3,177 research outputs found

    Adaptive geometric features based filtering impulse noise in colour images

    Get PDF
    An adaptive geometric features based filtering (AGFF) technique with a low computational complexity is proposed for removal of impulse noise in corrupted color images. The effective and efficient detection is based on geometric characteristics and features of the corrupted pixel and/or the pixel region. A progressive restoration mechanism is devised using multi-pass non-linear operations. Through extensive experiments conducted using a wide range of test color images, the proposed filtering technique has demonstrated superior performance to that of well-known benchmark techniques, in terms of objective measurements, the visual image quality and the computational complexity

    REMOVAL OF GAUSSIAN AND IMPULSE NOISE IN THE COLOUR IMAGE PROGRESSION WITH FUZZY FILTERS

    Get PDF
    This paper is concerned with algebraic features based filtering technique, named as the adaptive statistical quality based filtering technique (ASQFT), is presented for removal of Impulse and Gaussian noise in corrupted colour images. A combination of these two filters also helps in eliminating a mixture of these two noises. One strong filtering step that should remove all noise at once would inevitably also remove a considerable amount of detail. Therefore, the noise is filtered step by step. In each step, noisy pixels are detected by the help of fuzzy rules, which are very useful for the processing of human knowledge where linguistic variables are used. The proposed filter is able to efficiently suppress both Gaussian noise and impulse noise, as well as mixed Gaussian impulse noise. The experiments shows that proposed method outperforms novel modern filters both visually and in terms of objective quality measures such as the mean absolute error (MAE), the peaksignal- to-noise ratio (PSNR) and the normalized color difference (NCD). The expectations filter achieves a promising performance

    The Removal of Random Valued Impulse Noise Using Contrast Enhancement and Decision Based Filter

    Get PDF
    Digital images are transmitted in noisy environment and it will frequently affected by impulse noise .To remove this noise from the image is a fundamental problem of image processing. There are various types of noise in an image especially salt and pepper noise and random valued impulse noise. This paper introduces a new filtering scheme based on contrast enhancement filter and decision based filter for removing the random valued impulse noise. The application of a nonlinear function to increasing the difference between noise pixels and noise-free and results in efficient detection of noisy pixels. As the performance of a filtering system, in general, depends on the number of iterations used, the effective stopping criterion based on noisy image characteristics to determine the number of iterations is also proposed. This proposed method removes only the corrupted pixel by its neighboring pixel values. As a result of this, the proposed method removes the noise effectively and preserves the edges without any loss up to 80% of noise level

    A geometric model of multi-scale orientation preference maps via Gabor functions

    Full text link
    In this paper we present a new model for the generation of orientation preference maps in the primary visual cortex (V1), considering both orientation and scale features. First we undertake to model the functional architecture of V1 by interpreting it as a principal fiber bundle over the 2-dimensional retinal plane by introducing intrinsic variables orientation and scale. The intrinsic variables constitute a fiber on each point of the retinal plane and the set of receptive profiles of simple cells is located on the fiber. Each receptive profile on the fiber is mathematically interpreted as a rotated Gabor function derived from an uncertainty principle. The visual stimulus is lifted in a 4-dimensional space, characterized by coordinate variables, position, orientation and scale, through a linear filtering of the stimulus with Gabor functions. Orientation preference maps are then obtained by mapping the orientation value found from the lifting of a noise stimulus onto the 2-dimensional retinal plane. This corresponds to a Bargmann transform in the reducible representation of the SE(2)=R2×S1\text{SE}(2)=\mathbb{R}^2\times S^1 group. A comparison will be provided with a previous model based on the Bargman transform in the irreducible representation of the SE(2)\text{SE}(2) group, outlining that the new model is more physiologically motivated. Then we present simulation results related to the construction of the orientation preference map by using Gabor filters with different scales and compare those results to the relevant neurophysiological findings in the literature

    An overview of the fundamental approaches that yield several image denoising techniques

    Get PDF
    Digital image is considered as a powerful tool to carry and transmit information between people. Thus, it attracts the attention of large number of researchers, among them those interested in preserving the image features from any factors that may reduce the image quality. One of these factors is the noise which affects the visual aspect of the image and makes others image processing more difficult. Thus far, solving this noise problem remains a challenge for the researchers in this field. A lot of image denoising techniques have been introduced in order to remove the noise by taking care of the image features; in other words, getting the best similarity to the original image from the noisy one. However, the findings are still inconclusive. Beside the enormous amount of researches and studies which adopt several mathematical concepts (statistics, probabilities, modeling, PDEs, wavelet, fuzzy logic, etc.), there is also the scarcity of review papers which carry an important role in the development and progress of research. Thus, this review paper intorduce an overview of the different fundamental approaches that yield the several image-denoising techniques, presented with a new classification. Furthermore, the paper presents the different evaluation tools needed on the comparison between these techniques in order to facilitate the processing of this noise problem, among a great diversity of techniques and concepts

    An Image Enhancement Approach to Achieve High Speed Using Adaptive Modified Bilateral Filter for Satellite Images Using FPGA

    Get PDF
    For real time application scenarios of image processing, satellite imaginary has grown more interest by researches due to the informative nature of image. Satellite images are captured using high quality cameras. These images are captured from space using on-board cameras. Wrong ISO setting, camera vibrations or wrong sensory setting causes noise. The degraded image can cause less efficient results during visual perception which is a challenging issue for researchers. Another reason is that noise corrupts the image during acquisition, transmission, interference or dust particles on the scanner screen of image from satellite to the earth stations. If quality degraded images are used for further processing then it may result in wrong information extraction. In order to cater this issue, image filtering or denoising approach is required. Since remote sensing images are captured from space using on-board camera which requires high speed operating device which can provide better reconstruction quality by utilizing lesser power consumption. Recently various approaches have been proposed for image filtering. Key challenges with these approaches are reconstruction quality, operating speed, image quality by preserving information at edges on image. Proposed approach is named as modified bilateral filter. In this approach bilateral filter and kernel schemes are combined. In order to overcome the drawbacks, modified bilateral filtering by using FPGA to perform the parallelism process for denoising is implemented

    An overview of multi-filters for eliminating impulse noise for digital images

    Get PDF
    An image through the digitization process is referred to as a digital image. The quality of the digital image may be degenerating due to interferences on the acquisition, transmission, extraction, etc. This attracted the attention of many researchers to study the causes of damage to the information in the image. In addition to finding cause of image damage, the researchers also looking for ways to overcome this problem. There are many filtering techniques that have been introduced to deal the damage to the information in the image. In addition to eliminating noise from the image, filtering techniques also aims to maintain the originality of the features in the image. Among the many research papers on image filtering there is a lack of review papers which are an important to facilitate researchers in understanding the differences in each filtering technique. Additionally, it helps researchers determine the direction of research conducted based on the results of previous research. Therefore, this paper presents a review of several filtering techniques that have been developed so far

    Filter Design and Applications in Image Improvement

    Get PDF
    This work presents the performance analysis of different basic techniques used for the image restoration. Restoration is a process by which an image suffering from degradation can be recovered to its original form. Removing the noise from the image is the scope of this work. The work implemented different techniques of image enhancement and noise removal. The degraded images have been restored by the use of different mathematical filters. A new approach using MATLAB software was designed to improve the image and suppress the noise. The code was executed to eliminate the image degradation and avoid the loss of information. The use of the code enables easy extraction of data from the images
    • …
    corecore