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Abstract 

A posynomial geometric optimization problem subjected to a system of max-min fuzzy relational equations (FRE) 
constraints is considered. The complete solution set of FRE is characterized by unique maximal solution and finite 
number of minimal solutions. A two stage procedure has been suggested to compute the optimal solution for the 
problem. Firstly all the minimal solutions of fuzzy relation equations are determined. Then a domain specific 
evolutionary algorithm (EA) is designed to solve the optimization problems obtained after considering the individual 
sub-feasible region formed with the help of unique maximum solution and each of the minimal solutions separately as 
the feasible domain with same objective function. A single optimal solution for the problem is determined after 
solving these optimization problems. The whole procedure is illustrated with a numerical example. 

 
Keywords: Nonlinear programming; Genetic algorithm ; Fuzzy relation equations. 

1. Introduction 

Fuzzy relations and their calculation aspects offer a mathematical tool to model various real life and 
hypothetical systems with the help of fuzzy implications and approximate reasoning. Fuzzy information 
in relational structures is processed in terms of fuzzy relational equations. The notion of fuzzy relation 
equations was first investigated by Sanchez [1] in 1976 and then extended by Pedrycz [2, 3] and many 
others. The structure of the complete solution set of sup-TM equations was first introduced by Sanchez 
[4]. Peeva [5] proposed a method to obtain all the minimal solutions of max-min fuzzy relation equations.  
 

Fang and Li [6] first considered the linear optimization problem with max-min composition based 
fuzzy relation equations constraints. Further Loetamonphong and Fang [7] studied the same problem with 
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max-product composition. For both the compositions, optimization problem was divided into two sub-
problems based on the negative and non-negative coefficients in the objective function. The former sub-
problem was solved by the maximum solution while the latter was converted into a 0-1 integer 
programming problem and then solved by branch and bound method.  
 

The extension to nonlinear optimization problem with fuzzy relation equations as constraints was first 
proposed by Lu and Fang [8]. Li, Fang and Zhang [9] considered a problem of minimizing a nonlinear 
objective function with system of fuzzy relational equations with max-min composition and reduced it to 
a 0-1 mixed integer programming problem. Markovskii [10] gave the concept of covering problem for 
fuzzy relation equations with max-product composition. Thapar, Pandey and Gaur [11] studied a linear 
optimization model subject to max-Archimedean fuzzy relation equations. The concept of covering 
problem was applied to establish 0-1 integer programming problem equivalent to linear programming 
problem and a binary coded genetic algorithm was proposed to obtain the optimal solution. 
 

Geometric programming (GP) is a class of nonlinear, nonconvex optimization problems with objective 
function and constraints in a special form. Zener, Duffin and Peterson [12-14] were first to propose the 
geometric programming theory in 1961.  
 

Further considering the wide applicability of geometric programming Cao (2001) proposed fuzzy 
relational geometric programming. Yang and Cao [15-19] made a significant contribution to the area of 
fuzzy relational geometric programming using a variety of fuzzy operators. Wu [20] also studied a 
geometric objective function subject to max-min fuzzy relational equations as constraints and gave a 
reduction procedure for solving the problem. In the same area Zhou and Ahat [21] considered a geometric 
programming problem with a system of max-product fuzzy relational equations as constraints and gave an 
efficient procedure to find optimal solution. 
 

This paper considers a geometric objective function subjected to a system of max-min fuzzy relation 
equations. Geometric programming is referred as a special form of nonlinear programming. Research in 
direction of nonlinear optimization has always been very slow. The current paper is inspired by [17] and 
suggests a two stage procedure to find the optimal solution of the considered geometric optimization 
problem. 
 
We consider the following fuzzy relational geometric optimization problem 
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where [ ],  0 1,ij ijA a a= ≤ ≤  be a m n× dimensional fuzzy matrix and right hand matrix 
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coefficient 0kc > and , (0 ,1 )jkr R k K j n∈ < ≤ ≤ ≤ is corresponding exponent of variable jx in the 
thk monomial and 1 2[ , , , ]T

nx x x x= is the solution vector. Let {1,2, , }I m=  and {1, 2, , }J n=  be 
the index sets.  In this optimization problem the objective function is nonconvex by nature and the 
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feasible domain is also nonconvex, so the optimization problem can be categorized as a nonconvex 
programming problem. This characteristic of problem offers difficulty in employing the traditional 
methods for nonlinear programming to be applied directly to solve this optimization problem. 
 

The paper is organized in five sections. Section 1 offers the basic motivation and the literature behind 
the problem including the definition of the problem considered. In section 2 structure of solution set of 
the problem (1) is introduced then consistency conditions are explained. Section 3 discusses the procedure 
used to determine the solution set of fuzzy relational system considered as the feasible domain of the 
problem (1). Section 4 describes the design of the evolutionary procedure applied. Section 5 presents a 
numerical example for describing the overall procedure to solve the problem (1). A concluding remark is 
given at the end. 

2. Characteristics of the feasible domain  

We have considered the following fuzzy relation equation defined over the residuated 
lattice [ ]( 0,1 , , , , 0,1)tt∨ ∧ Θ : 

 
  (2)A x b=              

                                                                                                                         
where “ ” denotes the max-min composition of A  and x  .Let ( , ) { [0,1] | }nX A b x A x b= ∈ =  be the 
solution set of fuzzy relation equations (2). For any 1 2, ,x x X∈  we say 1 2x x≤  if and only if 

1 2 ,j jx x j J≤ ∀ ∈ . Hence the operator " "≤  establishes a partial order on X then the system ( ( , ), )X A b ≤  
becomes a lattice. Over a lattice concepts of maximum and minimal solutions can be discussed.  

( , )x X A b∈  is called as the maximum solution, if , ( , ).x x x X A b≤ ∀ ∈  Similarly, ( , )x X A b∈  is a 
minimal solution, if x x≤  for any ( , )x X A b∈  implies , ( , ).x x x X A b= ∀ ∈  A solution ( , )x X A b∗ ∈ is 
said to be optimal solution of (1) when ( ) ( )f x f x∗ ≤   for all ( , )x X A b∈ . When solution set of (2) is 
non-empty, the system is said to be consistent and inconsistent otherwise. If the system is consistent then 
in general, it can be completely determined by unique maximum solution x  and possibly finite number of 
minimal solutions [1-5]. 

 
Definition 1: Let t be a continuous t -norm then there exists a unique operation tΘ  associated with 
t called as the implication operator defined as: 
 

Sup { [0,1] | ( , ) }, , [0,1]ta b x t a x b a bΘ = ∈ ≤ ∀ ∈  
 
The tΘ operator satisfies the following two properties: 
 
1. (( ), )tt a b a bΘ ≤                                                                                                                                   3(a) 
2. ( , )t a x b≤  iff ( )tx a b≤ Θ                                                                                                                   3(b) 

 
If the system A x b=  is consistent, the maximum solution can be determined explicitly using the 

implication operator tΘ  as follows: 
 

1
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Furthermore when ( , )X A b φ≠ , the solution set ( , )X A b is given as:  
 

( , )
( , ) { [0,1] | }n

x X A b
X A b x x x x

∈

= ∈ ≤ ≤

 
 

where ( , )X A b is the set of all minimal solutions of (2).  
 
Lemma 1: If in the thi  equation , ,ij ia b j J< ∀ ∈  then the solution set ( , ) .X A b φ=  
 
Proof: If in the thi  equation ij ia b<  holds for all ,j J∈  then for ,j ijx a≠    
min( , ) min( ,1)ij j ij ij ia x a a b≤ = <  and for , min( , ) min( , ) .j ij ij j ij ij ij ix a a x a a a b= = = <  Thus for both 
cases, min( , ) , .ij j ia x b j J< ∀ ∈  Hence, max (min( , ))ij j i

j J
a x b

∈
<  which implies that the thi  equation 

remains dissatisfied by any variable then the system has no solution i.e., ( , ) .X A b φ=    
 
Definition 2: A continuous t -norm is said to be an Archimedean t -norm if and only if 
( , ) for all 0 1t x x x x< < <  and non-Archimedean otherwise. The minimum t-norm is a continuous but 

not Archimedean t-norm. 
 
Lemma 2: A vector ( , )x X A b∈ is a solution of system (2) if and only if, for each i I∈ , there exists an 

index ij J∈ such that min( , )
iij j ia x b=  and min( , ) , ,ij j ia x b i I j J≤ ∈ ∈ . 

 
Proof: For the solvability of the system A x b=  in (2) min( , ) for allij j ia x b j J≤ ∈  , ,i I∀ ∈ and by 

the non-interactive nature of max  operator ,s.t. min( , ) fori ij j ij J a x b i I∃ ∈ = ∀ ∈ . 

A system of fuzzy relation equations defined in (2) is said to be homogeneous if 0,b =  and non-

homogeneous otherwise. Homogeneous system has the trivial solution. As in a system A x b= if 

0,ib = for some i I∈ then max min( , ) 0.ij j
j J

a x
∈

= If 0ib = for some i I∈ such that 0,i ja∃ > for some 

,j J i I∈ ∈ then jx  has to be zero. Hence for some 0ib = if 0,ija j J> ∈ , we can simply set 0jx = .So 

the value of all the variables that appear in the thi  equation must be 0. Hence the system can be reduced 

and simplified to a new system after deleting all such equations from A  and corresponding component 
from b . Any solution of the original system can be obtained by simply setting variables jx  to zero 

wherever 0, .i ja j J> ∈   

 

3. Reduction procedure  

Consider the single equation from the system (2) given as:  
 

1 1 2 2( ) ( ) ... ( )

0 1 ,
i i in n i

j

a x a x a x b

x j J

∨ ∨ ∨ ∨ ∨ ∨ =

≤ ≤ ∈
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Furthermore, from the property 3(b) of implication operator it is clear that 
min( , ) iff ( )ij j i ij t ia x b x a b≤ ≤ Θ .The unit component equation min( , )ij j ia x b= in above equation   has a 
solution iff i ijb a≤ .The solution set of min( , )ij j ia x b=  can be discussed in the following cases: 

 
• Case I: If ij ia b> then we have j ix b=  as the solution of the unit equation min( , )ij j ia x b= . 
• Case II: If ij ia b=  then [ , ]i ij t ib a bΘ is the solution set of the unit equation min( , )ij j ia x b= . 
• Case III: If ij ia b<  then we have jx φ= , i.e.  the equation min( , )ij j ia x b= has no solution in this case. 
 

The above discussion shows that the equation  min( , )a x b=  has a solution iff b a≤  and then the 
solution set of min( , )a x b=  is given by [ , ]tb a bΘ .For more details see [5,22-23].  

 
With the help of computed maximum solution x  the characteristic matrix ( )ij m nP p ×=  of the system 

A x b=  can be defined as: 
 

[ , ], if min( , )
(5)

, otherwise
i j ij j i

ij

b x a x b
p

φ

=
=

 

It is clear from the above argument on the unit equation min( , )ij j ia x b=  that ib presents the lower 

bound for a variable jx to satisfy the thi  equation. Each nonempty element ijp  of the characteristic 

matrix P gives the whole range of possible values for the variable jx  to satisfy the thi  equation. The 

system A x b= is consistent if and only if P  has no row with all elements as empty elements i.e. if there 
does not exist some equation not satisfied by any variable. In general for a continuous non-Archimedean 

t-norm the non-empty elements in characteristic matrix P might not be singleton while in the case of an 
Archimedean norm these entries are always singleton and are equal to the corresponding component of 
maximal solution. 

Now if 0,ib i I∃ = ∈ then without loss of generality corresponding rows can be removed from the 

matrix P . After removing these rows from matrix P then the matrix is simplified to matrix P . In the 
simplified matrix P  there might be some variables that satisfy only those equations for 

which 0ib = .After removing these rows from P , the columns corresponding to those variables have only 

zeros in the characteristic matrix P . Such variables are called pseudo-essential [22]. 

Definition 3: A variable is said to be multi-essential if its corresponding column in the characteristic 
matrix P  contains a non-singleton element. Different values of a multi-essential variable can satisfy 
different no. of equations. The multi-essential variable can also assume some value other than 0 and 
corresponding maximal component value in the minimal solutions [22]. 

Definition 4: Let ( )ij m nP p ×= be the simplified characteristic matrix of system (2) then a row 1i  

dominates a row 2i if 
2i jp φ≠  imply

2 1i j i jp p⊆  for all j J∈ [22]. 

A row of P  is redundant if and only if it dominates some other row. Moreover if a row 1i dominates a 

row 2i we have 
1 2i ib b≤ since ib represents the lower bound for a variable to satisfy the thi  equation. For 

the sake of simplification redundant rows can be removed from the modified matrix P . At this stage some 
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columns can be zeroed out. It is clear that the variables of such columns cannot have non-zero values in 
minimal solutions. Such variables are called semi-essential [10]. After removing the redundant rows and 
the columns corresponding to semi-essential variables from matrix P the matrix transforms to the 
matrix P′ .It is noteworthy that if there exists a row in P′  having the unique nonempty entry 
corresponding to a column j , then the variable corresponding to that column is called super-essential 

[22]. If jx is super-essential, it can assume different values in different minimal solutions of system (2). 

In the system with non-Archimedean based composition the super-essential variable can also attain some 
value other than its corresponding maximal component value while in case of Archimedean norm based 
composition they coincide with the corresponding component value in the maximal solution.  
 

Once the matrix P′ is obtained, we adopt the algebraic method for finding all minimal solutions of (2) 
by considering the simplified characteristic matrix P′  associated with the formal logical expression. We 
follow the notations for the resolution as used in [23]. Each row of matrix P′  is associated with logical 

sum, i
i

j j

b
u

x
= ∨ (DNF) for all j J ′∈  where { | }ijJ j J p i Iφ′ = ∈ ≠ ∀ ∈ . The whole matrix P′  

corresponds with the logical product i

i

P u′ = ∧ (CNF). The whole truth function obtained in (CNF) can 

be reduced to DNF using laws of conversion of fuzzy truth function in CNF to DNF as defined in section 
3.1. The truth function for finding all the minimal solutions can be given as: 
 

i
P

i P j J j

b
F

x
′

′ ′∈ ∈
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3.1. Rules to perform conversions form fuzzy truth function in CNF to DNF  
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The whole procedure for finding all the minimal solutions of system (2) can be summarized in the 
Algorithm 1 given below: 
 
Algorithm 1: Finding all the minimal solutions 
 
Step 1: Get the matrices ,A b .  
Step 2: Find the maximal solution x  by (4). 
Step 3: Check consistency of the system .If A x b≠ , system is inconsistent, stop the procedure. 

Step 4: Find the characteristic matrix P  of A  using (5) and then find simplified characteristic matrix P . 
Step 5: Find the reduced matrix P′ . 
Step 6: Find all the minimal solutions of (2) by applying logical rules of inferences defined in section 3.1. 

 
Once the solution set of system (2) is determined from the Algorithm 1, we construct as many 

optimization problems as many minimal solutions are obtained with same objective function considering 
each of the convex sub-feasible regions formed by one minimal solution and unique maximal solution as 
the feasible region as follows: 

 
min ( )

. . , {1,2,...,| ( , ) |} (6)r

f x

s t x x x r X A b≤ ≤ ∈

Then the optimal solution x∗ of the original optimization problem in (1) is obtained with the help of 
optimal solutions of the above optimization problems. 
 
4. Evolutionary machinery to solve optimization problems in (6) 
 
     Genetic Algorithms (GA) are stochastic search techniques based on the ideas of natural selection and 
genetic inheritance. The basic idea of genetic algorithm is to maintain a population of candidate solutions 
for the problem at hand and making it evolve by iteratively applying genetic operators to produce 
(hopefully) better and better approximations to its solution.  
 
     Genetic Algorithm (GA) start operating on a set of potential solutions known as population. The 
potential solutions are termed as the chromosomes representing the candidate solutions of the problem 
under consideration. After representing the solutions into the decision variable domain, the performance 
of individual members of population is assessed by evaluating a fitness function characterizing an 
individual’s performance in the problem domain. At each generation, a new set of approximate solutions 
is created by the process of selecting individuals according to their level of fitness in the problem domain 
and breeding them together using operators Recombination and Mutation. This process leads to the 
evolution of populations of individuals that are better suited to their environment than the individuals that 
already exist. 
 

4.1. Selection 

The main purpose of selection is to maintain good copies of individuals for the next generation. We 
have used the tournament selection as the selection strategy. Tournament selection starts by selecting a 
set of individuals at random and tournaments are played among them and the best fit player wins and 
chosen for mating. Similar process is repeated until a population of desired strength is selected. The 
number of players in a set denotes the tournament size. Bigger tournament size enhances the selection 
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pressure so small tournament size is always a good choice. Selected individuals undergo crossover and 
mutation and new individuals are obtained. 

  
Definition 5: Given a connected set T  and any two points 1 2,x x T∈ , 0 1, 1α β≤ ≤ ≥ . 
 
(i) A linear contraction of 1x  supervised by 2x  is given as: 
 

1 1 2(1 )x x xα α= + −  
 
(ii) A linear extraction of 1x  supervised by 2x  is defined as: 
 

1 1 2( 1)x x xβ β= − −  
 
where ,α β  are the step lengths for the linear contraction and extraction respectively and are generally 
kept small. 

 

4.2. Crossover  

Crossover is the main operator that is responsible for bringing diversity in the next generation. In 
crossover, two selected good and feasible (satisfying constraints) individuals mate together and two new 
solutions called offsprings are created which typically share many of the characteristics of their “parents”. 
New parents are selected for two new children, and the process continues until a new population of 
appropriate size is created. We have adopted a line combination crossover operator. It is designed in such 
a way that children individuals remain in the feasible domain. The algorithm for the crossover is stated as 
follows: 

 
Algorithm 2:  Crossover  
 
Get the matrices ,A b  and find the maximum solution x  by (4) and set parameters 0 1,α≤ ≤  

1,β ≥ 0 1,0 1ζ δ≤ ≤ ≤ ≤ . 
 
Randomly select two individuals 1 2,x x  from the selected population. 
For i=1, 2 
Generate a random number [ ]0,1ε ∈  
 

If ( )ε ζ≥  
          ( 1)i ix x xβ β= − −  
 Else 
         (1 )i ix x xα α= + −  

Generate a random number [ ]2 0,1ε ∈  
 
If 2( )ε δ≥  
 
Go to evaluation procedure 
 
Else 
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 1 1
nextx x←  

         1 1 2(1 )x x xα α= + −  
 
 If 1A x b=  
 
 Go to evaluation procedure 
Else 
 1 1

nextx x←  
         1 1 2( 1)x x xβ β= − −  
 
 If 1A x b≠  
 1 1

nextx x←  
 Go to evaluation procedure. 
 
End 
 

Here, ,α β  are the probabilities of linear contraction and extraction respectively and are generally kept 
small. For our problem we are taking 0.99, 1.0085, 0.012, 0.99α β ζ δ= = = = . 
 

4.3. Mutation 

Mutation randomly perturbs a candidate solution with a hope to create a better solution exploring the 
search space of the problem domain. We adopt the following mutation procedure for solving our problem: 

 
Algorithm 3: Mutation 

 
1. Get the matrices ,A b  and find the maximum solution x   by (4) and set the mutation probability 

[0,1].θ ∈  
2. Generate [ ]0,1jr ∈  for each bit of every individual in the crossed population. 
3. For j J∀ ∈  if jr θ≤ , randomly assign jx  a number from[0, ]jx . 
4. For the modified 1 2( , ,..., )nx x x x=  check A x b= .  
5. If A x b=  go to the evaluation procedure. 

 
The overall procedure applied for solving the considered optimization problems in model (6) can be 

summarized in the following algorithm: 
 

Algorithm 4: Genetic Algorithm procedure 
 

Step 1: Define maximum number of iterations as gen_max  and set gen =1. 
Step 2: Randomly generate initial population of size say k within the specified bounds of the decision   
variables.  
Step 3: Check feasibility. 
Step 4: Found feasible individual(s)? If yes then go to Step 5 else go to Step 2. 
Step 5: Select the best individuals using objective function. 
Step 6: Generate offsprings for next generations by applying crossover using Algorithm 2 and mutation 
using   Algorithm 3. 
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Step 7: Select feasible individuals among offsprings and set gen = gen + 1. 
Step 8: Found better individuals than parents among offsprings? 

If yes then discard the offsprings and parent generation remains same for the next generation             
also, now go to Step 10 else go to Step 9. 

Step 9: Update the optimal solution and value of objective function and now this generation becomes the 
parent generation. 

Step 10: Is gen equal to gen_max? If yes, then STOP else go to Step 6. 
 

The overall procedure applied for solving the considered optimization problem (1) can be summarized 
in the following steps: 

 
Algorithm 5: 
 
Step 1: Find all the minimal solutions by the Algorithm 1. 
Step 2: Find all the sub-feasible regions considering all the minimal solutions. 
Step 3: Solve the different optimization problems using Algorithm 4.  
Step 4: Find single optimal solution out of the different optimal solutions obtained in Step 3. 
 
5. Illustrative Example  

 
Example 1:  Consider the following fuzzy relation optimization problem: 
 

( ) 0.2 0.3 2 1 1 0.2 1.5 2 2 1
1 2 3 4 5 1 2 3 4 5min 5 2f x x x x x x x x x x x− − − − − −= +

 
s.t A x b= where 0 1, , 1, 2,...,5jx i j≤ ≤ =  

 
0.9 0.8 0.6 0.3 0.9

0.8 0.7 0.8 1 0.8

0.6 0.9 0.8 0.9 0.5

0.4 0.2 0.5 0.6 0.2

0.3 0.3 0.5 0.2 0.1

0.4 0.1 0.2 0.3 0.5

A =

 [0.8 0.8 0.8 0.5 0.5 0.4]Tb =  
 
Maximal solution of A x b= can be easily computed by (4) as follows: 
 

(0.8 0.8 1 0.5 0.4)Tx =  
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Since A x b= , hence the system of FRE is consistent. The characteristic matrix P  of system (2) is: 
 

0.8 0.8

0.8 [0.8,1]

0.8 [0.8,1]

[0.5,1] 0.5

[0.5,1]

0.4 0.4

P

φ φ φ

φ φ φ

φ φ φ

φ φ φ

φ φ φ φ

φ φ φ

=

 
As row 4, dominates row 5, row 4 is redundant and can be removed from P . After removing these 
rows, 4x is semi-essential. After removing the redundant rows the simplified matrix P  is: 
 

0.8 0.8 0 0 0

0.8 0 [0.8,1] 0 0

0 0.8 [0.8,1] 0 0

0 0 [0.5,1] 0 0

0.4 0 0 0 0.4

P =

 
 
After removing the all zeroed columns we obtain the matrix P′ as follows: 
 

1 2 3 5

0.8 0.8 0 0

0.8 0 [0.8,1] 0

0 0.8 [0.8,1] 0

0 0 [0.5,1] 0

0.4 0 0 0.4

x x x x

P′ =

 
 
Clearly  3x  is super essential. The associated truth function for the simplified characteristic matrix P′ is: 

 

3 3 5 6 61 1 2 2

1 2 1 3 2 3 3 1 5

i i i i ii i i i

P
j j j j j j j j j

b b b b bb b b b
F

x x x x x x x x x
′ = ∨ ∧ ∨ ∧ ∨ ∧ ∧ ∨   

 
After converting this fuzzy truth function in CNF to DNF using laws of conversion we have: 
 

1 2 3 1 3 2 3 5

1 2 3

0.8 0.8 0.5 0.8 0.8 0.8 0.8 0.4

0.4 0.8 0.4

j j j j j j j j

j j j

x x x x x x x x

x x x

= ∨ ∨

∨
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The corresponding minimal solutions of the system are:  
 

1 2

3 4

(0.8 0.8 0.5 0 0) , (0.8 0 0.8 0 0)

(0 0.8 0.8 0 0.4) , (0.4 0.8 0.8 0 0)

T T

T T

x x

x x

= =

= =

 
 
Then the whole solution set of the fuzzy relation equation in (2) is: 
 

( , ) (0.8 0.8 [0.5,1] [0,0.5] [0,0.4]) (0.8 [0,0.8] [0.8,1] [0,0.5] [0,0.4])

([0,0.8] 0.8 [0.8,1] [0,0.5] 0.4) ([0.4,0.8] 0.8 [0.8,1] [0,0.5] [0,0.4])

X A b = ∪

∪ ∪  
 
It is clear that if 0 then 1j jx x= = ∞ .Keeping this fact in consideration and the four optimization 

problems formed by four minimal solutions can be written as: 
 

( ) 2 1 1 2 2 1
3 4 5 3 4 5

3

4

5

1 min 5.59 2.92

s.t. 0.5 1

0 0.5

0 0.4

P f x x x x x x x

x

x

x

− −= +

≤ ≤

< ≤

< ≤

 ( ) 0.3 2 1 1 1.5 2 2 1
2 3 4 5 2 3 4 5

2

3

4

5

2 min 5.22 2.09

s.t. 0 0.8

0.8 1

0 0.5

0 0.4

P f x x x x x x x x x

x

x

x

x

− − − −= +

< ≤

≤ ≤

< ≤

< ≤
  

( ) 0.2 2 1 0.2 2 2
1 3 4 1 3 4

1

3

4

3 min 2.14 1.12

 s.t. 0 0.8

0.8 1

0 0.5

P f x x x x x x x

x

x

x

− − − −= +

< ≤

≤ ≤

< ≤
 

( ) 0.2 2 1 1 0.2 2 2 1
1 3 4 5 1 3 4 5

1

3

4

5

4 min 5.35 2.795

 s.t. 0.4 0.8

0.8 1

0 0.5

0 0.4

P f x x x x x x x x x

x

x

x

x

− − − −= +

≤ ≤

≤ ≤

< ≤

< ≤
 

On solving these four optimization problems using Algorithm 4 the four optimal solutions are listed in 
table 1 and the convergence of the corresponding GAs are shown in the figure 1.  
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Table 1. Optimal solutions for the four optimization problems 

Problem    1x                2x             3x             4x                    5x  Optimal value f  

1P  0.8000    0.8000   0.6751   0.4511     0.000032 0.00039451521903 

2P  0.8000    0.7172    0.9420    0.3932    0.0001 
 

0.00470617192855 

3P  
 

4P

0.7933    0.8000    0.8002    0.4991    0.4000 
 
0.6826    0.8000    0.8131    0.2567    0.0000037 

5.89151635308652 
   
0.00016933802324 

 
It is clear that (0.6826    0.8000    0.8131    0.2567   0.0000037)x∗ =   with 

( ) 0.00016933802324f x∗ =  is the optimal solution of the problem (1). 
 

    
(a)                                                                                                  (b) 

          

                                                     (c)                                                                                                      (d) 

Fig. 1.(a) Convergence of  GA for 1P  (b) Convergence of   GA for 2P  (c) Convergence of  GA for 3P  (d) Convergence of  GA 

for 4P  
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6. Conclusion 

In this paper, we have considered a fuzzy relation geometric programming problem with a posynomial 
geometric objective function subjected to max-min fuzzy relation equation constraints. The extensive 
nonlinear nature of the objective function and feasible domain hinders many nonlinear programming 
techniques to be applied directly. In the proposed method, firstly the fuzzy relational system is solved to 
determine the solution set. At the second level a genetic procedure is applied to determine the optimal 
solution. The solution procedure is based on solving the fuzzy relation system (2). Finding minimal 
solutions of (2) is an NP hard problem, so efficient determination of the solution set is an important aspect 
to be considered while applying the suggested procedure.  
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