

Guney et al. (2010) suggested, geometric programming technique can be applied in Cobb-

Douglas based firm production model under fuzzy environment.  

This paper is arranged as follows. In Section 2, Cobb-Douglas based firm production model 

is discussed in detail by applying different approaches under fuzzy environment. Next, in 

Section 3, a numerical example using these fuzzy optimization techniques is solved. We also 

compare the results in Section 3. Finally, conclusions are drawn in Section 4.  

 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 1, Art. 31

https://digitalcommons.pvamu.edu/aam/vol11/iss1/31



AAM: Intern. J., Vol. 11, Issue 1 (June 2016)   471   

 

2. Cobb-Douglas Based Firm Production Model in Fuzzy Environment 

In this paper, we consider a firm that uses n inputs (e.g. labour, capital, coal, iron) to produce 

one single output q. Suppose p is the cost / unit of output. The firm production function may 

be expressed as q=  1 2, , ,f xx xn . It gives output as a function of inputs in the following form: 

                                            
 1 2, ,  .,

1
x

n
if x x axn i

i


 


                                                     (2.1) 

Here, 
i  1,2, ,i n  denotes the output elasticity of input components ix  1,2, ,i n . 

Therefore, total revenue amount is of the form:  

 .

1

n
ipq pax

i
i


 


 

Again, if 
ir  1,2, ,i n

 
are the prices of the inputs 

ix  1,2, ,i n , total expenditure cost is 

given by the following expression: 

 1 2, ,  .,
1

x
n

C x x r xn i i
i

 


 

In this paper, we plan to maximize total revenue under total limited expenditure cost. 

Consequently, as per Liu (2006), Cobb-Douglas based firm production model under crisp 

environment may be taken as follows: 

        

 

 

1 2

1 2

, , ,

, ,

Maximize  ,
1

subject to the constraints:  , ,  0, 1,2, ,  .
1

x

x

n
iR x x paxn i

i
n

C x x r x c x i nn i i i
i


 


   
                

(2.2) 

Using the method described by Duffin et al. (1967), geometric programming (GP) technique 

can be applied to solve model (2.2). 

Next, we may consider the Cobb Douglas production model under fuzzy environment, where 

constraints 

 

      1 2 1 2, , , , ,, ,
C

C C x C xx x x xn n
 

are in fuzzy form as follows: 

                                      

 

 

1 2

1 2

, , ,

, ,

,

1,2, ,  .

Maximize  ,
1

subject to the constraints:  , ,
1

with maximum allowable tolerances 
0

0,  

x

x

i n

n
iR x x paxn i

i
n

C x x r x cn i i
i

c

x
i





 


 




               (2.3) 

Here, membership function of fuzzy constraint 
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      1 2 1 2, , , , ,, ,
C

C C x C xx x x xn n
 

 

is of the form: 

  

 
 

 

 

1 2

1 2 0

0 1 2

1 2 0

0

1 2

, ,

                  0,                    if , , ,

, ,
, if , , ,

                 1,                     if , ,  .

,

,
,

,

,

nC

n

n

n

C x

C x c c

c c C x
c C x c c

c
C x c

x x

x x
x xn x x

x x



 
  

   




 

Next, we may apply different fuzzy optimization techniques on model (2.3).  

 

Method 2.1. Verdegay’s approach (1982) 

According to Verdegay’s approach (1982) on fuzzy optimization technique, model (2.3) 

reduces to following parametric optimization model: 

 

 

1 2

0

, , ,

,

Maximize ,
1

subject to the constraints: 1
1

[0,1],  0,  1,2, ,  .

nx
n

iR x x pax
i

i

n
r x c c
i i

i

x i n
i







 


  


  

 

The primal geometric programming problem (PGPP) of the above model is as follows: 

                                

10

,
1

Minimize 
1

1
subject to the constraints: 1,

(1 )
0,  1,2, ,  .

n

i

n
ix

ipai

r x
i ic c

x i n
i



 






 

 

                                (2.4) 

Model (2.4) is a posynomial geometric programming problem whose degree of difficulty 

(DD) is zero. Its dual geometric programming problem (DGPP) is as follows: 

 

,

011
Maximize 

01 11 12 1
01

1 1
1

1( (1 ) ) 11 0 1

subject to the constraints: 1, 0,  0,   1,2, ,  .
01 01 1 1

,

δ

d δ ,δ ,δ …,δ
n paδ

n
irn n ii i

ic c ii i

δ δ i n
i i i

 


 

  

 
 
 
 

   
   

     






  

      

 

The optimal solution of this problem is obtained as * *1,   for 1,2, ,
01 1

i n
ii

     . It may 

be noted that although software can be used to find optimal solutions, we have used only pen 

and paper to find optimal solutions. Again, from the primal dual relations, we have: 
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 * * * * * *

01 01 11 12 1

1

1
 i

n

i n

i

x δ d δ ,δ ,δ ,…,δ
pa






  

and 

0(1 )

i ir x

c c 

*

1

*

1

1

,i

n

i

i









 1,2, ,i n  . 

Hence, optimal inputs are 

 

* 0

1

( (1 ) )
( ) , 1,2, ,  .i

i n

i i

i

c c
x i n

r

 





 
  


 

The optimal revenue is as follows: 

 

 * * *

1 2, , ,

1
(1 )

* 0;
1

1

n

n
i

i ic c n iR x x x pa n ri i
i

i




 




 
   
   
   

  
 




 
 




. 

Method 2.2. Werner’s approach (1987) 

First, model (2.3) is solved without tolerance by GP technique. Then, it is solved with 

tolerance by GP technique. Suppose that revenue without tolerance and with tolerance is

0 1 and ,R R respectively. Finally, fuzzy non-linear programming problem is obtained as follows: 

 

 

1 2 0 1
1

1 2 0
1

, ,

, , ,

Maximize , [ , ],

subject to the constraints:

, ,  with maximum allowable tolerances 

0,  1,2, ,  .

i

n

i
i

n

i i
i

x

x

R x x pax R Rn

C x x r x c cn
x i n
i






 

 

  

 

Therefore, our task is to find: 

 

 

1 2

1 2

, , ,

, ,

with maximum allowable tol

,  1,2, , ,

subject to the constraints

erance (R ),
1 0

with maximum allowable

:

,
11

, ,  , to
01

0,  1,2,

l

,

eran

.

c

 

e 

x

x

x i

R

n
i

n
iR x x pax Rn i

i

n
C x x r x c cn i i

i

x i n
i





  


 


 

 

The fuzzy goal objective function is given by 

 

   1 2 1 2{ , , , ( , , )}, ,
R

R R x R xx x x xn n ; 

 

its linear membership function is as follows: 
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 

 
 

 

 

1 2 0

1 2 0

1 2 0 1 2 1

1 0

1 2 1

                    0,     if , , ,

, ,
( , , ) , if , , ,

                     1,     if , , .

,
,

, ,

,

n

n

n nR

n

R x R

R x R
R x R R x R

R R
R x R

x x
x x

x x x x

x x




 

  




 

The constraint is also fuzzy and is given by 

 

      1 2 1 2, , , , ,, ,n nC
C C x C xx x x x . 

 

Here, our task is to find x
i

 so as to maximize the minimum of  

 

     1 2 1 2, ,  , , , and ,x xR x x C x xn nR C
   

and 0, 1,2, ,  .x i n
i
   

Method 2.3. Zimmermann’s approach (1976)  

Next, model (2.3) is solved by using max-min operator developed by Zimmermann (1976). 

Suppose 

       1 2 1 2, , , ,minimum ( , ), ,n nx xR x x C x x
R C

 
  

  
  

. 

Then, the single objective optimization problem is as follows: 

   1 2 1 2, , , ,

0, 1,2,...,  .

Maximize  ,
, ,

0 0subject to the constraints: , ,

0 1 0

n n

i

x x

i n

c c C x x R x x R

c R R

x



 

  

  
 


 

Then, taking the inverse of the objective function, we obtain the posynomial geometric 

programming problem, whose DD is 2. We solve it by using GP technique. The dual of the 

problem is obtained as follows: 

        

 
01 11

Maximize , = 
01 11 12 1 1 21 22 ( )101 0 1

1 1 21
0 0 

( )
0 1 1 21

1 2
22 1 21 21 0 1 1

1 21 122

,

δ
irn id δ ,δ ,δ …,δ δ ,δ

n δ c ci i

nc R

c c pa
n

n
R R i in

i i
i ipa i i





 

 

  

 


   
   
   
   

   
   
   

  

     
     

    
    

 







 
  

 
,


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the constraints : 1,  
01 01 1 1 22

0,  0,   1,2, ,  .

subject to 

1 21 22

n

i n
i ii

   

    

   


     
 (2.5) 

Again, by using pen and paper, the optimal solution of model (2.5) is obtained as follows: 

* 1,  (1 ),  ( ),   1,2, , .
01 1 1 22 1 21 22

i n
in i

            


. 

Now substituting  * ,  ( 1,2, , ),  
01 1 1 1

i n
i n

  


in model (2.5), the dual function is obtained 

as follows: 

 

   

( )
21 22

Maximize ( , )
21 22 ( )( )1 0 21 22

(1 )
22 21

0 0
( )(1 )

0 22 21

22 ( )
1 0 21 22( )

21 22
22

11
21 22 221

irn id
c ci i

c R

c c pa

R R

pa

n
in i

i
i

  

 
  

 

 


 

 




   







 
 
 
 

   
   
   

  

 
 
 
 

  
   

 
   



 
 



 

 



  


.

1
21 22 22
  

 
    
    

          
 

  

 (2.6) 

 

To find the optimal values of 
21 22,  , we have to maximize the dual objective function 

21 22( , )d   . Taking logarithms on both sides of model (2.6) and differentiating partially with 

respect to 
21 22,    one by one, and next equating those to zero, we obtain:     

           

     21 22 21 22

21 22

log , 0 and log , 0,d d   
 

 
          

  i.e., 

   

 

0
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Here, we may observe that 
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Method 2.4. Sakawa’s method (1993)  

Next, model (2.3) is solved by using Sakawa’s (1993) method. Assuming that 
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Here, 
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To solve model (2.7) by geometric programming technique, we rewrite the problem as 

follows:  
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We find that model (2.8) is a posynomial PGPP with DD being 1. Its DGPP form is as 

follows: 
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The optimal solution to model (2.9) is obtained as follows: 
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. 

Now substituting *

01 1, ,  for 1,2, ,i i n    in model (2.9), the dual function is obtained as 

follows: 
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To find optimal solution
1 1n 

, we have to maximize the dual function  1 1nd  
. Taking 

logarithms on both sides of equation (2.10) and differentiating with respect to 
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and then 

equating to zero, we get: 
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Although Sakawa’s (1993) approach and Zimmermann’s (1976) approach are similar, one 

main disadvantage of Zimmermann’s (1976) method over Sakawa’s (1993) method is the 

increase in degree of difficulty of the model in Zimmermann’s (1976) method. It makes the 

model difficult to solve in GP technique under fuzzy environment. On the other hand, the 

advantage of Zimmermann’s (1976) method over Sakawa’s (1993) method is that only one 

problem needs to be solved in Zimmermann’s (1976) method but two problems need to be 

solved in Sakawa’s (1993) method. In this paper, intentionally, we have solved only one 

problem. The other problem of Sakawa’s (1993) method can be solved similarly.   

Method 2.5. Max-additive operator (1987) 

Next, we solve model (2.3) using max-additive operator (1987) as follows: 

     
     

1 2 1 2

1 2 1 2

, , , , ,

, , , ,

maximize , ,

subject to the constraints: , ,  , 0,1 ,

0,  for 1,2, , .

x x

x x

R x x C x xn n
R C

R x x C x xn n
R C

x i n
i

 

    





 

 

i.e.,  

,
1

maximize 
111 0 0

subject to the constraints:   0, 1,2, ,  .

n npa ix r x
i i iR R c ii

x i n
i


 

 
 

 

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 1, Art. 31

https://digitalcommons.pvamu.edu/aam/vol11/iss1/31



AAM: Intern. J., Vol. 11, Issue 1 (June 2016)   479   

 

Now if 
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Rewriting model (2.11) as PGPP form, we get: 
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Model (2.12) is a posynomial PGPP with DD being zero. Its DGPP is as follows: 
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The optimal solutions to the problem are 
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From primal dual relations, we get: 
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Here, the optimal inputs are obtained as follows: 
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and the optimal revenue is obtained as 
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Method 2.6. Max-product operator (1978) 

Next, we solve model (2.3) using max-product operator (1978). Applying max-product 

operator (1978), the model becomes: 

     

  

  

1 2 1 2

1 2

1 2

, , , , ,

, ,

, ,

maximize , . ,

subject to the constraints:

, ,

, 0,1 , 0,  for 1,2, , .

x x

x

x

R x x C x xn nR C

R x xnR

C x x x i nn iC

 



     

 

i.e.,  
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,

,

0 01 1Maximize .

1 0 0

0 01 1subject to the constraints: ,  0,1

1 0 0

                 0,  for 1,2, , .

n n
ipax R c c r x

i i i
i i

R R c

n n
ipax R c c r x

i i i
i i

R R c

x i n
i





  

   
 



   
  



 

 

Suppose that 

 

0 01 1 ,  
1 2

1 0 0

n n
ipax R c c r x

i i i
i ix x

n nR R c


   

  
 

. 

 

Consequently, the above model becomes: 

      

1 2

0 0
1 1

1 2

1 0 0

,Maximize  .

subject to the constraints: ,  ,

0,  for 1,2, , 2.

i

n n

n n

i i i
i i

n n

i

x x

pax R c c r x
x x

R R c

x i n



 

 

 

   
 



  

         (2.13) 

 

Equation (2.13) can be written in PGPP form as follows: 

           

,1 1minimize  
1 2

subject to the constraints:

1 0 1,   
210 0

0 1 0 1,
11 1

0,  for 1,2, , .

x x
n n

cn
r x x
i i nc c c ci

R R Rn n
i ix x x

i inpa pai i

x i n
i

 

 
 

   

 
   

 

            (2.14) 

Model (2.14) is a posynomial PGPP with DD being unity. Therefore, its DGPP is as follows: 
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 
 

 

,

1011
Maximize , ,

01 11 12 1 1 21 22 101 0 1

1 1 21 22
0 0 1 0

21 220 1 1

1 2

1 21 2
1 1

1 21 1

,

i
rn id δ ,δ ,δ …,δ δ δ

n c ci
i

nc R R R

pa pac c
n

n

i in
i i

i ii i



 

  

 

 

 

  
  
  
    

     
          
      

   
   
   
   

  

 





 
  

 

the constraints:

1,  0,   1,2, , ,  
01 1 21 22

0,  0.
01 2

subj

2

e

0

c

1 1

t

1

t o 

i n
i ii

n

     

   

     

     


    

(2.15) 

Using pen and paper, optimal solutions of the model (2.15) are obtained as: 

* * *

01 22 1 11,  1,  1,n       1 21 1 ,  1,2, ,  .i i i n       

Substituting * * *

01 22 1 1 1,  , ,  for 1,2, , ,n i i n      in (2.15), the dual function is obtained as follows: 

         

 
 

                .

( 1)
21 21

0 0 1 0  
21 ( 1)1 0 210 21

1 ( 1) ( 1)21 2111 ( 1) ( 1)   
21 211

i
c R R Rrn id

c c papac ci i

n
in

i
i

i

  


 

  
  

 
  
 
 
  

                  
      

  
 
  





 

   
  



              

(2.16) 

Next, to find optimal value of
21 , we maximize the dual function:  21d  . Taking logarithms 

on both sides of model (2.16), and differentiating with respect to 21 and next equating to zero, 

we find: 

 21

21

ln( ( )) 0,
d

d
d






 

i.e.,  

 0

21 21

1 1 10 21 21

ln ln ln 1 ( 1) ln 1 0.
( )( 1)

n n n
i

i i i

i i ii

r R

a c c pa
    

   

     
          

      
    

Hence, we have: 
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21 21 21 21
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1 1
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1 ( 1)

1
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( 1) 1 ( 1)

nn

ii
ii

n

i

i

n

i

i

n

i

i
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d

d




   

 



 
  









 
 
       

     
  

 

   
  

   
 









 

 

We find that the second order derivative is always negative. 

 

3. Numerical Examples 

Now, we consider numerical examples on which we may apply these optimization techniques 

and solve Cobb-Douglas based firm production model under fuzzy environment. Analogous 

to Creese (2010), the input data are taken as given in Table 1. The output data obtained by 

using crisp optimization technique to solve Cobb-Douglas based firm production model are 

given in Table 2. 

 

Table 1. Input data of Cobb-Douglas based firm production model 

No. of 

Inputs 

Output elasticity of the 

Input components 

Prices of the input 

components 

 

Selling price 

of a unit 

product 

Total 

productivity 

 

Available 

cost 

n 𝛼1 𝛼2 𝛼3 𝑟1 𝑟2 𝑟3 𝑝 𝑎 𝑐 

3 0.1 0.3 0.2 20 24 30 20 40 8500 

 

 

Table 2. Output data using crisp optimization technique 
Dual Variables Primal Variables Revenue 

𝛿01
∗  𝛿11

∗  𝛿12
∗  𝛿13

∗  𝑥1
∗ 𝑥2

∗ 𝑥3
∗ 𝑅∗ 

1.0 0.1 0.3 0.2 70.8333 177.0833 94.4444 14374.82 

 

Next, suppose that the input data under fuzzy environment is given in Table 3. 

 

 

Table 3. Input data of Cobb-Douglas based firm production model in fuzzy environment 

No. 

of 

Inputs 

Output elasticity of 

the 

Input components 

Prices of the 

input 

components 

(Rs.) 

Selling Price 

of a unit 

product 

(Rs.) 

 

Total 

productivity 

 

Available 

cost 

(Rs.) 

Available 

tolerance 

(Rs.) 

n 𝛼1 𝛼2 𝛼3 𝑟1 𝑟2 𝑟3 𝑝 𝑎 𝑐 c0 

3 0.1 0.3 0.2 20 24 30 20 40 8500 300 

On solving the model under fuzzy environment by Verdegay’s approach (1982), output data 

corresponding to different values of aspiration level   are obtained as given in Table 4. 
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Table 4. Output data of Cobb-Douglas based firm production model by Verdegay’s approach (1982) 

Aspiration 

Level 
Dual Variables Primal Variables 

Cost 

(Rs.) 

Revenue 

(Rs.) 

𝛽 𝛿01
∗  𝛿02

∗  𝛿03
∗  

𝑥1
∗ 
 

𝑥2
∗ 𝑥3

∗ 𝐶∗ 𝑅∗ 

0.0 

0.1 0.3 0.2 

73.3333 183.3333 97.7778 8800 14677.11 

0.1 73.0833 182.7083 97.4444 8770 14647.07 

0.2 72.8333 182.0833 97.1111 8740 14616.99 

0.3 72.5833 181.4583 96.7778 8710 14586.86 

0.4 72.3333 180.8333 96.4444 8680 14556.70 

0.5 72.0833 180.2083 96.1111 8650 14526.49 

0.6 71.8333 179.5833 95.7778 8620 14496.24 

0.7 71.5833 178.9583 95.4444 8590 14465.95 

0.8 71.3333 178.3333 95.1111 8560 14435.61 

0.9 71.0833 177.7083 94.7778 8530 14405.24 

1.0 70.8333 177.0833 94.4444 8500 14374.82 

 

 

On solving the same model with the same input data by max-min operator (Zimmermann 

1976) under fuzzy environment, the output data is obtained as given in Table 5. 

 

Table 5. Output data using Zimmermann’s approach (1976) 

Dual Variables 

 
Primal Variables 

Optimal 

Revenue 

Optimal 

Cost 

Aspiration 

level 

𝛿01
∗  𝛿11

∗  𝛿12
∗  𝛿13

∗  𝛿14
∗  𝛿21

∗  𝛿22
∗  𝑥1

∗ 𝑥2
∗ 𝑥3

∗ 𝑅∗ 𝐶∗ 

𝜇𝑅̃
∗(𝑅(𝑥1 , … , 𝑥𝑛 )) 

and 

𝜇𝐶̃
∗(𝐶(𝑥1 , … , 𝑥𝑛 )) 

 

1.0 4.797 14.391 9.594 0.5 47.470 0.5 72.081 180.202 96.108 14526.19 8649.71 
0.5 
and 

0.5 

 

On solving the same model with the same input data by Sakawa’s (1993) method under fuzzy 

environment, the output data is obtained as given in Table 6. 

Table 6. Output data using Sakawa’s (1993) method 

Dual Variables 

 
Primal Variables 

Optimal 

Revenue 

Optimal 

Cost 
Aspiration level 

𝛿01
∗  𝛿11

∗  𝛿12
∗  𝛿13

∗  𝛿14
∗  𝑥1

∗ 𝑥2
∗ 𝑥3

∗ 𝑅∗ 𝐶∗ 
𝜇𝑅̃

∗(𝑅(𝑥1 , … , 𝑥𝑛 )) 

and 

𝜇𝐶̃
∗(𝐶(𝑥1 , … , 𝑥𝑛 )) 

1.00 0.050 0.150 0.100 0.499 72.254 180.634 96.338 14547.07 8670.44 

0.57 

and 

0.43 
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On solving the same model with the same input data by max-additive (1987) operator under 

fuzzy environment, the output data is obtained as given in Table 7. 

 

Table 7. Output data using max-additive (1987) operator 

Dual variables Primal variables 

Optimal 

Revenue 

(Rs.) 

Optimal 

Cost 

(Rs.) 

Aspiration level 

𝛿01
∗
 𝛿11

∗
 𝛿12

∗
 𝛿13

∗
 𝛿14

∗
 𝑥1

∗ 𝑥2
∗ 𝑥3

∗ 𝑅∗ 𝐶∗ 
𝜇𝑅̃

∗(𝑅(𝑥1 , … , 𝑥𝑛 )) 

and 

𝜇𝐶̃
∗(𝐶(𝑥1 , … , 𝑥𝑛 )) 

1.00 0.25 0.75 0.50 1.00 72.080 180.201 96.107 14526.12 8649.63 

0.5 

and 

0.5 

 

On solving the same model with the same input data by max-product (1978) operator under 

fuzzy environment, the output data is obtained as given in Table 8. 

 

Table 8. Output data using max-product (1978) operator 

Dual Variables Primal variables 

Optimal 

Revenue

(Rs.) 

Optimal 

Cost 

(Rs.) 

Aspiration Level 

𝛿01
∗
 𝛿11

∗
 𝛿12

∗
 𝛿13

∗
 𝛿14

∗
 𝛿21

∗
 𝛿22

∗
 𝑥1

∗ 𝑥2
∗ 𝑥3

∗ 𝑅∗ 𝐶∗ 
𝜇𝑅̃

∗(𝑅(𝑥1 , … , 𝑥𝑛 )) 

and 

𝜇𝐶̃
∗(𝐶(𝑥1 , … , 𝑥𝑛 )) 

1.
00 

9.59 28.7 19.1 1.00 94.9 1.00 72.08 180.20 96.10 14526.22 8649.73 

0.5 

and 

0.5 

 

Finally, we may compare the results obtained by using different fuzzy optimization 

techniques to solve Cobb-Douglas based firm production model under fuzzy environment. 

 

Table 9. Comparison of outcomes in different techniques 

Method 
Optimal Inputs 

Optimal 

Revenue 

Optimal 

Cost 

𝑥1
∗ 𝑥2

∗ 𝑥3
∗ 𝑅∗ 𝐶∗ 

Zimmermann’s 

approach (1976) 
72.081 180.202 96.108 14526.19 8649.71 

Sakawa’s method 

(1993) 
72.254 180.634 96.338 14547.07 8670.44 

max-additive 

operator (1987) 
72.080 180.201 96.107 14526.12 8649.63 

max-product 

operator (1978) 
72.081 180.203 96.108 14526.22 8649.73 

Hence, the optimal revenue in classical optimization technique is Rs. 14374.82 with optimal 

cost Rs. 8500. But if the same model is considered under fuzzy environment and solved by 

using max-min operator in Zimmermann’s (1976) technique, the optimal revenue comes as 

Rs. 14526.19 with optimal cost being Rs. 8649.71. As maximizing revenue is a primary 

objective to decision makers, this outcome is more acceptable than the solution under crisp 

environment. 
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Again if max-min operator in Sakawa’s (1993) technique is used to solve the same model 

under fuzzy environment, the optimal revenue is Rs. 14547.07, a far more acceptable solution 

than the solution under crisp environment. 

If max-additive (1987) operator is used to solve the same model under fuzzy environment, 

the optimal revenue is Rs. 14526.12, another better optimal solution than crisp solution. 

If max-product (1978) operator is used to solve the same model under fuzzy environment, the 

optimal revenue is Rs. 14526.22, again one better optimal solution than crisp solution. 

4. Conclusion 

In this paper, we have considered Cobb-Douglas production function based model in a firm 

under fuzzy environment and its solution technique by making use of geometric 

programming. Here, the objective is to maximize the revenue under limited total expenditure 

cost, and to minimize the total expenditure costs subject to target revenue. To match with 

reality, the model is considered under fuzzy environment and solved using different fuzzy 

optimization techniques.  

In this paper, geometric programming is applied to solve the model obtained by fuzzy 

optimization techniques. The advantage of geometric programming over other optimization 

techniques is that it provides us with a systematic approach for solving a class of non-linear 

optimization problems by finding the optimal value of the objective function and then the 

optimal values of decision variables are obtained. Moreover, GP often reduces one complex 

optimization problem to set of simultaneous linear equations.  

We know that a decision maker is the king and his decision is final. Accordingly, in this 

paper, we collect information from a decision maker; then based on such information, fuzzy 

optimization approach is chosen. Then GP is used to find optimal solution. The optimal 

solution is presented to the decision maker. If he/she is satisfied with the solution, stop. 

Otherwise, another fuzzy technique may be used. We stop when the decision maker is 

satisfied. 

We have not used any software but only pen and paper to compute the optimal solutions by 

using geometric programming technique. Software available on the market can also be used 

to find the optimal solution. 

We further plan to develop a few interesting results on Cobb-Douglas based firm production 

model in fuzzy environment. We also plan to use the  proposed technique to generate optimal 

solutions in agro-industrial sector in near future. 
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