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Abstract

Optimization is concerned with the �nding of global optima �hence the name� of problems that can
be cast in the form of a function of several variables and constraints thereof� Among the searching
methods� Evolutionary Algorithms have been shown to be adaptable and general tools that have
often outperformed traditional ad hoc methods� The Breeder Genetic Algorithm �BGA� combines
a direct representation with a nice conceptual simplicity� This work contains a general description
of the algorithm and a detailed study on a collection of function optimization tasks� The results
show that the BGA is a powerful and reliable searching algorithm� The main discussion concerns the
choice of genetic operators and their parameters� among which the family of Extended Intermediate
Recombination �EIR� is shown to stand out� In addition� a simple method to dynamically adjust the
operator is outlined and found to greatly improve on the already excellent overall performance of the
algorithm�

� Introduction

A wide range of di�cult problems or subproblems in Arti�cial Intelligence �AI� can be cast in the form
of a function optimization problem �a FOP�� When cast this way� these problems have been traditionally
addressed by the Operations Research community� However� the quest for even better and more general
searching algorithms has never stopped� Since the ���s� new and powerful heuristic methods have emerged
that are particularly well suited for FOPs �although this was not exactly their original purpose� mainly
because of their generality� robustness� and conceptual �though not necessarily analytical� simplicity� In
addition� the constant need for general	purpose optimization techniques has widen their horizon and
boosted their widespread use� Three of these methods are Simulated Annealing �SA�� Tabu Search �TS�
and Evolutionary Algorithms �EA�� A modern analysis of SA� TS and EA and their possible combinations
and applications can be found in �
��� Simulated Annealing was introduced in ���� and� nearly thirty
years later� the method was suggested as a feasible FOP solver ����� Tabu Search is newer ����� and has
attracted a lot of interest in the last years� While SA is stochastic� TS is a deterministic procedure� Both
methods perform a kind of neighbourhood search and have a means to deal with suboptimal solutions
�local optima of the search space�� The term Evolutionary Algorithms ��� is very general and includes
many methods that have been �and are being� developed independently in the last 
� years� All of them
are based on techniques that mimic or are inspired in population genetics� and have the added appeal of
being easily parallelazible �both intuitively and physically�� Among them� the Breeder Genetic Algorithm
�BGA� has been one of the last to emerge ����� Nevertheless� despite its promising initial results when
compared to other methods �evolutionary or not� it has not attracted a great deal of attention� possibly
because of the enormous impact of the other �in a sense already classical� Evolutionary Algorithms
�mainly Evolution Strategies and Genetic Algorithms��
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When trying to assess the goodness of a new algorithm� or when attempting the di�cult task of �ne	
tuning an existing one� it is desirable to have a carefully designed test suite of FOPs� both challenging
and diverse� The main interest in devising an arti�cial FOP relies in that it is much more controllable
than real	world ones �in the ideal case� the position and value of the best solution are known� topology
is� to some degree� also known� it is scalable to any number of dimensions� there is a known degree of
non	linearities� of noise� of symmetries� etc�� A collection of such FOPs constitutes a useful test suite
for use in benchmarking tasks� Whatever the motivation� once the empirical behaviour of an algorithm
among a set of known arti�cial problems has been assessed� the knowledge and experience gained can be
transferred to the solution of real	world problems�

In the remainder of this paper� the possibilities of the Breeder Genetic Algorithm are studied to gain
such knowledge� with the following four main purposes in mind�

�� To explore how well the BGA copes with a given test suite� To this end� a set of classical test
functions are analyzed and a subset thereof are used to evaluate the algorithm�

�� To ascertain what parameter settings are generally better� A detailed study on the di�erent recom	
bination and mutation settings is presented�


� To compare the BGA� whenever other results are available� to other optimization techniques� This
is performed on a particular function� F�F�� in high dimensions �up to �����


� In addition� a new heuristic appliable to recombination operators is proposed and initially tested�

The results� which are presented in detail in Sections �� � and in the Conclusions� show that the
BGA is a powerful and robust search algorithm� well suited for continuous optimization� This assertion
is based on the light of the extremely good results obtained for all of the FOPs tested� for a variety of
population sizes �from �� to 
�� individuals�� In particular� the function F�F� �see Section �� is solved
to satisfaction at all dimensions tested� and the results are shown to be superior to those obtained with
other optimization techniques�

Regarding the choice of genetic operators and settings the results show that� �rst� mutation is highly
dependent on its parameters �specially on the precision parameter� and that the continuous version of this
operator is in general more reliable than the discrete one� although the results are inconclusive on that�
Second� there are signi�cative di�erences among recombination operators� though none can be said to be
markedly inferior or superior in all situations� We �nd EIR �Extended Intermediate Recombination� to
be the most reliable one� regardless of the value of its single parameter �� In other words� this operator is
always at least as good as the others for some value of �� To set this parameter� apart from the traditional
�xed values �ranging to � � � to � � ��
��� a method for dynamically setting its value �called range�� is
proposed� and shown to greatly improve on performance� Nevertheless� it is also found that �even in the
limited scope of this study� there are FOPs for which other operators do specially well� as for example
DR �Discrete Recombination� on F� �Schwefel�s function��

The report is organized as follows� In Section � a Function Optimization Problem �FOP� is de�ned�
compiling a collection of aspects that pose it as a generally di�cult problem� In Section 
� the basics of an
Evolutionary Algorithm are outlined from a conceptual point of view� In Section 
 the Breeder Genetic
Algorithm is introduced as a particular case of EA� with special emphasis on the analysis of the set of
genetic operators available for it� The general properties that a suitable arti�cial FOP should exhibit are
surveyed in Section �� along with a description of the classical test suite used for EA benchmarking and
how well it ful�lls the properties�

The experiments are centered on mutation and recombination operator settings �the speci�c operators
and the choice of their parameters� to assess to what degree they in�uence algorithm performance� The
experimental description begins at Section �� The general experimental setup� a set of working hypotheses�
and an explanation of how the results are presented are then in order� Section � is entirely devoted to
mutation whereas Section � is dedicated to recombination� Both sections are respectively ended with
comments on the results obtained and some guidelines about how to interpret them� The last part of the
work �in Section �� concentrates on a particular function� F�F�� using it as a test bed for optimization
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in high dimensions� The paper ends with the conclusions along with a summary of the experience gained
from the experiments performed and proposals for future work�

� Function Optimization Problems

Many real	world problems are naturally or can somehow be described as a function� a scalar expression
depending of a normally �xed set of decision variables� often inside a given range� and perhaps in the
presence of constraints on these variables� This function is then to be minimized or maximized globally�
although this distinction is of no importance� since conversion is always possible by realizing that

max
�x

F ��x� � �min
�x

F ���x�

In the following� it is assumed that the function is to be minimized� When the variables are all discrete
�for example� integers� the term combinatorial optimization is used� A FOP is formulated as�

Minimize F ��x� � D �� R
subject to ci��x� � �� � � i � m�

where �x � �x�� x�� � � � � xn� is the vector of variables� D � D� �D� � � � ��Dn and xi � Ri� The Ri � Di

are the domains of de�nition of variable i� the set of possible values the variable can take� If the variable
is continuous� it is a real interval of the form Ri � �r

�
i � r

�
i � � R� called the range� If it is discrete� then Ri

is a �nite set� possibly with an order relation de�ned on it� The speci�c form of the ci��x� de�nes classes
of problems� One of the best known is given by restricting F ��x� and ci��x� to be linear� and the variables
xi to be in Q �the set of rational numbers�� traditionally tackled by linear programming techniques� such
as the Simplex algorithm�

A solution to a FOP requires �nding an �x� such that�

�� 	�x � D � F ��x�� � F ��x�

�� 	i � � � i � m � ci��x�� � �

We will call a solution infeasible if it ful�lls condition �� but not condition �� In general� this optimization
is a di�cult problem� due to the following aspects of F ����


 A complicated �and most of the times completely unknown� topology� characterized by strong
multimodality� i�e� the existence of several �may be thousands� local minima �x� such that

�� � � � 	�x � D � jj�x� �x�jj � �� F ��x�� � F ��x�

with several di�cult characteristics as isolated global optima� many peaks� troughs� �at plateaus�
discontinuities� etc�


 The presence of the constraints� very di�cult to handle by most algorithms� because the set of
possible solutions is further restricted to just a subset of those included in the domain of the
variables� That is� the original space D shrinks to

D� � f�x � D � ci��x� � �� 	i � � � i � mg
For many algorithms� including EAs� it is useful to include the constraints and F ��� in a functional
form into F ���� that gives worse values the more the constraints are violated� The rationale of
this is that it is good for the search to temporarily exit the space of feasible solutions to enrich
it� because in many cases the best feasible ones are borderline cases� and in this way the search
gets more balanced� The other reason is that there are problems for which no feasible solution may
exist� and thus it is desirable to have the best non	feasible solution as the result of the search �that
is� the one less violating the constraints�� This technique has been shown to work very well ��
�
provided two conditions are ful�lled�






�� The penalty term ���x� incorporated �either in an additive or multiplicative way� into F ���
is a function of the distance from feasibility �e�g� from the closest borderline feasible solution��

�� The best infeasible solution can never be assigned a lower �that is� better� value than the worst
feasible one�

There is also a possible parameter 	 to control the in�uence of both terms� such that

F ���x� � ffF ��x�� 	� ���x�g

where a typical setting could be

F ���x� � 	F ��x�  ��� 	����x�

where

	 �

�
� if �x is feasible
� otherwise

and

���x� � �
nX

ci��x���

ci��x� �
nX

ci��x���

jci��x�j

is the penalty term�


 The presence of noise�

 The large dimensionality of F ��� �high values of n�� In general� all algorithms su�er with increasing
numbers of variables� especially if they interact non	trivially� Also� it is well possible that some of
these variables are irrelevant for the problem�


 The strong non	linearities between variables�

 The �possible� non	di�erentiability of F ��� due to the presence of discrete variables� or any cause
of discontinuity� or even the presence of dimensionless variables�


 The �possible� time	varying behaviour of F ���� characteristic of living systems� although this aspect
is rarely touched by FOP solvers� In practical terms� this carries the assumption that the topology
of the function does not change during optimization�


 The imprecision or vagueness inherent in all kinds of variables� an issue not addressed by most
methods� For example� coding information that is known to be imprecise as an �exact� crisp value�
or vague concepts like !tall" as discrete nominal values� This is also an oversimpli�cation that has
its consequences in a loss of �exibility and expressive power�

Even if the general FOP is unsolvable� for some practical problems a small improvement can make a
real di�erence because of the potential cost savings�

� Basics of an Evolutionary Algorithm

The term Evolutionary Algorithms refers to a big family of search methods based on concepts taken from
Darwinian evolution of species and natural selection of the �ttest� Some concepts from genetics are also
present� Given a problem to be solved �usually in the form of a FOP� EAs maintain a population of
individuals that represent potential solutions to it� Each individual in the population is represented by
a chromosome consisting of a string of atomic elements called genes� Each gene contains �represents� a
variable� either for the problem or for the algorithm itself� The possible values of a gene are called alleles
and the gene�s position in the chromosome is called locus �pl� loci�� There is also a distinction between
the genotype� the genetic material of an individual� and the phenotype� the individual result of genotype
development �that is� the born living thing�� In EAs the genotype coincides with the chromosome� and






the phenotype is simulated via a �tness function� a scalar value �similar to a reinforcement� expressing
how well and individual has come out of a given genotype�� However� there are many di�erences with
natural evolution� reviewed in ����

The search process usually starts with a randomly generated population and evolves over time in a
quest for better and better individuals where� from generation to generation� new populations are formed
by application of three fundamental kinds of operators to the individuals of a population� forming a
characteristic three	step procedure�

�� Selection of the �ttest individuals� yielding the so	called gene pool�

�� Recombination of �some of� the previously selected individuals forming the gene pool� giving rise
to an o�spring of new individuals�


� Mutation of �some of� the newly created individuals�

By iterating this three	step mechanism� it is hoped that increasingly better individuals will be found
�that is� will appear in the population�� This reasoning is based in the following ideas�

�� The selection of the �ttest individuals ensures that only the best ones� will be allowed to have
o�spring� driving the search towards good solutions� mimicking the natural process of selection� in
which only the more adapted species are to survive�

�� By recombining the genetic material of these selected individuals� the possibility of obtaining an
o�spring where at least one child is better than any of its parents is high�


� Mutation is meant to introduce new traits� not present in any of the parents� It is usually performed
on freshly obtained individuals by slightly altering some of their genetic material�

There is a last operation involved� the replacement criterion� that basically says which elements�
among those in the current gene pool and their newly generated o�spring� are to be given a chance of
survival onto the next generation� There are two basic strategies� generically denoted by �
� 	� �the
comma strategy� and �
 	� �the plus strategy�� The letter 
 denotes the population size and the letter
	 � 
 the number of o�spring to be generated out of the 
 elements� In the plus case� both the parents
and their �recombined and mutated� o�spring will be taken into account to form a new generation of
again 
 elements� In the comma case the parents� after generating o�spring� die o� and are not taken
into account to form the next generation�

Thus� an EA may be seen as a non	empty sequence of ordered operator applications� �tness evaluation�
selection� recombination� mutation and replacement� The entire process iterates until one of the following
criteria is ful�lled�

�� Convergence� it happens because the individuals are too similar� Fresh and new ideas are needed�
but recombination is incapable of providing them because the individuals are very close to one
another� and mutation alone is not powerful enough to introduce the desired variability� Conver	
gence can be monitored by on	line �average of the best individuals� and o�	line �average of average
individuals� throughout the generations�

�� Problem solved� the global optimum is found up to a satisfactory accuracy �if optimum known��


� End of resources� the maximum number of function evaluation has been reached�

Evolutionary Algorithms are e�ective mainly because their search mechanism keeps a well	balanced
tradeo� between exploration �trying to always drive the search to the discovery of new� more useful�
genetic material� and exploitation �trying to �ne	tune good already	found solutions�� Exploration is

�In other disciplines� like Arti�cial Life methods� the phenotype is a real �or simulated� entity that interacts with an
environment�

�Or the luckiest in some EA instances� like most GAs�
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mainly dealt with by the mutation operator� Exploitation is carried out by the selection process and the
use of recombination operators� although mutation may also play a role in the �ne	tuning of solutions�
The �tness function is built out of the function to be optimized �called the objective function�� All
EAs represent the decision variables in the chromosome in one way or another� either directly as real
values �like ESs� or resorting to a discrete coding� usually binary �like most GAs�� The particular coding
scheme is the classical knowledge representation problem in AI� and completely conditions the results�
In addition� some algorithms �like ESs� append their own variables to the representation in the form of
auxiliary information that evolves with time like the other variables�

According to the representation scheme chosen� there must be a decoding method #��� �equivalent
to the genotype to phenotype development� to decode the decision variables from their chromosomic
representation

# � i � $t � �x � D

where $t stands for the population at a certain generation t� Once decoded� these variables can readily
be used as arguments of the objective function F ��� to yield a �tness value� The �ttest individuals are
those with a lowest �in case of minimization� �tness value� Thus� the �tness function %��� of an individual
i is composed of a decoding function #��� and applies to it the objective FOP F ��� or some variant of it
F ���� to be solved� to yield the �tness value associated with each individual� %�i� � F ��#�i��� Some EAs
require a form of post	processing such as a global rescaling function� but it is much more convenient to
consider it as part of the selection mechanism itself�

An EA can be formally described by the conceptual algorithm in �g� �� parameterised by a tuple�

� EA	Setup ��� $�� �
� 	��&�'�(�)�%�*�

where $t � �it�� i
t
�� � � � � i

t
�� is the population at time t and thus $� is the� usually random� initial popula	

tion� 
 the population size� 	 the o�spring size �out of 
�� & the selection operator� ' the recombination
operator� ( the mutation operator� ) the termination criterion� * the replacement criterion and % the
�tness function� In this algorithm� operator sequencing on the population is as follows� $t represents the
population at time �i�e�� generation� t� $�

t the population after selection� $
�
t after recombination and $

��
t

after mutation� to end in a new population $t���

The three main representatives of EAs are� Genetic Algorithms� proposed by Holland ����� then settled
��
�� and made popular ����� Evolution Strategies� developed by Rechenberg �
�� and Schwefel �

�� during
the ���s and more or less settled in the ���s �

�� �
��� and Evolutionary Programming �EP�� introduced
by Fogel ���� and spread by him and his coworkers ����� an approach that resembles ESs although they
were developed independently� One of the main references to EAs is ���� other� good and brief surveys
can be found in ���� ���� An excellent state	of	the	art and review of EAs� and a useful departure point
because of its rich set of references is ���� Modern surveys and introductions to speci�c algorithms are �
�
and �
� for ESs� ���� and �
�� for GAs� and ���� for EP� There is also a very complete FAQ with lots of
pointers to papers� books� software and the main groups working on EAs all over the world �����

� Breeder Genetic Algorithms

The Breeder Genetic Algorithm ���� is in midway between GAs and ESs �see Fig� 
�� While in GAs
selection is stochastic and meant to mimic �to some degree� Darwinian evolution� BGA selection is
named truncation selection� a deterministic procedure driven by the so	called breeding mechanism�� an
arti�cial selection method stating that only the best individuals �usually a �xed percentage � of total
population size� are selected and enter the gene pool to be recombined and mutated� as the basis to
form a new generation	� Recombination�mutation operators are applied by randomly and uniformly
selecting two parents until the number of o�spring equals 
 � q� Then� the former q best elements are
re	inserted into the population� forming a new generation of 
 individuals that replaces the previous

�This method is employed in livestock breeding�
�It is interesting to note that Tournament Selection in GAs is an stochastic form of rank�based selection� of which

truncation selection is the most used instance�
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Procedure Evolutionary�Algorithm ��EA	Setup��
f

t����
create $t�
evaluate %�i�� 	i � $t�
while not�)�$t�� do
f
�+ Create the gene pool $�

t +�
select� $�

t �� &�$t��

�+ Apply genetic operators +�
recombine� $�t �� '�$

�
t ��

mutate� $��t �� (�$
�
t��

�+ Evaluate their e�ect +�
evaluate %�i�� 	i � $��t �

�+ Form the new generation +�
replace� $t�� �� *�$��t 
$�

t ��
t �� t �

g
g

Figure �� Evolutionary Algorithm�

one� This guaranteed survival of some of the best individuals is called elitism whatever the EA� For
the BGA� the typical value is q � �� The BGA selection mechanism is then deterministic �there are no
probabilities�� extinctive �the best elements are guaranteed to be selected and the worst are guaranteed
not to be selected� and �	elitist �the best element is always to survive from generation to generation��
Self	mating is always prohibited� This is a form of the comma strategy �
� 	� employed by ESs because
the parents are not included in the replacement process� with the exception of the q previous best� Note
that in the BGA only 
 needs to be speci�ed� since the number 	 of o�spring
 can be calculated as
	 � 
� q� The BGA procedure is depicted in �gure �� where � is the truncation percentage for selection�

The other strong resemblance of BGAs to ESs is that� unlike GAs� BGAs use a direct representation�
that is� a gene is a decision variable �not a way of coding it� and its allele is the value of the variable�� An
immediate consequence is that� in the absence of other conditionings as constraint handling� the �tness
function equals the function to be optimized� %��x� � F ��x�� In addition� in a BGA chromosome there
are no additional variables other than the xi� that is to say� the algorithm does not self	optimize any of
its own parameters� as is done in ESs and in some meta GAs� Chromosomes are thus potential solution
vectors �x of n components� where n is the problem size� the number of free variables of the function to
be optimized� This issue is of crucial importance because i� it eliminates the need of chosing a coding
function �e�g�� binary� Gray� ���� and ii� clears the way to the direct coding of di�erent kinds of variables
other than real numbers �e�g�� fuzzy quantities� discrete quantities� etc��

The strongest contact point of BGAs with ordinary GAs is the fact that both are mainly driven by
recombination� with mutation regarded as an important but background operator intending to reintroduce
some of the alleles lost in the population� This view is conceptually right for GAs� because the cardinality
of the alphabet used to code variables into the chromosome �the number of alleles per gene� is usually
very small �two� in most cases�� But in the case of algorithms that make use of real	valued alleles� like
the BGA� mutation has to be seen in the double role of solution �ne	tuner �for very small mutations�
and as the main discovery force �for moderate ones�� Increasing voices have raised claiming mutation not

�In this case� � � � and the BGA mechanism deviates from that of ESs�
�Of course� in a digital machine� we still have a coding� namely� that of the �oating point representation but the decoding

is transparent to the high level treatment of real numbers�
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gene
pool Y

selection

μ

Πt Πt
Y

τμ
100

q

recombination tΠ’ mutation replacementΠt’’

μ

Πt+1

Figure �� A scheme of the BGA procedure� Each box represents the population at di�erent stages in the
process to form a new generation� Notation on top of the boxes names the population at that point �see
text� and the label from box to box �above the arrows� denotes operator sequencing �from left to right��
The expressions at the bottom of the boxes indicate the population size at each step� Note how the �nal
population size 
 is formed by summing its two incoming values�

truncation selection

mutation driven
direct representation

recombination driven
binary-coded representation
stochastic selection

BGA
truncation selection
direct representation
recombination driven

ES GA

Figure 
� The BGA lies in a midway between ESs and GAs�
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only as a necessary operator� but being even more powerful than recombination when either is applied
alone ���� One would say that recombination is still present because is intuitively appealing and because
of it being traditionally used in GAs as the main operator� In fact� the initial BGA formulation ������
p��
� readily acknowledged this superiority and remarked that it is the synergistic e�ect of their combined
and iterated application what extracts the most from an EA� What is more� in ESs and EP� the roles
are exchanged and mutation is the driving force� in the form of a very powerful self	adapting operator
that tries to take the �unknown� relationships between variables into account� such that optimization is
performed in several dimensions simultaneously� We will now describe the di�erent possibilities for the
operators in more detail� Their in�uence on BGA performance will be assessed in later parts of the work�

��� Recombination

Any operator combining the genetic material of p � � parents is called a recombination operator� The
typical value is p � �� although there are some studies claiming the superiority of higher values for p
�usually for GAs ��
�� where the operator is called crossover because of the way of combining the alleles�
particular of discrete �mostly binary� genes� Many variations have been proposed to date� although just a
couple of them are normally used� The other main source of variation in a recombination operator consists
in allowing di�erent sets of parents �regardless of p� for every gene in the individual� provided the parents
belong to the mating pool� In BGAs� recombination is applied unconditionally� that is� Pr�'� � �� Let
�x � �x�� � � � � xn�� �y � �y�� � � � � yn� be two selected gene	pool individuals �x� �y � $�

t such that �x �� �y� Let
�z � �z�� � � � � zn� be the result of recombination and � � i � n� Elements �z � $�t are formed as follows�

�� Discrete Recombination �DR��

zi � fxi� yig
chosen with equal probability�
Geometric e�ect� Let H��x� �y� be the smallest hyperectangle containing both �x and �y� Then �z is
one of the corners of H��x� �y��

�� Extended Line Recombination �ELR��

zi � xi  ��yi � xi�

with � � ���� �  �� chosen with uniform probability and � � � �typical � � ������
Geometric e�ect� Let r��x� �y� be the line containing both �x and �y� Then r��x� �y� contains �z� That is�
in general� the resulting point lies in the line passing through �x and �y� If � � � then the resulting
point speci�cally lies in between �x and �y�


� Extended Intermediate Recombination �EIR��

zi � xi  �i�yi � xi�

with �i � ���� � �� chosen with uniform probability� Same as ELR but a new � is chosen for each
gene �that is� for each i��
Geometric e�ect� Let H��x� �y� be the smallest hyperectangle containing both �x and �y� Then� for
� � �� �z � H��x� �y�� For � � � the resulting point can also lie anywhere in the outside vicinity of
H��x� �y�� further away the greater � is�

Initially� the EIR and ELR operators were not extended �hence denoted just IR and LR� and were
meant to yield the parents�s midpoint� that is� they worked with a �xed � or �i equal to ���� The
extension given by �i � ���� �  �� such that � � � has been proven to be very useful� allowing
more variety and increasing the variance of the operator� Thus� in both ELR and EIR there are
two main issues� the selection of � �or �i� from a given probability distribution function �pdf�
and the selection of its range� given by �� The classical pdf is the uniform� although a Gaussian
one� centered at the parents�s middle point could also be a reasonable choice� seen as a di�erent
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extension of the initial LR operator with � � ���� When considered in a range ���� �  ��� the
expression for the selection of � could for instance be

�i � N

�
����

�  ���

���

�

considering values within �ve standard deviations� The other issue� the selection of �� seems much
more arguable and empirical� In this work� we will study several values for it �from � � � to the
typical � � ������ In addition� a method for dynamically setting its value is initially tested� called
range� � as follows�

zi � yi  �i�xi � yi�� with xi � yi

such that �i � ����i � �  ��i � with some chosen pdf �uniform or Gaussian� as we have seen� and

��i �
yi � r�i
r�i � r�i

��i �
r�i � xi

r�i � r�i

This procedure assigns di�erent values for the left ���i � and right ��
�
i � limits of the interval from

which � is to be selected� and does never generate a value outside its range� an aspect not ful�lled
by the other methods that otherwise has to be dealt with a posteriori� However� any point within
range can in principle be generated� in a sense diluting the in�uence of parents and making it a more
disruptive recombination operator� Its behaviour will be assessed throughout the experiments�


� Fuzzy Recombination �FR�� This operator is more recent than the other three� the classical BGA
recombination operators� Introduced in �
��� it basically replaces the uniform pdf by a bimodal one�
where the two modes are located at xi and yi� the two parents� that is Pr�zi� � fPrxi�zi��Pryi�zi�g
thus favouring o�spring values close to them� and not in any intermediate point with equal prob	
ability� as with previous operators� The label !fuzzy" comes from the fact that the two parts
Prxi�t��Pryi�t� of the probability distribution resemble fuzzy numbers �triangular in the original
formulation� such that they ful�ll the general conditions �where yi � xi��

xi � ejyi � xij � t � xi  ejyi � xij
yi � ejyi � xij � t � yi  ejyi � xij

stating that the o�spring t lies in one �or both� of the intervals� being e � � the fuzzy number�s
spread� the same for both parts� The distribution is a symmetric bimodal with a median equal to
xi�yi

�
� The favour for o�spring values near the parents is thus stronger the closer the parents are�

This operator is depicted in Fig� 
�

The membership function of a normalized triangular fuzzy number with mode m and symmetric
spread s �left	right distance from mode� is


�t�Tfs�mg � �� �jm� tj
s

whereas the corresponding unimodal triangular pdf is

Pr�t�Tfs�mg �

����
���
� t � m� s
�
s�
�t s �m� m � s � t � m

�
s�
��t  s  m� m � t � m s

� t � m s

In the simplest case� assuming e � ��� �that is� the two parts meet at the median and this point
has zero probability� as in Fig� 
�b��� the resultant parameterized bimodal triangular pdf is written

Pr�t�BT fs��m�� s��m�g � �

�
�Pr�t�T fs��m�g Pr�t�Tfs��m�g�

��



iyx i
x - a

i i
x + a iy + aiy - a

1

yi
x - a

i iy + a
i

x + a

iy - ax i

1

yix i

1

yix i

1

Figure 
� Bimodal probability distribution for the FR operator� where a � ejyi � xij� �a� Not all the
intermediate values are possible �e � ����� �b� Original formulation with e � ���� �c� Overlapped
distribution ��� � e � ���� �d� A general !fuzzy" symmetric probability distribution�

So that� turning to our problem� the o�spring zi is obtained as

Pr�zi� � Pr�zi�BT fejyi � xij� xi� ejyi � xij� yig

This idea need not be limited to the original triangular numbers� For example� a bimodal Gaussian
should reasonably give similar results� In fact� one could devise a �possibly problem	speci�c� form
for the probability distribution resembling a bimodal fuzzy �Fig� 
 �d��� The geometric e�ect is in
this case clear from the �gures�

�� Gene Pool Recombination �GPR�� This is an old idea ��� conceptually very nice �
��� although rarely
used� The zi are build out of xi� yi but this time the parents �x� �y are selected for each i from the
gene pool �in the case of the BGA� from the best �,�� Either DR� ELR or EIR can be used for
each zi� Geometric e�ect� the e�ect of having more than two parents easily generalizes the previous
interpretations� In general� for a set of parents �x�� �x�� � � � � �xp the resulting o�spring �z will lie inside
the smaller !container box" that includes all the �xi� for � � �� As usual� � � � allows to exit the
scope of the parents�

��� Mutation

Mutation is applied to each gene with some probability Pr�(� � �
n so that� on average� one gene is
mutated for each individual� Let �z � �z�� � � � � zn� be the result of mutation� � � i � n� from the previously
generated �x � $�t� The elements �z � $��t are formed as follows�

�� Discrete Mutation �DM�� This is the classical BGA mutation operator�

zi � xi  sign � rangei � �

with sign � f��� �g chosen with equal probability� rangei � ��r�i � r�i �� � � ����� ���� and

� �
k��X
i��

�i�
�i

��



where �i � f�� �g from a Bernouilli probability distribution where Pr��i � �� � �
k� In this setting
k � N� is a parameter originally related to the precision with which the optimumwas to be located�
a machine	dependent constant� Modern machines� capable of double precision� would in principle
allow for higher values of k �e�g� �
� 
�� than those traditionally used �e�g� �� ���� In practice�
however� the value of k is related to the expected value of mutation steps� the higher k is� the more
�ne	grained is the resultant mutation operator� The expected value of � for a given k is that of a
Binomial �n� p�� with n � k and p � �
k�

Ef�g�k� � �

k

k��X
i��

��i �
�

k
��� ��k��� � �

k

It can be proven that Ef�g�k�� � Ef�g�k� for k� � k and thus expected mutation steps are lower�
The inequality holds for k � �� This� as we shall see� has strong consequences on algorithm
performance�

The factor � is the range ratio� related to the maximum step that mutation is allowed to produce as
a ratio of variable range� All in all� this scheme favours small values but cannot generate all possible
representable points
� but only a discrete amount and prefers small values in an approximately �on
average� logarithmic �log�� scale� always up to a precision of rangei � ��k���

�� Continuous Mutation �CM�� Same as DM but with

� � ��k�

where � � ��� �� with uniform probability� The expected value of � for a given k is now

Ef�g�k� � �� k

� �
p
��k

Again� Ef�g�k�� � Ef�g�k� for k� � k and expected mutation steps are lower�

��� Constraint handling

We will not be considering constrained functions in this work and we refer the reader to ���� for a through
survey� There are two basic ways of dealing with constraints� which we will call the generative and penalty
methods�

�� Generative method� the algorithm does not generate points that violate the constraints� that is�
constraints are ful�lled by construction� via a careful and specialised operator redesign� for example�
!repairing" unfeasible solutions forcing them to be feasible�

�� Penalty method� the algorithm is allowed to generate points that violate the constraints� and these
are taken into account in the �tness function by adding a penalty term for each constraint� usually
higher the more the constraints are violated �see x���

A related and commonly encountered issue is that of methods of keeping variables xi within their
predeclared ranges Ri � �r

�
i � r

�
i �� after recombination or mutation� There are various ways to achieve this�

First� they can be regarded as linear constraints cj��x� where only one xi is a�ected� But these constraints
are too basic and thus speci�c and simpler ways of treating them apart are a clear choice� Perhaps the
more obvious one is that performed by simply iterating operator application until all variables in the
obtained vector ful�ll the range limitations� This method can become too costly when working close to
the bounds� Other methods keep the illegal value and alter it somehow� We will refer to the method
used as the bounding method and denote it by -���� Let �z be the vector generated from recombination
or mutation�

�By this we mean machine�representable� We assume that there is a machine�dependent �oating point constant � equal
to the smallest positive representable number in a chosen precision� For example� in our machines� such number for double
precision is � � 	�		 � 
�����

��



�� Clipping� The values are clipped to the bounds�

-�zi� �

��
�

r�i if zi � r�i
r�i if zi � r�i
zi otherwise

�� Bouncing� The values are bounced against the bounds�

-�zi� �

��
�

r�i � �zi � r�i � if zi � r�i
r�i  �r

�
i � zi� if zi � r�i

zi otherwise

Strict inequalities for bounds can be handled by rewriting the ranges Ri to new ranges .Ri � �.r
�
i � .r

�
i �

as follows�

.r�i � r�i  �

.r�i � r�i � �

where � stands for the machine precision �see previous footnote�� This way� original bounds of the type
�r�i � r

�
i � �meaning that r

�
i � xi � r�i � are rewritten into the standard form �.x�i � .x

�
i � with the usual

meaning .x�i � .xi � .x�i �

� The Test Suite and its Properties

The use of an arti�cial test suite� at least for EAs� can be said to be formally open by De Jong ���� with
the �rst �ve problems �hereafter named F� to F��� Since then� several other researchers have appended
their own developed problems �Schwefel� Ackley� Michalewicz and others�� conforming a more or less
standard order up to F�� Recent work� though� showed that some of these functions either were not as
di�cult as it was thought �at least for an EA� or were not particularly well suited as test beds� Arguably�
the most important issue in the design of a test suite is the possibility of having control on the variability
about the type of the function and the properties it shows� which re�ects in how challenging the function
is� Taking into account their mathematical properties is a way of having extra knowledge on the problem
and thus helps interpreting and correctly assessing the obtained results� Most important� some of these
properties can also be known �or estimated� for real problems though� in this case� one usually has little or
no control on them� Speci�cally� the following are the main aspects to be considered about the problems�

Separability A function is said to be separable if there are no interactions between di�erent variables�
This means� in practice� that they can be solved by simply optimizing independently in each variable�
In EAs� the interactions between genes in a chromosome is called epistasis �a term borrowed and
adapted from genetics�� Epistasis is undesirable in practice but useful when developing di�cult
test functions� It is favoured by the discrete codings used in most GAs �like binary or Gray codes�
because the originally atomic real value is coded into many genes that are thus expected to interact
strongly� Hence� epistasis depends on representation� a separable function will show null epistasis
only when using a direct coding for the variables�

Symmetry In n � � dimensions� symmetry means that

F �x�� x�� � F �x�� x�� 	x�� x�
In general� in n � n� dimensions� symmetry can go up to n�/ possibilities� eventually making the
problem easier� since up to n�/ equivalent solutions may exist�

Scalability The problem with some of the classical test functions is that their complexity changes with
dimension� For instance� there are some that become easier as dimension increases �e�g� F�� known

�




Index Name n Expression Range of xi Sep�

�F�� De Jong	� n � 

Pn

i�� x
�
i ������� ����� Y

�F�� De Jong	� � ����x�� � x��
�  ��� x��

� �����
�� ���
�� N

�F
� De Jong	
 n � �
Pn

i���xi� ������� ����� Y

�F
� De Jong	
 n � 
�
Pn

i�� ix
	
i  N ��� �� ������� ����� Y

where N ��� �� is a normal distribution

�F�� De Jong	� � f����� Pm
j���j  �x� � aj��  �x� � bj���g�� ������ ���� Y

m � �� aj � ���j mod �� ��
bj � ���j div �� ��

�F�� Rastrigin n � �� nA 
Pn

i�� x
�
i �Acos���xi� ������� ����� Y

where A � ����

�F�� Schwefel n � �� V �Pn
i�� xisin�

p
jxij� ������ ���� Y

where V � 
�������n

�F�� Griewangk n � ��
Pn

i��
x�
i

	��n �
Qn

i�� cos�
xip
i
�  � ������ ���� N

�F�� Ackley n � 
� V � ��e����
p

�

n

P
n

i��
x�
i � e

�

n

P
n

i��
cos���xi� ��
�� 
�� N

where V � �� e

�F��� Scha�er	� � �
�  

sin��
p
x�
�
�x�

�
�� �

�

���������x�
�
�x�

�
���

������ ���� N

�F��� Scha�er	� � �x��  x���
�

�

�
sin�����x�� x���

�

�� �  �
	

������ ���� N

Table �� The basic test suite� Index� Name �non	standard�� typical dimension� expression� typical ranges
�equal for all dimensions� and separability property �Y�yes� N�no��

as Griewangk�s function �
���� The need for scalable functions arises from the fact that the results
obtained in some tiny test functions may say little about real performance in complex problems�
with possibly dozens of variables interacting in unknown ways� The availability of high	dimensional
controllable functions is thus of great practical concern�

Stochasticity Real �in the sense of physical� functions represent by their nature an stochastic process�
all we see is a possible realization of the function� In some contexts� like neural network training
processes� the function to be minimized �typically� some measure of error� is deterministic but relies
on noisy samples of an unknown function� It is interesting thus to devise arti�cial FOPs to resemble
an stochastic process by� for instance� adding a noise component to a deterministic function� as in
F
 �see Table ���

Non�linearity Problems that lack strong non	linear dependencies between variables may be used as
initial testers or as benchmarkers but will not re�ect the complexity of many real	world problems�
and� as in the case of non	scalable functions� will be of little practical use�

Relevance In many real applications� there is no guarantee that the set of variables being used to
characterize the problem at hand are those actually relevant� That is to say� on the one hand� there
are no important variables missing� On the other hand� the degree of redundancy is su�cciently
small to be bene�cial� In addition� the chosen variables should represent the most convenient degree
of abstraction�

Note that separability has little to do with linearity� A function can be highly non	linear and still
be separable� Also� separable functions can be solved by exact methods like line search in O�n� time�

�




where n is the number of variables �although the constants involved can be very high�� All this means
that non	linear� non	symmetric� non	separable� scalable functions should be present in a test suite� These
arguments were introduced in �
��� along with a nice method to obtain such functions from some of those
already present in the shown standard test suite� There are two basic procedures to achieve this�

��� Expansion

�� Depart from an existing function de�ned in two dimensions F �x�� x���

�� Design a weight matrix Wn�n � �wij�� where n is the desired dimension of the new function�


� Then� the expansion of F in n is de�ned as the function

EF �x�� x�� � � � � xn� �
nX
i��

nX
j��

wijF �xi� xj�

As an example� we can devise a !wrap" matrix Wn�n such that

wij �

��
�
� if j � i � � i � n
� if j � � � i � n
� otherwise

which gives rise to an expression of the form

EF �x�� x�� � � � � xn� � F �x�� x��  F �x�� x��  � � � F �xn��� xn�  F �xn� x��

��� Composition

�� Depart from an existing function de�ned in two dimensions F �x�� x��� and another one	dimensional
G�z� such that Im�F �x�� x��� � Dom�G�� where Dom��� stands for the domain of de�nition of a
function and Im��� for its image� de�ned as

Im�f� � fy � R j ��x � Dom�f� � y � f��x�g
�� Then� the composition of both functions is de�ned in the usual way

CG�F �x�� x�� � G�F �x�� x���

The interesting news is that the two methods can be combined� That is�

ECG�F �x�� x�� � � � � xn� �
nX
i��

nX
j��

wijG�F �xi� xj��

As an example� combining the previously mentioned Griewangk�s function F� and De Jong�s F� �also
known as Rosenbrock�s function� yields the function �using wrap expansion��

ECF��F��x�� x�� � � � � xn� � F��F��x�� x���  F��F��x�� x���  � � � F��F��xn� x���

This function is non	symmetric �because F� is�� non	linear �because both F�� F� are�� non	separable
�because of the common terms� and scalable in n� that is� its complexity grows with n always at the
same rate� although F� was not scalable �
�� �actually it gets much simpler� tending to a unimodal
macrostructure�� and this is because F� is now always used only in its one	dimensional form� Care must
be taken� however� not to choose symmetric functions as a base for expansion because� in that case�

EF �x�� x�� � � � � xn� �
nX
i��

nX
j��

wijF �xi� xj� � �
nX
i��

nX
j	i

wijF �xi� xj�  
nX

j��

wjjF �xj� xj�

and the number of interacting terms shrinks from n� to n��n
� � thus simplifying the function� In gen	

eral� thus� these two methods have the e�ect of retaining �and enhancing� scalability and forcing non	
separability�

��



��� The used Test Suite

The most classical test suite �up to our knowledge� is summarized in Table �� ordered in a more or less
standard way and christened with a name to re�ect their introducer as a FOP in the context of EAs�
It ranges from functions �supposedly� easy to �supposedly� hard� this is not a minor issue� a good FOP
solver is such that performs reasonably well for a wide range of di�culties� In particular� functions F�
to F� are easy �at least to BGAs� see ������ All of them are separable or of very low dimension� or both�
and will not be considered here in deep� Functions F� to F�� are all multimodal and� although smooth�
are very di�cult to an algorithm relying on derivatives information� F� has many suboptimal peaks
whose values increase as the distance from the global optimum increases� However� it shows a unimodal

macrostructure in high dimensions� for large n� the quadratic term dominates and the function is like a
quadratic perturbed by sinusoidal deviations� This makes it di�cult but non	scalable� F� and F� are
also highly di�cult because they are non	separable due to the interdependencies between variables� They
also exhibit a unimodal macrostructure to some degree in high dimensions� F�� and F�� are functions
with a extremely large number of local optima distributed uniformly� with hardly any structure other
than a regularly rugged landscape� Their use in only two dimensions makes them a�ordable� F� is a very
di�cult function for which the best minima are far away from each other� There is also a !second best"
point located in the opposite corner of the space w�r�t� the global best� This function does not show any
unimodal macrostructure� The global minimum is at � �
�������n and hence the use of the term V �
Note that all the functions F� to F�� have been adapted to have a global best optima as a minimization
problem of solution ��

� Experimental Design

��� General Considerations

In this section we proceed to describe the experiments performed and their design procedure� They
are split in two parts� experiments with mutation and experiments with recombination� For each part�
di�erent operators and parameters will be consistently explored� varying the population size� For each
con�guration� a number of independent runs will be performed� keeping track of the mean and best
solutions found� This experimental design is suboptimal because not all the possible combinations of
mutation with recombination are tested� As we shall see� this number is too high to allow a full study to
be performed and� furthermore� it is our belief that many of the combinations can readily be discarded a

priori by a smaller but more e�ective experimental design� Also� even with the full results� the conclusions
could not in any case be general ones since there is probably no con�guration that is optimal for every
conceivable �even reasonably� FOP� not even if� as in this work� the study is circumscribed to a speci�c
search algorithm�

��� Working Hypotheses

Rather� experiments with mutation are to be performed with a �xed recombination setting� hoping it to
be as neutral a choice as possible w�r�t� mutation� The same applies to experiments with recombination�
We believe that these aspects are very important and should be clear �and made clear� in any practical
study� For this reason� we have collected the following set of hypotheses�

�� The truncation threshold � is not going to a�ect the experiments� With this we mean that choosing
a �xed and reasonable value for it will not a�ect the particular con�gurations di�erently�

�� The replacement criterion * is not going to a�ect the experiments� With this we mean that using
the explained BGA criterion for all the experiments will not a�ect the particular con�gurations
di�erently� This is important to say because di�erent criterions could be better �or worse� suited
for some operators� However� it is not an issue here because changing * would be a departure from
the BGA�

��



Parameter Value Comment
� �� Truncation threshold
* BGA BGA Replacement criterion
- Clipping Bounding method
NRuns 
� Number of runs�experiment
FFEvals 
���� Number of function

evaluations�run
� ����� Less than � is considered as �

 
��� ���� ���� �� Population sizes

Table �� BGA Setup kept constant for all of the experiments�


� The bounding method - is not going to a�ect the experiments� The same explanation applies�


� A good mutation operator is robust w�r�t� recombination� This and the next one are the main
hypotheses� Although it is known that strong interactions take place between recombination and
mutation� it is reasonable to assume that a good mutation operator is good in itself and would
improve on any general� non	specialized recombination operator� such as the ones presented�

�� A good recombination operator is robust w�r�t� mutation� Idem�

�� Hypotheses � to � can be applied simultaneously�

We also believe that this constitutes a more reasonable approach than the other possibility� namely�
performing experiments with varying mutation but no recombination and viceversa� because in this case
the a posteriori integration of both operators will de�nitely make a di�erence� In conclusion� the search
is not for the best recombination�mutation setting �because this surely does not exist� but constitutes
instead a heuristic way of �nding generally good con�gurations �or generally bad ones� also useful to
know��

As stated� both sets of experiments will be performed with varying 
� the population size� in a basic
attempt to assess its in�uence� To this end� the stopping criterion * will be based on the number of FOP
evaluations permitted �given by the variable FFEvals�� In particular� given a �nite number of FFEvals�
the algorithm will stop each run whenever b FFEvals

�
c generations are reached� This stopping criterion

allows to compare di�erent general settings in a fair way� since� for example� a smaller population will
be allotted more generations� but always keeping the number of FOP evaluations in similar values� This
scheme would also allow comparison with other search methods�� The parameters kept constant for all
of the experiments are shown in Table ��

��� Test Functions

As discussed in x��
� among the functions from Table � the decision has been to use only a subset of them�
mainly because functions F� and F
 to F� are separable and thus easy targets for an evolutionary searching
algorithm� On the contrary� the functions F� and F� to F�� are non	separable and show a reasonable
variety of non	linearities and dimensions� In addition� the function F� has also been considered because�
although being separable� has been shown to be a di�cult one� for which suboptimal extrema are very far
away from each other and far away from the global optimum �see �
���� The other non	separable function
shown is F� but this one is too simple to be a choice� It will be used instead in conjunction with F� to
form a new F�F� function� as explained in x����

�Indeed� one could ask a method� 
You have this function and up to FFEvals evaluations of it� Use them and give your
best answer back��

��



��� Presentation of Results

Due to the fact that relatively di�erent values can be reached as solutions� the geometric mean will be
used sometimes to average the results� instead of the arithmetic mean� because it works better for a set
of values of di�erent orders of magnitude� To see this� suppose that two di�erent runs give as results

the values ���� and ����� Denoting by fa� bg � a�b
� the arithmetic mean� we get f����� ����g �� ����

� �
that is� whenever the two numbers greatly di�er in orders of magnitude� this averaging measure gives as
a result one of the two �the biggest in absolute value� halved� In contrast� the geometric mean in this

case gives the middle point in orders of magnitude� ����� Denoting by�fa� bg �
p
ab the geometric mean�

it holds that

�� The numbers a� fa� bg� b form an arithmetic progression�

�� The numbers a��fa� bg� b form a geometric progression�

In general� for a set N of n real numbers N � fx�� x�� � � � � xng such that xi � �� 	i �if any xi � �� the
result is zero�� the geometric mean is de�ned as�

bN � n

vuut nY
i��

xi

This averaging measure ful�lls two desirable properties� typical of the arithmetic mean�

�� Scalability� The deviations from the arithmetic mean scale linearly with orders of magnitude� For
example� let A � f
�� 

� 

g and B � f
� � ���� 

 � ���� 

 � ���g� Then� bA � 

� �with � � �� andbB � 

 � �����

�� Incrementality� Let Pk�N � any partition of N in k equally sized sets� being k � � a divisor of n�
Let

X �N � � f bX j X � Pk�N �g
Then it follows that bX �N � � bN � That is� the geometric mean computation of a set of numbers
can be decomposed in two steps� selecting a partition� computing the set of geometric means of
this partition and �nally computing their geometric means� This will not change the �nal result�
no matter what partition we consider� This property will be used in the experiments� where many
quantities will be averaged�

The relation between the two averaging methods is the following� given N � it holds that N � bN �
Both measures will be used� depending on the quantities to be averaged�

� Experimental results �I	
 Mutation

The results are presented as follows� Four tables are given� one for each population size 
� separated
in continuous �CM� and discrete �DM� mutation for each FOP� For each con�guration ��� k� the best
solution found throughout the NRuns is kept� Instead of giving a separate entry for each such con�guration�
additional computations are performed to compact the information and increment the level of abstraction�
For example� the entries in the column for � are obtained averaging out �using the geometric mean� the
results forall k in f�� ��� �
� 
�g� Similarly� the entries in the column for k are those obtained averaging
out forall � in f���� ��
� ���g� By proceeding this way� one has to deal with less information and the
obtained values are more representative� Additionally� the last two columns express the overall average
�forall �� k� and the overall best solution found�

There is a special case to cope with� whenever a solution is generated beyond machine precision �in
our case study� a value below ������� the problem will be considered solved and� as all of the problems

��



Procedure Mutation�Test ��
f

' �� EIR �� � ������
forall 
 in f
��� ���� ���� ��g

forall Fi in fF�� � � � � F��g
forall k in f�� ��� �
� 
�g

forall � in f���� ��
� ���g
forall ( in fCM� DMg
BGA �
� Fi� k� ��(� NRuns� FFEvals� '� � � -� *��

g

Figure �� Mutation�Test Algorithm pseudocode�

have solution �� this situation will be indicated as � �,�� where , is the �rounded� percentage of times
this happened� so as to make comparison still possible� The only exception to this rule is F��� for which
the obtained values� although very small� are still meaningful and will be the ones shown� All mutation
variations are tested using a �xed standard recombination setting ' � EIR �� � ������ The BGA
procedure in the algorithm of Fig� � is run 

�� times ���� for each FOP� for every value of 
� making
a grand total of ����� runs� The results are shown in tables 
� 
� � and ��
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Table 
� Results for fF�� � � � � F��g �
 � 
��� for CM and DM� Each value in a column of � is the
average of the best values found in executions for all the studied values of k� of NRuns runs each� The
same relation holds for the k labeled columns w�r�t� �� The best values for each column are boldfaced�
The column labeled Avg� is the average performance for each row� The column labeled Best is the best
value found in any of the runs� All averages are obtained with the geometric mean�
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Table 
� Results for fF�� � � � � F��g �
 � ���� for CM and DM� See Table 
 for an explanation of entries�
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Table �� Results for fF�� � � � � F��g �
 � ���� for CM and DM� See Table 
 for an explanation of entries�
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Table �� Results for fF�� � � � � F��g �
 � ��� for CM and DM� See Table 
 for an explanation of entries�

��� Discussion for F� to F��

Two main types of conclusions can be drawn for these mutation experiments� how the parameters k and
� exert an in�uence on CM and DM� and what is the relative performance of CM and DM� regardless of
the parameter setting� We comment on them separately�

����� The in�uence of parameters k and �

By inspection of the best results for k and � in Tables 
� 
� � and � �shown in boldface�� it seems that there
is a tendency according to which better results are generally obtained for lower � and �independently�
for higher k� towards � � ��� and k � �
� 
�� This is very clear for F�� F� and F��� For F�� the value
� � ��
 seems more appropiate� In contrast� F�� seems to be the easiest function� consistently solved for

 � ��� with varying values for k and �� Thus� a combination of low � with high k seems to be the best
choice�

The function that deviates from this tendency is F�� that seems to be by far the harder one for the
BGA� Remember that F� is the only function that does not show any unimodal macrostructure in high
dimensions� thus needing a wider search setting� with bigger mutation steps and ranges� This is con�rmed
by the good results achieved by � � ��� and k � �� ��� a parameter setting completely opposite to � � ���
and k � �
� 
�� and one that favours big mutation steps� These overall behaviours are also more de�ned
for CM than for DM� and seem to be valid for all of the studied population sizes� However� despite the
high numbers of experiments performed and the chosen level of abstraction� these results are by no means
concluding� showing a strong dependency �or independency� in the case of F��� on the particular function
being optimized�

����� Relative performance of CM and DM

Here an additional e�ort of abstraction has to be made� The chosen procedure is the following� we will
construct a table for every 
 and every function Fi in fF�� � � � � F��g as follows� for each combination
�
� Fi� we look at the overall average performance as shown in Tables 
� 
� � and � �column labeled Avg��
and we assign a label L�
� Fi� from the set fCM� DM� T� T�CM�� T�DM�g� indicating which of the two
operators yields clearly better results� The label T stands for a !tie"� and a slight superiority of operator
X is indicated by T�X�� More precisely� the conditions for a label to be assigned are the following�

��



�� A label CM is assigned whenever the value for CM is better than that for DM by more than an order
of magnitude� Similarly for DM�

�� A label T�CM� is assigned whenever both numbers are within one order of magnitude� but that for
CM is better than that for DM� Similarly for T�DM��


� A label T is assigned whenever both numbers are within one order of magnitude� and approximately
equal�

This procedure is of course arguable because is based on a subjective rather than precise numerical
computation but has the advantage of being easy and illustrates the information in a very compact way�
The result of this analysis is shown in Table ��


 F� F� F� F� F�� F��


�� C C D T�C� T D

��� C T�C� T C T D

��� C C C C T D

�� C D C T�C� C T

Table �� Relative performance of CM and DM� See text for an explanation of entries�

The table shows a general superiority of CM over DM �number of C and T�C� over number of D and
T�D��� as exempli�ed by F�� F�� F� and F�� In addition� DM works better for higher population sizes� as
exempli�ed by F�� F�� and F��� this last function being the only one for which DM is markedly superior�

��� Discussion for F	F�

The function F�F� is also tested� for n � ��� �� and ��� In this case� a �xed population size 
 � ���
is used and up to FFEvals� ������� evaluations� Also� the arithmetic mean is the averaging method
employed because the results are always in the same order of magnitude� The outcome of this experiment
is shown in Table �� where all the results are collectively shown for CM and DM�

n ( � ���� � ���
 � ���� k �� k ��� k ��
 k �
� Avg� Best
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Table �� Results for F�F� �
 � ����� for CM and DM� Each entry is calculated similarly as for the
functions fF�� � � � � F��g� but using the arithmetic mean� The best results are those boldfaced�

By looking at Table � several aspects are noteworthy�


 First� the di�erences between operator settings are very small and get smaller with decreasing n�

 Again� the di�culty of the function shows in the fact that parameters involving small mutation
steps �k � �
� 
�� seem to work much worse� With regard to the value of �� the relative di�erences
in performance are even smaller and makes it risky to draw conclusions� Notwithstanding� there
are two parameter settings consistently yielding superior performance� � � ���� k � �� for DM and
� � ���� k � �� for CM� for all n� Incidentally� the value � � ��
 seems to be a bad choice� but the
reasons are not clear� possibly it is too big for DM and too small for CM to work properly� For
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f
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 in f
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forall Fi in fF�� � � � � F��g
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Figure �� Recombination�Test Algorithm pseudocode�

k � � the mutation step is too big� That is� once the best precision is correctly set �in this case�
k � ���� the best results are obtained by quite di�erent range ratios for DM and CM� We suggest
that the reason for this di�erent behaviour has to be found in the way both mutation operators
work� Recall their expected values for � were�

Ef�g�k� � �

k
��� ��k��� �DM�

Ef�g�k� � �� k

� �CM�

It holds that

��
k

� �
�

k
��� ��k��� 	k � 


and hence� given k� CM yields on average values much smaller than DM� thus needing a higher �
to compensate for it and achieve the correct expected mutation rate� as shown in F�F�� for all n�


 A general superiority of CM over DM is also displayed� both on average and in terms of the best
value found�


 Last� but not least� the absolute best values found are extremely good for this function� especially
for higher n ��� and ���� This issue will be explored in more detail in x��

� Experimental results �II	
 Recombination

In the case of recombination operators� up to eight di�erent settings are tested� as follows� DR� LR with
� � ���� EIR with � � �� ����� ���� and ��
�� EIR with range� and FR with e � ���� The mutation
operator is �xed to CM with � � ���� k � ��� The BGA procedure in the algorithm of Fig� � is run �

�
times ��
� for each FOP� for every value of 
� making a grand total of ���� runs�

The results are presented similarly as for mutation� Four tables are given� one for each population
size 
� one row per each FOP and one column per each recombination operator� with an additional
row showing the average �again using the geometric mean� solution per operator� useful to compare
their relative performance� For each con�guration� the average and best �in parentheses� solutions found
throughout the NRuns are shown�

Incidentally� note how the average values �obtained with the geometric mean for each column� are
meaningful and express our intuitive idea of an !average"� If we look� for example� at the �rst column
�that of DR� of Table � we can easily check how the geometric mean is in fact performing the arithmetic
mean of the exponents �the actual indicators of the magnitude of a quantity�� Not considering the
mantissas� these means are roughly ��� and ���� corresponding to the values 
 and � displayed�

�
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Table �� Results for fF�� � � � � F��g �
 � 
��� and the eight recombination operators� For each function
and recombination operator� two numbers are shown� the average result and the best result �in parenthe	
ses� along the runs� The bottom rows �boldfaced� show the average behaviour per operator throughout
all the functions�
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Table ��� Results for fF�� � � � � F��g �
 � ���� and the eight recombination operators� See Table � for
an explanation of entries�
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Table ��� Results for fF�� � � � � F��g �
 � ��� and the eight recombination operators� See Table � for an
explanation of entries�
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	�� Comments on Recombination

The most interesting comparison is the relative performance of the di�erent operators� To this end� two
numbers are shown for each entry in the tables� the average performance �geometric mean� and the best
value found� over the NRuns runs� This last number is the one shown in parentheses� Again� if a function
is solved� a � is displayed along with the number of times �not the percentage� it is solved� In addition�
for each operator� its average performance �geometric mean of average and best values throughout all of
the functions� is presented at the bottom row� The use of the geometric mean here is due� as usual� to the
integration of very dissimilar quantities �in orders of magnitude�� Several conclusions are noteworthy�

�� It seems clear that LR �� � ���� is by far the worst operator� and for all population sizes� The
only exception is for 
 � �� where it is second worst� after DR� This operator is e�ective only for
F��� but all other operators are� Its o�spring generation mechanism� the !exact middle point" with
probability one� seems too rigid to be of general application� at least for the con�gurations tested�
This said� it seems to be the less a�ected by population size�

�� Conversely� DR is the second worst for all population sizes after LR �� � ���� and the worst for

 � ��� Also� its performance decreases as 
 does to the point that� for 
 � ��� even LR �� � ����
is better� On the other hand� this operator is very appropiate for solving F�� We suggest that this
is because� once mutation has found the correct value for a dimension �which� incidentally� is the
same for all dimensions and equal to 
������� the o�spring inherits it with very high probability
������ On the other hand� the other operators perform a kind of linear combination between the
parents�s values that is no good for this function� In short� this operator is the less disruptive�


� In what regards EIR �� � f�� ����� ����� ��
�g�� it can be seen that this operator exhibits a neat over	
all behaviour� First� it is clearly superior to DR and LR� regardless of �� Moreover� performance is
consistently better �both on average and best values� for increasing values of �� for 
 � 
��� ���� ����
without exception� This a nobler and more robust operator than the other two �with the exception
of F��� Interestingly enough� for 
 � ��� the odds turn and we see an inversion in behaviour� being
now � � � the best value and � � ��
� the worst �although di�erences are small�� The reason may
be behind the fact that� for this population size� there is a narrower margin for exploration� which
is what greater values of � favour�


� The method range� for dynamically calculating the � seems the best recombination operator when
applied to EIR� It is so for all population sizes� both on average �except for 
 � ��� and in the
best solution found� which is very remarkable� Our suggestion is that this is the !wilder" setting
because it less restricts the o�spring range� This is a tactics that do seems to work� Second and
third best are� consistently� EIR with � � ��
� and FR �e � ����� It is interesting to note that these
two operators favour� as EIR with range� does� a wider o�spring range than the rest �wider in the
sense of leaving the parents�s scope�� In addition� the behaviour of these three operators decreases
strongly with 
� It seems as if these operators need a certain population size to work� falling rather
short �although still competitive� at 
 � �� and doing increasingly well as 
 grows� Note also that
F� is the only function resistant to these operators� they �nd acceptable solutions now and then�
EIR �� � f�� ����� ����g� �nd it at 
 � 
��� EIR �� � ��
�� at 
 � ���� EIR �range�� at 
 � ��
and FR and LR never� In contrast� DR �nds some for all population sizes�

The function F�F� is also tested with the di�erent recombination operators� The parameter setting
is the same as for mutation on this function� 
 � ��� and FFEvals� �������� The rest of the parameters
are the same as those used for the other functions� The operator CM with � � ��� and k � �� is again
�xed for the experiment� The function is tested in n���� �� and �� dimensions and the results �obtained
in exactly the same way than for the previous experiments on this function� are displayed in Table �
�

We �rst note that the results are excellent and even better solutions are found� for the three dimensions
considered� when compared to Table �� Also� again the di�erences between operators are quite narrow
although �as is reasonable to expect� greater at higher dimensions�
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Table �
� Results for F�F� �
 � ���� and the eight recombination operators� Each entry shows the
average �arithmetic mean� and best results �in parentheses� for a given operator and dimension�

The best operators seem to be LR �� � ���� and EIR with �range��� Other good settings are EIR
�� � f�� ����g�� The operator EIR with �range�� is specially good at n � ��� This shows that EIR is
more than often the best operator� changing only the way the � is computed� Other operators� like DR
and FR are only competitive at low dimensions� where they yield good best values� A word of caution is
in order here� because EIR �� � ��
�� appears as the overall worst�

� A Further Study on F�F�

In order to draw more useful conclusions and to make comparison to other techniques possible� a more
complete experiment setup on this function is performed� Keeping the parameter setup of 
 � ��� and
FFEvals� �������� with the usual operator CM with � � ��� and k � ��� this time NRuns � �� runs per
experiment are executed� and the function is tested in a higher number of dimensions �up to ����� The
remaining parameters are those kept constant for all the work �Table ���

Besides� since this experiment deals with the same function in many di�erent dimensions� a more
informative and independent estimate of overall performance than the crude �arithmetic� mean for all
n is used� Let m�'� n� denote a given measure �either average or best� for operator ' at dimension n�
as shown in the table� We de�ne the score of a measure as its average along all dimensions� inversely
weighted by the dimension value� Let N bet the set of dimensions for which the function is tested�
Formally�

score�'� �
�

jN j
X
n�N

m�'� n�

n

The score yields the average value per dimension obtained along the entire column� This score can be
computed for the average and for the best values found by each operator� The lowest the score� the better
the operator� As for Table �
� N � f��� ��� ����������g�

The results are in general accordance with those in Table �
� The most remarkable one is that EIR
�range�� is de�nitely the best setting� yielding the lowest score on average and on the best results found�
It is also the more robust� as can be checked from the table looking at the variances �score for them not
shown�� At a distance come EIR �� � f�� ����� ����g�� This means EIR �� � ����� has �nally shown up
to be superior to LR �� � ����� The setting EIR �� � ��
�� and the operators DR and FR are the worst�
although these last two� as before� do well at low dimensions�

A comparison follows to results using other search techniques� The main source of data for this
function is ����� which usefully reproduces the original results in �
��� From the tables in these refer	
ences� we reproduce �Table ��� the most relevant results� the mean and variance for this function in
N � f��� ��� ��� ���g dimensions as found by Eshelman�s adaptive CHC ��
�� the Random Bit Climber
by Davis �RBC� ���� a fairly standard GA 0although with the incorporation of elitism and tournament se	
lection �ESGAT� ����� Whitley�s Genitor GA �
�� and Line Search Algorithm �
�� and the aforementioned
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Table �
� Results for F�F� �
 � ���� and the eight recombination operators� Each entry shows the
average �top� using arithmetic mean�� variance and best results �in parentheses� for a given operator and
dimension� The scores �boldfaced� are computed for the average and best results along each column�

Evolution Strategies �here named ES	� and ES	�� the latter being a setting tuned for this function��
These algorithms show a variety of search strategies that� in spite of the fact that they make comparison
a di�cult task� their collective behaviour give a more complete picture of the di�culty of a function�

n CHC RBC ESGAT Genitor Line ES	� ES	�
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Table ��� Results for F�F� for several other search methods� Each entry shows the average �top� and
standard deviation �bottom�� The results have been rounded by the author to three decimals�

As can be checked from the table� only RBC in ten dimensions gives mean better results� In general�
Line is the only algorithm that keeps pace� though always behind the BGA� For n � ���� the limited
number of FFEvals is �nally not su�cient for the methodical scheme of Line� and its performance
dramatically drops�

�
 Conclusions

We have performed a detailed study on function optimizationwith the Breeder Genetic Algorithm �BGA��
a member of the big family of Evolutionary Algorithms �EAs�� It has been shown that the BGA can

��



e�ectively cope with a variety of test	bed functions to satisfaction� achieving results that are superior
to those obtained with other EAs� The rich variation on genetic operators 0parameterized forms of
Mutation and Recombination0 has been analyzed and put to a comparison� Their relative performance
and dependency on the parameters have been the main topics addressed� In addition� a simple method
for estimating the main Recombination parameter has been introduced�

As for mutation� it seems that more di�cult functions require bigger average mutation steps� con	
trolled by the values of � and k� This is clearly seen for F� and con�rmed for F�F�� neither of these
two functions showing a unimodal macrostructure� The problem is that we may not know this feature a
priori� Hence� di�erent problems may well require radically divergent settings� The only reasonably good
news is that small di�erences between values of � do not result in signi�catively di�erent performances�
so the search for good settings for a particular problem can be done with a �xed value for this parameter
�e�g� � � ��� or ���� we recommend discarding ��
�� These �ndings tell us that the most appropiate
choice of operators and parameters depends on the exact form of the objective function� this form� as we
have seen� may change with the number of dimensions�

On the other hand� the in�uence of k has been found to be more profound than that of �� for which
results are much more balanced on average� These two variables together are best regarded as mutation

step controllers� rather than precision controllers� We have shown how they can lead for certain functions
to quite di�erent solutions �even in several orders of magnitude� exerting a strong in�uence in algorithm
performance� apparently regardless of the population size� In this sense� high values for k� �e�g� �
� 
��
and low values of � �e�g� ���� seem to be specially suited for those problems for which roughly good
solutions are found with no di�culty �so that this con�guration is likely to �nd some� and once these
near	solutions have been found� a �ne	tuning process can greatly improve on them� This �ne	tuning would
be performed by the small mutation steps that this setting favours� Nevertheless� for other problems �
apparently more di�cult like� for example� F� and F�F�� better results are attained with !opposite"
mutation settings 0low values of k and high values of �� All this suggests a dynamic procedure to �nd
the most appropiate values� possibly within a predeclared range� in which initially wide mutation steps
are allowed and progressively reduced� as the search concentrates in some parts of the space� This could
be implemented via a kind of annealing schedule�

Regarding the choice between the two mutation operators 0Continuous Mutation �CM� and Discrete
Mutation �DM�� it is di�cult to draw any general conclusions� The continuous operator seems to work
better or at least as good as the discrete one in the majority of the functions tested� a di�erence in
performance that decreases with increasing 
� Surely one is better suited for some FOPs than for others�
but the precise situations for which this could hold true are by no means clear� In any case� both operators
seem to be similarly a�ected by their parameters ��� k� so that� once they are correctly set� both operators
can be given a try�

The results on recombination can be synthesized as follows� The operator EIR has been found to be
generally superior to the other operators tested �DR� LR and FR�� All of them show the advantage� with
respect to mutation operators� of depending only on one parameter� In the case of EIR� the � parameter
has been drawn from the set f�� ����� ����� ��
�g and also dynamically computed with the method range� �
temptatively introduced in this work� The results show that this last schedule consistently outperforms
all of the others� both on average and on the overall best results found� Additionally� the experiments
devoted speci�cally to the function F�F� in several dimensions show how the BGA is a powerful and
robust search algorithm� superior to all previous results �up to our knowledge� for this function� The
robustness stems from the fact that all of the operators perform in a relatively narrow margin of solutions�
Also� the variance of the solutions is found to be small� However� further studies are needed to explore
the scalability of performance versus number of dimensions for this function� as well as for others found
via the method of expansion	composition�

Although an empirical study� the high numbers of experiments performed for each function permits
to draw conclusions and gain an insight that can be put in practice when solving real	world problems�
The only limitation is the small number of FOPs� although chosen to show a variety of features� clearly
more di�cult problems need to be tackled in carefully controlled experiments� However� the results
for fF�� � � � � F��g and F�F� are very good and� although direct comparisons are complicated due to

��



the particularities of di�erent algorithms� the obtained solutions would surely have been considered as
satisfactory in real applications� This more through study with a richer set of arti�cially created and
controlled FOPs� possibly in the presence of constraints and noise should pave the way to new benchmarks
and conclusions�
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