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ABSTRACT 

In this paper, an Inventory model with unit production cost, time 

depended holding cost, with-out shortages is formulated and solved. 

We have considered here a single objective inventory model. In most 

real world situation, the objective and constraint function of the 

decision makers are imprecise in nature, hence the coefficients, 

indices, the objective function and constraint goals are imposed here 

in fuzzy environment. Geometric programming provides a powerful 

tool for solving a variety of imprecise optimization problem. Here we 

have used nearest interval approximation method to convert a 

triangular fuzzy number to an interval number then transform this 

interval number to a parametric interval-valued functional form and 

solve the parametric problem by geometric programming technique. 

Here two necessary theorems have been derived. Numerical 

example is given to illustrate the model through this Fuzzy 

Parametric Geometric-Programming (FPGP) method. 

Keywords: Inventory model, Fuzzy number, Space constraint, 

Geometric Programming, Interval-valued function 
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 1. INTRODUCTION 

 An inventory deals with decision that minimize the total average cost or 

maximize the total average profit. For this purpose the task is to construct a 

mathematical model of the real life Inventory system, such a mathematical model is 

based on various assumptions and approximations. In ordinary inventory model it 

consider all parameter like set-up cost, holding cost, interest cost   a fixed. But in real 

life situation it will have some little fluctuations. So consideration of fuzzy variables   

is more realistic. 

 Geometric Programming (GP) method is an effective method used to solve a 

non-linear programming problem like structural problem. It has certain advantages 

over the other optimization methods. Here, the advantage is that it is usually much 

simpler to work with the dual than the primal one. Solving a non-linear programming 

problem by GP method with degree of difficulty (DD) plays essential role. (It is 

defined as DD = total number of terms in objective function and constraints – total 

number of decision variables – 1). Since late 1960’s, Geometric Programming (GP) 

used in various field (like OR, Engineering science etc.). Geometric Programming 

(GP) is one of the effective methods to solve a particular type of Non linear 

programming problem. The theory of Geometric Programming (GP) first emerged in 

1961 by Duffin and Zener. The first publication on GP was published by Duffin and 

Zener on (1967). There are many references on applications and methods of GP in 

the survey paper by Ecker. They describe GP with positive or zero degree of 

difficulty. But there may be some problems on GP with negative degree of difficulty. 

Sinha et al. proposed it theoretically. Abot-El-Ata and his group applied modified 

form of GP in inventory modelsPark and Wang studied shortages and partial 

backlogging of items. Friedman (1978) presented continuous time inventory model 

with time varying demand. Ritchie (1984) studied in inventory model with linear 

increasing demand. Goswami, Chaudhuri (1991) discussed an inventory model with 

shortage. Gen et. Al. (1997) considered classical inventory model with Triangular 

fuzzy number. Yao and Lee (1998) considered an economic production quantity 

model in the fuzzy sense. Kumar, Kundu and Goswami (2003) presented an 

economic production quantity inventory model involving fuzzy demand rate. Syde 

and Aziz (2007) applied sign distance method to fuzzy inventory model without 

shortage . D.Datta and Pravin Kumar  published several paper of fuzzy inventory 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

301 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 8, n. 2, April - June 2017 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v8i2.535 
 

 with or without shortage. Islam and Roy (2006) presented a fuzzy EPQ model with 

flexibility and reliability consideration and demand depended unit  Production cost 

under a space constraint .A solution method of posynomial geometric programming 

with interval exponents and coefficients was developed by Liu (2008). Kotb, 

Fergancy (2011), presented Multi-item EOQ model with both demand-depended unit 

cost and varying  Lead time via Geometric Programming. Dey and Roy (2015) 

presented Optimum shape design of structural model with imprecise coefficient by 

parametric geometric programming. 

In this paper we first considered crisp inventory model. There after it 

transformed to fuzzy inventory mode and developed. Here two necessary theorems 

have been derived.  At last it made an example and solved it by Parametric 

Geometric-Programming Technique. 

2. MATHEMATICAL MODEL 

 An Inventory model is developed under the following notations and 

assumptions.       

2.1. Notations 

I(t): Inventory level at any time, t≥0. 

D: Demand per unit time, which is constant. 

T: Cycle of length. 

S: Set-up cost per unit time. 

H: Holding cost per unit item, which is time depended. 

P: Unit demand and set-up cost dependent production cost. 

q: Production quantity per batch.                                           

f(D,S): Unit production cost per cycle. 

TAC(D,S,q): Total average cost per unit time. 

w0: Space area per unit quantity. 

W: Total storage space area. 

2.2. Assumptions 

a) The inventory system involves only one item. 
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 b) The replenishment occur instantaneously at infinite rate. 

c) The lead time is negligible. 

d) Demand rate is constant. 

e) The unit production cost is continuous function of demand and Set-up cost and                    

     take the following form: 

     P = θ ,     θ,x  (>0). 

f) Holding cost is time depended, as “at”. 

2.3. Crisp model 

 
Figure1: Inventory Model 

The differential equation describing I(t) as follows 

                ,                 0≤t≤T                                                  (2.3.1) 

With the boundary condition I(0) = q, I(T) = 0. 

The solution of (2.3.1) is obtained as  

              I(t) = q – Dt                                                                             (2.3.2) 

Also there are T= q/D.                                               

Here inventory holding cost = H  = .                            (2.3.3) 

Total inventory related cost per cycle = set-up cost + holding cost + production cost 

                                        = S + +Pq                                              (2.3.4) 

So total average cost per cycle is given by  

                    TAC(D,S,q)  
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                                         +  + θ .                               (2.3.5)                        

And storage area = w0q.  

          So the inventory model can be written as 

                       Min TAC(D,S,q)  + + θ                     (2.3.6)                         

                       subject to   w0q ≤ W, D,S,q > 0.   

2.4. Fuzzy model 

  When the objective and constraint goals, coefficients and exponents become fuzzy sets 

and fuzzy Numbers respectively, the crisp model (2.3.6) written to be a fuzzy model, as 

                                 TAC(D,S,q)  =    +  +  

                        subject to   q   ,        D,S,q > 0.                       (2.4.1)     

3. GEOMETRIC PROGRAMMING (GP) PROBLEM 

3.1. Primal program 

 Primal Geometric Programming (PGP) problem is:                    

 Minimize (t) =                                                 (3.1) 

  subject to   (t) =     (r=1,2,…,l)                

                            tj> 0,    (j=1,2,….,m). 

Where C0k(>0) (k=1,2,…..,T0), Crk(>0) and αrkj (k=1,2,….,1+Tr-1,…..,Tr;r = 0,1,2,……,l; 

j = 1,2,….,m) are real numbers. It is constrained polynomial PGP problem. The 

number of term each polynomial constrained functions varies and it is denoted by Tr 

for each r = 0,1,2,…,l.  Let T = T0+ T1+ T2+…. Tl be the total number of terms in the 

primal program. The Degree of Difficulty is (DD) = T – (m+1). 

3.2. Dual program: 

 Dual programming (DP) problem of (3.1) is: 

     Maximize   d(δ) =                       (3.2)           
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       Subject to         = 1                              (Normality condition) 

 = 0,              (Orthogonal conditions)   

                 δrk > 0,          (k=1,2,……,Tr)        (Positivity constant)   

• Case-1 :  For T0 ≥ M+1, the dual program presents a system of linear 

equations for the dual variables, where the number of linear equations is 

either less than or equal to dual variables.  More or unique solutions exist for 

the dual vectors.   

• Case-2  :   For T0 < M+1, the dual program presents a system of linear 

equations for the dual variables, where the number of linear equations is 

greater than the number of  dual variables. In this case generally no solution 

vector exists for the dual variables. However one can get  an approximate 

solution vector for the system using either the Latest Square(SQ) or Max-

Min(MN) method. 

These are applied to solve such a system of linear equations. Ones optimal dual          

variable vector  are known, the corresponding values of the primal variable vector 

x is found from the following relations: 

   =     if i   

and    =       if i      (k=1,2, …….., ). 

3.3. Solution procedure of crisp model by Geometric Programming (G.P) 
technique: 

           Here the primal problem is 

           Min     TAC(D,S,q)  =  + + θ                                    (3.1.1)   

           subject to         w0q ≤ W,        D ,S, q > 0.   

 Corresponding dual form of (3.1.1) is given by 

            Max d( ) =  

            subject to    = 1                                                          (3.1.2)             

                                = 0 
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                                 + (1-x) = 0 

                            + 2 = 0 

                                0.        

From (3.1.2) we get    . 

Putting the values in (3.1.2) we get the optimal solution of dual problem. The values 

of D, S, q is obtained by using the primal dual relation as follows.  

From primal dual relation we get 

                       = ( , 

                      = ( , 

                      = ( , 

                      = 1. 

The optimal solution of the model  through the parametric approach is given by 

  (                                               

  and             S* ,        

                     D* , 

                      q*  .                                               

4. FUZZY NUMBER AND ITS NEAREST INTERVAL APPROXIMATION:  

4.1. Fuzzy number:   

A real number  described as fuzzy subset on the real line  whose membership 

function  has the following characteristics with  

                       =    

Where 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

306 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 8, n. 2, April - June 2017 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v8i2.535 
 

  is continuous and strictly increasing and 

 is continuous and strictly decreasing. 

α-cut of The α-cut of , is defined by Aα={x: μA(x)≥α.}                       

 
Figure2: Trapezoidal fuzzy number of   with α-cut. 

Aα is a non-empty bounded closed interval in X and it can be denoted by Aα = [AL(α), 

AR(α)]. Where AL(α) and AR(α) are the lower and upper bounds of the closed interval 

respectively.  

Figure 2 shows a fuzzy number  with α-cuts Aα1 = [AL(α1), AR(α1)], Aα2 = [AL(α2), 

AR(α2)]. It Seen that if α2 ≥ α1 then AL(α2) ≥ AL(α1) and AR(α1) ≥ AR(α2). 

4.2. Interval number 

An interval number A is defined by an ordered pair of real numbers as follows A = 

[  where and are the left and  right bounds of 

interval A, respectively. The interval A, is also defined by center ( ) and half-width 

( ) as follows  

A = (  = {x:  where  =  is the center and  

=  is the half-width of A. 
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 4.3. Nearest interval approximation 

Here we want to approximate a fuzzy number by a crisp model. Suppose  and  

are two fuzzy numbers with α-cuts are [AL(α), AR(α)] and[BL(α), BR(α)]  respectively. 

Then the distance between  and  is 

                     d( ) = . 

Given  is a fuzzy number. We have to find a closed interval , which is the 

nearest to with respect to metric. We can do it since each interval is also a fuzzy 

number with constant α-cut for all α ∈ [0,1]. Hence ( , .  Now we 

have to minimize 

                  d(  

with respect to . 

In order to minimize d( , it is sufficient to minimize the function  

 D( ,  = ( )).  

The first partial derivatives are  

            

And 

            

Solving   and  we get 

CL =  and CR = . 

Again since   (D( , )) =2 > 0,   (D( , )) =2 > 0 and 

H( , ) =  (D( , )).  (D( , )) –  = 4 > 0. 

So D( , ) i.e. d(  is global minimum. Therefore, the interval  
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 Cd(  = [  ] is the nearest interval approximation of fuzzy 

number  with respect to the metric d. 

Let  = (a1,a2,a3) be a triangular fuzzy number. The α-cut interval of  is defined as  

 Aα = [ , ] where  = a1+α(a2 - a1) and  = a3 - α(a3 – a2). 

By nearest interval approximation method,  

the lower limit of the interval is  

           CL =  =  = ,  

and the upper limit of the interval is 

           CR =  =   =  . 

Therefore, the interval number corresponding to a given fuzzy number  is 

[ . In the centre and half–width form the interval number of  is 

defined as     . 

4.4. Parametric Interval-valued function:  

Let [m, n] be an interval, where m > 0, n > 0.. From analytical geometry point of view, 

any real number can be represented on a line. Similarly; we can express an interval 

by a function. The parametric interval-valued function for the interval [m, n] can be 

taken as g(s) =  for s ∈ [0,1], which is strictly monotone, continuous function 

and its inverse exits. Let  be the inverse of g(s), then 

               s . 

5. GEOMETRIC PROGRAMMING WITH FUZZY COEFFICIENT:  

When all coefficients of Eq. (6) are triangular fuzzy number, then the geometric 

programming problem is of the form 

        Min           (x)                                                                                 (5.1) 

        subject to  (x)       (1≤i≤n)    

                         x>0. 

Its objective functions  
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         (x) =        

and constraints of the form 

            (x) =       (0≤i≤n) 

are all posynomials of x in which coefficients  and indexes  are fuzzy numbers.  

Where  = (  and  = ( . Using nearest interval 

approximation method, we transform all triangular fuzzy number into interval number i.e. 

[ and [ . The geometric programming problem with imprecise 

parameters is of the following form  

          Min          (x)  (5.2) 

        subject to  (x)  1               (1≤i≤n)    

                         x>0, 

Its objective function is 

        (x) = , 

and constraints of the form is 

         (x) = ,      (1≤i≤n). 

Where  denote the interval counterparts i.e. ∈ [  and ∈ 

[    for all i and k. Using parametric interval-valued functional 

form, the problem (5.2) reduces to 

        Min (x,s) =   (5.3) 

        Subject to   (x,s) =   

                           xj > 0 for i = 1,2,…….n,   j = 1,2,……..m. 

This is a parametric geometric programming problem. We get different solutions of 
this problem for different value of the parameter s. 

the dual programming of (5.3) is as follows: 

       Max d(δ,s)  =   (5.4) 

       Subject to  
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             = 1, 

             = 0, 

             > 0. 

5.1. Theorem 5.1.  

If x is a feasible vector for the constraints PGP and if δ is a feasible vector for the 

corresponding DP, then (x,s) ≥ d(δ,s) (Primal- Dual Inequality). 

5.2. Proof.             

The expression for (x,s) can be written as  

(x,s) = . 

Here the weights are  and positive terms are    

  , ……… ,   . 

Now applying A.M.-.G.M inequality, we get  

       

( ) 

Or    [  

 Or    

 Or                         (5.1.1) 

Again (x,s) can be written as  

(x,s) = . 

Now applying A.M.-.G.M inequality, we get  
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 Or     

              (5.1.2) 

Using   1,                                                 [as (x,s)  1]  

We have                                            

1                       (5.1.3) 

Multiplying (5.1.1) and (5.1.3) we get 

    (5.1.4) 

Using orthogonal condition the inequality (5.1.4) becomes 

    = d(δ,s) (5.1.5) 

i.e., (x,s) ≥ d(δ,s) . (Proof). 

5.3. Theorem 5.2.  

δ is a feasible vector for the dual programming (DP) problem , then d(δ,1)  ≥ d(δ,0). 

5.4. Proof: 

We have   ,    for all k, (k=1,2,……., ).   

Or  

Or  

Or  

Or   

Or  
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 i.e., d(δ,1)  ≥ d(δ,0). (proof) 

5.5. Solution procedure of fuzzy model by Geometric Programming (G.P) 
technique: 

When  = ( ),  = ( ),  = ( ) and  = ( ) are 

triangular fuzzy number .then the fuzzy model is 

           TAC(D,S,q)  =    +  +  (5.3.1) 

          subject to  q  , D, S, q > 0. 

Using nearest interval approximation method, the interval number corresponding 

triangular number  = ( ) is [ ] = [ ]. Similarly interval number 

corresponding  and are [ ] = [ ], [ ] = [ ] and 

[ ] = [ ] respectively. The problem (5.3.1) reduces to 

         Min TAC(D,S,q)  =  + +  (5.3.2)  

         subject to w0q ≤ [ ],D, S, q > 0.  

Which is equivalent to 

          Min TAC(D,S,q)  =    +  +  (5.3.3) 

          subject to  q  , D, S, q > 0, 

where   ∈ [ ],  ∈ [ ],  ∈ [ ] and  ∈ [ ]. 

According to section 4.4, the fuzzy model (5.2.3) reduces to a parametric 

programming by replacing 

  where s ∈ [0,1]. 

The model takes the reduces form as follows 

         Min TAC(D,S,q)  =    +  +  (5.3.4) 

         subject to  q   , D,S,q > 0 

Corresponding dual form of (5.3.4) is given by 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

313 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 8, n. 2, April - June 2017 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v8i2.535 
 

 
         Max d( ) =  

         subject to    = 1 (5.3.5)  

                            = 0 

                            + (1-x) = 0 

                         + 2 = 0 

                           ≥ 0.        

From (5.3.5) we get  . 

Putting the values in (5.3.5) we get the optimal solution of dual problem. The values 

of D, S, q is obtained by using the primal dual relation as follows:  

From primal dual relation we get 

                  = ( , 

                 = ( , 

                = ( , 

                 = 1. 

The optimal solution of the model  through the parametric approach is given by 

      (  

 

       and 

                     S* =  ,       

                     D* = , 

                     q* =  .       

6. NUMERICAL EXAMPLE AND SOLUTION: 
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 A manufacturing company produces a machine. It is given that the inventory carrying 

cost of the machine is $15 per unit per year. The production cost of the machine 

varies inversely with the demand and set-up cost. From the past experience, the 

production cost of the machine is 120  where D is the demand rate and S is 

set-up cost. Storage space area per unit time ( ) and total storage space area (W) 

are 100 sq. ft. and 2000 sq. ft. respectively. Determine the demand rate (D), set-up 

cost (S), production quantity (q), and optimum total average cost (TAC) of the 

production system. 

Then the input value of the model (2.3.6) is   

                          Table-1(Input values) 
    a       H        x       θ                W 
    7      15     1.75     120      100      2000 

Then the model is of the form 

              Min TAC(D,S,q)  =  + +  

             subject to 100q ≤ 2000, D, S, q > 0. (6.1) 

                           Table 2: Optimal solution of (2.3.6) for crisp model 
 Crisp model        S*       D*    q* TAC*(S*,D*,q*)$ 
      G.P     0.684    4048   20     140.517 
    N.L.P     0.685    4047   20     140.685 

                                    
When the input data of inventory model is taken as triangular fuzzy number i.e..  = 

(5,7,9),  = (13,15,17), = (116,120,124) and = (1800,2000,2200). Using nearest 

interval approximation method, we get the corresponding interval number and 

interval-valued function i.e.   

             ≈ [6,8],     ∈ [6,8], 

             ≈ [14,16],     ∈ [14,16], 

            ≈ [118,122],     ∈ [118,122],  

 ≈ [1900,2100],     ∈ [1900,2100],  where s ∈ [0,1]. 

The optimal solution of the fuzzy model by interval-valued parametric geometric 

programming is presented in Table 

         Table 3:  Optimal Solution for Fuzzy Inventory Model 
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           s            S*            D*           q*    TAC*(S*,D*,q*)$    
        0.0         0.820        2983.86         21.00           119.801 
        0.1         0.786        3175.16         20.79           123.060 
        0.2         0.753        3378.71         20.58           126.396 
        0.3         0.722        3595.32         20.38           129.924 
        0.4         0.693        3825.81         20.18           133.735 
        0.5         0.664        4071.08         19.97           137.533 
        0.6         0.637        4332.07         19.78           141.519 
        0.7         0.610        4609.80         19.58           145.473 
        0.8         0.585        4905.33         19.38           149.793 
        0.9         0.561        5219.81         19.19           154.196 
        1.0         0.538        5554.45         19.00           158.767 

                      
For s=0, the lower bound of the interval value of the parameter is used to find the 

optimal solution. For s=1, the upper bound of interval value of the parameter is used 

for the optimal solution. These results yield the lower and upper bounds of the 

optimal solution. The main advantage of the proposed technique is that one can get 

the intermediate optimal result using proper value s. 

Here we have given a rough graph, which shown how change the value of 

TAC*(S*,D*,q*)  for difference values of s. 

 
Figure 3:   Change of the value of objective function for change of s, by Fuzzy 

Geometric Programming Technique. 
 
 
7. SENSITIVITY ANALYSIS: 

 Effect, for increment the parameter “s”.  

(1) For increasing of “s”, set-up cost S* is decreasing. 
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 (2) For increasing  of “s”, demand rate D* is increasing. 

(3) For increasing of “s , Production quantity q* is decreasing.   

(4) For increasing of “s”, Total average cost TAC*(S*,D*,q*) is increasing.   

8. CONCLUSION: 

  In this paper, we have proposed a real life inventory problem in a fuzzy 

environment and presented solution along with sensitivity analysis approach. The 

inventory model developed with unit production cost, time depended holding cost, 

with-out shortages. This model has been developed for single item. 

 In this paper, we first create a crisp model then it transformed to fuzzy model 

and solved by parametric Geometric-Programming technique. Here decision maker 

may obtain the optimal results according to his expectation .In fuzzy we have 

considered triangular fuzzy number(T.F.N) In future, the other type of membership 

functions such as piecewise linear hyperbolic, L-R fuzzy number, Trapezoidal  Fuzzy 

Number (TrFN), Parabolic flat Fuzzy Number (PfFN), Parabolic Fuzzy Number 

(pFN), pentagonal fuzzy number etc can be considered to construct the membership 

function and then model can be easily solved. 
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